
Design and Implementation of Reed-Solomon
Decoder using Decomposed Inversion less

Berlekamp-Massey Algorithm
by

Hazem Abd Elall Ahmed Elsaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Electrical Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

May 2010

ii

iii

Acknowledgment

I would like to thank my supervisors Prof. Dr. Amin Nassar, and Dr. Hossam Aly
Hassan Fahmy who devoted a lot of their precious time to this work. Also I would
like to thank Dr. Tallal El-shabrawy, owner of the credit in this work. Nothing
could be achieved without their help. They helped me not only to complete this
work but also to plan for my academic life.

I am actually indebted to the faculty members in Cairo University and in
GUC Prof. Dr. Serag El din Habib, Prof. Dr. Yasser Hegazy, Prof. Dr.Ahmed El
mahdy, and Dr Amr Tallat, for their sincere advices are very fruitful.

I would like also to thank my study partner Hamed Salah. Also I would like
to thank Walid Galal and Soukry Ibrahim for their valuable advices. I can not
explain my gratitude to my father, and mother. They all helped me to achieve
progress through my life. And my wife who always prays for me and encourage
me to do my best, and my Sweet baby Salma.

iv

Abstract
Reed-Solomon (RS) codes have a widespread use to provide error protection es-
pecially for burst errors. This feature has been an important factor in adopting
RS codes in many practical applications such as wireless communication system,
cable modem, computer memory. The most popular RS decoder architecture , can
be summarized into four steps : 1) calculating the syndromes from the received
codeword; 2) computing the error locator polynomial and the error evaluator poly-
nomial; 3) finding the error locations; and 4) computing error values. This thesis
proposes an area efficient, low energy, high speed architecture for a Reed-Solomon
RS(255,239) decoder based on Decomposed Inversionless Berlekamp-Massey Algo-
rithm, where the error locator and evaluator polynomial can be computed serially.
In the proposed architecture, a new scheduling of t finite field multipliers is used
to calculate the error locator and evaluator polynomials to achieve a good balance
between area, latency, and throughput. This architecture is tested in two different
decoders. The first one is a two parallel decoder, as two parallel syndrome and
two parallel Chien search are used. The second one is a serial decoder, as serial
syndrome and Chien search are used. In our architectures we have investigated
hardware area, throughput, and energy per symbol and we did a good optimiza-
tion between the latency, throughput, and energy per symbol while maintaining a
small area.

Contents

1 INTRODUCTION 1
1.1 Information and Coding Theory . 1
1.2 Error control Coding . 2
1.3 Linear Block Codes . 3
1.4 Linear Block Codes in Systematic Form 4
1.5 Hardware solution . 4
1.6 Overview of thesis . 4

2 REED-SOLOMON CODE 7
2.1 Galois Field (GF) . 7

2.1.1 Properties of Galois Field 7
2.1.2 Galois field GF (2) “Binary Field” 8
2.1.3 Galois Field GF (2m) . 9
2.1.4 Representation of Galois Field Elements 11
2.1.5 Basis of Galois Field GF (2m) 11
2.1.6 Implementation of GF (2m) Arithmetic 13

2.2 Cyclic Codes . 20
2.2.1 Description . 20
2.2.2 Codewords in Polynomial Forms 20
2.2.3 Generator Polynomial of a Cyclic Code 21
2.2.4 Generation of Cyclic Codes in Systematic Form 21

2.3 Properties of Reed-Solomon Codes 22
2.4 Applications of Reed-Solomon Codes 24
2.5 Reed-Solomon Encoding . 25

2.5.1 Systematic Encoding . 25
2.5.2 Implementation of Encoding 27

v

vi CONTENTS

3 REED SOLOMON DECODER RS(255,239) 29
3.1 Error Detection “Syndrome Calculation” 30
3.2 The Decoding Algorithm . 31

3.2.1 Decoding of RS Codes Using Berlekamp-Massey Algorithm . 32
3.2.2 Decoding of RS Codes Using Euclidean Algorithm 40
3.2.3 Relationship Between the Error-Location Polynomials of the

Euclidean and B–M Algorithms 44
3.3 Chien Search Calculation . 44
3.4 Forney Algorithm . 45

4 ARCHITECTURE OF DIBM DECODER 47
4.1 Syndrome Computation Architectures 47

4.1.1 Serial Architecture . 47
4.1.2 Two Parallel Architecture 48

4.2 Decoding of RS Codes Using DiBM Algorithm 49
4.2.1 Computation of Error Locator Polynomial σ(X) 49
4.2.2 Computation of Error Evaluator Polynomial W (X) 50

4.3 Three-FFM architecture for implementing the DiB-M algorithm . . 51
4.4 Modified Evaluator DiBM Architecture 54

4.4.1 Error Locator Polynomial σ(X) 54
4.4.2 Error Evaluator Polynomial W (X) 54

4.5 Chien Search Architectures . 57
4.5.1 Serial Architecture . 57
4.5.2 Two Parallel Architecture 58

4.6 Forney Architectures . 59
4.6.1 Serial Architecture . 60
4.6.2 Two Parallel Architecture 60

4.7 Two Parallel Architecture (Proposal A) 61
4.8 Serial Architecture (Proposal B) . 62
4.9 Hardware Synthesis . 63

5 CONCLUSION AND FUTURE WORK 65
5.1 Conclusion . 65
5.2 Future Work . 66

A The list of optimal irreducible polynomial m ≤ 10 71

CONTENTS vii

B Polynomial and dual basis of GF (23). 73

C Basis Conversions 75
C.1 Dual basis to polynomial basis conversions 75
C.2 Polynomial basis to dual basis conversions 76

viii CONTENTS

List of Tables

1.1 Codeword after only source coding 1
1.2 Codeword after source coding and channel coding 2

2.1 Modulo-2 addition (XOR operation). 8
2.2 Modulo-2 Multiplication (AND operation). 8
2.3 Different representations of GF (23) elements. 11

3.1 B–M algorithm table for determining the error-location polynomial 37
3.2 B–M algorithm table for determining the error-location polynomial

for (15, 9) RS Code. 38
3.3 Calculations of GCD for X3 + 1 and X2 + 1. 42
3.4 Euclidean algorithm table for RS(7,3) Example 43

4.1 Data Dependency Table . 51
4.2 Implementation Results of RS(255,239) Decoders 63

C.1 Dual basis coefficients → Polynomial basis coefficients 75
C.2 Polynomial basis coefficients → Dual basis coefficients 76

ix

x LIST OF TABLES

List of Figures

1.1 A communication system: source and channel coding 2
1.2 Systematic form of a codeword of a linear block code 4

2.1 Circuit for computing a← a ∗ αin GF (23)combinational 15
2.2 Circuit for computing a← a ∗ α in GF (23) sequential 15
2.3 Circuit for Option L - LSB first multiplier in GF (23). 17
2.4 Circuit for Option M - MSB first multiplier in GF (23). 18
2.5 Architecture of PPBML for GF (23). 19
2.6 Module B of the PPBML . 20
2.7 A codeword of 255 bytes disturbed by 128-bit noise burst 24
2.8 The information bit sequence divided into symbols. 25
2.9 A codeword is formed from message and parity symbols. 26
2.10 LFSR encoder for a RS code . 27

3.1 Block Diagram of RS Decoder . 29

4.1 Serial Syndrome Block Diagram . 47
4.2 Serial Syndrome cell . 48
4.3 Syndrome Block Diagram . 49
4.4 Two Parallel Syndrome Cell . 49
4.5 Scheduling and data dependency of the decomposed inversionless

Berlekamp–Massey algorithm. 51
4.6 Three-FFM architecture to compute σ(X) for the decomposed in-

versionless Berlekamp–Massey algorithm. 53
4.7 Three-FFM architecture reconfigured to computeW (X) for the de-

composed inversionless Berlekamp–Massey algorithm. 53
4.8 Implementation of the serial decomposed inversionless Berlekamp–Massey

algorithm . 55

xi

xii LIST OF FIGURES

4.9 Finite Field Multiplier Module Block 55
4.10 Flow chart of MEDiBM architecture to calculate σ(X) 56
4.11 Flow chart of MEDiBM architecture to calculate W (X) 57
4.12 Serial Chien Search Block . 57
4.13 Serial Chien Search Cell . 58
4.14 Two Parallel Chien Search Block 59
4.15 Two Parallel Chien Search Cell . 59
4.16 Forney Error Evaluator Architecture 60
4.17 Two Parallel Error Corrector Block 61
4.18 Two parallel Block Diagram . 61
4.19 The pipelining diagram of (255, 239)RS Two parallel Architecture . 62
4.20 Serial Block Diagram . 62
4.21 The pipelining diagram of (255, 239)RS serial Architecture 63

Chapter 1

INTRODUCTION

1.1 Information and Coding Theory

Information theory analyzes the communication between a transmitter and a re-
ceiver through an unreliable channel. We can divide the information theory into
two main parts, the first part is used to analysis sources information, especially
the information produced by a given source, and, the second part states the con-
ditions for performing reliable transmission through an unreliable channel. One
of the most used techniques in information theory is called “Coding”, which is
used to optimize transmission and to make efficient use of the capacity of a given
channel.

In general, coding is a technique used to transmit a set of messages in a set
of binary bits called codewords. This called “Source coding”, see an example in
Table 1.1, in this table we have four symbol messages and we coded each symbol
by two bits and this is called source coding. We notice that the optimum number
of bits to represent the messages is two bits and if we increased these bits, the
effective rate will be decreased.

If these symbols are transmitted through a noisy channel, an error may occur
and the symbol may be decoded as another symbol leading to an undetectable

Table 1.1: Codeword after only source coding
Messages Codewords

S1 00
S2 01
S3 10
S3 11

1

2 CHAPTER 1. INTRODUCTION

Table 1.2: Codeword after source coding and channel coding
Messages Binary messages Codewords

S1 00 0000
S2 01 0101
S3 10 1010
S3 11 1111

Source
Source

encoder

Channel

encoder

Noisy

Channel

Destination
Source

Decoder

Channel

Decoder

Figure 1.1: A communication system: source and channel coding

error. So another coding block is needed called channel coding which adds parity
check bits to each message to make a distance between valid codewords as shown
in Table 1.2. When we increase the parity check length the distance between
each two codewords is increased and the probability of error is decreased but the
effective rate is decreased, so it is a trade off between the rate and the probability
of error.

A block diagram of a communication system as related to information theory
is shown in Figure 1.1.

The block diagram seen in Figure 1.1 shows two types of encoders/decoders.

• Source encoder/decoder.

• Channel encoder/decoder.

1.2 Error control Coding

Last years there were an increasing interest in the reliability of data transmis-
sion and storage mediums, as if a single error happened all the system may be
damaged due to an unacceptable corruption for the data, e.g. in a bank account
[1]. The simplest way of detecting a single error is a parity check sum [2]. But

1.3. LINEAR BLOCK CODES 3

in some applications this method is not sufficient and different methods must be
implemented.

If the transmission system transmits data in both directions, an error control
strategy may be determined by detecting an error and then, if an error is occurred,
retransmitting the corrupted data. These systems are called Automatic Repeat
Request (ARQ) [3]. If transmission transfers data in only one direction, e.g. in-
formation recorded on a compact disk, the only way to control the error is with
Forward Error Correction (FEC) [3 - 5]. In FEC systems some redundant data
is concatenated with the information data in order to allow for the detection and
correction of the corrupted data without having to retransmit it.

1.3 Linear Block Codes

Error control coding mechanism is done in two inverse operations. The first one
is a mechanism of adding redundancy bits to the message and form a codeword,
this operation called (encoding operation), the second operation is excluding the
redundancy bits from the codeword to achieve the message and this operation
called (decoding operation).

These types of codes are called block codes and are denoted by C(n, k). The
rate of the code, R = k/n, where k represents the message bits and n represents
the coded bits. Since the 2k messages are converted into codewords of n bits. This
encoding procedure can be understood a conversion from message vector of k bits
located in space of size 2k to a coded vector of size n bits in a space of size, and
2k only selected to be valid codewords.

Linear block codes [2,6] are considered the most common codes used in channel
coding techniques. In this technique, message words are arranged as blocks of k
bits, constituting a set of 2k possible messages. The encoder takes each block of
k bits, and converts it into a longer block of n > k bits, called the coded bits or
the bits of the codeword. In this procedure there are (n−k) bits that the encoder
adds to the message word, which are usually called redundant bits or parity check
bits. As explained in the previous section. The codewords generated from the
encoder is linearly combined as the summation of any two codeword is an existing
codeword so it is called Linear Block Codes.

4 CHAPTER 1. INTRODUCTION

K bits message (n-k) bits parity check

n bits codeword

Figure 1.2: Systematic form of a codeword of a linear block code

1.4 Linear Block Codes in Systematic Form

In this case, the first k bits are the message bits as it is and the remaining (n− k)
bits are called parity check or redundancy bits. The structure of a codeword in
systematic form is shown in Figure 1.2

In this thesis, the message bits is converted into symbols “non-binary code”
called Reed Solomon (RS) code [7] which is a special type of cyclic code which
will be explained briefly in chapter 2. The message symbols are placed at the
beginning of the codeword, while the redundancy symbols are placed at the end
of the codeword.

1.5 Hardware solution

Last years implementation of Reed Solomon decoders were using Digital Signal
Processors (DSP) micro controllers, which are based on microprocessors but spe-
cialized in signal processing. Recently, Field Programmable Gate Arrays (FPGAs)
[8] is used for these applications, as they provide similar performance with more
customized design.

FPGAs are customizable logic devices, as they give fast solution for specific
problems. FPGAs is considered a good step towards the ASIC design which is the
most optimum way in area, power consumption, and price.

1.6 Overview of thesis

The organization of this thesis is as follows. In Chapter 2, a good introduction to
Reed Solomon (RS) codes and their properties and applications and Galois Fields
will be discussed, then RS encoder is presented. In Chapter 3, the general architec-
ture of RS decoder is discussed, then the decoding algorithm of Berlekamp Massey
and Euclidean Algorithms are discussed. In Chapter 4, The decomposed inver-
sionless Berlekamp Massey algorithm with a new architecture called the modified

1.6. OVERVIEW OF THESIS 5

evaluator decomposed inversionless Berlekamp Massey architecture is discussed
with two proposals, serial proposal and two parallel proposal, finally the simula-
tion results and synthesis reports and comparison between these proposals and the
other architectures are discussed. In Chapter 5, the conclusions and the future
work are made.

6 CHAPTER 1. INTRODUCTION

Chapter 2

REED-SOLOMON CODE

Reed Solomon code is considered non-binary code based on Finite field called
Galois Fields (GF). So first of all it is necessary to clarify the area of Galois
Fields.

2.1 Galois Field (GF)

2.1.1 Properties of Galois Field

The main properties of a Galois field [5] are:

• All elements of GF are defined on two operations, called addition and mul-
tiplication.

• The result of adding or multiplying two elements from the Galois field must
be an element in the Galois field.

• Identity of addition “zero” must be exist, such that a + 0 = a for any
element a in the field.

• Identity of multiplication “one” must be exist, such that a ∗ 1 = a for any
element a in the field.

• For every element a in the Galois field, there is an inverse of addition element
b such that a+ b = 0. This allows the operation of subtraction to be defined
as addition of the inverse.

7

8 CHAPTER 2. REED-SOLOMON CODE

• For every non-zero element b in the Galois field, there is an inverse of mul-
tiplication element b−1 such that bb−1 = 1. this allows the operation of
division to be defined as multiplication by the inverse.

• Both addition and multiplication operations should satisfy the commutative,
associative, and distributive laws.

2.1.2 Galois field GF (2) “Binary Field”

The simplest Galois field is GF (2). Its elements are the set {0, 1} under modulo-2
algebra. The addition and multiplication tables of GF (2) are shown in Tables 2.1
and 2.2.

+ 0 1
0 0 1
1 1 0

Table 2.1: Modulo-2 addition (XOR operation).

× 0 1
0 0 0
1 0 1

Table 2.2: Modulo-2 Multiplication (AND operation).

There is a one-to-one correspondence between any binary number and a poly-
nomial with binary coefficients as every binary number can be presented as a
polynomial over GF (2). A polynomial of degree K over GF (2) has the following
general form:

f (x) = f0 + f1X + f2X
2 + · · ·+ fKX

K (2.1)

where the coefficient f0, . . . , fK are the elements of GF (2) i.e it can take only
values 0 or 1. A binary number of (K+1) bits can be represented as a polynomial
of degree K by taking the coefficients equal to the bits and the exponents of X
equal to bit locations. In the polynomial representation, a multiplication by X
represents a shift to the right.

For example, the binary number 10011 is equivalent to the following polyno-
mial:

2.1. GALOIS FIELD (GF) 9

10011↔ 1 + 0X + 0X2 +X3 +X4

The first bit (“position zero” the coefficient of X0) is equal to 1, the second bit
(“position one” the coefficient of X) is equal to 0,the third bit (“position two”the
coefficient of X2) is equal to 0, and so on.

2.1.3 Galois Field GF (2m)

Galois field is considered extension to Binary Field. Let us suppose that we wish
to create a finite field GF (q) where q must be a prime number [4,5].

For Example: assume we have GF (8) with the elements of {0, 1, 2, 3, 4, 5, 6, 7}.
this can not be considered Galois Field as for the reasons:

• There is no multiplicative inverse for all elements in the field (e.g., 6 has no
inverse).

• The identity element under multiplication is not unique for some elements
(e.g., 4 ∗ 1 = 4 ∗ 3 = 4).

So we can construct the GF (2m), where (m is an integer) by taking a primitive
element of the field and assign the symbol α “alpha” to it. The powers of αare
from α0 to α2m−2, (2m − 1) terms and the last term is zero.

The element α2m−1 will be equal to α0 [4], and higher powers of α will repeat
the lower powers found in the finite field. The best way to understand how to add
the powers of alpha is to examine the case:

α2m−1 = α0 = 1

Since in GF (2m) algebra, plus (+) and minus (-) are the same [4], the last one
can be represented as follows:

α2m−1 + 1 = 0

Construction of Galois field GF (2m) elements [4] is based on primitive poly-
nomial called p(X) with degree m, this polynomial must be factor of Xn + 1, and
should be not only irreducible but also primitive to guarantee unique elements
representation.

10 CHAPTER 2. REED-SOLOMON CODE

For example: In GF (23) the factors of (X7 + 1) are:

X7 + 1 = (X + 1)(X3 +X + 1)(X3 +X2 + 1)

Both the polynomials of degree 3 are primitive and can be chosen, so let’s
choose the polynomial shown in equation 2.2

p(X) = X3 +X + 1 (2.2)

This polynomial has no solution in binary field. The primitive element α is the
solution for the primitive polynomial [4], so equation 2.2 is converted to equation

p(α) = α3 + α + 1 = 0 (2.3)

Since in GF (2m), +1 = −1, α3 can be represented as follows:

α3 = 1 + α

So the other non-zero elements of the field are now found to be

α4 = α.α3 = α.(1 + α) = α + α2

α5 = α.α4 = α.(α + α2) = α2 + α3 = α2 + (1 + α) = 1 + α + α2

α6 = α.α5 = α.(1 + α + α2) = α + α2 + α3 = 1 + α2

α7 = α.α6 = α(1 + α2) = α + α3 = 1 = α0

Note that α7 = α0, and therefor the eight finite field elements (2m = 23 = 8) of
GF (23), generated by equation (2.2), are {0, α0, α1, α2, α3, α4, α5, α6}, and all
elements starting from α4 to α6 are presented function of α0,α, and α2 which are
called the basis of the Galois field, and this is will be discussed in details in the
following sections.

In general, extended Galois field GF (2m) includes 2m elements, where m is the
symbol size (in bits). For example, in ADSL systems, the Galois field is always
GF (28) = GF (256), where m = 8 (is fixed number). It is generated by the
following primitive polynomial:

P (X) = 1 +X2 +X3 +X4 +X8 (2.4)

2.1. GALOIS FIELD (GF) 11

As we said in the previous section that there were an one-to-one mapping
between polynomials over GF (2) and binary numbers, now here in GF (2m) there
is one-to-one mapping between polynomials over GF (2m) and symbols of length
m.

each symbol can be presented in binary form of length m.

2.1.4 Representation of Galois Field Elements

Let α be a primitive element of GF (23) such that the primitive polynomial is given
by:

p(α) = α3 + α + 1 = 0 (2.5)

The following tables shows three different ways to represent elements inGF (23):

Power Form Polynomial Form Binary Form
α0, α1, α2

− 0 000
0 1 100
1 α 010
2 α2 001
3 1 + α 110
4 α + α2 011
5 1 + α + α2 111
6 1 + α2 101

Table 2.3: Different representations of GF (23) elements.

The first column of Table 2.3 represents the powers of α. The second column
shows the polynomial representation of the field elements. This polynomial repre-
sentation is obtained from equation 2.5. And the last column of Table 2.3 is the
binary representation of the field elements, where the coefficient of α2, α1 and α0,
taken from the second column, are represented as binary numbers and present the
basis of the field and it will be discussed in details in the next section.

2.1.5 Basis of Galois Field GF (2m)

Basis in GF (2m) is a set of m linearly independent symbols which can represent
other symbols with a unique form with a linear combination of these basis based
on the primitive polynomial [9].

12 CHAPTER 2. REED-SOLOMON CODE

Assume that we have β = β0, β1, ..., βm−1 are the basis of GF (2m). Let a is any
general element in the field and denoted by (a0, a1, ..., am−1), a can be represented
as shown in equation 2.6.

a = aoβ0 + a1β1 ++ am−1βm−1 ai ∈ GF (2). (2.6)

There are a large number of possible basis for any GF (2m).

Basis can be classified into three types:

• Polynomial (Standard) Basis.

• Normal Basis.

• Dual Basis.

This classification based on the optimization for the hardware and the need of the
applications.

- Polynomial Basis

In this type of basis we choose the first m symbols excluding zero [9], i.e. we
choose {α0, α1, . . . , αm−1}.

For example consider GF (23) with p(x) = x3 + x+ 1. Take a as a root of p(x)
then the polynomial basis of this field will be {1, a, a2} and all 8 elements can be
represented as:

a = a0 + a1a + a2a
2 (2.7)

where the ai ∈ GF (2). These basis coefficients can be stored in a basis table
of the kind shown in Appendix B.

- Dual Basis

Dual basis is one of the most important types of basis which used to gain an ef-
ficient hardware for RS encoders and decoders [10], as it is used in Galois field
multipliers. The difference between polynomial basis and dual basis is only re-
ordering to the symbols.

For example: Let’s deal with GF (24) with primitive polynomial p(X) = X4 +
X + 1

2.1. GALOIS FIELD (GF) 13

• The standard (polynomial) basis for this field is {α0, α1, α2, α3}.

• The dual basis for this field is {α0, α3, α2, α1}.

For more details in conversion from polynomial basis to dual basis or from dual
basis to polynomial basis refer to [11].

Appendix C includes the tables of conversions from polynomial basis to dual
and vice versa.

- Normal Basis

Normal basis is a basis which is useful when we need squaring in our calculations
[12].

since if (a0, a1, ..., am−1) are the normal basis representation of a ∈ GF (2m)
then (am−1, a0, a1, ..., am−2) is the normal basis representation of a2. This property
make the hardware is more efficient [12].

In this thesis we used only polynomial basis as in circuit implementation we
needed only polynomial basis multipliers.

2.1.6 Implementation of GF (2m) Arithmetic

Implementation of Galois field arithmetic is totally different to the implementation
of infinite field arithmetic, for example, multiplication in Galois field, if we need to
multiply 2 ∗ 4 it may give 3 or 5 or any other value based on the field implementa-
tion, but in the infinite field arithmetic 2 ∗ 4 must equal to 8. So implementation
of Galois field arithmetic circuits is different.

The most common implementation in Galois field arithmetic are addition and
multiplication.

• Addition operation may be considered as an XOR operation. Implementa-
tion of Galois field adders regardless the basis representation of field elements
can be formulated as shown in equation 2.8. Hence a GF (2m) adder circuit
can be implemented with 1 or m XOR gates depending on whether the basis
coefficients are represented in series or parallel. This is an important feature
of GF (2m) and make the implementation of addition is easy operation and
need limited hardware.

14 CHAPTER 2. REED-SOLOMON CODE

a = b+ c

= (b0 + b1α + ...+ bm−1α
m−1) + (c0 + c1α + ...+ cm−1α

m−1) (2.8)
= (b0 + c0) + (b1 + c1)α + ...+ (bm−1 + cm−1)αm−1

• Multiplication is more complex than addition as the addition is only XOR
operation, but multiplication is different and depends on the Galois field
structure and its primitive polynomial and the type of basis coefficients.
Finite field multipliers can be classified into three types:

1. Multipliers by constant.

2. Serial multipliers.

3. Parallel multipliers.

1- Multipliers by constant

The General Galois field multipliers are with two variable inputs, but sometimes
in RS encoders and decoders we need special type of Galois field multipliers with
only one variable input this type of multipliers called multiplier with constant [9].

Let a = a0 + a1α+ . . .+ am−1α
m−1 be an element in GF (2m) where α is a root

of the primitive polynomial p(x) = xm +∑m−1
j=0 pj.x

j Thus

a ∗ α = a0α + a1α
2 + . . .+ am−1α

m (2.9)

but since p(α) = 0

a ∗ α = a0α + a1α
2 + . . .+ am−1(p0 + p1α + p2α

2 + . . .+ pm−1α
m−1) (2.10)

For example consider, multiplication by α in GF (23), where p(x) = x3 +x+ 1.
Then

a = a0 + a1α + a2α
2

a ∗ α = a0α + a1α
2 + a2α

3

= a3 + (a3 + a0)α + a1α
2 + a2α

3 (2.11)

and this multiplication can be implemented in two ways

2.1. GALOIS FIELD (GF) 15

a0

a1

a2 b2

b1

b0

Figure 2.1: Circuit for computing a← a ∗ αin GF (23)combinational

• Combinational as shown in figure 2.1 as the value of a ∗ α is generated
instantaneous .

• Sequential as shown in figure 2.2 here the value of a ∗ α is generated after
only one clock cycle .

 a2
 a1a0

Figure 2.2: Circuit for computing a← a ∗ α in GF (23) sequential

These multipliers can be implemented with general multipliers (two variable
multipliers) but these multipliers is optimized in area, delay, and power consump-
tion. In this thesis combinational multipliers is used.

2- Serial Multiplier

In This type of multipliers we have two variable inputs, and either these inputs
enter the circuit serially and generate the output parallel or enter the circuit in
parallel and generate the output serially.

we have a lot of methods to perform the serial multipliers, but the most com-
mon serial multipliers are Berlekamp multiplier [13], and Massey-Omura Multiplier
[12], and Polynomial basis multipliers.

16 CHAPTER 2. REED-SOLOMON CODE

the most common multipliers in these multipliers are polynomial basis mul-
tipliers, as they do not need basis conversion circuit, so this multiplier can be
summarized as follow:

Polynomial basis multipliers
Polynomial basis multipliers operate over polynomial basis i,e both the two

input variables and the output are with the same type of basis (polynomial basis),
so we are not in need of basis conversion circuit.

There are two different types of polynomial basis multipliers:

• least significant bit (LSB) first.

• most significant bit (MSB) first.

a- Option L - LSB first
In Option L - LSB first multiplier [14] one of the two inputs enter serially from the
least significant bit to the most significant bit, and the other is entered in parallel,
after m clock cycles the output will be valid.

Let a, b, c ∈ GF (2m) and

a = a0 + a1α + ...+ am−1α
m−1

b = b0 + b1α + ...+ bm−1α
m−1 (2.12)

c = c0 + c1α + ...+ cm−1α
m−1

c = a ∗ b (2.13)

c = (...(((a0b) + a1bα) + a2bα
2) + ...) + am−1bα

m−1 (2.14)

It is clear from equation (2.14) that b is multiplied by a0 then we enter the
second coefficient a1 and during this b is multiplied by α using LFSR, then multiply
a1by bα and generate a1bα. In general at step i we generate aibαi where (i =
0, 1, ...,m− 1), which are accumulated in the registers.

Figure 2.3 clarify the circuit implementation of Option L - LSB first under
GF (23), and primitive polynomial P (x) = x3 + x+ 1.

2.1. GALOIS FIELD (GF) 17

b0

b2b1

c0 c2c1

a0a1a2

Figure 2.3: Circuit for Option L - LSB first multiplier in GF (23).

b- Option M - MSB first
In Option M - MSB first multiplier [15] one of the two inputs enter serially from

the most significant bit to the least significant bit, and the other is entered in
parallel, after m clock cycles the output will be valid.

Let a, b, c ∈ GF (2m) and

a = a0 + a1α + ...+ am−1α
m−1

b = b0 + b1α + ...+ bm−1α
m−1 (2.15)

c = c0 + c1α + ...+ cm−1α
m−1

c = a ∗ b (2.16)
= (a0 + a1α + ...+ am−1α

m−1) ∗ b

c = (...(((am−1b)α + am−2b)α + am−3b)α + ...)α + a0b (2.17)

It is clear from equation (2.17) that b is multiplied by am−1 then the result
is multiplied by α using LFSR, then the second coefficient am−2 is entered and
multiplied by b and the result is accumulated in the registers and multiplied by α
using LFSR, after m clock cycle the output is generated.

Figure 2.4 clarify the circuit implementation of Option L - LSB first under
GF (23), and primitive polynomial P (x) = x3 + x+ 1.

18 CHAPTER 2. REED-SOLOMON CODE

0

a0a1a2

b0 b2b1

c0 c2c1

Figure 2.4: Circuit for Option M - MSB first multiplier in GF (23).

3-Parallel multiplier

This type of multipliers take two variable inputs, these inputs enter to the circuit in
parallel to generate the output in parallel instantaneous. This feature is required
in some applications, like RS codes, the serial multipliers is very slow to be adopted
to its speed, so we used in RS codes parallel multipliers.

we have a lot of method to perform the parallel multipliers, but the most com-
mon parallel multipliers are Dual Basis Multipliers [16], Normal basis multipliers
[15], and Polynomial basis multipliers [12].

the most common multipliers in these multipliers are polynomial basis mul-
tipliers, as they do not need basis conversion circuit, so this multiplier can be
summarized as follow:

Polynomial basis multipliers
Polynomial basis multipliers operate over polynomial basis i.e, both the two

input variables and the output are with the same type of basis (polynomial basis),
so we are not in need of basis conversion circuit.

Let a, b, c ∈ GF (2m) and

a = a0 + a1α + ...+ am−1α
m−1

b = b0 + b1α + ...+ bm−1α
m−1 (2.18)

c = c0 + c1α + ...+ cm−1α
m−1

2.1. GALOIS FIELD (GF) 19

c = a ∗ b (2.19)

c = (...(((a0b) + a1b α) + a2bα
2) + ...) + am−1bα

m−1 (2.20)

From equation 2.20 we should implement m− 1 multipliers by constant (α) to
get b ∗ αj, where (i = 0, 1, . . . , m− 1).

we can present b ∗ αj as:

b ∗ αj = bj,0 + bj,1α + bj,2α
2 + ...+ bj,m−1α

m−1. (2.21)

Therefore using 2.20 and 2.21

cj = a0b0,j + a1b1,j + a2b2,j + ...+ am−1bm−1,j (2.22)

Figure 2.5 present the PPBML for GF (23). B-Module is shown in Figure 2.6.
multiplication by α is shown in Figure 2.1.

* *

Module B Module B

Module B

b

b*  b* 2

c0 c1 c2

a

b0,0
b2,0 b2,1

b2,2

b0,2

 b0,1

 b0,1 b2,1 b1,1 b0,2 b2,2 b1,2

b1,0

Figure 2.5: Architecture of PPBML for GF (23).

.

20 CHAPTER 2. REED-SOLOMON CODE

 a0

a1

a2

b0,j

cj
b1,j

b2,j

Figure 2.6: Module B of the PPBML

2.2 Cyclic Codes

Reed Solomon code is considered non-binary class of cyclic code, so first we will
give a brief introduction to cyclic code.

2.2.1 Description

Cyclic codes are considered class of linear block codes, with the advantage of being
easily implemented using sequential logic or shift registers [1].

Let C be a codeword where C = (c0, c1, ..., cn−1). The ith shifted version of this
codeword is:

C(i) = (cn−i, cn−i+1, ..., cn−1, c0, c1, ..., cn−i−1) (2.23)

A linear block code is said to be cyclic code if two properties are exist [1]:

• properties of linear block codes is valid.

• The ithcyclic rotation for any valid codeword is also valid codeword.

2.2.2 Codewords in Polynomial Forms

A codeword can be represented in a polynomial form C(X) function of X, with
coefficients ci are defined under GF (2m) where i is an integer number corresponds
to the position of this coefficient

Let C = (c0, c1, ..., cn−1) be a code vector, the polynomial representation for
this vector is C(X) in the form of:

2.2. CYCLIC CODES 21

C (X) = c0 + c1X + · · ·+ cn−1X
n−1 (2.24)

2.2.3 Generator Polynomial of a Cyclic Code

The i-position right-shift rotation of a code vector C has the following polynomial
expression:

C(i)(X) = cn−i + cn−i+1X + · · ·+ cn−i−1X
n−1 (2.25)

The i-position right-shift rotated polynomial is denoted as C(i)(X) and the
original code polynomial C (X), with relation shown in equations 2.26 and 2.27 :

X iC (X) = q(X)(Xn+1) + C(i)(X) (2.26)

C(i)(X) = X iC (X)mod (Xn+1) (2.27)

There is a certain polynomial with a minimum degree r [6], where r = n − k
among all polynomials which generate cyclic code Ccyc(n, k), this polynomial is
called generator polynomial with a valid coefficient gr and the coefficient g0 = 1,
so we can form this polynomial as:

g(X) = 1 + g1X + · · ·gr−1X
r−1 +Xr (2.28)

This polynomial is used in the encoding procedure for a linear cyclic code, as
Ccyc(n, k) can be introduced as a multiplication between the message polynomial
m(X) and the generator polynomial g(X) as shown in equation 2.29, and this
operation is sufficient to generate any code polynomial of the code [6].

C(X) = m(X) ∗ g(X) (2.29)

2.2.4 Generation of Cyclic Codes in Systematic Form

As we expressed in the previous chapter the linear block code in systematic form,
we can express the cyclic code in systematic form based on certain steps:

• The message polynomial is of the form:

22 CHAPTER 2. REED-SOLOMON CODE

m(X) = m0 +m1X + · · ·+mk−1X
k−1 (2.30)

• Multiply Xn−k by m(X) to give the following polynomial:

Xn−km(X) = m0X
n−k +m1X

n−k+1 + · · ·+mk−1X
n−1 (2.31)

• Divided the previous expression by the generator polynomial g(X):

Xn−km(X) = q(X)g(X) + p(X) (2.32)

• Here p(X) is the remainder polynomial of the division of equation 2.32,
which has degree n−k−1 or less, since the degree of g(X) is r = n−k. By
reordering equation 2.32, we obtain can get equation 2.33 as we discussed in
the previous section that there is no difference between (+) and (−).

Xn−km(X) + p(X) = q(X)g(X) (2.33)

Where it is seen that the polynomial Xn−km(X) + p(X) is a code polynomial
because it is a factor of g(X). In this polynomial, the term Xn−km(X) represents
the message polynomial right shifted n−k positions, where p(X) is the remainder
polynomial of this division and acts as the redundancy polynomial. This procedure
allows the code polynomial to be in systematic form:

C (X) = Xn−km(X) + p(X)
= p0 + p1X + · · ·+ pn−k−1X

n−k−1 (2.34)
+ m0X

n−k +m1X
n−k+1 + · · ·+mk−1X

n−1

which can be expressed in the code vector form of:

C = (p0, p1, ..., pn−k−1,m0,m1, ...,mk−1) (2.35)

2.3 Properties of Reed-Solomon Codes

This section summarizes the introduction to Reed Solomon (RS) codes and their
properties.

RS codes are non-binary cyclic codes. A RS code is specified as RS(n, k) with
m-bit symbols. RS(n, k) codes on m-bit symbols exist for all n and k for which

2.3. PROPERTIES OF REED-SOLOMON CODES 23

0 < k < n ≤ 2m − 1 (2.36)

where k is the number of data symbols to be encoded, and n is the total number
of code symbols after encoding, called codeword. This means that the RS encoder
takes k data symbols and adds parity symbols (redundancy) of (n − k) symbols
to make an n symbol codeword in systematic form as discussed in the previous
section.

For the most conventional RS(n, k) code,

(n, k) = (2m − 1, (2m − 1)− 2t) (2.37)

where t is the number of symbols that can be corrected with this code, where
t can be expressed as

t = b(n− k)/2c (2.38)

Equation 2.38 clarifies that for the case of RS codes, we need not more than
2t parity symbols to correct t symbol errors. For each error, one redundant symbol
is used to find the location of the error in the codeword, and another redundant
symbol is used to find the value of the error.

Let the number of errors with an unknown location is nerrors and the number
of errors with known locations (erasures) as nerasures, the RS algorithm guarantees
[5] to correct a codeword, provided that the following is true

2nerrors + nerasures ≤ 2t (2.39)

Expression 2.39 is called simultaneous error-correction and erasure-correction
capability. Erasure information can often be supplied by the demodulator in
digital communication system. In this thesis we do not deal with erasures, we
only consider the error correction.

Keeping the same symbol size m, RS codes may be shortened by making a
number of data symbols zero at the encoder, not transmitting them,and then re-
inserting them at decoder. For example, the RS(255, 239) code with (m = 8) can
be shortened to RS(200, 184) with the same m = 8. The encoder takes a block
of 184 data bytes, then adds 55 zero bytes, creates a RS(255, 239) codeword and
transmits only the 184 data bytes and 16 parity bytes.

The main advantage of RS code is that it performs well against burst noise.

24 CHAPTER 2. REED-SOLOMON CODE

Symbol

#1

Symbol

#2

Symbol

#18

Symbol

#19

Symbol

#255

128 bit noise burst

Symbol

#3

Symbol

#17

Figure 2.7: A codeword of 255 bytes disturbed by 128-bit noise burst

Consider a popular Reed-Solomon code RS(255, 223), where each symbol is made
up of m = 8 bits . Since (n− k) = 32, Equation 2.38 indicates that this code can
correct any 16 symbol errors in a codeword of 255 bytes. Now assume that we have
burst error in a 128 bits durations and affected one codeword during transmission,
as shown in Figure 2.7

In this example, a burst of noise that lasts for a duration of 128 contiguous
bits corrupted exactly 16 symbols. The RS decoder for the (255,223) code will
correct any 16 symbol errors regardless the type of damage suffered by the symbol.
When the decoder corrects a byte, it replace the incorrect byte by the correct one,
whether the error was caused by one bit being corrupted or all eight bits being
corrupted. Thus if a symbol is wrong, it might as well be wrong in all its bit
positions. That is why RS codes are extremely used. because of their capacity to
correct burst errors.

2.4 Applications of Reed-Solomon Codes

Due to the feature of burst error, RS codes provide powerful correction and high
rates with high channel efficiency, and thus have a wide range of applications in
digital communications and storage,e.g.:

- Storage devices: Compact Disk (CD),DVD,etc;

- Wireless or mobile communications:cellular phones,microwave links,etc;

- Satellite communications;

- Digital television /DVB;

- High-speed modems: ADSL,VDSL,etc.

2.5. REED-SOLOMON ENCODING 25

2.5 Reed-Solomon Encoding

The main idea of RS encoding [2] is to convert the message to codeword by adding
parity symbols to the message, where the message length is k symbols, and the
codeword length is n = (2m − 1) symbols, where m is the symbol length.

Each message block is equivalent to a message polynomial of degree k − 1,
denoted as:

m(X) = m0 +m1X +m2X
2 + · · ·+mk−1X

k−1 (2.40)

where the coefficients m0,m1, . . . ,mk−1 of the polynomial m(X) are the symbols
of message block. These coefficients are elements of GF (2m). So the information
sequence is mapped into a polynomial by setting the coefficients equal to the sym-
bol values.
For example consider the Galois field GF (28), so the information sequence is di-
vided into symbols of eight consecutive bits as shown in Figure(2.8). The first
symbol in the sequence is 10000000. In the power representation, 10000000 be-
comes α0εGF (28). Thus, α0 becomes the coefficient of X0. The second symbol
is 00100000, so the coefficient of X1 is α2. The third symbol is 10111111, so the
coefficient of X2 is α80 and so on.

00110011 10111111 00100000 10000000

α
127

α
80

α
2

α
0

Figure 2.8: The information bit sequence divided into symbols.

The corresponding message polynomial is m(X) = α0 + α2X + α80X2 + · · ·
RS codes are considered class of cyclic codes so the conventional encoding

process is done as mentioned before for the cyclic codes by multiplying the mes-
sage polynomial m(X) by the generator polynomial g(X) to get the codeword
polynomial C(X).

2.5.1 Systematic Encoding

The encoding of RS codes can be performed in systematic form. In systematic
encoding, the encoded block (codeword) is formed by simply adding parity or

26 CHAPTER 2. REED-SOLOMON CODE

redundant symbols to the end of the k-symbols message block, as shown in Figure
2.9. So codewords are consist of k-symbols message block, and 2t parity symbols,
where t is the number of error correction capability and 2t = n− k.

K message symbol 2t parity symbols

Codeword of length n=k+2t

Figure 2.9: A codeword is formed from message and parity symbols.

Applying the polynomial notation, we can shift the information into the left
most bits by multiplying by X2t, leaving a codeword of the form

C(X) = X2tm(X) + p(X) (2.41)

where C(x) is the codeword polynomial, m(X) is message polynomial and p(x)
is the redundant polynomial.
The parity symbols are obtained from the redundant polynomial p(X),which is
the remainder obtained by dividing X2tm(X) by the generator polynomial, which
is expressed as

p(X) = (X2tm(X))mod g(x) (2.42)

So, RS codeword is generated using generator polynomial, which has such
property that all valid codewords are exactly divisible by the generator polyno-
mial. The general form of the generator polynomial is:

g(X) = (X + α)(X + α2)(X + α3) · · · (X + α2t) (2.43)
= g0 + g1X + g2X

2 + · · ·+ g2t−1X
2t−1 +X2t

where α is a primitive element in GF (2m), and g0, g1, g2, · · · , g2t−1 are the
coefficients from GF (2m). The degree of the generator polynomial is equal to
number of parity symbols (n− k). Since the generator polynomial is of degree 2t,
there must be precisely 2t consecutive powers of α that are roots of this polyno-
mial. We designate the root of g(X) as α, α2, . . . , α2t. It is not necessary to start
with the root α, because starting with any power of α is possible. The root of
a generator polynomial, g(X), must also be roots of the codeword generated by

2.5. REED-SOLOMON ENCODING 27

g(X), because a valid codeword is of the following form:

c(X) = q(X) g(X) (2.44)

where q(X) is a message-dependent polynomial. Therefore, an arbitrary code-
word, when evaluated at any root of g(X), must yield zero, or in other words

g(αi) = cvalid(αi) = 0, where i = 1, 2, . . . , 2t (2.45)

2.5.2 Implementation of Encoding

A general circuit for parity calculation in encoder for RS code is shown in Figure2.10

p0 p1 p2 P2t-1

g0 g1 g2 g2t-1

m(x)

P(x)

C(x)

Figure 2.10: LFSR encoder for a RS code

It is a Linear Feedback Shift Register (LFSR) circuit [6], or sometimes called,
division circuit.

After the information is completely sifted into the LSFR input,the contents of
the register form the parity symbols.

28 CHAPTER 2. REED-SOLOMON CODE

Chapter 3

REED SOLOMON DECODER
RS(255,239)

The received codeword is entered to RS decoder to be decoded, the decoder first
tries to check if this codeword is a valid codeword or not. If it dose not, errors
occurred during transmission. This part of the decoder processing is called error
detection. If errors are detected, the decoder try to correct this error using error
correction part.

Serial

Syndrome
Error

Corrector

Serial

Chien Search

Key

Equation

Solver

(DiBMA)

P

S Forney

Algorithm

P

S

RS Decoder Main Controller

Received

message

Corrected

outputS(x)
σ(x)

w(x)

σ (αi
)

σ‘(α
i
)

w (α
i
)

Error

Detection Error Correction

Delay

Buffer

FIFO

w (αi
)

σ‘(α
i
)

Figure 3.1: Block Diagram of RS Decoder

Figure 3.1 shows the main block diagram of Reed Solomon decoder which
consists of two main parts:

1. Error detection part, in this part we use “Syndrome computation” block.

2. Error correction part, this part consists of three blocks:

29

30 CHAPTER 3. REED SOLOMON DECODER RS(255,239)

• Decoding algorithm which used to find the coefficients of error-location poly-
nomial σ(x) and error-evaluator polynomial W (x) it sometimes called “Key
equation solver”.

• Chien search block which used to find the roots of σ(x) which present the
inverse of the error locations.

• Forney algorithm block which used to find the values of the errors.

After getting the values and locations of the error, we can correct the received
codeword by xoring the received vector with the error vector.

3.1 Error Detection “Syndrome Calculation”

The first step in RS decoder is to check if there is any error in the received codeword
or not. This done using Syndrome computation block.

• Let the transmitted codeword polynomial c(X) formed as follow:

c(x) = c0 + c1X + · · ·+ cn−1X
n−1 ,where ci ∈ GF (2m) (3.1)

• Let the received codeword polynomial r(X) formed as follow:

r(X) = r0 + r1X + · · ·+ rn−1X
n−1 ,where ri ∈ GF (2m) (3.2)

• Let the error polynomial e(X) which added by the channel formed as:

e(X) = e0 + e1X +··· +en−1X
n−1 ,where ei ∈ GF (2m) (3.3)

which is related to the received polynomial r(X) and the transmitted polyno-
mial c(X) as follows:

r(X) = c(X) + e(X) (3.4)

From equations 2.44, and 3.4, the transmitted polynomial c(x) must be multi-
ple of the generator polynomial g(X), and the received polynomial r(X) is eval-
uated form the addition between c(X) and e(X). So the roots of g(X) should
give zero in the received polynomial if the error polynomial is zero. i.e, no errors
occurred.

3.2. THE DECODING ALGORITHM 31

• Let the syndrome polynomial S(x) formed as:

S(x) =
2t∑
i=1

Six
i−1 (3.5)

where i = 1, 2, . . . , 2t.
Each coefficients can be described as follows:

Si = r(αi), i = 1, 2, . . . , 2t (3.6)

From equation 3.6. If there is no errors, all syndrome coefficients must give
zero. if there is any non-zero coefficient, it means that there is an occurrence for
error.

3.2 The Decoding Algorithm

After calculation of the syndrome coefficients we can detect if there exist errors in
the received codeword or not by checking these values, if all these coefficients are
zeros there will be no errors if not there will be error in an unknown location in
the codeword with an unknown value.

The main function of the decoding algorithm is to get the error location polyno-
mial σ(x), and the error evaluator polynomialW (x), which represent the locations
and the values of the errors respectively.

The first error correction procedure for Reed Solomon codes was found by
Gornstien and Zierler [17], and improved by Chien [18] and Forney [19]. This
procduer is known as the key equqtion solver, as it will be discussed later.

Decoding algorithms can be categorized into two types:

• Serial algorithms in which the error locator polynomial σ(x) is calculated
first then we substituted in the key equation to calculate the error evaluator
polynomial W (x), e.g (Berlekamp–Massey algorithm [3]).

• Parallel algorithms in which the error locator polynomial σ(x) and the error
evaluator polynomial W (x) are calculated are in parallel, e.g. (Euclidean
algorithm [4]).

32 CHAPTER 3. REED SOLOMON DECODER RS(255,239)

3.2.1 Decoding of RS Codes Using Berlekamp-Massey Al-
gorithm

The Berlekamp–Massey (B-M) algorithm [1, 3] is a method used as decoding
algorithm used for RS and BCH codes. This method used in RS codes to calculate
the coefficients of the error locator polynomial for the error locations, and the
coefficients of the error evaluator polynomial for the error values. In BCH the
values of the errors are binary so we only calculate the coefficients of the error
locator polynomial.

In this section Berlekamp-Massey algorithm will be described for RS codes
without any proof and for more details refer to [3].

Let the error polynomial e(X) contains τ errors placed at positionsXj1 , Xj2 , . . . , Xjτ

with error values ej1 , ej2 , . . . , ejτ then:

e(X) = ej1X
j1 + ej2X

j2 + · · ·+ ejτX
jτ (3.7)

Now our target is to calculate the values of eji and the powers of Xji.

From equation 3.6 we have 2t syndrome coefficients. Each syndrome coefficient
Si can be expressed as:

si = r(αi) = c(αi) + e(αi) = e(αi) (3.8)

From Equations [3.8 and 3.7] we can obtain set of equations that relate the
error locations and values to the syndrome coefficients in the form of:

s1 = r(α) = e(α) = ej1α
j1 + ej2α

j2 + · · ·+ ejτα
jτ

s2 = r(α2) = e(α2) = ej1α
2j1 + ej2α

2j2 + · · ·+ ejτα
2jτ

...
s2t = r(α2t) = e(α2t) = ej1α

2tj1 + ej2α
2tj2 + · · ·+ ejτα

2tjτ (3.9)

This set of equations can be simplified in the form:

3.2. THE DECODING ALGORITHM 33

s1 = r(α) = e(α) = ej1β1 + ej2β2 + · · ·+ ejτβτ

s2 = r(α2) = e(α2) = ej1β
2
1 + ej2β

2
2 + · · ·+ ejτβ

2
τ

... (3.10)
s2t = r(α2t) = e(α2t) = ej1β

2t
1 + ej2β

2t
1 + · · ·+ ejτβ

2t
τ

where βi = αji and i = 1, 2, 3, . . . , τ

From equation 3.10 we have 2t equations in 2t unknowns as worst case, but
these equation is not linear equations so we define the two polynomials:

• The error locator polynomial σ(x) which present the locations of the error.

• The error evaluator polynomial W (x) which present the values of the errors.

As mentioned before that Berlekamp-Massey algorithm is a serial algorithm so
the error location polynomial σ(x) is calculated first then the error evaluator
polynomial W (x).

a- B–M Iterative Algorithm for Finding the Error-Location Polynomial

Let’s assume that we have binary errors, as the values of the errors will not affect
the location of the errors, so for B-M algorithm, the error location polynomial can
be defined as:

σBM(X) = (1− β1X)(1− β2X) · · · (1− βτX) (3.11)
= σ0 + σ1X + · · ·+ στx

τ

• The roots of this polynomial are β−1
1 , β−1

2 , . . . , β−1
τ , the inverse of the error

location numbers.

• Coefficients of this polynomial can be expressed as:

34 CHAPTER 3. REED SOLOMON DECODER RS(255,239)

σ0 = 1
σ1 = β1 + β2 + · · ·+ βτ

σ2 = β1β2 + β2β3 + · · ·+ βτβτ−1 (3.12)
...

στ = β1β2 . . . βτ

It is possible to get a relation between the coefficients of σ(X) and the syndrome
coefficients Si’s :

s1 + σ1 = 0
s2 + σ1s1 = 0
s3 + σ1s2 + σ2s1 + σ3 = 0 (3.13)
...
sτ + σ1sτ−1 + · · ·+ στ−1s2 + στs1 = 0

These equations are called Newton identities [6], and we can verify them as
follow:

s1 + σ1 = (β1 + β2 + · · ·+ βτ) + (β1 + β2 + · · ·+ βτ) = 0
s2 + σ1s1 = (β1)2 + (β2)2 + · · ·+ (βτ)2 +

(β1 + β2 + · · ·+ βτ)(β1 + β2 + · · ·+ βτ) = 0
...

The remaining Newton identities can be derived in the same way.
The objective from the algorithm is to find the minimum degree polynomial

σ(X) whose coefficients satisfy these newton identities.
The algorithm proceeds as follows [6]:

1. The first step is to determine a minimum-degree polynomial σ(1)
BM(X) that

satisfies the first Newton identity described in 3.13.

2. The second Newton identity is tested. If the polynomial σ(1)
BM(X) satisfies

the second Newton identity in 3.13, then σ
(2)
BM(X) = σ

(1)
BM(X). Otherwise

3.2. THE DECODING ALGORITHM 35

the decoding procedure adds a correction term to σ(1)
BM(X) in order to make

the polynomial σ(2)
BM(X), able to satisfy the first two Newton identities.

3. At the kth step, the polynomial of minimum degree will be:

σ
(k)
BM(X) = 1 + sv

(k)
1 X + sv

(k)
2 X2 + · · ·+ sv

(k)
lk
X lk (3.14)

where lk presents the order of the polynomial, and 1 ≤ lk ≤ k,
which coefficients satisfy the following lk identities:

s1 + σ
(k)
1 = 0

s2 + σ
(k)
1 s1 = 0

s3 + σ
(k)
1 s2 + σ

(k)
2 s1 + σ

(k)
3 = 0 (3.15)

...
slk + σ

(k)
1 slk−1 + · · ·+ σ

(k)
lk−1s2 + σ

(k)
lk
s1 = 0

4. In the next step the new polynomial with minimum degree will be:

σ
(k+1)
BM (X) = 1 + sv

(k+1)
1 X + sv

(k+1)
2 X2 + · · ·+ sv

(k+1)
lk+1

X lk+1 (3.16)

with coefficients that satisfy the following lk+1 identities:

s1 + σ
(k+1)
1 = 0

s2 + σ
(k+1)
1 s1 = 0

s3 + σ
(k+1)
1 s2 + σ

(k+1)
2 s1 + σ

(k+1)
3 = 0 (3.17)

...
slk+1 + σ

(k+1)
1 slk + · · ·+ σ

(k+1)
lk+1−1s2 + σ

(k+1)
lk+1

s1 = 0

5. Once the algorithm reaches step 2t , the polynomial σ(2t)
BM(X) is called as the

error-location polynomial σBM(X), i.e σBM(X) = σ
(2t)
BM(X).

To formalize these steps in a closed iteration form:
Assume that we just completed the kth iteration and got σ(k)(X). To find

σ(k+1)(X), we check whether σ(k)(X) satisfy the following Newton identity

slk+1 + σ
(k)
1 slk + · · ·+ σ

(k)
lk−1s2 + σ

(k)
lk
s1 = 0 (3.18)

36 CHAPTER 3. REED SOLOMON DECODER RS(255,239)

If yes, therefore σ(k+1)(X) = σ(k)(X) and there will not be any change in the
polynomial. If no, we add correction dµ, called the kth discrepancy. This term can
be obtained by using the following expression:

dk = sk+1 + sv
(k)
1 sk + sv

(k)
2 sk−1 + · · ·+ sv

(k)
lk
sk+1−lk (3.19)

• If dk = 0, then the minimum-degree polynomial σ(k)
BM(X) satisfies (k + 1)th

Newton identity, and it becomes σ(k+1)
BM (X):

σ
(k+1)
BM (X) = σ

(k)
BM(X) (3.20)

• If dµ= 0, then the minimum-degree polynomial σ(k)
BM(X) will not satisfy the

(µ + 1)th Newton identity, and a correction term is calculated to be added
to σ(k)

BM(X), in order to form σ
(k+1)
BM (X) as shown in the following equation:

σ
(µ+1)
BM (X) = σ(µ)(X) + dµd

−1
ρ X(µ−ρ)σ(ρ)(X) (3.21)

where σ(ρ)
BM(X) is a previous polynomial such that the discrepancy dρ = 0 and

ρ− l is a maximum, and the number lρ is the degree of the polynomial σ(ρ)
BM(X).

So the closed form of the algorithm will be:

If dk = 0 thenσ(k+1)
BM (X) = σ

(k)
BM(X), lk+1 = lk.

If dµ 6= 0, the algorithm take the previous row ρ, such that dρ 6= 0 and ρ − lρ
is maximum.

Then

σ
(k+1)
BM (X) = σ

(k)
BM(X) + dkd

−1
ρ X(k−ρ)sv(ρ)(X),

lk+1 = max (l, lρ + k − ρ),
dk+1 = sk+2 + sv

(k+1)
1 sk+1 + sv

(k+1)
2 sk + · · ·+ sv

(k+1)
lk+1

sk+2−lk (3.22)

The B–M algorithm can be implemented in the form of a table with 2t rows
to give the final value of the minimum degree error locator polynomial σ(2t)

BM(X) ,
as given in Table 3.1.

3.2. THE DECODING ALGORITHM 37

Table 3.1: B–M algorithm table for determining the error-location polynomial
k σ(k)(X) dk lk k − lk
−1 1 1 0 −1
0 1 S1 0 0
1 1 + S1X

...
2 ...
...

2t

Note that, if the degree of σ(2t)
BM(X) is larger than t, it means that its roots do

not correspond to a real error-location numbers, it means also that the number of
errors are more than t errors, which is more than the error-correction capability
of the code.

For example: consider (15, 9) RS code under GF (24) with the following syn-
drome coefficients:

S1 = α12

S2 = 1
S3 = α14

S4 = α10

S5 = 0
S6 = α12

By applying Berlekamp-Massey algorithm on it to calculate the minimum de-
gree error locator polynomial σ(X). The following table 3.2, clarify the steps of
the algorithm:

38 CHAPTER 3. REED SOLOMON DECODER RS(255,239)

Table 3.2: B–M algorithm table for determining the error-location polynomial for
(15, 9) RS Code.

k σ(k)(X) dk lk k − lk
−1 1 1 0 −1
0 1 α12 0 0
1 1 + α12X α7 1 0
2 1 + α3X 1 1 1
3 1 + α3X + α3X2 α7 2 1
4 1 + α4X + α12X2 α10 2 2
5 1 + α7X + α4X2 + α6X3 0 3 2
6 1 + α7X + α4X2 + α6X3 − − −

From Table 3.2, the minimum degree error locator polynomial σ(X) using
Berlekamp-Massey algorithm is : σ(X) = 1 + α7X + α4X2 + α6X3.

After the determination of the error-location polynomial, the roots of this poly-
nomial are calculated by applying the Chien search, which will be explained in the
following sections, by replacing the variable X with all the elements of the Galois
field GF (2m), 1, α, α2, . . . , α2m−2, in the expression of the obtained error-location
polynomial, looking for the condition σBM(αi) = 0, which present the inverse of
the error locations.

b- B–M Algorithm for Finding the Error-Evaluation Polynomial

RS codes are non-binary codes, this means that for a given error location we have
error value. This value is under GF (2m), which add to the algorithm another step
to get the error evaluator polynomial W (X).

As mentioned before that B-M algorithm is a serial algorithm so, once the
B–M algorithm determines the error-location polynomial σ(X), it substitute in
the following equation:

σ(X)S(X) = W (X) + µ(X)X2t (3.23)

This equation is called the Key equation [6], where µ(X) is a polynomial such
that the polynomials σ(X), S(X) and W (X) fit the key equation.

Equation 3.23 can be proofed as follow [6]:

• Let syndrome polynomial S(X) defined as:

3.2. THE DECODING ALGORITHM 39

S(X) =
2t−1∑
j=0

sj+1X
j =

2t−1∑
j=0

(
t∑
i=1

ejiα
ji(j+1))Xj =

t∑
i=1

ejiα
ji

2t−1∑
j=0

(αjiX)j

S(X) =
t∑
i=1

ejiα
ji (αjiX)2t − 1

(ajiX)− 1 =
t∑
i=1

eji
(αjiX)2t − 1
X − a−ji

(3.24)

• then from equation 3.24, the result of σ(X)S(X) can be shown as:

σ(X)S(X) =
t∑
i=1

ejiσ
(2t)
BM(X)(αjiX)2t − 1

X − a−ji

t∏
l=1

(X − a−jl)

=
t∑
i=1

eji
[
(ajiX)2t − 1

] t∏
i=1,i 6=l

(X − a−jl)

=
τ∑
i=1

eji
τ∏

i=1,i 6=l
(X − α−jl)

+
 τ∑
i=1

ejiα
ji(2t)

τ∏
i=1,i 6=l

(X − α−jl)


= W (X) + µ(X)X2t

• Also the key equation can be written like that

S(X)σ(X) = W (X)modX2t (3.25)

By substituting in the Key equation shown in equation 3.25, we can get the
coefficients of the error evaluator polynomial W (X), so we B-M algorithm called
serial architecture as the error locator polynomial is calculated first the the error
evaluator polynomial.

After above explanation, it is clear from equation 3.21, the evaluation of
σ

(µ+1)
BM needs the inverse of dρ(d−1

ρ) at each iteration which needsGF inverter. There
is two methods to implement the GF inverter. One of them by designing actual
GF inverter to get the inverse of GF elements. The other method by using in-
verse ROM to calculate the inverse of each element. But using the GF inverter
at each iteration will consume extra delay in the calculation of equation3.21 and
also extra hardware which increases the complexity of the decoder either we used
first or second method. So to overcome this drawback of B-M algorithm we will
use Decomposed inversion-less Berlekamp-Massey (DiB-M) algorithm [20] which
will be discussed in the next chapter .

40 CHAPTER 3. REED SOLOMON DECODER RS(255,239)

3.2.2 Decoding of RS Codes Using Euclidean Algorithm

We have seen that the Berlekamp-Massey algorithm is a serial algorithm as it
can get the error locator polynomial first then substitute in the key equation to
get the error evaluator polynomial. In this section, we show that the Euclidean
algorithm can be used to construct error-location polynomial and error evaluation
polynomial simultaneously, so we called it by parallel algorithm.

The Euclidean algorithm [21] is a recursive technique to find the Greatest
Common Divisor (GCD) between two polynomials, this section will give a brief
explanation for this algorithm, and for more details see [6], and [21].

Let a(X) and b(X) are two polynomials over GF (2m), and assume that

deg a(X) ≥ deg b(X)

To get the greatest common divisor (GCD) between the two polynomials a(X)
and b(X) can be calculated in an iterative division as follows:

a(X) = q1(X)b(X) + r1(X)
b(X) = q2(X)r1(X) + r2(X)
r1(X) = q3(X)r2(X) + r3(X)

...
ri−2(X) = qi(X)ri−1(X) + ri(X) (3.26)

...
rn−2(X) = qn(X)rn−1(X) + rn(X)
rn−1(X) = qn+1(X)rn(X)

where qi(X) is the quotient polynomial for the i th division, and ri(X) is the
remainder polynomial for the i th division. The iteration stops when the remainder
is zero, then the last nonzero remainder rn(X) is the GCD of a(X) and b(X).

From equation 3.26, it is possible to say that

GCD [a(X), b(X)] = f(X)a(X) + g(X)b(X) (3.27)

where f(X),and g(X) are polynomials over GF (2m) , so we get a different
remainder at each division from the n iterations as follows:

3.2. THE DECODING ALGORITHM 41

r1(X) = f1(X)a(X) + g1(X)b(X)
r2(X) = f2(X)a(X) + g2(X)b(X)

...
ri(X) = fi(X)a(X) + gi(X)b(X) (3.28)

...
rn(X) = fn(X)a(X) + gn(X)b(X)

From equations 3.26, and3.28 we can get the recursive equations for ri(X),
fi(X), and gi(X) as follows:

ri(X) = ri−2(X)− qi(X)ri−1(X)
fi(X) = fi−2(X)− qi(X)fi−1(X) (3.29)
gi(X) = gi−2(X)− qi(X)gi−1(X)

where 1 ≤ i ≤ n.
The initial condition for the recursion equations in equation 3.29 are:

r−1 = a(X)
r0 = b(X)

f−1(X) = g0(X) = 1 (3.30)
f0(X) = g−1(X) = 0

To clarify these equations, let’s assume that we have two polynomials a(X) =
X3 + 1, and b(X) = X2 + 1 over GF (2) and we want to get the GCD[a(X), b(X)]
using Euclidean’s algorithm.

Table 3.3 clarify the steps of calculation for the GCD between a(X), and b(x).
as shown from Table 3.3 the last nonzero remainder is:

r1(X) = X + 1

which present the GCD between X3 + 1 and X2 + 1.
Now from the key equation in equation 3.23, this equation can be rearranged

42 CHAPTER 3. REED SOLOMON DECODER RS(255,239)

Table 3.3: Calculations of GCD for X3 + 1 and X2 + 1.
i ri(X) qi(X) fi(X) gi(X)
−1 X3 + 1 − 1 0
0 X2 + 1 − 0 1
1 X + 1 X 1 X
2 0 X + 1 X + 1 X2 +X + 1

to be in the following formula:

W (X) = Q(X)X2t + σ(X)S(X) (3.31)

Equation 3.31 can be mapped to equation 3.27, if we set a(X) = X2t and
b(X) = S(X).

• Let

W (i)(X) = ri(X)
σ(i)(X) = gi(x) (3.32)
Q(i)(X) = fi(X)

By applying the Euclidean algorithm get the GCD for X2t and S(X) will give us
W (X) which present the error evaluator polynomial and σ(X) which present the
error locator polynomial. The recursion equations will be as follows:

W (i) = W (i−2)(X)− qi(X)W (i−1)(X)
σ(i)(X) = σ(i−2)(X)− qi(X)σ(i−1)(X) (3.33)
Q(i)(X) = Q(i−2)(X)− qi(X)Q(i−1)(X)

with initial conditions:

3.2. THE DECODING ALGORITHM 43

W (−1)(X) = X2t

W (0)(X) = S(X)
Q(−1)(X) = σ(0)(X) = 1
Q(0)(X) = σ(−1)(X) = 0

The iteration stops when the following condition is satisfied:

deg W (X) < deg σ(X) ≤ t (3.34)

Example: for RS(7, 3) if we received the following syndrome coefficients:

S1 = 0
S2 = α6

S3 = α4

S4 = α4

we can apply the iteration method of Euclidean algorithm to get σ(x) and
W (x) in parallel

i W (i)(X) Q(i)(X) σ(X)
−1 X4 1 0
0 α4X3 + α4X2 + α6X 0 1
1 α3X2 + α2X α3X + α3 α3X + α3

2 α4X αX + α5 α4X2 + α3X + α3X + α5

Table 3.4: Euclidean algorithm table for RS(7,3) Example

The Euclidean algorithm is applied using Table 3.4. From the table we can get
the Error locator and evaluator polynomials

sv(X) = a4X2 + a3X + a5

W (X) = a4X

44 CHAPTER 3. REED SOLOMON DECODER RS(255,239)

3.2.3 Relationship Between the Error-Location Polynomi-
als of the Euclidean and B–M Algorithms

Error-location polynomials defined in both of these algorithms are practically the
same. As an example, for the case of RS codes able to correct error patterns of
size t = 2 or less, and for the Euclidean algorithm, the error-location polynomial
is equal to

sv(X) = (X−a−j1)(X−a−j2)
= (X + a−j1)(X + a−j2)
= (X + b−1

1)(X + b−1
2)

= (1 + b1X)(1 + b2X)/(b1b2)
= svBM(X)/(b1b2)

So, for the same error event, both the Euclidean and the B–M error-location
polynomials have the same roots, since they differ only by a constant factor. In
general,

sv(X) = svBM(X)∏τ
i=1 bi

3.3 Chien Search Calculation

After getting the error locator and evaluator polynomials from the decoding al-
gorithm, we need to find the roots of the error location polynomial σ(X), which
present the inverse of the error locations. There is no closed form solution for
solving the roots of σ(X). Since the root has to be one of the elements of the field
GF (2m), so we search for the roots by substituting each of the finite field elements
in the error location polynomial σ(X) and checking for the following condition:

σ(αi) = 0 (3.35)

• If this condition is satisfied, an error occurred in the inverse position of i,
i.e. in position (n− i).

• If this condition is not satisfied, there is no error.

3.4. FORNEY ALGORITHM 45

For example, assume that the error location polynomial is

σ(X) = 1 + σ1X + σ2X
2 + σ3X

3

We evaluate σ(X) at each non-zero element in GF (2m) in sequence:

X = α, X = α2, X = α3, . . . , X = α2m−1

This gives us the following:

σ(α) = 1 + σ1(α) + σ2(α)2 + σ3(α)3

σ(α2) = 1 + σ1(α2) + σ2(α2)2 + σ3(α2)3 (3.36)
... ...

σ(α2m−1) = 1 + σ1(α2m−1) + σ2(α2m−1)2 + σ3(α2m−1)3

After substitution we can evaluate the condition in equation 3.35.
The Chien’s search block gets also the value of W (x) at the field elements, i.e,

W (α), W (α2), W (α3), . . . , W (α255) . The only difference is the loaded coefficients,
they are w0 ∼ w7 instead of σ0 ∼ σ8, which is used in calculating the error values.

3.4 Forney Algorithm

The final stage in decoding algorithm is to calculate the value of the errors. To
calculate the error value, there are two popular methods, the first one is “transform
decoding process” [22] in the frequency domain and the second one is “Forney
algorithm” [19] in the time domain. Although the transform decoding process
does not need neither FFI nor Chien search, but it requires t variable FFMs and
N constant FFMs which are very large area. the Forney algorithm is preferred
because of its lower circuit complexity

where the error value at location βl = αjl(1 6 l 6 k) for a RS code is computed
by the following formula:

ejl = W (β−1
l)

σ′(β−1
l)

(3.37)

Where W (X) is the error evaluation polynomial, k is the number of errors, and

46 CHAPTER 3. REED SOLOMON DECODER RS(255,239)

σ′(X) is the first derivative of the error locator polynomial σ(x) with respect to
X.

Finally, after getting the error locations and error values, we finally can form
the error polynomial e(X) and correct the received polynomial r(X) just by adding
(with XOR operation) these two polynomials together, as shown in Figure 3.1.

Chapter 4

ARCHITECTURE OF DIBM
DECODER

4.1 Syndrome Computation Architectures

The syndrome computation block calculates all the syndromes Si(1 ≤ i ≤ 16)
by putting the roots of generator polynomial g(x) into the received codeword
polynomial R(x).

4.1.1 Serial Architecture

The serial syndrome computation block [22] is implemented by following equation.4.1.

Si = R(αi) = r254(αi)254 + r253(αi)253 + · · ·
+ r1(αi) + r0 (4.1)

Synd

(1)

Synd

(2)

Synd

(2t)

S1 S2
S2t

R: r0,….,r253,r254

Figure 4.1: Serial Syndrome Block Diagram

47

48 CHAPTER 4. ARCHITECTURE OF DIBM DECODER

The received vector enters serially to the circuit to compute the syndrome
coefficients in parallel in n or (255) clock cycles, as shown in Figure 4.1, each cell
is shown in Figure 4.2.

Si

R(x)

α
i

Figure 4.2: Serial Syndrome cell

4.1.2 Two Parallel Architecture

The two-parallel syndrome computation block [23] can be expressed by the equa-
tion presented in equation. 4.2 which equivalent to equation.4.1 but in another
form.

Si = R(αi) = (...(((r254(αi)2 + r253(αi) + r252)(αi)2

+ (r251(αi) + r250))(αi)2 + (r249(αi) + r248))(αi)2

· · · +r1α
i + r0 (4.2)

The input patterns of the two-parallel syndrome computation cell is shown in
Figure 4.4 . as shown in Figure 4.4, The input B is delayed one clock cycle relative
to input A to compute r254(αi)2 + r253α

i + r252 at the same clock cycle, at the first
clock, r254 is stored in FF and then r254(αi)2 + r253α

i + r252 is computed at the
next clock cycle.

The input r254 is the first input symbol of the new received codeword at the
128thclock, after the n/2 or 128 clock syndromes Si is totally computed. As shown
in Figure 4.3. Each cell is shown in Figure 4.4.

4.2. DECODING OF RS CODES USING DIBM ALGORITHM 49

Synd

(1)

Synd

(2)

Synd

(2t)

S1 S2
S2t

A: r0,….,r252,r254

B: r1,…..,r253

Figure 4.3: Syndrome Block Diagram

(α
i
)

2
α

i

Out

MUXx

8
+

x

r0 ,…,r252,r254

r1,…,r253,0
B

A

0x”00”

8

Figure 4.4: Two Parallel Syndrome Cell

4.2 Decoding of RS Codes Using DiBM Algo-
rithm

A decomposed inversion-less B–M algorithm [20] is generally used to compute the
error locator polynomial σ(X) and error evaluator polynomial W (X).

4.2.1 Computation of Error Locator Polynomial σ(X)

The Error Locator Polynomial σ(x) is computed in a 2t - step iterative algorithm,
as shown in the following:

Initial condition:

D(−1) = 0
δ = 1

σ(−1)(X) = T (−1)(X) = 1
∆(0) = S1

50 CHAPTER 4. ARCHITECTURE OF DIBM DECODER

for (i = 0 to 2t− 1)
σ

(i)(X) = δ.σ(i−1)(X) + ∆(i)XT (i−1)(X),

∆(i+1) = Si+2σ
(i)
0 + Si+1σ

(i) + ...+ Si−t+2σ
(i)
t

(4.3)

if (∆(i) = 0or 2D(i−1) ≥ i+ 1) then

D(i) = D(i−1), T (i)(X) = XT (i−1)(X)

else

D(i) = i+ 1−D(i−1), δ = ∆(i), T (i)(X) = σ(i−1)(X)

where σ(i)(X) is the ith step error locator polynomial and σ(i)
j ’s are the coef-

ficients of σ(i)(X) ; ∆(i) is the ith step discrepancy and δ is a previous nonzero
discrepancy; T (i)(X) is an auxiliary polynomial and D(i) is an auxiliary degree
variable in ith step.

It is clear that the idea of DiB-M is similar to the idea of B-M algorithm but
the computation of σ(X) does not need any inversion. So using DiB-M overcomes
the drawback of B-M algorithm.

4.2.2 Computation of Error Evaluator Polynomial W (X)

If σ(x) is first obtained, from the key equation and the Newton’s identity we could
derive W (x) as follows:

W (x) = S(x)σ(x)modx2t

= (S1 + S2x+ ...+ S2tx
2t−1) (4.4)

.(σ0 + σ1x+ ...+ σtx
t)modx2t

≡ W (0) +W (1)x+ ...+W (t−1)xt−1

W (i) = Si+1σ0 + Siσ1 + ...+ S1σi,

i = 0, 1, . . . , t− 1. (4.5)

Furthermore, it can be seen that the computation of W (i) is very similar to

4.3. THREE-FFM ARCHITECTURE FOR IMPLEMENTING THE DIB-M ALGORITHM51

Table 4.1: Data Dependency Table

∆(i) with some minor differences. Therefore, the same hardware used to compute
σ(X) can be reconfigured to computeW (X) after σ(X) is computed. Also DiB-M
algorithm gives a chance to reduce the hardware complexity significantly as only
3 finite field multipliers (FFM) can be used to compute σ(X) and W (X) [20] and
this will be seen in the following section.

Figure 4.5: Scheduling and data dependency of the decomposed inversionless
Berlekamp–Massey algorithm.

4.3 Three-FFM architecture for implementing the
DiB-M algorithm

In the RS decoder, an inversionless Berlekamp–Massey algorithm is adopted not
only to eliminate the finite-field inverter (FFI) but also introduces additional par-
allelism. A clever scheduling of three finite-field multipliers [20] was discover to
implement the algorithm. To explain the architecture define

52 CHAPTER 4. ARCHITECTURE OF DIBM DECODER

σ
(i)
j =

δ.σ
(i−1)
0 , for j = 0

δ.σ
(i−1)
j−1 +∆(i)T

(i−1)
j−1 , for 1 ≤ j ≤ t

(4.6)

∆(i+1)
j =

0, for j = 0

∆(i+1)
j−1 + Si−j+3.σ

(i)
j−1, for 1 ≤ j ≤ t

(4.7)

where σ(i)(x) = σ
(i)
0 + σ

(i)
1 x + ... + σ

(i)
t x

t, T
(i)
j ’s are the coefficients of T (i)(x),

and ∆(i+1)
j ’s are the partial results in computing ∆(i+1).

At the first cycle of (i+ 1)th step, we get

∆(i+1) = ∆(i+1)
t + si−t+2σ

(i)
t

= ...

= Si+2σ
(i)
0 + Si+1σ

(i)
1 + ...+ Si−t+2σ

(i)
t (4.8)

In other words, the ith iteration can be decomposed into t+ 2 cycles. In each
cycle σ(i)

j requires at most two FFMs and ∆(i+1)
j requires only one FFM. The data

dependency of the decomposed algorithm can be seen in Table 4.1. It is evident
from Table 4.1 that, at cycle j, the computation of ∆(i+1)

j requires σ(i)
j−1and ∆i+1

j−1,
which have been computed at cycle (j − 1) . Similarly, at cycle j, the compu-
tation of σ(i)

j requires ∆(i) and σ(i−1)
j , which have been computed at cycle 0 and

the (i − 1)th step, respectively. Note that the original Berlekamp–Massey algo-
rithm [13] can not be scheduled as efficiently because the computation of equation
3.21 requires two sequential multiplications and one inversion. The inversion-
less Berlekamp–Massey algorithm [20] provides the necessary parallelism to allow
efficient scheduling. The scheduling and data dependency of the decomposed al-
gorithm are further illustrated in Figure 4.5

4.3. THREE-FFM ARCHITECTURE FOR IMPLEMENTING THE DIB-M ALGORITHM53

σ(x) buffer

T(x) buffer
M

U

X

M U X

δ

+

+

Si-j+3 σj-1
i(x)

Δ
i+1

j-1

Δj
i+1

Δ
i

T j-1
(i-1)

σj
i(x)

σj
i-1(x)

+

+

+

Figure 4.6: Three-FFM architecture to compute σ(X) for the decomposed inver-
sionless Berlekamp–Massey algorithm.

σ(x) buffer

T(x) buffer
M

U

X

M U X
1

+

+

Si-j+1 σj-1
i(x)

w
i
j-1

wj
i

0

σj
i(x)

σj
i-1(x)

+

+

+

`

w
i

Figure 4.7: Three-FFM architecture reconfigured to compute W (X) for the de-
composed inversionless Berlekamp–Massey algorithm.

The decomposed algorithm shown above suggests a three-FFM implementation
of the inversionless Berlekamp–Massey algorithm, which is shown in Figure 4.6.

The computation of W (X) can be performed directly after σ(X) is computed
[20]. Note that the direct computation requires fewer multiplications than the
iterative algorithm which computes many unnecessary intermediate results. The
penalty of this efficient computation is the additional latency because σ(X) and
W (X) are computed in sequence.

Furthermore, it can be seen that the computation of W i is very similar to that
of ∆i except for some minor differences. Therefore, the same hardware used to

54 CHAPTER 4. ARCHITECTURE OF DIBM DECODER

compute σ(X) can be reconfigured to compute W (X) after σ(X) is computed.
Like ∆i

j, W i
j are the partial results in computing W i and we could derive it as

follows:

W i
j =

si+1σ0, for j = 0

W i
j−1 + si−j+1σj, for 1 6 j 6 i

(4.9)

At the last cycle of the iteration in equation 4.9W i
j = W i

j−1 +s1σi = · · · = W i,
In Figure 4.7, we show how the same three-FFM architecture can be reconfigured
to compute W (X).

4.4 Modified Evaluator DiBM Architecture

4.4.1 Error Locator Polynomial σ(X)

It will be the same as in the regular DiBM architecture as the three-FFM archi-
tecture discussed in the previous section is used for implementing the error locator
polynomial σ(X).

4.4.2 Error Evaluator Polynomial W (X)

The conventional way to compute the error evaluator polynomial W (x) is to do
it after the computation of σ(x). Using the Berlekamp-Massey algorithm, this
involves an iterative algorithm to compute W (i)(x), i = 0, ... , t − 1 . However, if
σ(x) is first obtained, from the key equation and the Newton’s identity we could
derive W (x) as follows:

W (x) = S(x)σ(x)modx2t

= (S1 + S2x+ ...+ S2tx
2t−1)

.(σ0 + σ1x+ ...+ σtx
t)modx2t

= W (0) +W (1)x+ ...+W (t−1)xt−1 (4.10)
W (i) = Si+1σ0 + Siσ1 + ...+ S1σi, (4.11)

i = 0, 1, ..., t− 1.

4.4. MODIFIED EVALUATOR DIBM ARCHITECTURE 55

w(x)

σ(x) buffer

T(x) buffer

FFM Module

M

U

X

M U X

δ

+

+

S(x)

σj-1
i
(x) Δ

i+1
j-1

Δj
i+1

Δ
i

T j-1
(i-1)

σj
i
(x)

σj
i-1

(x)
x

y

z

Figure 4.8: Implementation of the serial decomposed inversionless
Berlekamp–Massey algorithm

t-multipliers

Syndrome

converter

S(x)

σj-1
i
(x) δ σj

i-1
(x) T j-1

(i-1)

Si-j+3

σ(x)

Δ
i

W
(0)

W
(1)

W
(t-1) yx z

Figure 4.9: Finite Field Multiplier Module Block

That is, the computation of W (x) can be performed directly after σ(x) is com-
puted. Note that the direct computation requires fewer multiplications than the
iterative algorithm which computes many unnecessary intermediate results, but it
needs a lot of FFMs.

The proposed modified evaluator DiBM architecture suggests a t FFM imple-
mentation to evaluate σ(x) and W (x).

The error evaluator polynomial is evaluated by using 3 FFMs only like in serial
architecture [20]. However, the error evaluator polynomial W (x) will need all t

56 CHAPTER 4. ARCHITECTURE OF DIBM DECODER

FFMs, as W (t−1) is formed from t terms at worst case.

We reuse these multipliers for each W (i), proposed architecture Compared to
the previously parallel architectures [24] our architecture reduces the hardware
complexity significantly. Compared to a previously serial architecture [20], our
architecture reduces the latency significantly because of the reduction of number
of clock cycles. Therefore, our proposed architecture achieves an optimization in
the area-delay product.

We can summarize the modified evaluator architecture of MEDiBM architec-
ture in the flow chart shown in Figures 4.10 and 4.11.

Get the min degree polynomial
that satisfies the first newton identities

iBM

(1)σ (X)

Substitute in the next newton identities

if satisfies
the ith newton

identities

iBM

(i-1)σ (X) yesNo

If i=2t
NoGet the coeff. of

Error locator
polynomial

yes

iBM

(i)σ (X)

iBM iBM

(i) (i-1)σ (X)=σ (X)+correction
iBM iBM

(i) (i-1)σ (X)=σ (X)

Figure 4.10: Flow chart of MEDiBM architecture to calculate σ(X)

4.5. CHIEN SEARCH ARCHITECTURES 57

Given the coefficients of polynomial

and the values of syndromes S(X)

Counter=0

iBM
σ (X)

Substitute in the key equation

Counter = t
yes

No

 Get the coeff. of

 Error Evaluator

 polynomial

Get the next coeff of W(X)
(i) 0 1 i

i+1 i 1W =S σ +Sσ +...+S σ

 i=0,1,...,t-1.

Figure 4.11: Flow chart of MEDiBM architecture to calculate W (X)

4.5 Chien Search Architectures

4.5.1 Serial Architecture

C2

Ct-2

C1

C7

C3 +
+

+
+

w2

Wt-2

w1

w3

Wt-1

w0

wtot

Ct

C2

Ct-2

C1

Ct-1

C3 +
+

+

+

+

+

σ2

σ t-2

σt

σ1

σ3

σ t-1

σodd σtot

σ0
8

8

8

8

8

8

8

8

8

8 8

Figure 4.12: Serial Chien Search Block

58 CHAPTER 4. ARCHITECTURE OF DIBM DECODER

Out

αi

M

U

X
σi

Figure 4.13: Serial Chien Search Cell

The error locator polynomial σ(x) and error value polynomial W (x) are obtained
by KES block (MEDiBM).

The Chien’s algorithm calculates the location of the erroneous symbols in each
codeword as discussed in the previous chapter. Figure 4.12 shows the implemen-
tation of the Chien search block, each cell in it is clarified in Figure 4.13.

The serial Chien search block computes from σ(α0) to σ(α245) each one in one
clock cycle , after 255 clock cycle the total codeword symbols will be substituted,
as shown in Figure 4.12

Note that cells C1 ∼ C8 in Figure 4.12 are all the same as the Chien search
cells in Figure 4.15 . The only difference is the loaded coefficients are w0 ∼ w7

instead of σ0 ∼ σ8.

4.5.2 Two Parallel Architecture

The two-parallel Chien search block computes σ(α1) and σ(α2) simultaneous by
the first clock cycle , and then σ(α253) and σ(α254) are calculated at 127th clock
cycle. At the next clock cycle, σ(α255) is obtained as shown in Figure 4.15.

Note that cells C1 ∼ C8 in Figure 4.14 are all the same as the Chien search
cells in Figure 4.15 . The only difference is the loaded coefficients are w0 ∼ w7

instead of σ0 ∼ σ8.

4.6. FORNEY ARCHITECTURES 59

C2

Ct-2

C1

C7

C3 +
+

+
+

w2

Wt-2

w1

w3

Wt-1

w0

wtot

Ct

C2

Ct-2

C1

Ct-1

C3 +
+

+

+

+

+

σ2

σ t-2

σt

σ1

σ3

σ t-1

σodd σtot

σ0
16

16

16

16

16

16

16

16

16

16 16

Figure 4.14: Two Parallel Chien Search Block

α
i

Out

(α
i
)
2

(α
i
)
2

M

U

X

M

U

X

σj

Figure 4.15: Two Parallel Chien Search Cell

4.6 Forney Architectures

Error Value Evaluator used for calculating the error value, there are two popular
methods, namely the transform decoding process in the frequency domain and the
Forney algorithm in the time domain. Although the transform decoding process
does not need any FFI and Chien search, it requires t variable–variable FFMs
and N constant–variable FFMs. While N and t are large, the Forney algorithm
is preferred because of its lower circuit complexity. An “INVERSE ROM” is
implemented as a look-up table to store the inverse field of the Galois field elements
since current state of art’s reconfigurable devices have resources for look-up tables.

In equation(4.17), dividing operation is implemented by 256∗8 ROM in which
the inverse of field elements are stored.

Si = r(αi) = e(αi) =
n∑
l=1

emlα
ml.i (4.12)

60 CHAPTER 4. ARCHITECTURE OF DIBM DECODER

S(x) =
15∑
i=0

SiX
i =
∑∑

YlX
i
lx
i (4.13)

σ(x) = (x−X−1
1)(x−X−1

2)...(x−X−1
n) (4.14)

W (x) = S(x).σ(x)modx2t (t = 8) (4.15)

=
n∑
l=1

Yl .
n∏

i=1,i 6=l
(x−X−1

i) (4.16)

Yl = W (X−1
l)/.σ′(X−1

l) (4.17)

So having found the error locations and error values, we finally can form the
error polynomial e(X) and correct the received polynomial r(X) just by adding
(with XOR operation) these two polynomials together, as shown in Figure 3.1.

4.6.1 Serial Architecture

Figure 4.16 shows the serial architecture of the Forney error evaluator which cal-
culate symbol in each clock cycle.

W(α
i
)

σ(α
i
)

Inverse ROM
σodd(α

i
)

Error

values

Figure 4.16: Forney Error Evaluator Architecture

4.6.2 Two Parallel Architecture

Figure 4.17 shows the two parallel architecture. which calculate two values of error
symbols in each clock cycle.

4.7. TWO PARALLEL ARCHITECTURE (PROPOSAL A) 61

σ(x)

σodd

σtot

16

8

8

Inv. ROM

Inv. ROM

16 8

8

σodda

σoddb

w(x) wtot

16

8

8

 Chien Search

σ(x) x

x

x

x

 Chien Search

w(x) wtota

wtotb

x

y

i

αia αib

Cell

αib

αia wtota

wtotb
y

y

x

x ea

eb

8

8

Figure 4.17: Two Parallel Error Corrector Block

4.7 Two Parallel Architecture (Proposal A)

Two Parallel

Syndrome

Error

Corrector

Two Parallel

Chien Search

Key

Equation

Solver

(DiBMA)

P

S Forney

Algorithm

P

S

RS Decoder Main Controller

Received

message

Corrected

outputS(x)
σ(x)

w(x)

σ (αi
)

σ‘(α
i
)

w (α
i
)

Error

Detection Error Correction

Delay

Buffer

FIFO

w (αi
)

σ‘(α
i
)

Decoding

Algorithm

128 128168

Figure 4.18: Two parallel Block Diagram

In this proposal we present a pipelined two parallel decoder. The decoding pro-
cess is divided into four steps as shown in Figure 4.18. The syndrome calculator
calculates a set of syndromes from the received codewords. The two parallel syn-
drome circuit [23] is used in this proposal and Figure 4.3 presents the two parallel
syndrome circuit. From the syndromes, the key equation solver (KES) produces
the error locator polynomial and the error evaluator polynomial as discussed in
the previous section, then a Chien search algorithm is used to produce the error
locations as shown in Figure 4.14. The two parallel Chien search circuit is used
and Figure 4.15 presents the two parallel Chien search cell, then Forney algorithm
is used to calculate the error values, Figure 4.17 present the circuit diagram of the
complete error corrector.

62 CHAPTER 4. ARCHITECTURE OF DIBM DECODER

The bottleneck for this architecture is in the KES as the two parallel syndrome
circuit has a latency of 128 clock cycles, and the KES latency is 168 clock cycles
which make this proposal gain high throughput and low latency and reasonable
area. Figure 4.19 shows the pipelining diagram of this proposal.

0 128 128

Syndrome

calculator
DiBM

Chien Search &

Error Corrector

168 168168 160

σ(x) W(x)

Figure 4.19: The pipelining diagram of (255, 239)RS Two parallel Architecture

4.8 Serial Architecture (Proposal B)

Serial

Syndrome

Error

Corrector

Serial

Chien Search

Key

Equation

Solver

(DiBMA)

P

S Forney

Algorithm

P

S

RS Decoder Main Controller

Received

message

Corrected

outputS(x)
σ(x)

w(x)

σ (αi
)

σ‘(α
i
)

w (α
i
)

Error

Detection Error Correction

Delay

Buffer

FIFO

w (αi
)

σ‘(α
i
)

Decoding

Algorithm

255 255168

Figure 4.20: Serial Block Diagram

In this proposal we present a pipelined serial decoder. We used the same KES
block which is used in proposal A but we changed the syndrome computation
block and error corrector block from two parallel blocks to conventional blocks [3].
Figure 4.2 presents the serial syndrome cell. Figure 4.13 presents the serial Chien
search cell, then Forney algorithm is used to calculate the error values like the
previous proposal.

The bottleneck for this architecture is in the syndrome circuit as it has 255
clock cycles latency which makes the latency of this proposal higher than that of
proposal A but it has lower area and reasonable throughput. Figure 4.21 shows
the pipelining diagram of this proposal.

4.9. HARDWARE SYNTHESIS 63

0 255

Syndrome

calculator
DiBM Chien Search &

Error Corrector

255 255168

σ(x) W(x)

Figure 4.21: The pipelining diagram of (255, 239)RS serial Architecture

Table 4.2: Implementation Results of RS(255,239) Decoders
Architecture Technology No. of max Freq. Latency Latency Throughput

(µm) Gates Fmax (clocks) n sec Mbps
Proposed A 0.13 37,600 606 298 491.7 7,357
Proposed B 0.13 30,700 606 425 701.3 4,850
ME[24] 0.13 115,500 770 355 461 6,160

pDCME[25] 0.13 53,200 660 355 537.9 5,300
EA[26] 0.13 44,700 300 287 956.7 2,400
ME[27] 0.18 20,614 400 512 1280 3,200

DCME[28] 0.25 42,213 200 288 1440 1,600
EA[29] 0.25 55,240 75 321 4280 600
BM[30] 0.25 32,900 84 192 2285.7 2,500

4.9 Hardware Synthesis

The two architectures were modeled in VHDL and simulated to verify their func-
tionality. After complete verification of the design functionality, it was then syn-
thesized using appropriate time and area constraints. Both simulation and syn-
thesis steps were carried out on 0.13µm CMOS technology and optimized for a
1.35V supply voltage, we used this technology to make our comparison fair with
the previously published architectures. The total number of gates for proposal A
and B are 37, 600 and 30, 700 respectively from the synthesized results excluding
the FIFO memory, and the clock frequency is 606MHz for both designs. The
total power dissipation 50mW for proposal A and 29.28mW for proposal B. The
latency of proposals A and B are 491.7ns and 701.3ns respectively which leads to
an energy per symbol of 24.585nJ for proposal A and 20.534nJ for proposal B .

Table 4.2 shows a comparison between different architectures of RS(255, 239)
decoders. The Modified Euclidean (ME) algorithm is used in [24], and [27]. The
results show that [24] has much larger area than our two proposals as it uses par-

64 CHAPTER 4. ARCHITECTURE OF DIBM DECODER

allel architecture in KES. So its latency is lower than proposals A and B and its
throughput is in between them. But [27] made a modification to the algorithm
to have an area efficient architecture so its area is lower than proposals A and B
but with lower rate. Its latency is larger than both proposals. The Degree Com-
putation less Modified Euclidean (DCME) architecture is used in [25] and [28] to
reduce the gate count in comparison to ME [24]. However, both [25]and [28] have
a larger area compared to our two proposals. The latency and throughput of [30]
are in between proposals A and B while the latency of [28] is much larger our two
proposals and its throughput is lower than ours. The Euclidean Algorithm is used
in [26] and [29]. Both designs use the same architecture but they are implemented
on different technologies and they have larger area and latency and lower through-
put than the two proposals. The Modified Berlekamp-Massey (MBM) algorithm
is used in [30]. This algorithm is used to reduce the latency in clock cycles and also
to reduce the power consumption (68.5mW at 84MHz). But this architecture
has higher latency than our two proposals in ns and has more power consumption.

Chapter 5

CONCLUSION AND FUTURE
WORK

5.1 Conclusion

This thesis presents two architectures for a low energy high-speed pipelined serial
RS(255, 239) decoder.

In proposal A two parallel syndrome and Chien search circuits are used, where
the syndrome and Chien search circuits finish in 128 clock cycles,The KES block
is the Modified Evaluator Decomposed inversionless Berlekamp Massey which in-
cludes t FFMs with 168 clock cycles latency. This proposal make our design
optimized between the serial architecture which uses 3 FFM and latency 216 clock
cycles and the parallel architectures which uses multiples of t FFM.

In proposal B a conventional syndrome and Chien search circuits with latency
of 255 clock cycles are used and the same KES block of proposal A is used. We
have investigated hardware gate count, throughput, and energy per symbol for RS
decoders. It is clear that proposal A requires more gate count, but the throughput
is higher than proposal B by 34%. But proposal B has energy per symbol lower
than proposal A by 16%. Compared to previous architectures, our two proposals
optimize the latency, throughput, and energy per symbol while maintaining a
small area.

65

66 CHAPTER 5. CONCLUSION AND FUTURE WORK

5.2 Future Work

The system is big enough to have a lot of work in the future. Mainly. In fact,
we can think about converting the VHDL code to Application Specific Integrated
Circuit (ASIC) environment and get the layout and get the post layout simulation.

We can also reduces the latency of the decoding algorithm by increasing the
number of FFMs which include the bottleneck of the design to increase the through-
put and reduce the latency. we can replace the architecture of Berlekamp Massey
algorithm with another architecture for Euclidean algorithm and calculate the area
, delay, and power, then compare between the two results.

We can also try to choose another finite field multiplier (the main element in
our design) which will increase the maximum frequency and increase the through-
put and decrease the latency and the area for the design.

We can integrate the proposed decoder with convolutional decoder to design
a concatenated decoder, and we can use the results of the convolutional decoder
in the calculations of the Reed Solomon decoder. If we are sure from the convo-
lutional decoder that we have certain number of symbols with error free, we can
skip them in the Reed Solomon decoder.

We can convert the proposed decoder from RS(255, 239) to multimode decoder,
and this will depend on the type of the channel and the application, as we can
control the values of n, and k to increase the rate if we have less noise in the
channel or decrease the rate, if we have more noise in the channel

Bibliography

[1] S. Lin, D. J. Castello, Error control coding, Fundamentals and applications,
Prentice-Hall, 1983.

[2] W.W. Peterson, E.J. Weldon, Error correcting codes, MIT Press, 1972.

[3] E. R. Berlekamp, Algebraic coding theory, McGraw-Hill, 1968.

[4] I.S. Reed, G. Solomon, “Polynomial codes over certain finite fields”, SI AM
J. on Applied Mathematics, Vol. 8, June 1960.

[5] R.E. Blahut, “Theory and practice of error-control codes”, Addison-Wesley,
1983.

[6] J. C. Moriera, P. G. Frell, J. Wiley “Essentials of Error-Control Coding”,
2006.

[7] S. Wicker and M. Bhargava, “ Reed-Solomon Codes and Their Applications.
IEEE Press”, 1994.

[8] B. Schoner, Villasenor, J., Molloy, S., Jain, R., “Techniques for FPGA Im-
plementation of Video Compression Systems”, 3rd International ACM sym-
posium on FPGA, 1995.

[9] E. Jamro “The Design of a VHDL based synthesis tool for BCH codecs”,
master of philosophy, september 1997.

[10] S. T. J. Fenn, M. Benaissa, D. Taylor, “GF (2m) Multiplication and division
over the dual field”, IEEE Trans. on computers, Vol. 45, No. 3, March 1996.

[11] S. Choomchuay, “On the Implementation of Finite Field Basis Conversions”,
Ladkrabang Engineering Journal, Vol. 11, No. 1, June 1994.

67

68 BIBLIOGRAPHY

[12] J. L. Massey, J.K. Omura, “Computational method and apparatus for finite
field arithmetic”, U.S. Patent Aplication, No. 4587627, May 1981.

[13] E.R. Berlekamp, “Bit-serial Reed-Solomon encoders”, IEEE Trans. Informa-
tion Theory, Vol. 28, No. 6, November 1982.

[14] T. Beth, D. Gollmann, “Algorithm engineering for public key algorithms”,
IEEE J. on Selected Areas in Communications. Vol. 7, No. 4, May 1989.

[15] B. A. Laws FR., C. K. Rushforth, “A cellular-array multiplier for GF(2m)”,
IEEE Trans. Computers, Vol. C-20, No. 12, December 1971.

[16] S. T. J. Fenn, M. Benaissa, D. Taylor, “GF (2m) Multiplication and division
over the dual field”, IEEE Trans. on computers, Vol. 45, No. 3, March 1996.

[17] D. Georenstien and N. Zieler, “A Class of Cyclic Linear Error-Correcting
codes in Symbols”, SI AM J. on Applied Mathematics, June 1961.

[18] R. T. Chien, “Cyclic Decoding Procedure for the Bose-Chaudhuri- Hoc-
quenghem Codes”, IEEE Trans. Information Theory, Vol. 10, No. 4, October
1964.

[19] G. D. Forney, “On Decoding BCH Codes”, IEEE Trans. Information Theory,
Vol. 11, No. 4, October 1965.

[20] H. Chia Chang and C. Shung, “New Serial Architecture for the
Berlekamp–Massey Algorithm”, IEEE Trans. on communications, Vol. 47,
No. 4, April 1999.

[21] Y.Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method for
solving key equation for decoding Goppa codes”, Information Control, Vol.
27, No.1, January 1975.

[22] J. L. Massey, “Step-by-step decoding of the Bose–Chaudhuri–Hocq uenghem
codes”, IEEE Trans. Inf. Theory, Vol. 11, No. 4, October 1965.

[23] S. Lee, C. Choi, and H. Lee, “Two-parallel Reed-Solomon based FEC archi-
tecture for optical communications”, IEICE Electronics Express, Vol. 5, No.
10, May. 2008.

[24] H. Lee, “High-Speed VLSI Architecture for Parallel Reed-Solomon Decoder,”
IEEE Trans. on VLSI Systems, Vol. 11, No. 2, April. 2003.

BIBLIOGRAPHY 69

[25] S. Lee, H. Lee, J. Shin and J. Ko, “A High-Speed Pipelined Degree- Compu-
tationless Modified Euclidean Algorithm Architecture for Reed- Solomon De-
coders”, IEEE International symposium on Circuits and System, ISCAS,2007.

[26] H. Lee, “An Area-Efficient Euclidean Algorithm Block for Reed-Solomon De-
coder”, IEEE Annual Symposium on VLSI, 2003.

[27] H. Yi Hsu, A. Yeu (Andy) Wu, and J. Yeo, “Area-Efficient VLSI Design
of Reed–Solomon Decoder for 10GBase-LX4 Optical Communication Sys-
tems”,IEEE Trans. on Circuits and Systems-II: express briefs, Vol. 53, No.
11, November 2006.

[28] J. H. Baek and M. H. Sunwoo, “New Degree Computationless Modified Eu-
clidean Algorithm and Architecture for Reed-Solomon Decoder”, IEEE Trans.
on VLSI Systems, Vol. 14, No. 8, Augast, 2006.

[29] H. Lee, M. Yu, and L. Song, “VLSI design of Reed–Solomon decoder archi-
tectures”, IEEE International Symposium Circuits and System, Vol. 5, 2000.

[30] H. Chang, C. Ching Lin and C. Yi Lee, “A low-power Reed-Solomon decoder
for stm-16 optical communications”, IEEE Asian-Pasific Conference on ASIC
2002.

70 BIBLIOGRAPHY

Appendix A

The list of optimal irreducible
polynomial m ≤ 10

m = 3 p(x) = x3 + x+ 1

m = 4 p(x) = x4 + x+ 1

m = 5 p(x) = x5 + x2 + 1

m = 6 p(x) = x6 + x+ 1

m = 7 p(x) = x7 + x+ 1

m = 8 p(x) = x8 + x4 + x3 + x2 + 1

m = 9 p(x) = x9 + x4 + 1

m = 10 p(x) = x10 + x3 + 1

71

72APPENDIX A. THE LIST OF OPTIMAL IRREDUCIBLE POLYNOMIAL M≤ 10

Appendix B

Polynomial and dual basis of
GF (23).

power of a Standard basis Dual basis
1, a, a2 1, a2, a

- 000 000
0 100 100
1 010 001
2 001 010
3 110 101
4 011 011
5 111 111
6 101 110

73

74 APPENDIX B. POLYNOMIAL AND DUAL BASIS OF GF (23).

Appendix C

Basis Conversions

C.1 Dual basis to polynomial basis conversions

Irreducible polynomials p(x) for GF (2m) are given in Appendix A
-To convert dual basis to polynomial basis:

• for an irreducible trinomial “primitive polynomial with three terms only” of
the form: xm + xp + 1
a0, a1, a2, ..., am−1 ← bp−1, bp−2, ..., b0, bm−1, bm−2, ..., bp

• for an irreducible pentanomial “primitive polynomial with five terms only”
of the form: xm + xp+2 + xp+1 + xp + 1
a0, a1, a2, ..., am−1 ← bp, bp−1, ..., b1, b0 + bp, bp+1 + bm−1, bm−2, ..., bp+1

where ai present the basis of the polynomial basis symbols and bi presents
the dual basis symbols.

Table C.1: Dual basis coefficients → Polynomial basis coefficients
m a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

3 b0 b2 b1
4 b0 b3 b2 b1
5 b1 b0 b4 b3 b2
6 b0 b5 b4 b3 b2 b1
7 b0 b6 b5 b4 b3 b2 b1
8 b2 b1 b0 + b2 b3 + b7 b6 b5 b4 b3
9 b3 b2 b1 b0 b8 b7 b6 b5 b4
10 b2 b1 b0 b9 b8 b7 b6 b5 b4 b3

75

76 APPENDIX C. BASIS CONVERSIONS

C.2 Polynomial basis to dual basis conversions

-To convert polynomial basis to dual basis:

• for an irreducible trinomial of the form: xm + xp + 1
b0, b1, b2, ..., bm−1 ← ap−1, ap−2, ..., a0, am−1, am−2, ..., ap

• for an irreducible pentanomial of the form: xm + xp+2 + xp+1 + xp + 1
b0, b1, b2, ..., bm−1 ← ap, ap−1, ..., a1, a0 + ap, ap+1 + am−1, am−2, ..., ap+1

where ai present the basis of the polynomial basis symbols and bi presents
the dual basis symbols.

Table C.2: Polynomial basis coefficients → Dual basis coefficients
m b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

3 a0 a2 a1
4 a0 a3 a2 a1
5 a1 a0 a4 a3 a2
6 a0 a5 a4 a3 a2 a1
7 a0 a6 a5 a4 a3 a2 a1
8 a0 + a2 a1 a0 a7 a6 a5 a4 a3 + a7
9 a3 a2 a1 a0 a8 a7 a6 a5 a4
10 a2 a1 a0 a9 a8 a7 a6 a5 a4 a3

