
Design and Implementation of Configurable Reed
Solomon Decoder Using Euclidean Algorithm

by

Hamed Salah El-Din Hamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Electrical Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
September 2010

ii

iii

Acknowledgment

I would like to thank my supervisors Prof. Dr. Amin Nassar, who is not only
my supervisor but he is like my father, and Dr. Hossam Aly Hassan Fahmy who
taught me how to be a researcher and the most important thing is how to evaluate
yourself and I want to ask to him if I made anything made him unhappy, please
forgive me. Also I would like to thank Dr. Tallal El-shabrawy, owner of the credit
in this work. I could not achieve anything without his help. They helped me not
only to complete this work but also to organize my academic life.

Also I want to thank all the faculty members in GUC Prof. Dr. Yasser Hegazy,
Prof. Dr. Ahmed El mahdy, Dr Amr Tallat, Dr. Mohamed Ashour, and Dr. Hany
Hammad for their sincere advices are very fruitful.

I would like also to thank my study partner Hazem A. Ahmed. Also I would
like to thank Walid Galal and Soukry Ibrahim for their valuable advices and my
colleague Mohamed Fattouh who taught me VHDL and also Eng. Amr Abdulzahir
and Eng. Alhussein. I can not explain my gratitude to my father, and mother.
They all helped me to achieve progress through my life.

iv

Abstract
Due to the increasing of the speed of modern communications systems the de-
tection and correction of errors in digital information have become a very impor-
tant issues. Such errors almost inevitably occur after the transmission, storage
or processing of information in digital form, because of noise and interference in
communication channels, or imperfections in storage media, for example. So the
protecting of digital information with a suitable error-control code enables the
efficient detection and correction of any errors that may have occurred. In high-
speed communication systems, Reed-Solomon (RS) codes have a widespread use
to provide error protection especially for burst errors. This feature has been one
of the important factors in adopting RS code in many practical applications such
as digital audio and video, magnetic and optical recording, computer memory,
cable modem, and wireless communications systems. We designed a low-energy
configurable multi-channel Reed-Solomon RS(255, 239) decoder using Euclidean
algorithm. The configurable structure enables the decoder to be shared with 8
or 16 channels. The proposed design presents also a configurable syndrome cell
and Chien search cell which can work as two parallel or serial cells to achieve high
throughput and reduce the power consumption. The reduction of the power con-
sumption and the latency of the architecture lead to save the energy dissipation
and save the battery in hand held devices.

Contents

1 INTRODUCTION 1
1.1 Introduction to Communication System 1
1.2 Types of Codes . 3

1.2.1 Binary Block Codes . 3
1.2.2 Convolutional Code . 4

1.3 Introduction to Reed-Solomon Codes 5
1.4 Motivation . 5
1.5 Thesis Organization . 5

2 REED-SOLOMON CODES 7
2.1 Algebraic Structures . 7

2.1.1 Groups . 7
2.1.2 Rings . 8
2.1.3 Fields . 9
2.1.4 Galois Field GF(q) . 11
2.1.5 The extended field GF(2m) 11
2.1.6 Basis of field GF(2m) . 14
2.1.7 Basis Conversions . 16

2.2 Finite Field Multipliers . 20
2.2.1 Multiplication by a constant value 20
2.2.2 Two-Variable operands Multipliers 21

2.3 Introduction to Cyclic Codes . 27
2.3.1 Polynomial Representation of Codewords 28
2.3.2 Encoding of a Cyclic Code 28
2.3.3 Encoding of Cyclic Codes in Systematic Form 30

2.4 Encoding of Reed Solomon Code 32
2.4.1 RS Codes in Systematic Form 32
2.4.2 Implementation of RS Encoder 33

v

vi CONTENTS

3 REED-SOLOMON DECODER 35
3.1 Syndrome Calculation . 36
3.2 The Decoding Algorithm . 37

3.2.1 The Key Equation . 38
3.2.2 Decoding of RS Codes Using the Euclidean Algorithm . . . 39
3.2.3 Decoding of RS Codes Using Berlekamp-Massey Algorithm . 41
3.2.4 Decoding of RS Codes Using Peterson-Gorenstein-Zierler

(PGZ) Algorithm . 46
3.3 Comparison of Decoding Algorithms 49

3.3.1 Complexity . 49
3.3.2 Critical path . 49
3.3.3 Latency . 49
3.3.4 Power consumption . 50

3.4 Chien Search . 50
3.5 Forney Algorithm . 51

4 CONFIGURABLE MULTI-CHANNEL REED-SOLOMON DE-
CODER 53
4.1 Architectures of Syndrome computation 53

4.1.1 Serial architecture . 53
4.1.2 Two Parallel architecture . 54
4.1.3 The new Configurable architecture 55

4.2 Hardware Implementation of Euclidean Algorithm 56
4.2.1 Euclidean Division Module 57
4.2.2 Euclidean Multiply Module 58

4.3 Architectures of Chien search block 59
4.3.1 Serial architecture . 59
4.3.2 Two Parallel architecture . 60
4.3.3 The new configurable architecture 61

4.4 Architecture of Forney Algorithm 62
4.4.1 Serial architecture . 62
4.4.2 Two Parallel architecture . 63
4.4.3 The new configurable architecture 64

4.5 Multi-Channel Decoder . 64
4.5.1 Multi-Channel using serial architectures 64
4.5.2 Multi-Channels using two parallel architectures 65
4.5.3 Multi-Channel using configurable architectures 65

CONTENTS vii

4.6 Results and Comparisons . 66
4.6.1 Results of configurable (255, 239) RS decoder 66
4.6.2 Comparisons . 67

4.7 Conclusion . 68

5 CONCLUSIONS AND FUTURE WORKS 69
5.1 Conclusions . 69
5.2 Future Works . 70

A The list of primitive polynomials p(x) for m ≤ 10 75

B Conversions from standard basis to Normal basis in GF(24) 77

viii CONTENTS

List of Tables

1.1 Binary block code with k = 4 and n = 7 4

2.1 Binary representation of GF(2m) 14
2.2 RS codes parameters . 32

3.1 B-M algorithm table for determining the error-location polynomial . 44

4.1 Implementation Results of single channel RS(255, 239) Decoders . 67
4.2 Implementation Results of Multi-Channel RS Decoders 67

ix

x LIST OF TABLES

List of Figures

1.1 Block diagram of a typical data transmission or storage system. . . 2
1.2 Simplified model of a coded system. 3

2.1 Bit-parallel dual basis multiplier for GF(23) 23
2.2 Type A module for a bit-parallel dual basis multiplier for GF(23) . 24
2.3 Type B module for a bit-parallel dual basis multiplier for GF(23) . 24
2.4 PPBM for GF(24). 26
2.5 Module B of the PPBM . 27
2.6 Circuit for multiplying by α in GF(24) 27
2.7 The LFSR architecture of RS encoder. 33

3.1 Block Diagram of RS Decoder . 35

4.1 Serial syndrome . 54
4.2 Serial syndrome cell . 54
4.3 Two parallel Syndrome . 55
4.4 Two Parallel syndrome cell . 55
4.5 Configurable syndrome cell . 56
4.6 Block diagram of the Euclidean architecture. 57
4.7 Overall architecture of the Euclidean divider module. 57
4.8 EAdiv A and EAdiv B of the Euclidean divider module. 58
4.9 Block diagram of the Euclidean multiply module. 58
4.10 Architecture of the EAmul C module in the Euclidean multiply

operation. 59
4.11 Serial Chien search (t = 8). 60
4.12 Serial Chien search cell . 60
4.13 Two Parallel Chien search (t = 8) 61
4.14 Two Parallel Chien search cell . 61
4.15 Configurable Chien search cell . 62

xi

xii LIST OF FIGURES

4.16 Serial Forney architecture . 63
4.17 Two parallel Forney architecture . 63
4.18 16 Channel (255, 239) RS decoder using serial architectures 64
4.19 8 Channels (255, 239) RS decoder using two parallel architectures . 65
4.20 8 Channels (255, 239) RS decoder configurable and serial architectures 66

Chapter 1

INTRODUCTION

1.1 Introduction to Communication System

Due to a high demand for efficient and reliable digital data transmission in com-
munication systems and storage devices, a great effort had been exerted in this
area to merge between communication and computer technology in the design of
these systems.

In 1948, in his classic paper “A Mathematical Theory of Communication”
C. Shannon [1] introduced the main concepts of what is known as information
theory. Since Shannon’s work, a great of effort has been exerted on the problem
of proposing efficient encoding and decoding methods for error control in a noisy
channels. The use of coding for error control has become an integral part in the
design of modern communication systems and digital storage devices in computers
to achieve the reliability required by today’s high speed digital systems.

The transmission in communication systems and storage of digital information
have many common properties. Both of them transfer data from an informa-
tion source to a destination. The transmission system or storage device can be
represented by the block diagram shown in figure 1.1.

The information source output can be either analog signal, in case of medical
application or digital signal in case of digital computer.

The source encoder transforms the source output into a suitable sequence of
binary digits (bits) as it may give each symbol different length of bits to minimize
the size of data and its output called the information sequence u. In case of a
analog information source, the source encoder contains analog to digital converter
(ADC).

1

2 CHAPTER 1. INTRODUCTION

Information
source

Channel
encoder

Channel
(storage
Medium)

Channel
decoder

Source
decoderDestination

u
c

Noise

rû

Source
encoder

Figure 1.1: Block diagram of a typical data transmission or storage system.

The channel encoder converts the information sequence u into an encoded
sequence c called a codeword or code vector. In most applications c is also a
binary sequence, although in some applications non-binary codes have been used
as each symbol in non-binary code is represented in binary sequence.

The channel is the medium which the data is transferred through it and its na-
ture depends on the application . It may be wireless channel in mobile application
or wired channel in ADSL. But in storage devices the channel is the device itself.
The channel determines the type of errors which affects the encoded sequence c,
it will be random errors or burst errors so it also determines the type of code to
be used. So the channel transforms the encoded sequence v to received sequence
r which may has some errors.

The channel decoder corrects the errors in the received sequence r to transform
it into a binary sequence û called the estimated sequence. The decoding technique
is based on the type of channel encoding. Ideally,û will be the same as the infor-
mation sequence u, but actually the noise may cause some decoding errors which
makes difference between the information sequence u and the estimated sequence
û.

The source decoder transforms the estimated sequence û into an estimate of

1.2. TYPES OF CODES 3

the source output and delivers this estimate to the destination. When the source
is an analog source, it contains digital to analog converter (DAC).

In this thesis we will focus on the channel encoder and channel decoder, So the
block diagram in figure 1.1 can be simplified as shown in figure 1.2.

Digital
source

Encoder

Coding
channel

Decoder
Digital
sink

u c

Noise

rû

Figure 1.2: Simplified model of a coded system.

1.2 Types of Codes

There are two different types of codes in common use today, block codes and
convolutional codes.

1.2.1 Binary Block Codes

The encoder for a block code divides the information sequence into message blocks,
each block of k information bits. A message block is represented by k bits u =
(u0, u2,, uk−1) called a message. There are 2k different possible messages each
of them of length k bits. The encoder encodes each message independently into an
n-bits sequence c = (c0, c2, ..., cn−1) called a code word. Therefore, corresponding
to the 2k different possible messages, there are 2k different possible code words of

4 CHAPTER 1. INTRODUCTION

length n bits at the encoder output. So in this case we call the code by (n, k) block
code. The ratio R = k/n is called the code rate, and it represents the number of
information bits corresponding to the transmitted bits and it’s smaller than one,
R < 1 and n − k is called redundant bits [2]. These redundant bits provide the
code the capability of detecting and correcting errors in the received vectors. How
to add these redundant bits to the message to achieve reliable transmission over a
noisy channel is the major problem in designing the code. An example of a binary
code with k = 4 and n = 7 is shown in Table 1.1.

Table 1.1: Binary block code with k = 4 and n = 7
Message Code words
0000 0000000
1000 1101000
0100 0110100
1100 1011100
0010 1110010
1010 0011010
0110 1000110
1110 0101110
0001 1010001
1001 0111001
0101 1100101
1101 0001101
0011 0100011
1011 1001011
0111 0010111
1111 1111111

1.2.2 Convolutional Code

The encoder for a convolutional code also divides the information sequence to k-bit
blocks of message u and produces a code word c of n-bits length. In convolutional
coding, each code word depends not only on the corresponding k-bit message block
at the same time unit, but alsom previous message blocks. Hence, the encoder has
m memory elements. Each bit from k bits message enters from different input and
similarly we have n different outputs. So The encoded sequences produced by a k-
input, n-output encoder ofmmemory elements is called an (n, k, m) convolutional
code. The ratio R = k/n also is called the code rate. Also in convolutional code
the redundant bits are added to provide the code the capability of correcting errors
in the received vectors so the code rate is smaller than one, R < 1 [2]. How to

1.3. INTRODUCTION TO REED-SOLOMON CODES 5

use the memory to achieve reliable transmission over a noisy channel is the main
problem in designing the convolutional encoder [2].

1.3 Introduction to Reed-Solomon Codes

In June of 1960, Irving Reed and Gus Solomon published a paper in the Journal
of the Society for Industrial and Applied Mathematics with title of “Polynomial
Codes over Certain Finite Fields” [3]. This paper described a new type of error-
control codes that are now called Reed-Solomon codes. Reed-Solomon Codes
are non-binary block codes so it has the properties of block codes. These codes
are encoded by the same way of encoding the binary codes, but decoding was
very complicated and a great efforts was exerted by Berlekamp [4] and others
to improve its decoding algorithm. In 1971, Reed-Solomon codes used by NASA
for some of their missions to Mars. The problem in this code is the decoding
algorithm which was very complicated so it was implemented on computers on
earth. In recent years, a great efforts have been exerted in developing this field to
enhance the decoding algorithms, and nowadays Reed-Solomon codes are used for
CDs, wireless communication, DVD or digital TV.

The most important advantage of Reed-Solomon codes over binary linear block
codes is the ability of correcting the burst errors. As in Reed-Solomon codes the
information bits are divided into message blocks of k information symbols each and
each symbol consists of m bits. The encoder encodes each message independently
to n symbols. The RS(n, k) can correct up to t symbols where t =

⌊
n−k

2

⌋
, and

that regardless the number of error bits in each symbol.

1.4 Motivation

While the RS code is used in many digital applications, a great efforts were exerted
to develop the decoding algorithms and to implement them. But all these efforts
were focusing on either the speed of the implementations or the area of them. So
in this thesis we are focusing on a compromising between the area and the speed
and also the energy consumed by the decoder.

1.5 Thesis Organization

The organization of this thesis is as follows:

6 CHAPTER 1. INTRODUCTION

In Chapter 2, we introduce the fundamentals of different algebraic structures,
Galois field properties and different structures of Galois field multipliers, then
finally an introduction to cyclic codes is introduced. In Chapter 3, we introduce
the RS decoder and many types of decoding algorithms and which of them we will
choose. In Chapter 4, the hardware implementation of the decoder, and also a
comparison between the proposed architecture and the previous architectures are
introduced. Finally, some conclusions and future work will be given in Chapter 5.

Chapter 2

REED-SOLOMON CODES

2.1 Algebraic Structures

In this section we will define some of algebraic basics that we need throughout
the thesis. We start with the definition of some algebraic structures [5] and why
we choose one of them to work over it. The most important algebraic structures
in the algebraic coding theory are groups, rings and finite fields. Also we will
introduce the binary and non-binary finite fields and their properties.

2.1.1 Groups

A non-empty set G together with a binary operation ‘ ∗ ’ is called a group if for
all elements a, b, c ∈ G the following properties must be satisfied [5]:

1- Closure :

a ∗ b ∈ G, (2.1)

2- Associative :

a ∗ (b ∗ c) = (a ∗ b) ∗ c, (2.2)

3- Identity :

∃e ∈ G : ∀a ∈ G : a ∗ e = e ∗ a = a, (2.3)

7

8 CHAPTER 2. REED-SOLOMON CODES

4- Inverse :

∀a ∈ G : ∃à ∈ G : a ∗ à = e. (2.4)

The element e is the identity element, and à is the inverse element of element a.

5- Commutative :

a ∗ b = b ∗ a (2.5)

The number of elements of a group G determines the group order, ord (G).
If the number of elements is finite, the group is a finite group. From previous
definition and properties of group we can note that one operation is defined in the
structure. So we can either add or multiply but in our application we need the
two operations so this structure is not suitable for RS codes.

2.1.2 Rings

A ring S is a non-empty set of elements with two operators usually called addition
and multiplication, denoted ‘+ ’and ‘ ∗ ’ respectively. For S to be a ring a number
of conditions must hold for all elements a, b, c ∈ S [5]:

1- Closure :

a ∗ b ∈ S, (2.6)

a+ b ∈ S

2- Associative :

a+ (b+ c) = (a+ b) + c

a ∗ (b ∗ c) = (a ∗ b) ∗ c, (2.7)

2.1. ALGEBRAIC STRUCTURES 9

3- Identity :

∃1 ∈ S : ∀a ∈ S : a ∗ 1 = 1 ∗ a = a

∃0 ∈ S : ∀a ∈ S : a+ 0 = 0 + a = a, (2.8)

4- Inverse :

∀a ∈ S : ∃ − a ∈ S : a+ (−a) = 0. (2.9)

The element 0 is the identity element of addition, the element 1 is the identity
element of multiplication, and −a is the additive inverse element of element a.

5- Commutative :

a+ b = b+ a

a ∗ b = b ∗ a (2.10)

6- Distributive :

(a+ b) ∗ c = a ∗ c+ b ∗ c (2.11)

From previous properties there is no condition to satisfy that the multiplicative
inverse of each element is unique. So we couldn’t make division operation. But
the decoding algorithm of RS codes needs the division operation so this structure
is not suitable to work over it.

2.1.3 Fields

A field F is a non-empty set of elements with two binary operations called addi-
tion and multiplication, denoted ‘+ ’ and ‘ ∗ ’ respectively. For F to be a field the
following conditions must be satisfied for all elements a, b, c ∈ F [5]:

1- Closure :

c = a+ b,

d = a ∗ b. (2.12)

10 CHAPTER 2. REED-SOLOMON CODES

2- Associative :

a+ (b+ c) = (a+ b) + c,

a ∗ (b ∗ c) = (a ∗ b) ∗ c. (2.13)

3- Identity :

∃1 ∈ F : ∀a ∈ F : a ∗ 1 = 1 ∗ a = a,

∃0 ∈ F : ∀a ∈ F : a+ 0 = 0 + a = a. (2.14)

The element 0 is the identity element of addition, the element 1 is the identity
element of multiplication

4- Inverse :

∀a ∈ F : ∃b ∈ F : a+ b = 0.

∀a ∈ F : ∃c ∈ F : a ∗ c = 1. (2.15)

Element b is called the additive inverse, b = (−a), element c is called the mul-
tiplicative inverse, c = a−1(a 6= 0).

5- Commutative :

a+ b = b+ a

a ∗ b = b ∗ a (2.16)

6- Distributive :

(a+ b) ∗ c = a ∗ c+ b ∗ c (2.17)

It’s clear from previous properties, the multiplicative inverse and additive in-
verse of each element are unique. So these properties enable the use of division
and subtraction this is because the division can be performed as follows:

∀a, b, c ∈ F : c = b/a = b ∗ a−1 (2.18)

2.1. ALGEBRAIC STRUCTURES 11

Also the subtraction can be performed as follows:

∀a, b, c ∈ F : c = b− a = b+ (−a) (2.19)

Also the number of elements in the field determines the order of it. So this
structure is suitable for RS codes which needs addition, subtraction, multiplica-
tion, and division to decode it.

2.1.4 Galois Field GF(q)

Galois field GF(q) can be defined as a set of integers {0, 1, 2, ..., q− 1} where q is
a prime, with modulo q addition and multiplication [6]. The name of Galois is in
honour of Evariste Galois [7].

For example consider GF(2) ={0, 1} is a finite field of order 2 under modulo
2 addition and multiplication.

Modulo 2 addition Modulo 2 multiplication
+ 0 1
0 0 1
1 1 0

∗ 0 1
0 0 0
1 0 1

From previous example it is clear that the additive inverse of zero is zero and
also the additive inverse of one is one. This property is very important in GF(2)
or in general in GF(2m) and we can generalize this property by saying that the
additive inverse of any element in GF(2m) is itself. Because of this property we
used GF(2m) to represent RS codes as by using this algebraic structure we can
represent each element in the field in binary form. So we can implement the
encoder and decoder using regular digital circuits.

The previous field is known as a binary field which is used in binary error
control coding. But in this thesis we use non-binary error control coding so we
will introduce non-binary field which called GF(2m).

2.1.5 The extended field GF(2m)

In this subsection we introduce the properties of GF(2m) and how to generate
the field and how the arithmetic operation can be performed over it. Before
introducing the properties of GF(2m), we will see how to generate this field.

From the definition of Galois field GF(q), the number of elements are q and

12 CHAPTER 2. REED-SOLOMON CODES

the field must contain the identity element of addition and the identity element
of multiplication which are zero and one respectively. So GF(2m) has the same
properties but GF(2m) can not be generated like GF(q) as 2m is not a prime
number. So the field will be generated in a different way, we will define a new
element α and the field will be:

GF(2m) =
{

0, 1, α, α2, . . . , α2m−2
}

(2.20)

By defining the field in this way, the multiplication can be performed easily.
For example GF(23) = {0, 1, α, α2, . . . , α6}, the multiplication be performed as
follows:

0 ∗ α = 0

α ∗ α = α2

α3 ∗ α6 = α9 = α9mod 7 = α2

Or in general the multiplication of any two elements in the field αi and αj

belong to GF(2m) can be defined as:

αi ∗ αj = αk

where k = (i+ j)mod (2m− 1). In other words αk = αi+j

α2m−1 , so this condition must
be satisfied:

α2m−1 = 1 (2.21)

In the following part we will explain how to represent the elements in binary
form, hence addition can be performed and also satisfies equation 2.21.

Before introducing the binary representation of GF(2m) some definitions should
be introduced.

A primitive polynomial p(x) of degree m over GF(2) is presented as

p(x) = p0 + p1x+ p2x
2 + ...+ pmx

m (2.22)

where the coefficients pi ∈ GF(2).
The notion of an primitive polynomial is now introduced. But before intro-

ducing the primitive polynomial we will define the irreducible polynomial.
A polynomial p(x) defined over GF(2), of degree m, is said to be irreducible,

2.1. ALGEBRAIC STRUCTURES 13

if p(x) can not be factorized to polynomials of degree higher than zero and lower
than m [2].

An irreducible polynomial of degreem is a primitive polynomial if the smallest
positive integer n for which p(x) divides xn + 1 is n = 2m−1 [2].

So we write this equation,

xn + 1 = p(x)q(x) (2.23)

To generate the extended field GF(2m), the element α is assumed to be a root
of p(x) which is a primitive, monic polynomial of degree m. By substituting by α
in equation 2.23

αn + 1 = p(α)q(α) = 0

αn = 1 (2.24)

So now equation 2.21 is satisfied. By this primitive polynomial the field ele-
ments can be represented in binary form.

For example, we want to represent the elements which belong to GF(23) in
binary form and the primitive polynomial p(x) = 1 + x+ x3. So

p(α) = 1 + α + α3 = 0

α3 = 1 + α

α4 = α + α2

α5 = 1 + α + α2

α6 = 1 + α2

So we can represent all elements in terms of 1, α, α2 as follows:

14 CHAPTER 2. REED-SOLOMON CODES

Table 2.1: Binary representation of GF(2m)
Field elements Standard Basis

1, α, α2

0 000
1 100
α 010
α2 001
α3 110
α4 011
α5 111
α6 101

As shown in Table 2.1 the binary representation of elements depends on the
primitive polynomial and the basis of the field [7]. We have a different types of
basis to represent the field elements so we can change the field basis to enhance the
performance of multiplier as addition can be performed simply using XOR gate.
The primitive polynomial p(x) for different values of m is shown in Appendix A.

2.1.6 Basis of field GF(2m)

The Galois field GF(2m) elements can be expressed as a linear combination of a
set of m linearly independent elements γ = {γ0, γ1, ..., γm−1} belong to GF(2m)
and these elements called a basis of GF(2m) [8].

Let any element a∈ GF(2m) can be represented as a linear combination of
these basis elements over GF(2). That is

a = aoγ0 + a1γ1 ++ am−1γm−1 ai ∈ GF(2). (2.25)

Hence the field element a can be expressed by the binary vector (a0, a1, ..., am−1).
The type of basis which is used to represent the field depends on the application as
the speed is the important issue of some applications and the area is the important
issue of other applications so now we will introduce the types of basis.

Standard Basis

Let a be an element in GF(2m). In the standard basis the element can be repre-
sented as follows [8]:

a = a0 + a1α + a2α
2 + · · ·+ am−1α

m−1 (2.26)

2.1. ALGEBRAIC STRUCTURES 15

Where ai ∈ GF(2).
For example consider GF(23) with a primitive polynomial p(x) = x3 + x + 1,

then A = {1, α, α2} forms the standard basis for this field and all 8 elements can
be represented as

a = a0 + a1α + a2α
2 (2.27)

where the ai ∈ GF(2). The relationship between the elements and the standard
basis representation of GF(23) is shown in Table 2.1.

Dual Basis

A field element a can be expressed in dual basis as follows [8]:

a = a0λ0 + a1λ1 + a2λ2 + · · ·+ am−1λm−1 (2.28)

Where ai ∈ GF(2) is the trace of a, i.e. ai = Tr(aαi) and λi ∈ GF(2m). The
definition of the trace function is given below:

Let the trace of an element γ ∈GF(2m) be defined as follows:

Tr(γ) =
m−1∑
k=0

γ2k (2.29)

Let two basis λk and µj are said to be dual to each other if:

Tr(µjλk) =

1 if j = k

0 if j 6= k
(2.30)

For convenience, the basis µj is called the original basis and λk is called its
dual basis. So we can convert from any basis to its dual basis using equation 2.30
which will be explained later.

Using The dual basis field element representation, an efficient and simple hard-
ware implementation of a multiplier [9] can be implemented as it can be imple-
mented using addition and shift operations only.

For example consider GF(24) with a primitive polynomial p(x) = x4 + x + 1.
Then {1, α, α2, α3} is the standard basis for the field. {1, α3, α2, α} forms the
dual basis to the standard basis [9]. So the dual basis can be obtained from the
standard basis with a simple linear transformation [10].

16 CHAPTER 2. REED-SOLOMON CODES

Normal Basis

The normal basis also can be used to represent an element a ∈ GF(2m) as follows
[8]:

a = a0γ + a1γ
2 + a2γ

4 + · · ·+ am−1γ
2(m−1) (2.31)

Where ai ∈ GF(2) and γ ∈ GF(2m).
The main advantage of using the normal basis is the easy implementation of

squarer. Assume that
{
α, α2, α4, . . . , α2(m−1)

}
is the normal basis of GF(2m) so an

element a can be represented as follows [8]:

a = a0α + a1α
2 + a2α

4 + · · ·+ am−1α
2(m−1) (2.32)

So the square of a can be written as follows:

a2 = a0α
2 + a1α

4 + a2α
8 + · · ·+ am−1α

2m (2.33)

But by multiplying equation 2.21 by α, we can get

α2m = α (2.34)

So equation 2.33 can be written as

a2 = am−1α + a0α
2 + a1α

4 + a2α
8 + · · ·+ am−2α

2(m−1) (2.35)

From equations 2.33 and 2.35 we can notice that a2 is a cyclic shift of a.
This property is important as it allows for hardware efficient Massey-Omura

multipliers to be designed [11]. The normal basis representation of GF(24) is given
in Appendix B.

2.1.7 Basis Conversions

Conversion from one basis to another one is required to have a homogeneous
system, as the communicating parts must have a common representation. But
they may choose different representation when implementing finite field arithmetic,
eg., data encryption and error control coding. To take the advantage of each basis
representation, a system can be partitioned and an appropriate technique applied
to each sub-system. Hence, the need for conversion circuits and techniques are
necessary [8].

2.1. ALGEBRAIC STRUCTURES 17

Standard Basis to Dual Basis Conversion

Let the primitive polynomial of GF(28) be

p(x) = 1 + x+ x3 + x5 + x8

From the definition of the trace function in equation 2.29 we get:

Tr(αk) =
7∑
i=0

(αk)2i (2.36)

Where α is the root of p(x).

In standard basis any element Z ∈GF(28) can be written as :

Z =
7∑

k=0
zkα

k (2.37)

Also can represent the element Z by a vector [z0, z1, . . . , z7].

And in dual basis element Z can be represented as:

Z =
7∑

k=0
z̀kλk (2.38)

Where λk and αk are dual to each others. So from equations 2.30, 2.37, and
2.38 we can get z̀k if we know zk as follows:

z̀k = Tr(Zαk)

= Tr((z0α
0 + z1α + z2α

2 + z3α
3

+z4α
4 + z5α

5 + z6α
6 + z7α

7)αk (2.39)

= z0Tr(αk) + z1Tr(αk+1) + z2Tr(αk+2) + z3Tr(αk+3)

+z4Tr(αk+4) + z5Tr(αk+5) + z6Tr(αk+6) + z7Tr(αk+7)

From equation 2.40, the conversion from standard basis to dual basis is com-
pleted once Tr(αi), for 0 ≤ i ≤ 14 are known.

Dual Basis to Standard Basis Conversion

Also from equations 2.30, 2.37, and 2.38 we can get zk if we know z̀k as follows:

18 CHAPTER 2. REED-SOLOMON CODES

zk = Tr(Zαk)

= Tr((z̀0λ0 + z̀1λ1 + z̀2λ2 + z̀3λ3

+z̀4λ4 + z̀5λ5 + z̀6λ6 + z̀7λ7)λk (2.40)

= z̀0Tr(λ0λk) + z̀1Tr(λ1λk) + z̀2Tr(λ2λk) + z̀3Tr(λ3λk)

+z̀4Tr(λ4λk) + z̀5Tr(λ5λk) + z̀6Tr(λ6λk) + z̀7Tr(λ7λk)

If the trace values of equation 2.40 the basis conversion from dual to standard
basis is completed.

Normal Basis to Standard Basis Conversion

Consider the element Z ∈GF(2m) and its representation in standard basis will be
as follows:

Z =
[
z0 z1 . . . zm−1

]

α0

α1

...
αm−1

 (2.41)

Also the element Z can be represented in normal basis as follows:

Z̀ =
[
z̀0 z̀1 . . . z̀m−1

]

α

α2

...
α2(m−1)

 (2.42)

Z̀ is simply an alternative representation of Z therefore Z̀ can be converted
from Z with a particular mapping known as a conversion matrix. Let C be the
conversion matrix and can be written as follows:

z0

z1
...

zm−1

 =

c11 c12 . . . c1(m−1)

c21 c22 . . . c2(m−2)
...

c(m−1)1 c(m−1)2 . . . c(m−1)(m−1)

z̀0

z̀1
...

z̀m−1

 (2.43)

Since {z0, z1, z2, . . . , zm−1}and {z̀0, z̀1, z̀2, . . . , z̀m−1}elements belong to GF(2)

2.1. ALGEBRAIC STRUCTURES 19

therefore their addition can be implemented by an array of XOR gates.

For example, let us consider the case of an element in GF(24) in which p(x) =
1+x+x4 is the primitive polynomial. In standard basis, let element A be expressed
as

A = a0α
0 + a1α

1 + a2α
2 + a3α

3 (2.44)

Similarly, À is an alternative representation of A in normal basis, so it can be
represented as follows:

À = à0α
3 + à1α

6 + à2α
12 + à3α

9 (2.45)

So by equating equation 2.44 by equation 2.45, we can get the conversion
matrix as follows:

a0α
0 + a1α

1 + a2α
2 + a3α

3 = à0α
3 + à1α

6 + à2α
12 + à3α

9 (2.46)

= à2α
0 + (à3 + à2)α1 + (à1 + à2)α2 + (à0 + à1 + à2 + à3)α3

So by equating the coefficient we can get the following set of equations:

a0 = à2

a1 = à3 + à2 (2.47)

a2 = à1 + à2

a3 = à0 + à1 + à2 + à3

So the conversion matrix can be represented as:

a0

a1

a2

a3

 =

0 0 1 0
0 0 1 1
0 1 1 0
1 1 1 1

à0

à1

à2

à3

 (2.48)

Therefore, [A] = [C][B], where C is the conversion matrix.

20 CHAPTER 2. REED-SOLOMON CODES

Standard Basis to Dual Basis Conversion

The matrix C which is shown above describes the conversion from normal basis
to standard basis. Therefore, to convert from standard basis to normal basis the
inverse of matrix is needed which is C−1. The matrix C−1 for previous example
can be expressed as:

C−1 =

1 1 1 1
1 0 1 0
1 0 0 0
1 1 0 0

 (2.49)

2.2 Finite Field Multipliers

The most important operations of finite field operations are multiplication and
addition. Multiplication is considered to be much more complicated than addition
as addition can be implemented easily using XOR gate. A huge effort has been
exerted in research to reduce the hardware complexity and the latency of multi-
pliers. In the following subsections Three types of multipliers will be explained
and each of them is based on different basis.

2.2.1 Multiplication by a constant value

A multiplication by a constant value is used a lot either in encoding or in decoding
process of RS codes. A multiplication by a constant value can be performed using
two-variable operands multiplier of any types which will be described later. But
it is usually efficiently to design a multiplier specifically for this task to save the
area [2, 7].

Let a be an element in GF(2m) and it can be expressed in standard basis as:

a = a0 + a1α + ...+ am−1α
m−1 (2.50)

After multiplying a by α equation 2.50 can be written as

a ∗ α = a0α + a1α
2 + ...+ am−1α

m (2.51)

But the primitive polynomial p(x) can be written as follows:

p(x) = 1 + p1x+ p2x
2 + · · ·+ pm−1x

m−1 + xm (2.52)

2.2. FINITE FIELD MULTIPLIERS 21

Where pi ∈ GF(2) and p(α) = 0 so

p(α) = 1 + p1α + p2α
2 + · · ·+ pm−1α

m−1 + αm = 0 (2.53)

hence,

αm = 1 + p1α + p2α
2 + · · ·+ pm−1α

m−1 (2.54)

So equation 2.51 can be written as follows:

a∗α = a0α+a1α
2 +...+am−2α

m−1 +am−1(1+p1α+p2α
2 +· · ·+pm−1α

m−1) (2.55)

Which is equivalent to a ∗ α mod p(α).
For example consider, let a ∈ GF(24) and be presented in standard basis as,

a = a0 + a1α + a2α
2 + a3α

3 (2.56)

multiplication by α in GF(24), where the primitive polynomial p(x) = x4+x+1.
Then

a ∗ α = a0α + a1α
2 + a2α

3 + a3α
4 (2.57)

hence,

a ∗ α = a3 + (a3 + a0)α + a1α
2 + a2α

3 (2.58)

and this multiplication can be carried out with one XOR gate as shown in
figure 2.6.

2.2.2 Two-Variable operands Multipliers

Finite field addition and multiplication can be performed serially or in parallel,
that depends on that m bits representing field elements are processed in series
or in parallel. Bit-serial multipliers generally require less area than bit-parallel
multipliers, but also they usually need m clock cycles to generate the output
rather than one. Hence in time critical applications bit-parallel multipliers are the
best choice, in spite of the increased hardware overheads, so in this thesis we will
focus on bit-parallel multipliers.

22 CHAPTER 2. REED-SOLOMON CODES

Bit-parallel Dual basis multipliers (PDBM)

The bit-parallel dual basis multiplier (PDBM) was presented in [9].
Let a, b, c ∈GF(2m), where a and c are presented in dual basis form as

a = a0λ0 + a1λ1 + · · ·+ am−1λm−1 (2.59)

c = c0λ0 + c1λ1 + · · ·+ cm−1λm−1 (2.60)

where ai, ci ∈ GF(2), and λi ∈ GF(2m), but b is presented in standard basis
form as

b = b0 + b1α + · · ·+ bm−1α
m−1 (2.61)

where bi ∈ GF(2).
From the definition of trace function in equation 2.30 the coefficients ai and ci

can be obtained as follows:

ai = Tr(aαi) (2.62)

ci = Tr(cαi) (2.63)

Where i = 0, 1, . . . , m− 1
Therefore the multiplication c = a ∗ b can be expressed in the matrix form [9].

a0 a1 . . . am−1

a1 a2 . . . am
...

am−1 am . . . a2m−2

b0

b1
...

bm−1

 =

c0

c1
...

cm−1

 (2.64)

The coefficients ai (i = m, m+ 1, . . . , 2m− 1) can be computed as follows:

am+k = Tr(aαm+k) =
m−1∑
j=0

pj ∗ aj+k (2.65)

Where the pj are the coefficient of the primitive polynomial p(x) and k =
0, 1, m− 2.

Berlekamp used the above properties to design a bit serial-multiplier [12], and
also the PDBM can be easily derived [9] as a circuit implementing the equation.

2.2. FINITE FIELD MULTIPLIERS 23

cj = ajb0 + aj+1b1 + aj+2b2 + . . .+ aj+m−1bm−1 (2.66)

Where j = 0, 1, . . . , m− 1.

In general a PDBM for GF(2m) contains module A that generates am+i (i =
0, 1, . . . , m− 1) from equation 2.66 and m modules B each of them generates the
inner product of ci by performing equation 2.66.

As an example, the PDBM for GF(23) using a primitive polynomial p(x) =
1 + x + x3 is shown in figure 2.1 and modules A and B are shown in figures 2.2
and 2.3 respectively.

Module A

Module B Module B Module B

a0 a1 a2

a3 a4

c0 c1 c2

b

Figure 2.1: Bit-parallel dual basis multiplier for GF(23)

24 CHAPTER 2. REED-SOLOMON CODES

a0

a1

a2

a3

a4

Figure 2.2: Type A module for a bit-parallel dual basis multiplier for GF(23)

aj

aj+1

aj+2

b0

b1

b2

cj

Figure 2.3: Type B module for a bit-parallel dual basis multiplier for GF(23)

From previous discussion it is clear that the polynomial basis multiplier is more
efficient in serial form [12]. So we don’t use it in this thesis.

Bit-parallel normal basis multipliers

A normal basis multiplier was proposed by Massey and Omura [11]. Massey-
Omura multiplier [11] operates over the normal basis and so no basis converters
are required as the two operands are expressed in normal basis. The idea of
Massey-Omura multiplier is that the coefficient ci+1 of the output can be obtained
by increasing the indices of the inner products of ci by one, but from equation
2.68 we can notice that we the index of am−1 and bm−1 is increased by one they
are transformed to a0 and b0. So the same function of ci can be used to generate
the coefficient ci+1 after one cyclic shift. So with each cyclic shift a product bit
is generated. Hence instead of m Boolean functions to generate the product, one
Boolean function is required to generate allm product bits. Each Boolean function

2.2. FINITE FIELD MULTIPLIERS 25

needs 2m− 1 AND gates and 2m− 2 XOR gates and the latency of the multiplier
is m clock cycles.

For an example, consider a Massey-Omura bit-serial multiplier for GF(24). Let
a, b, and c ∈ GF(24) and the primitive polynomial is p(x) = 1 + x + x4 and let
a normal basis for the field is {α3, α6, α12, α9}, where α24 = α9. Let such that
c = a ∗ b and these elements are represented over normal basis. Then

c = c0α
3 + c1α

6 + c2α
12 + c3α

9

= (a0α
3 + a1α

6 + a2α
12 + a3α

9).(b0α
3 + b1α

6 + b2α
12 + b3α

9) (2.67)

Where

c0 = a0b2 + a1b2 + a1b3 + a2b0 + a2b1 + a3b1 + a3b3

c1 = a1b3 + a2b3 + a2b0 + a3b1 + a3b2 + a0b2 + a0b0

c2 = a2b0 + a3b0 + a3b1 + a0b2 + a0b3 + a1b3 + a1b1 (2.68)

c3 = a3b1 + a0b1 + a0b2 + a1b3 + a1b0 + a2b0 + a2b2

From equation 2.68 the Boolean function which is required to generate c0 can
be used to generate c1, c2, and c3 by adding one to all the indices. .

So Massey-Omura multiplier is more efficient in serial architecture. A bit-
parallel Massey-Omura multiplier (PMOM) requires at least m(2m − 2) 2-input
XOR gates and m(2m − 1) 2-input AND gates [13]. Accordingly, this multiplier
is more complex than the PDBM and is not used in this thesis.

Bit-parallel standard basis multipliers (PSBM)

Standard basis multipliers operate over the standard basis and require no basis
converters (as the two operands use the same basis). These multipliers are eas-
ily implemented, reasonably hardware efficient. The bit-parallel standard basis
multiplier (PSBM) was proposed by Laws [14].

Let a, b, c ∈ GF(2m) and can be represented in standard basis as follows:

26 CHAPTER 2. REED-SOLOMON CODES

a = a0 + a1α + · · ·+ am−1α
m−1

b = b0 + b1α + · · ·+ bm−1α
m−1 (2.69)

c = c0 + c1α + · · ·+ cm−1α
m−1

The multiplication c = a ∗ b (where a, b, c are as given in equation 2.69) can
be expressed

c = a ∗ b = (a0 + a1α + · · ·+ am−1α
m−1) ∗ b

c = (· · · (((a0b) + a1bα) + a2bα
2 + · · ·)α + am−1bα

m−1 (2.70)

Now represent b ∗ αj as

b ∗ αj = bj,0 + bj,1α + bj,2α
2 + · · ·+ bj,m−1α

m−1 (2.71)

Therefore using 2.70 and 2.71

cj = a0b0,j + a1b1,j + a2b2,j + · · ·+ am−1bm−1,j (2.72)

Using equations 2.71 and 2.72 it is possible to construct a modular and regular
bit-parallel standers basis multiplier. A PPSM for GF(24) is presented in figures
2.4, 2.5, and 2.6.

*α *α *α

Module B Module B

Module B

Module B

b0 b*α b*α2 b*α3

c0 c1 c2 c3

a

b3

b0,0
b3,0 b3,1

b3,2
b3,3

b0,3

Figure 2.4: PPBM for GF(24).

2.3. INTRODUCTION TO CYCLIC CODES 27

a0

a1

a2

b0,j

b1,j

b2,j

cj

b3,j

a3

Figure 2.5: Module B of the PPBM

bj,0

bj,1

bj,2

bj,3

bj+1,0

bj+1,1

bj+1,2

bj+1,3

Figure 2.6: Circuit for multiplying by α in GF(24)

2.3 Introduction to Cyclic Codes

Cyclic codes are an important type of linear block codes, but they has an impor-
tant properties which makes them easily implemented using sequential logic or
shift registers and also by using these properties the hardware complexity can be
reduced [2].

A linear block code is said to be cyclic if this condition is satisfied:
For any code vector of n components, c = (c0, c1, ..., cn−1), a right-shift rotation

of its components generates also a code vector [6, 15, 16]. If this right-shift rotation
is done i times, a cyclically rotated version of the original vector is obtained as
follows:

c(i) = (cn−i, cn−i+1, . . . , cn−1, c0, c1, . . . , cn−i−1)

Also, a linear block code means that, the sum of any two code vectors is also
a code vector. As an example, the cyclic code Cb(7, 4) described in Table 1.1.

28 CHAPTER 2. REED-SOLOMON CODES

2.3.1 Polynomial Representation of Codewords

Instead of vectors, Code vectors of a given cyclic code Ccyc(n, k) can be expressed
by polynomials. These polynomials are defined over a GF(2m), and they can be
defined over the binary field GF(2) as a special case. A polynomial representation
c(x) of a code vector c = (c0, c1, ..., cn−1) is then of the form

c(x) = c0 + c1x+ . . .+ cn−1x
n−1 (2.73)

Hence The ith-position right-shift rotation of a code vector c can be expressed
as follows:

c(i)(x) = cn−i + cn−i+1x+ · · ·+ cn−1x
i−1 + c0x

i + c1x
i+1 + · · ·+ cn−i−1x

n−1 (2.74)

Dealing with these polynomials mathematically is much easier with dealing
with vectors as they can be multiplied and divided easily.

2.3.2 Encoding of a Cyclic Code

The relationship between the ith-position right-shift rotated polynomial c(i)(x)
and the original code polynomial c(x) is of the form

xic(x) = q(x)(xn + 1) + c(i)(x) (2.75)

hence,

c(i)(x) = xic(x)mod (xn + 1) (2.76)

From all the code polynomials of a given cyclic code Ccyc(n, k), there is a
certain code polynomial of minimum degree [2]. Let this minimum degree equals to
r, so that in its polynomial expression the coefficient of xr will be exist. Therefore,
this polynomial will be of the form g(x) = g0 + g1x+ · · ·+ xr.

The minimum degree polynomial is unique as if there is another polynomial
with the same degree, this polynomial would be of the form g1(x) = g10 + g11x+
· · ·+ xr. But because the cyclic code Ccyc(n, k) is a linear block code, the sum of
these two code polynomials should be a code polynomial, and this sum will result
in a polynomial of degree (r − 1), which contradicts the initial assumption that
the minimum possible degree is r. Hence, the minimum-degree code polynomial

2.3. INTRODUCTION TO CYCLIC CODES 29

of a given cyclic code Ccyc(n, k) is unique.
Also it is possible to prove that the minimum-degree polynomial of a given

cyclic code Ccyc(n, k) is monic polynomial, g0 = 1. If the minimum degree poly-
nomial has the form g2(x) = g21x + g22x

2 + . . . + g2(r−1)x
r−1 + xr. So if we

cyclically shift g2(x) by one place to the left we get another code polynomial
g̀2(x) = g21 + g22x+ . . .+ g2(r−1)x

r−1 with degree less than r and that contradicts
the definition that g2(x) is the non-zero code polynomial of minimum degree.

Then, the expression for such a non-zero minimum-degree polynomial of a
given cyclic code Ccyc(n, k) is

g(x) = 1 + g1x+ · · ·+ gr−1x
r−1 + xr (2.77)

On the other hand, polynomials of the form xg(x), x2g(x), ..., xn−r−1g(x) are
equivalent to shift the polynomial g(x) cyclically so they can be written as follows

xg(x) = g(1)(x)

x2g(x) = g(2)(x) (2.78)
...

xn−r−1g(x) = g(n−r−1)(x)

So these polynomials are also code polynomials. Since a cyclic code Ccyc(n, k)
is also a linear block code, linear combinations of code polynomials are also code
polynomials, and therefore

c(x) = m0g(x) +m1xg(x) + · · ·+mn−r−1x
n−r−1g(x)

c(x) = (m0 +m1x+ · · ·+mn−r−1x
n−r−1)g(x) (2.79)

Equation 2.79 determines that any code polynomial c(x) is a multiple of the
minimum-degree polynomial g(x). This property is the most important for the
encoding and decoding of a cyclic code Ccyc(n, k). For simplicity we will assume
that the coefficients mi , i = 0, 1, 2, ..., n − r − 1, in equation 2.79 belong to
GF(2). Then there will be 2n−r code polynomials of degree n− 1 or less that are
multiples of g(x). But in Ccyc(n, k) there is k bits message so we have 2kpossible
linear combinations of message. For a dual assignment between the message and
the coded vector spaces, there should be 2k possible linear combinations of code
polynomials. Therefore, 2n−r = 2k or r = n− k. So in general the degree of. The

30 CHAPTER 2. REED-SOLOMON CODES

minimum degree polynomial equals to the number of redundant symbols which
are added to the message in encoding process. The minimum-degree polynomial
is then of the form

g(x) = 1 + g1x+ · · · gn−k−1x
n−k−1 + xn−k (2.80)

Also there another important property for g(x) this property is that the gener-
ator polynomial g(x) is factor from xn + 1 to prove that we will use the following
procedure; multiply g(x) by xk so the polynomial xkg(x) has degree of n then
divide xkg(x) over xn + 1 so we will have the following

xkg(x) = (xn + 1) + g(k)(x) (2.81)

where g(k)(x) is kth cyclic shift of g(x) so it is a code polynomial and also it is
multiple of g(x) so we can rewrite equation 2.81 as follows

xkg(x) = (xn + 1) + a(x)g(x)

(xk + a(x))g(x) = xn + 1 (2.82)

from equation 2.82 we can say g(x) is factor of xn + 1.
Summarizing, in a linear cyclic code Ccyc(n, k), there is a unique minimum-

degree code polynomial, and any other code polynomial is a multiple of this poly-
nomial. The non-zero minimum-degree polynomial is of degree n − k , and any
other code polynomial of the linear cyclic code Ccyc(n, k) is of degree n−1 or less,
and so

c(x) = m(x)g(x) = (m0 +m1x+ · · ·+mk−1x
k−1)g(x) (2.83)

where mi, i = 0, 1, 2, ..., k − 1, are the symbols of the message vector. Since
the minimum-degree code polynomial generates the linear cyclic code Ccyc(n, k),
so it is called the generator polynomial.

2.3.3 Encoding of Cyclic Codes in Systematic Form

the encoding process for a linear cyclic code Ccyc(n, k) has been introduced in
equation 2.83 as a multiplication between the message polynomial m(x) and the
generator polynomial g(x), and this operation is suitable to generate any code
polynomial of the code, but this type of encoding has a big problem. This prob-

2.3. INTRODUCTION TO CYCLIC CODES 31

lem is summarized in that the message could not be obtained directly from the
code polynomial as the code polynomial should be divided over the generator g(x)
to get the message m(x) and that makes the decoding process more complicated.
So we encode to make the message part of code polynomial and this encoding pro-
cedure is called encoding in systematic form. Given a polynomial that satisfies the
conditions to be the generator polynomial g(x) of a linear cyclic code Ccyc(n, k),
and if the message polynomial is of the form

m(x) = m0 +m1x+ · · ·+mk−1x
k−1 (2.84)

then the systematic version of the linear cyclic code Ccyc(n, k) can be obtained
by performing the following operations [2, 15, 16]:

The polynomial xn−km(x) = m0x
n−k+m1x

n−k+ · · ·+mk−1x
n−1 is first formed,

and then divided by the generator polynomial g(x):

xn−km(x) = a(x)g(x) + p(x) (2.85)

Here p(x) is the remainder polynomial of the division of equation 2.85, which
has degree n − k − 1 or less, since the degree of g(x) is n − k. By rearranging
equation 2.85, we obtain xn−km(x) + p(x) = a(x)g(x) where that can be noticed
the polynomial xn−km(x) + p(x) is a code polynomial because it is a multiple of
g(x). In this polynomial, the term xn−km(x) represents the message polynomial
but it is right shifted by n − k positions, and p(x) is the remainder polynomial
of this division and acts as the redundancy polynomial, and reserving the lower
degree terms of the code polynomial c(x). This procedure achieves the objective
of encoding in the systematic form

c(x) = xn−km(x) + p(x) = p0 + p1x+ · · ·+ pn−k−1x
n−k−1 +

m0x
n−k +m1x

n−k+1 + · · ·+mk−1x
n−1 (2.86)

that when expressed as a code vector is equal to

c = (p0, p1, . . . , pn−k−1, m0, m1, . . . mk−1) (2.87)

32 CHAPTER 2. REED-SOLOMON CODES

2.4 Encoding of Reed Solomon Code

RS codes are a type of linear, non-binary, cyclic block codes [3]. This type is a
subfamily of the family of the linear, non-binary, cyclic BCH (Bose, Chaudhuri
[17], Hocquenghem [18]) codes which are working over the GF(q). Here q is a
power of a prime number pprime, q = pmprime, where m is a positive integer. These
codes are different from binary codes, which work over GF(2). This is why these
codes are also called non-binary codes. All the concepts and properties valid for
binary codes are also valid for these non-binary codes.

An RS code CRS(n, k) able to correct any error pattern of size t or less is
defined over the Galois field GF(2m), and it has parameters as shown in Table 2.2.

Table 2.2: RS codes parameters
Code length n = 2m − 1

Number of parity check elements n− k = 2t
Minimum distance dmin= 2t+ 1

Error-correction capability t element errors per code vector

An RS code CRS(n, k) of length n and dimension k is the linear, cyclic, block
RS code generated by the polynomial

g(x) = (x− α)(x− α2) · · · (x− αn−k)

= (x− α)(x− α2) · · · (x− α2t) (2.88)

= g0 + g1x+ g2x
2 + · · ·+ g2t−1x

2t−1 + g2tx
2t

An RS code can be equivalently defined as the set of code polynomials c(x)
over GF(2m) of degree deg{c(x)} ≤ n−1 that have α, α2, . . . , αn−k as their roots
[17]. Therefore c(x) ∈ CRS if and only if

c(α) = c(α2) = c(α3) = · · · = c(α2t) = 0where deg {c(x)} ≤ n− 1 (2.89)

2.4.1 RS Codes in Systematic Form

An RS code generated by a given generator polynomial of the form of 2.88 is a
linear and cyclic block RS code CRS(n, n−2t) consisting of code polynomials c(x)
of degree n− 1 or less. All these polynomials coefficients belong to GF(2m). Code

2.4. ENCODING OF REED SOLOMON CODE 33

polynomials are multiples of the generator polynomial g(x), thus containing all its
roots. A message polynomial is of the form

m(x) = m0 +m1x+ · · ·+mk−1x
k−1 (2.90)

This message polynomial is also formed with coefficients that are elements of
GF(2m). The systematic form for these codes is obtained in the same way as for
binary cyclic codes, that is, by obtaining the remainder p(x) of the division of
xn−km(x) by g(x) as stated in equation 2.85

2.4.2 Implementation of RS Encoder

In hardware implementation, equation 2.86 is accomplished by using division cir-
cuit as shown in figure 2.7. As soon as the messagem(x) has entered to the circuit,
the parity-check symbols are in the register.

Figure 2.7: The LFSR architecture of RS encoder.

34 CHAPTER 2. REED-SOLOMON CODES

Chapter 3

REED-SOLOMON DECODER

When a received codeword (code vector) is fed to the RS decoder at the receiver for
processing, the decoder first tries to verify that is this codeword valid codewords or
not. If it dose not, errors must have occurred during transmission over a commu-
nication channel. This part of the decoder processing is called error detection. If
errors are detected, the decoder attempts to correct it. This called error correction.

Syndrome
Computation

Error
Corrector

Chien Search

Key
Equation

Solver
(EA)

P
S Forney

Algorithm

P
S

RS Decoder Main Controller

RX
msg

o/pS(x) σ(x)

w(x)

σ (α i)

σ‘ (α i)

w (αi)

Error Detection Error Correction

Delay Buffer
FIFO

w (α i)
σ‘ (α i)

Figure 3.1: Block Diagram of RS Decoder

Figure 3.1 shows the basic block diagram of a decoder for RS codes. The
decoder consists of digital circuits and processing elements to accomplish the fol-
lowing tasks:

1- Syndrome computation used for error detection.
2- Key equation solver used to find the coefficients of error-location polynomial

σ(x) and error-evaluation polynomial W (x).

35

36 CHAPTER 3. REED-SOLOMON DECODER

3- Find the roots of the error location polynomial σ(x) using Chien search
algorithm.

4- Find the error values using Forney algorithm.
5-Correct the received codeword with the error locations and values found.

3.1 Syndrome Calculation

The syndrome calculation is the first step in RS decoding process. The function
of syndrome block is to detect if there are any errors in the received codeword.
Assume that the transmitted codeword polynomial c(x) is :

c(x) = c0 + c1x+ · · ·+ cn−1x
n−1 (3.1)

This codeword is transmitted and affected by noise in channel, and modeled
as a received polynomial r(x):

r(x) = r0 + r1x+ · · ·+ rn−1x
n−1 (3.2)

which is related to the error polynomial e(x) and the codeword polynomial
c(x) as follows:

r(x) = c(x) + e(x) (3.3)

where the error pattern e(x) added by the channel is expressed as:

e(x) = e0 + e1x+··· +en−1x
n−1 (3.4)

where ei = ri − ci is a symbol form GF(2m).

From equation 2.79 that can be noticed every valid codeword polynomial c(x) is
a multiple of the generator polynomial g(x). Therefore, the roots of g(x) must also
be the roots of c(x). From equation 3.5, the received polynomial r(x) evaluated
at each of the roots of g(x) should equals to zero only when it is a valid codeword.
Any errors will result in one or more of the computations yielding a non-zero
result. So the computation of syndrome symbol can be described as follows:

Si = r(αi), i = 1, 2, . . . , 2t (3.5)

where α, α2, α3, . . . , α2t are the roots of g(x). If r(x) was a valid codeword,

3.2. THE DECODING ALGORITHM 37

it would cause each syndrome symbol Si to equal to zero, or, if one or more syn-
dromes are non-zero, errors have been detected.

3.2 The Decoding Algorithm

The relation between the code polynomial c(x), received polynomial r(x), and the
error polynomial e(x) can be stated as follows [2]:

c(x) = r(x) + e(x) (3.6)

All these polynomials are defined with coefficients over GF(2m). Let us assume
that the error vector contains τ non-zero elements, representing an error pattern of
τ errors placed at positions xj1 , xj2 , . . . , xjτ , where 0 ≤ j1 < j2 < · · · < jτ ≤ n−1.
The error-location number is then defined as

βl = αjl (3.7)

where l = 1, 2, 3, . . . , τ .
The syndrome vector components are calculated, as was stated in equation

3.5, by replacing the variable x in the received polynomial r(x) with the roots αi,
i = 1, 2, . . . , 2t. It is then true that

si = r(αi) = c(αi) + e(αi) = e(αi) (3.8)

Thus, a system of 2t equations can be formed as follows:

s1 = r(α) = e(α) = ej1β1 + ej2β2 + · · ·+ ejτβτ

s2 = r(α2) = e(α2) = ej1β
2
1 + ej2β

2
2 + · · ·+ ejτβ

2
τ

... (3.9)

s2t = r(α2t) = e(α2t) = ej1β
2t
1 + ej2β

2t
1 + · · ·+ ejτβ

2t
τ

So now we have 2τ unknowns which are β1, β2, . . . , βτ , ej1 , ej2 , . . . , ejτ and at
worst case τ = t. These unkowns are the positions and the values of errors. So any
algorithm solves the set of equations 3.9 can be considered as a decoding algorithm
for RS codes.

But In order to decode RS code, the following polynomials will be defined:
The error-location polynomial σ(x) is defined as

38 CHAPTER 3. REED-SOLOMON DECODER

σ(x) = (x− α−j1)(x− α−j2) · · · (x− α−jτ) =
τ∏
l=1

(x− α−jl)

= σ0 + σ1x+ · · ·+ στx
τ (3.10)

and the error-evaluation polynomial W (x) also can be defined as

W (x) =
τ∑
l=1

ejl

τ∏
i=1,i 6=l

(x− α−ji)

= W0 +W1x+ · · ·+Wτ−1x
τ−1 (3.11)

The error values can be calculated from

ejl = W (αjl)
σ̀(αjl) (3.12)

where σ̀(x) is the first derivative of the polynomial σ(x) with respect to x.
Polynomials σ(x) andW (x) are relative prime, since from the way they are defined,
they do not have common roots.

By using polynomials σ(x) and W (x) the algorithm can calculate the posi-
tions of the errors and their values by using equation 3.12. Also, the syndrome
polynomial of degree 2t− 1 is defined as

S(x) = s1 + s2x+ s3x
2 + · · ·+ s2tx

2t−1 =
2t−1∑
j=0

sj+1x
j (3.13)

If S(x) = 0, the received polynomial is a code polynomial or contains an
undetectable error pattern.

3.2.1 The Key Equation

The key equation is that equation relates polynomials σ(x), S(x), and W (x). The
solution of this equation is a decoding algorithm for a RS code [2]. This equation
can be written as follows:

σ(x)S(x) = −W (x) + µ(x)x2t (3.14)

Also it can be written like that

{σ(x)S(x) +W (x)}mod(x2t) = 0 (3.15)

3.2. THE DECODING ALGORITHM 39

where µ(x) is an auxiliary polynomial.
This key equation can be proved as follows:
By rewriting the syndrome polynomial S(x),

S(x) =
2t−1∑
j=0

sj+1x
j =

2t−1∑
j=0

(
t∑
i=1

ejiα
ji(j+1))xj =

t∑
i=1

ejiα
ji

2t−1∑
j=0

(αjix)j

S(x) =
t∑
i=1

ejiα
ji (αjix)2t − 1

(αjix)− 1 =
t∑
i=1

eji
(αjix)2t − 1
x− α−ji

(3.16)

and then

σ(x)S(x) =
t∑
i=1

ejiσ
(µ)(x)(αjix)2t − 1

x− α−ji
t∏
l=1

(x− α−jl)

=
t∑
i=1

eji
[
(αjix)2t − 1

] t∏
i=1,i 6=l

(x− α−jl)

=
τ∑
i=1

eji
τ∏

i=1,i 6=l
(x− α−jl) +

 τ∑
i=1

ejiα
ji(2t)

τ∏
i=1,i 6=l

(x− α−jl)
 (3.17)

= −W (x) + µ(x)x2t

For convenience some algorithms deals with equation 3.17 in the following form

(S(x)σ(x) +W (x))modx2t = 0 (3.18)

Many algorithms are used, to solve this equation, Euclidean algorithm, Berlerkamp-
Massey algorithm, and PGZ algorithm which will be described in the following
sections.

3.2.2 Decoding of RS Codes Using the Euclidean Algo-
rithm

The Euclidean algorithm is an algorithm that calculates the greatest common
divisor (GCD) r of any two numbers a and b, r = GCD(a, b) [2]. It also gets two
integer numbers, or for our application, two polynomials s and t , such that

r = sa+ tb (3.19)

Where s, and t are two polynomials are calculated by the algorithm to get the

40 CHAPTER 3. REED-SOLOMON DECODER

GCD. So Euclidean algorithm is suitabel for solving the key equation 3.18, but we
will rewrite this equation to be suitable for the algorithm

−µ(x)x2t + σ(x)S(x) = −W (x) (3.20)

So we can say that W (x) = GCD(S(x), x2t), s = µ(x), and t = σ(x).
Now we will write the algorithm in recursive form to be easy implemented.
Let there are two polynomials a and b such that deg(a) ≥ deg(b) and we want

to apply Euclidean algorithm on them to get the GCD r and s and t polynomials
to saitsfy the following equation 3.19.

Initialization:
r−1 = a and r0 = b, where the value ri is obtained as the remainder of the

division of ri−2 by ri−1

ri−2 = qiri−1 + ri (3.21)

where deg(ri) < deg(ri−1).

By rearranging equation 3.21

ri = ri−2 − qiri−1 (3.22)

The algorithm usually tries to satisfy the following equation

ri = sia+ tib (3.23)

where si and ti represents s and t polynomials in ith step.
The recursion 3.22 is also valid for coefficients si and ti:

si = si−2 − qisi−1 (3.24)

ti = ti−2 − qiti−1 (3.25)

So initially

r−1 = a = (1)a+ (0)b (3.26)

r0 = b = (0)a+ (1)b (3.27)

3.2. THE DECODING ALGORITHM 41

and the initial conditions are

s−1 = 1, t−1 = 0

By applying Euclidean algorithm on the key equation 3.20.
The given polynomials are x2t and S(x), and the ith recursion is of the form

ri(x) = si(x)x2t + ti(x)S(x) (3.28)

Multiplying equation 3.28 by a constant λ ∈GF(2m), we obtain

λri(x) = λsi(x)x2t + λti(x)S(x) (3.29)

= −W (x) = −µ(x)x2t + σ(x)S(x)

where

deg (ri(x)) < t (3.30)

Thus,

W (x) = −λri(x)

σ(x) = λti(x) (3.31)

where λ is a constant that makes the resulting polynomial be a monic polyno-
mial.

3.2.3 Decoding of RS Codes Using Berlekamp-Massey Al-
gorithm

The Berlekamp-Massey (B-M) algorithm [2], [4] is another algorithm to decode
RS and BCH codes. First, this algorithm assumes binary errors. Then it gets the
error location polynomial as this polynomial depends only on the error locations
so there is no need to take the error values into consideration. So equations 3.9
will be modified to

42 CHAPTER 3. REED-SOLOMON DECODER

s1 = r(α) = e(α) = β1 + β2 + · · ·+ βτ

s2 = r(α2) = e(α2) = β2
1 + β2

2 + · · ·+ β2
τ

... (3.32)

s2t = r(α2t) = e(α2t) = β2t
1 + β2t

2 + · · ·+ β2t
τ

The error location polynomial has a different definition with respect to expres-
sion 3.10, which is the following:

σBM(x) = (1− β1x)(1− β2x) · · · (1− βτx) (3.33)

= σ0 + σ1x+ · · ·+ στx
τ

The roots of this polynomial are β−1
1 , β−1

2 , . . . , β−1
τ . This modified definition is

more suitable for the description of the B-M algorithm.

From equation 3.33 the coefficients of the error location polynomial σ(x) can
be written as:

σ0 = 1 (3.34)

σ1 = β1 + β2 + · · ·+ βτ

σ2 = β1β2 + β2β3 + · · ·+ βτβτ−1
...

στ = β1β2 . . . βτ

The set of equations 3.34 can be related to the equations 3.32 as follows:

3.2. THE DECODING ALGORITHM 43

s1 + σ1 = 0

s2 + σ1s1 = 0

s3 + σ1s2 + σ2s1 + σ3 = 0 (3.35)
...

sτ + σ1sτ + · · ·+ στ−1s2 + στs1 = 0

These equations are called Newton identities [17]. Thus, for example,

s2 +σ1s1 = (β1)2 + (β2)2 + · · ·+ (βτ)2 + (β1 +β2 + · · ·+βτ)(β1 +β2 + · · ·+βτ) = 0

since in GF(2m) the products βiβj+βjβi = 0. The remaining Newton identities
can be derived in the same way.

B-M algorithm gets the error location polynomial σ(x) first, then it subtitutes
by it in the key equation to get the error evaluator polynomial W (x).

The Error-Location Polynomial σ(x)

The B-M algorithm mainly finds the coefficients of the error-location polynomial,
σ1, σ2, . . . , στ , then substitutes by these coefficients in the key equation to find the
coefficients of error evaluation polynomial. The B-M algorithm uses the syndrome
vector components S = (s1, s2, . . . , s2t) to find the coefficients σ1, σ2, . . . , στ of
the error-location polynomial, whose roots are the inverses of the error-location
numbers β1, β2, . . . , βτ . The error values at these positions should be calculated,
to correct the error. As said above, the core of the B-M algorithm is an iterative
method for calculating the error-location polynomial coefficients σ1, σ2, . . . , στ

then it gets the error evaluation polynomial coefficientsW0, W1, . . . , Wτ−1 directly
from the key equation.

The algorithm mainly has two steps as follows [2]:
The first step is calculating a minimum-degree polynomial σ(µ)

BM(x) that sat-
isfies the µth Newton identity described in equation 3.35. The second step is
substituting by σ(µ)

BM(x) in the (µ+ 1)th Newton identity in equation 3.35. If this
polynomial satisfies the (µ+1)th Newton identity, then σ(µ)

BM(x) = σ
(µ+1)
BM (x). Oth-

44 CHAPTER 3. REED-SOLOMON DECODER

erwise the decoding algorithm adds a correction term which is called discrepancy
dµ to σ(µ)

BM(x) to get the polynomial σ(µ+1)
BM (x), which satisfies the first µ Newton

identities.
After 2t iteration steps the algorithm is halted and the final version of error

location polynomial σBM(x) equals to 2t th iteration polynomial σ(2t)
BM(x).

Since the last polynomial satisfies the whole set of Newton identities described
in equation 3.35. This algorithm can be implemented in iterative form. The
minimum-degree polynomial obtained in the µth iteration and satisfies the first µ
Newton identities, is σ(µ)

BM(x), and can be written in the following form

σ
(µ)
BM(x) = 1 + σ

(µ)
1 x+ σ

(µ)
2 x2 + · · ·+ σ

(µ)
lµ
xlµ (3.36)

where lµ is the degree of the polynomial σ(µ)
BM(x). The µth discrepancy dµ can

be obtained by using the following equation [2]:

dµ = sµ+1 + σ
(µ)
1 sµ + σ

(µ)
2 sµ−1 + · · ·+ σ

(µ)
lµ
sµ+1−lµ (3.37)

If the discrepancy dµ does not equal to zero, dµ 6= 0, the minimum-degree poly-
nomial σ(µ)

BM(x) does not satisfy the (µ+1)th Newton identity, and the discrepancy
dµ is used to get σ(µ+1)

BM (x) which satisfies the (µ + 1)th Newton identity. In the
calculation of σ(µ+1)

BM (x), the algorithm comes back to a previous step ρ of the itera-
tion, with respect to µ, such that its discrepancy dρ does not equal to zero, dρ 6= 0
and ρ − lρ is a maximum. Where the number lρ is the degree of the polynomial
σ

(ρ)
BM(x).
Then

σ
(µ+1)
BM (x) = σ

(µ)
BM(x) + dµd

−1
ρ x(µ−ρ)σ

(ρ)
BM(x) (3.38)

The B-M algorithm can be stated in the form of a table, as given in Table 3.1.

Table 3.1: B-M algorithm table for determining the error-location polynomial
µ σ

(µ)
BM dµ lµ µ− lµ

−1 1 1 0 −1
0 1 s1 0 0
1
...

2t

3.2. THE DECODING ALGORITHM 45

So calculation of minimum-degree polynomial σ(µ+1)
BM (x) in iteration µ+ 1 can

be summarized as follows:

If dµ = 0 thenσ(µ+1)
BM (x) = σ

(µ)
BM(x), lµ+1 = lµ.

If dµ 6= 0, the algorithm comes back to a previous row ρ, such that dρ 6= 0 and
ρ− lρ is maximum.

Then

σ
(µ+1)
BM (x) = σ

(µ)
BM(x) + dµd

−1
ρ x(µ−ρ)σ(ρ)(x),

lµ+1 = max (lµ, lρ + µ− ρ),

dµ+1 = sµ+2 + σ
(µ+1)
1 sµ+1 + σ

(µ+1)
2 sµ + · · ·+ σ

(µ+1)
lµ+1 sµ+2−lµ (3.39)

In general, if the degree of σ(2t)
BM(x) is larger than t, this polynomial has no

meaning as its roots do not correspond to the inverses of the real error-location
numbers, since the number of error elements is more than t elements which is over
the error-correction capability of the code.

After the calculation of the error-location polynomial, the roots of this poly-
nomial are calculated by applying the Chien search, which will be explained later.

The Error-Evaluation Polynomial W (x)

RS codes are non-binary codes, where the error values are non-binary, so we need
to calculate not only the position but also the value of an error, to perform error
correction. Once the B-M algorithm calculates the error-location polynomial, it
substitutes by this polynomial in equation 3.18 to get the error evaluation poly-
nomial, then error values can be calculated using equation 3.12. But there is
an another method [18] for evaluating error values. This method requires the
definition of the error evaluation polynomial in a different way [17]:

W (x) = 1 + (s1 + σ1)x+ (s2 + σ1s1 + σ2)x2 + · · ·

+(sτ + σ1sτ−1 + σ2sτ−2 + · · ·+ στ)xτ (3.40)

Equation 3.12 is modified to

46 CHAPTER 3. REED-SOLOMON DECODER

eji = W (β−1
i)∏τ

k=1, k 6=i(1 + βkβ
−1
i)

(3.41)

So B-M algorithm called serial architecture [19] as the error locator polynomial
is calculated first then the error evaluator polynomial is computed. After the
explanation of B-M algorithm, we can conclude that this algorithm is suitable for
low or moderate rate applications like CDs, DVDs, HDTV,.....etc. But it’s not
suitable for high rat applications like optical communication so this algorithm is
not used in this thesis.

3.2.4 Decoding of RS Codes Using Peterson-Gorenstein-
Zierler (PGZ) Algorithm

The PGZ algorithm is one of the decoding algorithms which solves equation 3.18.
The algorithm includes two main steps [20]. Solving Newton identity is the first
step, where equation 3.35 can be written in matrix form:

s2 s3 · · · st+1

s3 s4 · · · st+2
...

st+1 st+2 · · · s2t

σt−1

σt−2
...
σ0

 =

s1

s2
...
st

 (3.42)

That is, the syndrome values are used to solve equation 3.42.
Define the error location polynomial as

σ(x) = σ0 + σ1x+ · · ·+ σt−1x
t−1 + xt (3.43)

Then, we can solve the Key equation 3.18, where the error value polynomial is
defined as

W (x) = W0 +W1x+ · · ·+Wt−1x
t−1 (3.44)

PGZ Algorithm for t = 1

Given t = 1, from equation 3.42, we have

[s2][σ0] = [s1] (3.45)

and

3.2. THE DECODING ALGORITHM 47

σ0 = s1

s2
(3.46)

Next, we can solve the key equation 3.18 for t = 1.

W (x) = −(σ0 + x)(s1 + s2x)modx2 (3.47)

where the error value polynomial is

W (x) = W0 (3.48)

W0 = σ0s1 (3.49)

PGZ Algorithm for t = 2

Given t = 2, equation 3.42 is reduced to
 s2 s3

s3 s4

 σ0

σ1

 =
 s1

s2

 (3.50)

Then, we have

σ0 = s1s2 + s2
2

s2s4 + s2
3

σ1 = s2s3 + s1s4

s2s4 + s2
3

(3.51)

Then the error location polynomial can be written as

σ(x) = σ0 + σ1x+ x2 (3.52)

Solving the key equation for t = 2 yields

W (x) = −(σ0 + σ1x+ x2)(s1 + s2x+ s3x
2)modx4 (3.53)

Then, the error value polynomial can be represented as

W (x) = W0 +W1x (3.54)

Where

48 CHAPTER 3. REED-SOLOMON DECODER

W0 = σ0s1

W1 = σ0s2 + σ1s1 (3.55)

PGZ Algorithm for t = 3

Similarly, for t = 3, we have

s2 s3 s4

s3 s4 s5

s4 s5 s6

σ2

σ1

σ0

 =

s1

s2

s3

 (3.56)

The coefficients of the error location polynomial can be solved as

σ0 = s1s3s5 + s1s
2
4 + s3

3
s2s4s6 + s3

4 + s2
3s6 + s2s2

5

σ1 = s2
2s6 + s1s4s5 + s2

3s4 + s2s
2
4 + s1s3s6 + s2s3s5

s2s4s6 + s3
4 + s2

3s6 + s2s2
5

(3.57)

σ2 = s1s4s6 + s2s4s5 + s2
3s5 + s1s

2
5 + s2s3s6 + s3s

2
4

s2s4s6 + s3
4 + s2

3s6 + s2s2
5

Then, the error location polynomial can be written as

σ(x) = σ0 + σ1x+ σ2x
2 + x3 (3.58)

The key equation for t = 3 can be written as

W (x) = −(σ0 +σ1x+σ2x
2 +x3)(s1 +s2x+s3x

2 +s4x
3 +s5x

4 +s6x
5)modx6 (3.59)

Then, the error value polynomial can be represented as

W (x) = W0 +W1x+W2x
2 (3.60)

Where

3.3. COMPARISON OF DECODING ALGORITHMS 49

W0 = σ0s1

W1 = σ0s2 + σ1s1 (3.61)

W2 = σ0s3 + σ1s2 + σ2s3

That is clear, equation 3.57 is very complicated in compared with equations
3.46 and 3.51. So the direct implementation of equation 3.57 will be complicated.
Hence, PGZ algorithm is very efficient to correct a small number of errors (t < 3).
However, it becomes too complicated when the number of errors is relatively large.

3.3 Comparison of Decoding Algorithms

3.3.1 Complexity

In this chapter, algorithms of Reed-Solomon decoders have been considered. We
compare the different algorithms with regard to circuit complexity. For t ≤ 2, the
PGZ has the best choice. But the hardware complexity of Euclidean algorithm
is larger than Berlekamp-Massey algorithm as Euclidean algorithm needs divider
module to implement equation 3.22 and multiplier module to implement equation
3.25. Then we can make the conclusion:

The circuit complexity : PGZ>Euclidean>Berlekamp-Massey

3.3.2 Critical path

We also compare the different algorithms with regard to the timing delay for
minimum delay, Berlekamp-Massey algorithm has the best choice as it has lower
complexity. So we can conclude that :

The critical path : Euclidean>PGZ>Berlekamp-Massey

3.3.3 Latency

If we compare between the different algorithms with regard to the latency in clock
cycles. Berlekamp-Massey algorithm has larger latency in clock cycles in compared
with Euclidean algorithm. As it is iterative algorithm so its latency is O(t2) So

50 CHAPTER 3. REED-SOLOMON DECODER

Euclidean algorithm is suitable for multi-channels application as it can be shared
between more than one channel. So we can make this conclusion :

The latency (clock cycles) : Berlekamp-Massey> Euclidean>PGZ

3.3.4 Power consumption

We also compare the different algorithms with regard to the power consumption.
For minimum power consumption, the berlekamp-Massey algorithm has the the
best choice. We can make the conclusion :

The power consumption : PGZ >Euclidean>Berlekamp-Massey

For comparisons of Euclidean algorithm and Berlekamp-Massey algorithm, of
the chip size is a important factor, Berlekamp algorithm is the best choice. If
the processing speed is an important factor, we suggest to choose the euclidean
algorithm. So as we are targeting multi-channel application, we used Euclidean
algorithm.

3.4 Chien Search

The next step in RS decoding process is to find the roots of the error location
polynomial σ(x), which is a polynomial whose roots are constructed to be the in-
verses of the locations where the errors occurred. We can not get the roots of the
error location polynomial directly. So, we will perform an exhaustive search by
substituting by all the finite field elements in the error location polynomial σ(x)
and checking for the condition σ(αi) = 0 is satisfied or not . The Chien search is
effective algorithm is to do this exhaustive search in an efficient manner.

For example, assume that the error location polynomial is

σ(x) = 1 + σ1x+ σ2x
2 + · · ·+ σtx

t (3.62)

We evaluate σ(x) at each non-zero element in GF(2m) in succession:

x = α, x = α2, . . . , x = α2m−1

3.5. FORNEY ALGORITHM 51

This gives us the following

σ(α) = 1 + σ1(α) + σ2(α)2 + · · ·+ σt(α)t

σ(α2) = 1 + σ1(α2) + σ2(α2)2 + · · ·+ σt(α2)t (3.63)
...

σ(α2m−1) = 1 + σ1(α2m−1) + σ2(α2m−1)2 + · · ·+ σt(α2m−1)t

If in the above performed substitutions we obtained σ(αi) = 0, then the expo-
nent of the inverse of the root αi is equal to the error location index i.

3.5 Forney Algorithm

After calculating the error location polynomial by the key equation solver and its
roots using Chien search , there is still one more step in the RS decoding [2]:

we have to find the error values. In general, this is done using the Forney
algorithm as shown in equation 3.12.

So after calculating the error locations and error values, we can form the error
polynomial e(x) and correct the received polynomial r(x) just by adding (with
XOR operation) these two polynomials together, as shown in figure 3.1.

52 CHAPTER 3. REED-SOLOMON DECODER

Chapter 4

CONFIGURABLE
MULTI-CHANNEL
REED-SOLOMON DECODER

4.1 Architectures of Syndrome computation

4.1.1 Serial architecture

As explained in the previous chapter the received vector can be presented as a
polynomial as expressed in equation 3.2. So The syndrome polynomial S(x) is
defined as

S(x) =
2t∑
i=1

Six
i−1 (4.1)

Where

Si = r(αi) = r0 + r1(αi)1 + r2(αi)2 + · · ·+ rn−1(αi)n−1 (4.2)

If all 2t syndromes are zeros, then the received polynomial r(x) is a valid
codeword c(x), that is, no detectable occurred. So from equation 4.2 the syndrome
polynomial can be computed in n clock cycles as the received codeword enters
serially to syndrome block from highest coefficient to the lowest coefficient, i.e.
rn−1 enters first then rn−2 and so on. So we will have 2t syndrome cells and each
cell substitutes by αi in the received polynomial as shown in figure 4.1. Each
syndrome cell has a multiplier by constant multiplying by αi so after n clock
cycles rn−1 is multiplied by (αi)n−1 as shown in figure 4.2 which illustrates the

53

54CHAPTER 4. CONFIGURABLE MULTI-CHANNEL REED-SOLOMON DECODER

serial syndrome cell.

Synd
(1)

Synd
(2)

S1 S2

 r0,….,rn-2, rn-1

Synd
(2t)

S2t

Figure 4.1: Serial syndrome

r0 ,…,rn-2, rn-1

αi

Out

x

+
8

Figure 4.2: Serial syndrome cell

4.1.2 Two Parallel architecture

The syndrome coefficient can be computed in n
2 clock cycles if the received code-

word enters two symbols by two symbols but this needs a modification to equation
4.2 as follows [21]:

Si = (...(((rn−1(αi)2 + rn−2(αi) + rn−3)(αi)2

+ (rn−4(αi) + rn−5))(αi)2 + (rn−6(αi) + rn−7))(αi)2 (4.3)

+ ...+ r1α
i + r0

From equation 4.3 it is clear that if n is odd number, the odd symbols are
multiplied by αi, the even symbols are multiplied by one except rn−1 is multiplied
by (αi)2, and the result of the summation is multiplied by (αi)2. So we have two
paths for the received polynomial one for the even symbols and the other for odd
symbols and usually we have a pair of symbol one odd and the other even except
rn−1will enter with zero as shown in figure 4.3.

4.1. ARCHITECTURES OF SYNDROME COMPUTATION 55

Synd
(1)

Synd
(2)

S1 S2

 r0,….,rn-3, rn-1

Synd
(2t)

S2t

 r1,….,rn-2, 0

Figure 4.3: Two parallel Syndrome

Figure 4.4 shows that, each syndrome cell has two multipliers by constant one
of them multiplies by αi and the other multiplies by (αi)2. Initially the selection
signal Sel equals to zero for first clock cycle to multiply rn−1 by (α2) and then it
equals to one for the remaining clock cycles to multiply (roddαi + reven) by (αi)2

[21].

(αi)2αi

Out

MUXx

8
+

x

r0 ,…rn-3,rn-1

r1,…rn-2,0

0x”00”

8

Sel

1

0

Figure 4.4: Two Parallel syndrome cell

4.1.3 The new Configurable architecture

The two parallel syndrome architecture can be configured to work either in serial
mode or in two parallel mode by designing a new configurable syndrome cell as
shown in figure 4.5.

56CHAPTER 4. CONFIGURABLE MULTI-CHANNEL REED-SOLOMON DECODER

Out

(αi)2

αi

r0,…,rn-3,rn-1

r1,…,rn-2,0

0x”00”

1

0

1

0

sel1 sel2

Ra

Rb

Figure 4.5: Configurable syndrome cell

If the selection signals sel1 and sel2 are low, the received codeword enters seri-
ally through Ra, the latency of syndrome block is n clock cycles, as the architecture
will be like figure 4.2. But if the selection signal sel1 is high and sel2 is low for the
first clock cycle, then both of them are high for the remaining clock cycles, and
the received codeword enters two symbols by two symbols through Raand Rb ,
the latency will be n

2 clock cycles as the cell will be converted to two parallel cell
as shown in figure 4.4.

4.2 Hardware Implementation of Euclidean Al-
gorithm

The overall block diagram of RS decoder using Euclidean algorithm is shown in
figure 4.6. The architecture consists of two parts:

1- Euclidean Divider Module to implement ,

ri = ri−2 − qiri−1 (4.4)

2- Euclidean Multiply Module to implement,

ti = ti−2 − qiti−1 (4.5)

4.2. HARDWARE IMPLEMENTATION OF EUCLIDEAN ALGORITHM 57

Euclidean Algorithm
Divider

Euclidean Algorithm
Multiply

S(x)

W(x)

σ(x)

qi

Figure 4.6: Block diagram of the Euclidean architecture.

4.2.1 Euclidean Division Module

The Euclidean division module performs the division ri−2/ri−1 in each iteration
in equation 4.4. It generates the quotient qi−1 and stores the new remainder ri.
The quotient qi−1 is used in the Euclidean multiply module to compute equation
4.5. An Euclidean divider module is shown in figure 4.7. This polynomial division
architecture includes two major components, the EAdiv A and EAdiv B modules
respectively [22]. These architectures are showed in figure 4.8.

W2t-1

EA
Div A

(0)

EA
Div A

(1)

EA
Div B
(2t-1)

EA
Div A

(2)

���
���
���
���
���
���
���
���
���

EA
Div A
(2t-2)

S1 S2 S3
S2t-1 S2t

Qi

W0 W1 W2 W2t-2

Figure 4.7: Overall architecture of the Euclidean divider module.

58CHAPTER 4. CONFIGURABLE MULTI-CHANNEL REED-SOLOMON DECODER

Wi

1

0

1

0

0

1

1

0

Si

8'h 00

rpin

rpout

Load
Exch

Load

Exch

EAdiv A
Qi

R1

R2

(a)

W2t-1

1

0

1

0

0

1

1

0

S2t-1

8'h 00

rpin

rpout

Load
Exch

Load

Exch

EAdiv B Qi

R1

R2

GFinv

(b)

Figure 4.8: EAdiv A and EAdiv B of the Euclidean divider module.

4.2.2 Euclidean Multiply Module

The Euclidean multiply achieves the multiplication and accumulation in the poly-
nomial in equation 4.5. It is used to obtain error location polynomial σ(x). The
Euclidean multiply module is shown in figure 4.9. The coefficients of the quotient
Q(x) are input sequentially from the higher coefficients. The polynomial multiply
architecture includes one major component of the EAmulC module, as shown in
figure 4.10.

EA
Mul
(0)

EA
Mul
(1)

��
��
��
��
��
��
��
��
��

EA
Mul
(t)

EA
Mul
(2)

EA
Mul
(t-1)

Qi

0σ 1σ 2σ 1tσ −
tσ

Figure 4.9: Block diagram of the Euclidean multiply module.

4.3. ARCHITECTURES OF CHIEN SEARCH BLOCK 59

0

1

Exch

R1

R3

R2

1

0

Exch

Qi

σi

rpin rpout

Figure 4.10: Architecture of the EAmul C module in the Euclidean multiply op-
eration.

4.3 Architectures of Chien search block

4.3.1 Serial architecture

The chien search block substitutes in the error locator polynomial and error eval-
uator polynomial by all the field elements as shown in equation 3.63. We have t
cells to get σ(αi) and t − 1 cells to get W (αi) as σ(x) has order t and W (x) has
order t− 1 as shown in figure 4.11.

Also the role of Chien search block is to get σ̀(αi) but

σ̀(x) = 0σ0 + σ1 + 2σ2x+ · · ·+ tσtx
t−1

= σ1 + σ3x
2 + · · ·+ (t− 1)σt−1x

t−2 (4.6)

= σodd(x)/x

So the Chien search block gets also σodd(αi). The serial Chien search cell is
similar to the serial syndrome cell as it has the same function as shown in fig. 4.12

60CHAPTER 4. CONFIGURABLE MULTI-CHANNEL REED-SOLOMON DECODER

C4

C2

C6

C1

C5

C7

C3 +
+

+
+

+
+

+

8

8

8

8

8

8

8

w2

w4

w6

w1

w3

w5

w7

w0

8

8

8

8

8

8

8

8

wtot

C4

C8

C2

C6

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

C1

C5

C7

C3 +
+

+
+

+
+

+

+

8

8

8

8

8

8

8

8 σ2σ4σ6σ8

σ1σ3σ5σ7

σ0

8

8

8

8

8

8

8

8

8

σodd σtot

Figure 4.11: Serial Chien search (t = 8).

αi

Out

σj

M
U
X

Figure 4.12: Serial Chien search cell

4.3.2 Two Parallel architecture

In the serial architecture of Chien search at each clock cycle we get a value for
σ(αi), σ̀(αi), and W (αi) so we need n clock cycles as we have n elements in
GF(2m). In the two parallel architecture we get two values at each clock cycle,
i.e. σ(αi) and σ(αi+1). So the we need n/2 clock cycles as the output of each cell
is σj(αi)jand σj(αi+1)j as shown in figure 4.13.

4.3. ARCHITECTURES OF CHIEN SEARCH BLOCK 61

C4

C2

C6

C1

C5

C7

C3 +
+

+
+

+
+

+

16

16

16

16

16

16

16

w2

w4

w6

w1

w3

w5

w7

w0

w0

8

8

8

8

8

8

8

8

8

wtot

C4

C8

C2

C6

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

C1

C5

C7

C3 +
+

+
+

+
+

+

+

16

16

16

16

16

16

16

16 σ2

σ4σ6σ8

σ1

σ3σ5

σ7

σ0σ0

8

8

8

8

8

8

8

8

8

8

σodd σtot

Figure 4.13: Two Parallel Chien search (t = 8)

The two parallel Chien search cell has four finite field multipliers by constant
[21] one of them multiplies by αi and the others multiply by (αi)2. We need the
multiplier which multiplies by αi in the first clock cycle only then we need the
others multipliers as shown in figure 4.15.

(αi)2

αi

Out

(αi)2

In

(αi)2

M
U
X

M
U
X

Figure 4.14: Two Parallel Chien search cell

4.3.3 The new configurable architecture

The Chien search can be configured to work either in two parallel mode or in serial
mode and that’s by three finite field multipliers only so the number of multipliers
is reduced than the two parallel architecture [21] as shown in figure 4.15.

62CHAPTER 4. CONFIGURABLE MULTI-CHANNEL REED-SOLOMON DECODER

Out

16

In

(αi)2

αi

1

0

1

0

0

1

16
(αi)2

8

8

8

8

sel1
sel3

sel2

Figure 4.15: Configurable Chien search cell

To activate the cell in the two parallel mode with latency equals to n
2 clock

cycles, set the selection lines sel1, sel2, and sel3 to low in 1st clock cycles then set
them to high, but to activate the cell in serial mode with latency equals to n clock
cycles, set the selection line sel1 to low in 1st clock cycles then set it to high, while
the selection lines sel2 and sel3 are always low.

4.4 Architecture of Forney Algorithm

4.4.1 Serial architecture

The main function of the Forney algorithm is to get the error values from equation
3.12. But from equation 3.12 and 4.6 we can rewrite equation 3.12 as follows :

ejl = W (β−1
l)β−1

l

σodd(β−1
l)

(4.7)

Where β−1
l is the root of σ(x) so in the architecture of forney algorithm we need

inverse ROM to get the inverse of the σodd(β−1
l) and a look up table (LUT) to get

β−1
l at each location but we replaced the LUT by a specific cell takes an integer

number i and its output is αi which reduces the area significantly as shown in
figure 4.16. The serial Forney block takes n clock cycles to produce n error values
as in each clock cycle we have one value for W (β−1

l) and σodd(β−1
l).

4.4. ARCHITECTURE OF FORNEY ALGORITHM 63

σodd

σtot

Inv. ROM
16 8

σodd
-1

wtot

xx

wtota

x

i

αi

Cell

αi wtota
x
x ea

16

16

8

8

8

Figure 4.16: Serial Forney architecture

4.4.2 Two Parallel architecture

In the two parallel architecture two error values can be computed in each clock
cycle as in this case we have two values for W (β−1

l) and σodd(β−1
l) so the archi-

tecture will be like figure 4.17. So the two parallel architecture tackles n/2 clock
cycles to calculate the n error values.

σodd

σtot

Inv. ROM

Inv. ROM

16 8

σ 1-
odda

wtot

x

x

x

x

wtota

wtotb

x

y

i

αia αib

Cell

αib

αia wtota

wtotb
y
y

x
x ea

eb

16

16

8

8

8

8

8

8

8

σ 1-
oddb

Figure 4.17: Two parallel Forney architecture

64CHAPTER 4. CONFIGURABLE MULTI-CHANNEL REED-SOLOMON DECODER

4.4.3 The new configurable architecture

Forney algorithm architecture can be configured easily by using the two parallel
architecture. If we enable the two paths, we have two parallel architecture. If we
disable one of them, we have serial architecture.

4.5 Multi-Channel Decoder

4.5.1 Multi-Channel using serial architectures

As the latency of Euclidean algorithm block equals to 2t clock cycles so in RS(255, 239)
we can share the key equation solver with 16 channels with serial architectures
as shown in figure 4.18. So the maximum throughput per channel equals to
n∗#of bits per symbol

n ∗ Fmax bit per second (pbs) ,where number of bits per
symbol equals to 8 and Fmax is the maximum operating frequency of the decoder..

serial
Syndrome

(1)

serial
Syndrome

(8)

serial
Syndrome

(9)

serial
Syndrome

(16)

serial
Error Corrector

(1)

serial
Error Corrector

(8)

serial
Error Corrector

(9)

serial
Error Corrector

(16)

Parallel
Euclidean

Block

 Delay Buffer FIFO

Control
(1)

Control
(2)

Control
(3)

Figure 4.18: 16 Channel (255, 239) RS decoder using serial architectures

4.5. MULTI-CHANNEL DECODER 65

4.5.2 Multi-Channels using two parallel architectures

Also Euclidean block can be shared between 8 channels and each of them is two
parallel architecture so the maximum throughput equals to 2∗n∗8

n
∗ Fmaxbps. So

the throughput per channel is doubled but the number of channels is reduced to
8 channels as shown in figure 4.19.

2parallel
Syndrome

(1)

2parallel
Syndrome

(4)

2parallel
Syndrome

(5)

2parallel
Syndrome

(8)

2parallel
Error Corrector

(1)

2parallel
Error Corrector

(4)

2parallel
Error Corrector

(5)

2parallel
Error Corrector

(8)

Parallel
Euclidean

Block

 Delay Buffer FIFO

Control
(1)

Control
(2)

Control
(3)

Figure 4.19: 8 Channels (255, 239) RS decoder using two parallel architectures

4.5.3 Multi-Channel using configurable architectures

We use the configurable syndrome, Chien search, and Forney algorithm architec-
tures in configurable multi-channels to share the Euclidean algorithm between 16
channels, half of them are serial architectures and the others are configurable. By
this architecture we can configure the architecture to be shared between 16 serial
channels or between 8 two parallel channels as shown in figure 4.20.

66CHAPTER 4. CONFIGURABLE MULTI-CHANNEL REED-SOLOMON DECODER

Configurable
Syndrome

(1)

Configurable
Syndrome

(8)

serial
Syndrome

(9)

serial
Syndrome

(16)

Configurable
Error Corrector

(1)

Configurable
Error Corrector

(8)

serial
Error Corrector

(9)

serial
Error Corrector

(16)

Parallel
Euclidean

Block

 Delay Buffer FIFO

Control
(1)

Control
(2)

Control
(3)

Figure 4.20: 8 Channels (255, 239) RS decoder configurable and serial architec-
tures

4.6 Results and Comparisons

4.6.1 Results of configurable (255, 239) RS decoder

The proposed configurable architecture is modeled in VHDL and simulated to
verify its functionality. After complete verification of the design functionality, it
was then synthesized using appropriate time and area constraints. Both simulation
and synthesis steps were carried out on 0.13µm CMOS technology and optimized
for a 1.35V supply voltage, we used this technology to make our comparison fair
with the previously published architectures. The total number of gates of single
channel decoder using configurable cells is 49, 000 from the synthesized results
excluding the FIFO memory, and the maximum clock frequency is 500MHz. The
total power dissipation for the multi-channel decoder is 568.4mW. The latency of
the architecture is 249 ns which leads to an energy per symbol of 8.84 nJ.

4.6. RESULTS AND COMPARISONS 67

Table 4.1: Implementation Results of single channel RS(255, 239) Decoders
Architecture Technology Total # Max. Freq. Latency Latency Throughput

(µm) of Gates (MHz) (clocks) (ns) (Mb/s)

Proposed 0.13 49,000 500 146 294 8,000

ME [23] 0.13 115,500 770 355 461 6,160

pDCME [24] 0.13 53,200 660 355 537.9 5,300

EA [25] 0.13 44,700 300 287 956.7 2,400

ME [26] 0.18 20,614 400 512 1280 3,200

DCME [27] 0.25 42,213 200 288 1440 1,600

BM [28] 0.25 32,900 84 192 2285.7 2,500

Table 4.2: Implementation Results of Multi-Channel RS Decoders
Architecture Technology Total # Max. Freq. Latency Latency Throughput

(µm) of Gates (MHz) (clocks) (ns) (Gb/s)

8-Two parallel channels 0.13 200,000 500 146 294 64

16-Serial channels 0.13 200,000 500 274 548 64

PrME [29] 0.13 393,000 625 522 830 80

ME [23] 0.13 589,000 625 355 570 80

ME [30] 0.16 364,000 112 168 1500 40

4.6.2 Comparisons

Table 4.1 shows a comparison between different architectures of RS(255, 239) de-
coders. The Modified Euclidean (ME) algorithm is used in [26]. The results show
that [26] made a modification to the euclidean algorithm to have an area efficient
architecture so its area is lower than our architecture. But it has higher latency
and lower throughput. The Degree Computationless Modified Euclidean (DCME)
architecture is used in [24] and [27] to reduce the gate count compared to ME [23].
However, pDCME [24] has a larger area compared to our proposal and also higher
maximum frequency, but it has higher latency and lower throughput. While the
area of [27] is lower than our proposal, but it has lower throughput and higher
latency. The Euclidean Algorithm is used in [25]. It uses the same architecture
but it is implemented on different technology and it has lower area and lower
latency and throughput. The Modified Berlekamp-Massey (MBM) algorithm is
used in [28]. This algorithm is used to reduce the latency in clock cycles and also
to reduce the power consumption (68.5mW at 84MHz), which is lower then our
power per channel which is 108mW. But this architecture has higher latency than
our proposal in ns which make our proposal has lower energy per symbol.

Table 4.2 shows a comparison between different architectures of 16 channel

68CHAPTER 4. CONFIGURABLE MULTI-CHANNEL REED-SOLOMON DECODER

RS(255, 239) decoders. The proposed architecture is a compromise between the
Pipelined recursive Modified Euclidean (PrME) [29], ME [23], and ME [30] in
throughput, but our proposal has the least area and latency.

4.7 Conclusion

In This chapter an architecture for a low energy area efficient configurable syn-
drome/Chien search RS(255, 239) decoder is presented. In our proposal config-
urable syndrome and Chien search cells are designed to work in two modes. The
first mode is the serial mode as each of them needs n clock cycles to finish. The
second mode is the two parallel mode as they need n

2 clock cycles to finish which
double the rate of the serial mode and decrease the energy per symbol. We used
the Euclidean algorithm as a KES to give our decoder a chance to serve 16 chan-
nels to have higher throughput. The configurable cells makes the decoder works
over 16 or 8 channels by duplication of the throughput of each channel without
extra hardware which saves the area. Our architecture has high throughput with
low power consumption and optimum area.

Chapter 5

CONCLUSIONS AND FUTURE
WORKS

5.1 Conclusions

In this thesis a new architecture for RS(255, 239) decoder has been proposed
by designing a new configurable syndrome and Chien search cells with Euclidean
algorithm as a key equation solver. Using these configurable cells the decoder can
work in two modes, one of them is serial mode and the other mode is two parallel
mode. The proposed architecture has been simulated using VHDL and verified
using MATLAB. This architecture is used in multi-channel decoder to serve 8 or
16 channels as the syndrome and Chien search blocks can be configured to work
in serial mode or two parallel mode.

The decoder is synthesized on 0.13µm CMOS IBM library and 1.35V power
supply. We used this technology to give the ability to compare between our ar-
chitecture and other architectures. The total number of gates of single channel
decoder using the proposed cells is 49, 000 from the synthesized results excluding
the FIFO memory, and the maximum clock frequency is 500MHz. The total
power dissipation for the multi-channel decoder is 568.4mW. The latency of the
architecture is 249 ns which leads to an energy per symbol of 8.84 nJ.

As RS is non-binary linear cyclic code and operates over GF(2m) so in Chapter
2, the basic theory of finite fields has been introduced and also a good overview on
other algebraic structures is introduced. Also three types of finite field multipliers
have been introduced and a good overview on binary and non-binary cyclic codes
is introduced.

Then in Chapter 3, the RS decoder block diagram is introduced as a mathe-

69

70 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

matical concept and three types of decoding algorithms are introduced and a good
comparison between these algorithms also are introduced.

Finally in Chapter 4, the hardware implementation of the decoder is intro-
duced and a comparison between the proposed design and the previous work is
introduced.

5.2 Future Works

In this thesis, the decoder is simulated before and after synthesis but it is not
implemented to see its performance in a real application. So the next step is
to convert the VHDL code to ASIC and put it an a real application to see its
performance. Also the new configurable cells can be tested with another key
equation solver like Modified Euclidean algorithm [23] or Reformulated inversion-
less Berlekamp Massey (RiBM) [31] algorithm to see the performance of these
cells. Also the Reed-Solomon codes can be concatenated with convolutional code
to enhance the ability of correcting random errors. Because RS codes detects the
error first by using syndrome calculation block and convolutional code corrects the
error directly without detection [2], some relations can be made between the two
codes to save the energy of the decoder, hence saving the battery of the receiver.

Bibliography

[1] C.E. Shannon, “A Mathematical Theory introduced of Communication,” Bell
Syst.error control Tech. Journal, Vol. 27, Part I, July, Part II, October 1948.

[2] J. C. Moriera, P. G. Farell, Essentials of Error-Control Coding. John Wiley
& Sons, Ltd, 2006.

[3] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,”
SI AM Journal of Applied Mathematics, Vol. 8, June 1960.

[4] E. Berlekamp, Algebraic Coding Theory. McGraw-Hill, 1968.

[5] A. Neubauer, J. Freudenberger, V. Kuhn, Coding Theory - Algorithms, Ar-
chitectures, and Applications. John Wiley & Sons, Ltd, 2007.

[6] I. Stewart, Galois theory. Chapman & Hall, 1973.

[7] F.J. Mac Williams, N. J. A. Sloane, The theory of error correcting codes.
Elsevier Science Ltd, 1977.

[8] S. Choomchuay, “On the Implementation of Finite Field Basis Conversions,”
Ladkrabang Engineering Journal, Vol. 11, No. 1 June 1994.

[9] S. T. J. Fenn, M. Benaissa, D. Taylor, “GF(2m) Multiplication and division
over the dual field,” IEEE Trans. on computers. Vol. 45, No. 3, March 1996.

[10] M. Morii, M. Kasahara, D.L Whiting, “Efficient bit-serial multiplication and
the discrete-Time Wiener-Hopft Equation over finite field,” IEEE Trans. on-
Information Theory, Vol. 35, No. 6, November. 1989.

[11] J.L. Massey, J.K. Omura, “Computational method and apparatus for finite
field arithmetic,” United States Patent, No. 4587627, May 1986.

[12] E. R. Berlekamp, “Bit-serial Reed-Solomon encoders,” IEEE Trans. on Infor-
mation Theory, Vol. 28, No. 6, November 1982.

71

72 BIBLIOGRAPHY

[13] E. Mastrovito, “VLSI design for multiplications over finite fields GF(2m),” 6th
International Conference Applied Algebra, Algebric Algorithms and Error-
correcting codes, Vol. 357, 1988.

[14] B. A. Laws FR., C.K. Rushforth, “A cellular-array multiplier for GF(2m),”
IEEE Trans. Computers, Vol. C-20, No. 12, December 1971.

[15] A. B. Carlson, P. B. Crilly, and J. C. Rutledge, Communication Systems: An
Introduction to Signals and Noise in Electrical Communication, McGraw-Hill,
1986.

[16] B. Sklar, Digital Communications, Fundamentals and Applications, Prentice
Hall, 1993.

[17] R. C. Bose, and D. K. Ray-Chaudhuri, “On a class of error correcting binary
group codes,” Information Control, Vol. 3, March 1960.

[18] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres, Vol. 2, December,
1959.

[19] H. Chia Chang and C. Bernard Shung, “New Serial Architecture for the
Berlekamp-Massey Algorithm,” IEEE Trans. on communication, Vol. 47, No.
4, April 1999.

[20] S. Feng Wang, H. Yi Hsu, and A. Yeu Wu, “A very low-cost multi-mode Reed-
Solomon decoder based on Peterson-Gorenstein-Zierler algorithm,” IEEE
Workshop on Signal Processing Systems, 2001.

[21] S. Lee, C. Choi, and H. Lee, “Two-parallel Reed-Solomon based FEC archi-
tecture for optical communications,” IEICE Electronics Express, Vol. 5, No.
10, May 2008.

[22] H. Lee, M.-L. Yu, and L. Song, “VLSI design of Reed–Solomon decoder ar-
chitectures,” IEEE Int. Symp. Circuits and Syst., Vol. 5, 2000.

[23] H. Lee, “High-Speed VLSI Architecture for Parallel Reed-Solomon Decoder,”
IEEE Trans. on VLSI Systems, Vol. 11, No. 2, April 2003.

[24] S. Lee, H. Lee, J. Shin and J. Ko, “A High-Speed Pipelined Degree- Com-
putationless Modified Euclidean Algorithm Architecture for Reed- Solomon
Decoders,” IEEE International symposium on Circuits and System, 2007.

BIBLIOGRAPHY 73

[25] H. Lee, “An Area-Efficient Euclidean Algorithm Block for Reed-Solomon De-
coder,” IEEE Annual Symposium on VLSI, 2003.

[26] H. Yi Hsu, A. Yeu (Andy) Wu, and J. Yeo, “Area-Efficient VLSI Design
of Reed–Solomon Decoder for 10GBase-LX4 Optical Communication Sys-
tems,” IEEE Trans. on Circuits and Systems-II: express briefs, Vol. 53, No.
11, November 2006.

[27] J. H. Baek and M. H. Sunwoo, “New Degree Computationless Modified Eu-
clidean Algorithm and Architecture for Reed-Solomon Decoder,” IEEE Trans.
on VLSI Systems,Vol. 14, No. 8, August 2006.

[28] H. Chang, C. Ching Lin and C. Yi Lee, “A low-power Reed-Solomon decoder
for stm-16 optical communications,” IEEE Asian-Pasific Conference on ASIC
2002.

[29] H. Lee, “Ultra High-Speed Reed-Solomon Decoder,” IEEE International Sym-
posium on Circuits and Systems, Vol. 2, 2005.

[30] L. Song, M-L. Yu and M. S. Shaffer, “10 and 40-Gb/s Forward Error Cor-
rection Devices for Optical Communications,” IEEE Journal of Solid-State
Circuits, Vol. 37, No. 11, November 2002.

[31] D. V. Sarwate and N. R. Shanbhag, “High-Speed Architectures for Reed-
Solomon Decoders,” IEEE Trans. on VLSI Systems, Vol. 9, No. 5, October
2001.

74 BIBLIOGRAPHY

Appendix A

The list of primitive polynomials
p(x) for m ≤ 10

m p(x)
3 1 + x + x3

4 1 + x + x4

5 1 + x2 + x5

6 1 + x + x6

7 1 + x + x7

8 1 + x2 + x3 + x4 + x8

9 1 + x4 + x9

10 1 + x3 + x10

75

76APPENDIX A. THE LIST OF PRIMITIVE POLYNOMIALS P (X) FOR M≤ 10

Appendix B

Conversions from standard basis
to Normal basis in GF(24)

power of α Standard basis Normal basis
1, α, α2, α3 α3, α6, α12, α9

- 0000 0000
0 1000 1111
1 0100 1001
2 0010 1100
3 0001 1000
4 1100 0110
5 0110 0101
6 0011 0100
7 1101 1110
8 1010 0011
9 0101 0001
10 1110 1010
11 0111 1101
12 1111 0010
13 1011 1011
14 1001 0111

77

