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Abstract

Ray-tracing is a promising emerging technology for real-time rendering of com-
puter graphics, computer aided graphical design (CAGD), and physical simula-
tions. Although ray-tracing is a common off-line technique, its very time consum-
ing arithmetic operations block the way of its real-time implementation.

Interval arithmetic and analysis provide a very powerful extension for the reg-
ular number systems which could pave the way for a real-time ray-tracing system.

Based on the interval analysis and arithmetic techniques we introduced im-
provements for the ray-tracing system on the algorithmic, architecture and imple-
mentation layers.

The core of ray-tracing, the ray intersection process, is believed to consume
95% of the ray-tracing time. Therefore, speeding up such process is the shortest
way for the real-time implementation of a ray-tracing system. We introduce an
interval rejection test used for speeding up the ray-tracing process, by fast rejection
of objects (triangles) not containing a valid intersection.

According to the experiments performed on our C test platform, without any
particular hardware support, the rejection test correctly rejects more than 99.9%
of the total number of triangles and speeds up the ray intersection process up to
2.21 times. While the rejection test expresses a speed-up on the software layer, its
main advantage is its very small area hardware realization.

Based on the collected statistical data, heterogeneous ray-tracing multi-cores
architecture has been proposed. This architecture is a computing unit made from
an array of heterogeneous multiprocessors. Each of these multiprocessors consists
of a high density of interval rejector units. These cores are written in Verilog and
simulated for the Altera FPGAs.

To the best of our knowledge, the rejector core unit is the first combination
between ray-tracing triangle meshes and interval analysis and arithmetic on the
hardware layer. The implementation of the interval rejector shows a reduction
more than 22 times in area compared to the conventional intersection process
hardware realization.
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Chapter 1

Introduction

Ray-tracing is a common technique for producing very high quality images and
video frames, since it simulates the natural by simulating the real light reflection.
Also it has very promising properties in physical simulations and computer aided
graphical design (CAGD) [1]. Ray-tracing is heavily used for off-line rendering
since it does not have any real-time implementation yet [2].

The ray-tracing rendering is based on the simple idea of light reflections. A
ray (or more) is traced from the camera (the eye) to each pixel of the rendered
image, which is visually placed in front of the camera. Each ray will reflects and
refracts several times on the scene’s objects, for calculating the final value of the
pixels [3].

Compared to the common on-line rendering mode, rasterization (Appendix B),
ray tracing produces much more realistic images, due to its realistic reflections,
refractions and shadows calculations. Moreover, ray-tracing is a global lighting
rendering technique compared to local lighting rasterization, in which light sources
affect all members of the scene globally.

On one hand, for the scenes of common complexity, ray-tracing is much slower
than rasterization. The main drawback in ray-tracing is its very time consuming
intersection process between traced ray and the scene’s objects. Calculation of
such intersection requires many floating point operations. The intersection process
can consume up to 95% of the whole ray-tracing time [4]. The reduction of the
intersection process time should pave the way for real-time ray-tracing systems. A
real-time system implementation will improve the CAGD response, the physical
simulations and the real-time computer graphics.

On the other hand, for very complex scenes, ray-tracing is faster than raster-
ization. In [1] a complete CAD model of the Boeing 777 airplane of 12 GByte
of size is ray-traced in a much smaller time compared to rasterization. Hence, as
computer graphics grow more complex the need for ray-tracing increases. In fact,
researchers at Intel think that running ray tracing on multi-cores processors will

1



2 CHAPTER 1. INTRODUCTION

kill rasterization [5].
This thesis combines ray-tracing with another field of science. Interval analysis

and arithmetic are believed to be much more powerful and reliable compared to
the point-wise numbers and techniques. Interval arithmetic provides more reliable
results than that of the regular floating-point arithmetic [6, 7]. Also interval analy-
sis techniques are more powerful than the point-wise similar algorithms, since they
provide more accurate solutions, with a guarantee of convergence [7, 8]. Interval
analysis can be also used for speeding-up calculation by using it in an intermediate
calculation stage.

In general intervals are continuous sets of numbers represented by their bound-
ing values. The point-numbers can be considered as a special case in which the
two bounds have the same value.

There is a wide range of applications for which interval analysis and arithmetic
can be used. These applications are split into four main categories, bounding
roundoff error, representing physical quantities with a range of uncertainty, interval
based analysis algorithms, and molding logically interval applications.

Although that interval arithmetic is not supported in hardware by the majority
of the current commercial processors, it is expected that it may be completely sup-
ported after its standardization. According to Hayes [9] floating point arithmetic
become a reality only after IEEE publishes its floating point standard. Currently,
IEEE is working on the interval arithmetic standard, IEEE P1788 [10]. Even the
programing languages will support the interval operations on the software layer in
the future [11].

According to [6] interval arithmetic can be as fast as floating-point arithmetic
with a little extra hardware. Also it shows that the interval arithmetic hardware is
immune against the regular floating-point problems such as underflow, overflow,
division by zero exceptions. The interval units hardware may support floating-
point operations in case of no interval operations are scheduled to the processor.

In general interval analysis and arithmetic are considered more reliable than
regular floating-points, provide more powerful analysis techniques, and can be used
for speeding-up of data processing. But since intervals representations on com-
puters are based on the floating-point numbers, so it is considered as an extension
to floating-points not a complete replacement.

1.1 Previous Work

Many works were introduced for improving ray-tracing and towards real-time sys-
tems. These works are split into two directions, speeding-up the tracing process,
and improving the accuracy of the output.
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Many algorithms are introduced for ray-tracing. While the non-interval based
algorithms are common as [12–20], some interval techniques have been introduced
for improving ray-tracing. The majority of these techniques provide more accu-
rate solution for the intersection problem as those found in [12, 21–25]. Other
algorithms are introduced for speeding up the tracing process as [21, 26].

Some implementations in the hardware layer are introduced trying to achieve
a real-time ray-tracing, but none of them achieve this goal. In [27] a rendering
architecture named SaarCOR is proposed for ray-tracing triangle-mesh surfaces.
In [28] a programmable hardware called RPU (Ray-tracing Programmable Unit)
is built over FPGA.

Other implementations use the capabilities of the modern CPU architecture,
like SIMD (Single Instruction Multiple Data) vector processing [29, 30]. Also
GPUs (Graphical Processing Units), which were originally designed for rasteriza-
tion, are used for ray-tracing, like in [31].

Many programs are built on the software layer for supporting ray-tracing.
OpenRT, in context with OpenGL, is introduced in [2] as an API supporting
real-time ray-tracing. In another direction many off-line rendering softwares were
produced, like [32–34].

1.2 Achievements

By combining interval analysis and arithmetic techniques with the ray intersection
process we introduce optimizations for the ray-tracing on the algorithmic, the
architecture and the implementation layers.

We introduce an interval method for speeding-up the ray-triangle intersection
process, in ray-tracing triangle-mesh surfaces, by reducing the running data set
tested for intersection. This method is a rejection test used for the fast rejection
of triangles not containing a valid intersection. The few triangles that are not
rejected by our method are then tested using any of the conventional tests. A
software test platform is built to validate the algorithm and collect statistical
data.

According to the experimental results on our software test platform, more than
99.9% of the triangles are rejected using the interval test. Also on the software
layer implementation, without any level of parallelism applied, we gain a speedup
between 1.25 and 2.21 after applying the interval rejection test, depending on
the 3D model tested. The experimental results also show that the rejection test
removes a jitter like phenomena in the execution time of the intersection process,
which makes it very suitable for real-time video rendering.

Although the rejection test expresses a speed-up on the software layer, its main
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advantage is its very small area when implemented in hardware compared to the
hardware realization of any of the conventional intersection tests. Based on the
collected statistical data, we introduce new ray-tracing multi-cores heterogeneous
architecture, towards a real-time ray-tracing system. The proposed architecture
is a computing unit made of an array of heterogeneous multiprocessors. Each
unit consists of a high density of our newly introduced interval rejector units.
Also each multiprocessor contains a smaller number of intersectors and one unit
for final pixel calculations. An area optimized interval rejector is also provided.
This rejector requires much smaller on-chip area compared to the conventional
intersection algorithms realizations.

To the best of our knowledge, our rejector core unit is the first combination
between ray-tracing triangle meshes and interval analysis and arithmetic on the
hardware layer. The implementation of the interval rejector shows a reduction
more than 22 times in area compared to the conventional intersection process
hardware realization. Such reduction in area allows a higher density of rejector
units, which proportionally leads to higher speeds.

1.3 Thesis Organization

Chapter 2: This chapter introduces the basics of the interval theory. The
main arithmetic operations, properties and functions are given. The strong and
weak points of the theory are discussed. The applications and the applications
categories in which intervals can be used are also introduced. Finally, the widely
used interval theory extension, the modal intervals, is discussed in the last section
of this chapter.

Chapter 3: This chapter is a survey on the ray-tracing techniques. The
chapter starts with mentioning the previous work in this field followed by ex-
plaining the ray-tracing rendering mechanism. After that, the widely used tracing
algorithms are introduced for each type of the three object representation used in
computer graphics and physical simulations. Each of the algorithms is discussed
explicitly showing its strong and weak points. The usage of the intervals within
ray-tracing is also highlighted. Finally, the dedicated hardware implementations
are mentioned.

Chapter 4: This chapter introduces our interval rejection algorithm, used
for improving the intersection process, and shows its detailed steps. Also the
proofs that there is no special treatment required for some special cases are also
given.
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Chapter 5: Our new multi-cores heterogeneous ray-tracing architecture is
introduced in this chapter. The architecture’s organization and its building blocks
are introduced. The observations, which lead to this architecture, are discussed.
Also the block diagrams of core unit, the interval rejector unit, are explained
showing some of the optimizations implemented within its design.

Chapter 6: The experimental results, the hardware realization, and the test
methodology are given and discussed within this chapter. The chapter starts
by stating the test methodology used within the whole process. After that, the
results of the software test platform are discussed. Within this section detailed
tables and graphs are given, based on a test set containing millions of triangles.
These results lead to the introduction of the ray-tracing architecture. In the last
section the hardware realization results are given, including part of the test-bench
test set. An area and delay comparison between the interval rejector realization
and our implementation of one of the famous intersection algorithms is also given.

Chapter 7: The conclusions and the future works are discussed within this
chapter.

Appendix A: In this appendix the interval extension for the Newton method
is introduced.

Appendix B: The rendering steps of the currently dominating real-time
technique, rasterization, are given within this appendix.

Appendix C: The CUDA general propose graphical processing units (GPGPU)
architecture is introduced is this appendix. The building blocks and the memory
organization of the CUDA architecture are also discussed.

Appendix D: Part of the code of the software test platform is written in
this appendix.
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Chapter 2

Interval Arithmetic and Analysis

2.1 Introduction

Interval analysis and arithmetic are believed to be much more powerful and reli-
able compared to point-wise numbers and techniques. Interval arithmetic provides
more reliable results than that of the regular floating point arithmetic [6, 7]. Fur-
thermore, interval analysis is more powerful than the point-wise similar algorithms.
It provides more accurate solutions [6–9, 12, 21], with a guarantee of convergence
[7, 8]. Also interval analysis can be used for speeding-up calculation by using it
in an intermediate calculation stage.

While the first mention of intervals was in a Cambridge University Ph.D. [9],
intervals in its current shape was first introduced by T. Sunaga in 1958 [35] and
R. E. Moore in 1966 [36]. Since then, many useful interval based applications
and techniques have been introduced. Intervals already find applications in error
analysis, error bounding [37], solving systems of equations [22, 38, 39], global
optimization [40], control [39, 41], computer graphics1 [12, 21–25], signal processing
[41], mathematical proofs [42], and many other applications [43]. Even an interval
extension for the current C++ standard has been proposed [11].

Although that interval arithmetic is not supported in hardware by the majority
of the current commercial processors, it is expected that it maybe completely
supported after its standardization. According to [9] floating point arithmetic
become a reality after IEEE published its floating point standard. Currently, IEEE
is working on the interval arithmetic standard, IEEE P1788 [10]. So, most of the
interval algorithms which improve the accuracy and/or introduce a speedup using
the software layer should witness a considerable breakthrough in performance with
the hardware support of interval arithmetic.

Many works in the hardware implementation for the interval arithmetic are

1The usage of intervals in computer graphics will be highlighted in Chapter 3.

7
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already introduced [6, 8, 44]. Interval arithmetic can be as fast as floating-point
arithmetic with a little extra hardware [6]. Moreover, interval arithmetic is im-
mune against the regular floating-point problems like underflow, overflow, and
division by zero. The interval units also can be built to support floating-point
operations in case no interval operations are scheduled to the processor.

So, in general interval analysis and arithmetic are considered more reliable
than regular floating-points, provide more powerful analysis techniques, and can
be used for speeding-up of data processing. But Intervals representations on com-
puters are based on the floating-point numbers, so it can be considered as a very
powerful extension to floating-points not a complete replacement. Intervals have
some drawbacks like overestimation problem, which can limit their usage is some
application.

Many extensions for the main interval theory are introduced to improve some
of the weak points of the classical theory. Two of the most famous extensions are
the Kaucher [45] and the Modal [46, 47] intervals (Section 2.5). Although these
extensions improve the quality of the output, they add much more complexity to
the interval theory, and hence its hardware realization. The current draft of the
IEEE interval arithmetic standard supports only the classical interval theory [10].

Definition

The interval set of numbers can be defined as,

I (R) = {[a, b] |a ∈ R, b ∈ R, a ≤ b} (2.1)

where R is the set of real numbers. But due to the fact that computers represent
only a small set of the real numbers, the computer representable set of intervals
may be defined as,

I (R) = {[a, b] |a ∈ R, b ∈ R, a ≤ b} (2.2)

where R ⊂ R is the representable subset of real numbers on the computer system.
According to [10], I (R) can be defined also using R∗, where R∗ = R∪{−∞,+∞}.

The following sections of this chapter are organized such that the main appli-
cations of the intervals are discussed in section 2.2. The interval arithmetic oper-
ations and main properties are provided in section 2.3. Section 2.4 is concerned
about the interval functions. The main interval theory extension, the modal inter-
vals, are highlighted in the last section 2.5. In the rest of the thesis, the upper-case
letters are reserved for interval numbers.
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2.2 Applications Categories

There is a wide range of applications using interval analysis and arithmetic. These
applications are split into four main categories, namely, bounding roundoff error,
representing physical quantities with a range of uncertainty, interval based analysis
algorithms, and modeling logically interval applications. Moreover, the expected,
near future, hardware support of the interval arithmetic will increase the proba-
bility of selecting interval as a choice. So the range of applications will increase,
and intervals may be used in categories beyond the four mentioned below.

2.2.1 Bounding Roundoff Error

One of the main sources of errors in computer calculated quantities is due to
the fact that numbers are not accurately represented on the computer systems.
The inaccurate representation is due to the finitude in numbers within digital
systems; the floating-point numbers. Rounding errors in floating-point arithmetic
have been charged for many deadly accidents. The failure of American intelligent
Patriot missiles in facing the Iraqi Scud missiles in 1991 is believed to be due to the
floating point rounding errors [9]. Also the fall of the Ariane 5 satellite carrying
rocket in 1996 is proved to be due to the same reason.

One of the fields of intervals is as a reliable replacement for numbers repre-
sentation on computer systems. Hence any number will be represented by its two
neighbor floating-point numbers, as shown in Fig. (2.1), instead of rounding. So,
the final result is guaranteed to be in a given interval. And due to the very tiny
interval width used, the overestimation effect is minimal.

Some quantities like
√

2 or π needs infinite precision for correct representation.
So, interval representation in these cases is a very valuable selection, and leads to
more accurate bounded outputs.

Figure 2.1: A real number can fall between two computer representable numbers.
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Figure 2.2: π and
√

2 can’t be represented using any finite precision number
system[9].

2.2.2 Representing Physical Quantities with a Range of
Uncertainty

Almost every measured quantity has a range of uncertainty, and the usage of
intervals leads to much better representation of these quantities, and so the results
depending on them. More accurate bounded outputs leads to better and error free
designs. As shown in the example below representing resistance and voltage source
as an interval enclosing the range of uncertainty leads to a better knowledge about
the current.

Example 1. For a simple circuit with a single loop of resistance R = 100kΩ±5%
and voltage source Vs = 5V ± 2%. R and Vs can be rewritten as,

R = [95, 105] kΩ

Vs = [4.9, 5.1]V

and using the interval arithmetic, the current is enclosed within a range such that,

I = Vs

R
= [4.9, 5.1]

[95, 105] = [46.67, 53.68]µA

2.2.3 Interval Based Analysis Algorithms

Many interval based analysis algorithms are proved to be more powerful that their
point-wise equivalents. Normally, interval analysis produces point numbers and
only used as an intermediate calculation stages. Interval analysis methods are
usually used for producing accurate results. However, some interval methods have
been created for speeding up the calculation process. Currently, interval theory
is mainly used in analysis more than being an extension for the floating-point
arithmetic.

Many of the famous analysis algorithms have a more powerful interval exten-
sion, like interval Gauss–Seidel [7], interval bisection, interval Newton method [6, 7]
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(for more about interval Newton method please refer to Appendix A). However,
there are a lot of independently created interval analysis methods, like Mitchell
Algorithm [12] (Sub-section 3.3.1) or Alefeld-Hansen method [22, 24] (Sub-section
3.3.3).

2.2.4 Modeling Logically Interval Applications

There are many real world problems which are easier to be modeled in computer
using intervals. Software and hardware support for intervals will improve the
processing of these problems significantly.

2.3 Interval Operations and Properties

Although the intervals are simply defined, their underlying arithmetic rules are
not the same. In the following subsections the main arithmetic operations and
properties of the interval arithmetic are defined.

2.3.1 Arithmetic Operations

In general the interval arithmetic operations can be defined as,

A ◦B = [a ◦ b|a ∈ A, b ∈ B] , for ◦ ∈ {+,−, ·, /} . (2.3)

where A,B ∈ I(R). A special treatment is required in case of the division opera-
tion if 0 ∈ B.

Each arithmetic operation can be defined explicitly, more tightly. Let ,

A = [a1, a2] , and
B = [b1, b2]

The four operations can be defined as,

Addition

A+B = [a1, a2] + [b1, b2] = [a1 + b1, a2 + b2] (2.4)

Subtraction

A−B = [a1, a2]− [b1, b2] = [a1 − b2, a2 − b1] (2.5)
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Multiplication

The interval multiplication can be simply defined as,

A ·B = [a1, a2] · [b1, b2] = [min (a1b1, a1b2, a2b1, a2b2) ,max (a1b1, a1b2, a2b1, a2b2)]
(2.6)

but this technique requires four floating point multiplications. The separation of
this formula into different cases depending on the signs of the interval boundaries
[7, 8] leads to fewer multiplications as follows,

Table 2.1: The nine cases of interval multiplication A ·B.
Case A B A ·B

1 0 ≤ a1 ≤ a2 0 ≤ b1 ≤ b2 [a1b1, a2b2]
2 0 ≤ a1 ≤ a2 b1 ≤ b2 ≤ 0 [a2b1, a1b2]
3 0 ≤ a1 ≤ a2 b1 < 0 < b2 [a2b1, a2b2]
4 a1 ≤ a2 ≤ 0 0 ≤ b1 ≤ b2 [a1b2, a2b1]
5 a1 ≤ a2 ≤ 0 b1 ≤ b2 ≤ 0 [a2b2, a1b1]
6 a1 ≤ a2 ≤ 0 b1 < 0 < b2 [a1b2, a1b1]
7 a1 < 0 < a2 0 ≤ b1 ≤ b2 [a1b2, a2b2]
8 a1 < 0 < a2 b1 ≤ b2 ≤ 0 [a2b1, a1b1]
9 a1 < 0 < a2 b1 < 0 < b2 [min (a1b2, a2b1) ,max (a1b1, a2b2)]

Division

The interval division A/B is defined using six cases given that 0 /∈ B [7, 8], as
shown in the table below,

Table 2.2: The six cases of interval division A/B, where 0 /∈ B.
Case A B A/B

1 0 ≤ a1 ≤ a2 0 < b1 ≤ b2 [a1/b2, a2/b1]
2 0 ≤ a1 ≤ a2 b1 ≤ b2 < 0 [a2/b2, a1/b1]
3 a1 ≤ a2 ≤ 0 0 < b1 ≤ b2 [a1/b1, a2/b2]
4 a1 ≤ a2 ≤ 0 b1 ≤ b2 < 0 [a2/b1, a1/b2]
5 a1 < 0 < a2 0 < b1 ≤ b2 [a1/b1, a2/b1]
6 a1 < 0 < a2 b1 ≤ b2 < 0 [a2/b2, a1/b2]

Eight cases are required for defining the interval division in case of 0 ∈ B [8],
as shown in the table below,
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Table 2.3: The eight cases of interval division A/B, where 0 ∈ B.
Case A B A/B

1 0 ∈ A 0 ∈ B (−∞,∞)
2 0 /∈ A B = [0, 0] φ
3 a2 < 0 b1 < b2 = 0 [a2/b1,+∞)
4 a2 < 0 b1 < 0 < b2 (−∞, a2/b2] ∪ [a2/b1,+∞)
5 a2 < 0 0 = b1 < b2 (−∞, a2/b2]
6 a1 > 0 b1 < b2 = 0 (−∞, a1/b1]
7 a1 > 0 b1 < 0 < b2 (−∞, a1/b1] ∪ [a1/b2,+∞)
8 a1 > 0 0 = b1 < b2 [a1/b2,+∞)

Since the output should bound bounding for all the possible values, one of the
two bounds of the output interval must be ±∞ in case of division by interval
containing zero, excluding the undefined case (2).

2.3.2 Comparison Relations

Comparison relations of the interval arithmetic are not trivial as those of the
floating-point arithmetic. The four main comparison relations can be defined as,

1. A = B ⇐⇒ a1 = b1 ∧ a2 = b2

2. A ≤ B ⇐⇒ a1 ≤ b1 ∧ a2 ≤ b2

3. A ⊆ B ⇐⇒ a1 ≥ b1 ∧ a2 ≤ b2

4. A < B ⇐⇒ a2 < b1

2.3.3 Rounding Modes

There are two rounding modes defined in interval arithmetic, rounding towards
outside(out) and rounding towards inside (in) [10], such that,

out (A ◦B) =
[
a ◦5 b, a ◦4 b

]
(2.7)

where ◦5 is rounding towards −∞ and ◦4 is rounding towords +∞. And,

in (A ◦B) =
[
a ◦4 b, a ◦5 b

]
(2.8)

2.3.4 Some of the Interval Arithmetic Properties

Due to [7, 8, 48] interval arithmetic have the following properties,

1. A+B = B + A
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2. A ·B = B · A

3. 0 + A = A+ 0 = A

4. A · 1 = 1 · A = A

5. A · 0 = 0 · A = 0

6. A ⊆ B ∧ C ⊆ D ⇒ A ◦ C ⊆ B ◦D

7. a ∈ A ∧ b ∈ B ⇒ a ◦ b ∈ A ◦B

8. A · (B + C) ⊆ A ·B + A · C (sub-distributive law)

2.3.5 Overestimation Problem

To use any tool efficiently one has to know its weakness. The main problem in
interval arithmetic is the overestimation of the result interval, in which the result
interval guarantee the bounding of the correct result but with an overestimation.
That overestimation has two main sources,

Variables dependences

The variables dependences problem happens when the same variable appears in
the equation more than one time, in which each instance of the variable is treated
independently. As shown in the example below, the native interval treatment of
subtraction of two instances of the same variable leads to an over estimation.

Example 2. Let X = [1, 3], due to the defined interval operation,

X −X = [1, 3]− [1, 3] = [−2, 2] ⊃ [0, 0]

while X can not be 1 and 3 at the same time. For an obvious dependency as this
example, the problem can be simply solved in the software layer. However other
more complex examples are not easy to solve.

The main solution for this problem is by reordering the equations, in the design
phase, for minimum multi-instances of the same variable. Also, for intervals with
small width the variable-dependency is less significant and disappears iteratively,
as demonstrated in some of the ray-tracing interval algorithms in Chapter 3.
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Sub-distributive law

As mentioned in the interval arithmetic properties Subsection (2.3.4), interval
multiplication is not ideally distributed over interval addition. This problem is
solved with the same techniques used with variable dependency problem.

Example 3. Let A = [1, 3], B = [2, 2] and C = [−2,−2],

A · (B + C) = [1, 3] · ([2, 2] + [−2,−2])
= [0, 0]

while,

A ·B + A · C = [1, 3] · [2, 2] + [1, 3] · [−2,−2]
= [2, 6] + [−6,−2]
= [−4, 4] ⊃ [0, 0]

In general if these overestimations are not treated adequately, they will accu-
mulate. This produces trivial and unusable outputs.

2.4 Interval Functions

In general, the range of a function output values over the interval can be defined
as [8, 10],

range(f,X) = [f (x) |x ∈ X] (2.9)

where X ∈ I(R). And for multi-variable expression,

range (f,X1, ..., Xn) = [f (x1, ..., xn) |x1 ∈ X1, ..., xn ∈ Xn] (2.10)

where X1, ..., Xn ∈ I(R).
Even that the range of output is very tight but also it is so complex and

expensive to calculate. A more direct calculation is the interval evaluation of an
arithmetic expression denoted by,

F (X1, ..., Xn)

Due to the interval operations overestimation, an inclusion property is defined
such that [8, 10],
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F (X1, ..., Xn) ⊇ range (f,X1, ..., Xn) (2.11)

The calculation of the range of function values is equivalent to calculating the
global maximum and minimum of an expression over a bounding interval for each
variable, which is a very difficult task [7]. On the other hand the interval functions
are an easy and fast way for result bounding, with a range of overestimation. The
overestimation decreases as we iteratively decrease the interval size, if possible.
Also off-line symbolic variable arrangements can produce more tight outputs.

2.4.1 Examples of Interval Elementary Functions

Elementary functions can be defined explicitly as an interval functions more tightly.
Following, some examples for interval elementary functions are given,

For X = [x1, x2]

Square function

f(X) = X2,

X2 =


[x2

1, x
2
2] , 0 ≤ x1 ≤ x2

[x2
2, x

2
1] , x1 ≤ x2 ≤ 0

[0,max (x2
1, x

2
2)] , x1 ≤ 0 ≤ x2

Note that the third case (when 0 ∈ X) is different from defining f (X) = XX.

Power function

f (X) = aX,
aX = [ax1 , ax2 ]

where a ∈ R.

In the same way many elementary functions can be defined more explicitly.

2.5 Interval Theory Extensions

Many extensions for the main interval theory are introduced to improve some of
the weak points of the classical theory. Two of the most famous extensions are the
Kaucher [45] and the Modal [46–48] intervals. Although these extensions improve
the quality of the output, but also they add much more complexity to the interval
theory, and hence its hardware realization. Also there are some applications that
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can be implemented using the extended theory and can not be realized using the
classical intervals only [9].

Kaucher and Modal intervals are isomorphic, but Modal intervals have a logical
meaning not present for Kaucher[48]. Since the modal intervals are believed to be
the logical extension for missing parts in the classical theory [48], it will be briefly
introduced in the following subsections.

2.5.1 Modal Intervals

The naming of Modal interval is due to that its intervals are treated in two modes
of quantifiers, there exist (∃) and for all (∀). The set of Modal intervals are defined
as,

I∗(R) = {(X,Q) |X ∈ I(R), Q ∈ {∃,∀}} (2.12)

where X is a classical interval number and Q is a quantifier.
The classical intervals are treated only in the mode of there exist (∃), and so

adding the other pair of quantifier, for all (∀) is considered as the logical extension
for the classical intervals.

The equation,

a+ x = b

has only one solution using the classical interval theory but four possible solutions
in modal intervals [46].

Example 4. Let,

a ∈ [1, 2] , and
b ∈ [3, 7]

The equation a + x = b can have four solutions using Modal intervals depending
on the used quantifiers, such that,

1. ∀ (a ∈ [1, 2]) ∀ (x ∈ [2, 5]) ∃ (b ∈ [3, 7]),

2. ∀ (a ∈ [1, 2]) ∀ (b ∈ [3, 7]) ∃ (x ∈ [1, 6]),

3. ∀ (x ∈ [1, 6]) ∃ (a ∈ [1, 2]) ∃ (b ∈ [3, 7]),

4. ∀ (b ∈ [3, 7]) ∃ (a ∈ [1, 2]) ∃ (x ∈ [2, 5])
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According to [46] only the first solution is be achieved using the classical intervals.
The other three, yet logical, solutions need the Modal extension. The four solution
have a different logical meaning depending on the quantifier (∀ or ∃), and can be
used for modeling problems with different logical meaning.

Canonical representation

Modal intervals are defined in a canonical form containing the quantifiers data,
such that,

[a1, a2]
′
=

([a1, a2] , ∃) , if a1 ≤ a2

([a2, a1] ,∀) , if a1 > a2

(2.13)

While the first part is the normal representation in the classical intervals, the
second one is considered improper representation there.

Fig. 2.3 shows that the proper intervals, improper intervals and point-wise
numbers are in the same context of zero and, positive and negative numbers. So,
that’s another way for seeing the Modal interval as the completion of the classical
intervals.

Figure 2.3: Proper, improper and point-wise intervals.

Example 5. Let A′ and B′ are two modal intervals such that A′ = [1, 3]′ and
B′ = [4, 2]′,

Table 2.4: Two examples on the canonical representation of the Modal intervals.
Classical Interval Mode

A′ [1, 3] ∃
B′ [2, 4] ∀

Even that Modal intervals have a lot of useful priorities, its arithmetic op-
eration is more complex than the classical intervals. Compared to the classical
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intervals multiplication which consists of nine cases, the modal interval multipli-
cation requires sixteen cases (For more about Modal intervals operations please
refer to [46]). Beside the increased complexity of arithmetic operations, compari-
son relations are not straight forward. The increase in complexity reflects on the
hardware implementation as increase in area and delay of the circuits.

2.6 Conclusion

Interval analysis and arithmetic are believed to be much more powerful and re-
liable compared to the point-wise numbers and techniques. Interval arithmetic
provides more reliable results than that of the regular floating-point arithmetic.
Also interval analysis techniques are more powerful than the point-wise similar
algorithms, since they provide more accurate solutions, with a guarantee of con-
vergence. Interval analysis can be also used for speeding-up calculation by using
it in an intermediate calculation stage.

In general intervals are continuous sets of numbers represented by their bound-
ing values. The point-numbers can be considered as a special case in which the
two bounds have the same value.

There is a wide range of applications for interval analysis and arithmetic can be
used in. These applications are split into four main categories, bounding roundoff
error, representing physical quantities with a range of uncertainty, interval based
analysis algorithms, and molding logically interval applications.

Although that interval arithmetic is not supported in hardware by the majority
of the current commercial processors, it is expected that it may be completely
supported after its standardization.

Interval arithmetic can be as fast as floating-point arithmetic with a little extra
hardware. Also it shows that the interval arithmetic hardware is immune against
the regular floating-point problems such as underflow, overflow, division by zero
exceptions. The interval units hardware may support floating-point operations in
case of no interval operations are scheduled to the processor.
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Chapter 3

Ray-Tracing

3.1 Introduction

Ray-tracing simulates the nature, since the images are rendered in ray-tracing by
simulating light reflection. Ray-traced images (or video frames) are very realistic,
since it contains realistic reflections, refractions and shadows. Compared to the
common on-line rendering mode, rasterization (Appendix B), ray-tracing produces
much more realistic images, due to its realistic reflections, refractions and shadows.
Moreover, compared to rasterization with its local lighting, ray-tracing is a global
lighting rendering technique in which light sources affect all members of the sense
globally.

Ray-tracing is yet considered to be much slower than rasterization, for the
scenes with common complexity. Even so, for high quality off-line rendering, ray-
tracing is a very common technique. Most of the animated high quality 3D cinema
movies are ray-traced. Fig. (3.1) shows a clear difference in quality between the ray

Figure 3.1: A clear difference in quality appears between the ray-tracing and
rastrization. (a) Ray-traced Pixar’s Cars movie [49]. (b) Rasterized Pixar’s Cars
game.

21
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traced Pixar’s Cars movie [49] and the rasterized Pixar’s Cars game. While Fig.
(3.2) shows a ray-traced image containing real refractions and reflections. Ray-
tracing is also common in physical simulations, since it can be used in simulation
of optics and electromagnetic waves.

Figure 3.2: Realistic ray-traced images contains real refractions, reflections and
shadows [32, 34].

Many works are introduced for improving ray-tracing and towards real-time
systems. These improvements are made in the algorithm, the software and the
hardware layers concurrently. These works are split into two directions, speeding-
up the tracing process, and improving the accuracy of the output.

Many algorithms are introduced for speeding-up the ray-tracing process, as [13–
17, 21, 23]. Other algorithms are used for more reliable calculations, as [4, 12, 18–
22, 24, 50]. Many of these algorithms are specialized for specific types of objects
and others are general for any ray traced object. Some of these algorithms are
discussed in Sections 3.3 and 3.4.

Some implementations in the hardware layer are introduced trying to achieve a
real-time ray-tracing. In [27] a rendering architecture named SaarCOR is proposed
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for ray-tracing triangle-mesh surfaces. The real hardware was not implemented
but only simulations were introduced. In [28] a programmable hardware called
RPU (Ray-tracing Programmable Unit) is built over FPGA running on 66 MHz
and capable of (512×304) pixels resolution at at low frames rates (8 frames/second
on average). PRU combines the features of CPUs, GPUs, and custom hardware
in order to implement a fully programmable, parallel processor [28]. Also a ray-
tracing for computer game on PCs was introduce with cooperation with Intel [51].

Other implementations use the capabilities of the modern CPU architecture,
like SIMD (Single Instruction Multiple Data) vector processing [29, 30]. Also
GPUs (Graphical Processing Units), which were originally designed for rasteriza-
tion, are used for ray-tracing, like in [31].

Many programs are built on the software layer for supporting ray-tracing.
OpenRT, in context with OpenGL, is introduced in [2] as an API supporting
real-time ray-tracing. In another direction many off-line rendering softwares were
produced, like [32–34].

Since that the main drawback of ray-tracing is its long processing time, a com-
pletely implemented interactive ray-tracing can be easily dominates all the other
rendering techniques. According to [4] 95% of the ray-tracing time is spent in
finding the intersections between the ray and the scene objects. So, reducing the
ray-object intersection processing time is the main challenge in ray-tracing. Many
of the improvements in ray-tracing algorithms are concerned with the intersec-
tion process. In general the calculation of the intersection calculation technique
depends on the way in which the scene objects are represented. There are three
major representations for objects used in ray-tracing, triangles-meshes, implicit
surfaces and parametric surfaces.

Due to [1] the rending of very complex scenes is faster in ray-tracing than
rasterization. In [1] a complete CAD model of Boeing 777 airplane made of 350
million triangles and 12 GByte in size is ray traced at multiple frame per second
rate (5 frames/second), while its rasterization needs up to minutes. This is due
to the fact that in rasterization all scene objects needed to be accessed including
the millions of triangles that are eventually obscured by other triangles that are
closer to the viewing point, while in ray-tracing the needed data only is loaded
from memory. And so, as computer graphics grows more complex as the need for
ray tracing increase.

Ray tracing by its nature have a high level of parallelism, since each ray can be
traced independently of the others. In fact, some researchers at Intel think that
running ray-tracing on multi-cores processors will kills rastrization [5].

Interval analysis and arithmetic are used efficiently in improving ray-tracing
accuracy and speed. And as mentioned before, hardware support will improve
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Figure 3.3: Section in the complete model of the Boeing 777 airplane, of 12 GByte
in size, ray-traced at multiple frames per seconds [1].

the interval based algorithms significantly and so improves the performance of
ray-tracing.

Fig. 3.4 shows a proposed comparison technique for graphics rendering hard-
ware circuits. The figure shows the rendered resolution in mega pixels versus
the number of frames per second. The standard resolution and real-time frame
rates are marked using dotted lines. The curved solid lines show the expected
response for a regular rendering system, by rendering higher resolution at lower
frame rates and vise versa. Hence, the rendering systems should be compared
using their curves. Also hardware can be benchmarked by satisfying a required
resolution and frame rates, as the current TV HD 1080i high definition standard
at 100 frames per second.

Figure 3.4: A proposed graph for the comparison of graphics rendering hardware
showing the standard resolution and real-time frame rates.



3.2. RENDERING MECHANISM 25

3D Object Representations Methods

Computer created 3D models have in general three main type of representations,

• Implicit surfaces: in which objects are defined by the implicit equation of
the surfaces constructing them.

• Triangle meshes: objects are modeled using meshes of triangles. Triangles
meshes are one type of surface tessellations.

• Parametric surfaces: the objects’ surfaces are described using parametric
equations. The parametric surfaces can be Bézier, B-Splines or NURBS
(Non-Uniform Rational Basis Spline).

Each type of the representations has its own advantages over the other surface.
Implicit surfaces are common in physics simulations, while triangle-meshes is the
dominate representation used in computer graphics in either rasterization or ray-
tracing. Parametric surfaces have many promising properties as a final rendered
format, but mainly parametric surfaces are transformed to triangle-meshes before
rendering.

Each of the three representations has its own ray-tracing algorithms concern-
ing the calculation of the intersection point, but the main ray-tracing frame is
common among them all. The main algorithms used within each representation
are introduced in the following sections.

The rest of this chapter is organized such that, in Section 3.2 the ray-tracing
rendering mechanism is demonstrated. Ray-tracing implicit surfaces, triangle-
mesh surfaces and parametric surfaces are introduced in Sections 3.3, 3.4 and 3.5
respectively. The last section (3.6) is concerned with the speeding-up techniques.

3.2 Rendering Mechanism

Rendering images using ray-tracing is based on the simple idea of light reflections.
A ray (or more) is traced from the camera (also called eye) to each pixel (picture
element) of the rendered image, which is visually placed in front of the camera.
Each ray reflects several times on the scene’s objects, for calculating the final value
of the pixels. Rays vanishes after certain number of reflections, or certain traveled
distance, or by escaping out of the scene. Rays are traced in a revers manner
starting from the eye towards the objects and the light sources, since the relevant
rays are only the light rays which compose the rendered image by reaching the
camera.

Rays are divided into three categories,
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Figure 3.5: Simple ray-tracing is demonstrated on a sense with two objects and
a single light source. In general a ray or more is traced thought each pixel of the
image plane.

• Main rays: The initial rays coming out of the eye, passing through pixels,
and intersecting the nearest to eye objects.

• Secondary rays: The reflected and refracted rays from scene’s objects.

• Light rays: rays coming out from each intersection point, between main or
secondary ray and objects, towards each light source in the scene.

While main and secondary rays are used to calculate the geometry of the scene,
light rays are used to calculate the illumination, and so the color, of the intersection
points. If there is an obstacle in the way of the light ray, it is called then a shadow
ray, and the intersection point falls in the shadow of this obstacle. So, realistic
shadows are calculated. Light rays do not reflect, they reach the light source in
a straight way. Main and secondary rays can split to more than one ray in case
of hitting a refractive object. Each single ray can be traced independently in a
completely parallel manner, if resources are available.

Fig. (3.5) shows a simple scene with two objects and one light source. A main
ray comes out of the eye; passes through a pixel in the virtual image plane, and
they hit the cuboid object. At the intersection point two rays are created, a light
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Figure 3.6: A sense with two light sources shows main, reflected, refracted, light
and shadow rays.

ray for calculating illumination at the intersection point, and a reflected ray. The
new reflected ray will act as a main ray with the intersection point as its origin.
This ray may reflect from another object, as shown in the figure, or reach the light
source, or vanishes through the background. Vanished rays are assigned the color
of the background.

Fig. (3.6) shows a sense with a two light sources. The figure shows that there
are light rays (or shadow rays) for each light source. This figure shows also that
the main ray can splits into two secondary rays, reflected and refracted, in case
of hitting a refractive object. In case of light rays the position of intersection is
not required to be calculated. The necessary information is only the presence or
absence of intersection. In case the light ray intersects with any object before
reaching the light source, it means that the intersection points falls in shade.

Finding the intersection point, as mentioned before, is the most important
and time consuming stage of ray tracing. Intersection point calculation will be
discussed for each of the main object representation in the following sections.
However, the ray equation is generally given as [21],

r = s+ dt (3.1)

where s ∈ R3 is the initial point (the source for the main ray and the intersection
point for the secondary rays), d ∈ R3 is the ray direction, and t ∈ R is the
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Figure 3.7: Reflected ray has the same angle with the normal as the light ray [21].

scanning parameter (t = 0 at the initial point). The parametric shape of the
equations simplifies the identification of the nearest to camera object, since the
intersection with the smallest positive t is the nearest to eye intersection. The
direction is simply calculated by subtracting the pixel position from the source
position for the main ray. While for secondary rays the normal to the surface at
the intersection point is required to be calculated. The direction of the secondary
ray (reflected or refracted) depends on the incident and normal directions. In
some techniques normal to the surfaces are calculated off-line and stored with the
surface data. Fig. 3.7 shows that the reflected ray has the same angle with the
normal as light ray. In case of that the angle between the incident ray is the same
of the reflected ray, no reflected ray is created. Fig. 3.8 shows that the refraction
angles are calculated according to Snell’s law.
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Figure 3.8: Snell’s Law.

3.3 Ray-Tracing Implicit Surfaces

Implicit surfaces in general are defined by its implicit equations, such that,

f (x, y, z) = 0 (3.2)
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in which the implicit equation equals to zero on the surface only, and has a non-zero
value elsewhere. Implicit surfaces are common in physics simulations more than
computer graphics. Complex objects are assembled of multiple implicit surfaces.
Fig. 3.9 shows a collection of different implicit surfaces and their equations.

The intersection between the ray and the surface is equivalent to root finding.
The intersection point is found simply by substituting the ray equation (3.1) into
the surface equation (3.2), such that [21],

f (sx + tdx, sy + tdy, sz + tyz) = 0 (3.3)

where s = {sx, sy, sz} is the source point, and d = {dx, dy, dz} is the ray direction.
Solving such an equation is simple for a surface as the sphere, while it is more
complex for other surfaces. Any point-wise root solving algorithm, like bisection,
regula-falsi or Newton method (for more about Newton method please refer to
Appendix A), can be used for calculating the intersection point. But according
to [18] point-sampling methods are not robust and generate defected rendered
shapes, especially for thin surfaces. One of the main sources of defects in the
point-sampling methods is floating point numbers itself [21].

Interval analysis methods are very common in ray-tracing implicit surfaces,
and generate very accurate shapes. According to [21] the drawback of the interval
based algorithms is the slow speed of calculations. But as mentioned before, the
hardware support for the interval arithmetic can simply overcome this problem.

The famous ray-surface intersection methods used in ray tracing are discussed
in the following sub-sections. Due to the defects generated by the point-sampling
methods, the interval based methods are the commonly used in ray-tracing implicit
surfaces.

3.3.1 Mitchell Algorithm

The first interval intersection method for implicit surfaces was introduced by
Mitchell in [12]. Although it is a relatively old algorithm (1990), it is still con-
sidered as a fast algorithm. The use of interval analysis and arithmetic in this
algorithm, like most of implicit surfaces interval algorithm, is for calculating the
intersection points in a reliable way.

The algorithm consists of two main phases, root isolation and root refinement.
In the root isolation phase, an interval method is used to find all the intervals that
enclose only one root. In phase two, any of the point sampling technique can be
used for root refinement and finding its location within the interval.

The famous interval over estimation (see sub-section 2.3.5) did not expresses
any problem in this algorithm, since the intervals widths are decreased iteratively



30 CHAPTER 3. RAY-TRACING

Figure 3.9: Different shapes of implicit surfaces with their names and equa-
tions [30].

and so the over estimation. The remaining overestimations in the smallest intervals
are only considered as an extra void processing for the point sampling technique.

The algorithm can be split into four steps,

Step 1:

Evaluate F ([a, b]), where F is the implicit surface equation, and a and b are the
initial points. If the result interval does not contain zero, so there is no roots in
this interval, and no valid intersection exists.
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Step 2:

Evaluate the derivative of the surface equation F ′ ([a, b]). If the result interval
does not contain zero, then the function must be monotonic in this interval. And
so, if the function is monotonic and f(a) · f(b) ≤ 0 (only signs are checked), then
there is one root in this interval. The root can be refined after that by any of the
standard methods (point sampling).

The derivative of the function measures the change of the output with respect
to the input. Given that the monotonic function is a function that preserve order
(ex: for increasing monotonic function if x2 ≥ x1, then f(x2) ≥ f(x1)), then
the absence of zero in the derivative is a sufficient condition for a function to be
monotonic. So, if the function is monotonic and the interval edges of different
signs, then there is only one root enclosed by the interval.

Step 3:

If F ([a, b]) and F ′ ([a, b]) both contain zeros. Then subdivide [a, b] at the midpoint
into two intervals and repeat the steps starting from step one in a recursive manner.

Step 4:

The process of subdivision stops if the width of the interval reaches machine ac-
curacy (or any desired least accuracy).

Although calculation of the derivative slowdown the speed of one iteration,
Mitchell algorithm converges faster than an algorithm not using the derivative [21].
Although the derivative speeds up the algorithm conversion, it can be also con-
sidered as the main drawback of the algorithm, because if the derivative can not
be derived, Mitchell algorithm is unusable.

According to [18] the point sampling refinement used in Mitchell can produce
errors. But in [21] interval approach is also used for final refinement. Also in [30] it
was introduced that changing bisection selection improves the speed compared to
the original Mitchell. Knoll et al. in [30] also take the advantages of SIMD (Single
Instruction Multiple Data) support of the new processors families, and they build
a somehow interactive rendering.

3.3.2 Interval Newton Method

Interval Newton is the interval extension for the famous root calculation Newton
method. The interval Newton method was originally introduced by R. Moore
in [36], as an interval extension for the classical method. Interval Newton is
believed to be much more powerful than the classical one. In contrast with the
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classical method, the interval Newton method never diverges [6]. For more about
interval Newton please refer to appendix A.

3.3.3 Alefeld-Hansen Method

Alefled-Hansen method is a modified version of the interval Newton for implicit
surface root isolation. According to [21] this method was introduced separately by
Alefeld in [24], and Hansen in [22]. Also [21] shows that Alfeled-Hansen method is
faster than the normal common Newton. In this method a new division operator
is defined such that,

1
F ′ ([x1, x2]) =


[1/x2,∞) , if x1 = 0

(−∞, 1/x1] , if x2 = 0

(−∞, 1/x1] ∪ [x2,∞) , otherwise

(3.4)

3.3.4 Interval Bisection Method

Interval bisection method is a very simple method. It’s the interval extension of
the famous bisection method. The interval bisection works as follow,

Evaluate F ([a, b]), where F is the implicit surface equation, and a and b are the
initial points. If the resulting interval does not contain zero, so there is no roots
in this interval. Else bisect the interval and repeat the test. The test stops if the
machine accuracy is reached, or a desired sufficient accuracy. Interval bisection is
considered as the non-derivative version of the Mitchell algorithm.

3.3.5 Dedicated Hardware

Implicit surfaces ray tracing needs an interval support from the processor, which
is expected in the near future, than building dedicated hardware. Implicit surfaces
is an infinite collection which needs interval support for nearly every real function.
But that is not the case in the other object representation.

3.4 Ray-Tracing Triangle-Mesh Surfaces

Triangle mesh is the most common representation for 3D-objects in computer
graphics. Triangle mesh is a special polygon mesh surface. In this representation
all 3D-object surfaces are made of triangles in a tessellation manner (for more
about tessellation please refer to [52]). So, the core of ray-tracing is the determi-
nation whether the ray intersects the triangles or not. The object details depend
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Figure 3.10: (a) The original model of the Stanford’s bunny [53]. (b) Low number
of triangle version of the triangle mesh surface of the Stanford’s bunny.

on the density of triangles. As the number of triangles increases the quality in-
creases, and the need for more processing also. Fig. 3.10a shows the original
Stanford’s bunny, and Fig. 3.10b shows the 3D created model using triangle-mesh
tessellation.

Triangle is defined by its three vertices, such that,

Triangle = {v0, v1, v2} (3.5)

where v0, v1 and v2 are the triangle vertices, which are stored in memory. but
in many ray-triangle intersection algorithms the normal to the triangle surface is
stored also with the vertices in memory.

The first ray-triangle intersection for ray tracing was introduced by Snyder
and Barr [54]. They used the barycentric coordinates to check the validity of the
intersection. Badouel introduced an improvement for Snyder’s algorithm [55]. A
slightly faster with a lower memory usage algorithm was introduced by Möller and
Trumbore [14]. Segura and Feito then proposed an algorithm based on the sign of
the volume of the trihedral [15, 56]. In 2004, Wald introduced an improvement in
Möller’s algorithm by storing pre-computed values for barycentric calculation in
memory, instead of the triangle vertices [16].

In another direction, Plöcker coordinates were used as an approach by Teller [57].
An optimization for the Plöcker test was recently proposed [18]. But still the
barycentric coordinates is the common way of representing the triangle’s contained
area in the intersection process. Barycentric coordinates also have an important
usage in color and texture mapping. In the following sub-sections the barycentric
coordinates and the famous ray-triangle intersection methods are introduced.
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Figure 3.11: Using the barycentric coordinates for describing a point enclosed
inside the triangle. The point is described as a sum of the initial point and two
weighted vectors.

3.4.1 Barycentric Coordinates

The use of barycentric coordinates is the common way for describing the points
belonging to a triangle. In general any point in the space can be represented as a
weighted sum of other points, called the barycentric combination [52],

p =
n−1∑
i=0

αi · pi,
n−1∑
i=0

αi = 1 (3.6)

where pi ∈ R3 are points in the 3D space and αi is the weighted contribution of
the point pi.

According to [52] the barycentric term is derived from barycenter which means
the center of gravity, since the barycentric combination is equivalent to calculating
the center of gravity of point masses, which is given by,

Cg =
∑
mi · pi∑
mi

(3.7)

where mi is the mass at the point pi.

The barycentric combination can be rewritten as a point and a sum of vectors,
such that,

p = po +
n−1∑
i=1

αi (pi − po) (3.8)

since 1−∑n−1
i=1 αi = αo.
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The barycentric bounding conditions for a triangle:

Using the barycentric coordinates a bounding condition for the points enclosed by
a triangle can be given as following. Let,

T = {a, b, c} (3.9)

is a triangle with a vertices a, b and c.
Any point on the triangle plane can be represented using the barycentric co-

ordinates,

p = a+ α (b− a) + β (c− a) , α + β ≤ 1 (3.10)

A point is said to be enclosed by the triangle iff,

α ≥ 0, and
β ≥ 0 (3.11)

Fig. 3.11 shows how the enclosed by the triangle points are described using
the barycentric coordinates. The figure shows a point described as a sum of the
initial point and two weighted vectors.

3.4.2 Badouel Algorithm

Badouel algorithm [55] is a slightly modified and faster version of Synder algo-
rithm [54]. In this algorithm the normal to the plane containing the triangle and
the plane equation constant are pre-calculated and stored in memory with the
triangle vertices.

The normal equation to the triangle plane is given by,

n = (b− a)× (c− a) (3.12)

where n is the normal vector and a, b, and c are the triangle vertices.
The implicit equation of the plane can be written as,

n · (p− po) = 0 (3.13)

n · p+ λ = 0 (3.14)

where,
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λ = −pon (3.15)

is constant for any point on the plane.

Step 1: Finding the intersection with the triangle plane

The intersection point is calculated by substituting the ray equation (3.1) in the
surface equation (3.14)

n · (s+ td) = −λ (3.16)

t = −n · s+ λ

n · d
(3.17)

There is a valid intersection if,

1. n · d 6= 0, the ray is not parallel to the plane, and

2. t > 0, intersection in front of the origin, and

3. there is no closer intersection. t < tr, where tr is the smallest valid previous
intersection.

According to [55] step one requires 12 floating point operations, since all the
operations are dealing with three-dimension vectors.

Step 2: Intersecting the triangle

In this step barycentric test is used to check if the intersection point lies inside
the triangle or not. The intersection point is given by,

p = s+ td (3.18)

The test can be done by calculating a and b in three dimensions coordinates,

px − ax = a (bx − ax) + b (cx − ax) (3.19)

py − ay = a (by − ay) + b (cy − ay) (3.20)

pz − az = a (bz − az) + b (cz − az) (3.21)

For system reduction the triangle can be projected onto one of the major planes
xy, xz, or yz. If the triangle is perpendicular to one of the planes, it can not be
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projected on it, since it will be projected as a line. Badouel use the same algorithm
of Synder to avoid this problem, by rejecting one of the coordinates which is not
parallel to the triangle plane.

Let,

i0 =


0 , if |nx| is max

1 , if |ny| is max

2 , if |nz| is max

(3.22)

where nx, ny and nz are the normal vector coordinates.
Let i1, i2 ∈ {0, 1, 2}, such that, i0 6= i1 6= i2

The barycentric equations can be rewritten now after omitting the i0 coordi-
nate.

pi1 − ai1 = a (bi1 − ai1) + b (ci1 − ai1) (3.23)

pi2 − ai2 = a (bi2 − ai2) + b (ci2 − ai2) (3.24)

For reusing the calculated data let,

u0 = pi1 − ai1

u1 = bi1 − ai1

u2 = ci1 − ai1

v0 = pi2 − ai2

v1 = bi2 − ai2

v2 = ci2 − ai2

α and β can be then calculated,

m =
∣∣∣∣∣∣ u1 u2

v1 v2

∣∣∣∣∣∣ (3.25)

α =

∣∣∣∣∣∣ u0 u2

v0 v2

∣∣∣∣∣∣
m

(3.26)

β =

∣∣∣∣∣∣ u1 u0

v1 v0

∣∣∣∣∣∣
m

(3.27)

There is a valid intersection if,
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1. m 6= 0, and

2. barycentric conditions are valid. Note that the comparisons can be made
without the division by m,

(a) α ·m ≥ 0, and

(b) β ·m ≥ 0, and

(c) α ·m+ β ·m ≤ 1

Number of required floating-point operations:

Table 3.1: The number of the floating-point operations required for the ray-triangle
intersection test in the Badouel algorithm.

Add Mul Div
Step 1 6 3 3
Step 2 22 6 0
Total 28 9 3

The number of the floating point operations is a measure for the required hardware,
and not a sufficient index of the algorithm speed. The main index of the algorithm
speed is the statistics of the ratio of the triangles rejected by each step.

3.4.3 Möller Algorithm

Möller algorithm [14] is reported to be slightly faster than the Badouel algo-
rithm [55], but it significantly reduces the memory usage. Only the triangles
vertices are needed to be stored in the memory, and no need for storing the nor-
mals to the triangles planes. Möller is still the common way of calculating the
ray-triangle intersection in ray-tracing.

In Möller’s algorithm the intersection point is simply calculated by equating
the ray equation (3.1) with the barycentric equation (3.10). This is equivalent to
a triangle projection.

s+ td = a+ α(b− a) + β(c− a) (3.28)

This equation can be rewritten as,

[−d, b− a, c− a]


t

α

β

 = s− a (3.29)
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(s, d, a, b, and c are points in 3D and have three components while t, α, and β
are scalar numbers). Using Cramer’s rule,


t

α

β

 = 1
| − d, e1, e2|


|e3, e1, e2|
| − d, e3, e2|
| − d, e1, e3|

 (3.30)

where e1 = b− a, e2 = c− a, and e3 = s− a
The definitions of vectorial and scalar products in linear algebra lead to |x1, x2, x3| =

(x1 × x2) · x3 = − (x1 × x3) · x2 = − (x3 × x2) · x1. So, equation (3.30) is reduced
to 

t

α

β

 = 1
k · e1


l · e2

k · e3

l · d

 = 1
m


l · e2

k · e3

l · d

 (3.31)

where k = d× e2, l = e3 × e1, and m = k · e1.

There is a valid intersection if,

1. m 6= 0, and

2. Barycentric conditions are valid. The comparisons can be made without the
division by m,

(a) α ·m ≥ 0, and

(b) β ·m ≥ 0, and

(c) α ·m+ β ·m ≤ 1

3. t > 0, intersection in front of the origin, and

4. There is no closer intersection, i.e. t < tr, where tr is the smallest valid
previous intersection.

Number of required floating-point operations:

Table 3.2: The number of the floating-point operations required for the ray-triangle
intersection test in the Möller algorithm.

Add Mul Div
23 24 9

3.4.4 Segura Algorithm

Segura algorithm was introduced by Segura and Feito in 1998 [15]. This algorithm
is reported to be faster than Badouel and Möller algorithms [56]. Segura algorithm
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built on the signs of the tetrahedrons enclosed by the main ray and two of the
three vertices of the triangle, as shown in Fig. 3.12.

The volume of a tetrahedron dabc is defined by,

volume (dabc) = 1
6

∣∣∣∣∣∣∣∣∣
xa − xd ya − yd ya − yd

xb − xd yb − yd yb − yd

xc − xd yc − yd yc − yd

∣∣∣∣∣∣∣∣∣

= 1
6

∣∣∣∣∣∣∣∣∣∣∣∣

xa ya za 1
xb yb zb 1
xc yc zs 1
xd yd zc 1

∣∣∣∣∣∣∣∣∣∣∣∣
(3.32)

where d = (xd, yd, zd), a = (xa, ya, za), b = (xb, yb, zb) and c = (xc, yc, zc).

Figure 3.12: Tetrahedrons enclosing the ray and triangle vertices.

Due to [56] the segment qq’ (the main ray) cuts triangle abc iff,

sign (volume (q′abq)) ≥ 0∧
sign (volume (q′cbq)) ≥ 0∧
sign (volume (q′acq)) ≥ 0 (3.33)

where,

sign (x) =


1, if x > 0

0, if x = 0

−1, if x < 0

(3.34)

Fig. 3.12 shows the segment qq’ (the main ray) and the tetrahedrons enclosing
the triangle vertices.
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3.4.5 Dedicated Hardware

Dedicated hardware designs for ray-tracing are achievable compared to implicit
surfaces, since triangles made surfaces can be rendered using single algorithm
with the same repeated steps. Many dedicated rendering hardware exist for ray-
tracing triangle-mesh surfaces. Although all the hardware designs were introduced
towards real-time ray-tracing, until now no high quality real-time renderer is avail-
able. The main reason for that is the complex ray-triangle intersection algorithms
which required many floating-point arithmetic operations. Although the common
speeding-up techniques reduce the number of required calculation, they reduce the
level of parallelism.

In [27] a rendering Architecture named SaarCOR is proposed for ray-tracing
triangle-mesh surfaces. In [28] a programmable hardware called RPU (Ray-tracing
Programmable Unit) is built over FPGA running on 66 MHz and capable of
(512 × 304) pixels resolution at low frame rates (8 frames/second on average).
PRU combines the features of CPUs, GPUs, and custom hardware in order to
implement a fully programmable, parallel processor that can do a real-time ray-
tracing rendering [28]. Fig. 3.13 shows the main block diagram for the RPU chip.
The figure also shows that multiple RPU can be used within the same system.
RPU expresses lower performance compared to SaarCOR.

Figure 3.13: The block diagram of the RPU architecture [28].

3.5 Ray-Tracing Parametric Surfaces

According to [52] parametric surfaces are the common technique for representing
3D models in CAGD (Computer Aided Graphical Design) and CAM (computer
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Figure 3.14: Parametric surfaces express a perfect immunity to zooming [19].

Aided Manufacture) tools. Parametric surfaces were first used by the designers of
cars industry [52].

Any object can be perfectly assembled using number of parametric surfaces.
The parametric surface is described by its control points only, since the same type
of parametric equation is used to describe the whole sense.

The two main advantages of these surfaces are its perfect description for the
object at any zooming level, and its low storage space required. Fig. 3.14 shows the
immunity of the parametric surfaces to zooming. Despite these perfect properties,
parametric surfaces can not be rasterized at all, and have to be transformed to
triangle-meshes in the pre-rendering phase. Also the ray-tracing of parametric
surfaces in its native format is a very slow process [4].

There are three main types of parametric surfaces,

1. Bézier surfaces, and

2. B-Splines (Basis Splines), and

3. NURBS (Non-Uniform Rational Basis Spline).

where NURBS and B-Splines are more general forms of Bézier surfaces. The Bézier
surface of order (n,m)and parameters (u, v) is defined as,

s (u, v) =
n∑

i=0

n∑
j=0

bn
i (u) bn

j (v) pi,j (3.35)

where pi,j is the control point (i, j), and

bn
k (t) = n!

k! (n− k)!t
k (1− t)n−k (3.36)

is the Bernstein polynomials which define the basis functions, where t = {u, v} is
the function parameter.

While In general tessellations are made for parametric surfaces transforming
them into triangle-meshes before rendering, many direct rendering algorithms are
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introduced. Interval analysis is a common technique in ray-tracing parametric
surfaces. In [20] an iterative algorithm for ray-tracing parametric surfaces using
Newton method and interval analysis was introduced, by D. Toth from Ford mo-
tors. In [58] an algorithm for ray-tracing Bézier and B-Spline surfaces using hierar-
chical bounding volumes and interval analysis was introduced. In 2009 an off-line
application called Meridian for ray-tracing parametric surfaces directly without
tessellations using Modal intervals is introduced [33]. Also there are many non-
interval methods for ray-tracing parametric surfaces. An algorithm for ray-tracing
NURBS without transformation was introduced in [13]. The algorithm implemen-
tation uses CPUs SIMD capabilities. In [19] pre-rendering transformation is made
transforming NURBS into Bézier surfaces.

3.6 Speeding-Up Techniques

Improving the intersection process is a very efficient way for speeding-up ray-
tracing. In another direction some speeding up techniques are introduced based
on splitting space into hierarchies or tracing a bundle of rays coherently. In the
following sub-sections three of the famous techniques are introduced.

3.6.1 Space Sub-Division

In this technique space is subdivided using treeing hierarchy as Octrees or binary
trees [21]. Such trees reduce the test set very much, but searching the tree itself
is not highly parallel and not suitable for multi cores architectures. Among the
main drawbacks of tree hierarchy is the fact that the same object assembly may be
split on two or more of the tree leafs, which complicates the process. On the other
hand it can be built as an efficient software layer, and can be combined with any
parallel technique at some level. Fig. 3.15 shows space sub division using Octree.

Figure 3.15: Space sub-division using Octree [21].
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3.6.2 Coherent Tracing

In such technique a bundle of rays are traced at the same time, and each ray is
individually traced only in case the bundle hits some objects [21]. Also there is
some varieties form this techniques in which some pixels can be calculated using
the bundle tracing only [16]. Such technique is not very efficient with complex
scenes.

3.6.3 Bounding Volumes

Bounding volumes is one of the famous ray-tracing techniques [21]. The native
idea was introduced in [26], but many further evaluations are proposed until it
reaches its current shape [3]. The bounding volumes are used in one level or in
a tree like hierarchy [3]. Bounding volumes can be interpreted as irregular space
subdivision compared by the uniform grid trees.

In the same analogy of the regular space subdivision, only triangles belong
to the volumes passed by the ray are tested for intersection. The number of
hierarchy levels and the number of triangles bounded by the same volume are
design parameters.

This technique is discussed further in the following chapter and a hardware
unit for its implementation is detailed.

3.7 Conclusion

Ray-tracing simulates the nature, since the images are rendered in ray-tracing by
simulating light reflection. Ray-traced images (or video frames) are very realistic,
since it contains realistic reflections, refractions and shadows. Compared to the
common on-line rendering mode, rasterization, ray-tracing produces much more
realistic images, due to its realistic reflections, refractions and shadows. Moreover,
compared to rasterization with its local lighting, ray-tracing is a global lighting
rendering technique in which light sources affect all members of the sense globally.

Ray-tracing produces very realistic images (or video frames) due to its realistic
reflections, refractions and shadows , but it yet considered to be much slower than
rasterization, for the scenes with common complexity. Even so, for high quality off-
line rendering, ray-tracing is a very common technique. Most of the animated high
quality 3D cinema movies are ray-traced. Ray-tracing is also common in physical
simulations, since it can be used in simulation of optics and electromagnetic waves.

Many works are introduced for improving ray-tracing systems and towards real-
time systems. These improvements are made in the algorithm, the software and
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the hardware layers concurrently. Also these works are split into two directions,
speeding-up the tracing process, and improving the accuracy of the output.

The rending of very complex scenes is faster in tracing than rasterization.
This is due to the fact that in rasterization all scene objects needed to be accessed
including the millions of triangles that are eventually obscured by other triangles
that are closer to the viewing point, while in ray-tracing the needed data only is
loaded from memory. And so, as computer graphics grows more complex as the
need for ray tracing increase.

The main drawback of ray-tracing is its long processing time, a completely
implemented interactive ray-tracing can be easily dominates all the other render-
ing techniques. Since that, 95% of the ray-tracing time is spent in finding the
intersections between the ray and the scene objects. So, reducing the ray-object
intersection processing time is the main challenge in ray-tracing.

Ray tracing by its nature have a high level of parallelism, since each ray can
be traced independently of the others.

Interval analysis and arithmetic are used efficiently in improving ray-tracing
accuracy and speed. And as mentioned before hardware support will improve
the interval based algorithms significantly and so improves the performance of
ray-tracing.
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Chapter 4

Improved Ray-Triangle
Intersection Using Interval
Analysis

4.1 Introduction

In this chapter we introduce an interval method for speeding-up the ray-triangle
intersection process in ray-tracing triangle-mesh surfaces. This method is an in-
terval rejection test used for the fast rejection of triangles not containing a valid
intersection. The few triangles that are not rejected by our method are then tested
using any of the conventional tests mentioned in Chapter 3. The rejection test
may be combined with any of the common ray-triangle intersection tests. This
rejection test is the core of our multi-cores ray-tracing architecture introduced in
Chapter 5.

This interval test scales efficiently to use highly parallel hardware like the
Graphical Processing Units (GPUs), which gives it an advantage over the conven-
tional tree space sub-division, since our algorithm can be implemented in a highly
parallel scheme, in contrast with the tree space sub-division. Also by applying a
parallel rejection test on the natively parallel ray-tracing enables the design of a
highly parallel tracing architecture, in context with the GPUs, as that introduced
in the next chapter.

In our experiments (Chapter 6), without any particular hardware support, the
rejection test correctly rejects more than 99.9% of the total number of triangles
and speeds the ray-triangle intersection process by 1.25 to 2.21 depending on the
3D model. With the proper hardware support in the future, by implementing the
IEEE 1778 interval standard [10] in the next generation of the processing units,
the algorithm will achieve a much higher speed-up, using only the CPUs. Since the
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interval arithmetic support from the hardware will improve the test performance
significantly, the anticipated higher speedup may pave the way to real time ray-
tracing of video frames.

As mentioned before, most of the interval analysis methods were used in ray-
tracing implicit surfaces [12, 21, 22, 24] to provide a higher reliability by calculating
the intersection points more correctly, as it is mentioned in Chapter 3. On the
other hand, we use interval analysis methods to yield a fast rejection test for
the ray-triangle intersection. The main idea behind the test is to make a quick
decision on most of the triangles to reject the majority that do not intersect the
ray. And those few triangles that pass from the rejection test are tested using any
conventional ray-triangle intersection algorithms.

The ray-triangle intersection algorithms require a long execution time on the
current general purpose architecture or a large area in case of dedicated hardware.
On the other hand the rejection test takes fast decisions and requires much less
chip area.

In the algorithm, initially the bounding rectangle containing the triangle’s
projection is checked. If a final decision to reject the triangle is not reached then
the bounding cuboid containing the triangle is checked. If the rectangle and the
cuboid are not rejected, any of the common intersection-tests is used for checking
the triangle for intersection.

Another algorithm which bounds a group of triangles at the same time, which
is very near in its implementation to our introduced algorithm, is mentioned in [3],
based on a native bounding idea introduced in [26]. While bounding a group of
triangles at the same time can be efficient as a software layer, it’s not highly
scalable to be implemented on a dedicated architecture design, compared to our
algorithm which introduces very high parallel properties. These parallel properties
and the small number of synchronizations needed in our algorithm, enables the
design of a highly parallel multi-cores architecture for ray-tracing.

4.2 The Interval Rejection Algorithm

Our algorithm is a rejection test using interval analysis and arithmetic for fast
rejecting triangles that do not contain a valid intersection in ray-tracing triangle-
mesh surfaces. Triangles which are not rejected using the rejection test are tested
using any conventional ray-triangle intersection algorithm. The algorithm consists
of three on-line phases and one off-line phase.

In the off-line phase the maximums and the minimums of the coordinates of
the three triangle vertices are pre-calculated once to be used in the rejection test
later. The off-line phase can be done during the creation of the frames, or during
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its loading to the memory. While the off-line phase and the on-line steps one and
three are mandatory, the rejection test can go without step two.

4.2.1 Step One: Rejecting the rectangles containing the
triangles projections

The first step of the algorithm is to check the bounding rectangles of the triangles’
2D projection for rejection, as shown in Fig. 4.1. In this case any two of the three
coordinates of the triangle’s vertices are selected, which is equivalent to projecting
the triangle on the plane of the selected coordinates. The same selections have
to be made with all of the triangles, for correct comparisons. According to our
experimental results the majority of the triangles are rejected during this phase.

The rectangle containing the triangle’s projection is defined by two intervals,

Xt = [xmin, xmax] (4.1)
Yt = [ymin, ymax] (4.2)

where xmin and xmax are the minimum and maximum x-coordinates of the triangle
vertices, and ymin and ymax are the minimum and maximum y-coordinates of the
triangle vertices. Maximums and minimums are already calculated during the
offline phase, or only one time before starting the intersection test, as mentioned
before.

The two intervals Xt and Yt are representing intervals of straight lines. Using
the ray equation (3.1), the intersections between the ray and all the lines bounded
by Xt and Yt are,

Tx = Xt − sx

dx

= [xmin, xmax]− sx

dx

(4.3)

Ty = Yt − sy

dy

= [ymin, ymax]− sy

dy

(4.4)

where Tx is the range of the parameter t in which the ray passes through the
interval Xt, and Ty is the range of passing through Yt.

The triangle is rejected if there is no valid intersection between the two inter-
vals,

Tx ∩ Ty = φ (4.5)

such as ray 2 in Fig. 4.1, which means that the ray does not pass through the
rectangle containing the triangle projection. On the other hand, when Tx∩Ty 6= φ

there is a possibility that the ray intersects the triangle such as ray 1 in the figure.
So this triangle will continue to the next step.
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Figure 4.1: Ray 1 intersects the bounding square while Ray 2 passes outside it.
The bounding square is defined be the intersection by the lines enclosed by the
two intervals Xt and Yt. It appears from the figure that Tx and Ty have a common
region (intersection) Ray 1, while they are completely apart from each other for
Ray 2.

Parallel to axis cases (the proof of no special treatment is required):

As shown in Fig. (4.2) the ray may pass perpendicular to one of the selected
coordinates (x- or y-coordinate). Even in this case no special treatment is required
as it is explained below.

Let the ray be parallel to y-coordinate (the explanations are equivalent also
if the ray is parallel to x-coordinate). In the two cases which are mentioned in
Fig. (4.2), the range of the parameter t for y-coordinate is,

Ty = Yt − sy

dy

= [y1, y2]
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Figure 4.2: No special treatment is required even in the case of parallel to axis
rays.

Case 1: The ray passes through the bounding square as Ray A in Fig. (4.2).
In this case, xmin < Sx < xmax and dx = 0. So,

Tx = Xt − sx

0 = (−∞,∞)

and

Tx ∩ Ty = [y1, y2]

so, the triangle will not be rejected. This is true.

Case 2: Let the ray is parallel to y-coordinate, and passes outside the bounding
square as Ray B in Fig (4.2). In the case of Sx > xmax and dx = 0,

Tx = Xt − sx

0 = (−∞,−∞)
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while in the case of Sx < xmin and dx = 0,

Tx = Xt − sx

0 = (∞,∞)

In the both cases the intersection is,

Tx ∩ Ty = φ

so, the triangle will be rejected. This is true.

4.2.2 Step Two: Rejecting the cuboid containing the tri-
angles

In this step the triangles which are not rejected in step one are checked for rejection
using the third coordinate, which is not used in step one. Using three coordinates
for rejection test is equivalent to rejecting the Cuboid containing the triangles. If
highly parallel architecture is use, like the Graphical Processing Units (GPUs),
step one and two can be executed at the same time. Even that step two is not a
mandatory step, and test can be done without it. Implementing step two or not is
a design decision, where the added required on-chip area is compared with gained
performance from this step as detailed in Chapter 6.

The cuboid containing the triangle is defined by three intervals Xt, Yt, and Zt,
in which cuboid located at the intersection of the volumes defined by the three
intersection, as shown in Fig. 4.3. Zt is defined as,

Zt = [zmin, zmax] (4.6)

where zmin and zmax are the minimum and maximum z-coordinates of the triangle
vertices. The intersections between the ray and all the lines bounded by Zt is
given by,

Tz = Zt − sz

dz

= [zmin, zmax]− sz

dz

(4.7)

The rejection test will be extended such that,

Tx ∩ Ty ∩ Tz = φ (4.8)

is the new rejection condition.
As mentioned before, it is possible to calculate Tx, Ty, and Tz in parallel,

since there are no dependences between them. If the calculations are performed
sequentially then the intersection with the first two dimensions (say Tx and Ty)
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Figure 4.3: The tested triangle bounded by the cuboid which is defined by the
intersection of the three volumes Xt, Yt and Zt.

should be checked first before calculating the third (Tz). The rejection test based
on the two dimensional projection (with only two intervals) yields the majority of
the rejection percentage as shown in our experimental results in the next chapter.
Hence, the extension of the rejection test to the third dimension is an option for
higher performance systems when enough resources are available.

If a potential intersection is detected Tintersection = Tx ∩ Ty ∩ Tz 6= φ, the
intersection interval is compared with the previous ‘nearest to the eye’ intersection
(tr). If the lower bound of the intersection interval is greater than the nearest
intersection such that,

(Tintersection) > tr (4.9)

then the triangle is rejected.

4.2.3 Step Three: Applying any of the conventional tests
for the non-rejected triangles

The few triangles that pass through all these tests without rejection get tested by
a conventional intersection test, mentioned in section 3.4. Only the nearest to the
eye intersection is kept for further pixel calculations.
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Any future improvement in the ray-triangle intersection algorithm will im-
proved its combination with the rejection test. Since the rejection test is a general
test which can be combined with any ray-triangle intersection algorithm.

Number of required arithmetic operations:

Table 4.1 shows the number of required interval operation by the rejection algo-
rithm steps.

Table 4.1: The number of the interval operations required for rejection algorithm.
Add Mul Div

Step 1 2 0 2
Step 2 1 0 1

In case of absence of interval arithmetic support by the hardware, each in-
terval operation is counted as two regular floating-point operations. In this case
the floating-point operations can be reordered to reduce the number of expensive
divisions, by calculating the value of 1/dx,y,z and then multiply it two times. Table
4.2 shows the number of required floating point operations after reordering.

Table 4.2: The number of the floating-point operations required for rejection al-
gorithm.

Add Mul Div
Step 1 4 4 2
Step 2 2 2 1

The number of the arithmetic operations is a measure for the required hard-
ware, and not a sufficient index of the algorithm speed. The main index of the
algorithm speed is the statistics of the ratio of the triangles rejected by each step
as shown in Chapter 6.

4.3 Conclusion

In this chapter we introduce an interval method for speeding-up the ray-triangle
intersection process in ray-tracing triangle-mesh surfaces. This method is an in-
terval rejection test used for the fast rejection of triangles not containing a valid
intersection. The few triangles that are not rejected by our method are then tested
using any of the conventional tests.

We use interval analysis methods to yield a fast rejection test for the ray-
triangle intersection. The main idea behind the test is to make a quick decision on
most of the triangles to reject the majority that do not intersect the ray. And those
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few triangles that pass from the rejection test are tested using any conventional
ray-triangle intersection algorithms.

In the algorithm, initially the bounding rectangle containing the triangle’s
projection is checked. If a final decision to reject the triangle is not reached then
the bounding cuboid containing the triangle is checked. If the rectangle and the
cuboid are not rejected, any of the common intersection-tests is used for checking
the triangle for intersection.
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Chapter 5

Multi-Cores Ray-Tracing
Architecture

5.1 Introduction

In this chapter a new ray-tracing multi-cores heterogeneous architecture is pro-
posed, towards a real-time ray-tracing system. As discussed before, the ray-
triangle intersection is a heavy computing process, which requires many floating-
point operations. Native hardware implementation of such algorithms is not ef-
ficient in area, delay or even power consumption. Also many of the speeding-up
techniques are not highly scalable to be implemented in a parallel scheme on hard-
ware.

The proposed architecture is designed in the same context with GPU CUDA
architecture, in which the computing unit is made from an array multiprocessors,
and also the same synchronization and scheduling techniques as mentioned later
(for more about CUDA architecture please refer to Appendix C). But on the
other hand each multiprocessor is a heterogeneous design, compared with the
homogeneous GPU multiprocessor. The heterogeneous design is based on the
interval rejection test discussed in Section 4.2.

According to our experimental results, most of the triangles are rejected using
the interval rejection test, and real intersection test is only needed for a small
number of triangles. An even smaller number of triangles completely pass the
intersection test. Between the very small numbers of triangles which pass the
intersection test, only one triangle will be used for calculating the final value of
the pixel. And so, the fast and simple rejection test is executed most of the time,
the complex intersection test is executed very few times, and the more complex
final pixel calculation is executed only one time per pixel.

Based on the mentioned ray-tracing facts observed clearly from experimental
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results, and from the previous works, we propose a multiprocessor heterogeneous
architecture. The proposed architecture consists of a high density of interval rejec-
tors per multiprocessor, which require the smallest area. Also each multiprocessor
contains a few intersectors and one unit for final pixel calculations.

Although the rejection test contains several subtraction and division opera-
tions, but the boundary accuracy is very low in significance compared to the
interval width in most of the cases. And so, the interval rejector can be built
using a narrow width fixed-point addition and division calculations. This reduces
the area of the rejector significantly and enables a higher density of rejection units
per multiprocessor. Even the few triangles which will pass the test due to the less
accurate interval edges will be cached by the intersection test. The out rounding
mode for intervals is used to ensure not rejecting triangles with a valid intersection.

Also based to our experimental results the second phase of the rejection test
has a low contribution in the speeding-up achieved. So, only the first phase of
rejection is implemented in hardware.

In the same context of the GPU architecture design, synchronization only is
needed between the members of the same multiprocessor, and no synchroniza-
tion needed between the different multiprocessors. This limited synchronization
simplifies the scheduling process very much.

Any of the space sub-division techniques which are not not highly scalable, as
BSP or Octrees can be combined with architecture in the software layer. Also
beam and coherent tracing can be used.

Fig. 5.1 shows the proposed multi-cores ray-tracing architecture. The figure
shows that the architecture consists of an array of multiprocessors and an on-chip
memory on the main device chip. Also an off-chip memory is required storing the
bulk data. Each multiprocessor consists of many interval rejectors, few intersection
validation units, and one pixel calculation unit.

5.2 Interval Rejector

The interval rejector is the core and the most usable unit in the proposed multi-
core architecture. So, the rejector requires the most efficient design compared to
other blocks.

A 16-bits fixed point is used for representing numbers used within the rejector.
Since, as mentioned before, the accuracy of the interval bounds is very low in
significance compared to the interval width. On the other hand using fixed-point
number representations increases the speed and reduces the area significantly and
enables a higher rejector cores density.

Step two of the algorithm is not implemented in the hardware. Since, the soft-
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Figure 5.1: Proposed multi-cores ray-tracing architecture.

ware experimental results show that this step contributes with a very low incre-
ment in the performance (less than 0.025 of the speedup), while its implementation
increases the area significantly, as shown in the next chapter.

Fig. 5.2 shows the main block diagram of the rejector circuit. The circuit
contains two identical units for calculating the parameter range Tx and Ty. The
circuit also contains an interval intersector unit. Each of the parameter range
circuits and the interval intersectors have a valid output signal. The output is
valid if the three output signals are true (AND), as discussed below. Triangles
proceed to the intersection validation unit if the final output is true.

The parameter circuit is the realization of the equations (4.3) and (4.4), as
shown in Fig. 5.3. The used fixed point adder and divider units are not area
consuming compared to floating-point numbers.

In case the two limits of the interval are negative, the interval have to be re-
ordered. But this step is not required concerning the logical meaning of the output.
If both of the interval limits are negative, then if there is a valid intersection will
be negative, and so the final t will be negative also, which will be rejected. And in
case of one negative limit, it will be reset to zero, since only positive t interval is
the region of interest. Considering the validation of the output with two negative
limits, resetting will generate the same final valid output as if negative limit is
used, but with much simpler interval intersector circuit. Finally if the two limits
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Figure 5.2: The interval rejector block diagram.

are positive reordering may be required in case of negative d and also negative
subtraction output.

The interval intersector is shown in Fig. 5.4. There is a valid intersection
between the two intervals Tx and Ty if,

1. T x ≥ T Y , and

2. T y ≥ T x,

where T is upper limit of the interval T , and T is the lower one. The intersector
circuit realization is an anding between the outputs of two comparators. Look-
ahead design is used within the comparator for fast decision output.

The main rejector circuit can be designed in a pipelined scheme in which the
first stage is the interval parameter calculation and the second pipeline stage is
the interval intersector. The pipelining implementation is a final design decision
depending on the whole architecture required performance and on-chip available
area.
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Figure 5.3: Parameter interval calculation circuit block diagram.

5.3 Conclusion

In this chapter a new ray-tracing multi-cores heterogeneous architecture is pro-
posed, towards a real-time ray-tracing system. The proposed architecture is de-
signed in the same context with GPU CUDA architecture.

According to our experimental results, most of the triangles are rejected using
the interval rejection test, and real intersection test is only needed for a small
number of triangles. An even smaller number of triangles completely pass the
intersection test. Between the very small numbers of triangles which pass the
intersection test, only one triangle will be used for calculating the final value of
the pixel. And so, the fast and simple rejection test is executed most of the time,
the complex intersection test is executed very few times, and the more complex
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final pixel calculation is executed only one time per pixel.
Based on the mentioned ray-tracing facts observed clearly from experimental

results, and from the previous works, we propose a multiprocessor heterogeneous
architecture. The proposed architecture consists of a high density of interval rejec-
tors per multiprocessor, which require the smallest area. Also each multiprocessor
contains a few intersectors and one unit for final pixel calculations.



Chapter 6

Experimental Results

6.1 Test Methodology

The system test methodology is constructed of two main parts,

• software test platform, and

• hardware circuit validation.

The software platform is built for the algorithm validation and the statistical
results. The statistical results are based on testing millions of triangles as a test
set. Initially, a software platform was coded to test the proposed ideas. The
intention was to get speed-up from the highly parallel heterogeneous architecture
proposed. However, even on th software level,the proposed algorithm achieved a
significant speed-up as shown in the following experimental results.

The second half of this chapter is for the testing and validating the real hard-
ware implementation. The hardware test set is designed for circuit validation, by
testing wide range of input variation, and not for statistical results. Also area
comparison is made between the interval rejector implementation and Möller al-
gorithm implementation, showing a significant gain in area in case of the rejector
implementation.

6.2 Software Results

We built two test platforms for testing the interval rejection algorithms using C#
and C++. The C# version of the test platform is provided in Appendix D.

Both programs were compiled on the Microsoft Visual Studio complier, 2008
version. For ease of debugging and testing purposes, our code is written as a
single-thread program. The code is compiled using the compile for speed compiler
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option. An Intel Core 2 Duo 3 GHz processor machine is used to test our program
(The Core 2 processor does not have interval arithmetic support).

To test our algorithm, 3D models in PLY (Polygon File Format also known as
the Stanford’s Triangle Format) format are used. 3D models are from Stanford
University (3D Scanning Repository) [53], Georgia Institute of Technology (Large
Geometry Models Archive) [59], and University of North Carolina at Chapel Hill
(GAMMA Project - Power Plant Model) [60]. The power plant model is a com-
plete model of an actual coal fired power plant. The model consists of 12,748,510
triangles [60]. Any other 3D models in PLY format can be used. Part of the test
platform is written to grab the data from the PLY files. For testing using 3D mod-
els other than the PLY models, any free 3D format converter can be used. The
testing models are selected to cover wide range of number of triangle per model,
starting from 3,736 to 1,765,388, and a total 10,259,042 triangles. Also models are
selected to be from different categories of shaped.

The performance of the ray-intersection process in the original Möller’s algo-
rithm and the Möller’s algorithm with the interval rejection test added to it are
presented below. Möller algorithm is used since it is the most common ray-triangle
intersection algorithm. However, the interval rejection test can be added on any
ray-triangle algorithm.

Since the rejection algorithm is concerned with the intersection process, only
the ray-triangle intersection performances are compared. But these comparisons
reflect the whole system performance, since the intersection process consumes most
of tracing time, as mentioned before in Chapter 3. All the given times and the
performance matrices are for intersecting the main rays with all the 3D-Model
triangles. Fig. 6.1 shows an example of main stage of ray-tracing, using the main
rays only. The figure is an output of the test platform and it shows the ghost of
the Stanford’s bunny 3D model ray-traced using the main rays intersected with
its triangles.

To check the correctness of our implementation, we made a special test program
to mark the triangles that would be rejected by our interval test and to check
whether they are rejected or not with the normal Möller intersection test. Our
implementation performs correctly for all the models, without a single error in
any triangle. These validity tests enable the conversion of the algorithm to be
implemented in hardware.

According to our experimental results, more than 99.9% of the triangles are
rejected using the interval test, depending on the model used. The rejection
percentage of the triangles may also vary slightly depending on the position of
the camera. Which shows that 99.9% of the triangles are tested only using the
fast and area efficient rejection test, while a very few number of triangles are
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Figure 6.1: The ghost of the Stanford’s bunny is the result of ray-tracing using
the main rays only.

needed to be tested using any of the complex ray-triangle intersection algorithms
(Möller algorithm is used in our test platform). This output enables the idea of the
heterogeneous architecture introduced in Chapter 5, in which the multiprocessor
consists of a high density of the light weight rejector cores, and few of the complex
intersection validation cores.

Although the main advantage of the rejection test is its light weight and highly
parallel scheme, Table 6.1 shows that we gain a speedup between 1.25 and 2.21
after applying the interval rejection test to Möller’s algorithm. The speedup de-
pends on the number of triangles and their distribution in the space. The table
shows the execution times per pixel and per pixel and triangle for both of the
native Möller algorithm, and the interval rejector test added to Möller algorithm.
The gained speed-up in the software layer is much less than the expected speed up
of the hardware implementation, since in the proposed architecture each Möller
intersector is combined with many of the interval rejectors. In the software imple-
mentation each Möller intersector is combined with only one rejector.

The experimental results show that the second phase of the rejection test (the
extension to the third-dimension) only contributes less than 0.025 of the speedup.
Hence, if in a certain implementation, the designer wishes to reduce the amount
of hardware or software used for our proposal, the third-dimension phase may be
eliminated without a significant loss is the speedup.

Fig. 6.2 shows the execution time per pixel in milliseconds for both Möller
algorithm and Möller with the rejection test added to it, for the test set mentioned
before. This figure shows the gained execution time reduction using the rejection
test. While Fig. 6.3 Shows the speed up gained by the rejection test. The speed
up ranges from 1.25 to 2.21, depending on the tested model and the number of
triangles.
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Figure 6.4: The normalized intersection time per pixel·triangle versus the number
of triangles.

Fig. 6.4 shows a graph for the normalized intersection time per pixel·triangle
versus the number of triangles. The normalized execution time per triangle shows
a large variation for the native Möller algorithm (between 20.49 and 36.80 nanosec-
onds), while a very small variations is expressed for the added on rejection test
(between 16.19 and 18.14 nanoseconds). This property is very valuable concern-
ing real-time rendering with multiple frames per seconds. Since a variable exe-
cution time causes a jitter like phenomena in time. The removal of such jitter
like phenomena is very desirable in real time video rendering for frames of various
complexity.

6.3 Hardware Results

The interval rejector hardware and the Möller’s intersector unit are described
using Verilog hardware description language, in structural techniques. The interval
rejector is built as a completely combinational and parallel unit. On the other hand
pipelining is used in implementing the Möller intersection algorithm due the large
number of floating-point operations it contains.

As mentioned before the interval analysis (rejection test) does not require high
precision of calculations, bounds precision compared to the interval width in in-
terval analysis can be neglected, and may reduce the rejection rate but without
any errors. On the other hand interval analysis (rejection test) have to be very
fast and area efficient. But the final refinement technique (Möller’s intersection
test) has to be very accurate. So, 16-bit fixed-point are selected for the rejector
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Figure 6.5: Altera Stratix IV - EP4SGX530NF45C4ES floor-plan showing the
occupied areas in purple while the empty areas are in light colors. (a) Interval
rejector implementation. (b) Möller intersection algorithm implementation.

implementation, while 32-bit floating-point are selected for the final intersector
implementation.

Synthesis and simulations are made using Altera Quartus II v9.1 build 222.
Synthesis are made using synthesis for optimized area option. Table 6.2 shows
the occupied area in number of units and percent for the interval rejector and
Möller intersection algorithm implementations due to the Altera Quartus II re-
sults. The occupied area ratio between the interval rejector and Möller imple-
mentations is also given. The area is calculated for the Altera Stratix IV FPGA
EP4SGX530NF45C4ES device.

The interval rejector implementation express a delay of 38.46 [ns] using the
static timing analysis for delay estimation. on the other hand the Möller requires
a total delay of 153.77 [ns], and a stage delay of 30.75 [ns].

Fig. 6.5 shows the floor-plan of each of the interval rejector and the Möller in-

Figure 6.6: Interval rejector block diagram as generated from the Verilog descrip-
tions using Altera Quartus II RTL viewer.
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tersection algorithm implementations. The figure shows a clear difference between
the percentages of the occupied areas in both cases. Möller intersection algorithm
implementation requires over twenty times of the area of the used interval rejector.
In case of completely parallel non-pipelined implementation for Möller algorithm,
more area will be required.

Fig. 6.6 and 6.7 shows block diagram as generated from the Verilog descriptions
using Altera Quartus II RTL viewer.

As mentioned before the hardware test set is designed for circuit validation,
by testing wide range of input variation, and not for statistical results. Table 6.3
shows a subset of the test set of the interval rejector circuit, showing the source and
the direction and the triangle projection bounding rectangle values as inputs in
hexadecimal and the valid bit as an output. The table shows the circuit validation
test, while the statistical data are shown in the software layer results as mentioned
before.

Figure 6.7: Interval intersector block diagram as generated from the Verilog de-
scriptions using Altera Quartus II RTL viewer.

6.4 Conclusion

This chapter shows the experimental results, the hardware realization, and the
results validation. It shows that software platform is built for the algorithm vali-
dation and the statistical results.

According to the experimental results using a standard test containing mil-
lions of triangle, more than 99.9% of the triangles are rejected using the interval



6.4. CONCLUSION 73

Ta
bl
e
6.
3:

Su
bs
et

of
th
e
te
st

se
to

ft
he

in
te
rv
al

re
je
ct
or

ci
rc
ui
t,
sh
ow

in
g
th
e
so
ur
ce

an
d
th
e
di
re
ct
io
n
an

d
th
e
tr
ia
ng

le
pr
oj
ec
tio

n
bo

un
di
ng

re
ct
an

gl
e
va
lu
es

as
in
pu

ts
in

he
xa

de
ci
m
al

an
d
th
e
va
lid

bi
t
as

an
ou

tp
ut
.

So
ur
ce

D
ire

ct
io
n

Tr
ia
ng

le
Pr

oj
ec
tio

n
Bo

un
di
ng

T
x

T
y

O
ut
pu

t
S

x
S

y
d

x
d

y
x

m
a

x
x

m
in

y m
a

x
y m

in
m
ax

m
in

m
ax

m
in

(V
al
id

bi
t)

00
.0
0

00
.0
0

01
.0
0

01
.0
0

04
.0
0

02
.0
0

04
.0
0

02
.0
0

00
04
.0
0

00
02
.0
0

00
04
.0
0

00
02
.0
0

1
03
.0
B

00
.4
0

00
.2
0

01
.0
1

15
.3
0

10
.F
A

33
.0
1

32
.A

B
00
91
.4
0

00
6F

.9
0

00
32
.8
E

00
32
.3
8

0
12
.0
D

0A
.5
6

FF
.F
8

00
.0
1

89
.8
A

70
.0
B

65
.7
4

64
.A

0
00
00
.7
7

00
00
.5
E

5B
1E

.0
0

59
B2

.0
0

0
00
.0
1

00
.0
2

02
.0
0

02
.0
1

A
8.
50

A
8.
45

A
9.
12

A
7.
32

00
54
.2
7

00
54
.2
2

00
54
.5
D

00
53
.6
E

1
01
.2
A

02
.E
C

03
.1
2

00
.F
A

F0
.1
2

E0
.0
0

50
.1
0

3F
.F
F

00
4D

.C
F

04
98
.9
3

00
4E

.F
D

00
3E

.8
A

1
03
.0
0

12
.0
F

02
.6
8

05
.3
6

23
.2
3

06
.6
5

77
.8
6

6A
.4
D

00
0D

.5
B

00
01
.6
9

00
13
.7
8

00
10
.E
F

0
03
.0
0

12
.0
F

01
.1
2

05
.3
6

23
.2
3

06
.6
5

77
.8
6

6A
.4
D

00
1C

.5
E

00
02
.F
F

00
13
.7
8

00
10
.E
F

1
F0

.3
2

40
.2
A

F1
.3
2

05
.5
6

32
.3
2

12
.4
4

EE
.3
2

43
.D

A
00
01
.5
5

00
01
.3
3

00
20
.9
D

00
00
.B
D

1
00
.2
3

42
.4
3

44
.5
0

56
.4
2

34
.2
3

12
.4
4

EE
.3
2

A
3.
43

00
00
.C
2

00
00
.4
3

00
01
.F
E

00
01
.1
F

0
00
.1
1

00
.1
1

00
.4
4

00
.3
4

00
.6
4

00
.5
9

07
.6
5

07
.0
6

00
01
.3
8

00
01
.0
F

00
24
.1
3

00
22
.4
0

0
03
.2
3

01
.2
F

F0
.0
1

01
.0
0

01
.2
1

00
.4
3

04
.0
0

02
.0
0

00
00
.2
F

00
00
.2
1

00
02
.D

1
00
00
.D

1
0

04
.0
2

01
.0
F

03
.2
4

05
.4
3

06
.5
D

03
.9
9

0D
.D

A
0B

.F
F

00
00
.C
0

00
00
.0
0

00
02
.6
E

00
02
.1
4

0
34
.5

02
.3
7

0A
.4
F

0A
.0
0

0A
.A

4
01
.F
4

01
.2
F

00
.2
3

00
00
.B
7

00
00
.0
0

00
00
.0
0

00
00
.0
0

0
00
.2
1

00
.2
1

01
.0
0

01
.0
0

43
.D

A
43
.D

1
43
.3
3

00
42
.2
1

00
43
.B
9

00
42
.B
0

00
43
.1
2

00
42
.0
0

1
01
.0
0

01
.0
0

00
.1
0

00
.1
0

66
.7
8

66
.0
0

66
.4
9

06
61
.1
0

06
57
.8
0

06
50
.0
0

06
54
.9
0

06
51
.1
0

1
13
.2
1

B3
.4
4

B0
.0
0

D
3.
24

04
.2
3

02
.2
1

66
.4
9

66
.1
2

00
00
.3
7

00
00
.3
0

00
01
.B
9

00
01
.B
8

0
F1

.3
2

B3
.4
4

B0
.3
4

D
3.
24

02
.F
F

01
.B
1

66
.4
9

66
.1
2

00
00
.0
0

00
00
.0
0

00
01
.B
9

00
01
.B
8

0
EE

.3
2

54
.3
3

0A
.A

9
04
.3
2

01
.1
2

00
.1
2

0A
.E
E

00
.F
D

00
01
.C
5

00
01
.A

D
00
00
.0
0

00
00
.0
0

0
00
.0
0

00
.0
0

FF
.F
F

FF
.F
F

F4
.3
2

F0
.0
0

F4
.3
2

F0
.0
0

10
00
.0
0

0B
C
E.
00

10
00
.0
0

0B
C
E.
00

1



74 CHAPTER 6. EXPERIMENTAL RESULTS

test, depending on the model used. Also on the software layer implementation,
without any level of parallelism applied, we gain a speedup between 1.25 and 2.21
after applying the interval rejection test. The experimental results also show that
the rejection test removes a jitter like phenomena in the execution time of the
intersection process.

The testing and validating the real hardware implementation is introduced.
The hardware test set is designed for circuit validation, by testing wide range
of input variation, and not for statistical results. Also area comparison is made
between the interval rejector implementation and Möller’s algorithm implementa-
tion, showing a significant gain in area in case of the rejector implementation, more
than 22 times in area compared to the conventional intersection process hardware
realization.



Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis we introduce optimizations for the ray-tracing on the algorithmic,
the architecture and the implementation layers, by combining interval analysis
and arithmetic techniques with the ray-intersection process.

We introduce an interval method for speeding-up the ray-triangle intersection
process, in ray-tracing triangle-mesh surfaces, by reducing the data set tested for
intersection. This method is a rejection test used for the fast rejection of triangles
not containing a valid intersection.

A software test platform is built for validating the algorithm and collecting
statistical data. 3D models in PLY (Polygon File Format also known as the Stan-
ford’s Triangle Format) format are used. The models are from Stanford University
(3D Scanning Repository) [53], Georgia Institute of Technology (Large Geometry
Models Archive) [59], and University of North Carolina at Chapel Hill (GAMMA
Project - Power Plant Model) [60]. The power plant model is a complete model
of an actual coal fired power plant. The model consists of 12,748,510 triangles
[60]. The testing models are selected to cover wide range of number of triangle
per model, starting from 3,736 to 1,765,388, and a total 10,259,042 triangles. Also
models are selected to be from different categories of shaped.

According to the experimental results on the test platform, more than 99.9%
of the triangles are rejected using the interval test, depending on the model used.
Also on the software layer implementation, without any level of parallelism applied,
we gain a speedup between 1.25 and 2.21 after applying the interval rejection test.
The experimental results also show that the rejection test removes a jitter like
phenomena in the execution time of the intersection process, which it very suitable
for real-time video rendering.

Based on the collected statistical data, we introduce new ray-tracing multi-
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cores heterogeneous architecture, towards a real-time ray-tracing system. The
proposed architecture is a computing unit made from an array of heterogeneous
multiprocessors. Each unit consists of a high density of, our newly introduced,
interval rejector units. Also each multiprocessor contains a few intersectors and
one unit for final pixel calculations. An area optimized interval rejector is also
provided. This rejector requires much smaller on-chip area compared to the con-
ventional intersection algorithms realizations.

To the best of our knowledge, our rejector core unit is the first combination
between ray-tracing triangle meshes and interval analysis and arithmetic on the
hardware layer. The implementation of the interval rejector shows a reduction
more than 22 times in area compared to the conventional intersection process
hardware realization. Such reduction in area allows a higher density of rejector
units, which proportionally leads to higher speeds, paving the way for real-time
ray-tracing.

7.2 Future Works

There are a lot of promising ideas that can be proposed based on our current work,
statistical results and, hardware and software implementations. Following, some
of the future work ideas are introduced,

• Building a complete ray-tracing hardware system using the newly introduced
architecture.

• Tuning the proposed architecture for future general propose usages in context
with general purpose graphical processing units (GPGPU).

• Extending the rejection algorithm for the other objects representations, im-
plicit and parametric surfaces.

• Using the statistical results for creating a multi-layer rejection test, reducing
the required steps in the intersection test.

76



Bibliography

[1] A. Dietrich, I. Wald, and P. Slusallek, “Large-scale CAD model visualization
on a scalable shared-memory architecture,” in Vision, Modeling, and Visual-
ization, 2005.

[2] I. Wald, “The OpenRT - API,” in International Conference on Computer
Graphics and Interactive Techniques, 2005.

[3] P. Slusallek, P. Shirley, W. Mark, G. Stoll, and I. Wald, Introduction to real-
time ray tracing, ser. ACM SIGGRAPH 2005 Courses. ACM, 2005.

[4] S.-W. Wang, Z.-C. Shih, and R.-C. Chang, “An efficient and stable ray trac-
ing algorithm for parametric surfaces,” Journal of Information Science and
Engineering, vol. 18, no. 4, pp. 541–561, 2002.

[5] “Intel official blog - real time ray-tracing: The end of rasterization?”
[accessed Aug-2009]. [Online]. Available: http://blogs.intel.com/research/
2007/10/real_time_raytracing_the_end_o.php

[6] U. W. Kulisch, Numerical Validation in Current Hardware Architectures.
Springer-Verlag, 2008, ch. Complete Interval Arithmetic and Its Implemen-
tation on the Computer, pp. 7–26.

[7] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Anal-
ysis. Society for Industrial and Applied Mathematics, 2009.

[8] U. W. Kulisch, Advanced Arithmetic for the Digital Computer. Springer,
November 2002.

[9] B. Hayes, “A lucid interval,” American Scientist, vol. 91, pp. 484–488, 2003.

[10] “P1788: IEEE standard for interval arithmetic,” not published yet. [Online].
Available: http://grouper.ieee.org/groups/1788

[11] H. Brönnimann, G. Melquiond, and S. Pion, A Proposal to add Interval Arith-
metic to the C++ Standard Library, ISO C++ Standardization Std., 2005.

77

http://blogs.intel.com/research/2007/10/real_time_raytracing_the_end_o.php
http://blogs.intel.com/research/2007/10/real_time_raytracing_the_end_o.php
http://grouper.ieee.org/groups/1788


78 BIBLIOGRAPHY

[12] D. P. Mitchell, “Robust ray intersection with interval arithmetic,” in Proceed-
ings on Graphics interface, 1990, pp. 68 – 74.

[13] O. Abert, M. Geimer, and S. Muller, “Direct and fast ray tracing of NURBS
surfaces,” in IEEE Symposium on Interactive Ray Tracing, 2006, pp. 161–168.

[14] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle intersec-
tion,” Journal of Graphics Tools, vol. 2, pp. 21 – 28, 1997.

[15] R. J. Segura and F. R. Feito, “An algorithm for detecting intersection segment
polygon in 3D,” Computer & Graphics, vol. 22, pp. 587–592, 1998.

[16] I. Wald, “Realtime ray tracing and interactive global illumination,” Ph.D.
dissertation, Saarland University, 2004.

[17] I. Wald and P. Slusallek, “State of the art in interactive ray tracing,” 2001.

[18] O. Caprani, L. Hvidegaard, M. Mortensen, and T. Schneider, “Robust and
efficient ray intersection of implicit surfaces,” Reliable Computing, vol. 6, pp.
9–21, 2000.

[19] A. Efremov, V. Havran, and H.-P. Seidel, “Robust and numerically stable
Bézier clipping method for ray tracing NURBS surfaces,” in Proceedings of
the 21st spring conference on Computer graphics. ACM, 2005, pp. 127 – 135.

[20] D. L. Toth, “On ray tracing parametric surfaces,” in ACM SIGGRAPH Com-
puter Graphics, 1985, pp. 171 – 179.

[21] J. E. FlŽorez, “Improvements in the ray tracing of implicit surfaces based on
interval arithmetic,” Ph.D. dissertation, Universitat de Girona, 2008.

[22] E. Hansen, “A globally convergent interval method for computing and bound-
ing real roots,” BIT Numerical Mathematics, vol. 18, no. 4, pp. 415–424, 1978.

[23] W. Enger, “Interval ray tracing - a divide and conquer strategy for realistic
computer graphics,” The Visual Computer, vol. 9, no. 2, pp. 91–104, 1992.

[24] G. Alefeld, “Eine modification des newtonverfarens zur bestimmung der
reellen,” Numeriche Matematik, vol. 50, pp. 32–33, 1970.

[25] A. Neumaier, “Computer graphics, linear interpolation, and nonstandard in-
tervals,” 2009.

[26] T. L. Kay and J. T. Kajiya, “Ray tracing complex scenes,” in Proceedings of
the 13th annual conference on Computer graphics and interactive techniques,
1986, pp. 269 – 278.



BIBLIOGRAPHY 79

[27] J. Schmittler, I. Wald, and P. Slusallek, “SaarCOR: a hardware architecture
for ray tracing,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, 2002, pp. 27 – 36.

[28] S. Woop, J. Schmittler, and P. Slusallek, “RPU: A programmable ray process-
ing unit for realtime ray tracing,” in ACM Trans. Graph, 2005, pp. 434–444.

[29] M. Shevtsov, A. Soupikov, and A. Kapustin, “Ray-triangle intersection algo-
rithm for modern CPU architectures,” in Proceedings of GraphiCon, 2007.

[30] A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen, “Interactive ray
tracing of arbitrary implicits with simd interval arithmetic,” in IEEE/Euro-
graphics Symposium on Interactive Ray Tracing. IEEE Computer Society,
2007, pp. 11–18.

[31] A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen, “Fast
and robust ray tracing of general implicits on the GPU,” Scientitfic Comput-
ing and Imaging Institute, University of Utah, Tech. Rep., 2007.

[32] “Povray,” [accessed Feb-2010]. [Online]. Available: http://www.povray.org/

[33] “Meridian rendering,” [accessed Feb-2010]. [Online]. Available: http:
//www.sunfishstudio.com/

[34] “Yafa ray project,” [accessed Oct-2009]. [Online]. Available: http:
//www.yafaray.org/

[35] T. Sunaga, “Theory of interval algebra and its application to numerical anal-
ysis,” Research Association of Applied Geometry (RAAG) Memoirs, vol. 2,
pp. 29–46, 1958.

[36] R. E. Moor, Interval Analysis. Prentice-Hall, 1966.

[37] J. Armengol and M. A. Sainz, “Generation of error-bounded envelopes by
means of modal interval analysis,” 1999.

[38] E. Hansen and S. Sengupta, “Bounding solutions of systems of equations using
interval analysis,” BIT Numerical Mathematics, vol. 21, no. 2, pp. 203–211,
2005.

[39] R. J. Bhiwani and B. M. Patre, “Solving first order fuzzy equations: A modal
interval approach,” Emerging Trends in Engineering & Technology, Interna-
tional Conference on, vol. 0, pp. 953–956, 1999.

http://www.povray.org/
http://www.sunfishstudio.com/
http://www.sunfishstudio.com/
http://www.yafaray.org/
http://www.yafaray.org/


80 BIBLIOGRAPHY

[40] E. R. Hansen and G. W. Walster, Global optimization using interval analysis,
2nd ed. CRC Press, 2004.

[41] W. Edmonson, R. Gupte, S. Ocloo, J. Gianch, and W. Alex, “Interval arith-
metic logic unit for signal processing and control applications,” 2006.

[42] G. Melquiond and C. Munoz, “Guaranteed proofs using interval arithmetic,”
in Proceedings of the 17th IEEE Symposium on Computer Arithmetic, 2005,
pp. 188 – 195.

[43] V. Kreinovich, F. Modave, S. Starks, and G. Xiang, “Towards real world ap-
plications: Interval-related talks at NAFIPS’05,” Reliable Computing, vol. 12,
no. 1, pp. 73–77, 2006.

[44] R. Kirchner and U. W. Kulisch, “Hardware support for interval arithmetic,”
Reliable Computing, vol. 12, pp. 225–237, 2006.

[45] E. Kaucher, “Interval analysis in the extended interval space IR,” Computing
Supplement, vol. 2, pp. 33–49, 1980.

[46] E. Gardeñes, M. A. Sainz, L. Jorba, R. Calm, R. Estela, H. Mielgo, and
A. Trepat, “Model intervals,” Reliable Computing, vol. 7, pp. 77–111, 2001.

[47] E. Gardeñes, H. Mielgo, and A. Trepat, “Modal intervals: reason and ground
semantics,” in International Symposium on interval mathematics, 1986, pp.
27 – 35.

[48] N. T. Hayes, “Introduction to modal intervals,” in The Working Group of the
IEEE 1788, 2009, p. 61.

[49] P. H. Christensen, J. Fong, D. M. Laur, and D. Batali, “Ray tracing for the
movie "cars",” in IEEE Symposium on Interactive Ray Tracing, 2006.

[50] L. P. Kobbelt, K. Daubert, and H. p. Seidel, “Ray tracing of subdivision
surfaces,” in In Rendering Techniques 1998 - Proceedings of the Eurographics
Workshop. Springer-Verlag, 1998, pp. 69–80.

[51] “Ray-tracing Quake game on Intel’s machines,” [accessed Nov-2009]. [Online].
Available: http://www.idfun.de/temp/q4rt/

[52] G. E. Farin, Curves and Surfaces for CAGD, fifth edition ed., ser. The Morgan
Kaufmann Series in Computer Graphics. Morgan Kaufmann, 2002.

[53] “The stanford 3D scanning repository,” [accessed Dec-2009]. [Online].
Available: http://www-graphics.stanford.edu/data/3Dscanrep/

http://www.idfun.de/temp/q4rt/
http://www-graphics.stanford.edu/data/3Dscanrep/


BIBLIOGRAPHY 81

[54] J. M. Snyder and A. H. Barr, “Ray tracing complex models containing surface
tessellations,” in ACM SIGGRAPH Computer Graphics, vol. 21, 1987, pp. 119
– 128.

[55] D. Badouel, Graphics gems. Academic Press Professional, Inc, 1990, ch. An
efficient ray-polygon intersection, pp. 390 – 393.

[56] J. Segura and F. R. Feito, “Algorithms to test ray-triangle intersection,” in
Journal of WSCG, 2001.

[57] S. J. Teller, “Computing the antipenumbra of an area light source,” in ACM
SIGGRAPH Computer Graphics, vol. 26, 1992, pp. 139 – 148.

[58] W. Barth and W. Stürzlinger, “Efficient ray tracing for Bezier and
B-spline surfaces,” Computers & Graphics, vol. 17, no. 4, pp. 423 – 430,
1993. [Online]. Available: http://www.sciencedirect.com/science/article/
B6TYG-48TMS93-63/2/ca5f097d718f367b8be6f65ec7285542

[59] “Georgia institute of technology - large geometry models archive,” [accessed
Dec-2009]. [Online]. Available: http://www.cc.gatech.edu/projects/large_
models/

[60] “University of north carolina at chapel hill - GAMMA project -
power plant model,” [accessed Dec-2009]. [Online]. Available: http:
//gamma.cs.unc.edu/powerplant/

[61] M. T. D. Dinh, “GPUs - graphics processing units,” Institute of Computer
Science, University of Innsbruck, Tech. Rep., 2008.

[62] P. Shirley, K. Sung, E. Brunvand, A. D. S. Parker, and S. Boulos, “Rethinking
graphics and gaming courses because of fast ray tracing,” in International
Conference on Computer Graphics and Interactive Techniques, 2007.

[63] “OpenCL - the open standard for parallel programming of heterogeneous
systems,” 2009. [Online]. Available: http://www.khronos.org/opencl/

[64] H. Nguyen, GPU Gems 3. Addison-Wesley Professional, 2007.

[65] M. Y. Siu, “A high-performance area-efficient multifunction interpolator,” in
17th IEEE Symposium on Computer Arithmetic, 2005, pp. 272 – 279.

[66] nVidia, “OpenCL programming guide for the cuda architecture,” p. 23, 2009.

http://www.sciencedirect.com/science/article/B6TYG-48TMS93-63/2/ca5f097d718f367b8be6f65ec7285542
http://www.sciencedirect.com/science/article/B6TYG-48TMS93-63/2/ca5f097d718f367b8be6f65ec7285542
http://www.cc.gatech.edu/projects/large_models/
http://www.cc.gatech.edu/projects/large_models/
http://gamma.cs.unc.edu/powerplant/
http://gamma.cs.unc.edu/powerplant/
http://www.khronos.org/opencl/


82 BIBLIOGRAPHY



Appendix A

Interval Newton Method

A.1 Classical Newton Method

The classical Newton method is a famous method used for calculating the root
(zeros) of nonlinear functions, with a level of approximation.

f (x) = 0

The idea behind the Newton method is finding the root of the function’s tan-
gent at an initial point and use the result as a new initial point iteratively till the
required precision is reached. The tangent function can be written as,

t (xi+1) = f (xi) + f ′ (xi) (xi+1 − xi) (A.1)

where t (x) is the tangent to the function f (x). The iteration can be written as,

xi+1 = xi −
f (xi)
f ′ (xi)

, i = 0, 1, 2, ... (A.2)

where xo is the initial search point, xi+1 is a better approximation for the root
than xi, in case of convergence, and i is the iteration counter.

According to [8] it is well-known that if f (x) has a single zero xz, f (x) is
twice continuously differentiable and xo is close enough to xz, then the method
will converge quadratically.

A.2 Interval Extension for the Newton Method

The interval Newton method was originally introduced by R. Moore in [36], as an
interval extension for the classical Newton method. Interval Newton is believed
to be much more powerful than the classical one. In contrast with the classical
method, the interval Newton method never diverges [8].
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The new iteration is defined as,

Xi+1 =
(
m (Xi)−

f (m (Xi))
F ′ (Xi)

)
∩Xi, i = 0, 1, 2, ... (A.3)

where Xo is the initial search interval, m (X) is the midpoint of the interval X,
F ′ (X) is the interval evaluation of f ′ (x), and i is the iteration counter. Any point
x ∈ Xi can be used instead of the midpoint. The interval Newton can be applied
only if,

0 /∈ F ′ (Xo)

which guarantees the existence of only one zero in the initial selected interval.
The expression,

N (X) = x− f (x)
F ′ (X) (A.4)

is defined as the interval Newton operator.

• If N (X) ∩X = φ, then there is no zeros in the tested interval.

• N (X) ⊆ X, then f (x) has only one zero xz ∈ X.



Appendix B

Rasterization Steps

B.1 Geometry Stage

Figure B.1: Rasterization steps [61].

Geometry stage is the first stage of the process. In this stage the 3D triangles
provided by the application layer are transformed into 2D triangles ready for
rasterization. These transformations are made in a number of sub-steps [61], as
shown in Fig. B.1,

1. Transform each object from its coordinates to a unified coordinates, called
the world space.

2. Transform the scene such that the camera (eye) becomes in the origin and
looking directly towards the z-direction.

3. The view frustum is clipped and transformed into normalized cube. Objects
completely outside the frustum are discarded, while those that are partially

85



86 APPENDIX B. RASTERIZATION STEPS

outside are clipped by creating new vertices.

4. The third dimension is discarded, and only the nearest to screen vertices are
kept for further processing. Buffers are used in this process.

B.2 Rasterization Stage

In this stage triangles are rasterized into pixels. These transformations are made
in a number of sub-steps [61], as shown in Fig. B.1,

1. 2D triangles are transformed into fragments. Fragments are created by in-
tersecting each pixel position by 2D triangles. In case the intersection is
not with a vertex but with a primitive (triangle or line), the attributes of
the fragment is interpolated. The Color of each fragment is calculated by
combining the attributes of color, texture and lighting. Also α (lighting
coefficient) and/or fog can be combined.

2. Converging fragments into final pixels. In general each pixel is composed of
many fragments.

Figure B.2: In case of rasterization (z-buffer) the triangles are projected on the
image plane, while in case of ray-tracing rays are traced through each pixel [62].
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The third dimension of the 2D triangles are saved for being used in selecting
the nearest to camera triangle, using z-buffer technique. Fig. B.2 shows the main
difference between rasterization and ray-tracing. In rasterization the triangles are
projected on the image plane, while in rasterization the traced rays that pass
through pixels are used to calculate pixels attributes.
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Appendix C

CUDA GPU Architecture

C.1 GPUs versus CPUs

Graphical processing units (GPUs) are originally designed for graphical process-
ing. However the highly parallel design and the huge processing power of the
GPU, opened the door for non-graphics (rasterization specially) processing on the
GPUs, namely GPGPU (General Propose GPU). Current GPUs are considered a
highly parallel may cores designs. Latest GPUs can have up to hundreds of com-
puting cores. According to [63] the market demand for real-time, high-definition
3D graphics have driven the GPU industry to create a highly parallel, multi-
threaded, many-cores processor with tremendous computational power and very
high memory bandwidth GPUs.

Current GPUs founds many general purpose applications and physics simu-
lations [64]. Using the current GPGPU programing language (C++ extensions),
like C for CUDA or OpenCL [63], many of the current CPU applications can be
modified for running on the GPU. GPUs begin as a simple rasterization pipeline,
then multi cores designs are introduced with two types of cores, vertex shader
and pixel shader. With the introduction of unified shaders [65] many cores highly
parallel deigned are now a reality.

GPUs are built on the idea of many small cores, while in the multi-cores CPUs
few complex cores are used. Fig. C.1 shows the clear different between a GPU
(nVidia GeForce 310) and a multi-cores CPU (Intel Core i7) layouts. The GPU
layout shows highly repeated small units while few complex units appears in the
CPU’s layout.

Compute Unified Device Architecture or CUDA is a general purpose parallel
computing architecture introduced by nVidia in 2006 [66]. CUDA architecture
consists of N multiprocessors (MP), each multiprocessor consists of M processors
(cores), as shown in Fig. C.2. In which the cores of the same MP executes the
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Figure C.1: (a) nVidia’s GeForce 310 chip layout photo. (b) Intel’s Core i7 layout
photo .

same code (GPU kernel), in a parallel scheme. Such hierarchy of computing cores
simplifies scheduling and the synchronization processes between the huge numbers
of cores. GPU kernels are of the same instructions but with different sets of data.

Data sharing and execution synchronization are supported only between cores
of the same MP. The smallest executable unit in the CUDA GPUs is called the
warp. The warp can be considered as a variation on the SIMD (Single Instruction
Multiple Data) instructions of the CPU, since GPU thread of the same kernel
built up of the same instructions but with different running data. Each warp can
carry up to 32 threads simultaneously.

C.2 Memory Organization

The CUDA GPUs’ memory is organized as on-chip and off-chip memory. The
memory is divide into six categories depending on each type level of sharing,
maximum size and caching capabilities, as shown in Fig. C.2. The memory types
are defined as,

• Global memory: off-chip non-cached memory, shared by all the cores of
the GPU and the host device. The global memory is the main memory
storage of the GPU.

• Shared memory: on-chip memory per MP, shared locally between the
cores of each MP, and not accessed directly by the host device.

• Local memory: off-chip non-cached extension for the shared memory, with
the same level of sharing.
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Figure C.2: The CUDA architecture organization showing the off-chip memory
and GPU computing unit [66].

• Texture memory: off-chip read-only cached memory, with a global level
of sharing between the GPU cores and the host. Texture memory gets its
name because in graphics application it is used for storing the texture data.

• Constant memory: off-chip read-only cached constant size memory (64-
KByte), shared by all the cores of the GPU.

• Registers: local registers per each processing core.
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Appendix D

C# Test Platform

D.1 The Main Program

us ing System ;
us ing System . Drawing ;
us ing System . Co l l e c t i o n s . Generic ;
us ing System . Linq ;
us ing System . Text ;

namespace RayTracing
{

c l a s s Program
{

s t a t i c void Main ( s t r i n g [ ] a rgs )
{

// Read the database f i l e
ply_read db = new ply_read ( " bunny . ply " ) ;

// Pr in t ing data
Console . WriteLine ( "Number o f v e r t i c e s : {0} " ,

db . nVert ix ) ;
Console . WriteLine ( "Number o f t r i a n g l e s : {0}\n " ,

db . nTr iang le ) ;

// Image p i x e l s
i n t width = 100 ;
i n t l ength = 100 ;
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// Set the image boundar ies
v e r t i x imTopLeft = new ve r t i x (−1 ,0 ,0 .1) ;
v e r t i x imDownRigt = new ve r t i x (−1 ,0.2 ,−0.1) ;

// Create the image plane
imageGray image =

new imageGray ( length , width , imTopLeft ,
imDownRigt ) ;

// Camera po s i t i o n
v e r t i x source = new ve r t i x (−25 ,0 .1 ,0) ;

// Main ray d i r e c t i o n
v e r t i x d i r e c t i o n = new ve r t i x ( ) ;

// Secondary ray
v e r t i x r e f l i c t i o n = new ve r t i x ( ) ;

// Light source
v e r t i x l i g h t = new ve r t i x (−10 ,−10 ,30) ;

// Ca l cu la t e the normals
I n t e r s e c t i o n . GetNormals (db) ;

// Ca l cu la te the maximums and the
// minimums o f the t r i a n g l e v e r t i c e s
I n t e r s e c t i o n .GetMaxMin(db) ;

// Create the output image
Bitmap bitmapImage = new Bitmap (width , l ength ) ;

/////−−−−− Calcu la te a l l p i x e l s −−−−−/////

// Measure Execution time
DateTime s t a r t = DateTime .Now;

// Loop on a l l p i x e l s
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f o r ( i n t i = 0 ; i < length ; i++)
{

f o r ( i n t j = 0 ; j < width ; j++)
{

// Main ray d i r e c t i o n
d i r e c t i o n = image . p ixe lPos [ i , j ]

− source ;

// Find the nea r e s t i n t e r s e c t i o n per
p e x i l

I n t e r s e c t i o n .
F indNea r e s t In t e r s e c t i onPe rP ixe l

(db , image , source ,
d i r e c t i on , i , j ) ;

}
}

// End time
DateTime end = DateTime .Now;

// Measure Execution time
TimeSpan durat ion = end − s t a r t ;
i n t d = durat ion . M i l l i s e c ond s +

1000 ∗ durat ion . Seconds +
60000 ∗ durat ion . Minutes ;

// Write the execut ion time to the s c r e en
Console . WriteLine

( " I n t e r s e c t i o n time : {0} [ msec ] " , d ) ;

// Write the f i n a l image
f o r ( i n t i = 0 ; i < length ; i++)
{

f o r ( i n t j = 0 ; j < width ; j++)
{

// Check f o r i n t e r s e c t i o n va l i d a t i o n
i f ( image . i n t e r s e c t i o n [ i , j ] . t == −1)
{

image . p i x e l [ i , j ] = 0 ;
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bitmapImage .
Se tP ixe l ( j , i , Color . Black ) ;

}
e l s e
{

image . p i x e l [ i , j ] = 255 ;
bitmapImage . Se tP ixe l

( j , i , Color . FromArgb
(255 , 255 , 255) ) ;

}
}

}

// Save the image
bitmapImage . Save ( " image .bmp" ) ;

}
}

}

D.2 Defined Types

namespace RayTracing
{

// Type v e r t i x
c l a s s v e r t i x
{

// Member Var iab l e s
pub l i c f l o a t [ ] c ; // coo rd ina t e s

// Constructors
pub l i c v e r t i x ( f l o a t c0 , f l o a t c1 , f l o a t c2 )
{

c = new f l o a t [ 3 ] { c0 , c1 , c2 } ;
}

pub l i c v e r t i x ( )
{

c = new f l o a t [ 3 ] { 0 , 0 , 0 } ;
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}

// + opera to r s ove r l oad ing
pub l i c s t a t i c v e r t i x operator

+( v e r t i x t1 , v e r t i x t2 )
{

re turn new ve r t i x ( t1 . c [ 0 ] + t2 . c [ 0 ] ,
t1 . c [ 1 ] + t2 . c [ 1 ] ,
t1 . c [ 2 ] + t2 . c [ 2 ] ) ;

}

// − ope ra to r s ove r l oad ing
pub l i c s t a t i c v e r t i x operator

−( v e r t i x t1 , v e r t i x t2 )
{

re turn new ve r t i x ( t1 . c [ 0 ] − t2 . c [ 0 ] ,
t1 . c [ 1 ] − t2 . c [ 1 ] ,
t1 . c [ 2 ] − t2 . c [ 2 ] ) ;

}

// −ve ope ra to r s ove r l oad ing
pub l i c s t a t i c v e r t i x operator −( v e r t i x t )
{

re turn new ve r t i x (− t . c [ 0 ] ,
− t . c [ 1 ] ,
− t . c [ 2 ] ) ;

}

// ∗ ope ra to r s ove r l oad ing 1
pub l i c s t a t i c v e r t i x operator

∗( v e r t i x t1 , v e r t i x t2 )
{

re turn new ve r t i x ( t1 . c [ 0 ] ∗ t2 . c [ 0 ] ,
t1 . c [ 1 ] ∗ t2 . c [ 1 ] ,
t1 . c [ 2 ] ∗ t2 . c [ 2 ] ) ;

}

// ∗ ope ra to r s ove r l oad ing 2
pub l i c s t a t i c v e r t i x operator
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∗( f l o a t t1 , v e r t i x t2 )
{

re turn new ve r t i x ( t1 ∗ t2 . c [ 0 ] ,
t1 ∗ t2 . c [ 1 ] ,
t1 ∗ t2 . c [ 2 ] ) ;

}
// / ope ra to r s ove r l oad ing 1
pub l i c s t a t i c v e r t i x operator

/( v e r t i x t1 , f l o a t t2 )
{

re turn new ve r t i x ( t1 . c [ 0 ] / t2 ,
t1 . c [ 1 ] / t2 ,
t1 . c [ 2 ] / t2 ) ;

}

// Dot product
s t a t i c pub l i c f l o a t

Dot ( v e r t i x a , v e r t i x b)
{

re turn ( a . c [ 0 ] ∗ b . c [ 0 ] +
a . c [ 1 ] ∗ b . c [ 1 ] +
a . c [ 2 ] ∗ b . c [ 2 ] ) ;

}

// Cross product
s t a t i c pub l i c v e r t i x

Cross ( v e r t i x a , v e r t i x b)
{

v e r t i x temp = new ve r t i x ( ) ;

temp . c [ 0 ] = a . c [ 1 ] ∗ b . c [ 2 ]
− a . c [ 2 ] ∗ b . c [ 1 ] ;

temp . c [ 1 ] = a . c [ 2 ] ∗ b . c [ 0 ]
− a . c [ 0 ] ∗ b . c [ 2 ] ;

temp . c [ 2 ] = a . c [ 0 ] ∗ b . c [ 1 ]
− a . c [ 1 ] ∗ b . c [ 0 ] ;

r e turn temp ;
}

}
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// Type t r i a n g l e
c l a s s t r i a n g l e
{

// Member v a r i a b l e s
pub l i c v e r t i x [ ] ver ; // The three v e r t i c e s
pub l i c v e r t i x [ ] normal ; // normal
pub l i c f l o a t [ ] max ; // maximum coo rd ina t e s
pub l i c f l o a t [ ] min ; // minimum coo rd ina t e s

// Constructors
pub l i c t r i a n g l e ( )
{

ver = new ve r t i x [ 3 ] ;

max = new f l o a t [ 3 ] ;
min = new f l o a t [ 3 ] ;

normal = new ve r t i x [ 3 ] ;
}
pub l i c t r i a n g l e ( v e r t i x a , v e r t i x b , v e r t i x c )
{

ver = new ve r t i x [ 3 ] ;
ver [ 0 ] = a ;
ver [ 1 ] = b ;
ver [ 2 ] = c ;

max = new f l o a t [ 3 ] ;
min = new f l o a t [ 3 ] ;

normal = new ve r t i x [ 3 ] ;
}

}

// Type ray
c l a s s ray
{

// Member v a r i a b l e s
pub l i c f l o a t [ , ] source ;
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pub l i c f l o a t [ , ] d i r e c t i o n ;

// Constructor
pub l i c ray ( f l o a t [ , ] sourceIn , f l o a t [ , ] d i r e c t i o n I n )
{

source = source In ;
d i r e c t i o n = d i r e c t i o n I n ;

}
}

// Type l i g h t source
c l a s s l i gh tSou r c e
{

// Members
pub l i c f l o a t [ , ] p o s i t i o n ;

// Constructor
pub l i c l i gh tSou r c e ( f l o a t [ , ] posIn )
{

po s i t i o n = posIn ;
}

}

// Type image
c l a s s imageGray
{

/∗
∗ j ( width )
∗ +−−−−−−−−−−−−−−−−−−−−−−−−−−−−>
∗ |
∗ i | ( l ength )
∗ |
∗ |
∗ |
∗ |
∗ |
∗ v
∗
∗/
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// Image l ength and width
pub l i c shor t length , width ;

// P ix e l s array
pub l i c shor t [ , ] p i x e l ;

// P i x e l s p o s i t i o n in the v i r t u a l plane
pub l i c v e r t i x [ , ] p ixe lPos ;

// i n t e r s e c t i o n po int
pub l i c i n t e r s e c t i o nPo i n t [ , ] i n t e r s e c t i o n ;

// Bounding p o s i t i o n s
p r i va t e v e r t i x postionLeftUp , postionRightDown ,

de l ta , r a t i o ;

// Constructors
pub l i c imageGray ( shor t lenghtIn , shor t widthIn ,

v e r t i x post ionLeftUpIn , v e r t i x
postionRightDownIn )

{
// Set the input data
l ength = lenght In ;
width = widthIn ;
post ionLeftUp = post ionLeftUpIn ;
postionRightDown = postionRightDownIn ;

// Ca lcu la te de l t a
de l t a = postionRightDown − post ionLeftUp ;

// Create ar rays
p i x e l = new shor t [ length , width ] ;
p ixe lPos = new ve r t i x [ length , width ] ;
i n t e r s e c t i o n = new i n t e r s e c t i o nPo i n t

[ length , width ] ;

// Ratio v e r t i x
r a t i o = new ve r t i x ( ) ;
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// I n t i a l i z e p i x e l s by c a l c u l a t i n g the r a t i o
and the

// p i x e l s pos t i on and c r e a t e i n t e r s e c t i o n
po in t s

f o r ( i n t i = 0 ; i < length ; i++)
{

// r a t i o [ x ]
r a t i o . c [ 0 ] = ( f l o a t )

( ( i+ 0 . 5 ) / l ength ) ; // x

// r a t i o [ z ]
r a t i o . c [ 2 ] = ( f l o a t )

( ( i+ 0 . 5 ) / l ength ) ; // z

f o r ( i n t j = 0 ; j < width ; j++)
{

// r a t i o [ y ]
r a t i o . c [ 1 ] = ( f l o a t )

( ( j+ 0 . 5 ) / width ) ; // y

// I n t i a l i z e with zero
p i x e l [ i , j ] = 0 ;

// post ionLeftUp + ( postionRightDown −
post ionLeftUp ) ∗ r a t i o

p ixe lPos [ i , j ] = post ionLeftUp + de l t a
∗ r a t i o ;

// Create i n t e r s e c t i o n po int
i n t e r s e c t i o n [ i , j ] =

new i n t e r s e c t i o nPo i n t ( ) ;
}

}
}

}

// Type i n t e r s e c t i o n po int
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c l a s s i n t e r s e c t i o nPo i n t
{

// Member v a r i a b l e s
pub l i c v e r t i x po int ; // i n t e r s e c t i o n po int
pub l i c v e r t i x normal ; // normal
pub l i c f l o a t a l f a , beta ; // r e f l e c t i o n ang l e s
pub l i c i n t t r i ang l e I nd ex ; // aaray index o f the

// t r i a n g l e
pub l i c f l o a t t ; // pameter t
pub l i c bool shadow ; // l i g h t or shadow
pub l i c v e r t i x cosPhi ; // l i g h t model cos ( phi )

// con s t ruc to r
pub l i c i n t e r s e c t i o nPo i n t ( )
{

po int = new ve r t i x ( ) ;
normal = new ve r t i x ( ) ;
a l f a = beta = 0 ;
t r i ang l e I nd ex = −1;
t = −1;
shadow = f a l s e ;
cosPhi = new ve r t i x ( ) ;

}
}

}

D.3 Database Reading

us ing System ;
us ing System . IO ;

namespace RayTracing
{

// Read PLY f i l e
c l a s s ply_read
{

// Number o f v e r t i c e s and t r i a n g l e s
pub l i c i n t nVertix , nTr iang le ;
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// Database f i l e name
pr i va t e s t r i n g f i leName ;

// Input stream
pr i va t e StreamReader stream ;

// Temp
pr i va t e s t r i n g l i n e ;

// Data array
pub l i c v e r t i x [ ] ver ;
pub l i c t r i a n g l e [ ] t r i ;

// Constructor
pub l i c ply_read ( s t r i n g f i l eNameIn )
{

f i leName = fi leNameIn ;
stream = new StreamReader ( f i leName ) ;
ReadHeader ( ) ;
ReadVert ( ) ;
ReadTriangle ( ) ;

}

// Read header
p r i va t e void ReadHeader ( )
{

// Header end f l a g
bool headerEnd = f a l s e ;

// check f o r f i l e end and header end
whi le ( stream . EndOfStream == f a l s e &&

headerEnd == f a l s e )
{

// Read a new l i n e
l i n e = stream . ReadLine ( ) ;

// check f o r header end
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i f ( l i n e . Contains ( " end_header " ) )
{

headerEnd = true ;
break ;

}

// check f o r e lements
i f ( l i n e . Contains ( " element " ) )
{

HeaderElement ( l i n e ) ;
}

}
}

// Read header element
p r i va t e void HeaderElement ( s t r i n g l i n e )
{

// Sp l i t on spaces
s t r i n g [ ] words = l i n e . S p l i t ( ’ ’ ) ;

// Check f o r keyword v e r t i x
i f ( l i n e . Contains ( " ver tex " ) )
{

nVert ix = Convert . ToInt32 ( words [ 2 ] ) ;
r e turn ;

}

// Check f o r keyword f a c e
i f ( l i n e . Contains ( " f a c e " ) )
{

nTr iang le = Convert . ToInt32 ( words [ 2 ] ) ;
r e turn ;

}
}

// Read v e r t i c e s data
p r i va t e void ReadVert ( )
{

// Create v e r t i c e s array
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ver = new ve r t i x [ nVert ix ] ;

s t r i n g [ ] words ; // temp

// Loop on a l l l i n e s conta in v e r t i c e s ’ data
f o r ( i n t i = 0 ; i < nVert ix ; i++ )
{

// Read a new l i n e
l i n e = stream . ReadLine ( ) ;

// Sp l i t on spaces
words = l i n e . S p l i t ( ’ ’ ) ;

// Creat a new ve r t i x
ver [ i ] = new ve r t i x ( ) ;

// Convert s t r i n g in to f l o a t ( s i n g l e )
ver [ i ] . c [ 0 ] = Convert . ToSingle ( words [ 0 ] ) ;
ver [ i ] . c [ 1 ] = Convert . ToSingle ( words [ 1 ] ) ;
ver [ i ] . c [ 2 ] = Convert . ToSingle ( words [ 2 ] ) ;

}
}

// Read t r i a n g l e s data
p r i va t e void ReadTriangle ( )
{

// Create t r i a n g l e s array
t r i = new t r i a n g l e [ nTr iang le ] ;

s t r i n g [ ] words ; // temp
in t v0 , v1 , v2 ; // temp , Triangle ’ s 3 v e r t i c e s

// po s t i on s

// Loop on a l l l i n e s conta in t r i a n g l e s ’ data
f o r ( i n t i = 0 ; i < nTriang le ; i++)
{

// Read a new l i n e
l i n e = stream . ReadLine ( ) ;
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// Sp l i t on spaces
words = l i n e . S p l i t ( ’ ’ ) ;

// Convert s t r i n g in to i n t
v0 = Convert . ToInt32 ( words [ 1 ] ) ;
v1 = Convert . ToInt32 ( words [ 2 ] ) ;
v2 = Convert . ToInt32 ( words [ 3 ] ) ;

// Create a new t r i a n g l e
t r i [ i ] = new t r i a n g l e ( ) ;

// Read t r i a n g l s ’ v e r t i c e s
t r i [ i ] . ver [ 0 ] = ver [ v0 ] ;
t r i [ i ] . ver [ 1 ] = ver [ v1 ] ;
t r i [ i ] . ver [ 2 ] = ver [ v2 ] ;

}

}
}

}

D.4 Tracing Algorithms

us ing System ;
us ing System . Drawing ;
us ing System . Co l l e c t i o n s . Generic ;
us ing System . Linq ;
us ing System . Text ;

namespace RayTracing
{

s t a t i c c l a s s I n t e r s e c t i o n
{

// Find the nea r e s t to eye i n t e r s e c t i o n po int
s t a t i c pub l i c void F indNea r e s t In t e r s e c t i onPe rP ixe l

( ply_read db , imageGray image , v e r t i x source ,
v e r t i x d i r e c t i on , i n t i , i n t j )

{
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// temp i n t e r s e c t i o n po int
i n t e r s e c t i o nPo i n t t empInte r s e c t i on =

new i n t e r s e c t i o nPo i n t ( ) ;

// Loop on a l l t r i a n g l e s to get the nea r e s t
i n t e r s e c t i o n

// ( only as a t e s t f o r a lgor i thm )
f o r ( i n t t I = 0 ; t I < db . nTr iang le ; t I++)
{

// Get cur rent i n t e r s e c t i o n
tempInte r s e c t i on =

I n t e r s e c t i o n .
Ge t In t e r s e c t i onNa t i v e In t e r va l

( source , d i r e c t i on , db . t r i [ t I ] , t I ,
image . i n t e r s e c t i o n [ i , j ] . t ) ;

// The i n t e r s e c t i o n i s v a l i d i f t not equal
// to −1
i f ( t empInte r s e c t i on . t >= 0)
{

image . i n t e r s e c t i o n [ i , j ] =
tempInte r s e c t i on ;

image . i n t e r s e c t i o n [ i , j ] . t r i a ng l e I nd ex
= t I ;

}

}

// i f the re i s an i n t e r s e c t i o n get the po int
// and the normal
i f ( image . i n t e r s e c t i o n [ i , j ] . t != −1)
{

// Point
image . i n t e r s e c t i o n [ i , j ] . po int =

source + image . i n t e r s e c t i o n [ i , j ] . t ∗
d i r e c t i o n ;

// Normal
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i n t tIndex = image . i n t e r s e c t i o n [ i , j ] .
t r i a ng l e I nd ex ;

image . i n t e r s e c t i o n [ i , j ] . normal =
( 1 − image . i n t e r s e c t i o n [ i , j ] . a l f a
− image . i n t e r s e c t i o n [ i , j ] . beta )
∗ db . t r i [ t Index ] . normal [ 0 ]
+ image . i n t e r s e c t i o n [ i , j ] . a l f a
∗ db . t r i [ t Index ] . normal [ 1 ]
+ image . i n t e r s e c t i o n [ i , j ] . beta
∗ db . t r i [ t Index ] . normal [ 2 ] ;

}
}

// Check f o r i n t e r s e c t i o n us ing Mol ler a lgor i thm −
// implementation 1/2
s t a t i c pub l i c i n t e r s e c t i o nPo i n t

Ge t In t e r s e c t i onMo l l e r
( v e r t i x source , v e r t i x d i r e c t i on , t r i a n g l e t r i ,
i n t t r i Index , f l o a t oldT )

{
// Temp i n t e r s e c t i o n po int
i n t e r s e c t i o nPo i n t iPo in t = new

i n t e r s e c t i o nPo i n t ( ) ;

// Ca l cu la t e algor ithm ’ s v a r i a b l e s
v e r t i x E1 = t r i . ver [ 1 ] − t r i . ver [ 0 ] ;
v e r t i x E2 = t r i . ver [ 2 ] − t r i . ver [ 0 ] ;
v e r t i x T = source − t r i . ver [ 0 ] ;

v e r t i x P = ve r t i x . Cross ( d i r e c t i on , E2) ;
v e r t i x Q = ve r t i x . Cross (T, E1) ;

f l o a t A = ve r t i x . Dot (P, E1) ;

// Check i n t e r s e c t i o n va l i d a t i o n cond i t i on
i f (A <= 0)
{

iPo in t . t = −1;
r e turn iPo in t ;
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}

// Ca lcu la te parameter t
f l o a t tTemp = ve r t i x . Dot (Q, E2) / A;

// Check i n t e r s e c t i o n va l i d a t i o n cond i t i on
i f ( tTemp < 0 | | ( oldT != −1 && tTemp > oldT ) )
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// c a l c u l a t e a l f a
iPo in t . a l f a = ve r t i x . Dot (P, T) ; //

// Check i n t e r s e c t i o n va l i d a t i o n cond i t i on
i f ( iPo in t . a l f a > A | | iPo in t . a l f a < 0)
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// c a l c u l a t e beta
iPo in t . beta = ve r t i x . Dot (Q, d i r e c t i o n ) ;

// Check i n t e r s e c t i o n va l i d a t i o n cond i t i on
i f ( iPo in t . beta > A − iPo in t . a l f a | |

iPo in t . beta < 0)
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// re turn the i n t e r s e c t i o n po int in case o f
// va l i d i n t e r s e c t i o n
iPo in t . t = tTemp ;
re turn iPo in t ;

}
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// I n t e r s e c t i o n r e j e c t i o n t e s t + Mol ler a lgor i thm −
// implementation 1/2
s t a t i c pub l i c i n t e r s e c t i o nPo i n t

Ge t I n t e r s e c t i onMo l l e r I n t e r v a l ( v e r t i x source ,
v e r t i x d i r e c t i on , t r i a n g l e t r i ,

i n t t r i Index , f l o a t oldT )
{

// Temp i n t e r s e c t i o n po int
i n t e r s e c t i o nPo i n t iPo in t =

new i n t e r s e c t i o nPo i n t ( ) ;

// Tx , Ty , Tz
f l o a t TxMax, TxMin , TyMax, TyMin , TzMax , TzMin ,

TMax, TMin , t ;

/////−−−−− Rejec t i on Phase 1 −−−−−/////

// Ca l cu l a t ing Tx
TxMax = ( t r i .max [ 0 ] − source . c [ 0 ] )

/ d i r e c t i o n . c [ 0 ] ;
TxMin = ( t r i . min [ 0 ] − source . c [ 0 ] )

/ d i r e c t i o n . c [ 0 ] ;

// Ca l cu l a t ing Ty
TyMin = ( t r i . min [ 1 ] − source . c [ 1 ] )

/ d i r e c t i o n . c [ 1 ] ;
TyMax = ( t r i .max [ 1 ] − source . c [ 1 ] )

/ d i r e c t i o n . c [ 1 ] ;

// Reorder the i n t e r v a l in case o f wrong order
i f (TyMin > TyMax)
{

t = TyMin ;
TyMin = TyMax ;
TyMax = t ;

}

// Reorder the i n t e r v a l in case o f wrong order
i f (TxMin > TxMax)
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{
t = TxMin ;
TxMin = TxMax ;
TxMax = t ;

}

// Find the i n t e r s e c t i o n o f Tx and Ty
TMax = TxMax > TyMax ? TyMax : TxMax ; // min

o f 2
TMin = TxMin > TyMin ? TxMin : TyMin ; // max

o f 2

// Check f o r va l i d i n t e r s e c t i o n
i f (TMin > TMax)
{

iPo in t . t = −1;
r e turn iPo in t ;

}

/////−−−−− Rejec t i on Phase 2 −−−−−/////

// Ca l cu l a t ing Tz
TzMax = ( t r i .max [ 2 ] − source . c [ 2 ] )

/ d i r e c t i o n . c [ 2 ] ;
TzMin = ( t r i . min [ 2 ] − source . c [ 2 ] )

/ d i r e c t i o n . c [ 2 ] ;

// Reorder the i n t e r v a l in case o f wrong order
i f (TzMin > TzMax)
{

t = TzMin ;
TzMin = TzMax ;
TzMax = t ;

}

// Find the i n t e r s e c t i o n o f Txy and Tz
TMax = TzMax > TMax ? TMax : TzMax ;
TMin = TzMin > TMin ? TzMin : TMin ;
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// Check f o r va l i d i n t e r s e c t i o n
i f (TMin > TMax) // | | TMin > oldT
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// Compare Tmin with the cur r ent nea r e s t
// to eye i n t e r s e c t i o n
i f ( oldT != −1 && TMin > oldT )
{

iPo in t . t = −1;
r e turn iPo in t ;

}

/////−−−−− I n t e r s e c t i o n Phase −−−−−/////

// Ca lcu la te a lgor i thm va r i a b l e s
v e r t i x E1 = t r i . ver [ 1 ] − t r i . ver [ 0 ] ;
v e r t i x E2 = t r i . ver [ 2 ] − t r i . ver [ 0 ] ;
v e r t i x T = source − t r i . ver [ 0 ] ;

v e r t i x P = ve r t i x . Cross ( d i r e c t i on , E2) ;
v e r t i x Q = ve r t i x . Cross (T, E1) ;

f l o a t A = ve r t i x . Dot (P, E1) ;

// Check i n t e r s e c t i o n va l i d a t i o n cond i t i on
i f (A <= 0)
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// Ca lcu la te parameter t
f l o a t tTemp = ve r t i x . Dot (Q, E2) / A;

// Check i n t e r s e c t i o n va l i d a t i o n cond i t i on
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i f ( tTemp < 0 | | ( oldT != −1 && tTemp > oldT ) )
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// c a l c u l a t e a l f a
iPo in t . a l f a = ve r t i x . Dot (P, T) ;

// Check i n t e r s e c t i o n va l i d a t i o n condt ion
i f ( iPo in t . a l f a > A | | iPo in t . a l f a < 0)
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// c a l c u l a t e beta
iPo in t . beta = ve r t i x . Dot (Q, d i r e c t i o n ) ;

// Check i n t e r s e c t i o n va l i d a t i o n cond i t i on
i f ( iPo in t . beta > A − iPo in t . a l f a | |

iPo in t . beta < 0)
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// re turn the i n t e r s e c t i o n po int in case o f
// va l i d i n t e r s e c t i o n
iPo in t . t = tTemp ;
re turn iPo in t ;

}

// Check f o r i n t e r s e c t i o n us ing Badouel a lgor i thm
s t a t i c pub l i c i n t e r s e c t i o nPo i n t

Get Inte r sec t ionBadoue l
( v e r t i x source , v e r t i x d i r e c t i on , t r i a n g l e t r i ,
i n t t r i Index , f l o a t oldT )
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{
// Temp i n t e r s e c t i o n po int
i n t e r s e c t i o nPo i n t iPo in t =

new i n t e r s e c t i o nPo i n t ( ) ;

// Algorithm ’ s v a r i a b l e s
i n t i0 , i1 , i 2 ;

// Temp t
f l o a t tempT =

−( t r i . d + ve r t i x . Dot ( t r i . normal [ 0 ] , source )
/

v e r t i x . Dot ( t r i . normal [ 0 ] , d i r e c t i o n ) ) ;

i f ( tempT < 0 | | ( oldT != −1 && tempT > oldT ) )
{

iPo in t . t = −1;
r e turn iPo in t ;

}

i 0 = U t i l i t i e s . max3Pos ( t r i . normal [ 0 ] . c [ 0 ] ,
t r i . normal [ 0 ] . c [ 1 ] , t r i . normal [ 0 ] . c [ 2 ] ) ;

// Set i0 , i 1 and i 2
i f ( i 0 == 0)
{

i 1 = 1 ;
i 2 = 2 ;

}
e l s e i f ( i 0 == 1)
{

i 1 = 0 ;
i 2 = 2 ;

}
e l s e
{

i 1 = 0 ;
i 2 = 1 ;

}
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// Algorithm ’ s v a r i a b l e s
f l o a t u0 , u1 , u2 , v0 , v1 , v2 ;

// Plane i n t e r s e c t i o n po i t p o s i t i o n
iPo in t . po int = source + iPo in t . t ∗ d i r e c t i o n ;

// Ca l cu la te algor ithm ’ s v a r i a b l e s
u1 = t r i . ver [ 1 ] . c [ i 1 ] − t r i . ver [ 0 ] . c [ i 1 ] ;
v1 = t r i . ver [ 1 ] . c [ i 2 ] − t r i . ver [ 0 ] . c [ i 2 ] ;

u2 = t r i . ver [ 2 ] . c [ i 1 ] − t r i . ver [ 0 ] . c [ i 1 ] ;
v2 = t r i . ver [ 2 ] . c [ i 2 ] − t r i . ver [ 0 ] . c [ i 2 ] ;

f l o a t A = u1 ∗ v2 − u2 ∗ v1 ;

// Re j ec t i on cond i t i on 1
i f (A==0)
{

iPo in t . t = −1;
r e turn iPo in t ;

}

u0 = iPo in t . po int . c [ i 1 ] − t r i . ver [ 0 ] . c [ i 1 ] ;
v0 = iPo in t . po int . c [ i 2 ] − t r i . ver [ 0 ] . c [ i 2 ] ;

// Al fa
f l o a t tempAlfa = (u0 ∗ v2 − u2 ∗ v0 ) /A;

// Re j ec t i on cond i t i on 2
i f ( tempAlfa < 0 | | tempAlfa > 1)
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// Beta
f l o a t tempBeta = (u1 ∗ v0 − u0 ∗ v1 ) /A;
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// Re j ec t i on cond i t i on 1
i f ( tempBeta < 0 | | tempBeta > 1)
{

iPo in t . t = −1;
r e turn iPo in t ;

}

// re turn the i n t e r s e c t i o n po int in case o f
// va l i d i n t e r s e c t i o n
iPo in t . t = tempT ;
re turn iPo in t ;

}

// Ca lcu la te the normals to the t r i a n g l e plane
// at each v e r t i x
pub l i c s t a t i c void GetNormals ( ply_read db)
{

// Loop on a l l t r i a n g l e s
f o r ( i n t i = 0 ; i < db . nTr iang le ; i++)
{

db . t r i [ i ] . normal [ 0 ] = v e r t i x . Cross
( db . t r i [ i ] . ver [ 1 ] − db . t r i [ i ] . ver [ 0 ] ,

db . t r i [ i ] . ver [ 2 ] − db . t r i [ i ] . ver [ 0 ] ) ;

db . t r i [ i ] . normal [ 1 ] = v e r t i x . Cross
( db . t r i [ i ] . ver [ 2 ] − db . t r i [ i ] . ver [ 1 ] ,

db . t r i [ i ] . ver [ 0 ] − db . t r i [ i ] . ver [ 1 ] ) ;

db . t r i [ i ] . normal [ 2 ] = v e r t i x . Cross
( db . t r i [ i ] . ver [ 0 ] − db . t r i [ i ] . ver [ 2 ] ,

db . t r i [ i ] . ver [ 1 ] − db . t r i [ i ] . ver [ 2 ] ) ;

db . t r i [ i ] . d = −v e r t i x . Dot
( db . t r i [ i ] . ver [ 0 ] , db . t r i [ i ] . normal

[ 0 ] ) ;

}
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}

// Ca lcu la te the maximums and the minimums
// o f the v e r t i c e s coo rd ina t e s
pub l i c s t a t i c void GetMaxMin( ply_read db)
{

f o r ( i n t i = 0 ; i < db . nTr iang le ; i++)
{

f o r ( i n t j = 0 ; j < 3 ; j++)
{

db . t r i [ i ] . max [ j ] = U t i l i t i e s .max3(
db . t r i [ i ] . ver [ 0 ] . c [ j ] ,
db . t r i [ i ] . ver [ 1 ] . c [ j ] ,
db . t r i [ i ] . ver [ 2 ] . c [ j ] ) ;

db . t r i [ i ] . min [ j ] = U t i l i t i e s . min3 (
db . t r i [ i ] . ver [ 0 ] . c [ j ] ,
db . t r i [ i ] . ver [ 1 ] . c [ j ] ,
db . t r i [ i ] . ver [ 2 ] . c [ j ] ) ;

}

}

}
}

pub l i c s t a t i c c l a s s U t i l i t i e s
{

// Get max . o f 3
pub l i c s t a t i c f l o a t max3( f l o a t a , f l o a t b , f l o a t c )
{

f l o a t max = a ;

i f (b > max)
{

max = b ;
}
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i f ( c > max)
{

max = c ;
}

re turn max ;
}

// Get max po s i t i o n o f 3
pub l i c s t a t i c i n t max3Pos ( f l o a t a , f l o a t b , f l o a t c

)
{

f l o a t max = a ;
i n t maxPos = 0 ;

i f (b > max)
{

max = b ;
maxPos = 1 ;

}

i f ( c > max)
{

max = c ;
maxPos = 2 ;

}

re turn maxPos ;
}

// Get min . o f 3
pub l i c s t a t i c f l o a t min3 ( f l o a t a , f l o a t b , f l o a t c )
{

f l o a t min = a ;

i f (b < min )
{

min = b ;
}
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i f ( c < min )
{

min = c ;
}

re turn min ;
}

}
}
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