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Abstract 

Combined binary/decimal arithmetic has become an important topic to support 

decimal and binary applications with high speed and low area. This thesis presents a 

combined binary/decimal fixed-point multiplier design. Since the partial products 

accumulation stage has the largest area and delay of the multiplier, it is the most 

significant stage. A novel binary column tree is shared for binary and decimal 

reduction tree. A comparison between the proposed design and the previously 

published designs shows a significant decrease in area with almost the same delay as 

the fastest known design.  

The structure of this thesis is as follows. Chapter 1 presents an overview of decimal 

and binary computer arithmetic. Chapter 2 summarize the multiplication algorithms. 

Chapter 3 show a background of decimal multiplication techniques. Chapter 4 focused 

on previous published combined binary/decimal multipliers. In chapter 5, the 

proposed parallel combined binary/decimal multiplier is explained. Chapter 6 goes 

over testing procedure and comparison between the proposed and previous designs in 

area and delay. Finally we present the conclusions and future work. 
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Chapter 1 

Introduction 

Decimal arithmetic is the norm in human calculations. Early mechanical 

computers were almost all decimal machines; they mirrored human manual 

calculations of commerce and science. Also the first general-purpose electronic 

computer, ENIAC, in 1946, holds a ten-digit decimal number in memory. 

However, in 1961, most computers turned to binary representation of numbers 

as shown by a survey in computer systems in USA. It reported that “131 utilize 

a straight binary system internally, whereas 53 utilize the decimal system 

(primarily binary coded decimal)...”  [2]. The use of binary arithmetic reduces 

the number of components and is simpler. The difference between data and 

hardware representation is controlled using software programs. Today, few 

computing systems include decimal hardware. However, the growing 

importance of commercial and financial which deals with decimal data and the 

quick advancement of technology speed, support of decimal arithmetic is 

regaining popularity in the computing community. Also Initial benchmarks 

indicate that some applications spend 50% to 90% of their time in decimal 

processing. In 2002, „telco‟ benchmark by Cowlishaw shows that the decimal 

processing overhead could reach over 90% in a telephone company‟s daily 

billing application.  [2] 

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Decimal
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The need for decimal in hardware is urgent. So some companies added a 

hardware decimal arithmetic unit to its processor (i.e. The IBM z9 Decimal 

floating point Arithmetic Unit in 2007)  [4]. 

Decimal arithmetic units are inherently more complex than binary 

arithmetic units, since they need to handle a wider range of digits, 10 digits 

versus 2 digits for binary arithmetic. Also the six invalid BCD-8421 digits need 

a correction blocks. Therefore most computers today support binary in 

hardware where it is simpler, faster and less in area and cost compared to 

decimal.  

However, Binary arithmetic gives an inexact solution when decimal 

fractions are involved. It implies inexact conversions between binary and 

decimal representations. For example, using the Java or C double binary 

floating point for multiplying 0.1 × 8 gives the result 

0.8000000000000000444089209850062616169452667236328125 but adding 

0.1 to itself 8 times give a different answer 

0.79999999999999993338661852249060757458209991455078125. The two 

results would not compare equal, and further, if these values are multiplied by 

ten and rounded to the nearest integer below („floor‟ function), the result will 

be 8 in one case and 7 in the other. 

Another example, consider a calculation involving a 5% sales tax on an item 

such as a $0.70 telephone call, rounded to the nearest cent, Using double binary 

floating-point, the result of 0.70 x 1.05 is 

0.73499999999999998667732370449812151491641998291015625; the result 

should have been 0.735, which would be rounded up to $0.74, but instead the 

rounded result would be $0.73.  [23]  

Now, decimal arithmetic is supported through software on most machines. 

And while using decimal floating-point arithmetic software gives the right 

answer, sometimes the software conversions between decimal and binary are 
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time consuming. For example, in some applications like databases the 

conversion time between binary and decimal using software programs takes 

large time. Initial benchmarks indicate that some applications spend 50% to 

90% of their time in decimal processing, because software decimal arithmetic 

takes a 100× to 1000× over hardware time.  [2] 

Moreover, in other applications like simulation programs, if the simulation 

takes long time and conversions only needed at the start and end of the 

simulation, binary hardware arithmetic will be faster. So conversion problem 

between hardware and application data representation depends on how frequent 

conversions are needed. 

Binary arithmetic hardware is better than decimal arithmetic hardware in 

some applications which do not need high accuracy or have a long run time or 

do not deal with decimal numbers, such as numerical analysis, scientific 

computing, simulations, and addressing. Decimal arithmetic provide higher 

accuracy in financial and commercial applications like banking, tax 

calculations, currency conversion, insurance, accounting which need high 

precision. Decimal data in these applications can not be represented exactly 

using binary arithmetic, also it is better to use decimal arithmetic in databases 

applications where most databases data types is decimal or integer ≈ 98.7%  [2]. 

 Optimally two hardware arithmetic units, binary and decimal, are needed in 

processors.  [2]  

This thesis proposes a combined binary/decimal multiplier with binary 

partial products reduction tree. Chapter 2 describes the multiplication 

algorithms. Chapter 3 and 4 show a background of decimal multiplication 

techniques and previous proposed combined binary/decimal multipliers 

respectively. In chapter 5 the proposed parallel combined binary/decimal 

multiplier is explained. Chapter 6 goes over testing procedure and comparison 
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between the proposed and previous designs in area and delay. Finally present 

the future work. 
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Chapter 2 

Multiplication Techniques 

In this chapter we consider the multiplication algorithms for signed integers. 

The multiplication operation is  

 

              (2.1) 

 

where   is the multiplicand,   is the multiplier, and   is the product. The 

multiplication operands,   and  , are represented by a sign bit and an n-bit 

magnitude  

 

   =  a  n-1 . . . . . . . . . .  2  1  0     (2.2) 

   =  b  n-1 . . . . . . . . . .  2  1  0     (2.3) 

 

and the result P is represented by a sign and a 2n-bit magnitude 

  =  P  2n-1 . . . . . . . .   2  1  0     (2.4) 
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where  a,  b, and  P are the sign bit of  ,  , and   respectively. The digits  i, 

 i, and  i are number digits (i.e. binary digit, 0 and 1, or decimal digit, from 0 

to 9, etc.).  

In this chapter the signed integer‟s representation and the multiplication 

techniques are discussed focusing on binary and decimal multiplications.  

2.1 Signed Integer's Representation 

The signed integers can be represented in two ways: sign-and-magnitude 

representation and two‟s complement representation.  [5] 

2.1.1 Sign-and-magnitude representation 

In sign-and-magnitude representation, the operands are represented by a 

sign bit and an n-bit magnitude, and the product is represented by a sign and a 

2n-bit magnitude where  

  

                                        (2.5)  

                      (2.6) 

 

The sign bit takes the values „0‟ and „1‟ for positive and negative signs, 

respectively. The     notation in equation 2.5 represents the value of the sign 

bit. The implementation of product sign can be implemented separately from 

magnitude using XOR gate where operands with similar signs give product 

with the same sign, and operands with different signs give negative product 

sign. 

                                          (2.7) 
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where      notation in equation 2.7 represents the logic of the sign bit. 

For any radix r, the operands magnitude values are 

 

 | | = 




1

0

.
n

i

i

i ra    (0 ≤  i ≤   
–1 , 0 ≤ | | ≤  n 

–1) (2.8) 

 | | = 




1

0

n

i

i

irb     (0 ≤  i ≤   
–1 , 0 ≤ | | ≤  n 

–1) (2.9) 

 

And the product can be represented as  

 

 | | = | | . | | = 




12

0

n

i

i

irp   (0 ≤  i ≤   –1 , 0 ≤ | | ≤ ( n 
–1)

2
) (2.10) 

 

The basic method to implement the value of the product is to multiply the 

multiplicand by each digit of the multiplier regarding its weight then adding 

these values. 

 

 | | = | | 




1

0

n

i

i

irb         (2.11) 

 

Different methods are used to implement the magnitude of the product like 

add-and-shift, composition of smaller multiplications, digit serial 
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multiplication, and booth multiplication. These methods are discussed in next 

sections of this chapter. 

2.1.2 Two’s complement representation 

Two‟s-complement is a representation in which negative numbers are 

represented by the two's complement of the absolute value. An n-bit two's 

complement number can represent every integer in the 

range        to        . For multiplication, by representing each operand 

by n-bit vector, the product is 2n-bit vector and has values in the range (     ) 

(      ) to (       ) (       ) =       .  [12] 

Let  R ,  R , and  R are the corresponding positive integer representations of  , 

 , and  , respectively. When the two operands are positive, they are 

represented as  R ,  R so the product will be  R ×  R. And when the two 

operands are negative, they are represented by their two's complement value (2
n
 

−  R), (2
n
 −  R) so the product will be (2

n
 −  R) × (2

n
 −  R) and it‟s a positive 

value. However, when one of the operands is positive (e.g.  ) and the other 

operand is negative (i.e.  ), they are represented as  R , (2
n
 −  R) so the 

product will be the two‟s complement of  R × (2
n
 −  R) because it has a 

negative value. The multiplication algorithm can be described as in  [12]. 

 

 R R    if   ≥ 0,   ≥ 0               

  R = 2
2n

 − (2
n
 − AR) BR  if   < 0,   ≥ 0 

2
2n

 −  R (2
n
 −  R) if   ≥ 0,   < 0           (2.12)          

(2
n
 −  R) (2

n
 −  R) if   < 0,   < 0                

 


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Figure 2.1(a) shows the multiplication of – 910 × 310 in base 2 in sign-and-

magnitude representation. The 4-bit multiplicand magnitude 910 = 10112 is 

stored in an 8-bit word as 000010112. Then multiply it to each bit of the 

multiplier magnitude 310 = 00112 regarding its weight. Then add these 

multiplication values. The sign value is the XOR of multiplicand sign and 

multiplier sign which is 12. 

 

 

Figure 2.1 Multiplication example for (a) sign-and-magnitude representation                      

(b) two‟s complement representation 

 

However, Figure 2.1(b) shows the multiplication of –910 × 310 in base 2 in 

two‟s complement representation. The multiplicand and multiplier is stored in 

8-bit word in its two‟s complement form if it has negative sign. Then multiply 

them as in sign-and-magnitude representation. If the product is negative 

according to eqn.2.8, the two‟s complement of it is determined. 

Sign-and-magnitude representation is preferred in multipliers implementation 

where it does not require the two‟s complement conversion steps. The two‟s 

complement representation is used in addition and subtraction circuitry where it 

1   1 0 0 1   (-9)

0   0 0 1 1   (3)

1   0 0 0 0 1 0 0 1

0   0 0 0 1 0 0 1 0

1   0 0 0 1 1 0 1 1   (-) (27)

1  1 0 0 1   (-9)

0  0 0 1 1   (3)

 1 1 1 1  0 1 1 1

0 0 0 0  0 0 1 1

(2n - AR)

(BR)

 1 1 1 1  0 1 1 1

 1 1 1  0 1 1 1 0

 1 1 1  0 0 1 0 1

22n − (2n − AR)BR = (-) (27)

(2n − AR)BR

1   0 0 0  1 1 0 1 1

= -27

Sign bit

Sign bit

(a) (b)
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does not need to examine the signs of the operands to determine whether to add 

or subtract.  

In the next sections of this chapter, the multiplication algorithms: Add-and-

shift, Composition of smaller multipliers, Bit/Digit serial, and Booth 

multiplication are considered. Also the sequential and parallel approaches are 

discussed. 

2.2 Add-and-shift multiplication algorithm 

The common and simplest method of multiplication is the add-and-shift 

multiplication algorithm. Let the two multiplication operands   and   called 

multiplicand and multiplier respectively, and each operand has n bits. This 

algorithm conditionally adds together copies of the multiplicand according to 

multiplier bits to produce the final product based on the following equation 

 [12]. 

 

   ×   = 





1

0

n

i

i

irbA        (2.13) 

 

Figure 2.2 shows the multiplication of two 4-bit unsigned numbers. The two 

operands   and   are shown at the top. Each of the following four rows 

corresponds to the product of the multiplicand   and a single digit of the 

multiplier   generating four partial products (   ), with each row shifted one 

bit to the left. Then all partial products are added to generate the final product 

( ).  [19] 
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Figure 2.2 Multiplication of two 4-bit unsigned binary numbers in dot notation 

 

High Radix Multiplication 

The multiplier digits    can represent one bit in radix-2 design, binary 

system, or a set of bits (2, 3, 4 ….etc.) in higher radix designs. The simplest 

implementation is obtained by using radix-2 since the multiplier digits are 

either 1 or 0 so the multiples of the multiplicand are either   or zero and the 

number of partial products generated are  , where   is the number of bits in  . 

This number of partial products is reduced by using higher radices. For  -bit 

multiplier digit,    , the number of partial products are    , where        , 

and   is the radix. But the number of multiplicand multiples are    .  [5] 

For example, radix-4 has   to    multiples to be generated,     partial 

products. Radix-8 has   to    multiples to be generated,     partial products. 

Radix-16 has   to     multiples to be generated,     partial products. For 

decimal multiplication, the multiples from   to    are generated, where Binary 

Coded Decimal, BCD, format is used. 

In Binary Multiplication,     is in {0, 1} set, so each term      is either 0 

or  . Figure 2.3 shows the partial product selection logical AND for 8-bit 

multiplicand  [8]. Thus the problem of add-and-shift binary multiplication 
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reduces to adding n partial products, each of which is 0 or a shifted version of 

the multiplicand  . 

 

 

Figure 2.3 Partial product selection logic for 8-bit add-and-shift 

 

In Decimal Multiplication,     is in {0, 9} set. Each term      is one of the 

multiplicand multiples                            . Decimal 

multiplication needs to generate the multiplicand multiples then select the 

suitable multiple due to multiplier digits to generate the partial products. 

Decimal adders are used to accumulate the partial products. 

High Radix Multiplier digit,   , Recoding 

The main problem with high radix multiplication is the digit multiplication, 

since now the digit of the multiplier has   values. 

For radix-4, the multiplier digit   , corresponding to two bits, has the 

values 0, 1, 2, and 3. When multiplying these digit values by the multiplicand, 

the generation of the multiples   and    by shifting the multiplicand  , are 

simple. But the multiple    requires an addition to   and   . To avoid this 

multiple, the multiplier is recoded into a signed-digit set as {–1, 0, 1, 2} since 
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the multiplication by these values is simple needing only the complementation 

and shifting of the multiplicand.  [5] 

The recoding algorithm in  [5] recodes the digits of the multiplier from Least 

Significant Digit (LSD). Using    as radix-4 recoded multiplier signed digit, 

and    as the carry bit. The recoding produces    such that 

 

                      (2.14) 

 

Where                       and              . The carry      is 

selected so that the value    = 3 is avoided. Consequently, when       ≥ 3, 

       and           . This recoding is described by the following 

table. 

 

              

0 0 0 

1 1 0 

2 2 0 

3 –1 1 

4 0 1 

Table 2.1 radix-4 multiplier recoding 

For further reduction of partial products, a radix higher than 4 is used. The 

algorithm is a direct extension of the radix-4 case, for example, radix-8 and 

radix 16. 

For radix-8, the multiplier recoded into the digit set {–3, –2, –1, 0, 1, 2, 3, 

4}, where 
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                        (2.15) 

 

where                      . The main problem with the implementation 

of this multiplication is the generation of 3 , where it needs an extra addition 

step of 2  plus  .  [5] 

The extension to even higher radices requires the generation of more 

multiplicand multiples. An alternative is to use several radix-4 and/or radix-2 

stages in one iteration  [5].  

For radix-16, the multiplier can be recoded into the digit set {–7, –6, ……, 

0, 1, ……, 7, 8} where 

 

                            (2.16) 

 

where                        , and        when       ≥ 9. This 

requires a generation of many multiplicand multiples. So this recoding can be 

performed by recoding the multiplier    into two redundant radix-4 digits    

and     [5] such that  

 

                                  –   –              (2.17) 

 

So only the multiple    and     are generated then an adder is used. 

In the next two sections we will consider the sequential and combinational 

implementation techniques for add-and-shift algorithm for binary and high 

radix multipliers. 
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2.2.1 Sequential multiplication 

Sequential multiplication can be done using a cumulative partial product 

register (initialized by 0) and successively adding to it the properly shifted 

terms     . Since each term to be added to the cumulative partial product 

register is shifted by one digit with respect to the preceding one, the cumulative 

partial product register is shifted one digit in order to align its digits with those 

of the next partial product.  

Two schemes of this algorithm can be derived, depending on whether the 

partial product term      are processed from top to bottom or from bottom to 

top (see Figure 2.4) depending on starting from the least significant digit or 

most significant digit of the multiplier, and right shift or left shift the 

cumulative partial product register, respectively.  [14] 

 

 

Figure 2.4 Sequential multiplication accumulation schemes 

 

The hardware implementation of top to bottom accumulation multiplication 

algorithm is more logical and has less area so that it is the preferred method.  
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Sequential multiplication algorithm with top-to-bottom accumulation 

In multiplication with top to bottom accumulation, a right shift cumulative 

partial product register is used. Figure 2.5 shows a right shift sequential 

multiplier using radix-2, binary.  [14] 

 

 

Figure 2.5 Sequential multiplication 

 

For high radix sequential multiplication, the 1-bit right shift is replaced by a 1-

digit right shift. Also the AND gate block which chooses between 0 and 

multiplicand   due to multiplier bits    is replaced by a multiplicand multiples 

generator block to generate the multiplicand multiples for the radix used then a 

selector block is added to select the suitable multiplicand multiple due to 

multiplier digits    . Figure 2.6 shows a right shift sequential multiplier for high 

radices. 
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Figure 2.6 High radix sequential multiplication 

 

Generally for right shift sequential multiplication the following steps are 

performed  [14]  

1. Store multiplicand   in an n-digit register, multiplier   in an n-digit 

right shift register, and initialize the cumulative partial product 

register with zero. 

2. Add 0 or one of the multiplicand multiples to the left     digit of 

the cumulative partial product register according to multiplier least 

significant digit   . 

3. Shift the cumulative partial product register and multiplier register 

one digit to the right. 

4. Repeat step 2 and 3 till the end of the n iterations.  

5. After n iteration, the final product is stored in the cumulative partial 

product register. 
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The accumulation of partial products can be described as  

  

                          –                        (2.18) 

       |–––– add –––––|     

       |–––– shift right ––––| 

 

because the right shifts will cause the first partial product to multiplied by    , 

multiplicand   is pre-multiplied by    to offset the effect of the right shifts. 

This pre-multiplication is done simply by aligning A with the upper half of the 

2 -cumulative partial product register in the addition steps.  [14] 

The control portion of the multiplier, which is not shown in the figures, 

consists of a counter to keep track of the number of iterations and a simple 

circuit to effect initialization and detect termination.  [5] 

The delay of the sequential multiplier shown in Figure 2.6 is equal to 

        where      is the delay of Carry Propagate Adder (CPA). It has a 

large delay where the delay of n-bit ripple carry adder is of O(n), and the carry 

lookahead and other prefix adders are of O(    ). To decrease this delay a 

carry save adder is used for the iterations and a CPA is used at the end of 

iterations as shown in Figure 2.7.  [5] 
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Figure 2.7 High radix sequential multiplier design 

 

To avoid the generation of large number of multiplicand multiples in high 

radices, the multiplier digits is recoded into two values    and    each one 

follow radix-4 and/or radix-2 recoding. In the iterations, two CSAs are used for 

each recoding digit as shown in Figure 2.8.  [14] 
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Figure 2.8 High radix sequential multiplier design using two recoding values,            

radix4 and/or radix-2, (for radices higher than 4) 

 

The sequential multiplication can be divided into three stages as follows 

Stage1: Multiplier recoding. 

Stage2: Multiplicand multiples generation. 

Stage3: Sequential addition and shift. 
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2.2.2 Parallel (Combinational) multiplication 

Instead of performing the multiplication in several cycles (iterations) in 

sequential multiplication, parallel multiplication reuses the hardware to perform 

the operation in a single cycle.  [5] 

In parallel multiplication, all the     partial products,   s, of the multiplicand 

are produced at once. For each digit,  -bit, generate the suitable partial product 

according to multiplier digit  i. Then an    -input CSA tree is used to reduce 

the partial products to two operands for the final addition. Finally, a Carry 

Propagate Adder CPA is used to generate the final product.  [19] 

 

   = 





1

0

n

i

i

irbA        (2.19) 

 

In this case all the multiples are obtained simultaneously and applied as 

operands in the first level of the tree. Therefore, the recoding has to be done in 

a parallel fashion.  

Figure 2.9 shows the general structure of a full tree multiplication. Various 

multiples of the multiplicand are generated corresponding to multiplier radix 

formed at the top. These multiples are added in a combinational partial 

products CSA reduction tree, which produces their sum in redundant form 

(carry save form). Finally, a CPA is used to generate the final product result. 

 [14] 
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Figure 2.9 General structure of a combinational full-tree multiplier 

 

The parallel multiplication can be divided into three stages 

Stage1: Multiplier recoding.  

Stage2: Shifted multiplicand multiples generation        
 . 

Stage3: Partial products accumulation. 

Stage1: Multiplier recoding  

As discussed for the sequential case, radix-4 multiplier digits have the 

values 0, 1, 2, and 3. The generation of the multiples   and 2  are simple, but 

the multiple 3  requires an addition. To avoid this multiple, the multiplier is 
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recoded into a signed-digit set {−1, 0, 1, 2} since the multiplication by these 

values is simple, the parallel multiplication recoding produce  i such that  

 

            , and               (2.20) 

 

where                           so                   .  [12] Table 

2.2 and Figure 2.10 show the radix-4 multiplier recoding  [5] 

 

 

 

 

 

Table 2.2 Radix-4 recoding in parallel multiplication 

 

 

Figure 2.10 Radix-4 recoding in parallel multiplication 

 

         

0 0 0 

1 1 0 

2 −2 1 

3 −1 1 
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For parallel multiplication the addition step which generates    should be 

performed without carry propagation. This is achieved if  

 

          , and              (2.21) 

 

consequently, the algorithm is as equation 2.22.  [12] 

 

          
                      
                

      (2.22) 

 

The extension to higher radices has the same idea of radix-4 parallel 

multiplication recoding; trying to reduce the number of multiples which need 

an extra addition step. 

Stage2: Multiplicand multiples generation 

For a certain multiplier  , the multiplicand multiples due to the multiplier 

digits  i are defined as    ] where 

 

           
   , where 0 ≤   ≤     – 1

  (2.23)
 

 

This corresponds to a multiplication of the multiplicand by each digit,  , of 

the multiplier and an arithmetic shift left by   digits. Figure 2.11 shows the 

resulting partial products in dot notation form where each dot represents one 

digit.  [12] 
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Figure 2.11 Partial products for 8-digit multiplication 

 

In parallel multiplication, all possible multiplicand multiples due to the range 

of multiplier digit,          , are generated firstly. Then for each 

multiplier digit    select the suitable multiple. For radix-2, the result of this 

digit multiplication is   partial products and the shift is one bit. In general, for 

any radix  , the number of partial products are    , where   is the number of 

multiplier bits, and   is the number of bits in each digit. So   is in the range 0 ≤ 

  ≤       and the shift is one digit,   bits. The high radix multiplication is 

used to reduce the number of multiples and, therefore, the complexity of the 

partial products addition, but the number of multiplicand multiples needed to 

be generated increase. 

An AND-OR network for each bit is used in the implementation of the 

multiples generation circuit to select among the different possible multiples. 

Multiples like 2 , 4 , 8 , and 16  are generated by only shifting. It is fast, 

easy, and has no additional area cost. Some other multiples like 3A, 5 , and 

7  need an addition steps which take large delay and area. They have different 

techniques to be generated. Some of them will be discussed in the next chapter. 
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The trade-offs for high radix multiplication are: higher radix gives more 

multiplicand multiples and more complex multiples circuit which has extra 

delay in some radices, but it leads to less partial products and more simple 

reduction tree having less delay. 

Stage3: Partial products accumulation 

After the     partial products are generated, they must be accumulated to 

obtain the final product. Using carry propagate adders, the time consuming 

carry propagate addition is repeated       times. The most commonly used 

method is carry save addition. In carry save addition, the carry propagation is 

done in the last step while in all other intermediate steps a sum and carry are 

generated for each bit position.  [8] 

The basic element used in reducing partial products is the Carry Save Adder 

(CSA). This is a binary full adder that takes 3 bits of the same weight as inputs 

and produces a sum bit and a carry bit (of one bit higher weight). Sometimes 

the [3:2] CSA is called a counter.  Figure 2.12 shows a 1-bit CSA 

implementation and the addition of three n-bit partial products using CSAs.  

 

 

Figure 2.12 Carry save Adder (counter) 
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The compressor is a special form of [3:2] CSA or counter. It is designed to 

support regular tree implementation. The most common compressor is the 

[4:2]. The advantage of compressors is in their regularity. Figure 2.13 shows a 

[4:2] and [7:2] compressors implementation using counters ([3:2] CSAs).  [7] 

 

 

Figure 2.13 CSA Compressor 

 

The adders used in the partial products accumulation can be connected in 

several approaches.  In the next section these approaches are discussed. 
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2.2.3 Adders connection approaches 

The implementation of the partial products accumulation is done using 

some variation of a carry save adders. These CSAs can be connected by 

different methods called topology. The topologies are classified into regular 

and irregular according to the way the counters are interconnected, and the 

wires required to connect the counters. In a regular topology, the CSAs are 

connected in a regular pattern that is replicated. The regular connections make 

the design of the partial product array a hierarchical design.  In contrast, in an 

irregular topology, the CSAs are connected in order to minimize the delay, 

disregarding the ease of laying out the multiplier  [8]. 

Regular topology 

The regular topology is most commonly used, since it provides a 

compromise between optimization and design effort. The regularity allows 

designers to build a small group of building blocks that contain connected 

counters and compressors and then connect these blocks to form the topology. 

The delay of this topology is defined as the maximum number of counters and 

compressors connected in series. Regular topologies can be classified as either 

array or tree topology.  [8] 

Regular array topology 

 In an array, the counters and compressors are connected serially in an 

identical manner  [8]. Figure 2.14 shows the addition of 8 partial products in an 

array topology.  [8] 

It is the slowest topology but it is very regular in its structure and uses short 

wires. Thus, it has a very simple and efficient layout in VLSI. Furthermore, it 

can be easily and efficiently pipelined by inserting latches after every CSA or 

after every few rows.  [19] 
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Figure 2.14 Addition of 8 partial products in an array topology                                      

using CSAs and CPA at the end 

 

Regular tree topology 

To reduce the number of adder‟s level, a tree is used. In a tree, counters and 

compressors are connected in parallel. Although trees are faster than arrays, 

they both use approximately the same number of counters and compressors, 

same area, to accumulate the partial products. The difference is in the 

interconnections between the adders.  [8] 

Trees are either regular or irregular. Regular trees have an easy structure for 

summing partial products and their delay is a known function of number of 

partial products. While irregular trees connected in order to minimize the total 

delay and their delay is determined by design layout.  

Regular topologies allow a multiplier to be structured from building blocks 

where the interconnections between the adders are in a consistent pattern as 

shown in Figure 2.15(a)  [8] and Figure 2.15(b)  [5]. A CPA or a [4:2] 
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compressors are used which has a fast, symmetric and regular design. If the 

number of partial products is  , the number of CPA or [4:2] compressor levels 

is           plus one level CPA.  [5] 

It must be noted that the [4:2] compressor delay is approximately equivalent to 

two CSA levels and the CPA delay equivalent to n CSA levels for ripple carry 

or      for carry lookahead, where n is the number of partial product bits. 

 

 

Figure 2.15 Regular tree (a) Using CPAs (b) Using [4:2] compressors 

 

Irregular topology 

Irregular topologies connect the counters and compressors in order to 

minimize the total delay but the design and layout is more difficult because 

they do not have a regular pattern for connection. Wallace tree and Dadda tree 

are examples for irregular trees. Wallace tree reduces the partial products by 

rows as array and regular tree while Dadda tree reduces the partial products by 

columns.  [18] 
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Wallace tree 

The Wallace tree combines partial product bits at the earliest opportunity 

which leads to the fastest possible design. If the number of partial products 

is  , the number of [3:2] CSA levels is approximately             plus one 

level CPA. Figure 2.16 shows [3:2] adder tree.  [5] 

   

 

Figure 2.16 Irregular tree topology using [3:2] CSAs and CPA for last level 

 

Dadda’s tree (Reduction by column) 

All previous adder topologies use the reduction by row scheme in partial 

product accumulation. Dadda‟s tree uses reduction by column scheme. Dadda 

Tree Combine as late as possible, while keeping the critical path length 

(number of levels) of the tree minimal which leads to simpler CSA tree 

structure, but wider CPA at the end.  [12] 
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Figure 2.17 shows a comparison between wallace and dadda trees for four 

4-bit partial products.  [19] 

 

 

Figure 2.17 Addition of four 4-bit partial products                                                                           

(a) using Wallace tree (b) using Dadda tree 

 

2.3 "Composition of smaller multipliers" multiplication 

algorithm 

Another way to multiply two numbers is to divide the multiplication 

operation into small similar multiplication operations. For example, the 8bit × 

8bit multiplier can be implemented using four 4bit × 4bit multipliers, as shown 

in Figure 2.18.  [7] 
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Figure 2.18 Implementation of 8 × 8 multiplier using four 4 x 4 multipliers 

 

 Generally, consider an       multiplier used to implement 2    2 . 

Denoting the high and low halves of the multiplicand and multiplier by  H ,  L 

and  H ,  L respectively. four      multipliers are used to compute the four 

partial products  L. L ,  L. H ,   H. L , and  H. H. These four values must 

then be added to obtain the final product. By rearranging the non-overlapping 

partial products, only three values need to be added as shown in Figure 2.18. So 

the 2    2  multiplication problem has been reduced to four       

multiplication and three operand addition problem. The       multiplication 

can be performed by smaller hardware multipliers or via lookup table, for 

example, a 8-bit   8-bit multiplication can be implemented using four 2
8 8 

ROMs (as lookup table), where each ROM performs 4 4 multiplication. The 

three partial products can be computed using single level of carry save adder, 

followed by a carry propagate adder.  [19] 
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Larger multipliers, such as 3    3  or 4    4 , can be similarly 

implemented from       multiplier building blocks. A generalization of this 

scheme is shown in Figure 2.19 for various multiplier arrays up to 64×64 

multiplier. Each rectangle represents a 8-bit partial product as result of 4×4 

multiplier. Assuming   = 4, it can be seen that the 4    4  multiplication 

leads to seven partial products to be added, and 8    8  multiplication 

produces fifteen partial products.  [7] 

 

 

Figure 2.19 Using 4 × 4 multiplier with 8-bit product                                                          

for various multiplier arrays up to 64 × 64 
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Table 5.3 summarizes the partial products matrix for various multipliers 

using 4×4 multiplier and 8×8 multiplier. It can be seen that the number of 

partial products decreases when using 8×8 multiplier as a basic building block. 

When using a lookup table basic block, the delay of the two schemes is the 

same but the 8×8 multiplier has double the area of the 4×4 multiplier. When 

using hardware multipliers basic block, the area and delay of the 8×8 multiplier 

are higher than the 4×4 multiplier.  [7] 

 

Table 2.3 Summary of number of partial products for various multipliers using 

small multiplier where n is the operand size. 

 

2.4 Bit/Digit serial multiplication algorithm 

Serial arithmetic has the advantages of its smaller area and reduced wire 

length. In fact, the compactness of the design may allow us to run a serial 

multiplier at a clock rate high enough to make the unit almost competitive with 

much more complex designs with regard to speed. In addition, in certain 

application contexts inputs are supplied serially anyway. In such a case, using a 

parallel multiplier would be quite wasteful, since the parallelism may not lead 

to any speed benefit. Furthermore, in applications that call for a large number 

of independent multiplications, multiple serial multipliers may be more cost 

effective than a complex highly pipelined unit.  [19] 

Basic building block 
Number of PPs 

(general formula) 

Number of Partial 

Products(PPs) 

Number of bits 

8 16 24 32 40 48 56 64 

1×1 multiplier N 8 16 24 32 40 48 56 64 

4×4 multiplier (n/2) – 1 3 7 11 15 19 23 27 31 

8×8 multiplier (n/4) – 1 1 3 4 7 9 11 13 15 
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A serial multiplier can be defined as a serial input/output pipelined 

sequential add-and-shift multiplier.  

Bit/Digit serial multipliers can be designed as synchronous arrays of 

processing elements. Figure 2.20 shows a 4   4 bit serial multiplier. The 

multiplicand   is supplied in parallel from above and the multiplier   is 

supplied bit-serially from the right, with its least significant bit arriving first. 

Each bit    of the multiplier is multiplied by   and the result added to the 

cumulative partial product, kept in carry save form in the carry and sum 

latches. The carry bit stays in its current position, while the sum bit is passed on 

to the neighbouring cell on the right. This corresponds to shifting the partial 

product to the right before the next addition step. Bits of the result emerge 

serially from the right as they become available. ‎[19] 

 

 

Figure 2.20 4 4 Bit Serial Multiplier 

 

Figure 2.21 shows a digit serial multiplier. Multiplicand multiples generator 

is used to generate all possible multiplicand multiples of the multiplier digit 

(i.e. from A to 3  for 2-bit digit, from   to 15  for 4-bit digit, and so on). The 

suitable multiplicand multiple is selected according to multiplier digit using a 
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selector. Then the partial product is added and shifted to the right before the 

next multiplier digit is serially supplied. Digits of the result emerge serially 

from the right as they become available. 

 

 

Figure 2.21 Digit Serial Multiplier. 

 

2.5 Booth multiplication algorithm 

Booth algorithm gives a procedure for multiplying binary integers in 

unsigned or signed two‟s complement representation. 

2.5.1 Original Booth algorithm 

The original Booth algorithm used for binary multiplication allows the 

multiplication operation to skip over any continuous string of all 1‟s and all 0‟s 

in the multiplier, rather than form a partial product to each bit. Skipping a 

string of 0‟s is straightforward, but in skipping over a string of 1‟s the 

following property is put to use: a string of    1‟s is the same as 1 followed by 

  0‟s less 1.  [7] 



38 

 

How it works?  

Consider a positive multiplier consisting of a block of 1s surrounded by 0s. 

For example, the product of a multiplicand   by a multiplier 00111110 is given 

by: 

                                       

The number of addition operations can be reduced to two by rewriting the same 

as 

                               

where     means negative 1. In fact, it can be shown that any sequence of 1's in 

a binary number can be broken into the difference of two binary numbers as 

           

 

               

 

              

 

     

The multiplier is divided into substrings of 2 bits, with adjacent groups sharing 

a common bit. Table 2.4 shows the Original booth recoding scheme. 

 

Bit 

Meaning Operation 2
0
 2

-1
 

 i  i-1 

0 0 no string 0 

0 1 end of string +   

1 0 beginning of string −   

1 1 center of string 0 

Table 2.4 Original booth recoding scheme 
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This works for negative multipliers as well. When the ones in a multiplier are 

grouped into long blocks, Booth algorithm performs fewer additions and 

subtractions than the normal multiplication algorithm. 

Procedure  

Let   and   be the multiplicand and multiplier, respectively.   is the 

negative value of   and P is the product. And let   and   represent the number 

of bits in the multiplicand and multiplier.  

1. Set the values of   and  , and the initial value of  . All of these 

numbers should have a length equal to (     ).  

a.  : Fill the most significant bits with the value of a. Fill the 

remaining (   ) bits with zeros. 

b.  : Fill the most significant bits with the value of (  ) in two's 

complement notation. Fill the remaining (   ) bits with zeros. 

c.  : Fill the most significant m bits with zeros. To the right of this, 

append the value of  . Fill the least significant bit with a zero. 

 

2. Determine the two most significant bits of  .  

a. If they are 01, find the value of    . Ignore any overflow. 

b. If they are 10, find the value of    . Ignore any overflow. 

c. If they are 00, do nothing. 

d. If they are 11, do nothing.  

3. Arithmetically shift the value of   obtained in the 2nd step by a single 

place to the right. Let   now equal this new value. 
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4. Repeat steps 2 and 3 until they have been done   times. 

5. Drop the least significant bit from  . The value of   is the product 

of    . 

Original Booth algorithm can be summarized as performing an addition when it 

encounters the first digit of a block of ones (0 1) and a subtraction when it 

encounters the end of a block of ones (1 0). Also an extra bit can be added to 

the left of   ,  , and  , to represent the multiplicand if it has the largest 

negative number (i.e. if the multiplicand has 8 bits then this value is −128). 

The disadvantages of this algorithm are that it generates a varying (at most  ) 

number of partial products, depending on the bit pattern of the multiplier. The 

extreme, worst case, occurs when the multiplier is alternating between 1‟s and 

0‟s. The number of addition or subtraction process is   instead of     for add-

and-shift algorithm. Of course, hardware implementation lends itself only to a 

fixed independent number of partial products. 

Booth algorithm can be designed using sequential approach, as mentioned 

above. Or parallel approach, by recoding every two side by side bits to 

multiplicand or its negative value or zero. 

2.5.2 Modified Booth algorithm 

The modified version of Booth algorithm is more commonly used. The 

difference between the Booth and the modified Booth algorithm is that the 

modified booth always generates a fixed number of partial products. It encodes 

every   bit of multiplier into one partial product. So for   bit multiplier, it 

introduces     partial products as the high radix multiplication. Several 

versions of modified booth algorithm are introduced depending on the value of 

 . As the value of   is increased, the number of partial products decreases but 

the number of hard multiplicand multiples required to generate increases.  [7] 
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Booth radix 4 recoding scheme, Booth 2 

The modified Booth 2 multiplier encoding scheme encodes every 2-bit 

groups of multiplier. For an 8-bit multiplier, it produces four partial products 

for a signed multiplier, as the most significant input bit represents the sign, or 

five partial products for an unsigned multiplier number. The multiplier is 

divided into substrings of 3 bits, with adjacent groups sharing a common bit. It 

requires that the multiplier be padded with a 0 to the right, for unsigned or 

positive numbers, and with 1 to the right for negative numbers, in two‟s 

complement representation. Also it is padded with one or two zeros to the left. 

Table 2.5 is the encoding table of the eight possible combinations of the three 

multiplier bits.  [7] 

 

Bit 

Operation 2
1
 2

0
 2

-1
 

 i+1  i  i-1 

0 0 0 0 

0 0 1 +  

0 1 0 +  

0 1 1 +2  

1 0 0 −2  

1 0 1 −  

1 1 0 −  

1 1 1 0 

Table 2.5 Booth radix 4 recoding scheme 

 

By inspection of the table, only one action (addition or subtraction) is required 

for each two multiplier bits. Thus, the use of the algorithm insures that for an 

odd number of multiplier bits, only     actions will be required for any 

multiplier bit pattern where the last action will be defined by 0  n−1. n−2 for 
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unsigned numbers. And for an even number of multiplier bits,     + 1 actions 

are required, the last action being defined by 0.0. n−1 for unsigned numbers.  [7] 

Figure 2.22 shows a 16 bit   16 bit multiplication using Booth 2 algorithm  [8]. 

 

 

Figure 2.22 16 bit Booth 2 multiply 

 

For example  [7], suppose a multiplicand ( ) is to be multiplied by an 

unsigned multiplier   = (11101011)2 which is equivalent to decimal 235. When 

using modified Booth 2 algorithm. The multiplier must be decomposed into 

overlapping 3-bit segments and actions determined for each segment. Note that 

the first segment has an implied “0” to the right of the binary point. Thus, we 

can label each segment as follows:  

 

while segment (1) is referenced to the original binary point, segment (2) is four 

times more significant. Thus, any segment (2) action on the multiplicand must 

be scaled by a factor of four. Similarly, segment (3) is four times more 
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significant than (2), and 16 times more significant than (1). Now, by using the 

table and scaling as appropriate, we get the following actions: 

   

Segment number Bits Action Scale factor Result 
(1) 110 −  1 −  
(2) 101 −  4 −4  
(3) 101 −  16 −16  
(4) 111 0 64 0 
(5) 001 +  256 +256  

Total action 235  

 

The actions specified in the table are independent of one another so the five 

result actions can be summed in parallel using carry save adders. 

Booth radix 8 recoding scheme, Booth 3 

It is an extension of the modified Booth algorithm which involves an 

encoding of three bits at a time while examining four multiplier bits. This 

scheme would generate only      partial products.  [7] 

However, its encoding requires the generation of     [8], which is not as 

trivial as generating   . Thus, most hardware implementations use only Booth 

2 scheme. 

2.6 Conclusion 

The multiplication operation can be designed in sequential or combinational 

approach. Sequential multipliers have less area while combinational multipliers 

have lower latency. 

Also the multiplication is done in radix-2 or high radix scheme. Radix-2 

lead to small area design nevertheless high radix has the advantage of low 

latency. 
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Four techniques are used for the multiplier implementation, add-and-shift, 

composition of small multipliers, bit/digit serial, and booth multiplication. 

Add-and-shift is the most common and simplest method of multiplication. It 

can be implemented sequentially or combinational in radix-2 or high radix. 

Composition of smaller multipliers has the same area and speed of complete 

multiplier. It only divides the large components to small ones and rearranges 

them. Bit/Digit serial multiplier (radix-2/high radix serial multiplier) has small 

area, but larger than sequential add-and-shift, high latency, high throughput, 

and can be easily pipelined. It is useful in applications where the inputs are 

supplied serially anyway. Original booth tries to decrease the number of partial 

product. It has a worst case number of partial products    , but it generates a 

variable number of partial products. Modified booth generates a fixed number 

of partial products    , the same as high radix add-and-shift. Booth 

multiplication can be implemented sequentially or combinationaly. 
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Chapter 3 

Decimal Multipliers 

The decimal multiplication is more complex than the binary multiplication. 

Since the multiplier 4-bit digit takes values between 0 and 9. Let the 

multiplicand   and the multiplier   be two signed numbers represented as sign 

and an  -digit magnitude. The multiplication       will create a sign and 

2 -digit product  . The multiplication operation is described as: 

 

                             (3.1) 

                    (3.2) 

 

The sign of the product is implemented using XOR gate. And the 

magnitude of the product is implemented using some algorithms similar to 

binary algorithms but here we deal with digits instead of bits. For example in 

2846 × 3715, we assume 3715 a multiplier and 2846 a multiplicand and assume 

that we have all multiplicand multiples (2×2846, 3×2846, 4×2846, ……, 

9×2846). The digits in the multiplier are examined one at a time and the 

suitable multiplicand multiple is selected according to the multiplier digit. A 
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number of shifted multiples are added according to multiplier digit position as 

shown in Figure 3.1 to form the final product. 

 

 

Figure 3.1 4-bit Decimal multiplication example 

 

From this example we can divide the multiplication operation into three 

stages: Multiplicand multiples generation (from   to   ), multiplier recoding 

to select the suitable multiple for each multiplier digit which generate the 

partial products (   ), and partial products addition. 

Decimal multipliers can be implemented using sequential or parallel 

approaches. Sequential multipliers have a small area compared to parallel ones. 

But, parallel multipliers have a significant low latency advantage over 

sequential multipliers. The choice between sequential and parallel approaches 

depends on the more important issue in the application, area or delay.  

In the next sections the history of the decimal multiplication stages, which 

are multiplicand multiples generation, multiplier recoding for multiples 

selection, and partial products accumulation, are discussed. 
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3.1 Multiplicand Multiples Generation 

Decimal multiples generation is more complex than binary multiples 

generation because it deals with Binary Coded Decimal (BCD) format so the 

left shifting of multiplicand,  , will not introduce    as in binary. The decimal 

multiplicand multiples are generated by successively adding the multiplicand 

using BCD adders
1
, decimal adders, which has large area and delay, or via a 

lookup table for the multiplicand multiples, which has large area. 

Generation of        and        

It can be seen that the generation of        and        is simpler than 

the other multiples where the carry propagate only to next digit  [13] [20]. When 

any BCD digit with a value from 0 to 9 is doubled, it gives two digits from 00 

to 18. The least significant digit value is even, i.e. least significant bit is 0 and 

maximally equal 8 and the carry value is maximally 1. By adding the carry to 

next significant digit, the maximum value obtained is 9, this addition can be 

done by only putting the carry bit in the LSB of next digit. So the generation of 

       for a digit    can be summarized as shown in Figure 3.2. 

Also the        multiple generation depends on that the fifth multiple of any 

digit, gives only two digits. The least significant digit value is 0 or 5 due to the 

input digit is even or odd, respectively. The most significant digit, carry digit, 

value is maximally 4 (since       ) so by adding the carry to next 

significant digit, the maximum value obtained is 9. So its carry is propagated 

only to next digit. The carry digit is equal to the value of input digit divided by 

two. Where               shifted left one decimal digit. It can be 

implemented by right shifting the input digit and skips its carry bit. These two 

multiples have approximately the area of n-bit carry propagate adder and the 

                                                           
1
 In BCD addition, a correction of six must be added if a digit sum is greater than nine to skip 

over the invalid BCD digits, A16-F16. So the decimal CPA has a delay of O(2n) instead of 

O(n) for binary CPA.   
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delay is approximately of O(4), 4-bit carry propagation where carry propagate 

only to next digit. 

 

 

Figure 3.2 BCD multiplication by two 

 

Multiplicand multiples generation stage 

Simple decimal multipliers as those designed in the early days of decimal 

circuits  [20]generate all decimal multiplicand multiples, from   to   , and 

store them in registers before the start of the algorithm as shown in Figure 3.3. 

This technique needs a large area for the decimal carry propagate adders and 

for the registers needed to store the multiples. Also it has a large delay due to 

the       delay of decimal carry propagate adders  [20]. 

To reduce the area and delay, a reduced set of decimal multiplicand 

multiples is generated and stored in registers before the start of the algorithm 

then the remaining multiples are obtained dynamically during the algorithm 

using a decimal carry propagate adder. A secondary set or tertiary set is 

sometimes used. A secondary set of multiplicand multiples                 

is proposed in  [6](a) where only two members of the set are need to be added to 

generate missing multiples. It need only one decimal carry propagate adder of  
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Figure 3.3 Multiplicand multiples generation (generate all multiplicand 

multiples) 

 

      for the    multiple generation, Figure 3.4(a). Also a tertiary set of 

multiples              is proposed where at most three members of the set 

are added to generate missing multiples. The              set does not need 

to generate the multiple    but it requires an extra addition for the generation 

of the missing multiple            . The extra adder can be a decimal 

carry save adder which has less delay,     , than the decimal carry propagate 

adder, Figure 3.4(b). 

Another secondary multiplicand multiples set              is introduced in 

 [20] [6](a)] [10]. This set is generated faster than the previous sets. This set 

reduces the delay of the multiplicand multiples generation stage, Figure 3.4(c). 
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Figure 3.4 Decimal multiplicand multiples generation sets 

 

For more reduction of the area and delay for the pre-calculated multiples, a 

signed digit recoding technique is proposed by Lang and Nannarelli in  [13]. 

They generate the secondary set               of multiples. The two groups 

           and                 are used to generate the missing 

multiples, Figure 3.5. Using the (              ) block for signed digit 

recoding can convert the tertiary set              to secondary set by 

generating the missing multiple        . 

 

 

Figure 3.5  Signed digit recoding by Tomás Lang and Alberto Nannarelli 
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Erle et al. in  [6](b) propose a different recoding technique for an efficient 

generation of partial products. He depends on digit-by-digit multiplication not 

word-by-digit as before. He recodes the two multiplication operands, 

multiplicand and multiplier, into signed digits from -5 to 5 to simplify the 

partial products generation process. And since the magnitude of product is 

independent on the sign of operands and the multiplication by zero and one can 

be done using multiplexer, the range of multiplied digits is reduced to [2→5] x 

[2→5]. Thereby he has only 10 different combinations of inputs to be 

multiplied. He shows the complexity of the digit-by-digit products for different 

ranges of decimal inputs (Table 3.1). 

 

 

 

 

 

 

 

Figure 3.6 shows the block diagram of a digit multiplier block, where the 

superscript S indicates that the result of the recoding is a signed-magnitude 

digit, the superscript T indicates that the sub-function output is realized via a 

lookup table or a combinational circuit structure, and the superscript O 

indicates that the partial product is in an overlapped form since each digit 

multiplier block yields two digits. 

 

range of inputs 
input 

combinations 
unique products 

[0→9] x[0→9] 100 37 

[1→9] x[1→9] 81 36 

[2→9] x[2→9] 64 30 

[0→5] x[0→5] 36 15 

[1→5] x[1→5] 25 14 

[2→5] x[2→5] 16 10 

Table 3.1 Complexity of digit-by-digit products 

for different ranges of decimal inputs 
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Figure 3.6 signed digit-by-digit multiplier block 

 

The partial products are generated using a digit-by-digit multiplier on a word 

by digit basis, first in a signed digits form with two digits per position, Table 

3.2, and then combined via a combinational circuit. Although the least 

significant digit has a negative sign in some instances, the most significant digit 

is always positive, and thus the two-digit product is a positive value. The 

signed digit partial products are developed one at a time while passing through 

the recoded multiplier operand from the LSD to the MSD in sequential form, 

and then each partial product is added along with the accumulated sum of 

previous partial products via a signed digit decimal adder.  

 

 

 

 

 

 2 3 4 5 

2 04  41  21  10  

3 41  11  12  15  

4 21  12  42  20  

5 10  15  20  25  

Table 3.2 Signed digit-by-digit products 
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The partial products generation process for a sequential multiplier design using 

this method takes n + 1 cycle, also its generation for a combinational design 

takes ten logic levels delay to convert the overlapped partial products form to 

non-overlapped form and recode them in a manner appropriate for the signed 

digit decimal adder. 

Most of previous multiplicand multiples generation methods have a 

considerable delay because of the decimal correction stage in adders which 

increases the total delay of the multiplication operation. However, Vázquez et 

al. in  [22] propose a new different signed digit, SD, decimal multiplicand 

multiples generation techniques. Firstly, they introduce three recoding schemes, 

SD-radix-10 which generates the secondary set                 multiples, 

SD-radix-5 which generates the secondary set               multiples, and 

SD-radix-4 which generates the secondary set              multiples.  

To simplify the decimal multiples generation process, different redundant BCD 

recoding formats are used. Table 3.3 shows various BCD coding formats such 

as BCD-5421, BCD-5211 and BCD-4221.  

 

 

 

 

 

 

 

  

 BCD-8421 BCD-5421 BCD-5211 BCD-4221 

0 0000 0000 0000 0000 

1 0001 0001 0001 | 0010 0001 

2 0010 0010 0100 | 0011 0010 | 0100 

3 0011 0011 0101 | 0110 0011 | 0101 

4 0100 0100 0111 1000 | 0110 

5 0101 1000 | 0101 1000 1001 | 0111 

6 0110 0110 | 1001 1010 | 1001 1100 | 1010 

7 0111 0111 | 1010 1100 | 1011 1101 | 1011 

8 1000 1011 1110 | 1101 1110 

9 1001 1100 1111 1111 

Table 3.3 BCD coding formats 
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These BCD formats depend on different binary bits weight. The table 

represents the formats as BCD-xxxx where x‟s is the weight of every binary 

bit. For example, 1111 has a value of 8+4+2+1 = 15 in BCD-8421 format, a 

value of 4+2+2+1 = 9 in BCD-4221 format, and a value of 5+4+2+1 =12 in 

BCD-5421 format. 

These formats allow the generation of 2A and 5A multiples in a few levels of 

logic gates using recoding block and wired left shifts. For example: BCD-5421 

format allow a fast decimal 2A multiple generation in two steps. Firstly recode 

each BCD-8421 digit to BCD-5421 then left shift the recoded multiplicand by 

one obtaining the 2A multiple in BCD-8421.  

 

Also it ease the 5A multiple by left shifting the multiplicand A, BCD-8421, 

three bits then recode each digit of the shifted multiplicand from BCD-5421 to 

BCD-8421.  

 

For the BCD-4221, the multiplication by two obtained by recoding each 

multiplicand digit to BCD-5211 then left shifts the recoded multiplicand by 

one, the 5A multiple in BCD-4221 format is obtained. 



55 

 

 

Also a three bit left shifting of the BCD-4221 multiplicand obtain a 5A in 

BCD-5211. 

 

More multiplicand multiples generation in different BCD formats is discussed 

in  [22]. 

Vázquez et al. in 123 use the BCD-4221 and BCD-5211 in decimal adders 

where they give a valid decimal digit values for all 16 combinations. These 

avoid the extra delay and area of the adders‟ decimal corrections. Also it allows 

binary addition/subtraction to be used for partial products accumulation where 

BCD-4221 format is self-complementing. So the addition of a negative value of 

the multiplicand can be obtained only using inverters and setting the carry-in 

bit of binary adder by 1.  

3.2 Multiplier recoding for multiples selection 

Multiplexers controlled by the multiplier digits are used to choose the 

correct multiplicand multiples to generate the partial products to be added in 

the next stage.  If all decimal multiplicand multiples          are generated 

in the previous stage, only one multiplexer, MUX, is needed. While, if a 

reduced set of multiplicand multiples are generated, a multiplier recoding will 

be needed to represent each multiplier digit into two digits. Thereby, two 
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MUXs are needed to choose the two suitable multiplicand multiples for each 

multiplier digit. Table 3.4 shows an example of multiplier digits recoding for 

the secondary set              multiples. 

 

 

 

 

 

 

When all multiplicand multiples are generated, one partial product for each 

multiplier digit is selected so     partial products are generated, where   is the 

number of multiplier bits. Nevertheless, when a reduced set of multiplicand 

multiples are generated, two partial products for each multiplier digit is 

selected so     partial products are generated. It seems that the first scheme 

has less delay for next accumulation stage, but the generation of all decimal 

multiplicand multiples needs a large area and delay because it needs CPAs. The 

number of partial products is increased in the second scheme but it increases 

the delay by one level CSA only in the partial products accumulation stage, it 

will be discussed in next section. 

3.3 Partial Products accumulation  

Partial products accumulation stage in decimal multipliers can be 

implemented using any of high radix methods discussed in previous chapter, 

sequential designs, or parallel designs (array or tree topology). The only 

difference between decimal and high radix design is that a decimal CSAs and 

decimal CPAs is used. Decimal adders are like binary adders except an extra 

bi bi′ bi″    bi bi′ bi″ 

0 0 0    5 4 1 

1 1 0    6 4 2 

2 2 0    7 8  1 

3 1 2    8 8 0 

4 2 2    9 8 1 

Table 3.4 Example of multiplier recoding 
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correction block after each digit addition. A correction of six is added if a digit 

sum is greater than nine to skip over the invalid BCD digits,        .  

3.3.1 Sequential accumulation approach 

Several sequential decimal multipliers are proposed in [6](a) [14] [13] [6](b) 

 [10] [20]. The basic sequential approach of decimal multiplication is to iterate 

over the digits of the multiplier   and based on the value of the current digit, 

successively add multiples of the multiplicand   to a product register called 

intermediate product (  ) with shifting one digit in each iteration.  

When one partial product is generated for each multiplier digit  [6] [20], the 

equation for the sequential partial products accumulation is as follows 

 

                          (3.3) 

 

where      and          . And after     iterations,    corresponds 

to the final product  . 

To implement this, a decimal CPA is used as in Figure 3.7a. However, when 

two partial products are generated for each multiplier digit (secondary set of 

multiplicand), a decimal CSA is used before the decimal CPA  [10] (see Figure 

3.7b) and the following equation is used 

 

              
      

            (3.4) 

 

where     
      

       . Although the secondary multiple approach 

reduces the delay and area of partial products generation (i.e. the area and delay 

of the decimal CPA), it introduces a delay overhead in the extra decimal CSA 

in each iteration. 
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Using decimal CSAs only in the iterations has a significant delay reduction as 

in Figure 3.8. The carry save adders are used in iterations then one decimal 

CPA is used at the end of process to add the sum and carry outputs of the 

decimal CSA from last iteration  [15] [16] [6](b). 

 

 

Figure 3.7 Sequential Decimal Multiplication Design 
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Figure 3.8 Sequential Decimal Multiplication Design 

 

3.3.2 Parallel accumulation approach 

Parallel decimal multiplication offers a good delay reduction with an 

increase in area  [13] [22]. In parallel decimal multiplication, all partial products 

are generated in parallel according to the multiplier digits then the partial 

products are accumulated using a decimal carry save adders tree. This tree 

reduce all partial products into two partial products then a carry propagate 

adder is used to obtain the final product as in Figure 3.9. The same as binary 
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trees, the delay of decimal CSAs tree depends on the number of input partial 

products and the design and arrangement of the decimal CSAs. For example, 

the accumulation of 16 partial products needs 6 levels of decimal CSAs. 

 

 

Figure 3.9 Parallel Decimal Multiplier Design 

 

3.3.3 Decimal adder block implementation 

Decimal addition can be implemented using binary adder with decimal 

correction block for every digit to correct the binary digits out of BCD range 

 [15] [16] [17], or using direct decimal addition technique  [21]. Vázquez et al. in 

 [22] present a decimal adder using all-valid BCD formats, which have a valid 

decimal value for all 16 combinations. It gives a valid sum and carry values 

without the need of correction blocks which decrease the area and delay of the 

adder  [22]. 
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Binary addition with decimal correction block 

The decimal addition of two decimal digits of the same order yields a two 

digit decimal sum in the range [0 → 18]. When using a binary adder for the 

addition, there are 5 bits out from the adder. The four LSBs represent the LSD 

of the decimal sum, and the MSB represent the carry bit or the MSD of the 

decimal sum. The LSD of the sum may actually range from [0 → 15], instead 

of BCD digit values from [0 → 9]. In the case of the LSD being in the range 

[10 → 15], the LSD need to be adjusted to bring it into the valid range for a 

decimal digit. This can be achieved by incrementing the LSD by six. Also in 

this case, the carry needs to be changed from zero to one to represent a carry of 

10. Also, in the case of the carry is one and the LSD is in the range [0 → 2], the 

sum needs to be incremented by six to adjust the weight of the carry from 16 to 

10. Thus, there are two different reasons for the correction, but both situations 

are handled by the addition of six. See  [10] for more details in this type of 

decimal addition.  

Direct decimal addition 

Direct decimal addition implements logic units that accepts as inputs two 4-

bit BCD digits with a 1-bit carry-in, and directly produces a 4-bit BCD sum 

digit and a 1-bit carry-out where the weight of carry-out bit is 10 times the 

weight of sum digit. 

Binary addition with All-valid BCD formats 

When BCD-4221 format or BCD-5211 format is used in CSA or CPA 

blocks, it gives a correct sum and carry values in the range of [0 → 9]. 

However a decimal multiplication by   is required before using the carry digit 

in the computations. The carry is multiplied by two, left shift in binary 

addition, using BCD-4221 or BCD-5211 as discussed in the decimal 

multiplicand multiples generation stage.  Figure 3.10 shows a general design of 



62 

 

3:2 decimal CSA where   ,   , and    are the three inputs of the CSA.   , and 

   are the sum and carry outputs of the CSA.    is the carry digit after 

recoding then it shifted left one bit for the multiplication by two generation. 

 

 

Figure 3.10 Generic design for the 3:2 decimal CSA 

 

Figure 3.11 explain two examples for BCD-4221 and BCD-5211 decimal 

CSAs. The following equation describes the CSA operation: Ai + Bi + Ci = Si + 

2Hi. In Figure 3.11a, BCD-4221 format is used. The three input digits are 

added using binary CSA and give two digits sum and carry. The carry digit is 

recoded to BCD–5211, using combinational circuit, then left shifted one bit to 

obtain 2H in BCD-4221 format. However, Figure 3.11b uses BCD-5211 

format. The carry digit is recoded to BCD–4221 then left shifted one bit to 

obtain 2H in BCD-5211 format. 
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Figure 3.11 Decimal carry-save addition example (a) in BCD-4221 format (b) 

in BCD-5211 format 

 

3.3.3 Decimal trees 

Radix-10 CSA 

Lang and Nannarelli in  [13] use a radix-10 CSA tree to accumulate the 

partial products. Their multiplier uses SD-radix-5 for multiplicand multiples 

generation, which generates the (A, 2A, 5A, 10A) multiples set. This set 

generates two partial products for each digit and carry bit for negative. The 2 

partial products and the carry bit are added using radix-10 CSA to generate 16 

partial products in carry save format. Radix-10 CSA adds a carry save operand, 

sum and carry, plus another BCD operand to produce a carry save result, see 

Figure 3.12a. Also a carry counter adds an array of carry vectors of the same 

weight and produces a decimal digit as shown in Figure 3.12b. 
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Figure 3.12 (a) n-digit radix-10 CSA (b) m-digit radix-10 counter. 

 

For example to add 16 carry save partial products,     , arranged as in 

Figure 3.13. The first level of the tree needs only 8 radix-10 CSAs leaving the 

carries of 8 partial products not accounted for. And by arranging the radix-10 

carry-save adders and the carry counters as in Figure 3.14, the partial products 

are accumulated in a 6-level tree. 

 

 

Figure 3.13 Array for partial products. Solid circles indicate BCD digits, 

hollow circles indicate carry bits. 
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Figure 3.14 A Radix-10 Combinational Multiplier Adder tree 

 

The final carry-propagating addition consists in converting the radix-10 

carry save representation into BCD one. This is done with a radix-10 CPA in 

which the input is just a value in radix-10 carry-save representation and the 

output is the product represented in BCD. 

Decimal 3:2 CSA 

Vázquez in  [22] proposes a 4-bit 3:2 decimal CSA using BCD-4221 format 

as shown in Figure 3.15a. 
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Figure 3.15 (a) 4-bit 3:2 decimal CSA (b) decimal multiplication by 2 for 

BCD-4221 

 

For 16 partial products, a 16:2 decimal CSA tree is used. Figure 3.16 shows 

two examples of a 16:2 decimal CSA trees. The 3:2 blocks represent a 4-bit 

binary 3:2 CSA. The    blocks represent decimal multiplication by 2. In the 

first implementation, shown in Figure 3.16a, every carry output is multiplied by 

2 before connecting to any other input. Since the carry path is slightly more 

complex than the sum path, outputs of block     are connected to fast inputs 

of the 3:2 CSA. The second implementation, Figure 3.16b reduces the 

hardware complexity by adding the carry outputs of the previous tree level 

before being multiplied by 2. Therefore it is necessary to perform several     

operations in a row for some paths. Both implementations present similar 

critical path delays but the second implementation is preferable because of 

reduced hardware complexity. 
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Figure 3.16 16:2 decimal CSA tree 

 

Reduction by column tree (dadda tree)  [3] 

Dadda proposes a decimal column addition for the partial products via a 

network of carry save adders.  The sum is converted to decimal format using 

binary to decimal converter. The decimal values are aligned then added to 

obtain the total sum through the addition of a few (2, 3, and at most 4) decimal 

numbers. This scheme, shown in Figure 3.17, is based on the following steps: 

1. Binary addition of N (4-bit) column digits of equal decimal weight. 

2. Binary to decimal conversion of each column sum. 

3. Decimal column sums alignment according to their decimal weights. It 

forms an array of few (2, 3, or 4) decimal numbers, each of them n digits 
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long, Major Partial Sums, MPSs. 

4. Decimal addition of the MPSs to obtain the final sum. 

 

 

Figure 3.17 basic decimal column adder scheme for N=33 addends 

 

3.4 Conclusion 

Decimal multiplication can be implemented using sequential or parallel 

approaches. Parallel decimal multiplication offers a good delay reduction. It 

generates all partial products in parallel according to the multiplier digits then 

the partial products are accumulated using a decimal CSA tree. This tree 

reduces all partial products into two partial products then a CPA is used to 

obtain the final product. Decimal multiplication can be divided into three 

stages: multiplicand multiples generation, multiplier recoding for multiples 

selection, and partial products accumulation.  
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Chapter 4 

Combined Binary/Decimal Multipliers 

Recently, two combined binary/decimal multipliers are proposed. The first 

is proposed by Vázquez in 2007 and the other by Hickmann in 2008. This 

chapter introduces the two multipliers and their advantages and disadvantages. 

4.1 Vázquez combined binary/decimal multiplier 

Vázquez et al.  [22] propose the first combined binary/decimal multiplier 

design approach. They use BCD-4221 format for decimal digits representation. 

Figure 4.1 shows a block diagram for Vázquez combined binary/decimal 

multiplier proposed in  [22]. For multiplicand multiples generation, a binary SD 

radix–4 recoding and a decimal SD radix–4 or decimal SD radix–5 recoding is 

used. SD radix–4 generates              multiples and SD radix–5 

generates               multiples. Two multiplexers, controlled by the 

multiplier digits, are used to select the suitable two multiplicand multiples for 

each digit. XOR gates are used for negative multiples.  
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Figure 4.1 Vázquez binary/decimal multiplier. 

 

For partial products accumulation, a shared binary/decimal carry save adder 

tree is used. The use of BCD-4221 format eliminates the decimal corrections 

needed to obtain correct decimal outputs from carry save adders. Figure 4.2 

shows the carry save adder tree used. A binary/decimal multiplication by two 

block,     , is used for carry outputs of the tree, Figure 4.3. Finally, a 

modified carry propagate quaternary tree adder, Q-T adder, is used to perform 

binary and decimal additions. To produce a correct decimal addition a 

conversion to BCD-8421 then a +6 operation is done to produce correct 

decimal digits before the Q-T addition. 
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Figure 4.2 Vázquez binary/decimal CSA Tree. 

 

 

Figure 4.3 Binary/Decimal multiplication by two block. 
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4.2 Hickmann combined binary/decimal multiplier 

Figure 4.4 shows Hickmann et al. multiplier proposed in  [9]. They improve 

Vázquez multiplier trying to decrease the area and delay, specially the delay of 

binary path. They use only 3:2 CSAs in the carry save adder tree to reduce the 

number of binary/decimal     blocks. Sharing of    block for binary and 

decimal increases the area and delay of binary and decimal paths, because of 

the multiplexer used in it. They propose to split the binary/decimal tree at the 

beginning of using      blocks, Figure 4.5, to avoid the extra multiplexers 

used compared to standalone multipliers. So the delay of binary and decimal 

paths are significantly reduced but with a reasonable area penalty.  

 

 

Figure 4.4 Hickmann binary/decimal multiplier. 
 

For multiplicand multiples generation and selection, they use same Vázquez 

design. Also a +6 is added to sum before the final Q-T carry propagate adder. 

They split the carry propagate adder for binary and decimal final adder to 

decrease the delay but with more area increase. 
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Figure 4.5 Hickmann split binary/decimal CSA Tree. 
 

4.3 Conclusion 

Vázquez et al. propose the first combined binary/decimal multiplier design. 

They propose a shared binary/decimal CSA tree. A multiplexer is used in each 

   block to select between binary and decimal   , which lead to some 

increase in the area and delay specially in the binary path. Hickmann et al. split 

the binary and decimal CSA trees at the start of using    blocks. They have 

some increase in area but the delay of binary and decimal paths are decreased.  
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Chapter 5 

Proposed Combined Binary/Decimal Fixed-Point 

Multiplier 

In this chapter, the proposed combined binary/decimal multiplier design is 

discussed. It allows the use of binary or decimal multiplication according to 

application. Binary multiplication is faster and decimal multiplication is more 

accurate in financial applications. We try to decrease the total area and delay of 

each path. The proposed multiplier takes two operands, 64-bit multiplicand     

and 64-bit multiplier    . It also takes a             signal to determine 

whether the operands are binary or decimal, BCD-8421. When the B/D control 

signal has a     value, operands are binary and when it has a     value, operands 

are decimal, BCD-8421. The design consists of three stages: multiplicand 

multiples generation, partial products selection, and partial products 

accumulation. We deal with each multiplier four bits as a digit for binary and 

decimal multiplication so multiples from 1 to 9 for decimal and multiples from 

1 to 15 for binary are generated in multiplicand multiples generation stage. The 

multiplier and multiplicand is presented by 16 digits.  

We propose three designs for the multiplier. The first design uses 

                 binary multiplicand multiples and               

decimal multiplicand multiples. These multiples output three partial products 
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for each binary digit and two partial products for each decimal digit. Two trees 

are used in the partial products accumulation stage, one shared for binary and 

decimal, Dadda column tree. And the other for binary, Wallace tree. A final 

Kogge-Stone carry propagate adder is used to produce the final product.  

Second design uses one column tree in the partial product accumulation stage 

to reduce the area. The                          binary multiplicand 

multiples and                decimal multiplicand multiples are generated. 

These multiples generate only two partial products for binary and decimal 

digits.  

Third design uses Booth 4 for binary recoding which reduce the number of 

multiplicand multiples need to be generated without increasing the number of 

partial products of each digit. The              binary multiplicand 

multiples and               decimal multiplicand multiples are generated. 

Two versions of this design is proposed, shared and split. Some improvements 

are used to decrease area and delay for the final proposed design. 

5.1 First Proposed Design 

Figure 5.1 shows the block diagram of the first proposed multiplier. The 

multiplier has three inputs, Multiplicand    , Multiplier    , and 

Binary/Decimal Control signal              .  

5.1.1 Multiplicand Multiples Generation Stage 

The first stage of the multiplier is generating basic multiplicand multiples. 

The remaining multiples is generating dynamically during the next stages by 

adding two/three basic multiplicand multiples. In order to decrease the delay of 

this stage, the tertiary set                         is generated for binary 

multiplicand multiples and the secondary set                      is 

generated for decimal multiplicand multiples. A tertiary set is used in binary, to 

eliminate the generation of 3A or 5A multiples which take a large delay O(n),  
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Figure 5.1 First combined binary/decimal multiplier block diagram. 

 

where n is the number of multiplicand bits. So for each binary multiplier digit, 

three multiplicand multiples are selected and for each decimal multiplier digit, 

two multiplicand multiples are selected.  

Binary multiples are generated using only shifting as shown in Figure 5.2. 

          and     multiples are generated using 1bit, 2bit, 3bit, and 4bit left 

shifting. Negative multiples are generated using 2‟s complement operation 

obtained by generating 1‟s complement in this stage, by inverting each bit of 

positive multiple using NOT gate, then at the partial products selection stage a 

            , sign bit, is generated to be added to partial products in 

accumulation stage. 
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Figure 5.2 Binary multiples generation 

 

Decimal multiples use BCD-8421 signed-digit radix-5 recoding  [22], 

where it has a fast generation of multiplicand multiples 2A, 5A, and 10A.    

and    multiples are generated using shifting and conversion between different 

BCD formats as shown in Figure 5.3. Decimal     multiple is generated using 

4-bit shifting. For negative multiples, a 9‟s complement is obtained for each 

digit using two level gates combinational function. Then at the partial products 

selection stage a             , sign bit, is generated. Only –   and     

negative multiples are needed and generated. 

 

 

Figure 5.3 Decimal multiples generation 
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For the BCD-8421 to BCD-5421 encoder block, Table 5.1 shows a digit 

conversion from BCD-8421 to BCD-5421.  

 

 

 

 

 

 

 

 

 

 

Each digit of this encoder is described by the following equations 

 

                                                      (5.1) 

                             (5.2) 

                           (5.3) 

                       (5.4) 

 

For the BCD-5421 to BCD-8421 encoder block, Table 5.2 shows a digit 

conversion from BCD-5421 to BCD-8421. Χ means don‟t care where these 

values do not appear after shifting the BCD-8421 three bits to the left. 

 BCD-8421 BCD-5421 

                         

0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 1 

2 0 0 1 0 0 0 1 0 

3 0 0 1 1 0 0 1 1 

4 0 1 0 0 0 1 0 0 

5 0 1 0 1 1 0 0 0 

6 0 1 1 0 1 0 0 1 

7 0 1 1 1 1 0 1 0 

8 1 0 0 0 1 0 1 1 

9 1 0 0 1 1 1 0 0 

Table 5.1 BCD-8421 to BCD-5421 conversion 
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Each digit of this block is described by the following equations 

 

                   (5.5) 

        
      

             
           (5.6) 

        
      

      
         

              (5.7) 

                       (5.8) 

 

The decimal BCD-8421 9‟s complement block is implemented using two level 

logic gates. Table 5.3 shows a BCD-8421 9‟s complement truth table. 

 BCD-5421 BCD-8421 

                         

0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 1 

2 0 0 1 0 0 0 1 0 

3 0 0 1 1 0 0 1 1 

4 0 1 0 0 0 1 0 0 

5 0 1 0 1 Χ Χ Χ Χ 

6 0 1 1 0 Χ Χ  Χ Χ 

7 0 1 1 1 Χ Χ Χ Χ 

5 1 0 0 0 0 1 0 1 

6 1 0 0 1 0 1 1 0 

7 1 0 1 0 0 1 1 1 

8 1 0 1 1 1 0 0 0 

9 1 1 0 0 1 0 0 1 

10 1 1 0 1 Χ Χ Χ Χ 

11 1 1 1 0 Χ Χ Χ Χ 

12 1 1 1 1 Χ Χ Χ Χ 

Table 5.2 BCD-5421 to BCD-8421 conversion 



80 

 

 

 

 

 

 

 

 

 

 

 

It is described by the following equations 

 

                (5.9) 

             (5.10) 

                  (5.11) 

                           (5.12) 

 

5.1.2 Partial Products Selection Stage 

After generating the basic multiplicand multiples, the suitable two/three 

multiplicand multiples is selected according to multiplier digits using two/three 

(BCD-8421) 9‟s complement 

(BCD-8421) 

                          

0 0 0 0 0 1 0 0 1 9 

1 0 0 0 1 1 0 0 0 8 

2 0 0 1 0 0 1 1 1 7 

3 0 0 1 1 0 1 1 0 6 

4 0 1 0 0 0 1 0 1 5 

5 0 1 0 1 0 1 0 0 4 

6 0 1 1 0 0 0 1 1 3 

7 0 1 1 1 0 0 1 0 2 

8 1 0 0 0 0 0 0 1 1 

9 1 0 0 1 0 0 0 0 0 

Table 5.3  9‟s complement of BCD-8421 digits 
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multiplexers for decimal/binary paths. Binary multiplicand multiples set is 

divided into three groups for the three multiplexers while decimal multiplicand 

multiples set is divided into two groups for the two multiplexers. Two 

multiplexers are shared between binary and decimal selection to choose the two 

suitable multiplicand multiples. The third multiplexer is used for the binary 

third group which chooses the third suitable binary multiplicand multiple. 

Binary set is divided into                 ,             and     

groups. The third group is to generate 11A and 13A multiples without the need 

to generate 3A or 5A multiples. The binary partial products are selected 

according to Table 5.4. 

 

Multiple MUX1 

selection 

MUX2 

selection 

MUX3 

selection 

0 0 0 0 

    0 0 

2  2  0 0 

3     4  0 

4  0 4  0 

5    4  0 

6  2  4  0 

7     8  0 

8  0 8  0 

9    8  0 

10  2  8  0 

11  2  8    

12  4  8  0 

13  4  8    

14      16  0 

15     16  0 

Table 5.4 Binary multiplicand multiples selection. 
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Decimal set is divided into               and          groups. Table 

5.5 shows the decimal partial products selection from the two multiplexers. 

 

Multiple MUX1 multiple 

selection 

MUX2 multiple 

selection 

0 0 0 

    0 

2     0 

3         

4        

5  0    

6       

7        

8          

          

Table 5.5 Decimal multiplicand multiples selection. 

This stage outputs 49 binary partial products,    (   multiplier digit)     

(for          sign bits). 33 decimal partial products,   (   multiplier digit) 

    (for          sign bits) are output.  

A two level gate multiplexer is used as shown in Figure 5.4. Where cond1 

means condition of selecting   multiple, cond2B means condition of selecting 

   multiple for binary operands, cond2D means condition of selecting    

multiple for decimal operands, Inv means condition of inverting for negative 

multiples, and so on. The conditions that control them depend on multiplier 

digits      and             signal    , where       means binary input 

operands and       means decimal input operands. The conditions that 

control the multiplexers are similar for all digits. First digit equations are: 
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For MUX1 

 

            
         

    
                    

            
    

        

         (5.13) 

          
            

               (5.14) 

          
                 (5.15) 

          
                  

          (5.15) 

              
                  (5.16) 

                 
      

      
         (5.17) 

 

 

Figure 5.4 Multiplexers design for each multiplier digit. 
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For MUX2 

 

          
         

      
       

            
      

          (5.18) 

          
         

                
          (5.19) 

                           (5.20) 

                   
           (5.21) 

                     (5.22) 

 

For MUX3 

 

                               (5.23) 

 

5.1.3 Partial Products Accumulation Stage 

After generating all partial products, a tree of adders is used to add them. 

Irregular tree topologies are used in order to minimize the total delay. MUX1 

output 17 partial products and MUX2 output 16 partial products. They are 

common for binary and decimal. Each partial product is shifted to its right 

weight according to its multiplier digit position. Then they enter to a binary 

column tree, shared for binary and decimal. A binary tree is used here to save 

the correction delays of decimal addition due to the six invalid BCD-8421 

digits, from 10 to 15. Column tree did not allow the pass of carry bit to next 

digit which should be of order 16 in binary addition and of order 10 in decimal 

addition. These different between binary and decimal need a multiplexer to 

choose the correct carry for each path. Binary tree solve this problem which 
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save delay and area. The binary column tree used here is similar to Dadda‟s 

tree in  [3]. Nevertheless, the proposed tree replaces the binary addition by a 

carry save addition to decrease the delay. Also, each column has different 

number of digits to be added according to partial products different weights. It 

adds every 4-bit digit for the 33 partial products out from MUXs1 and MUXs2 

using binary carry save adders. Each column out sum and carry output. Figure 

5.5 shows the scheme of the binary column tree used.  

 

 

Figure 5.5 Binary column tree scheme. 

 

Every column has a different number of digits. A CSA tree used for each 

column to add its digits as in  [3]. Column number 0 has two digits from first 

two partial products, for first multiplier digit, and one sign bit for negative 

multiplicand multiples. Column number 15 has the maximum number of digits 

to be added, 32 digits plus 1 sign bit. Figure 5.6 shows the binary CSA tree of 

digit(15). Sign bit is added to first bit of shifted carry digits in the tree. Sign 
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extension is not needed here where multiplicand and multiplier are positive, 

there output sign is calculated separately. Two partial products are generated 

for each multiplier digit, there summation is positive. 

In parallel to the column tree, a binary row tree, Wallace tree, is used to 

add the binary partial products out from MUXs3. Figure 5.7 shows a scheme of 

the row tree. Figure 5.8 shows the CSA binary tree block diagram. 

 

 

Figure 5.6 CSA binary tree (for 32 digits, 4-bit). 
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Figure 5.7 64-bit binary CSA tree for the 16 partial products out of MUXs3. 

 

Figure 5.8 CSA binary tree (for 16 partial products, 64-bit). 
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The output of column tree is rearranged  [3], according to the B/D Control 

signal. In case of Binary, it is rearranged to 2 Major Partial Sums and 2 Major 

Partial Carries. In case of Decimal, it is firstly converted to BCD-4221, all 

valid BCD code, to use binary CSA without decimal correction. Then they 

rearranged to 3 Major Partial Sums and 3 Major Partial Carries. Two separate 

trees are used after that, a decimal one to add the 6 decimal Major Partial Sums 

and Carries, and a binary one to add the 4 binary Major Partial Sums and 

Carries with the sum and carry out from the binary CSA tree. 

Finally a two parallel Kogge-Stone carry propagate adders are used to add 

the final sum and carry partial products to produce the final product (P). The 

separation between binary and decimal trees eliminates the latency of decimal 

corrections from the binary multiplication path. 

5.2 Second proposed Design 

Partial products accumulation stage is the most significant multiplier stage 

since it has the largest area and delay. In the second design, we try to decrease 

its area with small increase of the delay by generating 11A and 13A 

multiplicand multiples in the first stage. These two multiples need an addition 

of three multiplicand multiples from basic multiples                 , 

which generated using only shifting. So we use a secondary set for binary and 

decimal multiplicand multiples generation. The second tree, binary CSA row 

tree, is not needed. We use only one tree, binary column tree. Figure 5.9 shows 

the second combined binary/decimal multiplier design block diagram. 
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Figure 5.9 Second combined binary/decimal multiplier block diagram. 

 

5.2.1 Multiplicand Multiples Generation Stage 

Secondary sets are used which generate 32 partial products for the 16 digits 

multiplier plus 1 partial product for sign bits. Tertiary sets are not considered 

where it generates 49 partial products which need an extra tree in the partial 

product accumulation stage and increase the area by high factor. 

For binary multiples,                                        
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are used to generate the multiples     and     in CSA format where these two 

multiples need the addition of three multiples               and    

         .  Figure 5.10 and Figure 5.11 show the design of the CSA. 

They take a delay of CSA, four gate delays, but they save 16 extra partial 

products for using a tertiary set. Negative multiples are generated using 2‟s 

complement operation obtained by generating 1‟s complement in this stage 

then at the partial products selection stage a             , sign bit, is generated 

to be added to partial products in accumulation stage. Figure 5.12 shows the 

binary multiplicand multiples generation. 

 

 

Figure 5.10 Three input, 64-bit, Carry Save Adder 

 

 

Figure 5.11 1-bit Carry Save Adder 

1-bit

CSA

1-bit

CSA

1-bit

CSA

1-bit

CSA

1-bit

CSA

1-bit

CSA
. . . . . . .

S0C0S1C1S2C2S3C3S62C62S63C63



91 

 

 

Figure 5.12 binary multiples generation 

 

For decimal, we generate the multiplicand multiples                 

     as in first design, Figure 5.3. 

5.2.2 Partial Products Selection Stage 

Each binary and decimal multiplicand multiples set is divided into two 

groups, where secondary sets are used for binary and decimal. Two 

multiplexers are used to choose the two suitable multiplicand multiples for each 

multiplier digit. 

Binary set is divided into                            and        

               groups. The binary partial products are selected according to 

Table 5.6. 

Decimal set is divided into               and          groups as in 

first design. Table 5.5 shows the decimal partial products selection from the 

two multiplexers. 
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Multiple MUX1 multiple 

selection 

MUX2 multiple 

selection 

0 0 0 

    0 

2     0 

3        

4  0    

5       

6        

7        

8  0    

9       

10        

11            

12        

13            

14          

15         

Table 5.6 Binary multiplicand multiples selection. 

 

This stage outputs 33 partial products. Figure 5.13 shows the partial 

products selection block diagram for binary and decimal multiplication.  

 

 

Figure 5.13 Partial products selection. 
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The conditions that control the multiplexers depend on multiplier digits      

and B/D Control signal    , where       for binary input operands and 

      for decimal input operands. The equations that control the two 

multiplexers are: 

For MUXs1 

 

            
         

    
                    

            
    

        

         (5.24) 

          
                (5.25) 

          
      

                 (5.26) 

                  
               (5.27) 

               
                (5.28) 

          
                  

          (5.29) 

              
                  (5.30) 

                 
      

      
         (5.31) 

 

For MUXs2 

 

          
         

      
      

            
      

          (5.32) 

          
      

       
    

         
      

                   
        (5.33) 

                  
               (5.34) 
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                (5.35) 

                           (5.36) 

                   
           (5.37) 

                     (5.38) 

 

5.2.3 Partial Products Accumulation Stage 

One binary column tree is used to add the 33 binary/decimal partial 

products outputs from MUXs1 and MUXs2, Figure 5.5 and Figure 5.6.  

The output of the column tree is rearranged according to the B/D Control 

signal. In case of Binary, it is rearranged into two Major Partial Sums and two 

Major Partial Carries. In case of Decimal, it is firstly converted to BCD-4221, 

all valid BCD code, to use binary CSA without decimal correction. Then they 

rearranged to 3 Major Partial Sums and 3 Major Partial Carries. Two separate 

trees are used after that, a decimal one to add the 6 decimal Major Partial Sums 

and Carries, and a binary one to add the 4 binary Major Partial Sums and 

Carries.  

Finally a binary/decimal Kogge-Stone based carry propagate adder is used 

to add the final sum and carry partial products which produce the final 

product    . 

5.3 Third Proposed Design 

To eliminate the delay of the two CSAs that generate     and     without 

the need to use tertiary sets in multiplicand multiples generation, Booth-4 

binary recoding is used. It reduces the number of multiplicand multiples needed 

to be generated without increasing the number of partial products of each digit. 

Only the secondary set              multiplicand multiples are generated for 
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binary multiplication. 33 partial products are generated and added using the 

binary column tree for binary and decimal partial products. After the binary 

column tree, columns output is rearranged in 4/6 bit vectors for binary/decimal 

multiplication. Two schemes are implemented for the addition of these bit 

vectors, shared and split. Figure 5.14 shows the block diagram of the proposed 

combined binary/decimal multiplier design. 

 

 

Figure 5.14 Proposed combined binary/decimal multiplier (a) shared design, 

(b) split design. 
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5.3.1 Multiplicand Multiples Generation Stage 

For binary multiplicand multiples, Booth4 recoding is used which only 

need the generation of                             multiplicand 

multiples, Figure 5.15. All multiplicand multiples are generated using only 

shifting. Negative multiples are generated using 2‟s complement operation. 

 

 

Figure 5.15 Used binary multiples generation. 

 

Decimal multiplicand multiples are generated as in first design, Figure 5.3. 

5.3.2 Partial Products Selection Stage 

Each binary and decimal multiplicand multiples set is divided into two 

groups, where secondary sets are used for binary and decimal. Binary set is 

divided into               and                 groups. Table 5.7 

shows the partial products selection according to Booth4 recoding, 

where      .     .     .     represent the present multiplier digit, and      

represent the most significant bit of the previous digit. Negative multiples are 

needed in the two groups, so two sign bits are generated for each multiplier 
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digit. For binary booth4, the multiplier is padded with one     bit to the right 

and four     bits to the left, so it divided into 17 digits. For the first 16 

multiplier digits, two multiplicand multiples are selected. The last digit, last 

five bits, is         or        , so it needs only one partial product, where it 

selects between   or   multiplicand multiple.  

 

Bit 

Operation 

MUX1 

multiple 

selection 

MUX2 

multiple 

selection 

2
3
 2

2
 2

1
 2

0
 2

-1
 

                       

0 0 0 0 0 0 0 0 

0 0 0 0 1 +    0 

0 0 0 1 0 +    0 

0 0 0 1 1 +2  2  0 

0 0 1 0 0 +2         

0 0 1 0 1 +3        

0 0 1 1 0 +3     4  

0 0 1 1 1 +4  0    

0 1 0 0 0 +4  0    

0 1 0 0 1 +5    4  

0 1 0 1 0 +5    4  

0 1 0 1 1 +6        

0 1 1 0 0 +6         

0 1 1 0 1 +7        

0 1 1 1 0 +7        

0 1 1 1 1 +8  0    

1 0 0 0 0  8  0     

1 0 0 0 1  7        

1 0 0 1 0  7        

1 0 0 1 1  6         

1 0 1 0 0  6          

1 0 1 0 1  5         

1 0 1 1 0  5         
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Bit 

Operation 

MUX1 

multiple 

selection 

MUX2 

multiple 

selection 

2
3
 2

2
 2

1
 2

0
 2

-1
 

                       

1 0 1 1 1  4  0     

1 1 0 0 0  4  0     

1 1 0 0 1  3        

1 1 0 1 0  3        

1 1 0 1 1  2         

1 1 1 0 0  2      0 

1 1 1 0 1       0 

1 1 1 1 0       0 

1 1 1 1 1  0 0 0 

Table 5.7 Binary partial products selection according to Booth4 recoding. 

 

Decimal set is divided into               and          groups as in 

previous designs, Table 5.5. Figure 5.16 shows the partial products selection 

block diagram for binary and decimal multiplications. MUXs1 output 17 partial 

products plus 1 partial product for sign bits, MUXs2 output 16 partial products 

plus 1 partial product for sign bits. 

 

 

Figure 5.16 Partial products selection. 
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This stage outputs 33 binary/decimal partial products plus two sign partial 

products. A two level multiplexer design is used as shown in Figure 5.17. 

 

 

Figure 5.17 Multiplexers design for each multiplier digit. 

 

The conditions that control the multiplexers depend on multiplier current 
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For MUXs1 

 

             
         

               
            

    
       (5.39) 

          
          

           
             (5.40) 

          
                  

          (5.41) 

         
             

            (5.42) 

                  
      

      
         (5.43) 

 

For MUXs2 

 

             
      

            (5.44) 

          
    

               
           (5.45) 

                   
           (5.46) 

                     (5.47) 

                  (5.48) 

 

Sign bits outputs from MUX1 and MUX2, Inv1 and Inv2 signals, are added in 

column trees. It is entered to first bit of shifted carry digits.  
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5.3.3 Partial Products Accumulation Stage 

This stage consists of four steps as shown in Figure 5.14. Binary column 

tree, rearrange column tree outputs, tiny binary/decimal tree, and final carry 

propagate adder. 

Binary column tree 

A CSA binary column tree is used for the 35 partial products. It is the first 

step of partial products accumulation for binary and decimal multiplication 

paths. Figure 5.18 shows the scheme of the proposed binary column tree. 

Columns output different size sums and carries according to number of digits 

added.  

 

 

Figure 5.18 Proposed binary column tree scheme (S and C maximally 8 bits). 
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The worst case number of digits to be added is 33 plus 2 sign bits. Figure 

5.19 shows the 33 digits CSA binary column tree. Sign bits added to the first 

bit of shifted carry digits in the tree levels. 

 

 

Figure 5.19 33 digits CSA binary tree. 
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Rearrange column tree outputs 

For Binary operands, column trees output 4 bits to 8 bits sums and carries. 

Columns outputs are rearranged to multiply each one by its relevant weight. 

Four bit-vectors are produced, two for output sums and two for output carries, 

Figure 5.20. 

 

 

Figure 5.20 The four binary bit-vectors after rearranging. 

 

For decimal operands, column trees output 4 bits, 1 BCD digit, to 10 bits, 3 

BCD digits, sums and carries. A binary to decimal converters is used to convert 

each binary column output to BCD-8421, and then converted to BCD-4221, 

and then it is rearranged to multiply each column output by its relevant weight. 

After rearranging column trees output six bit-vectors, three for output sums and 

three for output carries, Figure 5.21.  

 

 

Figure 5.21 The six decimal bit-vectors after rearranging. 
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The conversion to decimal, BCD-8421, takes some delay. However, this extra 

decimal delay is approximately equal to decimal    blocks delay used in 

decimal path in Hickmann design [9]. But it is separated from binary path 

without significant increase in area. Where the area of binary to decimal 

converters is much less than the area of another tree as in  [9].  The conversion 

from binary to decimal, BCD-8421, is discussed in next section. the decimal 

bit-vectors is converted from BCD-8421 to BCD-4221 before the tiny tree to 

allow the use of binary CSA design and out valid decimal values for all 4-bit 

combinations. So we need not a decimal correction after the addition. 

The BCD-8421(x3x2x1x0) to BCD-4221(h3h2h1h0) converter equations are 

 

             (5.49) 

              (5.50) 

                (5.51) 

                (5.52) 

 

Binary to BCD-8421 Conversion (Shift and Add-3 Algorithm)  [1] 

The algorithm starts with the three most significant bits of the binary 

number. If the three bits value is greater than or equal to five, add binary three 

to the number and shift the result one bit to the left. If the three bits value is less 

than five, shift to the left without adding. Then take the next bit from the right 

and repeat the operation till we reach the least significant bit. Figure 5.22 

shows the steps to convert 8-bit binary number to BCD-8421 using the Shift 

and Add-3 Algorithm  [1]. The steps of this example: 

1. Shift the binary number left three bits. 
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2. If the binary value in any of the BCD columns is 5 or greater, add 3 to 

that value in that BCD column. 

3. Shift the binary number left one bits 

4. Go to 2.  

5. After 8 shifts, the BCD number is obtained. 

 

 

Figure 5.22  8-bit binary to decimal converter example. 

 

Figure 5.23 shows the block diagram of the 8-bit binary to BCD-8421 

converter using this algorithm. 
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Figure 5.23 8-bit binary to decimal converter block diagram. 

 

In the final proposed design a binary to BCD-8421 converters are used for 

each column output of the binary column tree. A 5-bit to 9-bit binary to BCD-

8421 converters are used for different outputs. The 9-bit one has a largest 

delay. It adds 33 decimal digit plus 2 sign bits. Its maximum value of it is 299D, 

100101011B. Its most significant three bits are always less than five so its first 

level can be eliminated. Figure 5.24 shows the binary to decimal converter used 

for 9-bit binary input. 
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Figure 5.24 9-bit, max. value 319, binary to decimal converter block diagram. 

 

Tiny Binary/Decimal Tree 

Two designs are implemented for this step, which add the 4/6 bit-vectors 

output from the column tree for binary/decimal multiplication. A tiny split 

binary/decimal tree design is obtained to eliminate the latency of the decimal 

     from the binary multiplication path, Figure 5.25. A tiny shared 

binary/decimal tree design is obtained to decrease the area, Figure 5.26, where 

one 128-bit CSA is shared between binary and decimal, using multiplexer.  
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Figure 5.25 (a) Tiny split binary tree. (b) Tiny split decimal tree. 

 

 

Figure 5.26 Tiny shared binary/decimal tree 
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It was found that the difference in area between the split and shared tiny 

binary/decimal trees is not large. The area of shared design is slightly less than 

split design, where one 128-bit CSA is replaced by a three 128-bit MUXs for 

three binary/decimal bit vectors. 

Final Carry Propagate Adder 

The final carry/sum vectors are added using Kogge-Stone based carry 

propagate adder  [11]. Two designs are implemented, shared and split 

binary/decimal Kogge-Stone based carry propagate adder. Figure 5.27 shows 

the proposed split binary/decimal Kogge-Stone based carry propagate adder 

scheme. In this scheme binary and decimal carry propagate adders are 

separated to decrease the delay of binary and decimal multiplication paths. 

 

 

Figure 5.27 Split Binary/Decimal Kogge-Stone based carry propagate adder 
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Another scheme is implemented to decrease the area, novel shared 

binary/decimal Kogge-Stone based carry propagate adder, Figure 5.28.  

 

 

Figure 5.28 Shared Binary/Decimal Kogge-Stone based carry propagate adder 
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to eliminate decimal correction delay and area. At the end of design a BCD-

4221 to BCD-8421 conversion is performed to produce the final product in 

BCD-8421format. The equations of the conversion from BCD-4221(x3x2x1x0) 

to BCD-8421(h3h2h1h0) are 

 

             (5.53) 

                         (5.54) 

                                   (5.55) 

                  (5.56) 

 

5.4 Final Proposed Design 

Figure 5.29 shows the final proposed binary/decimal multiplier design. It is 

similar to third proposed combined binary/decimal multiplier discussed with a 

carry/sum addition block before the rearranging of decimal operands output 

from column tree. 

This block adds every sum/carry output from binary column tree using 

binary Kogge-Stone CPAs, maximum 8 bit. After sum/carry addition, tree 

columns output 5 binary bits, 2 BCD digits, to 9 binary bits, 3 BCD digits, 

sums and carries. A binary to decimal converters based on  [1] is used to 

convert each binary column output to BCD-8421, and then converted to BCD-

4221, and then it is rearranged to multiply each column output BCD digits by 

its relevant weight. Figure 5.30 shows the three bit-vectors output after 

rearranging. 
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Figure 5.29 Final proposed Binary/Decimal Multiplier design (split scheme). 

 

 

Figure 5.30 The three decimal bit-vectors after rearranging. 
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Two schemes are used for the binary and decimal tiny tree, Split and 

shared, to add the four and three bit-vectors output from the column tree, 

respectively, Figure 5.31 and Figure 5.32. 

 

 

Figure 5.31 Tiny split binary and decimal trees. 

 

 

Figure 5.32 Tiny shared binary/decimal tree. 
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The two final vectors output from tiny binary/decimal tree are added using 

binary/decimal Kogge-Stone based carry propagate adder, Figure 5.27, and 

Figure 5.28. 

5.5 Conclusion 

Four designs are proposed for the combined binary/decimal multiplier. The 

final proposed design groups all good ideas for the previous proposals within 

this thesis. We use the smallest area and delay binary multiplicand multiples 

generation method, booth4 recoding. We also include the decimal SD radix-5 

recoding for decimal multiplicand multiples generation from Vazquez, which 

has a small area and delay. Dadda binary column tree is included to add the 

binary/decimal partial products. It saves the use of decimal adders and 

corrections which increase the area and delay of the multiplier. Two schemes 

are used for the addition of the three/four bit vectors output from column tree, 

shared and split. The shared one tries to decrease the area of the multiplier, and 

the split one tries to decrease the delay of the multiplier. Next we discuss the 

testing of our designs and the implementation results. 
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Chapter 6 

Verification and Results 

6.1 Testing  

The proposed combined binary/decimal multiplier, Vázquez, and 

Hickmann designs are implemented in FPGAadv tool. In order to verify the 

implementations, test cases are generated then a test bench is developed for the 

implemented design using VHDL language. A C program is written equivalent 

to multiplier design. Using ActiveFileCompare program, the test bench results 

and the C program results is compared. 

Test Cases 

The multiplier has two 64-bit inputs, multiplicand and multiplier, and a 

control bit. It is difficult to test all possible combinations of the inputs where 

2
128

 = 3.4e38.  So a group of test cases is generated trying to handle all possible 

errors. We divided the 128-bit inputs to 8 parts, each one 16-bit. Table 6.1 

shows the test cases used. (i.e. we use C character to represent a truth table of 

all possible combination of the 16-bit, from 0000000000000000 to 

1111111111111111, 2
16

 row). First part of test cases shown in Table 6.1 

represents a binary 8-bit truth table, but instead of „1‟ logic, a C is used. So 

each row of the truth table represents 2
16

 rows. In the second and last part of the 
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table the C truth table is used to test each part when the other bits are 0 and 1 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Testing Approach 

A test bench is developed for each block of the multiplier then a test bench 

for the whole multiplier is implemented. A C program is written for each block 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 C 

0 0 0 0 0 0 C 0 

0 0 0 0 0 0 C C 

. . . . . . . . 

. . . . . . . . 

C C C C C C 0 0 

C C C C C C 0 C 

C C C C C C C 0 

C C C C C C C C 

0 0 0 0 0 0 0 C 

0 0 0 0 0 0 C 0 

. . . . . . . . 

C 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 C 

. . . . . . . . 

1 C 1 1 1 1 1 1 

C 1 1 1 1 1 1 1 

Table 6.1 Test cases 
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and for the multiplier equivalent to VHDL design. ActiveFileCompare program 

is used to compare between test benches results and C programs results. 

6.2 Results  

This section presents an area/delay comparison between the proposed 

binary/decimal multiplier designs and the two previous ones  [9] [22]. The main 

difference between them is the accumulation stage. Vázquez et al. propose a 

shared binary/decimal CSA tree using binary/BCD-4221 format. The CSAs for 

binary and decimal are shared. A MUX is used in each    block to select 

between binary and decimal. They lead to some increase in the delay of binary 

and decimal paths. Hickmann et al. split the binary and decimal CSA trees at 

the start of using    blocks. They have an increase in area but the decimal    

and binary     is separated, so no MUXs are used. A comparison between 

these designs and third design, shared and split, and final proposed design, 

shared and split is introduced.  

Third proposed design 

The proposed designs use two tree stages. The first is a binary tree used to 

decrease the binary/decimal partial products to four/six bit-vectors. Then a tiny 

split/shared CSA tree is used to add the four/six bit-vectors for binary/decimal 

multiplication. Table 7.1 presents area-delay figure for the different 

binary/decimal multipliers on FPGA virtex5. The area of the two proposed 

designs, split and shared, is less than Vázquez and Hickmann designs. 
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Final proposed design 

In the final proposed design, a carry/sum addition of the column outputs 

from binary column tree is included before rearranging, to decrease the delay of 

binary and decimal paths. Table 7.2 shows an area-delay figure for the different 

binary/decimal multipliers on FPGA virtex5. 

 

 

Also each design is synthesized on the low power CMOS 130nm 

technology. Table 7.3 shows an area/delay figure for the different 

binary/decimal multipliers  [15]. 

 

Table 7.1 Area/Delay figure for different Binary/decimal 

multipliers using FPGA virtex5. 

 

 
Vázquez Hickmann 

Proposed 

Design 

(split) 

Proposed 

Design 

(shared) 

Worst 

path delay 

Binary 
≈ 55 ns 

≈ 42 ns ≈ 43 ns 
≈ 56 ns 

Decimal ≈ 48 ns ≈ 51 ns 

Total equivalent gate 

count 
116081 108472 92658 92098 

Table 7.2 Area/Delay figure for different Binary/decimal 

multipliers using FPGA virtex5. 

 

 
Vázquez Hickmann 

Proposed 

Design 

(split) 

Proposed 

Design 

(shared) 

Worst 

path delay 

Binary 
≈ 55 ns 

≈ 42 ns ≈ 43 ns 
≈ 54 ns 

Decimal ≈ 48 ns ≈ 48 ns 

Total equivalent gate 

count 
116081 108472 87605 88613 
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The proposed design has almost the same delays as the fastest known 

multiplier, Hickmann multiplier design, but significantly reduces the required 

area. 

6.3 Conclusion 

This thesis presents a parallel combined binary/decimal fixed-point 

multiplier design with novel partial product accumulation design to decrease 

the area of the multiplication without increasing the delay. In this stage, a 

binary column tree is used for binary and decimal multiplication. Then a tiny 

binary/decimal CSA tree is used to generate the final product in sum/carry 

format. A comparison between proposed and previous binary/decimal 

multipliers shows that the proposed design has the smallest area. It is 16% less 

than Vázquez design area and 27.5% less than Hickmann design area. For the 

delay, the proposed design is almost the same as Hickmann multiplier (fastest 

in the literature) and less than Vázquez multiplier for decimal and binary paths. 

6.4 Future Work 

Finally, this section presents some suggestions for future work. These 

suggestions are as follows:  

-  Design a floating point binary/decimal multiplier. 

 Vázquez Hickmann 
Proposed 

Design 

(split) 

Proposed 

Design 

(shared) 

Worst path 

delay (ns) 

Binary 

8.03 
4.55 4.61 

7.86 
Decimal 

7.18 7.05 

Area (µm
2
) 

932044 782643 567681 596330 

Table 7.3 Area/Delay figure for different binary/decimal 

multipliers using ASIC low power CMOS 130nm technology. 
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- Implement a combined binary/decimal floating point adder and a 

combined floating point binary/decimal divider then include them into a 

processor. 
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 نبذة

موضوعا ىاما لدعم التطبيقات العشرية  جهيزةفي الأالعشري /الثنائيالحسابات بالنظام المشترك أصبحت 

بما و . للأعداد الصحيحة عشري/ثنائيمضاعف تصميم لقدم ىذه الرسالة ت. مساحة صغيرةعالية و بسرعة والثنائية 

لذلك . المرحمة الأكثر أىميةفيي ، أطول وقت أكبر مساحة و تأخذ في المضاعف  أن مرحمة جهمع النواتج الجهزئية

مقارنة ايضا تم . تم استخدام النظام الثنائي لجهمع النواتج الجهزئية الناتجهة في المضاعف بالنظام الثنائي والعشري

نفس السرعو مع  المساحةانخفاضا كبيرا في التصميم المقترح انتج . التصاميم المنشورة سابقامع التصميم المقترح 

 .سابقا معروفةفي التصاميم المتصميم الأسرع با لتقري

. الثنائية والعشرية الفصل الاول يعرض مقدمة عن النظم الحسابية. ىيكل الرسالة يتكون عمى النحو التالي

الفصل الثالث يعرض تقنيات الضرب بالنظام . الفصل الثاني يمخص الطرق المستخدمو لعمميات الضرب

تصميم الفصل الخامس يشرح ال. العشرية المقترحة سابقا/عمى المضاعفات الثنائية الفصل الرابع يركز. العشري

ترح والتصاميم الفصل السادس يتناول المقارنة بين التصميم المق. العشري/لتحقيق المضاعف الثنائي مقترحال

 .دم الاستنتاجهات والعمل المستقبميوأخيرا نق. السابقة

 

 

 

 

 



 

 

 الصحيحةعشري للأعداد /مضاعف ثنائي

 باستخدام النظام الثنائي في جمع النواتج الجزئية

 إعداد

 مرفت محمد عادل محمود

 رسالة مقدمة إلى كمية اليندسة ، جهامعة القاىرة
 كجهزء من متطمبات الحصول عمى درجهة الماجهستير

 والأتصالات الكيربية في الألكترونيات
 

 تحت إشراف

 حسام فيمي
 أستاذ مساعد

 قسم الأتصالات والألكترونيات اليندسية
 جهامعة القاىرة

 
 

 أمين نصار
 أستاذ

 قسم الأتصالات والألكترونيات اليندسية
القاىرةجهامعة 
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 عشري للأعداد الصحيحة/مضاعف ثنائي

 باستخدام النظام الثنائي في جمع النواتج الجزئية

 إعداد

 مرفت محمد عادل محمود

 رسالة مقدمة إلى كمية اليندسة ، جهامعة القاىرة
 الماجهستيركجهزء من متطمبات الحصول عمى درجهة 

 والأتصالات الكيربية في الألكترونيات
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