
Hardware Implementation of a Model Predictive

Controller for Hybrid Systems

By

Eng. Mohamed Fatouh Mahmoud Fouda

Electronics and Communications Department

Faculty of Engineering, Cairo University

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

In

ELECTRONICS AND COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

January 2011

ii

Hardware Implementation of a Model Predictive

Controller for Hybrid Systems

By

Eng. Mohamed Fatouh Mahmoud Fouda

Electronics and Communications Department

Faculty of Engineering, Cairo University

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

In

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

Prof. Dr. Mohamed Abuelseod Sultan

Electronics and Communications Engineering Department

Faculty of Engineering, Cairo University

Associate Prof. Dr. Hossam Ali Fahmy Dr. Hany Mohamed

Elsayed

 Electronics Engineering Department Electronics Engineering

Department

Faculty of Engineering Faculty of Engineering

 Cairo University Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

January 2011

iii

Hardware Implementation of a Model Predictive

Controller for Hybrid Systems

By

Eng. Mohamed Fatouh Mahmoud Fouda

Electronics and Communications Department

Faculty of Engineering, Cairo University

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

In

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Approved by the

Examining Committee

Prof. Dr. Abd-Elmonem Wahdan

__

Prof. Dr. Serag. E.-D Habib

__

Associate Prof. Dr. Hossam Ali Fahmy

__

Prof. Dr. Mohamed Sultan Thesis Main Advisor

__

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

January 2011

iv

Table of Contents

Table of Contents ... iv

List of Tables... vii

List of Figures ..viii

List of Symbols .. ix

List of Abbreviations .. xii

Abstract ...xiii

Chapter 1 Introduction and Background ... 1

1.1 Introduction ... 1

1.2 Model Predictive Control ... 4

1.2.1 Introduction ... 4

1.2.2 Advantages over other control techniques ... 5

1.2.3 Basic formulation and methods of solution ... 5

1.2.4 Explicit Solution of the MPC problem .. 8

1.2.5 MPC in embedded systems... 8

1.3 Hybrid systems ... 10

1.3.1 Introduction ... 10

1.3.2 MLD systems... 14

1.3.3 Control of hybrid systems ... 18

1.3.3.1 Optimal control .. 18

1.3.3.2 Model predictive control of Hybrid systems 22

1.3.3.2 Explicit MPC control of hybrid systems .. 23

1.3.3.3 Comparison of online and explicit MPC control of hybrid systems

 ... 24

1.3.4 Tools available for analysis and control of hybrid systems.................... 24

1.4 Quadratic programming methods .. 26

1.4.1 Optimality conditions.. 26

1.4.2 Active set method .. 27

1.4.2 Interior point methods ... 30

1.4.2.1 Primal-dual interior point .. 31

v

1.4.2.2 Problem formulation of primal dual-interior point method 32

1.4.2.3 Infeasible primal-dual interior point method 35

1.4.2.4 Long-step path following .. 37

1.5 Mixed Binary Quadratic Programming ... 39

Chapter 2 Hardware Implementation .. 44

2.1 Design objective ... 44

3.2 Design Environment ... 46

2.3 Design main concepts .. 47

2.3.1 Concept of parallelism .. 48

3.3.2 Concept of pipelining .. 49

2.4 Hardware implementation of Quadratic Programming solver 59

2.4.1 Changes in the Algorithm for hardware implementation 60

2.4.2 Algorithm of solving linear system of equations 62

2.4.3 Hardware architecture of QP solver ... 63

2.4.4 Notes about design parameters ... 66

2.4.5 Comparison between target platforms ... 67

2.5 Hardware implementation of MBQP solver ... 68

2.5.1 Relaxation of binary constraints ... 68

2.5.2 Calling of QP solver .. 69

2.5.3 Examination of the QP solution ... 71

2.5.4 Branching of a binary variable ... 72

2.5.5 Storing and loading problem from list ... 75

Chapter 3 Results .. 78

3.1 Performance of QP solver .. 78

3.1.1 Selecting an FPGA .. 80

3.1.2 Comparison with respect to iteration time ... 80

3.1.3 Evaluation of solver performance .. 84

3.2 Performance of MBQP solver ... 85

Chapter 4: Practical Application: Control of a Stick-Slip Drive 87

4.1 Introduction ... 87

4.2 Impact and Stick-Slip Drives ... 87

vi

4.2.1 Description of a Stick-Slip Inertial Drive .. 88

4.2.2 Working Principle ... 89

4.3 Hybrid Modeling of the SSID.. 90

4.4 Control of the SSID .. 93

4.4.1 Hybrid MPC control problem formulation .. 99

4.5 SSID system Simulation Results ... 99

4.6 Detailed hardware setup ... 102

Chapter 5 Conclusion ... 105

Appendix A.1 .. 111

Appendix A.2 .. 113

Appendix A.3 .. 115

References ... 116

vii

List of Tables

Table 3.1: Maximum QP problem parameters for different FPGAs 80

Table 3.2: Floating Points components parameters .. 81

Table 3.3: synthesis report of architecture I QP solver ... 81

Table 3.4: performance of architecture I QP solver.. 81

Table 3.5: synthesis report of architecture II QP solver 84

Table 3.6: performance of architecture II QP solver .. 84

Table 3.7: performance of Matlab function of the QP solver 84

Table 3.8: synthesis report of MBQP solver .. 85

Table 4.1: parameters of the SSID system ... 99

Table 4.2: parameters of the MPC controller ... 100

Table 4.3: Hardware results of SSID problem ... 100

viii

List of Figures

Figure 1.1: Temperature control using thermostat hybrid automaton 11

Figure 1.2: Execution of MPC control strategy .. 23

Figure 2.1: using of parallel units in vector addition .. 48

Figure 2.2: Block parallelism in MBQP hardware ... 49

Figure 2.3: sequential execution versus pipelined execution. 50

Figure 2.4: two vector addition with a single pipelined adder with DA stages 51

Figure 2.5: Adder tree ... 54

Figure 2.6: Pipelined operation of matrix vector multiplication 55

Figure 2.7: Pipelined matrix-vector multiplication with memory access 56

Figure 2.8: A vector by scalar multiplication using a single pipelined multiplier

with DM stages ... 57

Figure 2.9: Pipelined matrix vector multiplication using pipelined adder/multiplier

 .. 58

Figure 2.10: Example of parallel operation in interior point algorithm 65

Figure 2.11: sharing of memories between interior point and MBQP 70

Figure 3.1: Execution of a QP solver iteration using architecture II 83

Figure 4.1: Operation of Inertial Driver .. 88

Figure 4.2: Model of SSID ... 89

Figure 4.3: Coulomb Friction force model.. 90

Figure 4.4: SSID Hybrid Automaton ... 92

Figure 4.5: Simplified SSID Hybrid Automaton .. 97

Figure 4.6: simulation results of SSID system .. 101

Figure 4.7: Masses positions of SSID with dehybridization control 102

Figure 4.8: Control signal response using dehybridization 102

ix

List of Symbols

Numerical sets

Notation Meaning

R

Rn

Rm×n

Set of scalar real numbers R

Set of real vectors of length n R

Set of real matrices with dimension m×n R

Linear state space

Notation Meaning

x(k)

u(k)

y(k)

y

u

M

N

C

F

H

State vector at instant k

Input (control action) vector at instant k

Output vector at instant k

Vector of predicted outputs up to time T

Vector of future control inputs up to time T

System matrix

Input matrix

Output matrix

Matrix relating y to state x(k)

Matrix relating y to state u

Mixed Logical Dynamical systems

Notation Meaning

k

x(k)

u(k)

y(k)

z(k)

δ(k)

Ax

B1, B2, B3

E1, E2, E3, E4

E5

nc, nb, nx

pc, pb, py

Current sampling instant

State vector at instant k

Input (control action) vector at instant k

output vector at instant k

auxiliary real variables vector at instant k

auxiliary binary variables vector at instant k

System dynamics matrix (associated with states)

System dynamics matrices (associated with input, auxiliary

binary variables, auxiliary . real variables respectively).

MLD constraint matrices (associated with input, auxiliary

binary variables, auxiliary real variables, states respectively)

MLD constraints constant term vector.

Number of states (continuous, binary , total)

Number of outputs (continuous, binary , total)

x

mc, mb, mu

rc, rb

Number of inputs (continuous, binary , total)

Number of auxiliary (continuous , binary) variables

Model predictive control

Notation Meaning

J

Qx, Qu, Qy, Qz

QxT

‖ . ‖
2

T

Tu

yref, xref

q

G

d

D

U

V

f

A

b

xC

Θ

Control objective function

Objective function weighting matrices for (states, input,

output, auxiliary real variables)

weighting matrix for final state xT

norm 2

prediction horizon (MPC) Or final time (optimal control)

Control horizon

Required output , states references respectively

optimization vector

quadratic cost matrix

linear cost matrix

parameter – optimization variable cost matrix

quadratic parameter cost matrix

linear parameter cost matrix

objective function constant term

constraints LHS matrix

constraints RHS matrix

states weighting matrix in constraints RHS

parameter vector

Interior point method

Notation Meaning

q

G

d

A

b

n

m

λ

s

Optimization vector

Quadratic cost matrix

Linear cost matrix

Inequality Constraints LHS matrix

Inequality Constraints RHS matrix

Number of optimization variables

Number of constraints

Lagrange multipliers

Slack variables

xi

Λ

S

Δq, Δs, Δλ

α

ζ

μ

q
+
, s

+
, λ

+

Ɲ-∞

γ

Diag(λ)

Diag(s)

Search direction of q, s and λ respectively

Step length

Centering parameter

Duality measure

New iteration value

One sided infinity neighborhood

Parameter of the one sided infinity neighborhood

Mixed integer quadratic programming

Notation Meaning

q

G

d

A

b

Aeq

beq

nbin

nreal

n

m

Optimization vector

Quadratic cost matrix

Linear cost matrix

Inequality Constraints LHS matrix

Inequality Constraints RHS matrix

equality Constraints LHS matrix

equality Constraints RHS matrix

number of binary optimization variables

number of real optimization variables

Total number of optimization variables

Total number of constraints

Stick-Slip Inertial Drive (SSID)

Notation Meaning

ms

Mm

ks

up

Fc

xms

xMm

rxM

vms

vMm

m

ρ

SSID small mass

SSID main mass

Spring constant of SSID transmission elements

Force of piezoelectric element

Coulomb friction force

Displacement of small mass

Displacement of main mass

Reference of main mass position

Speed of small mass

Speed of main mass

Total number of constraints

Friction force at interface of two masses

xii

List of Abbreviations

ASIC Application Specific Integrated Chip

FPGA Field Programmable Gate Array

HYSDEL HYbrid System DEscription Language

MLD Mixed Logical Dynamical

MPC Model predictive Control

MBQP Mixed Binary Quadratic Programming

MIQP Mixed Integer Quadratic Programming

QP Quadratic Programming

SSID Stick Slip Inertial Drive

xiii

Abstract

The area of hybrid systems modeling and control had great research interest in

recent years. Hybrid systems are defined as systems combining both continuous

dynamics and discrete events. Such systems appear in different applications like

robotic systems and automotive applications. Hybrid systems can be used to model

various types of systems like systems with switching dynamics, systems

interacting with logic elements or systems with non-linearities like saturation and

dead-zone.

One of the most important achievements of research in this area is arrival to a

standard modeling framework for hybrid systems. Tools were provided to

automate the process of modeling hybrid systems. These tools provided also a

standard approach to control hybrid systems using optimal control and model

predictive control. Some simulation abilities were provided to simulate the closed

loop performance of the controlled hybrid system.

Model Predictive Control (MPC) is one of the most successful control

techniques that can be used with hybrid systems. MPC was applied with great

success on linear systems and it has many industrial applications. Recently, there

were some efforts to use MPC for embedded systems and system-on-chip

applications. In this thesis, we consider the application of MPC to hybrid

embedded systems. The main barrier is the complexity of system as it requires

online solution of a mixed binary optimization problem in each sampling instant.

This problem limits the domain of application to very slow systems. We work to

overcome this barrier by designing a fast hardware mixed binary quadratic solver.

This solver will be used to solve the required optimization problem and calculate

the optimal control action. Having a high speed solver will make it possible to

apply MPC on hybrid embedded systems with sampling time in range of few

milliseconds. To achieve the required speed, the concepts of pipelining and

xiv

parallel design are used. A study is performed to measure the speed improvement

achieved by applying these concepts.

Finally, to evaluate the controller performance, the implemented controller is used

to control a practical hybrid system. The controlled hybrid system is the Stick-Slip

Inertial drive. This application showed that the proposed design enabled MPC to

be applied successfully to control hybrid systems with relatively small sampling

time.

1

Chapter 1 Introduction and Background

1.1 Introduction

This thesis studies the control problem of a special class of systems called Hybrid

Systems. Hybrid systems are generally defined as systems that combine both

continuous dynamics and discrete events. Systems with multiple switching

dynamics represent a main class of hybrid systems, in which the system operates in

multiple modes. Each mode has different dynamics. The operating mode is

selected due the achievement of a certain conditions. Conditions that alter the

system mode are discrete events, while the system operates –in a certain mode–

according to continuous dynamics. This hybrid nature of such systems makes them

complex to model and control [1].

Hybrid systems may originally have this hybrid nature like mechanical systems

that distinguish between stick and slip friction. Hybrid systems may also result

from the control of continuous systems using digital logic. Examples of this type

of hybrid systems include: temperature control using thermostat, hydraulic systems

with on-off pumps or valves and systems controlled by nonlinear elements like

saturation and dead-zone [2]. Hybrid systems can be also used the operation

systems controlled by digital commands.

Hybrid systems appear in various applications like robotic systems and

automotives. In such applications, systems should be controlled to achieve the

required performance. However due to the hybrid nature of the system, reaching a

systematic modeling and control technique has represented a challenge.

There were many trials to provide modeling frameworks for hybrid systems [3].

However, most of these modeling techniques ware based on the combination of

logic rules to describe discrete events and algebraic expressions to describe

continuous dynamics. Hence, these modeling techniques did not allow for a

systematic control approach. Efforts in the direction resulted in the proposal of a

unified modeling framework for hybrid systems. It was called Mixed-Logical

dynamical (MLD) modeling [4]. In this modeling framework, only algebraic

expressions were used to describe the complete dynamics of a hybrid system. The

2

discrete events occurring in a hybrid system were described by inequality

constraints. These inequality constraints have some of the variables restricted to be

binary variables. The use of binary variables allowed the description of logic

events available in hybrid systems. The resulting dynamic equations were

combining real and binary “logic” variables, hence the name “Mixed Logical

Dynamical”. The hybrid nature was maintained by constraining the dynamic

equations by a set of inequalities.

The introduction of MLD modeling allowed the proposal of systematic control

approaches. However, as the system dynamics contain constrains, the proposed

control strategy must be able to deal with constraints. As classical control design

techniques like PID and Lead-lag compensation were not able to explicitly handle

constraints, they were not suitable for this type of problems. To handle constraints

explicitly, Model Predictive Control (MPC) was proposed as a suitable control

technique [4].

MPC is one of the most successful control techniques used for linear systems and

it has many industrial applications. MPC is a form of closed loop optimal control.

It works to achieve required performance by the solution of an optimization

problem. This optimization problem works to minimize a certain required

objective function while satisfying any constraints on the system operation. The

application of MPC requires the availability of a mathematical model to describe

system behavior. This model is required to predict the system future behavior. This

is required to provide an optimal control signal that guarantees satisfaction of

requirements and preventing any possible constraints violation.

As MPC only requirement is the availability of a model to use for prediction, the

introduction of MLD modeling allowed the use of MPC to control hybrid systems.

However, this extension to hybrid system will result in a harder control problem

than the case of linear system. The difficulty is that the generated optimization

problem has some of its variable restricted to be binary. This converts the

optimization problem to a mixed-binary optimization problem. This type of

problem is more complex to solve than optimization problems with real variables.

Moreover, its complexity increases exponentially as the number of binary

3

variables increases [5]. This complexity limits the domain of application of MPC

to only slow hybrid systems as MPC requires the solution of the generated

optimization problem every sampling instant. The problem is more difficult when

it is related to hybrid embedded systems, where the use of powerful computers to

perform the calculations is not practical.

There were trials to apply MPC to embedded linear systems and system-on-chip

applications [6-8]. In this thesis, we consider the use of MPC in hybrid embedded

systems. We try to exploit recent developments in hardware technology to design a

MPC that is able to control fast embedded hybrid systems. This is achieved by

designing a custom hardware to solve the MPC mixed binary optimization

problem in a short time to allow its application to fast hybrid systems.

To reach small solution time the concepts of parallel design and pipelining were

used in the optimizer design. An ALTERA FPGA was used to prototype the

hardware design.

The thesis will be organized as following; the rest of chapter one will provide the

necessary background. This background is divided to four main sections. Section

1.2 will give a detailed description of Model Predictive control, its advantages and

its basic formulation in the case of linear systems. Then, we discuss in section 1.3

the details of hybrid systems, its applications, the MLD modeling framework and

hybrid control using MPC strategy. Sections 1.4 and 1.5 review the optimization

problem solution algorithms. Section 1.4 reviews the solution algorithms of

Quadratic Programming (QP) problems and section 1.5 reviews the solution

algorithms of Mixed Binary Quadratic Programming (MBQP) problems.

In chapter 2 the hardware design ideas and implementation are discussed. The

results of the hardware design are given in chapter 3. In chapter 4 a practical

hybrid system is proposed. Its modeling is discussed. Then MPC is used to control

the system. Finally, chapter 5 concludes the thesis and sheds some light on the

future work.

4

1.2 Model Predictive Control

1.2.1 Introduction

Model predictive control (MPC) is a computer control technique that aims to

control a process by online optimization. The control signal generation involves

the online solution of an optimization problem. The optimization problem involves

the minimization of a cost function that tries to drive the future process outputs

towards desired trajectories while respecting any existent constraints. The obtained

optimal solution is the required control action to be applied to the process to push

its future outputs as near as possible to the required references. To build the

control cost function the values of the future process outputs need to be predicted.

This Prediction requires the knowledge of the process dynamic model, which

explains the name “Model Predictive Control" or MPC in short.

The first published work that introduced the concept of control by online

optimization appeared at 1963 [9]. The synthesis of a feedback controller using

this idea was reported in [10]. Although these works have not introduced deep

theoretical analysis of the proposed ideas, these ideas had found a place in

industrial applications. Industry was the main driver of the development and

application of MPC technology. The first description of MPC control applications

appeared in [11], where MPC was considered as a heuristic control technique.

From the time when MPC has first appeared it was used in many industrial

applications. Its implementations had different names according to the providing

vendor. Different implementations of MPC had different features and used

different modeling techniques to describe industrial process dynamics. A survey of

different implementations of industrial MPC and their differences can be found at

[12].

Despite the early implementation of MPC, its computational complexity has

restricted it to processes with slow dynamics like chemical processes. The

successive improvements in electronic systems which led to higher computation

5

capabilities opened the door for application of MPC to systems with faster

dynamics to the degree that it could be used for embedded systems that require

advanced control strategies.

1.2.2 Advantages over other control techniques

Model predictive control outperforms other control techniques like PID control

due to the following reasons:

- Its ability to deal with complex multivariable systems.

- Its ability to explicitly deal with constraints. This feature is highly required

by process industry due to process and actuator limitations. Besides, it is

known that the optimum economical operating point lies within the

intersection of economic constraints.

- Its general nature which can be used to control wide range of systems like

time variant and nonlinear systems and systems with time delays.

1.2.3 Basic formulation and methods of solution

The basic formulation of model predictive control for a SISO linear system [13] is

to find the control sequence u to minimize the following cost function

2 2

(|),.... (1|)
1 1

min (((|) ()) (1|) (1.1)
i i

T T

y ref u
u k k u k T k

i i

w y k i k y k i w u k i k

Subject to:

min max

min max

(|) , 1,..... (1.2)

(|) , 1,..... (1.2)

y y k i k y i T a

u u k i k u i T b

where :

k current sampling instant

y (k + i | k) predicted output at instant k+i calculated at instant k

yref (k + i) desired output value at instant k+i

u (k + i -1 | k) control sequence applied to process at instant k+i-1

T prediction horizon (time window within which the output is

predicted)

,
i iy uw w Weighting factors for system output and control input respectively

6

When optimization problem (1.1) is solved, the whole control sequence is

obtained. Only the first control move u (k | k) of the control sequence is applied to

the process. Then, new measurements are performed at the following sampling

instants. The optimization problem is solved again at each sampling instant to

calculate the new required control move.

It is clear that MPC formulation (1.1) requires the prediction of future process

outputs. This prediction is performed by the use of model for the process. The final

problem formulation differs based on the model used to describe the process. The

process can be described by an input-output model like FIR model, or it can be

described by a more general state space model or an ARMAX model.

The formulation (1.1) represents the constrained MPC problem which in general

doesn't have an explicit solution and needs numerical solutions to obtain the

control sequence.

Usually the MPC cost function can be formed into a quadratic form, hence we

convert the optimization problem into a quadratic programming problem in the

form

min () min (1.3)

. (1.3)

T
T

q q
J q q Gq d q f a

S T Aq b b

Where q is the vector collecting all optimization variables u(k | k) to u(k+T-1 | k),

G is the quadratic cost matrix, d is the linear cost matrix, f is the objective

function constant term, A is the inequality constraints coefficients matrix and

finally b is the constraints constant terms matrix.

The optimization vector q in (1.3) represents the sequence of future control moves

from u(k | k) to u(k+T-1 | k). Constrained Quadratic programming problems in the

form (1.3) has several numerical methods of solutions. These methods will be

described in detail in section 1.5.

Process modeled by state space model

In this section we will describe in detail the MPC formulation for one of the most

common process models which is state space model.

7

In this case the system is described by the state space equations

(1) () () (1.4)

() () (1.4)

x k Mx k Nu k a

y k Cx k b

Hence the predicted output at instant k+i is given by

1 2

(|) () (1) (1)

((2) (2)) (1))

() () (1) (1)

(1.5)

i i i

y k i k Cx k i CMx k i CNu k i

CM Mx k i Nu k i CNu k i

CM x k CM Nu k CM Nu k CNu k i

For the T output predictions

2

1

(1|) 0 0 ()

(2 |) 0 (1)
() (1.6)

0

(|) (1)

()

T T

y k k CM CN u k

y k k CM CMN CN u k
y x k

y k T k CM CM N CN u k T

or

y Fx k H u

The optimization problem (1.1) can be formed in matrix form as

min () () (1.7)
TT

y uref refu
J y y Q y y u Q u

Substituting by (1.6) the objective function J takes the form

(()) (())

() 2(()) (()) (())

(1.8)

TT

y uref ref

TT T T

y y y yref ref ref

J Fx k H u y Q Fx k H u y u Q u

u Q H Q H u Fx k y Q H u Fx k y Q Fx k y

The resulting objective function has the standard form of the quadratic

programming problem (1.3). When the optimization problem is unconstrained the

control moves can be computed explicitly by

1() (()) (1.9)
T T

T

u y y ref
u Q H Q H H Q Fx k y

It is clear that the computed control depends linearly on the value of the current

state x(k) then MPC can be considered as a state feedback control. Therefore, the

implementation of the MPC algorithm requires the use of a state observer for the

deterministic control problems or a state estimator (Kalman Filter) for the

stochastic problems.

8

When the previous optimization problem has constraints, the solution cannot be

computed explicitly. There exist a number of numerical techniques to solve this

problem [14] like:

1. active set methods

2. interior point

3. feasible point improvements

4. pivoting methods

1.2.4 Explicit Solution of the MPC problem

Explicit solution of the MPC problem [15] is an alternative method to avoid the

need of online solution of the QP associated with control problem. In this case the

problem is solved offline for all possible state values within a selected range. The

different solutions of the problem are stored in a memory as a function of the

states. During the online control of the system, the controller only searches the

memory to get control gains corresponding to current system states. In this

manner, instead of solving complex QP online we only perform search in memory.

Explicit MPC has some drawbacks when problem size increases or long prediction

horizons are used. Tables I and II in [16] shows that the number of stored solutions

in explicit MPC -and hence the required memory-increases exponentially when

problem size or number of constraints increases. The large number of stored

solutions makes the time required to search for the solution longer than the time

needed for the online solution.

1.2.5 MPC in embedded systems

The attractive features of model predictive control recommended it as a reliable

control technique for complex embedded systems that requires accurate

performance while considering the constraints of manipulated and controlled

variables. Examples of such systems include: Robotics, Automotive applications

[17], Avionics , Biomedical systems such as Prosthetics[18],[19], Rotational

antennas,…etc.

9

The main consideration for using MPC for embedded applications is the

computational complexity of the MPC algorithm and whether it would be fast

enough to handle the fast dynamics of such systems.

While the industrial MPC algorithms used for process control are implemented as

software running on workstations. The implementations of MPC for embedded

applications vary from a software running on an embedded processor as proposed

in [6], to a complete hardware realization of the algorithm as proposed in [7]. Also,

Hardware / Software co-designs of the algorithm are inspected as in [8]. In these

designs the hardware is used to speed up the calculations of the matrix operations

required during the solution of the optimization problem.

11

1.3 Hybrid systems

1.3.1 Introduction

Hybrid systems are systems that combine continuous dynamics and discrete event

dynamics. Hybrid systems appear in many areas. The most famous examples of

hybrid systems are continuous processes controlled by discrete event controllers

like on-off relays and switches. This leads to a system with a number of modes.

The continuous dynamics of the system depends on its mode of operation. Thus

hybrid systems can be viewed as multi-model systems.

Not all hybrid systems result from the application of digital controllers to

continuous systems. There are also systems that are hybrid in nature, like systems

that have switching dynamics for example:1) friction models which distinct

between stick and slip phases and 2) mechanical systems dynamics switching due

to load/no-load variations. Also some nonlinear elements can be considered as

linear multimodal systems like saturation and dead-zone.

As hybrid systems appear frequently in practical applications, they have attracted

researchers' attention. They began to study the methods for modeling such

systems. Such modeling is required for performance evaluation of hybrid systems

and afterwards to build control schemes to operate these systems as required.

The complex nature of hybrid systems including interacting continuous dynamics -

which can be modeled by differential or difference equations- and discrete event

dynamics -which can be modeled by finite automata - complicates the task of

modeling the overall hybrid system. The research community has provided

multiple modeling schemes of hybrid systems. One of the earliest surveys of

different hybrid modeling techniques was presented in [20]. This survey

distinguishes four hybrid modeling techniques until the last century mid-nineties

which are:

1) Automata and transition systems.

2) Dynamic systems.

3) Algebraic structures models.

4) Programming languages models.

11

The models described in this survey were mainly used for verification of hybrid

systems. The control strategies proposed based on these models were not

systematic and applicable only for certain classes of hybrid systems. Better

modeling techniques, namely; mixed logical dynamical (MLD) modeling and

Piece-Wise Affine modeling (PWA), were proposed in 1999. Equivalence between

both models was later proved in [21]. An overview of the recent important hybrid

modeling techniques and the design of stabilizing controllers was given in [22].

One of the most formal methods of hybrid systems modeling is the Hybrid

Automaton, which can be simply defined as a state machine augmented with

differential or difference equations. There are many methods to describe a hybrid

automaton; one of the most famous is the Alur-Henzinger hybrid automaton [2],

[23].

Figure 1.1: Temperature control using thermostat hybrid automaton

In general, hybrid automaton models a hybrid system as a number of logic states,

with each logic state associated with continuous dynamics that describe the

continuous system behavior in this state. Transitions between states are based on

the value of continuous system states, continuous system inputs and discrete

system inputs. The system outputs are determined based on the system current

state and the continuous dynamics associated with that state. An example hybrid

automaton is shown in figure 1.1. It shows the temperature control using

thermostats. The system regulates temperature around 20 degree by turning on the

State 0

Heater OFF

State 1

Heater ON

temp tempx x 10temp tempx x

xtemp < 18

xtemp > 20

12

heater is when temperature falls below 18 degree and turns it off when temperature

exceeds 22 degree.

A detailed study of hybrid automaton, its basic components and its mathematical

formulation is found in [2].

Although the hybrid automaton was a general method to model a wide class of

hybrid systems. It was not so much suitable for the control implementation of

hybrid systems. This is because hybrid automaton uses both mathematical

functions and logic equations to describe the hybrid system. Controlling hybrid

systems -on the other hand- requires a unified mathematical model that can be

used for performance evaluation and for control synthesis.

This need for a unified framework for hybrid systems modeling and control was

addressed by modeling of such systems as Mixed Logical Dynamical (MLD)

systems [4].

In this modeling framework propositional logic – used to describe performance of

hybrid system - is transformed into linear inequalities involving integer and

continuous variables. The resulting MLD system models hybrid system by linear

dynamics –difference or differential equations- constrained by linear mixed-integer

inequalities.

MLD modeling strategy is not only able to model hybrid systems described by

hybrid automata but also able to cover a wide range of systems including

constrained linear systems , finite state machines, systems with piece-wise linear

dynamics and nonlinear systems whose nonlinearities can be expressed (or

properly approximated) as piece-wise linear functions. MLD modeling will be

discussed in detail in section 1.3.2.

Before reaching a standard modeling technique for hybrid systems, the task of

building a control for a hybrid system was a complex task. This complexity arises

from the fact that there were no systematic approaches to build such controllers. At

this period, control of hybrid systems was based on heuristic rules that were

13

proposed by experience of the practical plant operation and hence it was highly

related to the nature of the hybrid system at hand. Performance validation of the

proposed controller was performed by expensive plant tests that consume much

time and money.

Modeling hybrid systems as MLD systems opened the door to think for systematic

control algorithms for hybrid systems. However, we should note that the resulting

models have constraints. These constrains arise from the modeling methodology

that converts logic propositions to mixed-integer inequalities and also from the

operation constraints on the original system.

Due to this constrained nature of the resulting models, the classical control

approaches -such as PID and frequency domain control techniques- won't be

suitable. This results from the inability of such techniques to explicitly handle

constraints. As a result, optimal control methodologies were thought to be suitable

for this type of control problems [4].

As optimal control problems use an objective function which usually takes a

quadratic form, optimization problem takes the form of mixed-integer quadratic

programming. This problem doesn't have an explicit solution, which forces us to

calculate the control sequence off-line and store it to be applied to process during

operation. This makes the control scheme an open loop control which has the

many disadvantages compared to feedback control. The most important advantage

of feedback control is its ability to reject disturbances.

In order to apply optimal control in a feedback fashion, the optimization problem

has to be solved online. Control algorithm will use state measurements obtained

each sampling instant to form an optimization problem. The problem is solved

online and the optimal solution obtained is applied to the system. This procedure is

repeated each sampling interval.

The feedback optimal control just described creates optimization problems based

on all future system response. Hence, the generated optimization problems are

very complex to solve. To simplify the formed optimization problem, we can limit

the optimization to only a small window of the system future response. This

14

window is called control horizon. The proposed control technique is called

receding horizon control or model predictive control [4].

The control algorithm predicts process performance only during the selected

horizon. The predictions obtained are used to calculate the optimal control

sequence. Of this sequence, only the first control move is implemented. Then new

measurements take place and new optimization iteration is performed based on

new predicted response. The MPC approach for hybrid system requires the

solution of MIQP problem at each sampling instant. The computational complexity

of solution of such a problem is high and it increases exponentially with the

number of variables to be optimized. Despite this computational complexity, MPC

is considered as one of the most successful control algorithms for hybrid systems.

There exist many reported applications where MPC has proved success in the

context of hybrid systems [24]. Various studies on the feasibility, optimality,

robustness and stability of hybrid systems controlled by MPC exist [25], [26].

1.3.2 MLD systems

In this section we introduce the mathematical formulations of MLD systems [4].

Mixed logical dynamical model integrates system dynamics, logic rules and

operation constraints of a system to a unified linear dynamics subject to linear

mixed integer inequalities. This modeling can be done by using some basic steps

as following:

1- Hybrid system dynamics should be carefully studied. The sources of discrete

event dynamics should be distinguished. A group of logic variables - δ - is

declared to be used to express the discrete event dynamics. We reach to a form

where system dynamics are controlled by some logic rules.

2- The stated logic propositions should be transformed to mixed-integer linear

inequalities. This is done based on the propositional calculus and its

equivalence to linear inequalities. A complete study of this topic can be found

in [27].

15

3- Some auxiliary states - z - may be introduced to express relations between

original system states - x - and the logic variables declared – δ. This results in

new state equations which relate original states, auxiliary states and logic

variables. Additional linear inequalities may be used to maintain the

equivalence between original hybrid system dynamics and resulting MLD

system dynamics.

4- The final MLD model is formed by the combination of the resulting linear

dynamics –which may include continuous/discrete states, continuous/discrete

inputs, continuous/discrete outputs and continuous/discrete auxiliary variables-

and all derived linear inequalities.

The general formulation of the MLD system takes the form

1 2 3

1 2 3

2 3 1 4 5

(1) () () () () (1.10)

() () () () () (1.10)

() () () () (1.10)

xx k A x k B u k B k B z k a

y k Cx k D u k D k D z k b

E k E z k E u k E x k E c

where

 , , 0,1 ,bcc

c b x c b

b

x nnx x x n n n
x

 is the system states, combining

continuous states xc and logical 0-1 states xb.

 , , 0,1 ,c b
c

c b y c b

b

y p p
y y y p p p

y

is the output vector , combining

continuous outputs yc and logical 0-1 ouputs yb.

 , , 0,1 ,bcc

c b u c b

b

u mmu u u m m m
u

is the control input vector ,

combining continuous control commands uc and discrete controls ub.

 , 0,1 bc rrz are the continuous and logical (binary) auxiliary variables.

To illustrate this modeling procedure let's consider the example used in [4]

16

Example 1.1 Consider the system

0.8 () () () 0
(1)

0.8 () () () 0

() ()

x k u k x k
x k

x k u k x k

y k x k

Where k represents the time kT, where T is the sampling time.

In this system the discrete dynamics come from a condition on the value of the

continuous state x(k). This condition will be associated with a logic variable δ(k)

such that:.

() 1 () 0k x k

The introduction of this logic variable allows us to model the system dynamics by

the single equation

(1) 1.6 () () 0.8 () ()x k k x k x k u k

subject to the logic proposition

() 1 () 0k x k

This logic proposition can be transformed into the following inequalities

() ()

() () ()

x x

x

m k x k m

M k x k

Where ε is a small positive integer to represent measurement precision

And Mx, mx are defined as

max ()

min ()

x
x X

x
x X

M x k

m x k

 Where X is the given bounded set that state x belong to.

The term δ(k)x(k) that exist in the new state equation represents a product between

continuous and logical variables. This makes the resulting dynamics nonlinear. To

overcome this nonlinearity this term can introduce an auxiliary variable

z(k) = (k)x(k). the use of this variable will result in a linear state equation. To

have a correct modeling of the hybrid system the introduced auxiliary variable

should satisfy the following set of inequalities.

17

() ()

() () () ()

() () (1 ())

() () (1 ()) () () (1 ())

x

x x

x

x x

z k M k

z k m k z k m k

z k x k m k

z k x k M k z k x k M k

The new state equation takes the form

(1) 1.6 () 0.8 () ()x k z k x k u k

The system dynamics obtained is a linear dynamics constrained by a number of

mixed-integer linear inequalities.

The final step of modeling is to organize obtained equations in the general form

of MLD system

1 2 3

1 2 3

2 3 1 4 5

(1) () () () ()

() () () () ()

() () () ()

xx k A x k B u k B k B z k

y k Cx k D u k D k D z k

E k E z k E u k E x k E

where

x 1 2 3 1 2 3

2 3 1 4

A = -0.8 , B = 1 , B = 0 , B = 1.6 , C = 1 , D = D = D = 0

0 0 1

() 0 0 1

1 0 0
, , ,

1 0 0

1 0 1

1 0 1

x

x

x

x

x

x

m

M

M
E E E E

m

m

M

5

0
,

0

x

x

x

m

E

m

M

■

Comment on MLD modeling

An important note about MLD modeling of hybrid system is that the auxiliary

variables (z and δ) appear in the MLD equations as if they are independent

variables that are used to calculate next value of the system states x(k+1).

However, any choice of these variables must satisfy the inequalities associated

with MLD modeling. This group of inequalities is what maintains equivalence

between original hybrid system and resulting MLD modeling. For example, in

original hybrid systems: if the values of current states x(k) and current inputs u(k)

are known, auxiliary variables (z and δ) should be uniquely defined according to

their dependence on x(k) and u(k). On the other hand, in MLD modeling: if x(k)

and u(k) are known and used for substitution in MLD inequalities, the resulting

18

inequalities will be have only auxiliary variables (z and δ) remaining. If the

inequalities are tested to obtain a feasible solution that satisfy all inequalities, the

obtained feasible point will be the same as the values of z, δ obtained from hybrid

system relations.

This previous discussion shows that MLD modeling has used linear inequalities to

hide logic rules of original hybrid system. This – somehow- created an inverted

problem as z and δ have been converted from depending variables to – only

apparently – independent variables. To run a hybrid system simulation using MLD

modeling, z and δ should be determined first based on current states x(k) before

the new set of states x(k+1) can be calculated.

Finally, we should indicate that MLD modeling will be suitable for control

synthesis of hybrid systems as will be shown later.

1.3.3 Control of hybrid systems

In this section we will study some of the control techniques that are suitable for

hybrid systems. We have shown before that classical control methods cannot be

used for hybrid system due to 1) existence of discrete nature in system

performance and 2) the existence of constraints on inputs, outputs or states. Some

researchers suggested a de-hybridization technique for hybrid system to allow for

system control using classical approaches [28]. However, the most suitable control

techniques are those that can explicitly handle constraints like optimal control and

model predictive control [4]. The application of these control techniques to hybrid

systems will be described in detail in the following section.

1.3.3.1 Optimal control

The optimal control problem of a MLD system can be formulated as follows [4].

Given an initial state x(0) and a final time T, find (if possible) the control sequence

u
T-1

 = {u(0),u(1),…...,u(T-1)}that transfers the system states from x(0) to xref(T)

while minimizing the objective function

19

1
2 2

1

1
2 2 2

0

() () () ()

() () () () () () (1.11)

T

ref ref

k

T

ref ref ref

k

xxN

u y z

Q Q

Q Q Q

J x T x T x k x k

u k u k y k y k z k z k a

Subject to the MLD dynamics (1.10) and any required limits on the states x,

outputs y, control action u

min max

min min

min min

() 1,2,.....,

() 0,1,....., (1.11)

() 0,1,.....,

x x k x k T

y y k y k T b

u u k u k T

Where

2
() () ()T

ref ref x ref
xQ

x x x x Q x x

 Qx, Qu ,…….. Qy are given weight matrices

 Xref(k),…….. yref(k) are the values of required references at instant k.

To cast this problem in the standard form of optimization problems, we need to

change the objective function to make it a function of the independent variables

only. We will use state and output equations of (1.10) to remove the dependent

variables (x, y) from the objective function and from inequality constraints (1.10c)

and (1.11b).

From (1.10a)

1 2 3(1) (0) (0) (0) (0) (1.12)xx A x B u B B z a

Similarly,

1 2 3(2) (1) (1) (1) (1) (1.12)xx A x B u B B z b

Hence,

2

1 2 3 1 2 3(2) (0) ((0) (0) (0)) (1) (1) (1) (1.12)x xx A x A B u B B z B u B B z c

By successive substitution we reach that a at any future instant k, the predicted

state x(k) can be obtained from

1
1

1 2 3

0

() (0) (() () ()) (1.13)
k

k k i

x x

i

x k A x A B u i B i B z i

Consequently, at final time instant (k = T)

21

1

1

1 2 3

0

() (0) (() () ()) (1.14)
T

T T i

i

x T A x A B u i B i B z i

We can notice that x(T) – along with all other states x(k) – depends only on x(0) –

current measured state – which is known and appears as constant value in

optimization and on the independent variables (), (), (); 0,1,..... 1u i z i i i T .

By similar mathematical manipulation we find that y(k) depends only on x(0) and

the same set of independent variables.

1 2 3() () () () () (1.15)y k Cx k D u k D k D z k a

Substituting by (1.13) we reach

1
1

1 2 3

0

1 2 3

() ((0) (() () ()))

() () () (1.15)

k
k k i

x x

i

y k C A x A B u i B i B z i

D u k D k D z k b

Substituting by (1.13) and (1.15b) in objective function we find that the only

independent optimization variables are the future values of u, z and δ from the

instant k = 0 to T – 1.

These set of variables are collected in the optimization vector q.

[(0) (1) (1) (0) (1) (0) (1)] (1.16)T
q u u u T T z z T

The objective function (1.11) can be reshaped in the following form

1 1
min () (1.17)

2 2

(0) (1.17)

T T T T T

q

x

J q Gq d D q U V f a

subject to Aq b C x b

The vector θ is related to required references and the value of states at the current

sampling instant x(0).

 (0) (1.17)
T

ref ref ref refx x y u z c

We can notice that using equality constraints for substitution leaves only the

inequality constraint. Hence the problem is converted to inequality constrained

optimization problem.

As the current state x(0) and all the references are determined by control

requirements, the vector θ is known. By substitution in the objective function, we

21

find that last three terms of objective function will evaluate to a constant. This

constant will not affect the optimization problem and can be ignored. The final

form of the objective function can be expressed as

1
min (1.18)

2

(1.18)

Tq Gq dq a

Aq b b

where

(1.19)

(1.19)

(1.19)

(0) (1.19)

T T

x

G G a

d d D b

A A c

b b C x d

This form has the same standard form of quadratic programming problems.

However, we should note that some of the optimization variables – δ(0) to δ(T - 1)

– are binary variables. This converts optimization problem to a mixed binary

quadratic programming MBQP problem or generally a mixed-integer quadratic

programming MIQP. This type of problems is much more complex in solution

than normal quadratic programming. The problem computational complexity

increases exponentially with the number of binary variables.

There are a number of algorithms that can solve such problems [29]. The main

algorithms are:

1) Cutting plane methods.

2) Decomposition methods.

3) Logic based methods.

4) Branch and bound methods.

It was found by [30] that the branch and bound algorithm is the best algorithm for

mixed integer quadratic programming problems. Some recent works [31] introduce

some preprocessing techniques in order to reduce the complexity of the mixed

integer predictive control problems. Detailed discussion about algorithms used in

the solution of the above problem is given in section 1.4.

22

1.3.3.2 Model predictive control of Hybrid systems

The optimal control strategy -discussed above- works as open loop control

strategy. This is because the optimization problem is solved only once. The

complete control sequence is computed before system is operated. During system

operation, previously calculated control actions u(k) are applied to the system.

 Open loop control has many drawbacks. The most critical drawback is that the

generated control sequence cannot deal with disturbances in the system. This may

lead to an output that don't regulate to the required steady state operating point. It

may even lead to system instability. To overcome these drawbacks we need to

apply a feedback control strategy. This is done by solving the optimization

problem (1.18) online at each sampling instant. Solving such a problem online is

not practically possible due to the large number of optimization variables and

constraints. The online solution can be made possible by simplifying the

optimization problem to be solved. This is done by limiting the prediction

operation to a small future horizon instead of performing predictions until the final

time instant of the system response. This proposed simplification is the main

concept of model predictive control. In MPC the symbol T will represent the

prediction horizon of the MPC controller and x(0) represent the value of the last

reached state. The optimization problem in this case is based on the actually

measured or estimated system states. Hence, the control algorithm can counterpart

any disturbances affecting the system. The hybrid system model is used online by

the controller to predict future system outputs and states. This makes the created

optimization problem related to most recent measurements, hence it will address

any variations during system operation. The execution of the MPC control strategy

is illustrated in figure 1.2.

The mathematical formulation of the MPC problem for hybrid system is the same

as (1.11) and can be similarly transformed to the form (1.19). The only difference

is that T here represents the selected prediction horizon. The value of T is chosen

based on the studied system and the required performance. Generally, increasing

the prediction horizon results in better performance. On the other hand increasing

T creates larger and more complex optimization problem that may prevent

23

practical implementation. For example, if the MLD modeling of a hybrid system

has i optimization variables (binary variables and auxiliary variables) and j

constraints. The created MPC optimization problem has around i*T optimization

variables and j*T constraints. In addition, the number of binary variables in

optimization problem is multiplied by T. This makes the MPC problems with large

T very much harder to solve. Methods of solution of such problems is discussed in

section 1.4.

Figure 1.2: Execution of MPC control strategy

1.3.3.2 Explicit MPC control of hybrid systems

The idea of explicit solution of the online optimization problem discussed in

section (1.2.3) was extended to the domain of hybrid MPC. The idea first appeared

in [32]. In this paper, MPC was based on infinity norms instead of quadratic

norms. It was shown that an equivalent piecewise affine explicit reformulation can

be obtained through off-line multi-parametric mixed-integer linear programming

techniques. To extend this explicit solution to the case of quadratic norms the,

conversion of MLD modeling of hybrid system to equivalent piecewise affine

systems was proposed in [33]. This allowed the introduction of an explicit solution

of quadratic weighted MPC problem using dynamic programming iterations [34].

The solutions were obtained by solving multi-parametric quadratic programming

problems. The obtained solutions represent optimal solutions of the hybrid MPC

optimization problem for different subdivisions of the state space. These solutions

are stored and during system operation the proper solution is used based on the

Process

Process model

Optimization

Constraints

u y

Weighting factors

Prediction

Horizon

References

Model Predictive Controller

24

subdivision where the current system states lie in. Some techniques were proposed

to reduce the number of regions in the explicit solution [35]. A different approach

of solving the explicit control problem is described in [36].

1.3.3.3 Comparison of online and explicit MPC control of hybrid systems

Explicit model predictive control is useful when we deal with small problems with

small prediction horizon. When the problem size increases or large prediction

horizon is used, the number of regions obtained by the explicit controller increases

dramatically. This in turn makes the memory requirements for the implementation

of the explicit controller prohibitive. Also the worst case search time to find the

correct region becomes larger than the online solution case [16].

1.3.4 Tools available for analysis and control of hybrid systems

Research efforts in the field of analysis and control of hybrid systems resulted out

the creation of a number of tools to help modeling, analysis and control of hybrid

systems. One of these results was the introduction of HYSDEL [37] which stands

for "Hybrid System Description Language". This language provides a frame to

describe a wide class of hybrid systems. It allows declaration of continuous and

discrete system states, input and outputs. It provides methods to describe logic

variables based on continuous signals – i.e. events that depend on the value of

continuous variables passing a certain threshold- and allows the use of these logic

variables to perform dynamics switching. Moreover, it allows the declaration of

constraints on both continuous and discrete variables. These capabilities of the

HYSDEL modeling language allow the description of different hybrid system

dynamics in a standard manner. A HYSDEL compiler accepts hybrid system

descriptions in .hys files and converts it to a corresponding MLD model.

Another result was the development of a Matlab Hybrid Toolbox [38]. This

toolbox integrates the HYSDEL compiler in Matlab environment. This way, we

can create HYSDEL models and use the Hybrid Toolbox to convert it to MLD

model in Matlab environment. It also allows the generation of an equivalent PWA

25

models [33]. The toolbox provides routines for the open loop and closed loop

simulation of the generated MLD models. It also provides routines for the

synthesis and simulation of optimal and MPC controllers of hybrid systems.

The controller generation tools permits the declaration of different weighting

factors for each term in the objective function, the introduction of hard or soft

constraints, the introduction of limits on values of states, inputs or outputs and the

use of 2 or infinity norms in the objective function. The toolbox also integrates

some MILP solvers – for infinity norm optimizations – and MIQP solvers – for 2

norm optimizations.

When the objective function is based on 2-norm the optimization problem

becomes a mixed integer quadratic programming problem (MIQP) in the form

(1.17). The hybrid control routine “hybcon” generates all the related optimization

matrices based on the provided MLD model, the required prediction horizon T and

the weighing matrices Qx, Qu, Qy, Qz and QxT provided by control designer. The

“hybcon” function allows the ability to introduce additional constraints on the

system inputs, outputs and states.

The generated controller object is used by a closed loop simulation routine where

all the required references are declared. The simulation routine uses the MLD

model to predict the system future performance. It uses the declared references to

calculate the vector θ. By using this vector, problem (1.17) is transformed to the

standard form (1.18). A MBQP solver is called to solve the generated optimization

problem. The optimal solution is returned and the first control action is applied to

the MLD model to predict system new states and outputs. The operation repeats to

perform a closed loop simulation of the controlled systems. The hybrid control

toolbox was used in this work for simulation of the studied examples before

practical implementation on hardware.

26

1.4 Quadratic programming methods

Optimization problems which have quadratic objective function and linear

constraints are called quadratic programs. The general form of a quadratic program

is

1
min () (1.19)

2

(1.19)

(1.19)
i

T T

T

i i

T

i

J q q Gq q d a

a q b i b

a q b i c

Where q is an n-element optimization vector, d and {ai} are n-element vectors. G

is a square n×n matrix. E is the set of equality constraints and I is the set of

inequality constraints. The number of constraints (1.19b), (1.19c) is equal to m.

The matrix G plays a critical role in determining the complexity of solution of

(1.19). If G is positive semi-definite the problem is said to be convex QP problem.

Any local minimum of a convex problem is the global minimum. If G is indefinite

the problem is said to be non-convex QP. In this case the problem may have

multiple local minima. The solution of non-convex QPs is more challenging than

the solution of convex QPs.

There exist many methods for the solution of a QP problem. Of those, we will

discuss the two most famous techniques which are active set method and interior

point method. Before getting in the details of both methods, optimality conditions

of inequality constrained problem are reviewed.

1.4.1 Optimality conditions

Optimality conditions are obtained by introducing of Lagrange multipliers and

forming the Lagrangian

1
(,) () (1.20)

2

T T T

i i i

i

L q q Gq q d a q b

For the optimal solution q* we define the optimal active set A*(q*) which includes

the indices of the active constraints – constraints satisfying equality– at q*.

27

 *(*) { : * } 1.21T

i iA q i a q b

The first order optimality conditions are

*

*(*)

*

* 0 1.22

* , *(*) 1.22

* , \ *(*) 1.22

0, *(*) 1.22

i i

i A q

T

i i

T

i i

i

Gq d a a

a q b for all i A q b

a q b for all i A q c

for all i A q d

1.4.2 Active set method

Active set method is one of the most successful methods of solution of small QP

problems [14]. The active set method solves the inequality constrained quadratic

program (1.19) by solving a series of simpler equality constrained problems.

The main idea of the active set method is to scan the boundary of the problem

feasible region. This is done by assuming that some constraints are active

(constraints satisfy equality), i.e., we form an active set. This active set along with

the objective function are solved as equality constrained problem. This is done by

solving the first order optimality condition. The obtained solution is studied to

inspect whether it is optimal for the whole problem or not. If the used active set

didn‟t result in the optimal solution, the active set is changed by adding or

removing one of the constraints and the operation is repeated until the optimal

solution is reached.

As the optimal active set is not initially known, we go through a number of

iterations. Each iteration, we select some constraints and assume they are active.

Hence we form an active set As(q) of these constraints.

 () { : } 1.23T

s i iA q i a q b

We then solve the equality constrained problem given by

1
min () (1.24)

2

(1.24)

T T

active active

J q q Gq q d a

A q b b

28

Where

()

()

[] (1.24)

[] (1.24)

s

s

T

active i i A q

T

active i i A q

A a c

b b d

This equality constrained problem can be solved by solving the first order

conditions (1.24). These conditions are called Karush–Kuhn–Tucker conditions, or

KKT conditions for short. The condition (1.24a) and (1.24b) can be written in the

following matrix form

*

*
(1.25)

0

T

active

activeactive

dG A q

bA

This KKT conditions can be introduced in a more suitable form by introducing any

initial feasible point q0, the required optimum solution can be expressed as q* = q0

+ p. where p is the step from q0 to q*. The KKT conditions convert to

*
(1.26)

0

T

active

active

p gG A
a

cA

Where

0 active 0 activeg = d + Gq , c = A q - b (1.26)b

By solving this set of linear equation we reach an optimum pair (p, *) which

optimizes the equality constrained problem. Studying the obtained optimum pair,

two cases arise:

 The first case is that p is equal to zero. This means that the initial value q0 is

the optimum value of the equality constrained problem. It is also the optimal value

of the inequality constrained problem provided that all Lagrange multipliers * are

positive. We hence inspect the signs of the inequality constraints in the active set.

If all are positive then we have reached the solution of the inequality constrained

problem. If any of the Lagrange * multipliers is negative, then its corresponding

constraint doesn‟t belong to the optimal active set. So, this constraint is removed

from the current working active set and a new iteration is performed.

 The second case is that the resulting p doesn't equal zero. In this case, the

reached point q = q0 + p is not the optimal solution and there should be another

point q* that optimizes the equality constrained problem. The case here is that

29

during the movement from q0 to the optimal point q* we may violate one of the

original problem constraints that are not included in the active set. In this case the

violated constraint – called blocking constraint – is added to the active set and a

new iteration is performed with the new defined active set.

To determine the blocking constraint that will be added to the active set, all

constraints that are not included in the active set are examined. The blocking

constraint is recognized by being the nearest constraint to the current point q0 that

will turn negative as we move in the direction of P. So, we calculate a distance

to all constraints that are not included in the active set that may turn negative. The

constraint with minimum is the blocking constraint.

 can be calculated by

0min(1,min()), , () (1.27)
T

i i
sT

i

b a q
i A q

a P

After is calculated the blocking constrained is added to the active set and we

start a new iteration. The initial point in the new iteration is calculated by

0' (1.28)q q P

It should be noted that if is equal to one, that means that no blocking constraint

exists in our way to the optimum q* and a new iteration is performed taking

' 0 (1.29)q q P .

Where 'q is the initial point of the new iteration.

The active set method can be implemented by the following algorithm [14].

Algorithm 1.1 (Active Set method for Convex QP)

Compute a feasible start point q0;

Get W0 to be a subset of the active constraints at q0;

For k = 0, 1, 2, …..

 Solve KKT conditions (1.26) to find pk;

 If pk = 0

 Compute Lagrange multipliers associated with the solution

 If i ≥ 0 for all ki W I ;

31

 STOP with solution x* = xk;

 else

 set min
k

j
j W I

j

 ;

 qk+1= qk;

 wk+1 wk \ { j };

 else (* pk ≠ 0 *)

 compute αk using (1.27)

 qk+1 qk + αk pk;

 If there are blocking constraints

 Obtain wk+1 by adding one of the blocking constraints to wk+1;

 else

 wk+1 wk;

end (for)

Disadvantages of Active Set method

1. Active set method needs a feasible starting point for its implementation. So, it

requires a preceding algorithm to obtain a feasible starting point before the

active set method is applied.

2. As Active Set scans the boundary of the feasible region it may need a large

number of iterations when problem size increases.

1.4.2 Interior point methods

The interior point methods represent another approach to solve quadratic

programming problem (1.20). There are two main differences between interior

point methods and active set method [14].

1. Interior point methods try to reach the solution by using a lower number of

iterations. This is done by performing more complex calculations in each

iteration.

2. Active set method reaches optimum solution by scanning the boundary of the

problem's feasible region. It moves from a point on the boundary to another

31

point that has better value of the objective function. This process is repeated

until the optimal solution is found. In interior point method, the solution

obtained each iteration never lies on the boundary of the feasible region. It

approaches the boundary only at the point where optimal solution exists.

Interior point iterations can lie in either the interior or the exterior of the

feasible region.

Because of these differences authors of [14] find that interior point method is

considered more efficient and more suitable for implementation than Active Set

method.

Interior point methods solve the general inequality constrained problem by

converting it to an equality constrained problem. Solution is reached by solving

KKT conditions –or a modified version of them- of this problem. There are two

famous types of interior point methods; Barrier method and Primal-Dual interior

point method. According to [39] primal-dual method is more efficient than barrier

methods especially when high accuracy is required. Moreover, primal-dual method

has exhibit better than linear convergence. The focus in this thesis will be on

primal-dual method.

1.4.2.1 Primal-dual interior point

Primal-dual interior point method was first introduced to solve linear programming

problems in [40]. Most of the main concepts of the method either in application to

linear or quadratic programming problems originate from this paper. As convex

QP problems represent a subset of Linear Complementarity Problems (LCP), the

basics of primal-dual interior point method for QP problems was introduced in

[41]. This method solves QP problems by applying some variations to Newton

methods. Newton's method is used to solve the KKT conditions of the constrained

QP problem. The concept of Newton‟s method is to calculate a direction that

points toward improving the value of the objective function. The solution is

improved by moving a certain step in this direction. It is better to take long steps in

32

the calculated direction. Long steps mean that we can reach optimal solution in a

fewer number of iterations. A usual disadvantage of the basic Newton method is

that the taken steps are usually very small. This occurs as large steps usually result

in a solution that violates the problem constraints. Taking such short steps will

make convergence to optimal solution very slow.

Primal-dual interior point method suggests some modifications to Newton's

method like central path and path-following. These modifications improve the

speed of convergence by allowing the algorithm to take large steps in the

calculated search direction.

 1.4.2.2 Problem formulation of primal dual-interior point method

Consider the inequality constrained QP problem

1
min () (1.30)

2

(1.30)

T TJ q q Gq q d a

Aq b b

Where G is a symmetrical positive semi-definite matrix and A and b contain the

coefficients of system inequality constraints. The vector q collects n optimization

variables. The number of constraints equal m.

Forming the lagrangian function by adding Lagrange multiplier vector λ, the KKT

conditions for the optimality of this system are:

0 (1.31)

0 (1.31)

() 0 (1.31)

0 (1.31)

T

i i

Gq A d a

Aq b b

Aq b c

d

By introducing a vector of slack variables s Aq b , the optimality conditions can

be formed as

0 (1.32)

0 (1.32)

0 (1.32)

, 0 (1.32)

T

i i

Gq A d a

Aq s b b

s c

s d

33

Newton‟s method can be used to solve these KKT conditions. Solution is performed on

two steps.

 First, calculation of a search direction (Δq, Δs, Δλ) by

0 0

0 0 (1.33)

0

TG A q

A I s

S Se

Where Λ = diag(λ), S = diag(s) and e= [1 1 1 ….. 1]m
T

Then, we estimate the maximum step length that can be taken in these directions. This

step length α should ensure that the non-negativity constrains of s, λ are not violated. The

step length α takes value in the range (0,1].

 Finally, the new iterate is calculated by

 (, ,) (, ,) (, ,) (1.34)q s q s q s

 Iterations continue until we reach the required accuracy. The problem with this

basic Newton‟s algorithm is that the taken step is usually very small α << 1. This

prevents the algorithm from achieving fast progress toward the final solution.

Primal dual interior point method improves this behavior by introducing some

bending to the search direction. This bending is done toward the interior of the

nonnegative orthant (s, λ) ≥ 0. This way we can move farther in the calculated

search direction before one of the components of s or λ turns negative.

This modification of the algorithm is performed by introducing what is called the

“Central Path”. Central path is defined in [42] as the points that satisfy the solution

of

0 (1.35)

0 (1.35)

(1.35)

, 0 (1.35)

T

i i

Gq A d a

Aq s b b

s c

s d

Where η is a positive integer η > 0.

 It can be noticed easily that the central path contains the optimal solution if η = 0.

Consequently, the central path can be considered as a path that respects the non-

negativity constraints of s, λ in all of its points and moves toward optimal solution

34

as η → 0. Definition of central path and the proof of its existence first appeared at

[43].

Primal-dual method takes Newton like steps toward points of central path instead

of pure Newton steps. It can be seen intuitively that as we move toward points on

the central path, the non-negativity constraint of s, λ is respected which allows for

longer steps.

To introduce these concepts in the primal-dual interior point algorithm two

parameters are introduced [40], namely ζ (centering parameter) and μ (duality

measure).

The centering parameter ζ describes the amount of bending we take toward the

central path. If ζ = 0 then we take pure Newton steps. If ζ = 1, we take Newton

steps toward points on the central path. Points on the central path do not give the

optimal solution. Hence, taking 1 may not give a good progress toward

optimum. Consequently, ζ takes intermediate values in the range [0,1]. ζ can be

changed during progress of the problem to allow faster progress toward optimum.

The duality measure μ is defined by

1 (1.36)

m

Ti i

i

s
s

m m

As the optimal solution requires s
T
λ = 0, the duality measure μ represents an

indicator to our progress toward optimum. As μ decreases we get closer to

optimal solution. The centering parameter and duality measure are related to the

central path by taking η = ζ μ. In this way, each iteration both μ and η decrease to

approach optimality and at the same time the violation of the non-negativity

constraints is avoided.

The modified search direction of the primal-dual method is calculated by the

following matrix equation

0 0

0 0 (1.37)

0

TG A q

A I s

S Se e

35

1.4.2.3 Infeasible primal-dual interior point method

The previously described method assumes that an initial feasible solution to the

problem exists (satisfying both equality and non-negativity constraints). All

following iterations will also be feasible. However, finding such a feasible starting

point is not an easy task. This problem was first solved in [44], [45] in the context

of linear programming by allowing the primal-dual method to start at any

infeasible point. The only condition on that starting point is that it satisfies the

non-negativity constraints. This condition is simple to achieve. The modified

algorithm is called infeasible primal-dual interior point method. The paper [46]

was the first to introduce a rule for step length that ensures global convergence.

Superlinearly convergent variants of the algorithm were later proposed in [47],

[48].

The first extension of primal-dual path-following methods to convex optimization

was given by [49] with superlinear convergence being established in [50].

Infeasible primal-dual interior point method starts by any random starting point

that satisfies non-negativity constraints, i.e., we can start with any positive initial

value of s, λ and any initial value of q. Then, the algorithm calculates residues of

this starting point with respect to the equality constraints of KKT conditions. It

works to minimize these residues as algorithm execution proceeds. The search

direction in infeasible interior point method is calculated by

0

0 (1.38)

0

T

d

b

G A x r

A I s r

S Se e

Where rd, rb are the residues w.r.t the equality constraints and are calculated by

 , (1.39)T

d br Gq A d r Aq s b

After calculation of the search direction, we search for the maximum possible step

length α that maintain all components of s, λ positive. For α to ensure some

progress of solution toward optimality path following algorithms are used. These

algorithms relate the calculated α to the main parameters of primal-dual method ζ

and μ to speed up the convergence of the solution. One of the most successful path

36

following algorithms – namely, long step path following – is described in the

following section.

To finish a single iteration the new solution step is calculated by

(, ,) (, ,) (, ,) (1.40)q s q s q s

The main computational complexity in this flow is the solution of the linear system

of equations (1.38). However, this set of equations can be simplified by

elimination of variables to the following equations

 1 1 1(()) ()[] (1.41)T T

d bG A S A q r A S r s e a

 (1.41)s A q rb b

1() (1.41)S e S s c

 The infeasible primal-dual interior point method can be implemented by the

following algorithm [14].

Algorithm 1.2 (infeasible primal-dual interior point method for Convex QP)

Choose an initial point at which all components of s, λ are positive.

While error > required accuracy

 Compute residues

T

d

b

r Gq A d

r Aq s b

 Compute ζ and μ

Ts

m

 , ζ is chosen using path following algorithm

 Compute search direction using the equations

1 1 1 1(()) (()[])T T

d bq G A S A r A S r s e

 s A q rb

1()S e S y

 Compute step length α using path following according to ζ, μ used

Update the current iterate value by

 (, ,) (, ,) (, ,)q s q s q s

 Calculate the error by

37

max(((, ,) (, ,)))error abs q s q s

end (while)

It is worth mentioning here that infeasible primal-dual interior point method is

considered one of the most successful methods for the solution of convex

optimization problems. Hence, it was chosen for the implementation of an FPGA

QP solver [7]. This solver was used to implement a hardware model predictive

controller for linear systems.

1.4.2.4 Long-step path following

Path following algorithms were adopted in primal-dual interior point methods from

the early publications in that topic. It was proposed for linear programming in [51]

and for quadratic programming in [50]. The computational complexity of the

algorithm was studied in [52]. Path following allows the complexity of primal-dual

methods to be reduced to polynomial complexity. The main idea of path following

algorithm is to restrict solution iterations to certain neighborhood around the

central path and following it to the optimal solution. In this manner, as we always

near the central path the primal-dual steps will be longer which means faster

convergence to the solution. Long-step path following is implemented by first

defining a neighborhood around central path. Each iteration, the step length is

calculated such that the obtained solution not only avoids non-negativity constraint

violation, but also remains in the selected neighborhood. This way, it ensures that

successive iterations don‟t get so close to the boundary of the feasible region.

Hence, longer steps will be possible. One of the most used neighborhoods in path

following [14] is the one sided ∞- norm neighborhood Ɲ-∞(γ) defined by

Ɲ-∞(γ) 0{(, ,) | 1,2, , } (1.42)i iq s s all i m F

Where the parameter (0,1] and typical value of it is 10
-3

. The set F0 is the

strictly feasible set defined by

0 {(, ,) | , , (,) 0} (1.43)Tq s Aq b A s c s F

38

In the ∞- norm neighborhood each product λisi must be at least some small

multiple

γ of their average value μ. By achieving this we ensure that each pair λisi

approaches zero at approximately the same rate.

The described long-step path-following is known practically to achieve good

performance. Its implementation uses two parameters ζmin and ζmax which are

bounds on the value of the centering parameter ζ. The algorithm calculates the step

length such that each iteration solution remains in the defined neighborhood. Long

step path following can be implemented according to the following algorithm [14].

Algorithm 1.3 (long-step path-following)

Given γ, ζmin ,ζmax with (0,1] , 0< ζmin < ζmax <1,

 and (q,s,λ) F0

for k = 0, 1, 2, …

 chooses ζk [ζmin ,ζmax];

solve (1.41) to calculate (Δq
k
, Δs

k
, Δλ

k
);

choose αk as the largest value of α in [0, 1] such that

 (, ,) (, ,)k k k k k k

kq s q s Ɲ-∞(γ);

 Set 1 1 1(, ,) (, ,) (, ,)k k k k k k k k k

kq s q s q s

end (for)

39

1.5 Mixed Binary Quadratic Programming

Mixed Binary Quadratic Programs (MBQP) represents a subset of Mixed Integer

Quadratic Programs (MIQP). A MIQP program is similar to quadratic program

(QP). Their main difference is that some optimization variables are not allowed to

take real values, instead, they are restricted to be integer values. Although the

simplicity of solution of QP problems. The integrality constraints convert the

problem to what is known by NP-hard problem [5], which means that -in worst

case- solution complexity increases exponentially with problem size. MIQP

problems appears usually in management science. In the context of optimal and

MPC control of hybrid dynamical systems a variant of MIQP problem appear. This

variant is the MBQP problem. The main feature of MBQP is that the integer

variables are restricted to be binary {0, 1}. Hence the name Mixed Binary

Quadratic Programming. This work will focus on the MBQP as it is the one that

appears in the MPC control of hybrid dynamical system.

The MBQP problem can be formulated as following

1

min (1.44)
2

T

q
J q Gq dq a

 Subject to

(1.44)

(1.44)

eq eqA q b b

A q b c

Where {0,1}real binn n
q , G is a symmetrical positive semi-definite matrix of size

bin realn n n , bin realn n
d

 .

There are many proposed algorithms for the solution of this problem [53]. The

most common techniques are

1) Cutting plane methods

2) Decomposition methods

3) Logic based methods

4) Branch and bound methods

It was found that in most cases the branch and bound method gives superior

performance over other methods of solving MBQP [30]. With a few exceptions

41

branch and bound method was found to be an order of magnitude better than other

methods. Details of branch and bound are given in the following section.

Branch and Bound

Branch and bound is a general algorithm for finding optimal solutions of various

optimization problems, especially in discrete and combinatorial optimization. It is

main idea is to split the solution space into different subsets. During the scan of

these subsets large subsets of fruitless candidates can be discarded by estimation of

upper and lower bounds of the objective function being optimized. The method

was first proposed by in 1960 [54] for discrete programming.

The efficiency of the method depends strongly on the splitting procedure used and

on the methods of estimation of upper and lower bound of the studied objective

function. Intuitively, it is better to split the solution space to disjoint subsets.

The structure of the MBQP problem is suitable to be solved by branch and bound.

The reason for that is that the binary variables that exist in optimization can be

divided to non-overlapping subsets easily. The solution of MBQP can be

performed by studying all possible combinations of binary variables involved in

the problem. Doing so, the remaining variables are real ones and hence there will

be a QP associated with each combination of binary variables. Solving these

different QPs, we can take the one that results out the minimum value to be the

optimal solution of the MBQP problem. The associated binary variables

combination with that QP will be the binary part of the optimum solution.

However, this method of solution is very time consuming especially when the

number of binary variables increases as the number of binary combinations and

hence the number of QP solved is exponentially related to the number of binary

variables. The concept of branch and bound provides a path where not all binary

combinations are studied. The algorithm solves the MBQP problem by building a

tree. In each level of this tree one of the binary variables is enumerated to its

possible values -we call this process “Branching”.

By branching the solution space is divided into two subsets. We then try to

estimate which of them will result better objective function value. We try to

41

calculate upper and lower bounds to both sets. An upper bound of a subset can be

obtained if this subset includes a feasible solution to the MBQP problem. A lower

bound can be obtained by finding a solution to a relaxed problem in the subset.

This relaxed problem is formed by relaxation of the remaining binary variables as

real variables in the range [0, 1]. The resulting subproblem is solved as a QP. The

objective function value obtained from the relaxed problem can be considered as a

lower bound for the value of the MIQP in the studied subset.

In this manner- as we search for the minimum achievable value- if it was found

that the lower bound of a subset „i‟ is larger than the upper bound of another subset

„j‟ , then subset „i‟ can be safely rejected as it will never contain minimum

“optimal” solution –we call this process “Pruning” or “Bounding”.

 If the resulting solution has all relaxed variables satisfying integrality constraints.

Then, the obtained solution is also a feasible solution to the original MBQP. The

value of the relaxed objective function in this case can be considered as an upper

bound for the solution of the MBQP problem. If the resulting solution had some of

the relaxed variables not satisfying the integrality constraints, we continue the

branching process by choosing one of these variables for further enumeration. This

creates child subproblems for the current subproblem. These child problems form

the following level of the tree.

While solving the generated tree of subproblems, we have some situations in

which we can ignore the solution of all subproblems that form a complete branch

of the tree. First of these situations occurs when the lower bound for a certain

subproblem is greater than an already known feasible solution (upper bound). This

means that neither this problem nor any of its child problems will have a better

solution than the already known one. Hence, all problems that exist in this branch

of the tree are neglected.

Another situation in which many subproblems can be ignored is when the solution

of a relaxed subproblem is infeasible. If the relaxed problem is infeasible, then the

42

original MIQP subproblem is infeasible and all its child subproblems are

infeasible. A third situation is that when a subproblem is solved to optimality, i.e.,

the relaxed subproblem resulted in a solution which has all relaxed variables with

integer values. In this case none of the child subproblems can have a better

solution. Consequently, branching is stopped at this level.

The branch and bound algorithm can be implemented according to the following

algorithm [5].

Algorithm 1.4 Branch and bound for binary variables

upper_bound = inf

add the current MIQP problem to List

while length (List) > 0 do

pop a problem P from List

relax the binary conditions and solve the QP problem

if P has no feasible solution

 stop branching on this variable

else if objective function value > upper_bound

 stop branching on this variable

else if p has a solution with all relaxed variables having binary values

 - stop branching on this variable

 if objective function value < upper_bound

 upper_bound = value of the objective function

 end if

else

 - choose one of the relaxed variables for branching

- create two problems P0, P1 by fixing the selected variables with 0

and with 1 respectively.

- push the problems P0, P1 to List

end if

 end while

43

Conclusion

In this chapter a short overview of the main topics in this work was presented. It

has started in section 1.1 by an introduction to the problem and how it will be

handled. Then a review to the main topics was presented in the following sections.

Section 1.2 aims to review the model predictive control strategy and explore its

advantages. The mathematical formulation of the control strategy was shown in the

case of a linear system, to illustrate the basic steps of building the required

optimization problem. In section 1.3, hybrid dynamical systems were discussed.

Their possible modeling and control strategies were discussed. The mixed logical

dynamical “MLD” general modeling framework was reviewed in section 1.3.3.

The application of MPC to hybrid system was discussed in section 1.3.4. The

different algorithms used in the solution of the resulting optimization problems

were reviewed in sections 1.4 and 1.5. First, the solution of a quadratic

programming problem was considered in section 1.4. Then, the solution of a

mixed-binary quadratic programming was reviewed in section 1.5.

In the discussion of QP methods of solution, two main algorithms were compared:

active set method and primal-dual interior point method. The advantages of

interior point method were presented. A fast convergence variant of the primal-

dual interior point method- namely the path following infeasible primal-dual

interior point method – was discussed in detail. Algorithms for practical

implementation of these methods were also presented.

In the discussion of MBQP solution method different solution algorithms were

considered. The literature in that field showed the superiority of the Branch and

Bound method. The concepts and advantages of this method were reviewed. This

section was concluded by an algorithm for practical implementation of the branch

and bound algorithm.

44

Chapter 2 Hardware Implementation

2.1 Design objective

The objective of this work is to implement a hardware model predictive controller

for hybrid embedded systems. The main part of this controller is a fast MBQP

solver. The implementation of such a solver on hardware requires in the first place

implementing an efficient hardware QP solver. The reason is that most algorithms

solve the MBQP problem by solving a series of QP problems. This shows that the

efficiency of a MBQP solver depends basically on the implementation of an

efficient QP solver.

The implementation of a QP solver may have different forms as there are various

algorithms to solve a QP problem as shown in section 1.4. Moreover, there are

many different approaches to implement this solver. For example, the solver can

be implemented using an on-board processor and memory as in [6]. In this

publication a real time MPC was implemented using a single board computer. That

board utilized a high speed 32-bit Motorola microcontroller that contains a 64-bit

floating point unit to speed up calculations.

Another approach that allows the execution of parallel floating point operations is

to use Graphical Processing Unit (GPU). These approaches can result in fast solver

implementation. However, in this thesis as we target embedded systems, we try to

implement the hybrid controller on-chip.

One of the approaches to implement the controller on-chip is to implement an on-

chip processor and use this processor to run software that executes the solver

algorithm. This approach can be referred to as “software approach”. This approach

gives larger flexibility in modifying the code of the solver and improving it. It also

requires short design time as there are many ready embedded processor

implementations that can be used directly like Altera NIOS II processor [55] and

Xilinix MicroBlaze processor [56]. However, the performance of such systems

may not be satisfactory for many reasons. These processors – generally – are

general purpose processors and may not be suitable to perform fast floating point

operations. Even when the performance is improved by using processors with

http://en.wikipedia.org/wiki/MicroBlaze

45

dedicated floating points units, the sequential nature of software execution will

require all floating point operations to be executed in series. This sequential

execution will make the software implementation of the QP solver slow. To have

a good performance using the “software approach” custom processor architecture

may be required as in [8]. In this paper an application specific matrix coprocessor

was implemented. In this implementation a 16 bit logarithmic number system

arithmetic unit was designed to perform calculations. The designed coprocessor

was used along with a limited resource host processor in a co-design framework to

implement a real time MPC for linear and nonlinear systems. The main advantage

of the use of the logarithmic number system is the area and power saving.

The performance of “software approach” can also be improved by applying the

concept of parallel processing. This is done by implementing multiple instances of

the on-chip processor and developing solver software that can use multiple

processors. Such an implementation reduces the execution time significantly

compared to sequential software execution.

A different approach for the on-chip implementation of the system is to build a

custom hardware to solve the QP problem. This “Hardware approach” requires

larger design effort and time. However, it allows much more flexibility in

controlling the solver speed. An example of the custom hardware implementation

of the QP solver appears in [7]. In this paper, the authors introduce an FPGA

implementation of the MPC strategy for linear systems. The introduced design has

applied interior-point method to solve the resulting QP problem. Single precision

floating point representation was used to represent numbers in the design. The

design has proved good performance. However, its main disadvantage is that it has

not introduced any sort of pipelining or parallelism to improve the performance.

For a custom hardware implementation, the solver speed can be increased by using

the concepts of parallelism and pipelining. Consequently, the hardware approach

allows the implementation of QP solvers with short execution time. Fast QP

solvers will enable us to implement fast MBQP solvers to control fast hybrid

dynamical systems.

46

Recently, there were some efforts to build fast MBQP solvers as in [57]. In this

paper, a Mixed Integer (Binary) Quadratic programming solver was implemented

for the hybrid control of mobile robot. The implemented design used a previously

described C++ code to implement the QP solver. The dual active set algorithm was

used in the QP solver implementation. The design applies some concepts like

pipelining to improve the performance.

3.2 Design Environment

The hybrid MPC controller was implemented by using VHDL hardware

description language. The design currently targets an ALTERA FPGA for

prototyping purposes. The final target of implementation is to implement the

controller as an Application Specific Integrated Chip (ASIC). Implementing the

controller as ASIC will allow its application to much faster hybrid systems. The

design currently uses the floating point adders, multipliers, dividers and

comparators available in ALTERA Megafunction library. All floating point

numbers in the design follow the IEEE-754 32-bit floating point representation.

The functional behavior of the design is verified by using Modelsim simulator.

The Synthesis of the VHDL code and the layout on the specified FPGA was

performed by ALTERA Quartus II software. The timing simulation of the design

was performed by Modelsim in combination with delay information obtained from

Quartus II timing analyzer.

To facilitate the functional simulation of the system, a subset of the VHDL-2008

standard [58] is used. The used subset includes a floating point package [59]. This

package includes some functions to convert a 32 bit std_logic_vector in the IEEE-

754 to a real number. These conversion functions were very useful in simplifying

the simulation process.

To allow testing hybrid MPC controller with multiple examples, a link between

Modelsim and Matlab was established [60]. This link was used for two purposes:

1. To verify the performance of the hardware controller main blocks, which are the

hardware interior point solver and the branch and bound MBQP solver. In this

case, Matlab passes the optimization problem matrices to Modelsim. A

47

dedicated part of the hardware receives this data and stores it in its

corresponding location in the on-chip memory. Then, the solver is started. It

solves the problem and stores the result back to the on-chip memory. Finally,

another part of the hardware reads the memory and passes the solution back to

Matlab. The result obtained by the hardware solver is compared with the result

of a Matlab function implementing the same solver.

2. The Matlab-Modelsim link was also used to simulate a control system along

with the proposed hybrid MPC controller.

2.3 Design main concepts

This section discusses how hardware design concepts like pipelining and

parallelism can be used to implement high speed QP and MBQP solvers to be used

within the hybrid MPC controller. Different hardware architectures and design

options are studied and compared to select the best one for the implementation of

the required system. One of these studies is to inspect the effect of using pipelined

floating point components instead of non-pipelined components on the solver

speed. Another study tries to find the most suitable number of parallel units as a

function of the problem parameters.

The concepts of pipelining and parallelism are also applied on function level. For

example, when the interior point algorithm was studied, some operations were

found to be independent. These independent operations were implemented to be

executed in parallel to shorten the algorithm execution time. Another example will

be shown later to describe the ability of using pipelining in function level to speed

up the calculation of matrix operations required by the algorithm.

Before going to the details of implementation of main system blocks, the concepts

of parallelism and pipelining is revisited in the following sections. Some examples

will be given to show how these concepts are used to speed up the operation of the

system.

48

2.3.1 Concept of parallelism

The concept of parallelism or parallel design means the usage of multiple instances

of the same block to perform similar independent operations in the same time.

Parallelism will be useful in the context of implementation of the QP solver, as the

QP solution algorithm is based entirely on matrix and vector operations. Vector

operations by nature allow the use of parallel components. Example 2.1 shows

how the concept of parallelism can be used to achieve fast vector addition by

increasing the number of floating point adders used.

Example 2.1

Consider Figure 2.1 where the case of simple vector addition is studied, i.e., we

need to add two vectors of length ℓ. The addition of these two vectors can be

performed either by using a single adder for ℓ cycles, or by using ℓ adders for only

one cycle. The second solution is a clear example of the concept of parallel design.

In this situation, we sacrifice more hardware to have a faster solution. An

intermediate solution between the above two extremes is to use a number of adders

equal P where P is less than ℓ. In this case the completion of the vector addition

requires ceil (ℓ/P) cycles. The same discussion applies to the cases of simple

vector by vector point multiplication, vector by scalar multiplication, vector by

vector point division and vector by scalar division. ■

Figure 2.1: using of parallel units in vector addition

The concept of parallelism can be also used on function level. Multiple units of the

same block are used to perform similar independents calculations at the same time

to speed up operation. Example 2.2 illustrates this concept.

+

1 1

2 2

1 2

1 2

1 2

v v

v v

v v

1

2

3

3

3

v

v

v

1 adder

 ℓ addition cycles

1 1

2 2

1 2

1 2

1 2

v v

v v

v v

1

2

3

3

3

v

v

v

ℓ adders

 1 addition cycle

+

+

+
1 1

2 2

1 2

1 2

1 2

v v

v v

v v

1

2

3

3

3

v

v

v

p adders

 Ceil (ℓ /p) addition cycles

+

+

+

49

Example 2.2

Consider the solution of a MBQP problem using branch and bound algorithm. The

solution requires solving a group of QP problems. These problems can be solved in

series by using a single QP solver. Another approach is to apply the concept of

parallelism where multiple QP solvers are implemented as in figure 2.2. Each of

these solvers is used to solve a different QP problem. All solvers work in parallel

in the same time. The MBQP control unit controllers the distribution of the QP

problems to the different solvers. This reduces the execution time of the MBQP

problem by a factor proportional to the number of implemented QP solvers.

 ■

Figure 2.2: Block parallelism in MBQP hardware

3.3.2 Concept of pipelining

The concept of pipelining allows increasing of a hardware design throughput.

Pipelining is performed by dividing a complex operation into smaller independent

operations "stages". These stages can be operated sequentially i.e., each stage

waits for the result of execution of the preceding stage. However, this approach is

not efficient. Only one stage is active at a time and all other stages are idle. To

increase the throughput of the design, we allow all stages to work in the same time.

This is done by applying a new input to the system in each cycle. In this case, each

stage holds the data related to a different input. Hence, we will have a new output

each cycle. Figure 2.3 illustrates the concept of pipelining when a task is divided to

three smaller tasks. The cost paid to have higher throughput is the increased

hardware needed. The main cause of the hardware increase is the need of more

registers to store the information obtained from each stage to be available for

processing by the following stage.

51

Figure 2.3: sequential execution versus pipelined execution.

The concept of pipelining can be applied in many ways to reduce the time of the

required calculations. One of these ways is the use of pipelined floating point

calculation units instead of sequential execution units, i.e. pipelined floating point

adders and pipelined floating point multipliers. Another way to make use of

pipelining is to apply it on function levels where a complex calculation is divided

to small independent parts which can be calculated in the pipelining fashion.

Example 2.3 shows how the use of a pipelined adder can be used to achieve a fast

vector addition using only one pipelined FP adder.

Example 2.3

Consider the simple vector addition described in example 2.1, where two vectors

of length ℓ are added. As the operation of adding a pair of elements of the two

vectors is independent on the addition of any other pair of elements, a pipelined

adder can be used to add the two vectors as shown in figure 2.4. The adder is

assumed to have DA pipelining stages. Figure 2.4 shows that the addition of the

two vectors ends in (ℓ +DA) clock cycles using only a single floating point adder.

 ■

Stage 1
op 1

Stage 2
op 1

Stage 3
op 1

Stage 1
op 2

Stage 2
op 2

Stage 3
op 2

Stage 1
op 1

Stage 2
op 1

Stage 3
op 1

 Stage 1
op 2

Stage 2
op 2

Stage 3
op 2

 Stage 1
op 3

Stage 2
op 3

Stage 3
op 3

 Stage 1
op 4

Stage 2
op 4

Stage 3
op 4

Sequential execution

Pipelined execution

51

Figure 2.4: two vector addition with a single pipelined adder with DA stages

When results of examples 2.1 and 2.3 are compared, we find that a parallel design

will give a faster result if it is possible to use a large number of parallel FP adders.

If the number of adders used is equal to or greater than ℓ, the vector addition task

will end in DA clock cycles. However, for large values of ℓ, the use of an equal

number of FP adders will not be practical due to hardware area limitations. In this

case, if the number of used adders is equal to P which is less than ℓ, the task will

take (DA×ceil(ℓ/P)) clock cycles. On the other side, the use of a single pipelined

adder will require (ℓ +DA) clock cycles for any value of ℓ. Equation 2.1 compares

the latency of both architectures. It sets a condition of the number of parallel

adders P that should be used to guarantee better performance for parallel adders‟

architecture. In this equation ceil(ℓ/P) is replaced by ℓ/P for simplification.

() (2.1)

(1) (2.1)

() (2.1)

() (2.1)

(2.1)
()

A A

A

A

A A

A

A

D D a
P

D b
P

P D P c

P D D d

D
P e

D

Apply V11, V21

to adder inputs

Apply V12, V22

to adder inputs

Apply V1ℓ, V2 ℓ

to adder inputs

Result of

V11 + V21

Result of

V12 + V22

Result of

V13 + V23

Clock Cycle 0

Clock Cycle 1

Clock Cycle ℓ

After DA clock

cycles

52

(2.1)

(1)

A

A

D
P f

D

Equation 2.1 shows that for large values of ℓ, the performance of a single pipelined

adder surpasses the performance of P parallel sequential adders if the number of P

is smaller than the adder delay DA.

Example 2.4 shows how the concept of pipelining can be applied on functional

level. This example applies pipelining in the domain of matrix calculations. In

specific, the complex task of matrix vector multiplication will be considered.

Example 2.4

Consider we have a matrix X and a vector V and we need to calculate X*V.

Assuming that both X and V are stored in memory and the result will be stored

back to memory. The steps of calculation of this multiplication process requires

three operations

1. loading of operands

2. processing of operands which includes multiplications and additions

3. storing of results.

To achieve a short calculation time, we need to pipeline the previous steps. Naive

matrix-vector multiplication is not perfectly suitable for pipelining as will be

shown later. So an alternative method of multiplication is used.

Assume the matrix X has dimensions of n1n2 and the vector V has the dimension

of n21.

2

21 1 2

11 12 1 11

2121 22

11

, (2.2)

n

nn n n

x x x v

vx x
X V

vx x

The naïve matrix vector multiplication calculates the ith element of the result vector

on two steps. The first is to multiply the n2 elements of the ith row of the matrix X

53

by the n2 elements of the vector V. The second step is to sum all the n2

multiplication results. Hence, the calculation of each element of the n1 elements of

the result vector requires n2 multiplications followed by n2 – 1 additions. The

multiplications can be done in parallel by using n2 multipliers. The result can be

available in one multiplication cycle. However, the additions require n2-1

additions. If the additions are performed sequentially, the addition step will require

n2-1 addition cycles. If it is assumed that both multiplication cycle and addition

cycle requires the same number of clock cycles DA, then the calculation of an

element of the result vector needs n2DA cycles. Then the matrix vector

multiplication requires n1n2DA clock cycles, using n2 multipliers and a single

adder.

In this approach we can notice that during the calculation of an element of the

result vector, the n2 multiplier units were active for 1 multiplication cycle only and

idle for n2-1 addition cycles. Also during additions, only one adder is used for n2–1

cycles and no parallelism is applied to improve performance.

If multiple adder units can be used, it is possible to speed up the addition task of

the naïve matrix vector multiplication. The used adders can be formed in a tree as

shown in figure 2.5. Applying this adder organization, each addition task is

completed in ceil(log2(n2)) addition cycles by using n2-1 adder units. Moreover,

the used organization allows for pipelining to be applied. The time required to

complete a matrix-vector multiplication using n2 multipliers and n2-1 adders with

the application of pipelining is (n1+ ceil(log2(n2))) addition/multiplication cycles.

If both multiplier and adder require the same number of clock cycles DA, then we

need (n1+ ceil(log2(n2))×DA) clock cycles.

The addition scheme used in figure 2.5 has reduced the computation delay of the

matrix-vector multiplication. Moreover, it has improved utilization. However,

obtained utilization is not perfect as some levels of the adder tree will be idle

during the calculation of the first elements of the result vector and also during the

calculation of the last elements in that vector.

54

Figure 2.5: Adder tree

In this thesis, an alternative method for matrix vector multiplication is adopted to

increase hardware utilization.

This method calculates the result vector by the following equation

211 21 1 2Result vector = (1) (2) (n) (2.3)nv X col v X col v X col

Each term of equation (2.3) requires a n1×1 vector by scalar multiplication. Hence,

each term requires n1 multiplications that can be performed in parallel and take one

multiplication cycle if n1 multipliers are used. Equation (2.3) has n2 terms and each

term of this equation is a n1×1 vector. The calculation of the result vector requires

the addition of these n2 vectors. Hence we have n2 – 1 vector additions. In each of

these additions we add two n1×1 vectors which can be done in parallel by the use

of n1 adders. This way, each vector addition will take only one addition cycle.

What makes this method more suitable for pipelining is the independency of the

added terms. For example, while the n1 adder units are used to add the first two

Adder Adder Adder Adder Adder Adder

Adder Adder Adder

Adder

Adder Adder

Adder

Final addition result

The n2 multiplication results

55

terms of equation (2.3), the n1 multiplier units can be used to calculate the third

term of the same equation. As we assume that both addition and multiplication use

the same number of clock cycles DA, the addition of the first two terms and the

multiplication required to calculate the third term will end at the same time. The

operation is continued by adding the third term to the result of the last summation.

During this addition the fourth term of the equation can be calculated by the

multipliers. The same process is repeated until we add all terms of equation 2.2.

This method of calculation is illustrated by the Gantt‟s chart in figure 2.6.

The discussion above shows that concept of pipelining has been applied efficiently

to the matrix vector multiplication. This matrix operation -represented by equation

(2.3)- was divided to simpler independent operations (multiplication and addition)

that can be operated at the same time. Operating these multiplication and addition

processes in the pipelined manner described in figure 2.6 reduces the required time

of calculation. Moreover, the hardware utilization was improved as multipliers and

adders are active nearly for the whole time of operation.

 Multiplier Adder

Cycle 0
11

(1)v X col

Cycle 1
21

(2)v X col Add mult. out with zeros (first cycle)

31

(3)v X col Add mult. out with prev. adder result

 …………… ………………

Cycle n2 21 2(n)
n

v X col

Add mult. out with prev. adder result

Cycle n2+1 Add mult. out with prev. adder result

Figure 2.6: Pipelined operation of matrix vector multiplication

56

It is clear from figure 2.6 that completing a matrix vector multiplication by using

the proposed pipelining scheme requires only n2 +1 multiplication/addition cycles

or equivalently (n2 +1)×DA clock cycles compared to n1n2DA clock cycles if

pipelining is not used.

 Memory loading Multiplier Adder Memory storage

Cycle 0 Load V11 , X(col 1)

Cycle 1 Load V21 , X(col 2) V11X(col 1)

 Load V31, X(col 3) V21X(col 2) Mult_out + 0

 ………… V31X(col 3) Mult_out + adder_out

Cycle n2 Load Vn2 1, X(col n2) ………… Mult_out + adder_out

Cycle n2+1 Vn2 1X(col n2) …………

Cycle n2+2 Mult_out + adder_out

Cycle n2+3 Store result

Figure 2.7: Pipelined matrix-vector multiplication with memory access

It should be noted also that memory access required to fetch operands and store

results can also be pipelined in the same way. A Gantt's chart showing the matrix

vector multiplication along with the required memory access is shown in figure

2.7.

It can be noted that during the last cycles of execution the loading hardware is not

used. To improve utilization these cycles can be used to load the data that will be

used for the following calculation. Same concept is also applied on multiplier units

and adder units.

Using pipelining has reduced the number of cycles required to complete the

execution to (n2 +3)×DA clock cycles . However, it requires the use of n1 parallel

adders and multipliers. If we use a number of multipliers and adders P less than n1,

the matrix vector calculation will require ((n2+3)×ceil(n1/P)) multiplication cycles

or equivalently ((n2+3)×ceil(n1/P)×DA) clock cycles.

 ■

57

It was shown in example 2.4 that the concept of pipelining along with parallel

design units can be used to significantly reduce the computation time of the

process of a matrix vector multiplication. However, the description of this example

has not make advantage of the ability to use pipelined adders and multipliers. If

such advantage is used, we can reach a comparable computation time for the same

task while using much smaller number of adders and multipliers. Example 2.5

proposes the calculation of a matrix-vector multiplication task using only one

pipelined adder and one pipelined multiplier.

Example 2.5

Consider the multiplication of the matrix and vector shown in equation (2.2) using

the multiplication method described by equation 2.2. Each term in equation 2.2 is a

vector by scalar multiplication that results in a n1×1 vector. Each of these

multiplications can be performed by a single pipelined multiplier in (n1 + DM)

clock cycle, where n1 is the number of rows of the matrix X and DM is the number

of pipelining stages of the pipelined multiplier. An example of the execution of

such multiplication is shown in figure 2.8, where the calculation of the first term of

equation 2.2 (V11×X(Col1)) is considered.

Figure 2.8: A vector by scalar multiplication using a single pipelined multiplier with

DM stages

Apply V11, X11

to mult. inputs

Apply V11, X21

to mult. inputs

Apply V11, Xn1 1

to mult. inputs

Result of

V11× X11

Result of

V11× X21

Result of
V11× Xn1 1

Clock Cycle 0

Clock Cycle 1

Clock Cycle n1

After DM clock
cycles

58

 Cycle

 1

Apply V11, X11 to

mult. inputs

Cycle

2

Apply V11, X21 to

mult. inputs
After DM

clock cycles

delay mult.

result will

be available

Cycle
n2

Apply V11, Xn1 1
to mult. inputs

Result of
V11 × X11

Cycle n2+1
Apply V21, X12 to

mult. inputs

Result of

V11 × X21

Add V11×X11 to

temp11

 Apply V21, X22 to

mult. inputs

Add V11×X21 to

temp21 After DA clock

cycles delay

adder result will

be available

Result of

V11 × Xn1 1

Cycle

2n2

Apply V21, Xn1 2

to mult. inputs

Result of

V21 × X12

Add V11×Xn1 1 to

tempn1 1
temp11 updated

…
…

…
..

Result of

V21 × X22

Add V21×X12 to

temp11
temp21 updated

Add V21×X22 to

temp21

Apply Vn2 1, X1 n2

to mult. inputs

Apply Vn2 1, X2 n2

to mult. inputs
Result of

V21 × Xn1 2
 tempn2 1 updated

…
..…

..

Add V21×Xn1 2 to

tempn1 1
temp11 updated

…
...…

..

temp21 updated

Cycle

n1n2

Apply Vn2 1, Xn1 n2

to mult. inputs

Result of

Vn2 1 × X1 n2

Result of

Vn2 1 × X2 n2
Add Vn2 1×X1 n2

to temp11

Add Vn2 1×X2 n2

to temp21
tempn2 1 updated

…
…

....

Cycle

n1n2+DA+1

Result of

Vn2 1 × Xn1 n2

Cycle

n1n2+DA+2

Add V n2 1×Xn1 n2

to tempn1 1
temp11 updated

 temp21 updated

Cycle

n1n2+DA+DM+3
 tempn2 1 updated

Figure 2.9: Pipelined matrix vector multiplication using pipelined adder/multiplier

59

To calculate the matrix vector multiplication result vector we need to add the n2

terms of equation 2.2. Each of the required addition tasks is a two n1×1 vector

addition task. This addition task can be performed in (n1 + DA) clock cycle by the

use of a single pipelined adder as was shown before in example 2.3.

Using the same calculation strategy described in example 2.4, the task of addition

of any term i to the previous addition result can be executed in the same time as

the term i+1 is calculated by multiplier. A detailed illustration of the proposed

method of execution is shown in figure 2.9. We assume here that we have an n1×1

temporary vector that is used to store intermediate addition results. This vector will

be initially set to zeros.

Figure 2.9 shows that the calculation requires (n1n2+DA+DM+3) clock cycles using

only one pipelined adder and one pipelined multiplier. This result may be better

than the result obtained by example 2.4 if the hardware area limits the number of

parallel adders/multipliers P to a small value compared to n1.

■

2.4 Hardware implementation of Quadratic Programming solver

In this section we will give some details about the implementation of the Quadratic

Programming solver that is used in the hardware implementation of hybrid model

predictive controller. It was discussed in section 2.1 that an efficient

implementation of a QP solver plays a crucial rule in the implementation of a fast

hybrid MPC. In the design of the QP solver the concepts of parallel design and

pipelining -discussed in section 2.3- were applied wherever possible to achieve a

fast QP solver implementation. The Algorithm that was used for hardware

implementation is the Primal-Dual infeasible interior point method discussed in

section 1.4.2. This choice is based on many factors. The first factor is its good

performance of this method. It was proved in [50] that this method has a

superlinear convergence rate. Another factor is that interior point methods was

found by authors of [14] more suitable for practical implementations. A hardware

QP solver design based on interior point method was presented [7]. The design

proved good efficiency in the solution of QP problems. However, the mentioned

61

design has not applied pipelining or parallel design to speed up the solution. In this

work, we try to improve the solver latency by applying these concepts.

Infeasible primal dual method solves a QP problem in a few iterations. However,

the main complexity in this method is that; in each iteration we need to solve a

complex system of equations. By a proper hardware design this system of

equations can be handled efficiently to have a fast solution.

This section is organized as follows; in section 2.4.1 some modifications to the

equations of algorithm 1.2 are presented to be more suitable for hardware

implementation. In section 2.4.2 the Gauss-Jordan method for solving a linear

system of equations is revisited. The hardware architecture of the QP solver is

described in section 2.4.3.

2.4.1 Changes in the Algorithm for hardware implementation

The implementation of the QP solver in this thesis is based on the infeasible primal

dual interior point method discussed in section 1.4.2.3. The equations of algorithm

1.2 – which is used to implement this method – concentrate on the procedure and

do not consider computational complexity. Some of these equations require

computation expensive operations that can make any implementation of the

algorithm inefficient. To improve the performance of the algorithm, some of its

equations can be reformulated to be more suitable for implementation. This section

shows some examples of these simplifications.

For example, consider equation (1.41a) that calculates Δq

1 1 1(()) ()[] (2.4)T T

d bG A S A q r A S r s e

This equation requires the calculation of the inverse of matrix S – which is an

m×m matrix- and multiplication of the result with matrix Λ – also an m×m matrix.

As m – the number of constraints – is usually large, the calculation of the inverse

of S and the multiplication of S and Λ will be very time consuming. These

complex calculations can be significantly simplified by noting that both S and Λ

are diagonal matrices with diagonal elements coming from vectors s and λ

respectively. Hence, the calculation 1()S which results in a diagonal matrix can

be performed by calculating only the diagonal elements of the result matrix. These

61

elements are the result of division of vector λ by the vector s element by element.

This simplification avoids the calculation of a matrix inverse and a matrix-matrix

multiplication by a much simpler division process.

The simplification is continued as the matrix A
T
 should then be multiplied by the

result matrix of (S
-1

Λ). This matrix-matrix multiplication is also avoided. As the

matrix (S
-1

Λ) is diagonal then the result A
T
(S

-1
Λ) can be simply calculated column

by column as follows: the ith column of the result A
T
(S

-1
Λ) is the result of

multiplying the ith column of A
T
 by the ith diagonal element of (S

-1
Λ). Moreover,

as the term A
T
(S

-1
Λ) appears in both sides of the equation, it is then stored in a

temporary matrix to avoid repeating the calculation.

Another simplification is performed in the term (ζμΛ
-1

e). In this term, the matrix

Λ is diagonal with diagonal elements coming from vector λ, the vector e is an m×1

vector of all ones. The result of matrix vector multiplication is then multiplied by

the constant ζμ. This calculation can be performed by simply dividing ζμ on each

element of the vector λ.

The same concept of simplification is used to simplify the calculation of Δλ

1() (2.5)S e S s

As S is a diagonal matrix, the vector resulting from the multiplication Sλ equals

the diagonal elements of S multiplied by the elements of the vector λ, or simply the

result of multiplying the vectors s and λ element by element. Hence, the matrix

vector multiplication can be simplified to a two vector point multiplication.

Similarly, as Λ is a diagonal matrix then ΛΔs can be calculated as a point

multiplication of the two vectors λ and Δs. The calculation of the matrix inverse

1S can be avoided by dividing the elements of the vector (ζμe – Sλ – ΛΔs) by the

elements of the vector s.

62

2.4.2 Algorithm of solving linear system of equations

Equation 2.3 requires the solution of a linear system of equations to calculate the

search direction Δq. This system of equations has n unknowns, where n is the

number of optimization variables of the QP problem. There are several methods to

solve this linear system of equations like matrix inversion, elimination of

variables, Cramer‟s method, Gauss elimination and Gauss-Jordon, matrix

decomposition and iterative methods [61-63]. The method used for hardware

implementation is the Gauss-Jordan method [62] because if its simplicity. Gauss-

Jordan method is known to have a complexity of O(n
3
). The basic idea of Gauss-

Jordan is to use elementary row operations to transform the coefficients matrix of

equation 2.4 1(())TG A S A to the unity matrix. Performing the same elementary

row operations on the right-hand side vector of equation 2.4, transforms this vector

to the solution vector Δq.

To transform the coefficients matrix to a unity matrix, a pivot element is selected

in each row. The pivot element is transformed to 1 by dividing the complete row

by the value of the pivot element. Then, all elements above or below the pivot

element are transformed to zero by the use of row operations. This operation is

repeated for all rows until the coefficients matrix is transformed completely to the

unity matrix.

During the calculation of Gauss-Jordan special care should be given to the

selection of pivot elements. Improper choice of pivot elements may lead to wrong

solution. To ensure numerical stability pivot elements are chosen by using partial

pivoting technique [63]. Partial pivoting chooses pivot element to be the element

with maximum absolute value in the current column. This choice of pivot elements

will make the error due to approximation or truncation small. Hence, the

approximation error will not affect the correctness of solution. Algorithm 2.1

describes an implementation of Gauss-Jordan method with partial pivoting.

Algorithm 2.1 (Gauss-Jordan for solving linear system of equation with partial

pivoting)

Given a linear system of equations Acoeff×q=brhs with n unknowns.

63

i := 1

j := 1

while (i ≤ n and j ≤ n) do

 generate an augmented matrix Aaug= [Acoeff|brhs], Aaug has n rows and n+1 coulmns

 Find pivot in column j, starting in row i:

 maxi := i

 for k := i+1 to n do

 if abs(Aaug [k,j]) > abs(A aug [maxi,j]) then

 maxi := k

 end if

 end for

 if Aaug [maxi,j] ≠ 0 then

 swap rows i and maxi, but do not change the value of i

 Now Aaug [i,j] will contain the old value of Aaug [maxi,j].

 divide each entry in row i by Aaug [i,j]

 Now Aaug [i,j] will have the value 1.

 for v := i+1 to n do

 subtract Aaug [v,j] × row i from row v

 Now Aaug[v,j] will be 0, since Aaug[v,j]-Aaug[i,j]× Aaug[v,j]=Aaug[v,j] -1×Aaug[v,j] = 0.

 end for

 i := i + 1

 end if

 j := j + 1

end while

last column of the augmented matrix Aaug is the solution vector q

2.4.3 Hardware architecture of QP solver

The hardware of the QP solver can be divided into three parts. Arithmetic

computation hardware, storage hardware and control hardware. The arithmetic

computation consists of floating point adders, multipliers and dividers used to

perform arithmetic operations. Storage hardware is the memories and registers that

are used to store QP problem matrices and intermediate calculation results. Control

hardware is the hardware that organizes the operation of the solver and controls the

64

flow of operands between different calculation units and controls the operation of

storage memories.

As indicated in section 2.2 the arithmetic computation units currently used are

provided by ALTERA Megafunctions library. The arithmetic units used are

pipelined units which allow the use of small number of units to perform complex

calculations. For example, the matrix vector multiplication procedure described in

example 2.5 was used to implement all the matrix vector multiplications found in

the interior point algorithm. Reason of preference of this procedure is that it uses

the concept of pipelining efficiently to have the required calculation done in a

short time. Moreover, it uses only a single FP adder and a single FP multiplier

which saves design area. The saved area is used to implement additional adders

and multipliers to perform other calculations in parallel to the currently performed

calculation. For example, consider equation (1.39) which calculates the residuals rd

and rb in the infeasible primal-dual interior point method. The calculation of rd

requires the multiplication of the matrix G and the vector q while the calculation of

rb requires the multiplication of the matrix A and the vector q. Both calculations of

G×q and A×q can be performed in parallel provided that the vector q can be

accessed by the two calculating units at the same time. Each calculating unit will

require an adder/multiplier pair to perform the multiplication. Hence, the concept

of parallel design is applied by implementing two adder/multiplier pairs. Each of

these pairs is used in the same time to perform a different multiplication. This

parallelism reduces the algorithm execution time significantly especially when the

number of parallel computation units increase. The infeasible primal-dual interior

point method was analyzed to obtain all possible independent operation sequences.

Each independent sequence of operations will be performed –as the hardware area

allows- using a separate hardware. Figure 2.10 shows an example of independent

sequence of operations found in the implemented algorithm for QP problem

solution.

It is worth mentioning that the hardware used for a certain calculation is reused

again in the following calculations. For example the adder/multiplier pair used to

calculate G×q is used again in the addition of G×q and A
T
×λ and also in the

65

addition of d to calculate rd. All operations of the system components are

controlled by the control unit. The control unit is designed as a finite state machine

that operates different arithmetic units and maintains synchronization between

different calculations.

Calculation of rd Calculation of rb
Calculation of

G+A
T
(S

-1
Λ)A

G×q A
T
×λ A×q b+s S

-1
Λ = λ/s

G×q- A
T
×λ rb = A×q -(b+s) temp_mat=A

T
(S

-1
Λ)

rd = (G×q - A
T
×λ)+d A

T
(S

-1
Λ)A = temp_mat×A

 G+A
T
(S

-1
Λ)A

Figure 2.10: Example of parallel operation in interior point algorithm

The last part of the QP solver hardware is the storage part. All the information

needed by the QP solver is stored on-chip. On-chip storage allows faster access of

data compared to off-chip storage. On-chip storage hardware takes two forms;

memories and registers. Registers are used in the design to store important

variables that are required to be accessed by multiple sources in the same time like

the optimization vector q. Variables that require large amount of storage like

matrices G and A or variables that are not accessed by multiple sources in the

same time are stored in dedicated on-chip memories. However, each of these

variables is stored in a separate memory to allow them to be accessed

simultaneously. Large variables -like matrix A- that are needed to be accessed

simultaneously are implemented as two-port memories or three-port memories

depending on the number of units requiring simultaneous access. This allows

overcoming the need to wait for memory access and allows parallel execution of

different calculations. The matrices that are implemented as on-chip memory are

stored column major. A small combinational hardware is used to translate the row

and column indices to an explicit memory address. This allows dealing with

matrices using usual row and column indices.

66

It should be noted here that the number of available memory bits on a certain

target FPGA sets the limit of maximum size of the QP problem that can be

handled. For a certain target FPGA, the current design implements the largest

possible QP solver. This solver can be used to solve any QP problem of that

maximum size or of a smaller size. This feature in the QP solver is important if it

will be used in a MBQP solver. A MBQP solver –as will be explained later–

generates QP subproblems with different sizes. The different size QP problems

generated should be handled using the implemented QP solvers, which means it

must be able to deal with different problem sizes.

2.4.4 Notes about design parameters

In the current design single precision floating point number representation was

used instead of double precision representation. This choice aims to compromise

between solver accuracy and the solver and the amount of memory storage

required by the design. However, it should be noted that using single precision

representation may degrade the performance of the QP solver. For some QP

problems with very large dynamic range the solver may fail to reach the optimal

solution due to the loss of precision imposed by the singe precision representation.

The solver may also need a larger number of iterations to reach the optimal

solution. Example 2.6 shows an example QP problem where enlarging the

dynamic range results in failure of the solution.

Example 2.6

Consider the inequality constrained QP problem [14]

1
min ()

2

1 2 2

1 2 6
2 0 2

, , ,1 2 2
0 2 5

1 0 0

0 1 0

T TJ q q Gq q d

Aq b

where

G d A b

67

The optimal solution of this problem is q* = (1.4, 1.7). If the dynamic range of the

problem in increased -for example by multiplying all the coefficients of the first

constraint by a factor of 10
12

- we should obtain the same optimal solution.

However, due to the loss of accuracy imposed by the use of single precision

representation the solver will fail to reach the optimal solution.

This problem can be handled by providing a preprocessing stage to provide some

sort of normalization to the problem constraints. The current design does not

include such a preprocessing stage.

2.4.5 Comparison between target platforms

The current design targets FPGA as a fast prototyping method. However, FPGAs –

in general- have some characteristics that limit the performance of the system.

These limitations can be avoided if the design was implemented as an ASIC. One

of the FPGA characteristics that limit the performance is its Logic Element (LE)

nature. Each FPGA logic element consists of logic generating hardware and a

number of flip-flops. If a LE flip-flops are used -for example- to generate registers

to store data, the rest of the logic element hardware cannot be used. In the current

design implementation, it is required to store intermediate calculation results for

further processing. These intermediate results usually take vector form. When the

storage is performed using registers, a large number of LEs is used. Most of them

are used due to the use of its flip-flops only. This results in lack of utilization.

Moreover, the FPGA area is consumed which prevents the implementation of more

arithmetic components to speed up calculations.

To avoid this problem, intermediate variables are implemented as memories. Such

implementation saves the number of LEs used as registers. However, it adds

memory loading and storage delays. These delays reduce system speed.

If ASIC is used for implementation instead of FPGA, then it will be possible to

implement the calculation intermediate results as registers without loss of

utilization. It will save the time lost in memory loading and storing.

Another advantage of ASIC over FPGA appears in the implementation of

arithmetic calculation units. In FPGA, these units are implemented using logic

68

elements which reduce their speed. The speed is improved on FPGA by the use of

dedicated multipliers implemented on the FPGA. However, if ASIC is used, it will

be possible to implement faster arithmetic units which will significantly improve

the solver performance.

2.5 Hardware implementation of MBQP solver

The success of the online implementation of MPC on hybrid systems depends

basically on the implementation of a fast MBQP solver. If such a solver exists, the

controller will be able to solve the complex optimization problem online and

provide the optimal control move before the end of the sampling interval.

Different algorithms that solve MBQP problem were discussed in section 1.5. The

superiority of the branch and bound algorithm was shown therein. The details of

the branch and bound implementation were given in algorithm 1.4. In this section

we examine how this algorithm can be tailored to be suitable for hardware

implementation.

The solution of a MBQP using branch and bound requires some basic operations

which are: relaxation of binary constraints, calling of a QP solver, examination of

the QP solution to check branching possibility, choosing a binary variable for

branching, ability to branch on the selected variable, storing branched problems to

the list for future solution and finally loading one of the problems in the list for

solution. The hardware implementation of each of these operations will be

discussed in detail.

2.5.1 Relaxation of binary constraints

One of the simple relaxations to the MBQP problem is the QP relaxation. In this

relaxation the MBQP is relaxed to a QP problem by converting the binary variable

{0,1}iq to a real variable in the range [0, 1]. This consequently adds the following

two constraints to the problems

0 (2.6)

1 1 (2.6)

i

i i

q a

q q b

69

Both inequality constraints are converted to the greater than or equal sign to match

the formulation of the interior-point QP solver used.

It should be noted here that these two constraints are added for each relaxed binary

variable. Hence, the relaxation of binary variables increases the number of

constraints in the QP subproblem. The number of added constraints is twice the

number of relaxed binary variables. The hardware implementation of this

operation is done by modifying the matrices A and b that are passed to the QP

solver. The constraint 0iq

is implemented by adding a complete row of zeros to

the matrix A except at column i which corresponds to the relaxed variable qi where

1 is added. The vector b is changed by adding 0 as a new row. The same is done

for the constraint 1iq . The difference is that -1 is stored instead of 1 in column

i of the added row to the matrix A and also -1 is added instead of 0 in the vector b.

The number of constraints m passed to the QP solver is increased by 2 for each

relaxed binary variable.

2.5.2 Calling of QP solver

The relaxed MBQP problem should be passed to the interior point QP solver. The

QP solver hardware is called as a component within the interior point hardware. To

start the interior point solver, the matrices of the QP problem must be loaded to the

interior point solver memories before starting the solver operation. To simplify

memory loading, the interior point memories were shared between interior point

hardware and MBQP hardware as shown in figure 2.11. The proposed memory

sharing was implemented by multiplexing memory address, data and control

signals from both sources to control the same memory. The multiplexers‟ selection

signal is controlled by the MBQP hardware to determine which hardware has

access to the shared memories. When the MBQP hardware processes a problem

from the list and prepares for calling the interior point hardware, the shared

memory is accessed by the MBQP hardware to update the matrices A, b, G, d that

will be used by the QP solver. Once the interior point solver is started to solve the

relaxed QP problem the memory access is transferred to the interior point

71

hardware allowing it to access the QP problem matrices to start algorithm

execution.

Figure 2.11: sharing of memories between interior point and MBQP

The shared memories architecture has two main advantages:

1) Reducing the number of the required memory bits. If memories are not

shared, we would need separate memories for MBQP hardware to store

processed A, b, G and d matrices. All these memories will be duplicated in

the QP solver hardware.

2) Saving the time needed to pass quadratic programming matrices from

MBQP hardware to QP solver Hardware. By simply changing the value of

“Memory select” signal, the quadratic programming matrices are available

for the QP solver to start its operation. We also save the time required to

pass the solution obtained from the interior point solver to MBQP hardware.

We should also indicate here that the proposed design allows the use of parallel QP

solvers as indicated before in figure 2.2. This property would have great

importance if the average number of QP problems required for solution during

MBQP is very large and consumes a large period of time. In this case, using

multiple QP solvers will reduce the time for MBQP solution by a factor

proportional to the number of the used QP solvers.

Interior

point

hardware

 0

 1

Shared Memories

MBQP

Control

Unit

Address

Control

Data

MBQP Hardware

Memory select

 0

 1

 0

 1

71

2.5.3 Examination of the QP solution

When the QP solver finishes its operation, the reached solution should be

examined to determine whether we will continue or stop branching on this branch

of the enumeration tree. At first, the QP solver result is checked if it is valid or not.

This is done by reading the value of exit flags provided by the QP solver. If exit

flags showed that the problem is infeasible then we stop branching in this branch

as all subproblems will be also infeasible.

If the solution obtained from the QP solver is feasible, we check the value of the

objective function obtained from QP solver. If the value of the objective function

is larger than a previously reached upper bound, the solution is rejected and we

stop branching on this branch. The reason behind this rejection is that the relaxed

problem solution acts as a lower bound for all subproblems in that branch of the

enumeration tree. If this lower bound is higher than a currently available upper

bound of the MBQP problem, then all subproblems in that branch will not give any

better solution to the MBQP problem. Hence, all subproblems of this branch are

ignored. It should be noted here that the upper bound must be initially set to

infinity to explore all possible problems.

Finally, if the QP solution is valid and has an objective function value less than

the available upper bound, the solution vector is tested to examine if it is integer

feasible or not. Testing is done by reading the locations in the solution vector

corresponding to binary variables. The read elements are examined to determine if

they can be considered binary (0 or 1) or not. Each element is compared with a

threshold very near to one, i.e., (1) . If the read element is greater than this

threshold then it can be considered as one. Otherwise, the element is compared

with a threshold very near to zero, i.e., (ε). If the element is smaller than this

threshold, it will be considered as zero. The value of ε is the max error allowed in

the QP solver that was used to calculate the relaxed solution.

This process is repeated for all binary relaxed variables. If all of them are binary,

the obtained solution is a feasible solution to the MBQP problem. The value of the

72

objective function in this case can be used as an upper bound to the MBQP

problem and to the relaxed QP problems and is used in the comparisons discussed

before.

If any of the binary relaxed variables is neither near to 1 nor near to 0, then it is not

satisfying the constraint of being binary. This variable is used for further branching

as will be discussed in the following section.

2.5.4 Branching of a binary variable

Branching operation is one of the most important operations in the solution of a

MBQP problem. Branching is the operation of selection of a binary variable and

creating two subproblems with one having the chosen variable as 1 and the other

having this variable as zero. Branching can be simply performed by adding an

equality constraint to the problem. However, this will increase the number of

constraints of the subproblem which means that it will need longer time to be

solved compared to parent problem. Another problem is that adding this equality

constraint may make the constraints dependent and this will cause a problem

during QP solution. A third problem is that the existence of equality constraints

along with inequality constraints will require a more complex algorithm than the

case of inequality constraints only. This will cause the implementation to have

more area and may lead to slower execution.

Instead of adding an equality constraint to perform branching, we can remove the

branched variable from the optimization problem. By removing this variable, the

resulting optimization problem will have a smaller size. Consequently, it requires

shorter solution time. As a result, the solution becomes faster as we go down in the

enumeration tree which improves the system behavior.

 The process of removing a fixed variable from the optimization problem is very

simple as the removed variable takes a value of 0 or 1. This method results in some

change in the optimization problem matrices as will be shown in the following

example.

73

Example 2.6

Consider the following optimization problem with three optimization variables

(n=3) and four constraints (m = 4).

11 12 13 1 1

1 2 3 12 22 23 2 1 2 3 2

13 23 33 3 3

11 12 13 1

1

21 22 23 2

2

31 32 33 3

3

41 42 43 4

1
min ()

2

g g g q d

J q q q q g g g q q q q d

g g g q d

a a a b
q

a a a b
q

a a a b
q

a a a b

 If the variable q2 is a binary variable and we need to perform branching on this

variable. Then, the optimization problem can be written as

 11 13 1 1 122

1 3 1 3 22 2 1 3 2 2 2

13 33 3 3 23

11 13 12 1

21 23 1 22 2

2

31 33 3 32 3

41 43 42 4

1 1 1
min () 2

2 2 2

g g q d g
J q q q q q g q q q q d q

g g q d g

a a a b

a a q a b
q

a a q a b

a a a b

In this form we separated the variable q2 as a preparation to its removal from the

problem. If the variable q2 is branched to zero, the last three terms of the objective

function will vanish. Moreover, the second term of the LHS of the constraints

inequality will vanish. The optimization problem reduces to an equivalent form

which has only two optimization variables (n = 2) and the same number of

constraints (m = 4). The resulting equivalent optimization problem has the form

 11 13 1 1

1 3 1 3

13 33 3 3

11 13 1

21 23 1 2

31 33 3 3

41 43 4

1
min ()

2

g g q d
J q q q q q

g g q d

a a b

a a q b

a a q b

a a b

74

The resulting equivalent optimization problem can be formed simply when the

binary variable is fixed to 0. The new G matrix is formed by removing a row and

a column from the original G matrix. The removed row and column are those

related to the branched binary variable – second row and second column in the

previous example. Similarly, the new vector d is formed by removing a row from

the original d vector. The new matrix A is formed by removing the column

corresponding to branched variable from the original A matrix. The vector b is not

changed.

The case when the binary variable is branched to 1 differs slightly from the

previous discussion. The difference is that the terms related to the branched

variable will not vanish. Instead, they will change the optimization problem

matrices. For the same example, when the branched variable is set to 1 the

resulting optimization problem will be

 12

23

11 13 1 1

1 3 1 3 22 2

13 33 3 3

11 13 1 12

21 23 1 2 22

31 33 3 3 32

41 43 4 42

1 1
min () ()

2 2

g

g

g g q d
J q q q q q g d

g g q d

a a b a

a a q b a

a a q b a

a a b a

In this case, matrices G and A are the same as the case when q2 = 0. However,

vectors d and b have changed. The new d vector is the addition of the vector d in

the previous case and a part of the removed column of the matrix G. The later

column is the complete removed column except the row in the position related to

the branched variable. The new b vector is the original b vector minus the removed

column of the matrix A.

We should also note that a constant term (22 2

1

2
g d) appeared in the objective

function. This term affects the value of the objective function. But this term will

not affect the value of the optimal solution vector q* and hence it is ignored during

the optimization. As this term affects the value of the objective function and to

75

have a correct operation, the value of this term should be computed and saved. It

will be used when the QP solver finishes optimization. This constant term is

added to the value of the objective function obtained from QP solver. This is done

before comparing the value of the objective function with the available upper

bound.

2.5.5 Storing and loading problem from list

The number of subproblems created during solution of MBQP increases

exponentially as we move from a level to the lower level in the branch and bound

enumeration tree. These subproblems have to be stored for future solution. A list

of the subproblems to be solved is created. The main problem of this list is its large

memory requirements. If we store the matrices of each relaxed subproblem, the

memory needed will be huge. As the implementation currently targets FPGA, such

a memory cannot be provided. Any FPGA has limited memory bits that cannot be

exceeded.

To overcome this critical storage problem an alternative method is used. In this

method, instead of storing the matrices of each subproblem, the list stores only the

status of the binary variables in the subproblem. Also, a copy of the original

MBQP problem matrices is stored in a separate memory. This copy is not altered

and is always available.

During the processing of any subproblem, the status of the binary variables is

loaded from the list. Each of the variables is processed according to its status. If

the current manipulated variable is relaxed, we add the corresponding relaxation

constraints to the original constraints of the problem. The new problem constraints

are stored to the memory containing the matrix A of the shared memories. The

storage of the new matrix A prepares for the solution of the resulting QP problem.

If the current manipulated variable is fixed either by 1 or by 0, the original

problem matrices are processed as described in example 2.6. The processed

matrices are also stored to the shared memories.

76

The advantage of this storage method is that the memory storage needed by each

subproblem becomes very small. Each binary variable needs only 2 bits to store its

status which has only three options (relaxed, fixed with 0 or fixed with 1). Hence,

the number of memory bits needed by each subproblem is 2nb. Reducing required

design memory will allow the use of saved memory bits in implementing parallel

QP solver units which can have a great impact on system‟s performance.

If we study the latency of the proposed MBQP solver, we find that it will require a

small time. The reason is that most of the operations needed are memory

read/write operations which can be executed quickly. Moreover, access to different

matrices can be performed in parallel as we have each matrix stored in a separate

memory.

The number of calculations required by the proposed branch and bound

implementation is small. Calculations are needed only when a binary variable is

fixed to 1. Moreover, these calculations are performed quickly by exploiting the

pipelined structure of the floating point adder and multiplier used as described in

example 2.3.

Due to the small computation requirements of the MBQP algorithm, its hardware

uses a single floating point adder, single floating point multiplier and a single

floating point comparator. It also uses some additional memories in addition to the

shared memory. A group of small memories are used to store the original MBQP

problem during the whole period of solution. These memories are used to calculate

QP matrices. Additional small memory is used as the list used to store information

about QP subproblems. The length of the list memory is related to the number of

binary variables in the problem nb and the method used in scanning the list.

In the proposed implementation, we use depth first branching policy. To perform

this policy the list memory is implemented as last-in first-out LIFO memory.

Depth first policy is selected as it moves fast toward the bottom of the enumeration

tree where the probability to find integer feasible solution -hence an upper bound

less than infinity- increases. Finding such an upper bound early can help us to

ignore the solution of complete branches of the tree. Hence, it reduces the number

of QP problems which in turn leads to a faster solution of the MBQP problem.

77

Conclusion

Chapter 2 gives the details of the hardware implementation of the main parts of the

hybrid model predictive controller. The ideas introduced in this chapter aims

basically to help the implementation of a fast hardware hybrid controller.

The chapter begins by explanation of the main parts of the hybrid controller and

their role in determining the controller speed in section 2.1. The design

environment details are then given in section 2.2. The concepts of pipelining and

parallelism were reviewed in section 2.3. Various examples were given to illustrate

how these concepts can be used to speed up calculations. Special interest was

given to matrix operations as they represent the dominant calculations in the

hybrid controller. The ideas of these examples were applied practically in the

system hardware design.

The details of the hardware implementation of the interior point QP solver were

given in section 2.4. The modifications performed to the algorithm to make it more

suitable for hardware implementation were discussed. The implementation of the

MBQP solver was discussed in detail in section 2.5.

78

Chapter 3 Results

In this chapter the performance of the hardware hybrid model predictive controller

is evaluated. This evaluation is important as we target the control of embedded

hybrid systems. This embedded nature sets some constraints on the controller

performance. One constraint is related to the amount of memory needed by the

controller in comparison to the hardware platform available memory. Another

more important constraint is related to the controller speed. As the MPC control

strategy is applied online during system operation, the time needed by the

controller to calculate the control signal must be less than the sampling interval of

the controlled system.

The main component that affects the performance of the hybrid controller is the

MBQP solver. The operation of MBQP optimization is the most computation

expensive in the algorithm of hybrid MPC. As we have discussed in section 1.5,

the MBQP optimization problem is solved by the branch and bound algorithm

which requires the solution of a sequence of QP subproblems. This shows that the

performance of the MBQP solver depends mainly on the performance of the used

QP solver.

In this thesis the branch and bound algorithm is used for the implementation of the

MBQP solver. The QP solver was implemented using path following infeasible

primal-dual interior point algorithm. The reasons of these selections were

discussed in chapter 1.

In this chapter the performance of the implemented QP solver is discussed in

section 3.1 followed by the performance of the MBQP solver in section 3.2.

3.1 Performance of QP solver

In this section we evaluate the performance of the QP solver by reporting its area

requirements and its latency. We study various implementations of the QP solver

and compare their area requirements and latency.

As we prototype our design using an FPGA, the area requirements can be divided

to two categories: logic elements (LEs) requirements and memory requirements.

79

Logic elements are used to implement any arithmetic\control functions. Hence, the

LE requirements are related mainly to the number of arithmetic units implemented

and the design of the control unit. On the other hand, memory requirements are

related to the amount of data storage needed. The number of required memory bits

depends mainly on the size of QP matrices and hence depends on the QP problem

size. In a certain FPGA, the number of available memory bits determines the

maximum size of the QP solver that can be implemented. In section 3.1.1, we

study a number of FPGAs and we list the size of the QP solver that can be

implemented using each FPGA.

The latency of the QP solver depends on two factors; number of iterations

performed by the QP solution algorithm and the single iteration time. The number

of iterations depends on the problem structure, the level of accuracy required and

on the QP solution algorithm used. It is not affected by the hardware design.

However, the single iteration time depends basically on the hardware design as it

depends on the method of the execution of the algorithm equations. Reducing the

latency of the single iteration time by proper hardware design will improve the

performance of the QP solver.

To test the implemented quadratic programming solver, some benchmark problems

were used. The problems used for performance testing are part of a benchmark

[64] provided by Tomlab Optimization for testing quadratic programming

problems. The benchmark problems were provided in MPS (QPS) format. The

MPS format is a standard file format for expressing mathematical programming

systems. The MPS format targets basically Linear Programming (LP) problems

and Mixed Integer Linear Programming (MILP) problems. The QPS format [65] is

an extension to the MPS format to handle Quadratic Programming (QP) problems

and Mixed Integer Quadratic Programming (MIQP) problems. There exist a

number of tools to export problems in MPS (QPS) format to be available for use

inside Matlab environment [66]. Then, the test problems are passed to the

Modelsim hardware solver using the Matlab-Modelsim link [60].

81

3.1.1 Selecting an FPGA

It was shown in section 3.1 that the number of available memory bits determines

the maximum size of the QP solver that can be implemented. Table 3.1 shows a

list of FPGAs with the max QP size that can be implemented

Table 3.1: Maximum QP problem parameters for different FPGAs

FPGA part

number

Available

memory bits

Number of

variables

Number of

constraints

EP3C25F324 608256 32 128

EP3C40F324 1161216 32 256

EP3C120F484 3981312 64 256

EP2S180F1020 9383040 128 512

3.1.2 Comparison with respect to iteration time

The iteration time of the QP solver will depend on the hardware architecture used

in the implementation. In this section, we will compare a number of architectures

and report the iteration time obtained during the solution of a set of test problems.

Architecture I

In this architecture we try to minimize the used hardware. The minimum number

of floating point arithmetic units is used. We use only a single FP adder/subtractor,

single FP multiplier, single FP divider and single FP comparator. The used

arithmetic units are pipelined units. Table 3.2 gives the characteristics of the units

used when synthesized on EP3C25F324 FPGA.

In this architecture all steps of the interior point algorithm 1.3 will be executed in

sequence. We use the pipelined execution manner described in examples 2.2 and

2.5 to speed up calculations. For example, to calculate rd = G×q-A
T
×λ-d , G×q is

calculated until the execution ends and the result is stored. Then the same

hardware is used to calculate A
T
×λ. The obtained result is added to the result of

G×q. Finally, d is subtracted and the final result of rd is stored. After rd is

calculated, the same hardware is used to calculate rb. All steps of the algorithm will

81

be calculated sequentially. Parallel execution cannot be used unless the calculated

quantities use different arithmetic components. For example, the multiplication =

G×q -in the calculation of rd- can be executed in parallel with the division of λ/s -

needed to calculate A
T
(S

-1
Λ)A- because these calculations use different hardware

components. The synthesis report of the implementation of the QP solver using

architecture I is given in Table 3.3. Table 3.4 gives the execution time of the QP

solver for a set of test problems from the benchmark [64].

Table 3.2: Floating Points components parameters

Unit FP adder FP multiplier FP divider FP comparator

pipelining stages 7 5 6 1

Logic cells 843 196 224 85

registers 372 152 159 2

Memory bits 0 0 18 0

Multipliers 0 7 16 0

Table 3.3: synthesis report of architecture I QP solver

Logic cells Registers Memory bits Multipliers Maximum frequency

12236 2897 171538 23 99.6 MHz

Table 3.4: performance of architecture I QP solver

Test problem n m
Single

iteration time

No. of

iterations

Solution

time

HS268 5 5 17.637 μs 26 0.458 ms

HS118 15 59 0.327 ms 20 6.45 ms

Results in table 3.4 were obtained using the cyclone III FPGA EP3C25F324 for

implementation with a clock frequency of 80 MHz.

82

Architecture II

In this architecture, we use more hardware to reduce the execution time of the

algorithm. The added arithmetic units are used to execute parallel calculations. For

example, in figure 2.10, calculation G×q , A
T
×λ and A×q can be executed in

parallel. Hence we can use three multiplier/adder pairs to perform the three

mentioned calculations in parallel. Each multiplier/adder pair will work in the

pipelined fashion described in example 2.5.

This architecture is very useful in reducing the time of the algorithm especially at

calculations that are considered as a “bottleneck”. A “bottleneck” calculation is a

complex computation that takes a long time compared to all other calculations of

the algorithm. The execution of this type of calculations requires a number of

clock cycles -at least- an order of magnitude higher than other calculations. In the

implemented interior point QP algorithm there exist two of such calculations; the

matrix-matrix multiplication (temp_mat×A=A
T
(S

-1
Λ)A) in figure 2.10 and the

Gauss-Jordan calculation. These calculations are the most time consuming

calculations during the execution of the algorithm. Reducing execution time of

both calculations using parallel design has a direct impact on reducing QP solver

latency. The execution of a QP iteration using architecture II is illustrated in figure

3.1.

The execution of the calculations in step 1 requires 5 FP adders, 5 FP multipliers

and one FP divider. Step 2 requires less numbers of adders and divider. Step 3

represents a bottleneck in calculation. The matrix-matrix calculation can be

performed as a group of matrix-vector multiplication. Using parallel

adder/multiplier pairs, these matrix-vector multiplications can be performed in

parallel. If it is available to implement n adder/multiplier pairs the matrix-matrix

multiplication is executed nearly in the same time of a matrix-vector

multiplication. If the number of adder/multiplier pairs is equal to PU where PU is

less than n, the matrix-matrix multiplication time will equal the time of matrix-

vector multiplication multiplied by ceil (n/PU). Step 5 where Gauss-Jordan

Algorithm is executed has similar execution behavior to that of step 3. All other

steps require a number of adders and multipliers less than 5.

83

For the current implementation the number of clock cycles required to complete a

QP solver iteration -using architecture II- is related to the number of the

optimization variables (n) and the number of constraints (m) by a complexity of

O((m + n)×n×ceil(n/PU)).

Figure 3.1: Execution of a QP solver iteration using architecture II

The implemented QP solver uses 5 FP adders, 5 FP multipliers, one FP divider and

one FP comparator. It is designed to solve a QP with maximum size (n=16 and

m=64).The parameters of the arithmetic components used are the same as those in

table 3.1. Table 3.5 gives synthesis report for the system. The hardware execution

time for a set of test problems – same as those used to evaluate architecture I- is

shown in table 3.6.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

G×q-d

rb= A×q-b-s

S-1Λ = λ/s

temp_mat=AT(S-1Λ)

AT×λ λ.×s
μ, ζ calc.

ζμ./λ

rd=(G×q-d)-AT×λ

Temp_vec= ζμ./λ - rb - s

A
T
(S

-1
Λ)A = temp_mat×A

Δq_coeff = AT(S-1Λ)A+ G

Δq_rhs = temp_mat×temp_vec - rd

Solution of [Δq_coeff × Δq = Δq_rhs] by using Gauss-Jordan

Δs = A×Δq + rb

 ζμe -λ×s

Calculation of step length α

update q = q + α× Δq update s = s + α× Δs update λ = λ + α× Δλ

Δλ = (ζμe -λ×s - λ×Δs)/s

Step 8

Step 9

84

Table 3.5: synthesis report of architecture II QP solver

Logic

cells
Registers

Memory

bits
Multipliers Maximum frequency

18613 7039 171538 51 91.46 MHz

Table 3.6: performance of architecture II QP solver

Test problem n m
Single

iteration time

No. of

iterations

Solution

time

HS268 5 5 6.45 μs 26 0.167 ms

HS118 15 59 0.105 ms 20 2.11 ms

3.1.3 Evaluation of solver performance

The performance of the hardware QP solver is compared with the performance of a

Matlab function that implements the same algorithm. Table 3.7 reports the

execution time of the Matlab function solving the same test problems. The

function is implemented using Matlab version 2007B that runs on windows 7 on a

labtop with intel I5 processor with clock frequency 2.26 GHz.

 Table 3.7: Performance of Matlab function of the QP solver

Test problem n m Average Solution time

HS268 5 5 4.4 ms

HS118 15 59 8.8 ms

It is clear that the execution time obtained by the hardware QP solver is less than

the time obtained by the QP Matlab function. Another main advantage of the

hardware implementation is the power consumption. The estimated FPGA power

consumption does not exceed 0.25 W while the power consumption of the PC is

several watts. The FPGA power consumption is estimated using the Quartus II

software version 8.1 assuming a toggle rate of 80×10
6
 transitions/sec for the input

signals and vectorless estimation of the toggle rate of the remaining signals.

85

 Our proposed QP solver is compared to the QP solver implemented in [7]. The

implemented solver in that paper solves a QP problem with n = 3 and m = 60 in

about 20 ms. Our solver solves the HS118 test problem which has larger size in a

much shorter time.

Note about Matlab function results

Results of table 3.7 show that although the HS118 problem is about 30 times larger

in size than the HS268 problem, its execution time on Matlab is only twice longer.

The reason is that HS118 matrices contain a large number of zeros. It was found

by experiment that Matlab performs faster when working with zeros than when

working with any other numbers. A problem of the same size as the HS118 will

have a longer execution time on Matlab if its matrices have a fewer number of

zeros than the HS118 problem.

3.2 Performance of MBQP solver

When we study the performance of the MBQP solver, we study the hardware

requirement of the MBQP solver independent on the embedded QP solver. Also,

we measure the time required by the MBQP solver only.

For hardware area, the MBQP uses very simple hardware. It uses single floating

point adder, multiplier and comparator. The control unit that controls the operation

of MBQP solver is a simple FSM. Memory requirements of the MBQP solver are

minimized by using the same memory of the interior point unit. The additional

memory requirements are represented by two memories. One to store original

MBQP matrices, the other is the list that stores the MBQP subproblems. The

hardware used by the MBQP solver is shown in table 3.8

Table 3.8: synthesis report of MBQP solver

Logic cells Registers Memory bits Multipliers Maximum frequency

3869 1426 77824 7 91.46 MHz

86

For time requirements, it was found that the percentage of time needed by MBQP

hardware with respect to the time needed by the QP solver does not exceed 1% in

all test problems used.

Conclusion

In this chapter the performance of the hardware hybrid controller is evaluated.

Two main factors are used in the performance evaluation: the amount of required

hardware resources and the solver latency. Hardware resources requirements are

obtained from the design synthesis report. This report determines the FPGA device

that should be used. The solver latency determines the maximum sampling time

that can be used. Hence, it determines the class of hybrid systems that can be

controlled using the proposed controller.

The chapter begins by the evaluation of the performance of the hardware QP

solver. QP problem solution is the most time consuming operation during

optimization. Moreover, the MBQP problem is solved by solving a series of QP

subproblems. To allow the implementation of the proposed solver using different

types of FPGA, two architectures were studied. One of these architectures

minimizes the needed hardware. The other applies more hardware resources to

reduce the QP solution time. The latency of the QP solver implementation using

both architectures was reported for a set of test problems. The obtained results are

compared to a previously implemented solver [7]. Results are also compared to the

execution time of the same algorithm on a PC.

The chapter concludes by reporting the performance of the MBQP solver. Its

performance is evaluated in terms of hardware requirements and solution latency.

87

Chapter 4: Practical Application: Control of a Stick-Slip Drive

4.1 Introduction

Stick-slip drives are becoming popular in the domain of micro and

nanotechnologies because of their simple and compact structure, fast response and

high resolution [67]. As can be understood from their names, these drives work in

two distinct operation modes „stick‟ and „slip‟. Stick and slip behaviors due to the

friction force in mechanical systems. As friction can be modeled as a hybrid

system, consequently, stick-slip drives can also be modeled in a hybrid framework.

In fact, hybrid modeling is very suitable for these kinds of systems, since it clearly

reflects their operation principle.

In this chapter, a hybrid modeling for the Stick-Slip Inertial Driver “SSID” is

proposed. The resulting model is used to build an MPC for the system to achieve a

certain required performance. The rest of this chapter is organized as follows.

First, in Section 4.2 a brief representation of such drives will be presented. Then,

the description of a particular stick-slip setup and its working principle will be

explained. In Section 4.3 the hybrid modeling of a stick-slip drive will be

introduced. The control design of the drive via MPC will be discussed in Section

4.4. Simulation as well as experimental results will be presented in Section 4.5.

Finally, some details about the hardware setup is introduced in section 4.6.

4.2 Impact and Stick-Slip Drives

Inertial or impact drives are well developed in the domains of Microsystems and

micro-manipulators. They are intensively used in precise positioning and

especially for the probe positioning in scanning tunneling microscopes (STM).

These drives have a simple and compact structure, provide high resolution up to

some nanometers, and generate long range movements with relatively high

velocity. In addition, mechanisms with multiple degrees of freedom can be easily

constructed. In Figure 4.1, an impact drive is illustrated. It consists of three basic

parts: a main body to be moved, an actuator (piezoelectric actuator) and an inertial

88

mass. When the actuator makes a rapid extension, a strong force is generated

which exceeds the friction force between the moving object and the table. Thus the

main body will be displaced. When the actuator makes a slow contraction, the

force is smaller than the static friction so that the main body does not move.

Repeating these fast and slow actuator movements carries out the motion.

Figure 4.1: Operation of Inertial Driver

Stick-slip actuators work by a similar principle and thus can be considered as a

special case of impact drives. Stick-slip drives are distinguished from impact

drives when one of the masses in the system is negligible compared to the

other. Different applications and prototypes of such a technology can be found

in the literature [68]. For instance, stick slip micromanipulators which give

resolutions of some nanometers were designed and proposed in [69]. A

prototype of a stick-slip drive [70] will be used an example for practical control

of hybrid system. The description of this drive and its working principle will be

explained next.

4.2.1 Description of a Stick-Slip Inertial Drive

A model for the stick-slip inertial drive [70] is given in Figure 4.2. It consists of a

main body (Mm) whose position is to be controlled, a small mass (ms) which has

contact with Mm, a piezoelectric actuator and transmission elements that link the

Mass to

be moved

Piezo

← →

Fast Extension

Mass had a small

displacement

Slow contraction

Piezo

Piezoa-ctuaror returns

to its original length

and Mass keeps the

displacement achieved

89

piezoactuator to the small mass. These transmission elements can be modeled as a

spring with a high spring constant (Ks). The main mass is placed on a rolling table.

4.2.2 Working Principle

The drive operates in two different modes: „stick‟ and „slip‟. Existence of these

two distinct operational modes is due to the friction force between the small mass

and the main mass. The two operational modes of the SSID are:

Stick mode: By applying a voltage input to the piezoactuator, the piezoelectric

crystal expands and generates a force up on the small mass ms. If the force

generated is smaller than the friction force between the small mass ms and inertial

mass Mm, both masses will move together.

Slip mode: After the expansion of the piezoelectric crystal, if the input voltage is

reduced suddenly, the piezoactuator force drops quickly. Consequently, the force

acting at the frictional interface exceeds the static friction and the small mass

slides on the inertial mass back to its initial position xms = 0. Since the small mass

is lighter than the main mass, during the same time interval the inertial main has a

much shorter backward movement.

Figure 4.2: Model of SSID

To be able to move the main mass to a certain position we notice that during mode

„stick‟ both masses are attached and thus, they move together. However, as the

range of elongations of the piezoactuator and consequently the small mass is

limited, the main mass cannot be displaced more than by a certain limit. Then a

resetting action is needed. The act of resetting occurs in the „slip‟ period during

which the small mass slides on the main mass back to its initial position. After

Mass to be moved

(Mm)

Piezo ms

Ks

up
Xms

XMm

91

resetting the position of the small mass position, the main mass can be displaced

more by operating the system in mode „stick‟ again. This way the main mass can

be freely displaced on the rolling table even outside the movement range of the

piezoelectric actuator.

4.3 Hybrid Modeling of the SSID

The source of the hybrid behavior of the SSID is its differentiation between stick

and slip friction states. This hybrid behavior can be considered in system modeling

by the use of Coulomb friction model [71]. This model defines friction force

between the main mass and small mass (F) as a function of their relative velocity

(vr = vms - vMm), where F = Fc*sgn(vr) and Fc is coulomb friction limit. This

behavior is shown in Figure 4.3.

Figure 4.3: Coulomb Friction force model

Other Dynamics of the SSID can be derived from basic principles of mechanical

systems. Some assumptions will be made to simplify system modeling and to

express some practical system limitations. These assumptions are:

1. The friction between the main mass and the rolling table is neglected.

2. The dynamics of the piezoelectric actuator are much faster than the dynamics

of the rest of the system and thus the input voltage to the piezoelectric actuator

and the resulting generated force up are simply related by a gain.

3. The force generated by the piezoactuator up is related to the position of the

piezo crystal, xpiezo, by the equality up = kp*xpiezo. Since the maximum

elongation of the piezo crystal, max{xpiezo}, is limited by the dimension and the

vr

F

Fc

-Fc

91

load of the system, it will be assumed that the input force is bounded

up max = max{kp*xpiezo}.

The model of the SSID is given by

(4.1)

1
() (4.1)

(4.1)

1
(4.1)

ms ms

ms p s ms

s

Mm Mm

Mm

m

x v a

v u k x b
m

x v c

v d
M

F

F

where xms and xMm represent the positions and vms and vMm represent the velocities

of the small mass and main mass respectively, with ms and Mm being their

respective masses. up is the force generated by the piezoelectric actuator, ks is the

spring constant of the transmission elements, and F is the friction force between

the two masses.

The hybrid modeling is achieved by applying the Coulomb friction model and its

relation to the external force applied to the system. Using the coulomb model we

find that friction on the interface between main mass and small mass has different

definitions and the system can be in one of three different modes (discrete states):

stick, slip-, and slip+.

To get the conditions of transition between these modes we can denote ρ as the

force acting at the frictional interface due to the external input force up. If ρ does

not exceed the Coulomb friction level Fc, then both the main and the small mass

move together with vr = 0. In this case mode „stick‟ is active and friction force F is

defined by ρ. As soon as ρ exceeds the Coulomb friction level, one mass slips over

the other with vr = vms-vMm ≠ 0. The two modes slip+ and slip- are respectively

distinguished by positive and negative relative velocities, i.e. vr > 0 or vr < 0.

The expression of ρ can be derived from evolution of the relative velocity, vr = 0.

Setting 0ms Mmv v leads to

92

() (4.2)m
p s ms

m s

M
u k x

M m

In mode stick the friction force is defined by F = ρ and in modes slip- and slip+ by

 = -Fc F and = Fc F respectively. By using the definition of friction force in each

mode, the vector fields

Fp (x; u) with x = (xm vm xM vM)
T
 , p= {stick, slip-, slip+} are defined by

()

(4.3)

()

() ()

, (4.3 ,)

ms

p s ms

m s

stick

Mm

p s ms

m s

ms ms

p s ms p s ms

s s

slip slip

Mm Mm

m m

v

u k x

M m
F a

V

u k x

M m

v v

u k x Fc u k x Fc

m m
F F b c

V V

Fc Fc

M M

The transitions between these modes and the definition of the friction force F in

each mode are given by the hybrid automaton of Figure 4.4.

Figure 4.4: SSID Hybrid Automaton

STICK

SLIP -

SLIP +

F = ρ

F = Fc

F = -Fc

ρ ≤ -Fc ρ ≥ Fc

ρ ≥ Fc

ρ ≤ -Fc

ρ ≤ |Fc| ρ ≤ |Fc|

93

4.4 Control of the SSID

As the main application of inertial drive systems is in micro positioning especially

for the probe positioning in scanning tunneling microscopes (STM), The SSID

control problem discussed here aims to regulate the position of main mass from an

initial position to a certain required reference position. Usually, the required

reference position is in order of micrometers or even parts of a micrometer

depending of the parameters of SSID used. In this example, we will consider the

control design required to move the main mass Mm from its initial position (XMm =

0) to a reference position rxM.

The control strategy used should be able to handle the hybrid nature of the system.

Moreover, it should respect the physical constraints of the system operation, for

instance, the constraint that the input external force up cannot exceed a certain

limit. In [71] the control design of SSID was based on a “dehybridization”

approach where a cascade control scheme is applied for the problem of set point

tracking of the SSID. In this method, an inner loop switching controller is designed

to handle the system hybrid nature. Another outer loop controller is designed based

on averaging the inner loop response. The outer loop control design is performed

using classical control methods.

 In this thesis, we propose the application of MPC to the set point tracking problem

of the SSID. This proposal was inspired by the restrictions that exist on the control

algorithm especially the need to handle explicit constraints ….. The application of

such a control technique requires in the first place the modeling of the targeted

hybrid system in the MLD framework, which in turn requires the description of the

hybrid system behavior in HYSDEL format.

As MLD modeling deals with discrete time hybrid system, the previously

mentioned model of the SSID should be discretized using a proper sampling

interval. A straight non-optimized HYSDEL modeling of the SSID system with a

sampling interval of 1ms is given in appendix A.1. This straight HYSDEL model

94

uses large number of binary and continuous auxiliary variables, and then it will

have also a large number of mixed-binary inequality constraints. Such a modeling

approach will make the MLD model and the constructed controller inefficient for

practical implementation. The MLD model can be simplified by changing the

definition of the used binary variables– as shown in the HYSDEL model in

appendix A.2. The proposed change reduced the number of binary variables from 3

variables to only 2 variables. This reduction of the number of the binary variable is

logical as we have only 3 states. This change reduces the number of inequality

constraints significantly which results in a much simplified MLD model. This

discussion shows that a slight change in the definition of binary variables can

result in an optimized MLD model.

It should be clear that the performance of the MPC algorithm and the ability of its

practical implementation will basically depend on the efficiency of the MLD

modeling. Simple MLD models will allow for more efficient control algorithms. It

will allow also for faster implementations of the MPC controller.

By studying the modes of the SSID system and its dynamic properties two

simplifications can be made to the system MLD modeling.

Simplification 1: reducing the number of modes (discrete states)

By inspecting the modes of the SSID system, we can find that the main mode that

can contribute in increasing the position of the main mass is the stick mode. It was

shown in section 4.2.2 that after stick mode is applied a reset of the small mass

position should be performed. This reset is performed by “slipping” the small mass

over the surface of the main mass. Mathematical modeling shows that there exist

two slip modes: „slip+‟ and „slip-„. By inspecting the conditions of both slip

modes, we find that „slip+‟ mode requires positive relative velocity vr. This means

that the small mass will slip to the positive direction of motion in a velocity faster

than that of the main mass. This means that the small mass will not return to its

initial position (xms = 0). Moreover, this direction of slip can result in the violation

95

of the constraint of maximum allowed displacement allowed for small mass which

is implied from the maximum allowed elongation of piezoelectric actuator.

On the other side, the „slip-‟ mode requires negative relative velocity. This means

the small mass will slip in the negative direction of motion with a velocity greater

than that of the main mass. This direction of slipping will make the small mass

return to its initial position and allow for a new „stick‟ mode to push the main mass

farther.

This discussion shows that the two modes that will tend to increase the distance of

the main mass is the „stick‟ and „slip-‟ modes. The „slip+‟ will not help increasing

xMm and may lead to violation of the system operation constraints. Hence, the

system modeling can be simplified by avoiding the „slip+‟ mode. This is done by

imposing an additional constraint on the system operation. The new constraint

limits the friction force at the interface between the two masses ρ to be always less

than the positive limit of the coulomb friction force +Fc. Although adding a

constraint adds to the complexity of the MLD model, the new added constraint will

limit the number of modes to two modes instead of three modes which has a

greater impact on reducing the complexity of the MLD model.

 Simplification 2: reducing the number of continuous time states

The original model of the SSID contains four states: xms, vms ,xMm and vMm. Four

state equations are used to describe the behavior of both the small and main

masses. Two state equations are associated with each mass. The most important

dynamics of the system is the main mass dynamics as it is the quantity to be

controlled. By providing a deeper study to the small dynamics in different modes

of operation we can have two observations:

1. During „stick‟ mode both masses all linked together and move as a single mass.

This means that during the „stick‟ mode the dynamics of the small mass and

dynamics of main mass are the same. These dynamics can be obtained by the

introduction of a combined mass – a mass whose value is the sum of both

masses. As this combined mass has a much larger value than the small mass,

96

the system dynamics in this mode is slower than the dynamics of the small

mass alone.

2. During „slip-‟ mode the small mass slips over the main mass to its initial

position. Hence, at the end of the operation of „slip-‟ mode we have xms = 0.

The small mass dynamics in this case is much faster than the „stick‟ mode. The

reason is that the dynamics here depend only on the value of the small mass

only which is much smaller than the main mass. Consequently, the small mass

will return from its current position to its initial position in a very small time.

This time is much smaller than the time needed to reach the current position in

stick mode. This discussion shows that the dynamics of the small mass in „slip-

‟ mode is approximately instantaneous with respect to its dynamics in „stick‟

mode.

Mathematical studies on the hybrid model of the SSID in [71] shows that the

time that the system can stay in „slip-‟ mode cannot exceed a certain limit given

by

max
2 (4.4)

slip
s

s

m
T

k

This study shows that choosing a sampling interval longer that
max

slip

T

guarantees

that the system will stay in the „slip-‟ mode for a single sampling instant. At the

end of this sampling instant we are guaranteed that xms = 0.

These two observations will help us reduce the complexity of the SSID model by

reducing the number of equations needed to model the dynamics of the small mass

in different system modes. In „stick‟ mode, the small mass position is controlled by

the dynamics of main mass. In „slip-‟ mode the small mass position is guaranteed

to be zero after one sampling instant, i.e., msx (k+1)= 0 provided that the sampling

interval used exceeds
max

slip

T

. By applying these ideas to the behavior of the small

mass, the system can be modeled using three state equations only; two state

equations describing behavior of main mass and a single equation describing the

simplified behavior of small mass position xms.

97

Applying the proposed simplifications the resulting hybrid automaton is shown in

figure 4.5.

Figure 4.5: Simplified SSID Hybrid Automaton

It should be stated here that in addition to the constraint on ρ shown in the

automaton 4.5, there are some other constraints resulting from the nature of the

SSID system which are

max

0 (4.5)

0 (4.5)

(4.5)

ms

p

p p

x a

u b

u u c

The first constraint shows that the small mass cannot get beyond its reference

position. The second constraint shows that the force generated by the piezoelectric

actuator is always positive. The third constraint shows that the piezoelectric

actuator force cannot exceed a certain limit. A HYSDEL model describing the

simplified SSID is provided in appendix A.3. The resulting MLD model is given

by

1 2 3

1 2 3

2 3 1 4 5

(1) () () () () (4.6)

() () () () () (4.6)

() () () () (4.6)

xx k A x k B u k B k B z k a

y k Cx k D u k D k D z k b

E k E z k E u k E x k E c

where

1 2 3

 -0.02667 0.00035 0 0 0 1 0 1.02667

 -5866.667 1 0 0 0 0 1 5866.667

 0 0 0 0 0 0 0 1

xA B B B

 1 2 31 0 0 0 0 0 0 0C D D D

STICK

SLIP -

F = ρ

F = -Fc

ρ ≤ -Fc

ρ ≤ |Fc|

With Constraint ρ ≤ Fc

98

1 2

 -0.95238 -1747.33

 0.95238 1662.19

-5.8333e-8 4.3575e-6

5.8333e-8 -8.575e-7

0 8.575e-7

0 -4.3575e-6

-3.333e-4 0.0249

3.333e-4 -0.0

0

0

0

0

0

0

1

-1

-0.95238

E E

3

 0 0 0

 0 0 0

-1 0 0

 1 0 0

-1 0 0

 1 0 0

 0 -1 0

049

0.0049

-0.0249

0.0001

0.0001

-0.0001

-0.0001

0

0

0

E

4

 0 1 0

 0 -1 0

 0 1 0

 0 0 -1

 0 0 1

 0 0 -1

 0 0 1

 0 0 0

 0 0 0

 0 0 0

 1.

E

676e7 0 -1.676e7

-1.676e7 0 1.676e7

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 -1

 0 0 1

-1 0 0

 1 0 0

 0 0 0

 0 0 0

5

-14

1.676e3

4.3575e-6

-8.575e-7

8.575e-7

-8.575e-7

0.0249

-0.0049

0.0049

-0.0049

0.0001

0.0001

0

0

0

60

1.676e7 0 -1.676e78 14

E

99

4.4.1 Hybrid MPC control problem formulation

After reaching a MLD model describing the hybrid system to be controlled, the

construction of an MPC control strategy to control the system will not be a hard

task.

The objective of the control problem here is to force the position of the large mass

xMm toward a certain required reference rxM. Hence, the objective function used for

optimization in the MPC control strategy should penalize the difference (xMm -

rxM). The objective function will be in the form

(|),.... (1|)
min () () (4.7)

(4.12)

p p

T

Mm xM x Mm xM
u k k u k T k

J x r Q x r

subject to

The hybrid control toolbox can be used to transform the system to the form (1.17).

The matrices , , , , xG d D A b and C of the form (1.17) are stored in the hybrid

MPC controller. Every sampling instant, the values of the system states are

measured. These values along with the required references are passed to the MPC

controller. The Controller uses these values to form the optimization problem in

the MBQP standard form (1.18) according to equations (1.19). This problem is

then solved by the MBQP solver to obtain the control sequence up that minimizes

the required objective function. Model parameters, controller parameters along

with the simulation results are presented in section 4.5. Detailed hardware setup is

discussed in section 4.6.

4.5 SSID system Simulation Results

The parameters of the simulated SSID model are given in Table 4.1 [71]. The

Parameters of Model predictive controller are given in Table 4.2. Hardware

implementation results are shown in Table 4.3.

Table 4.1: parameters of the SSID system

Mm Ms ks Fc upmax max

slip

T

 Ts

1 kg 0.05 kg 1.76×10
7

Nm
-1

 14 N 60 N 0.335 ms 1 ms

111

Table 4.2: parameters of the MPC controller

Qx Prediction horizon T

1.9×10
7
 1

Table 4.3: Hardware results of SSID problem

FPGA Type parallel QP solvers MBQP Solution time

EP3C25F324 1 0.39 ms

EP3C40F324 2 0.205 ms

The system is required to track a position reference rxM. The reference starts by a

value of 40 μm then the reference is changed to 80 μm. Simulation results are

given in Figure 4.6.

The obtained results show that the proposed MPC control strategy was able to

handle the hybrid nature of the system as it selects the correct mode of operation.

The SSID system was made to track the required reference in a very short time.

Moreover, The MPC control respected the physical constraints of the system.

To evaluate the performance of the MPC approach, the obtained performance is

compared to the results obtained by the dehybridization approach used in [71]. The

performance obtained by the dehybridization approach is shown in figures 4.7 and

4.8 with the SSID is required to track a reference of 50 μm.

By comparing both responses we find that both respect system constraints.

However, the MPC approach achieved much faster tracking to the required set

point.

111

Figure 4.6: simulation results of SSID system

112

Figure 4.7: Masses positions of SSID with dehybridization control

Figure 4.8: Control signal response using dehybridization

4.6 Detailed hardware setup

In this section we give more details about the hardware setup of the implemented

hybrid model predictive controller. We clarify the control parameters that should

be determined prior to FPGA programming and those that are used during online

operation.

113

1. Parameters that are determined prior to FPGA programming

FPGA programming is performed after reaching form (1.17). When this form is

obtained, the size and the matrices of the MBQP problem are known. The

matrices , , , , xG d D A b and C of the form (1.17) are stored in controller

memory prior to the online operation of the controller.

Form (1.17) is obtained by the hybrid control toolbox after the MLD modeling

of the hybrid system and determining all the parameters of the control objective

function. These parameters include the weighting matrices, required references,

limits on the controlled or manipulated variables, the prediction horizon and the

sampling time. The most critical of these parameters are the prediction horizon,

the number of constraints introduced in the control objective and the sampling

time. The reason of their importance is that any change of these parameters

results in a change in the hardware implementation. For example, any change

in the prediction horizon or the number of constraints will change the size of

the resulting MBQP problem. A change of the MBQP problem size may

require changing the size of the implemented storage memory. Hence, it may

require selecting a different FPGA for implementation. Also, the required

sampling time determines the adopted hardware architecture and the number of

required parallel units.

As a result, the most important parameters to determine before FPGA

programming are the prediction horizon, the number of constraints in the

control objective and the sampling time. Other parameters like weighting

matrices and type of constraints does not change MBQP problem size.

However, they change only the values of the matrices , , , , xG d D A b and C . A

change of these parameters will not require a reconfiguration of the FPGA. It

will require only a reloading phase where the mentioned matrices are rewritten

to the controller memory.

2. Parameters used during online optimization

During online operation of the MPC controller, the system states are measured

and the references are passed to the controller. The controller hardware

114

receives these data and generates the standard MBQP problem (1.18) according

to equations (1.19). The generated MBQP problem is then solved by the MBQP

solver to generate the optimal control action which is applied to the hybrid

system.

Conclusion

In this chapter the model predictive control of a practical hybrid system is

introduced. The Stick-Slip Inertial Drive (SSID) is introduced as an example of

hybrid systems where MPC can be applied to control the system while satisfying

its operation constraints. The chapter starts by showing the importance of the SSID

system and it practical applications. Then in section 4.2 the physical structure of

the system is shown with a description of its working principle. Section 4.3 gives

the modeling equations of the SSID system. The hybrid nature of the system was

model in the form of a hybrid automaton. In section 4.4 the control problem of the

SSID is discussed. Previous control strategies were reviewed. Model predictive

control was shown to be a suitable control approach to the proposed control

problem. For sake of implementation of MPC, the SSID system was modeled

using MLD modeling framework. Some simplifications to the model were

proposed to allow for efficient MPC control design. The simulation results and

hardware results of the implementation were presented in section 4.5. These results

show that the proposed implementation of hybrid MPC was applied successfully to

the SSID control problem. Finally, section 4.6 gives some details about the

hardware implementation.

115

Chapter 5 Conclusion

The objective of this thesis is to study the control problem of hybrid embedded

systems. The proposed controller implementation should consider the size

limitation of the embedded system. It should be easily integrated within the hybrid

embedded system. This thesis proposes an on-chip implementation of a hybrid

controller.

In this thesis, the Stick-Slip Inertial Derive was used as an example of a practical

hybrid embedded system. To design a suitable controller for the used hybrid

system, a suitable modeling framework should be used. The used modeling

technique should be able to express both the continuous and the discrete dynamics

of the hybrid system in a unified mathematical form. In this thesis, mixed-logical

dynamical modeling framework was used to model the hybrid system. It was able

to accurately describe all aspects of the hybrid system dynamics.

To control the example system, model predictive control was proposed. MPC

technique was successful in achieving the required performance while dealing with

the hybrid system nature. It was also able to respect all the constraints of the

system operation. In order to practically apply MPC technique to the SSID hybrid

system, a hardware implementation of the controller was achieved.

In this thesis we aim to make the hybrid model predictive controller hardware

implementation general for any hybrid system and any MPC objective function

formulation. In other words, we aim to make this design an off-the-shelf design

such that control engineers do not have to go in the details of the hardware

implementation issues and allowing them to concentrate only in improving the

performance of the control problem at hand.

There are some main difficulties in achieving this objective. First, hybrid control

problems have large variation in size. The proposed design should have the ability

to handle different problem sizes with the same hardware implementation. The

second - and more important problem - is the large complexity of the system. This

complexity results from the need of solving a MBQP optimization problem each

sampling instants. If the proposed system could not handle this optimization

116

problem in a fast manner, the application domain of the controller will be limited

only to slow systems with large sampling times – in order of seconds. In this work

we aim to improve the controller performance to solve the required optimization

problem quickly. Hence, we can target relatively fast system with sampling

intervals in range of few milliseconds.

To handle the problem size variation we should handle two issues; 1) storage of

large problems data and 2) processing of all problems using the same hardware.

The first issue is handled by trying to make an efficient use of the limited memory

bits available on FPGA. This is done by reducing the number of memories

required by sharing the available memories between different design components.

An example is the sharing of memory between interior point hardware and MBQP

hardware. This solution allows the same FPGA platform to handle larger

problems. However, the maximum size of problem that can be handled depends on

the number of memory bits available on target FPGA.

The issue of processing different problem sizes by the same hardware is solved by

the proper design of the system control unit. The design control unit accepts

problem size as an input from user. It uses this information to process system

matrices correctly. When the problem size changes during operation – like the case

of different QP problem sizes generated by MBQP solver – the control unit adapts

hardware components to work with the new problem size. The control unit design

has another feature that allows dealing with different problem sizes. This feature is

its ability to partition a calculation to smaller parts. This is required when the

number of arithmetic processing units do not allow for the completion of a whole

calculation at the same time. The control unit divides the calculation into smaller

parts. Each part is processed independently and its result is stored to memory.

Then, other parts are calculated in the same manner.

The problem of large solution time is solved by introducing the concepts of

parallel design and pipelining. Parallel design concept is applied by building

117

multiple floating point calculation units instead of one unit. These parallel units are

used simultaneously to perform different calculations. This parallel execution

reduces the algorithm execution time. Another form of parallel processing is

applied by the use of separate floating point adders, multipliers and dividers

instead of using a composite floating point unit that can perform all the three

operations. This implementation allows the use of different types of FP

components to perform different operations. For example, multipliers can be used

to perform a calculation while adders or dividers perform another calculation. This

in turn helps to reduce execution time.

Pipelining was applied by the use of pipelined floating point units and by

executing complex calculations in a pipelined fashion. Pipelined FP components

allow the design to perform a new calculation each clock cycle. Its use allows also

reducing the number of arithmetic units used as shown in example 2.3.

An example of how pipelining is used to speed up complex calculations was given

in example 2.4. In this example, the multiplication of a matrix and a vector was

executed in a pipelined fashion. Similarly, many calculations in the QP algorithm

were executed in the same manner like matrix-matrix multiplication and Gauss-

Jordan algorithm execution. This method of execution allowed the reduction of the

QP algorithm execution time.

To allow the implementation of the hybrid MPC using different FPGA platforms,

different architectures were studied. One of these architectures is suitable for

FPGAs with small number of logic elements as it minimizes the used hardware.

This architecture uses single FP adder, single FP multiplier, single FP divider and

single FP comparator. If the used FPGA has a large number of logic elements, a

better architecture can be used. In this architecture more adders and multipliers are

implemented to allow parallel execution which reduces solver latency. The more

the number of parallel units, the shorter the execution time achieved.

In our implementation we used a low cost ALTERA FPGA family (Cyclone III).

The used FPGA kit was shipped with an EP3C25F324 FPGA which has more than

118

24000 logic elements. This number of LEs allows the use of parallel arithmetic

units to reduce algorithm execution time.

The introduced design concepts were able to significantly improve the

performance of the MBQP solver and consequently the hybrid model predictive

controller. The current hybrid MPC controller implementation can target medium

scale hybrid systems with sampling time in the range of few milliseconds.

Future work

Hybrid systems modeling and control represents a currently active research topic.

The proposed modeling and control techniques need more improvement. For

example, the complexity of the MLD model for a certain hybrid system may vary

according to the HYSDEL model used. Inefficient HYSDEL description of the

hybrid systems dynamics will result in complex MLD model that would be not

useful for system simulation and control design. This leads to a need for more

effort to be able to describe hybrid dynamics using the optimal HYSDEL

description. MLD modeling will be much easier if some sort of optimization is

performed during HYSDEL model compilation. These optimizations should work

to minimize the complexity of the generated MLD model of a given HYSDEL

model.

For the control design procedure, the design task can be much easier by

automating the choice of the weighting matrices of the hybrid MPC objective

function. Currently, the weighting matrices are selected by the control engineer by

trial and error. Improper choice of weighting matrices can make the optimization

problem too complex to solve. As MPC requires the solution of the optimization

problem online, using complex optimization problem will require long solution

time which means that MPC will be impractical to fast hybrid systems.

Regarding the hardware implementation of the hybrid MPC technique, there are a

number of improvements that can be applied to improve the hybrid controller

performance. Some of these improvements target the reduction of the memory

119

used by the controller. This reduction of memory will allow increasing the

maximum problem size that can be handled by a certain FPGA. It can also allow

the implementation of more parallel QP solvers to be used by MBQP solver which

will reduce MBQP solver latency.

One of the suggestions to reduce required memory is to use reduced precision

floating point representation. In the current design we use standard single precision

floating point representation. Each floating point number needs 32 bit of storage. If

reduced precision can be used, i.e., each floating point is represented by 16 bits

only, the amount of required storage will be reduced. Reducing precision will also

reduce the operand width of the arithmetic units which mean we will reduce the

number of logic elements used. It may also lead to higher operating frequency.

Another suggestion to reduce the required memory is to store the matrices in the

design in a sparse form. Sparse matrix storage stores only the non-zero elements of

the matrix along with its row and column indices. As the matrices used in

optimization –especially the constraints coefficient matrix A-usually have few

non-zero elements, sparse storage will reduce the required memory significantly.

The implementation of sparse matrix storage will require the implementation of a

special hardware component. This component is required to link the memory and

design control unit that use full matrix representation. Other solution is to change

the control unit such that is uses also the sparse matrix format.

Another class of improvements can be applied to target the reduction of the solver

latency. One of these improvements is to use fixed-point arithmetic instead of

floating point arithmetic. Fixed-point arithmetic units have simpler designs than

floating point units. Hence, the use of fixed-point units will reduce the number of

required logic elements will allow the introduction of more parallel units.

Moreover, the operating frequency of fixed points units is usually higher than that

of floating point units. Increasing the operating frequency will reduce the

execution time.

111

Another suggestion to improve performance is to search for faster algorithms for

the design complex operations like matrix-matrix multiplication and linear system

solution. In the current design matrix-matrix multiplication was implemented using

naïve method with some modifications to make it suitable for pipelining and

parallelism. The linear system solution was implemented using basic Gauss-Jordon

method. The method was adjusted to use parallel hardware and perform in a

pipelined fashion. Exploring faster algorithms for the later complex calculation

will be useful as these calculations represent the most time consuming operations

in the design.

Another modification that may allow the application of the hybrid controller to

very fast hybrid systems is to implement it as an ASIC. ASICs have much higher

operating frequency than FPGAs which will allow the achievement of very small

execution times.

111

Appendix A.1

Direct HYSDEL description of the SSID system

SYSTEM SSID {

INTERFACE {
 STATE { REAL x1 [0,0.0001];
 REAL x2 [-10,10];
 REAL x3 [0,0.0001];
 REAL x4 [-10,10];
 }
 INPUT { REAL u [0,60];
 }
 OUTPUT{ REAL y;
 }
 PARAMETER {
 REAL M = 1;
 REAL m_s = 0.05;
 REAL k = 1.76e7;
 REAL FC = 14;

 REAL a11 = -0.050279;
 REAL a12 = 0.00024394;
 REAL a13 = 0;
 REAL a14 =0;
 REAL a21 = -4089;
 REAL a22 = -0.050279;
 REAL a23 = 0;
 REAL a24 = 0;
 REAL a31 = -1.0503;
 REAL a32 = -0.0047561;
 REAL a33 = 1;
 REAL a34 = 0.005;
 REAL a41 = -4089;
 REAL a42 = -1.0503;
 REAL a43 = 0;
 REAL a44 = 1;
 REAL b11 = 5.9675e-8;
 REAL b12 = 0.00023233;
 REAL b13 = 5.9675e-8;
 REAL b14 = 0.00023233;
 REAL G11 = 0.90498;
 REAL G12 = -2.2677e-5;
 REAL G13 = 0;
 REAL G14 = 0;
 REAL G21 = 7982.2;
 REAL G22 = 0.90498;
 REAL G23 = 0;
 REAL G24 = 0;
 REAL G31 = 0;
 REAL G32 = 0;
 REAL G33 = 1;
 REAL G34 = 0.005;
 REAL G41 = 0;
 REAL G42 = 0;
 REAL G43 = 0;

112

 REAL G44 = 1;
 REAL b21 = 5.3989e-9;
 REAL b22 = -0.00045354;
 REAL b23 = 0;
 REAL b24 = 0;
 }
 }

IMPLEMENTATION {
 AUX { REAL z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12;
 BOOL sm,sp; }
 AD { sm = (M*(u-k*x1)/(M+m_s))<=-FC;
 sp = (M*(u-k*x1)/(M+m_s))>=FC;

 stick = ~sm & ~sp;

 }
 DA { z1 = {IF stick THEN a11*x1+a12*x2+a13*x3+a14*x4+b11*u
 ELSE 0 };

z2 = {IF sm THEN G11*x1+G12*x2+G13*x3+G14*x4+b21*u+7.5584e-8
 ELSE 0 };

z3 = {IF sp THEN G11*x1+G12*x2+G13*x3+G14*x4+b21*u-7.5584e-8
 ELSE 0 };
 z4 = {IF stick THEN a21*x1+a22*x2+a23*x3+a24*x4+b12*u
 ELSE 0 };
 z5 = {IF sm THEN G21*x1+G22*x2+G23*x3+G24*x4+b22*u-0.0063
 ELSE 0 };
 z6 = {IF sp THEN G21*x1+G22*x2+G23*x3+G24*x4+b22*u+0.0063
 ELSE 0 };
 z7 = {IF stick THEN a31*x1+a32*x2+a33*x3+a34*x4+b13*u
 ELSE 0 };
 z8 = {IF sm THEN G31*x1+G32*x2+G33*x3+G34*x4+b23*u-1.75e-4
 ELSE 0 };
 z9 = {IF sp THEN G31*x1+G32*x2+G33*x3+G34*x4+b23*u+1.75e-4
 ELSE 0 };
 z10 = {IF stick THEN a41*x1+a42*x2+a43*x3+a44*x4+b14*u
 ELSE 0 };
 z11 = {IF sm & ~sp THEN G41*x1+G42*x2+G43*x3+G44*x4+b24*u-

0.07
 ELSE 0 };
 z12 = {IF sp THEN G41*x1+G42*x2+G43*x3+G44*x4+b24*u+0.07
 ELSE 0 };
 }
 CONTINUOUS {

 x1 = z1+z2+z3;
 x2 = z4+z5+z6;
 x3 = z7+z8+z9;
 x4 = z10+z11+z12;}
 MUST {
 x1 >= 0;
 x3 >= 0;
 u >= 0;

 u <= 60;
 ~(sp & sm);

 ~(sp & stick)

 ~(stick & sm)
 }

 OUTPUT { y = x3; }
 }
}

113

Appendix A.2

HYSDEL description of the SSID system with reduced number of binary

variables.

SYSTEM SSID {

INTERFACE {
 STATE { REAL x1 [0,0.0001];
 REAL x2 [-10,10];
 REAL x3 [0,0.0001];
 REAL x4 [-10,10];
 }
 INPUT { REAL u [0,60];
 }
 OUTPUT{ REAL y;
 }
 PARAMETER {
 REAL M = 1;
 REAL m_s = 0.05;
 REAL k = 1.76e7;
 REAL FC = 14;

 REAL a11 = -0.050279;
 REAL a12 = 0.00024394;
 REAL a13 = 0;
 REAL a14 =0;
 REAL a21 = -4089;
 REAL a22 = -0.050279;
 REAL a23 = 0;
 REAL a24 = 0;
 REAL a31 = -1.0503;
 REAL a32 = -0.0047561;
 REAL a33 = 1;
 REAL a34 = 0.005;
 REAL a41 = -4089;
 REAL a42 = -1.0503;
 REAL a43 = 0;
 REAL a44 = 1;
 REAL b11 = 5.9675e-8;
 REAL b12 = 0.00023233;
 REAL b13 = 5.9675e-8;
 REAL b14 = 0.00023233;
 REAL G11 = 0.90498;
 REAL G12 = -2.2677e-5;
 REAL G13 = 0;
 REAL G14 = 0;
 REAL G21 = 7982.2;
 REAL G22 = 0.90498;
 REAL G23 = 0;
 REAL G24 = 0;
 REAL G31 = 0;
 REAL G32 = 0;
 REAL G33 = 1;
 REAL G34 = 0.005;
 REAL G41 = 0;
 REAL G42 = 0;
 REAL G43 = 0;

114

 REAL G44 = 1;
 REAL b21 = 5.3989e-9;
 REAL b22 = -0.00045354;
 REAL b23 = 0;
 REAL b24 = 0;
 }
 }

IMPLEMENTATION {
 AUX { REAL z1,z2,z3,z4,z5,z6,z7,z8;
 BOOL s1,s2; }
 AD { s1 = (M*(u-k*x1)/(M+m_s))<=-FC;
 s2 = (M*(u-k*x1)/(M+m_s))<= FC; }
 DA { z1 = {IF s1 THEN

G11*x1+G12*x2+G13*x3+G14*x4+b21*u+7.5584e-8-

 (a11*x1+a12*x2+a13*x3+a14*x4+b11*u)
 ELSE 0 };
 z2 = {IF s2 THEN a11*x1+a12*x2+a13*x3+a14*x4+b11*u
 ELSE G11*x1+G12*x2+G13*x3+G14*x4+b21*u-7.5584e-8 };
 z3 = {IF s1 THEN G21*x1+G22*x2+G23*x3+G24*x4+b22*u-0.0063-

 (a21*x1+a22*x2+a23*x3+a24*x4+b12*u)
 ELSE 0 };
 z4 = {IF s2 THEN a21*x1+a22*x2+a23*x3+a24*x4+b12*u
 ELSE G21*x1+G22*x2+G23*x3+G24*x4+b22*u+0.0063 };
 z5 = {IF s1 THEN G31*x1+G32*x2+G33*x3+G34*x4+b23*u-1.75e-4-

 (a31*x1+a32*x2+a33*x3+a34*x4+b13*u)
 ELSE 0 };
 z6 = {IF s2 THEN a31*x1+a32*x2+a33*x3+a34*x4+b13*u
 ELSE G31*x1+G32*x2+G33*x3+G34*x4+b23*u+1.75e-4};
 z7 = {IF s1 THEN G41*x1+G42*x2+G43*x3+G44*x4+b24*u-0.07-

 (a41*x1+a42*x2+a43*x3+a44*x4+b14*u)
 ELSE 0};
 z8 = {IF s2 THEN a41*x1+a42*x2+a43*x3+a44*x4+b14*u
 ELSE G41*x1+G42*x2+G43*x3+G44*x4+b24*u+0.07};
 }
 CONTINUOUS {

 x1 = z1+z2;
 x2 = z3+z4;
 x3 = z5+z6;
 x4 = z7+z8;}
 MUST {
 x1 >= 0;
 x3 >= 0;
 u >= 0;

 u <= 60;
 ~(s1 & ~s2);
 }
 OUTPUT { y = x3; }
 }
}

115

Appendix A.3

HYSDEL modeling of the SSID with the proposed simplifications

SYSTEM SSID {
INTERFACE {
 STATE { REAL x1 [0,0.0001];
 REAL x2 [-10,10];
 REAL xMold [0,0.0001];
 }
 INPUT { REAL u [0,60];
 }
 OUTPUT{ REAL y;
 }
 PARAMETER {
 REAL M = 1;
 REAL m_s = 0.05;
 REAL k = 1.76e7;
 REAL FC = 14;
 REAL T = 0.001;
 REAL a11 = 1;
 REAL a12 = T;
 REAL a21 = 0;
 REAL a22 = 1;
 REAL b11 = 0.5*T*T/(M+m_s);
 REAL b12 = T/(M+m_s);
 REAL b21 = -0.5*T*T*k/(M+m_s);
 REAL b22 = -k*T/(M+m_s);
 REAL b31 = -0.5*T*T*FC/(M);
 REAL b32 = -T*FC/(M);
 }
 }
IMPLEMENTATION {
 AUX { REAL z1,z2,xMold_aux;
 BOOL s1; }
 AD { s1 = (M*(u-k*(x1-xMold))/(M+m_s))>=-FC;
 }
 DA { z1 = {IF s1 THEN b11*u+b21*(x1-xMold)
 ELSE b31 };
 z2 = {IF s1 THEN b12*u+b22*(x1-xMold)
 ELSE b32};
 xMold_aux = {IF s1 THEN xMold
 ELSE a11*x1+a12*x2+b31};
 }
 CONTINUOUS { x1 = a11*x1+a12*x2+z1;
 x2 = a21*x1+a22*x2+z2;
 xMold = xMold_aux;
}
 MUST {
 u >= 0; u <= 60;
 M*(u-k*x1+k*xMold)/(M+m_s)<= FC;
 }
 OUTPUT { y = x1; }
 }
}

116

References

[1] R. L. Grossmann, A. Nerode, A. P. Ravn and H. Rischel, “ Hybrid Systems”

Springer Verlag , New York, 1993.

[2] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger,

Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio

Yovine “The algorithmic analysis of hybrid systems”. Theoretical Computer

Science, volume 138(1), pages 3-34,1995.

[3] P. J. Antsaklis, Xenofon D. Koutsoukos, “On hybrid control of complex

systems: A survey”, Technical Report of the ISIS Group at the University of

Notre Dame ISIS-97-017, December, 1997.

[4] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics,

and constraints.” Automatica, vol. 35, no. 3, pp. 407–427, March 1999.

[5] L. A. Wolsey, “Integer Programming”, John Wiley & Sons, Inc., 1998.

[6] L. G. Bleris and M. V. Kothare, “Real-time implementation of model

predictive control,” in Proceedings of American Control. Conference, 2005, pp.

1752–1757.

[7] K. Ling, S. Yue, and J. Maciejowski, “An FPGA Implementation of Model

Predictive Control,” In proceedings of the American Control Conference,

Minneapolis, MN, June 2006.

[8] P. D. Vouzis, M. V. Kothare, L. G. Bleris and M. G. Arnold, “A System-on-a-

Chip Implementation for Embedded Real-Time Model Predictive Control”, in

IEEE Transactions on Control Systems Technology, pp. 1006 – 1017, 2009.

 [9] A. I. Propoi, “Use of linear programming methods for synthesizing sampled-

data automatic systems”. Automatic Remote Control, 24(7), 837–844, 1963.

[10] E. B. Lee, L. Markus, “Foundations of optimal control theory”, New York,

Wiley, 1967.

[11] J. A. Richalet, A. Rault, J. D. Testud, and J. Papon, “Model Predictive

Heuristic Control: Application to Industrial Processes”, Automatica, 13,

413,1978.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.9105&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.9105&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87

117

[12] S. Joe Qin, Thomas A. Badgwell, “A survey of industrial model predictive

control technology”, Control Engineering Practice 11, pp. 733–764, 2003.

[13] Nikolaou, M., “Model Predictive Controllers: A Critical Synthesis of Theory

and Industrial Needs”, Advances in Chemical Engineering Series, Academic

Press, 2001.

[14] J. Nocedal and S. J. Wright, “Numerical Optimization”, Second Edition,

Springer Verlag 2006.

[15] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit linear

quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–

20, 2002.

[16] A. Bemporad, “Model-based predictive control design: New trends and

tools”, In Proceedings of 45th IEEE Conference on Decision and Control, San

Diego, CA, pp. 6678–6683 (2006).

[17] F. Borrelli, A. Bemporad, M. Fodor, D. Hrovat, “An MPC/hybrid system

approach to traction control”, IEEE Transactions on Control Systems

Technology, pp 541 – 552, May 2006.

[18] R. S. Parker, F. J. Doyle III, and N. A. Peppas, “A Model-Based Algorithm

for Blood Glucose Control in Type I Diabetic Patients,” IEEE Transactions on

Biomedical Engineering, vol. 46, pp. 148–156, Feb. 1999.

[19] L. G. Bleris, P. Vouzis, M. G. Arnold, and M. V. Kothare, “Pathways for

Optimization-Based Drug Delivery Systems and Devices,” In proceedings of

the International Symposium on Advanced Control of Chemical Processes

(ADCHEM) 2006, Gramado, Brazil. April 2006.

[20] G. Labinaz, M.M. Bayoumi, K. Rudie, “Modeling and control of Hybrid

Systems: A Survey”, IFAC 13th Triennial World Congress, 1996.

[21] W. P. M. H. Heemels, B. De Schutter and A. Bemporad, “Equivalence of

hybrid dynamical models”, Automatica, Volume 37, Issue 7, Pages 1085-1091,

July 2001.

 [22] R. Goebel, R. Sanfelice, A. Teel, “Hybrid dynamical systems”, IEEE Control

Systems Magazine, April, 2009.

http://www.chee.uh.edu/faculty/nikolaou/MPCtheoryRevised.pdf
http://www.chee.uh.edu/faculty/nikolaou/MPCtheoryRevised.pdf
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87

118

[23] Thomas A. Henzinger, “The Theory of Hybrid Automata”, Proceedings of the

11th Annual Symposium on Logic in Computer Science, pp. 278-292, 1996.

[24] M. Morari, J. Buisson, B. de Schutter, and G. Papafotiou, “Final report on

modeling tools, benchmarks and control methods,” HYCON Deliverable, Tech.

Rep. IST contract number 511368, 2006.

[25] M. Lazar, “Model predictive control of hybrid systems: Stability and

robustness,” Ph.D. Thesis , Eindhoven Univ. Technol., Eindhoven, The

Netherlands, 2006.

[26] M. Lazar and W.P.M.H. Heemels, “Predictive control of hybrid systems:

Input-to-state stability results for sub-optimal solutions”, Automatica, Volume

45, Issue 1, p. 180-185, January 2009.

[27] H.P. Williams, "Model Building in Mathematical Programming", John Wiley

& Sons, Third Edition,1993.

[28] B. Sedghi, B. Srinivasan, R. Longchamp, “Control of Hybrid Systems via

Dehybridization", Proceedings of the American Control Conference, 2002.

[29] C. A. Floudas, “Nonlinear and Mixed Integer Optimization”, Oxford

University Press, 1995.

[30] R. Fletcher and S. Lyffer, “Numerical experience with lower bounds for

MIQP branch and bound”, SIAM Journal on Optimization, 8(2):604 – 616,

May 1998.

[31] Daniel Axehill, “Integer Quadratic Programming for Control and

Communication”, PhD thesis , Linköping University, 2008.

[32] A. Bemporad, F. Borrelli, and M. Morari, “Piecewise linear optimal

controllers for hybrid systems”, in American Control Conference, Chicago, IL,

June 2000, pp. 1190–1194.

[33] A. Bemporad, “Efficient conversion of mixed logical dynamical systems into

an equivalent piecewise affine form,” IEEE Transactions on Automatic

Control, vol. 49, no. 5, pp. 832–838, 2004.

[34] F. Borrelli, M. Baotic, A. Bemporad and M. Morari, “Dynamic programming

for constrained optimal control of discrete-time linear hybrid systems”,

Automatica, vol. 41, no. 10, pp. 1709–1721, Oct. 2005.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7965

119

[35] A. Alessio and A. Bemporad, “Feasible mode enumeration and cost

comparison for explicit quadratic model predictive control of hybrid systems,”

in 2nd IFAC Conference on Analysis and Design of Hybrid Systems, pp. 302–

308, Alghero, Italy, 2006.

[36] D. Mayne and S. Rakovic, “Optimal control of constrained piecewise affine

discrete time systems using reverse transformation”, in Proceedings of the 41th

IEEE Conference on Decision and Control, pp. 1546–1551, Las Vegas,

Nevada, USA, Dec. 2002.

[37] F.D. Torrisi and A. Bemporad, “HYSDEL - A tool for generating

computational hybrid models,” IEEE Transactions on Control Systems

Technology, vol. 12, no. 2, pp. 235–249, Mar. 2004.

[38] A. Bemporad, “Hybrid Toolbox user's guide”, www.dii.unisi.it/hybrid/

toolbox.

[39] Stephen Boyd, Lieven Vandenberghe, “Convex Optimization”, Cambridge

University Press, 2004.

[40] N. Megiddo, “Pathways to the optimal set in linear programming”, in

Progress in Mathematical Programming: Interior-Point and Related Methods,

N. Megiddo, ed. , ch. 8, pp. 131–158, Springer-Verlag, New York, N.Y., 1989.

[41] Masakazu Kojima, Nimrod Megiddo, Toshihito Noma, Akiko Yoshise, “A

Unified Approach to Interior Point Algorithms for Linear Complementarity

Problems: A Summary”, of Lecture Notes in Computer Science, 1991.

[42] S. J. Wright, “Primal-Dual Interior-Point Methods”, SIAM Publications,

Philadelphia, Pa, 1997.

[43] A. V. Fiacco and G. P. McCormick, “Nonlinear Programming: Sequential

Unconstrained Minimization Techniques”, John Wiley & Sons, New York,

NY, 1968. Reprinted by SIAM Publications, 1990.

[44] I.J. Lustig, “Feasibility issues in a primal-dual interior-point method for linear

programming”, Mathematical Programming, 49(2):145–162, 1990.

[45] K. Tanabe, “Centered Newton method for linear programming: exterior point

method” (in japanese). In Proc. Inst. Stat. Mathematics, volume 37, pages 146–

148, 1989.

121

[46] M. Kojima, N. Megiddo, S. Mizuno, “A primal-dual infeasible-interior-point

algorithm for linear programming”, Mathematical Programming, 61:263–400,

1993.

[47] S.J.Wright, “An infeasible-interior-point algorithm for linear complementarity

problems”, Mathematical Programming, 67:29–52, 1994.

[48] F.A. Potra, “A quadratically convergent predictor-corrector method for

solving linear programs from infeasible starting points”, Mathematical

Programming, 67:383–406, 1994.

[49] R.D.C.Monteiro, I. Adler, “Interior path following primal-dual algorithms.

part ii: Convex quadratic programming”, Mathematical Programming, 44:43–

66, 1989.

[50] R.D.C. Monteiro, F. Zhou, “On superlinear convergence of infeasible-

interior-point algorithms for linearly constrained convex programs”,

Computational Optimization and Applications, 8:245–262, 1997.

[51] R.D.C.Monteiro, I. Adler, “Interior path following primal-dual algorithms.

part i: Linear programming”, Mathematical Programming, 44:27–41, 1989.

[52] I. J. Lustig, R. E. Marsten, D. F. Shanno, “Computational experience with a

primal-dual interior point method for linear programming”, Journal of Linear

Algebra and Its Applications, 152:191–222, 1991.

[53] O.V. Volkovich, V.A. Roschhin, and I. V. Sergienko, “Models and methods

of solution of quadratic integer programming problems”, Cybernetics, 23:289-

305. 1987.

 [54] A. H. Land and A. G. Doig (July 1960). "An automatic method of solving

discrete programming problems". Econometrica 28 (3): pp. 497-520.

[55] Nios II Processor Reference Handbook , ver 10.0, Jul 2010, www.Altera.com.

[56] Microblaze Processor reference guide, www.Xilinx.com.

[57] Y. Shimai, J. Tani, H. Noguchi, H. Kawaguchi, and M. Yoshimoto, “FPGA

Implementation of Mixed Integer Quadratic Programming Solver for Mobile

Robot Control”, International Conference on Field-Programmable

Technology, Sydney, December 2009.

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5367680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5367680

121

[58] Institute of Electrical and Electronics Engineers, “1067-2008 IEEE standard

VHDL language reference manual”, Jan, 2009.

[59] David Bishop, “Floating point package user‟s guide”, http://www.vhdl.org/

fphdl/vhdl.html.

[60] http://www.mathworks.com/products/modelsim/.

[61] David C. Lay, “Linear Algebra and Its Applications”, 3rd edition, Addison

Wesley, 2005.

[62] Carl D. Meyer, “Matrix Analysis and Applied Linear Algebra”, Society for

Industrial and Applied Mathematics (SIAM), 2001.

[63] R. L. Burden, J. D. Faires, “Numerical Analysis”, 8th edition, Thompson

Brooks/Cole, 2005.

[64] http://tomopt.com/docs/qp_prob.zip

[65] I. Maros, C. Meszaros, “A Repository of Convex Quadratic Programming

Problems”, Optimization Methods and Software, p. 671-681, 11-12, 1999.

[66] Kenneth Holmström, Anders O. Göran and Marcus M. Edvall”, User's Guide

for TOMLAB /CPLEX v12.1”, August 14, 2009.

[67] J. Breguet, M. Bregue, W. Driesen, F. Kaegi, T. Cimprich, “Applications of

Piezo-Actuated Micro-Robots in Micro-Biology and Material Science”,

International Conference on Mechatronics and Automation, 2007.

[68] J. M. Breguet, “Actioneurs `Stick-Slip' pour Micro-Manipulateurs”, PhD

thesis, Ecole Polytechnique Federale de Lausanne, 1998.

[69] J. M. Breguet and Ph. Renaud, “A 4-degree-of-freedom microrobot with

nanometer resolution”, Robotica, 14:199-203 , 1996.

[70] T. Conus, “Projet de 8eme semestre: Entrainement `stick-slip' avec

actionneur piezo”, Technical Report 50324, Laboratoire d'Automatique, Ecole

Polytechnique Federale de Lausanne, 1997.

[71] Babak Sedghi “Control Design Via Dehybridization”, PhD thesis, Laboratoire

d'automatique, Lausanne, EPFL, 2003.

122

 البحثملخص

ٔرؼنز الاَظًنخ انٓجيُنخ ثبَٓنب اننُظى انزنل . جذثذ الاَظًخ انٓجيُخ انكثيز ينٍ الاْزًنبو نل انانُٕاد الا ينزح

رظٓنز الاَظًنخ انٓجيُنخ نل انؼمننم ينٍ انزعجيطنبد يثنم اننزذكى . ٔا نز يزطعؼنخ خرشزًم ػهى يؼبدلاد يزصنه

نٓجيُنخ نل ٔ نن اَنٕاع يزؼنمدح ينٍ اننُظى يثنم ٔنًكنٍ اتنزاماو الاَظًنخ ا. ٔرعجيطبد انايبراد ًزذزكبدثبن

كًنب , ٔاننُظى انًزصنهخ انزنل ننزى اننزذكى ثٓنب ثبتنزاماو تٕاػنم يُعطينخ ينغ انٕتنذ انُظى انزل رزغيز طزنطخ ػًهٓب

 .نًكٍ اتزامايٓب ل ٔ ن ثؼض الاَظًخ انلا عيخ

ننى طزنطنخ ًَذجنخ ادم اثزس انزعٕراد انزل دمثذ ل يجبل ٔ نن رصنز الاَظًنخ انٓجيُنخ ْنٕ انٕ نٕل ا

ٔتنم . يُٓجنلثبتزاماو ْذِ انًُذجخ رى رطمنى انؼمنم يٍ الادٔاد انزل رطٕو ثبتزُزبج ًَٕذج انُظبو ثشكم . تيبتيخ

تنًذذ اناننب ثبتنزاماو طزنطننخ يُٓجيننخ نهنزذكى ننل ْنذِ انُٕػيننخ يننٍ اننُظى ثبتننزاماو اننزذكى الايثننم ٔانننزذكى

ْذِ الادٔاد ػهنى يكَٕنبد نًكُٓنب يذبكنبح انُظنبو انٓجنيٍ اثُنب ٔرشزًم . ثبتزاماو انزٕتغ انًجُل ػهى انًُٕذج

 .رعجيق اتهٕة انزذكى انًطززح

اتننهٕة انننزذكى انًجُننل ػهننى انزٕتننغ ثبتننزاماو انًُننٕذج ْننٕ يننٍ اكثننز الاتننبنيت َجبدننب نهننزذكى ننل الاَظًننخ ٔ

د انصننُبػيخ انزننل ٔتننم تننجق رعجيطننّ ثُجننبح كجيننز ننل الاَظًننخ اناعيننخ ٔنٕجننم انؼمنننم يننٍ انزعجيطننب. انٓجيُننخ

 ل انفززح الا يزح كبٌ ُْبك ثؼض انًجٕٓداد انجذثيخ لاتنزاماو ْنذا الاتنهٕة نهنزذكى نل الاَظًنخ . رازاميّ

 ل ْذِ انزتبنخ َطٕو ثمراتخ اتزاماو انزذكى انًجُل ػهنى . انًميجخ ٔالاَظًخ انًٕجٕدح ػهل شزنذخ انكززَٔيخ

تنزاماو ْنٕ انزؼطينم انكجينز يانل نٓنذا الاانؼنبقق انزق. انزٕتغ ثبتزاماو انًُٕذج نهزذكى ل انُظى انٓجيُخ انًميجخ

طزنزح نزعهنت دنم يانبنخ ثزيجنخ رزثيؼينخ ذاد يزغينزاد دطيطينخ ٔيزغينزاد ٌ اتهٕة اننزذكى انًديث أ. نهُظبو

ْنذا انزؼطينم نطصنز رعجينق َظنبو اننزذكى انًطزنزح ػهنى الاَظًنخ . ل كم نذظخ يٍ نذظنبد اننزذكى ثُبقيخ انطيًخ

 . انٓجيُخ انجعيئخ طط

يانبنخ انجزيجنخ انززثيؼينخ انًنذكٕرح ٔدانبة اشنبرح اننزذكى ػهى ْذا انؼبقق رى رصًيى ػزنبد نطنٕو ثذنم نهزغهت

ٔتم رى رعجيق ثؼض يفنبْيى انزصنًيى انزتًنل يثنم انزُفينذ انًزنٕاس ٔانزُفينذ انزجشنئنل . ل ٔتذ تصيز انًثهل

 . نهؼًهيبد دزى نًكٍ انٕ ٕل ثبنزصًيى نهازػخ انًعهٕثخ

رُفينذ ْنذا انؼزنبد انانزنغ نانًخ . انجٕاثبد انًجزيجنخ دطهينب ثبتزاماو يصفٕ بد ذج نٓذا انؼزبدٔتم رى رُفيذ ًَٕ

ٌٕ يٓنب زنزاد َظًنخ انٓجيُنخ ٔانزنل ركنثزعجيق اتهٕة انزذكى انًجُنل ػهنى انزٕتنغ ثبتنزاماو انًُنٕذج ػهنى اأ

 .يٍ الانن يٍ انثبَيختهيهخ شا انزذكى ل دمٔد أج

ْنٕ َظنبو انًذنزك انًجُنل ػهنى . خًميجنان خٓجيُنان خًنالاَظ ادنم انذ رنى رصنًيًّ ػهنىٔتم رى ا زجبر انًزذكى

ٔتننم اثجنذ ْننذا انًثنبل تنمرح انًننزذكى انًصنًى ػهننى اننزذكى ننل َظنى ْجيُننخ . نزصننبا ٔالاَنشلااانزًيينش ثنيٍ الا

 .تزنؼخ

