A PARALLEL
BINARY/DECIMAL FIXED-POINT MULTIPLIER
WITH BINARY PARTIAL PRODUCTS ACCUMULATION

By

Mervat Mohammed Adel Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2011

A PARALLEL
BINARY/DECIMAL FIXED-POINT MULTIPLIER
WITH BINARY PARTIAL PRODUCTS ACCUMULATION

By

Mervat Mohammed Adel Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Under the Supervision of

Amin Nassar Hossam Fahmy
Professor Associate Professor
Electronics and Communications Electronics and Communications
Engineering Engineering
Cairo University Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2011

Abstract

Combined binary/decimal arithmetic has become an important topic to support
decimal and binary applications with high speed and low area. This thesis presents a
combined binary/decimal fixed-point multiplier design. Since the partial products
accumulation stage has the largest area and delay of the multiplier, it is the most
significant stage. A novel binary column tree is shared for binary and decimal
reduction tree. A comparison between the proposed design and the previously
published designs shows a significant decrease in area with almost the same delay as

the fastest known design.

The structure of this thesis is as follows. Chapter 1 presents an overview of decimal
and binary computer arithmetic. Chapter 2 summarize the multiplication algorithms.
Chapter 3 show a background of decimal multiplication techniques. Chapter 4 focused
on previous published combined binary/decimal multipliers. In chapter 5, the
proposed parallel combined binary/decimal multiplier is explained. Chapter 6 goes
over testing procedure and comparison between the proposed and previous designs in

area and delay. Finally we present the conclusions and future work.

Acknowledgment

This research would not have been possible without the support of many people. |
would like to sincerely thank my supervisors: Dr. Amin Nassar for his supervision,
and Dr. Hossam Fahmy for his step-by-step support, guidance throughout the whole
process of research and writing, and patience with me to help this thesis to achieve

SUCCesSs.

I would like also to thank Ghada and SilMinds group, Rodaina, Amira, Tarek, and
Ramy for their cooperation. And special thanks to A. ElShafiey for his time and

expertise in ASIC simulation.

Finally, I would like to thank my parents, sisters, and numerous friends who

endured this long process with me, always offering support and love.

Contents

N 11 - Vo PSPPSR i
ACKNOWIEAGMENL ...ttt e e st e et e e snaeenneeennneeree s ii
(O00] 01 (=]] TR UPROPP \Y;
] o) T U S STE vili
LISE OF TADIES ..ttt a et nee e Xi
(@8 T Vo1 (=T N 10 (0T [o4 1 oo S 1
Chapter 2 Multiplication TEChNIQUESveiuiiiiiiierieee e 5
2.1 Signed Integer's RepPreSentationccvcvueerieesieerieesieeseeseeeseeesiee e e seee e 6
2.1.1 Sign-and-magnitude representationcccceeveveiiee e esie e 6
2.1.2 Two’s complement representation...........ceeveveieiiiieeiiienieenie e 8

2.2 Add-and-shift multiplication algorithmcccooieeiie i 10
2.2.1 Sequential MUItIPHCATIONoviiiiiii e 15
2.2.2 Parallel (Combinational) multiplicationccccocoevieiie v 21
2.2.3 Adders connection apProachescoceeeerererieie e 28

2.3 "Composition of smaller multipliers™ multiplication algorithm 32

2.4 Bit/Digit serial multiplication algorithm ... 35

2.5 Booth multiplication algorithm ... 37
2.5.1 Original Booth algorithm..........cccooiviiiiiic e 37
2.5.2 Modified Booth algorithm ..o 40

2.6 CONCIUSTON....cuiiiiitieie ittt sttt sre e e s 43

Chapter 3 Decimal MUIIPHEIScooiviiiiiee s 45

3.1 Multiplicand Multiples GENErationcccveveeiveeiiesiie e 47

3.2 Multiplier recoding for multiples selection..........ccccccvvviieiiiiiniin e 55

3.3 Partial Products acCumulation............occoeiiiiiiiiiiiee e 56
3.3.1 Sequential accumulation approach ... 57
3.3.2 Parallel accumulation approach..........cccccoevie e 59
3.3.3 Decimal adder block implementation...........cccccceveieriieve s 60
3.3.3 DECIMAI TIBES ..eevvveiieiieieeie ettt ettt 63

34 CONCIUSTON ...ttt bbbt b et et na e e e 68

Chapter 4 Combined Binary/Decimal MUItIpHErS ..o 69

4.1 Vazquez combined binary/decimal multiplierccccooveieiiiie e 69

4.2 Hickmann combined binary/decimal multiplierc.ccoooiniiiiie 72

O O] o 1] [0 FO ST UR PP 73

Chapter 5 Proposed Combined Binary/Decimal Fixed-Point Multiplier..................... 74

5.1 First PropoSed DESIONoiiiiiiiiiiiiesieeie sttt 75
5.1.1 Multiplicand Multiples Generation Stage.........cccccccvevieeiieeiiieerie e 75
5.1.2 Partial Products Selection Stagecooereririnie i 80
5.1.3 Partial Products Accumulation Stageccccceevvvviiecieevie e 84

5.2 Second propoSed DESIGNcc.eiiiirriiiieieie e 88

5.2.1 Multiplicand Multiples Generation Stage...........ccccevverieeiieesiinsiie e siee e 89

5.2.2 Partial Products Selection Stageccccvevvviieiie e 91
5.2.3 Partial Products Accumulation Stageccocvvveiieiiiniesie e 94

5.3 Third Proposed DESIGN.......cciueiiieiieiieie ettt 94
5.3.1 Multiplicand Multiples Generation Stage...........cccceevvriveniieiiiesiiesiee e 96
5.3.2 Partial Products Selection Stageccoccvvviieiiiiie s 96
5.3.3 Partial Products Accumulation Stagecccoevvevieeiieieeneece e 101

5.4 Final Proposed DESIGNccuiiiiiieiieiieiie et e st sie et sae e 111
5.5 CONCIUSION ...ttt 114
Chapter 6 Verification and RESUITS.........c.cccvviieiiiiiiiiieiiece e 115
G0 A =T o ORI SSI PSR 115
8.2 RESUIES ... 117
8.3 CONCIUSTON....cuiiiiiiieeete ettt benne s 119
8.4 FULUIE WOTK ... 119
RETEIEINCES ...ttt ettt nbe e 121

Vi

List of Figures

Figure 2.1 Multiplication example for (a) sign-and-magnitude representation

(b) two’s complement repreSeNtationcvveiviiieiiiieiiie e 9
Figure 2.2 Multiplication of two 4-bit unsigned binary numbers in dot notation........ 11
Figure 2.3 Partial product selection logic for 8-bit add-and-shift............c.ccccevvrnnnen. 12
Figure 2.4 Sequential multiplication accumulation SChemes..........cccccevevveeieecieene, 15
Figure 2.5 Sequential multipliCationccoceiiiiiiiiii e 16
Figure 2.6 High radix sequential multiplication............ccccoccvevieiiie e 17
Figure 2.7 High radix sequential multiplier design ... 19

Figure 2.8 High radix sequential multiplier design using two recoding values,

radix4 and/or radix-2, (for radices higher than 4)ccccoooe e 20
Figure 2.9 General structure of a combinational full-tree multipliercc.e...... 22
Figure 2.10 Radix-4 recoding in parallel multiplicationcccccvvvevivivie e, 23
Figure 2.11 Partial products for 8-digit multiplication.............c.ccoccevviininnininicicnies 25
Figure 2.12 Carry save Adder (COUNTET)cciveeiieeiie e se e re e see e e 26
FIQUIE 2.13 CSA COMPIESSOLc.ueetitiiiiesiestesieesie it sseestesbesseesesbeseessesbesseesbesbesseessessens 27

Figure 2.14 Addition of 8 partial products in an array topology
using CSAS and CPA at the eNdcocev i 29

Figure 2.15 Regular tree (a) Using CPAs (b) Using [4:2] COMPressors........ccccveveenee. 30
Figure 2.16 Irregular tree topology using [3:2] CSAs and CPA for last level............. 31

Figure 2.17 Addition of four 4-bit partial products
(a) using Wallace tree (b) using Dadda treeccooveveeiiiiie v 32

Figure 2.18 Implementation of 8 x 8 multiplier using four 4 x 4 multipliers.............. 33

Figure 219 Using 4 x 4 multiplier with 8-bit product

for various multiplier arrays Up t0 64 X 64ccccveiieiieie e 34
Figure 2.20 4x4 Bit Serial MUItIPHEcooiviiiiiieiie s 36
Figure 2.21 Digit Serial MUITIPHE.coveeieece e 37
Figure 2.22 16 bit Booth 2 MUItiplycooveiieee e 42
Figure 3.1 4-bit Decimal multiplication eXample..........cccoocevieiieiiniiiinienieeee e 46
Figure 3.2 BCD multiplication BY tWOcccveiiiiiie e 48

Figure 3.3 Multiplicand multiples generation (generate all multiplicand multiples)...49

Figure 3.4 Decimal multiplicand multiples generation Sets.........c.ccoccvevvvevieeervecinnenn 50
Figure 3.5 Signed digit recoding by Toméas Lang and Alberto Nannarelli.................. 50
Figure 3.6 signed digit-by-digit multiplier BIOCKccoooveiiii e 52
Figure 3.7 Sequential Decimal Multiplication Design.........ccccccevivevieenieeniie e 58
Figure 3.8 Sequential Decimal Multiplication Designccccovvveieninieeienisenenins 59
Figure 3.9 Parallel Decimal Multiplier Designccccccvevveveiiie e 60
Figure 3.10 Generic design for the 3:2 decimal CSA ... 62

Figure 3.11 Decimal carry-save addition example (a) in BCD-4221 format (b) in
= TOd Y I o] 1 ¢ 11| SRS 63

Figure 3.12 (a) n-digit radix-10 CSA (b) m-digit radix-10 counter.cccccevvervvrnee. 64

Figure 3.13 Array for partial products. Solid circles indicate BCD digits, hollow

circles indicate Carry DItS.voiiiii e 64

viii

Figure 3.14 A Radix-10 Combinational Multiplier Adder tree..........c.ccooeveninieiennnns 65

Figure 3.15 (a) 4-bit 3:2 decimal CSA (b) decimal multiplication by 2 for BCD-4221

.. 66
Figure 3.16 16:2 deCimal CSA TrEEccveiee e 67
Figure 3.17 basic decimal column adder scheme for N=33 addends...........c.c.ccccuvenen. 68
Figure 4.1 Vazquez binary/decimal mUItiplier. ..., 70
Figure 4.2 Vazquez binary/decimal CSA TreE.....ccciieiieiieie e 71
Figure 4.3 Binary/Decimal multiplication by two bloCK...........cccccvviiiiiiiiiiiiiecne, 71
Figure 4.4 Hickmann binary/decimal multiplier.cccooove v 72
Figure 4.5 Hickmann split binary/decimal CSA Tree.cccvvvvieviiiiieieeceeseese e 73
Figure 5.1 First combined binary/decimal multiplier block diagram..........c...cccccv...... 76
Figure 5.2 Binary multiples generationcccocuveieeiieesiee e see e 77
Figure 5.3 Decimal multiples generationcccoccoviviiieiiniieesie s 77
Figure 5.4 Multiplexers design for each multiplier digit.........ccccccovevieeiii e 83
Figure 5.5 Binary column tree SChEME. ..o 85
Figure 5.6 CSA binary tree (for 32 digits, 4-Dit).......ccccovveveiiiieie e 86
Figure 5.7 64-bit binary CSA tree for the 16 partial products out of MUXs3. 87
Figure 5.8 CSA binary tree (for 16 partial products, 64-Dbit)...........ccccevvviviriiieeninnnne. 87
Figure 5.9 Second combined binary/decimal multiplier block diagram. 89
Figure 5.10 Three input, 64-bit, Carry Save Adder...........ccoveviieriiiiiieiieiieseese e 90
Figure 5.11 1-bit Carry SAVe AAUENccovieiie e 90
Figure 5.12 binary multiples generation...........coooiiiieiiiieneneseee e 91
Figure 5.13 Partial products SEIECTION.cooveeiieeiie e 92

Figure 5.14 Proposed combined binary/decimal multiplier (a) shared design, (b) split

o[- o | SRR 95
Figure 5.15 Used binary multiples generation.cccocevveiiiiinieiie e 96
Figure 5.16 Partial products SEIeCLION.ccccivviiiiiiiie e 98
Figure 5.17 Multiplexers design for each multiplier digit...........ccccoovevieiiieiiciiennenn. 99
Figure 5.18 Proposed binary column tree scheme (S and C maximally 8 bits). 101
Figure 5.19 33 digits CSA DINAIY tre€.cvciveiieiieie e 102
Figure 5.20 The four binary bit-vectors after rearranging............cccoccvvvviiniiiniineinnnn 103
Figure 5.21 The six decimal bit-vectors after rearranging.ccceeveeeviveeieesivesinnens 103
Figure 5.22 8-bit binary to decimal converter example.cccocvviiiiniinniiniininenn 105
Figure 5.23 8-bit binary to decimal converter block diagram.ccccceevvivviivennnns 106
Figure 5.24 9-bit, max. value 319, binary to decimal converter block diagram. 107
Figure 5.25 (a) Tiny split binary tree. (b) Tiny split decimal tree........c..cccccvvvvvrnene 108
Figure 5.26 Tiny shared binary/decimal tree..........cccccoeveie e, 108
Figure 5.27 Split Binary/Decimal Kogge-Stone based carry propagate adder 109

Figure 5.28 Shared Binary/Decimal Kogge-Stone based carry propagate adder....... 110

Figure 5.29 Final proposed Binary/Decimal Multiplier design (split scheme).......... 112
Figure 5.30 The three decimal bit-vectors after rearranging...........cccceevverveerieernnns 112
Figure 5.31 Tiny split binary and decimal trees.ccccevvevie e 113
Figure 5.32 Tiny shared binary/decimal tree..........ccoceveiiiiiieie i 113

List of Tables

Table 2.1 radix-4 multiplier reCOdING........covviiiiiieiieiee e 13
Table 2.2 Radix-4 recoding in parallel multiplicationccccccevviieiiiiiniie e 23

Table 2.3 Summary of number of partial products for various multipliers using small

multiplier where n is the operand SIZe.ccovviiiii i 35
Table 2.4 Original booth recoding SCheme...........ccoveii e 38
Table 2.5 Booth radix 4 recoding SChEMEccooiiiiiiiiie e 41

Table 3.1 Complexity of digit-by-digit products for different ranges of decimal inputs

.. 51
Table 3.2 Signed digit-by-digit ProduCES..........cccvevieeiie e 52
Table 3.3 BCD codiNg FOMMALS.......c.ccoiieiiieiie e 53
Table 3.4 Example of multiplier reCoding.........ccoviiieniniienie e 56
Table 5.1 BCD-8421 to BCD-5421 CONVEISIONcccoiuiiiiiiiesiiesiie e siee et 78
Table 5.2 BCD-5421 t0 BCD-8421 CONVEISIONcveiveiiieiiieiiesieseesieesiaesiaesieesseensens 79
Table 5.3 9’s complement of BCD-8421 digitS........cccovvveiiriiiiiiiiiiec e 80
Table 5.4 Binary multiplicand multiples selection.............ccoccoviiiiiiniiiiiciee 81
Table 5.5 Decimal multiplicand multiples selection. ..., 82
Table 5.6 Binary multiplicand multiples Selection.cccccvevveeiiievcee i, 92

Xi

Table 5.7 Binary partial products selection according to Booth4 recoding. 98
TaDIE 6.1 TS CASES...eevieiieiieiieie et te ettt sre e e e e te e teesbeenreeaeenreeneas 116

Table 7.1 Area/Delay figure for different Binary/decimal multipliers using FPGA
(L= G TSROSO 118

Table 7.2 Area/Delay figure for different Binary/decimal multipliers using FPGA
YL (=SOSR 118

Table 7.3 Area/Delay figure for different binary/decimal multipliers using ASIC low
power CMOS 130nm teChNOIOQY.ccvviiiiiieiieiiecie e 119

xii

Chapter 1

Introduction

Decimal arithmetic is the norm in human calculations. Early mechanical
computers were almost all decimal machines; they mirrored human manual
calculations of commerce and science. Also the first general-purpose electronic
computer, ENIAC, in 1946, holds a ten-digit decimal number in memory.
However, in 1961, most computers turned to binary representation of numbers
as shown by a survey in computer systems in USA. It reported that “131 utilize
a straight binary system internally, whereas 53 utilize the decimal system
(primarily binary coded decimal)...” [2]. The use of binary arithmetic reduces
the number of components and is simpler. The difference between data and
hardware representation is controlled using software programs. Today, few
computing systems include decimal hardware. However, the growing
importance of commercial and financial which deals with decimal data and the
quick advancement of technology speed, support of decimal arithmetic is
regaining popularity in the computing community. Also Initial benchmarks
indicate that some applications spend 50% to 90% of their time in decimal
processing. In 2002, ‘telco’ benchmark by Cowlishaw shows that the decimal
processing overhead could reach over 90% in a telephone company’s daily

billing application. [2]

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Decimal

The need for decimal in hardware is urgent. SO some companies added a
hardware decimal arithmetic unit to its processor (i.e. The IBM z9 Decimal
floating point Arithmetic Unit in 2007) [4].

Decimal arithmetic units are inherently more complex than binary
arithmetic units, since they need to handle a wider range of digits, 10 digits
versus 2 digits for binary arithmetic. Also the six invalid BCD-8421 digits need
a correction blocks. Therefore most computers today support binary in
hardware where it is simpler, faster and less in area and cost compared to

decimal.

However, Binary arithmetic gives an inexact solution when decimal
fractions are involved. It implies inexact conversions between binary and
decimal representations. For example, using the Java or C double binary
floating point for multiplying 0.1 x 8 gives the result
0.8000000000000000444089209850062616169452667236328125 but adding
0.1 to itself 8 times give a different answer
0.79999999999999993338661852249060757458209991455078125. The two
results would not compare equal, and further, if these values are multiplied by
ten and rounded to the nearest integer below (‘floor’ function), the result will

be 8 in one case and 7 in the other.

Another example, consider a calculation involving a 5% sales tax on an item

such as a $0.70 telephone call, rounded to the nearest cent, Using double binary

floating-point, the result of 0.70 X 1.05 IS
0.73499999999999998667732370449812151491641998291015625; the result
should have been 0.735, which would be rounded up to $0.74, but instead the
rounded result would be $0.73. [23]

Now, decimal arithmetic is supported through software on most machines.
And while using decimal floating-point arithmetic software gives the right

answer, sometimes the software conversions between decimal and binary are
2

time consuming. For example, in some applications like databases the
conversion time between binary and decimal using software programs takes
large time. Initial benchmarks indicate that some applications spend 50% to
90% of their time in decimal processing, because software decimal arithmetic

takes a 100x to 1000x over hardware time. [2]

Moreover, in other applications like simulation programs, if the simulation
takes long time and conversions only needed at the start and end of the
simulation, binary hardware arithmetic will be faster. So conversion problem
between hardware and application data representation depends on how frequent

conversions are needed.

Binary arithmetic hardware is better than decimal arithmetic hardware in
some applications which do not need high accuracy or have a long run time or
do not deal with decimal numbers, such as numerical analysis, scientific
computing, simulations, and addressing. Decimal arithmetic provide higher
accuracy in financial and commercial applications like banking, tax
calculations, currency conversion, insurance, accounting which need high
precision. Decimal data in these applications can not be represented exactly
using binary arithmetic, also it is better to use decimal arithmetic in databases

applications where most databases data types is decimal or integer ~ 98.7% [2].

Optimally two hardware arithmetic units, binary and decimal, are needed in

processors. [2]

This thesis proposes a combined binary/decimal multiplier with binary
partial products reduction tree. Chapter 2 describes the multiplication
algorithms. Chapter 3 and 4 show a background of decimal multiplication
techniques and previous proposed combined binary/decimal multipliers
respectively. In chapter 5 the proposed parallel combined binary/decimal

multiplier is explained. Chapter 6 goes over testing procedure and comparison

between the proposed and previous designs in area and delay. Finally present

the future work.

Chapter 2

Multiplication Techniques

In this chapter we consider the multiplication algorithms for signed integers.

The multiplication operation is

P=AXB (2.1)

where A is the multiplicand, B is the multiplier, and P is the product. The

multiplication operands, A and B, are represented by a sign bit and an n-bit

magnitude
A=San1.......... a, aj ag (2.2)
B = Sb bn—l bz bl bo (23)

and the result P is represented by a sign and a 2n-bit magnitude

P:SPPZn—l P2P1PO (24)

where S,, Sp, and Sp are the sign bit of A, B, and P respectively. The digits a;,
b;, and P; are number digits (i.e. binary digit, 0 and 1, or decimal digit, from 0
to 9, etc.).

In this chapter the signed integer’s representation and the multiplication

techniques are discussed focusing on binary and decimal multiplications.
2.1 Signed Integer's Representation

The signed integers can be represented in two ways: sign-and-magnitude

representation and two’s complement representation. [5]
2.1.1 Sign-and-magnitude representation

In sign-and-magnitude representation, the operands are represented by a
sign bit and an n-bit magnitude, and the product is represented by a sign and a

2n-bit magnitude where

v(sign(P)) = v(sign(4)) - v(sign(B)) (2.5)

|P| = |A].|B| (2.6)

The sign bit takes the values ‘0’ and ‘1’ for positive and negative signs,
respectively. The v() notation in equation 2.5 represents the value of the sign
bit. The implementation of product sign can be implemented separately from
magnitude using XOR gate where operands with similar signs give product
with the same sign, and operands with different signs give negative product

sign.

£(sign(P)) = £(sign(A)) XOR ¢(sign(B)) (2.7)

where £() notation in equation 2.7 represents the logic of the sign bit.

For any radix r, the operands magnitude values are

n-1

A=Y a.r (0<ai<r-1,0<]A]<r"-1) (28)
i=0
n1

B|= Y byr’ O0<bi<r-1,0<|B|<r"-1) (2.9)
i=0

And the product can be represented as

2n-1

IP|=|A].1B]= Y. pr' (0O<pi<r-1,0<|P|<(r"-1)%) (2.10)
i=0

The basic method to implement the value of the product is to multiply the
multiplicand by each digit of the multiplier regarding its weight then adding

these values.
n-1
|P| = |A] Zbir' (2.11)
i=0

Different methods are used to implement the magnitude of the product like

add-and-shift, composition of smaller multiplications, digit serial

multiplication, and booth multiplication. These methods are discussed in next

sections of this chapter.
2.1.2 Two’s complement representation

Two’s-complement is a representation in which negative numbers are
represented by the two's complement of the absolute value. An n-bit two's
complement number can represent every integer in the
range —2™"1 to +2""1 — 1. For multiplication, by representing each operand
by n-bit vector, the product is 2n-bit vector and has values in the range (—2™"1)
2" 1 —1)to (-2~ 1) (-2" 1) =22""2 [12]

Let Ar, Br, and Py are the corresponding positive integer representations of 4,
B, and P, respectively. When the two operands are positive, they are
represented as Ar , Br SO the product will be Ag x Br. And when the two
operands are negative, they are represented by their two's complement value (2"
— AR), (2" — BR) so the product will be (2" — Ag) x (2" — Bg) and it’s a positive
value. However, when one of the operands is positive (e.g. A) and the other
operand is negative (i.e. B), they are represented as Ag , (2" — BR) so the
product will be the two’s complement of Ag x (2" — Bg) because it has a

negative value. The multiplication algorithm can be described as in [12].

[AnBg ifA>0,B>0

P = | 2 -(@2"-Ag)Bg ifA<0,B>0
2" — AR (2"—Br) ifA>0,B<0 (2.12)

\ (2"—A4g) (2"-BR) ifA<0,B<0

Figure 2.1(a) shows the multiplication of — 9,5 x 34, in base 2 in sign-and-
magnitude representation. The 4-bit multiplicand magnitude 9, = 1011, is
stored in an 8-bit word as 00001011,. Then multiply it to each bit of the
multiplier magnitude 3, = 0011, regarding its weight. Then add these
multiplication values. The sign value is the XOR of multiplicand sign and

multiplier sign which is 1,.

1001 (-9)
0011 (3)

é 3821 2‘39)’) 11110111 (2"-A)
00000011 (Br)
00001001 11110111
0]00010010 11101110
Sign bit
1/ 00011011 () (27)] _
saron 11100101 (2"—AR)Br=-27
00011011 22—(2"-AR)Br=(-) (27)
(a) (b)

Figure 2.1 Multiplication example for (a) sign-and-magnitude representation

(b) two’s complement representation

However, Figure 2.1(b) shows the multiplication of —9,9 x 345 in base 2 in
two’s complement representation. The multiplicand and multiplier is stored in
8-bit word in its two’s complement form if it has negative sign. Then multiply
them as in sign-and-magnitude representation. If the product is negative

according to eqn.2.8, the two’s complement of it is determined.

Sign-and-magnitude representation is preferred in multipliers implementation
where it does not require the two’s complement conversion steps. The two’s

complement representation is used in addition and subtraction circuitry where it

does not need to examine the signs of the operands to determine whether to add

or subtract.

In the next sections of this chapter, the multiplication algorithms: Add-and-
shift, Composition of smaller multipliers, Bit/Digit serial, and Booth
multiplication are considered. Also the sequential and parallel approaches are

discussed.
2.2 Add-and-shift multiplication algorithm

The common and simplest method of multiplication is the add-and-shift
multiplication algorithm. Let the two multiplication operands A and B called
multiplicand and multiplier respectively, and each operand has n bits. This
algorithm conditionally adds together copies of the multiplicand according to
multiplier bits to produce the final product based on the following equation
[12].

n-1
AxB=> Abr' (2.13)

i=0

Figure 2.2 shows the multiplication of two 4-bit unsigned numbers. The two
operands Aand B are shown at the top. Each of the following four rows
corresponds to the product of the multiplicand A and a single digit of the
multiplier B generating four partial products (PPs), with each row shifted one
bit to the left. Then all partial products are added to generate the final product
(P). [19]

10

a3z a2 a1 Qo Multiplicand (A)

b3 bz b1 bo Multiplier (B)

[bygxAMutiple | PP
| by x AMultiple | PP, Partial Products
| byx AMultiple | PP (PP)
[bz x AMuliple | PP;

P7 Ps P5 P4 P3 Pz P1 Po Product (P)

Figure 2.2 Multiplication of two 4-bit unsigned binary numbers in dot notation

High Radix Multiplication

The multiplier digits b; can represent one bit in radix-2 design, binary
system, or a set of bits (2, 3, 4etc.) in higher radix designs. The simplest
implementation is obtained by using radix-2 since the multiplier digits are
either 1 or 0 so the multiples of the multiplicand are either A or zero and the
number of partial products generated are n, where n is the number of bits in B.
This number of partial products is reduced by using higher radices. For k-bit
multiplier digit, b; , the number of partial products are n/k, where k = log,r,

and r is the radix. But the number of multiplicand multiples are r — 1. [5]

For example, radix-4 has A to 34 multiples to be generated, n/2 partial
products. Radix-8 has A to 74 multiples to be generated, n/3 partial products.
Radix-16 has A to 154 multiples to be generated, n/4 partial products. For
decimal multiplication, the multiples from A to 94 are generated, where Binary

Coded Decimal, BCD, format is used.

In Binary Multiplication, b; is in {0, 1} set, so each term b;. A is either O
or A. Figure 2.3 shows the partial product selection logical AND for 8-bit
multiplicand [8]. Thus the problem of add-and-shift binary multiplication

11

reduces to adding n partial products, each of which is 0 or a shifted version of

the multiplicand A.

MultipIiSand (A)

r N

az ap as ay as ar aj 2 i
Multiplier

0
QQQUQQQQ
Partial Product

(Ppi)

Figure 2.3 Partial product selection logic for 8-bit add-and-shift

In Decimal Multiplication, b;is in {0, 9} set. Each term b;. A is one of the
multiplicand multiples 0, A, 24, 34, 4A, 5A, 64, 74, 84, 9A. Decimal
multiplication needs to generate the multiplicand multiples then select the
suitable multiple due to multiplier digits to generate the partial products.

Decimal adders are used to accumulate the partial products.
High Radix Multiplier digit, b;, Recoding

The main problem with high radix multiplication is the digit multiplication,

since now the digit of the multiplier has r values.

For radix-4, the multiplier digit b;, corresponding to two bits, has the
values 0, 1, 2, and 3. When multiplying these digit values by the multiplicand,
the generation of the multiples A and 24 by shifting the multiplicand A, are
simple. But the multiple 34 requires an addition to A and 2A. To avoid this

multiple, the multiplier is recoded into a signed-digit set as {-1, 0, 1, 2} since

12

the multiplication by these values is simple needing only the complementation
and shifting of the multiplicand. [5]

The recoding algorithm in [5] recodes the digits of the multiplier from Least
Significant Digit (LSD). Using z; as radix-4 recoded multiplier signed digit,

and c; as the carry bit. The recoding produces z; such that

Z; = bi + Ci — 4Ci+1 (214)

Where b; € {0,1,2,3},c; € {0,1} andz € {—1,0,1,2}. The carry c;., is
selected so that the value b; = 3 is avoided. Consequently, when b; + ¢; > 3,

civ1 =1 andz; = b; + ¢; — 4. This recoding is described by the following
table.

b; + ¢ Z; Ci+1
0 0 0
1 1 0
2 2 0
3 -1 1
4 0 1

Table 2.1 radix-4 multiplier recoding

For further reduction of partial products, a radix higher than 4 is used. The
algorithm is a direct extension of the radix-4 case, for example, radix-8 and
radix 16.

For radix-8, the multiplier recoded into the digit set {-3, -2, -1, 0, 1, 2, 3,
4%, where

13

Z; = bi + Ci — 8Ci+1 (215)

where b; € {0, 1, 2,3}, ¢; € {0,1}. The main problem with the implementation
of this multiplication is the generation of 34, where it needs an extra addition
step of 24 plus A. [5]

The extension to even higher radices requires the generation of more
multiplicand multiples. An alternative is to use several radix-4 and/or radix-2

stages in one iteration [5].

For radix-16, the multiplier can be recoded into the digit set {-7, —o, ,
0,1,...... , 7, 8} where

Z; = bi + Ci — 16Ci+1 (216)

where b; € {0, 1, ,15},¢; €{0,1}, and ¢;;; =1 when b; +¢; > 9. This
requires a generation of many multiplicand multiples. So this recoding can be
performed by recoding the multiplier b; into two redundant radix-4 digits u;
and w; [5] such that

zi=4u; +w; where u,w; €{-2,-1,0,1,2} (2.17)

So only the multiple 24 and 4u; are generated then an adder is used.

In the next two sections we will consider the sequential and combinational
implementation techniques for add-and-shift algorithm for binary and high
radix multipliers.

14

2.2.1 Sequential multiplication

Sequential multiplication can be done using a cumulative partial product
register (initialized by 0) and successively adding to it the properly shifted
terms b;. A. Since each term to be added to the cumulative partial product
register is shifted by one digit with respect to the preceding one, the cumulative
partial product register is shifted one digit in order to align its digits with those

of the next partial product.

Two schemes of this algorithm can be derived, depending on whether the
partial product term b;. A are processed from top to bottom or from bottom to
top (see Figure 2.4) depending on starting from the least significant digit or
most significant digit of the multiplier, and right shift or left shift the

cumulative partial product register, respectively. [14]

as az aq dg

b bz by by

| bo x A Multiple |

Q
\0» . ,\OQ o
Q’ “\\)' | b1 xA Multiple l ’\0 OQ\Q
Q
v o© 3 b, x A Multiple | 0& (@\
| bs x A Multiple | 04600

P, P& Ps Ps P; P, Pi Po

Figure 2.4 Sequential multiplication accumulation schemes

The hardware implementation of top to bottom accumulation multiplication

algorithm is more logical and has less area so that it is the preferred method.

15

Sequential multiplication algorithm with top-to-bottom accumulation

In multiplication with top to bottom accumulation, a right shift cumulative
partial product register is used. Figure 2.5 shows a right shift sequential

multiplier using radix-2, binary. [14]

1-bit Right Shift

....................... >

Multiplier Multiplicand

n-bit Right Shift Register n-bit Register

|
LSB
Y
AND Gates
control

1-bit Right Shift_

A\ 4
Cumulative Partial Product
2n-bit Right Shift Register

Y Y

n-bit Binary Adder

n+1 bit

Figure 2.5 Sequential multiplication

For high radix sequential multiplication, the 1-bit right shift is replaced by a 1-
digit right shift. Also the AND gate block which chooses between 0 and
multiplicand A due to multiplier bits b; is replaced by a multiplicand multiples
generator block to generate the multiplicand multiples for the radix used then a
selector block is added to select the suitable multiplicand multiple due to
multiplier digits b;. Figure 2.6 shows a right shift sequential multiplier for high

radices.

16

Multiplier Multiplicand
n-digit Right Shift Register n-digit Register
I
LSD l
Multiplicand

Multiples Generation

Selector

control

y YT ¥

Cumulative Partial Product
2n-digit Right Shift Register

Y Y

n-digit Carry Propagate Adder

Figure 2.6 High radix sequential multiplication

Generally for right shift sequential multiplication the following steps are

performed [14]

1.

Store multiplicand A in an n-digit register, multiplier B in an n-digit
right shift register, and initialize the cumulative partial product

register with zero.

Add 0 or one of the multiplicand multiples to the left n + 1 digit of
the cumulative partial product register according to multiplier least

significant digit b,.

Shift the cumulative partial product register and multiplier register

one digit to the right.
Repeat step 2 and 3 till the end of the n iterations.

After n iteration, the final product is stored in the cumulative partial

product register.

17

The accumulation of partial products can be described as

PP, = (PP, + b.A.r™)r ' with PPy=0,PP,=P (2.18)
I add I
|—— shift right ——|

because the right shifts will cause the first partial product to multiplied by »~",
multiplicand A is pre-multiplied by r™ to offset the effect of the right shifts.
This pre-multiplication is done simply by aligning A with the upper half of the

2n-cumulative partial product register in the addition steps. [14]

The control portion of the multiplier, which is not shown in the figures,
consists of a counter to keep track of the number of iterations and a simple

circuit to effect initialization and detect termination. [5]

The delay of the sequential multiplier shown in Figure 2.6 is equal to
n X tepa Where tqp, IS the delay of Carry Propagate Adder (CPA). It has a
large delay where the delay of n-bit ripple carry adder is of O(n), and the carry
lookahead and other prefix adders are of O(logn). To decrease this delay a
carry save adder is used for the iterations and a CPA is used at the end of

iterations as shown in Figure 2.7. [5]

18

Multiplier C Multiplicand
n-digit Right Shift Register n-digit Register
LSD
i Y
— Multiplicand I\.ﬂultlples
Generation
carry,
> MUX
control
[—
PP Carry PP Sum

Shift Register Shift Register

I ! ‘

n-digit Carry Save Adder

<

carry sum

A 4 A 4

n-digit Carry Propagate Adder

l Product

Figure 2.7 High radix sequential multiplier design

To avoid the generation of large number of multiplicand multiples in high
radices, the multiplier digits is recoded into two values u; and w;each one
follow radix-4 and/or radix-2 recoding. In the iterations, two CSAs are used for

each recoding digit as shown in Figure 2.8. [14]

19

Multiplier fo Multiplicand
n-digit Right Shift Register n-digit Register
LSI.D
¢ Y Y
Multiplicand
Recoder Multiples Generation
carry
L
» Selector
Uu;
\T» Selector
3 .. [
PP Carry PP Sum
Shift Register| | Shift Register
i l A 4
Carry Save Adder
ca'rry sum
| ! !
Carry Save Adder
ca'rry sum

A 4 A 4

Carry Propagate Adder

l Product

Figure 2.8 High radix sequential multiplier design using two recoding values,

radix4 and/or radix-2, (for radices higher than 4)

The sequential multiplication can be divided into three stages as follows
Stagel: Multiplier recoding.
Stage2: Multiplicand multiples generation.

Stage3: Sequential addition and shift.

20

2.2.2 Parallel (Combinational) multiplication

Instead of performing the multiplication in several cycles (iterations) in
sequential multiplication, parallel multiplication reuses the hardware to perform

the operation in a single cycle. [5]

In parallel multiplication, all the n/k partial products, PPs, of the multiplicand
are produced at once. For each digit, k-bit, generate the suitable partial product
according to multiplier digit b;. Then an n/k-input CSA tree is used to reduce
the partial products to two operands for the final addition. Finally, a Carry

Propagate Adder CPA is used to generate the final product. [19]

n-1
P=> A-br! (2.19)

i=0

In this case all the multiples are obtained simultaneously and applied as
operands in the first level of the tree. Therefore, the recoding has to be done in

a parallel fashion.

Figure 2.9 shows the general structure of a full tree multiplication. Various
multiples of the multiplicand are generated corresponding to multiplier radix
formed at the top. These multiples are added in a combinational partial
products CSA reduction tree, which produces their sum in redundant form
(carry save form). Finally, a CPA is used to generate the final product result.
[14]

21

Multiplier
n-digit Register

! P E Multiplicand
o P n-digit Register
v Yvy
Recoder :
Multiplicand
Multiples Generation
...... AMuItipIes
:l Selector |
Amultiples
%AMultiples
Selector
AMuItipIes
Y y
Partial Products
Reduction Tree
A Y
Carry Propagate Adder

lProduct

Figure 2.9 General structure of a combinational full-tree multiplier

The parallel multiplication can be divided into three stages

Stagel: Multiplier recoding.

Stage2: Shifted multiplicand multiples generation (A.b))r".

Stage3: Partial products accumulation.
Stagel: Multiplier recoding

As discussed for the sequential case, radix-4 multiplier digits have the
values 0, 1, 2, and 3. The generation of the multiples A and 24 are simple, but

the multiple 34 requires an addition. To avoid this multiple, the multiplier is

22

recoded into a signed-digit set {—1, 0, 1, 2} since the multiplication by these

values is simple, the parallel multiplication recoding produce z; such that

bi = W; + 4‘t1) and Z; = Wj + ti—l (220)

wherew; € {-2,-1,0,1}, t; € {0,1} soz; € {—-2,—1,0,1,2}. [12] Table
2.2 and Figure 2.10 show the radix-4 multiplier recoding [5]

bl Wj tl
0 0 0
1 1 0
2 —2 1
3 -1 1

Table 2.2 Radix-4 recoding in parallel multiplication

lb,- lb,;,

TW Recoding TW Recoding

Li | wi Lil | Wi Wi.2
A 4 A 4

Adder Adder

no carry propagation no carry propagation

I- P

Figure 2.10 Radix-4 recoding in parallel multiplication

23

For parallel multiplication the addition step which generates z; should be

performed without carry propagation. This is achieved if
—-2<w;<1 ,and 0<t_,<1 (2.21)
consequently, the algorithm is as equation 2.22. [12]

(Ol bl) bi < 1

{ti, wi} = {(1, b —4) b >2 (2.22)

The extension to higher radices has the same idea of radix-4 parallel
multiplication recoding; trying to reduce the number of multiples which need

an extra addition step.
Stage2: Multiplicand multiples generation

For a certain multiplier B, the multiplicand multiples due to the multiplier

digits b; are defined as m[i] where

mli] = A. b7t ,where 0<i<n/k -1 (2.23)

This corresponds to a multiplication of the multiplicand by each digit, i, of
the multiplier and an arithmetic shift left by i digits. Figure 2.11 shows the
resulting partial products in dot notation form where each dot represents one
digit. [12]

24

e o @ & o ¢ ®* @ w0

. @ @ & & & & » mfl1]

® ® & @ & & & » mf2]

e & ® ©® o @ @ @ mf3]

® & @& @ © & @ @ mf4]

e @ & & & 9 ° @ mf 5]

e ® & 8 & ® & @ mf6]
e & & = 2 & & » mf7]

Figure 2.11 Partial products for 8-digit multiplication

In parallel multiplication, all possible multiplicand multiples due to the range
of multiplier digit,0 < b; <r—1 , are generated firstly. Then for each
multiplier digit b; select the suitable multiple. For radix-2, the result of this
digit multiplication is n partial products and the shift is one bit. In general, for
any radix r, the number of partial products are n/k, where n is the number of
multiplier bits, and k is the number of bits in each digit. So i is in the range 0 <
i <n/k—1 and the shift is one digit, k bits. The high radix multiplication is
used to reduce the number of multiples and, therefore, the complexity of the
partial products addition, but the number of multiplicand multiples needed to

be generated increase.

An AND-OR network for each bit is used in the implementation of the

multiples generation circuit to select among the different possible multiples.

Multiples like 24, 4A, 84, and 16A are generated by only shifting. It is fast,
easy, and has no additional area cost. Some other multiples like 3A, 54, and
7A need an addition steps which take large delay and area. They have different

techniques to be generated. Some of them will be discussed in the next chapter.

25

The trade-offs for high radix multiplication are: higher radix gives more
multiplicand multiples and more complex multiples circuit which has extra
delay in some radices, but it leads to less partial products and more simple

reduction tree having less delay.
Stage3: Partial products accumulation

After the n/k partial products are generated, they must be accumulated to
obtain the final product. Using carry propagate adders, the time consuming
carry propagate addition is repeated n/k — 1 times. The most commonly used
method is carry save addition. In carry save addition, the carry propagation is
done in the last step while in all other intermediate steps a sum and carry are

generated for each bit position. [8]

The basic element used in reducing partial products is the Carry Save Adder
(CSA). This is a binary full adder that takes 3 bits of the same weight as inputs
and produces a sum bit and a carry bit (of one bit higher weight). Sometimes
the [3:2] CSA is called a counter. Figure 2.12 shows a 1-bit CSA

implementation and the addition of three n-bit partial products using CSAs.

@

’:fDﬁD_sum Pvd

3:2 CSA
Carry * *
Carry Sum

(a) 1-bit CSA
Cn.1 Bn.1 AnA1 C1 B1 A1 CO BO AO
vV oV vV Yy vV Y
QI2IESA | v ver o s b s e w e 3:2CSA 3:2CSA
v v v v v v
Carryn1 Sump. Carry; Sumy Carryp Sumg
(b) n-bit CSA

Figure 2.12 Carry save Adder (counter)

26

The compressor is a special form of [3:2] CSA or counter. It is designed to
support regular tree implementation. The most common compressor is the
[4:2]. The advantage of compressors is in their regularity. Figure 2.13 shows a

[4:2] and [7:2] compressors implementation using counters ([3:2] CSAS). [7]

3:2CSA
n D C B A
1-bit/v . T i ¢+ 4 4
| Ll ‘_‘ 4:2 l«— Ciy
= [' v
| N | a2.CBA Cout Carry Sum
c_ 9

[

Cout Carry Sum
(a) 4:2 compressor

N A I

3:2CSA 3:2CSA

] cC_s c_s
n | | I—l
|
| 3:2CSA
] C S
| < l—|
. [
The arrow represents
[| 3:2CSA shifting one bit to left
C S
| —
<—_
3:2CSA
C S

(b) 7:2 compressor

Figure 2.13 CSA Compressor

The adders used in the partial products accumulation can be connected in

several approaches. In the next section these approaches are discussed.

27

2.2.3 Adders connection approaches

The implementation of the partial products accumulation is done using
some variation of a carry save adders. These CSAs can be connected by
different methods called topology. The topologies are classified into regular
and irregular according to the way the counters are interconnected, and the
wires required to connect the counters. In a regular topology, the CSAs are
connected in a regular pattern that is replicated. The regular connections make
the design of the partial product array a hierarchical design. In contrast, in an
irregular topology, the CSAs are connected in order to minimize the delay,

disregarding the ease of laying out the multiplier [8].
Regular topology

The regular topology is most commonly used, since it provides a
compromise between optimization and design effort. The regularity allows
designers to build a small group of building blocks that contain connected
counters and compressors and then connect these blocks to form the topology.
The delay of this topology is defined as the maximum number of counters and
compressors connected in series. Regular topologies can be classified as either

array or tree topology. [8]
Regular array topology

In an array, the counters and compressors are connected serially in an
identical manner [8]. Figure 2.14 shows the addition of 8 partial products in an

array topology. [8]

It is the slowest topology but it is very regular in its structure and uses short
wires. Thus, it has a very simple and efficient layout in VLSI. Furthermore, it
can be easily and efficiently pipelined by inserting latches after every CSA or

after every few rows. [19]

28

IPPZ IPPl | PPO

PP3 | CSA |
s
PP5 | C|SA l |
PP6 || CISA I |
PP7 |l CSIA I |
| CISA l |
| CIl’A I |
Product

Figure 2.14 Addition of 8 partial products in an array topology
using CSAs and CPA at the end

Regular tree topology

To reduce the number of adder’s level, a tree is used. In a tree, counters and
compressors are connected in parallel. Although trees are faster than arrays,
they both use approximately the same number of counters and compressors,
same area, to accumulate the partial products. The difference is in the

interconnections between the adders. [8]

Trees are either regular or irregular. Regular trees have an easy structure for
summing partial products and their delay is a known function of number of
partial products. While irregular trees connected in order to minimize the total

delay and their delay is determined by design layout.

Regular topologies allow a multiplier to be structured from building blocks
where the interconnections between the adders are in a consistent pattern as
shown in Figure 2.15(a) [8] and Figure 2.15(b) [5]. A CPA or a [4:2]

29

compressors are used which has a fast, symmetric and regular design. If the
number of partial products is m, the number of CPA or [4:2] compressor levels
is log,(m/2) plus one level CPA. [5]

It must be noted that the [4:2] compressor delay is approximately equivalent to
two CSA levels and the CPA delay equivalent to n CSA levels for ripple carry

or log n for carry lookahead, where n is the number of partial product bits.

PP7 PP6 PP5 PP4 PP3 PP2 PPl PPO PP7 PP6 PP5 PP4 PP3 PP2 PPl PPO

S N T T S T S S A A

CPA H CPA H CPA H CPA ‘ ‘[4:2] compressor‘ ‘[4:2] compressor‘

A4 A \ 4 A 4

[4:2] compressor ‘

CPA CPA ‘

A 4 A 4

CPA CPA

(a) (b)

Figure 2.15 Regular tree (a) Using CPAs (b) Using [4:2] compressors

Irregular topology

Irregular topologies connect the counters and compressors in order to
minimize the total delay but the design and layout is more difficult because
they do not have a regular pattern for connection. Wallace tree and Dadda tree
are examples for irregular trees. Wallace tree reduces the partial products by
rows as array and regular tree while Dadda tree reduces the partial products by

columns. [18]

30

Wallace tree

The Wallace tree combines partial product bits at the earliest opportunity
which leads to the fastest possible design. If the number of partial products
ism, the number of [3:2] CSA levels is approximately logs,,(m/2) plus one

level CPA. Figure 2.16 shows [3:2] adder tree. [5]

PP5:PP7 PP2:PP4 PPl PPO

]
[3:2] "—I [3:2)
[3:2] (2 |
[32]
|
]
[3:2]
CPA
'
Product

Figure 2.16 Irregular tree topology using [3:2] CSAs and CPA for last level

Dadda’s tree (Reduction by column)

All previous adder topologies use the reduction by row scheme in partial
product accumulation. Dadda’s tree uses reduction by column scheme. Dadda
Tree Combine as late as possible, while keeping the critical path length
(number of levels) of the tree minimal which leads to simpler CSA tree
structure, but wider CPA at the end. [12]

31

Figure 2.17 shows a comparison between wallace and dadda trees for four
4-bit partial products. [19]

G

G PR
L

e 6 o6 o o o o e 6 o o o o o
5 FAs, 3 HAs, 4-bit CPA 4 FAs, 2 HAs, 6-bit CPA
(a) (b)

Figure 2.17 Addition of four 4-bit partial products
(a) using Wallace tree (b) using Dadda tree

2.3 "Composition of smaller multipliers" multiplication

algorithm

Another way to multiply two numbers is to divide the multiplication
operation into small similar multiplication operations. For example, the 8bit x
8bit multiplier can be implemented using four 4bit x 4bit multipliers, as shown
in Figure 2.18. [7]

32

| — 8 bit operands — |

| —4 bits — |
A A]
L By || B |
| AL B |
| AL - By |
| Ay - B | > 4 Partial Products
I Ay - By |
I AH- By | l Rearranging results
I AH - By (| Al - By | ¢ in matrix height
| AL - By | of three

o 16 bit products |

| Final Product |

Figure 2.18 Implementation of 8 x 8 multiplier using four 4 x 4 multipliers

Generally, consider an m X m multiplier used to implement 2m x 2m.
Denoting the high and low halves of the multiplicand and multiplier by Ay, AL
and By , By respectively. four m x m multipliers are used to compute the four
partial products A,.B, , A..By, An.B_, and Ay.By. These four values must
then be added to obtain the final product. By rearranging the non-overlapping
partial products, only three values need to be added as shown in Figure 2.18. So
the 2m X 2m multiplication problem has been reduced to four m X m
multiplication and three operand addition problem. The m x m multiplication
can be performed by smaller hardware multipliers or via lookup table, for
example, a 8-bit x 8-bit multiplication can be implemented using four 2°x8
ROMs (as lookup table), where each ROM performs 4x4 multiplication. The
three partial products can be computed using single level of carry save adder,

followed by a carry propagate adder. [19]

33

Larger multipliers, such as 3m x 3m or 4m X 4m, can be similarly
implemented from m x m multiplier building blocks. A generalization of this
scheme is shown in Figure 2.19 for various multiplier arrays up to 64x64
multiplier. Each rectangle represents a 8-bit partial product as result of 4x4
multiplier. Assuming m = 4, it can be seen that the 4m X 4m multiplication
leads to seven partial products to be added, and 8m x 8m multiplication

produces fifteen partial products. [7]

64 x 64 MULTIPLIER ARRAY
[: : | Each rectangle represents

an 8-bit product

l
I
I

1 '
——— 2 s i s
C T T 1] N P s -
C T T T T T T T T T T T 11
C T T 1 I R
C T T T T T T T T T T]
C T 1 - -
e el e e T
I
C T T 1

Figure 2.19 Using 4 x 4 multiplier with 8-bit product

for various multiplier arrays up to 64 x 64

34

Table 5.3 summarizes the partial products matrix for various multipliers
using 4x4 multiplier and 8x8 multiplier. It can be seen that the number of
partial products decreases when using 8x8 multiplier as a basic building block.
When using a lookup table basic block, the delay of the two schemes is the
same but the 8x8 multiplier has double the area of the 4x4 multiplier. When
using hardware multipliers basic block, the area and delay of the 8x8 multiplier

are higher than the 4x4 multiplier. [7]

Nl;’mbder of E?:,rtial

Basic building block (g'“eﬁglg‘f?cf’fnfﬂi) N:(r)n;::scff bist)s
8|16 (24|32 |40 |48 |56 | 64
1x1 multiplier N 8|16 24|32 |40 |48 |56 | 64
4x4 multiplier (n/2) -1 3|7 (11|15(19|23 27|31
8x8 multiplier (n/4) -1 103 |4|7|9/[11|13]15

Table 2.3 Summary of number of partial products for various multipliers using

small multiplier where n is the operand size.

2.4 Bit/Digit serial multiplication algorithm

Serial arithmetic has the advantages of its smaller area and reduced wire
length. In fact, the compactness of the design may allow us to run a serial
multiplier at a clock rate high enough to make the unit almost competitive with
much more complex designs with regard to speed. In addition, in certain
application contexts inputs are supplied serially anyway. In such a case, using a
parallel multiplier would be quite wasteful, since the parallelism may not lead
to any speed benefit. Furthermore, in applications that call for a large number
of independent multiplications, multiple serial multipliers may be more cost

effective than a complex highly pipelined unit. [19]
35

A serial multiplier can be defined as a serial input/output pipelined

sequential add-and-shift multiplier.

Bit/Digit serial multipliers can be designed as synchronous arrays of
processing elements. Figure 2.20 shows a 4 X 4 bit serial multiplier. The
multiplicand A is supplied in parallel from above and the multiplier B is
supplied bit-serially from the right, with its least significant bit arriving first.
Each bit b; of the multiplier is multiplied by A and the result added to the
cumulative partial product, kept in carry save form in the carry and sum
latches. The carry bit stays in its current position, while the sum bit is passed on
to the neighbouring cell on the right. This corresponds to shifting the partial
product to the right before the next addition step. Bits of the result emerge

serially from the right as they become available. [19]

Multiplicand A (parallel in)

2 % a4 % by by by bs
| l | SUUUL
Multiplier B
(serial in)
LSB first

]]]]

Sum Sum Sum Sum

Product
FA] o FA W ol FA K FA W] o
Carr’y:l:| Carr,y:lj Carr’y:l:| Carr’y:l:‘

Figure 2.20 4x4 Bit Serial Multiplier

Figure 2.21 shows a digit serial multiplier. Multiplicand multiples generator
is used to generate all possible multiplicand multiples of the multiplier digit
(i.e. from A to 34 for 2-bit digit, from A to 154 for 4-bit digit, and so on). The
suitable multiplicand multiple is selected according to multiplier digit using a

36

selector. Then the partial product is added and shifted to the right before the
next multiplier digit is serially supplied. Digits of the result emerge serially

from the right as they become available.

Multiplicand A
(parallel in)

Multiplicand
Multiples Generator

bo b1 b, b3

Selector

Multiplier B
(digit serial in)

Y
Partial Product

Shift Right Adder Product
(digit serial out)

Figure 2.21 Digit Serial Multiplier.

2.5 Booth multiplication algorithm

Booth algorithm gives a procedure for multiplying binary integers in

unsigned or signed two’s complement representation.
2.5.1 Original Booth algorithm

The original Booth algorithm used for binary multiplication allows the
multiplication operation to skip over any continuous string of all 1’s and all 0’s
in the multiplier, rather than form a partial product to each bit. Skipping a
string of 0’s is straightforward, but in skipping over a string of 1’s the
following property is put to use: a string of k 1’s is the same as 1 followed by
k 0’sless 1. [7]

37

How it works?

Consider a positive multiplier consisting of a block of 1s surrounded by 0s.

For example, the product of a multiplicand A by a multiplier 00111110 is given
by:
Ax(00111110), = AX (25 +2* +23 4+ 23 +2V) = A x 62

The number of addition operations can be reduced to two by rewriting the same

as

A X (01000010), = A X (26 —21) = A x 62
where 1 means negative 1. In fact, it can be shown that any sequence of 1's in
a binary number can be broken into the difference of two binary numbers as

K k k
. PN .
00 -

(+01-+10-), = (1)y = (+00--10-),

The multiplier is divided into substrings of 2 bits, with adjacent groups sharing

a common bit. Table 2.4 shows the Original booth recoding scheme.

Bit
2° | 27 Meaning Operation
bi | big
0 0 | nostring 0
0 1 | end of string +A
1 0 | beginning of string —A
1 1 | center of string 0

Table 2.4 Original booth recoding scheme

38

This works for negative multipliers as well. When the ones in a multiplier are
grouped into long blocks, Booth algorithm performs fewer additions and

subtractions than the normal multiplication algorithm.
Procedure

Let a and b be the multiplicand and multiplier, respectively. S is the
negative value of A and P is the product. And let m and n represent the number

of bits in the multiplicand and multiplier.

1. Set the values of A and S, and the initial value of P. All of these

numbers should have a length equal to (m + n + 1).

a. A: Fill the most significant bits with the value of a. Fill the
remaining (n + 1) bits with zeros.

b. S: Fill the most significant bits with the value of (—a) in two's
complement notation. Fill the remaining (n + 1) bits with zeros.

c. P: Fill the most significant m bits with zeros. To the right of this,

append the value of b. Fill the least significant bit with a zero.

m bit n +1 bit m bit n+1 bit m bit nbit 1bit
B — . S— -< > > <> < ><>
| a t0~0| [-a {o0-~0] [0-00 b io

A S P

2. Determine the two most significant bits of P.

a. If they are 01, find the value of P + A. Ignore any overflow.
b. If they are 10, find the value of P + S. Ignore any overflow.
c. If they are 00, do nothing.

d. If they are 11, do nothing.

3. Arithmetically shift the value of P obtained in the 2nd step by a single

place to the right. Let P now equal this new value.

39

4. Repeat steps 2 and 3 until they have been done n times.
5. Drop the least significant bit from P. The value of P is the product

of a X b.

Original Booth algorithm can be summarized as performing an addition when it
encounters the first digit of a block of ones (0 1) and a subtraction when it
encounters the end of a block of ones (1 0). Also an extra bit can be added to
the left of A, S, and P, to represent the multiplicand if it has the largest

negative number (i.e. if the multiplicand has 8 bits then this value is —128).

The disadvantages of this algorithm are that it generates a varying (at most n)
number of partial products, depending on the bit pattern of the multiplier. The
extreme, worst case, occurs when the multiplier is alternating between 1’s and
0’s. The number of addition or subtraction process is n instead of n/2 for add-
and-shift algorithm. Of course, hardware implementation lends itself only to a

fixed independent number of partial products.

Booth algorithm can be designed using sequential approach, as mentioned
above. Or parallel approach, by recoding every two side by side bits to

multiplicand or its negative value or zero.
2.5.2 Modified Booth algorithm

The modified version of Booth algorithm is more commonly used. The
difference between the Booth and the modified Booth algorithm is that the
modified booth always generates a fixed number of partial products. It encodes
every k bit of multiplier into one partial product. So for n bit multiplier, it
introduces n/k partial products as the high radix multiplication. Several
versions of modified booth algorithm are introduced depending on the value of
k. As the value of k is increased, the number of partial products decreases but

the number of hard multiplicand multiples required to generate increases. [7]

40

Booth radix 4 recoding scheme, Booth 2

The modified Booth 2 multiplier encoding scheme encodes every 2-bit
groups of multiplier. For an 8-bit multiplier, it produces four partial products
for a signed multiplier, as the most significant input bit represents the sign, or
five partial products for an unsigned multiplier number. The multiplier is
divided into substrings of 3 bits, with adjacent groups sharing a common bit. It
requires that the multiplier be padded with a 0 to the right, for unsigned or
positive numbers, and with 1 to the right for negative numbers, in two’s
complement representation. Also it is padded with one or two zeros to the left.
Table 2.5 is the encoding table of the eight possible combinations of the three

multiplier bits. [7]

Bit

N
it

N
[=

N
il

Operation

bi+1

oy
o

0 0
+A
+A

+2A

R R R ol o o
R ol o k| k|l O Ol

1 1 1 0
Table 2.5 Booth radix 4 recoding scheme

By inspection of the table, only one action (addition or subtraction) is required
for each two multiplier bits. Thus, the use of the algorithm insures that for an
odd number of multiplier bits, only n/2 actions will be required for any

multiplier bit pattern where the last action will be defined by 0.Y .Y, for

41

unsigned numbers. And for an even number of multiplier bits, n/2 + 1 actions

are required, the last action being defined by 0.0.Y,; for unsigned numbers. [7]

Figure 2.22 shows a 16 bit x 16 bit multiplication using Booth 2 algorithm [8].

CEIE

| Selected Multiplicand multiple

| Selected Multiplicand multiple |

| Selected Multiplicand multiple | <

| Selected Multiplicand multiple |

oggey
W N
T D - =T et

A

| Selected Multiplicand multiple |

|

| Final Product

Figure 2.22 16 bit Booth 2 multiply

For example [7], suppose a multiplicand (A4) is to be multiplied by an
unsigned multiplier B = (11101011), which is equivalent to decimal 235. When
using modified Booth 2 algorithm. The multiplier must be decomposed into
overlapping 3-bit segments and actions determined for each segment. Note that
the first segment has an implied “0” to the right of the binary point. Thus, we
can label each segment as follows:

(5) 3) (1)
00111010110
(4) (2)

while segment (1) is referenced to the original binary point, segment (2) is four
times more significant. Thus, any segment (2) action on the multiplicand must

be scaled by a factor of four. Similarly, segment (3) is four times more

42

significant than (2), and 16 times more significant than (1). Now, by using the

table and scaling as appropriate, we get the following actions:

Segment number | Bits | Action | Scale factor | Result
(1) 110 -A 1 -A

(2) 101 A 4 —4A

(3) 101| -A 16 —16A

(4) 111 0 64 0
(5) 001 | +A 256 +256A
Total action 235A

The actions specified in the table are independent of one another so the five

result actions can be summed in parallel using carry save adders.
Booth radix 8 recoding scheme, Booth 3

It is an extension of the modified Booth algorithm which involves an
encoding of three bits at a time while examining four multiplier bits. This

scheme would generate only n/3 partial products. [7]

However, its encoding requires the generation of 34 [8], which is not as
trivial as generating 2A. Thus, most hardware implementations use only Booth

2 scheme.
2.6 Conclusion

The multiplication operation can be designed in sequential or combinational
approach. Sequential multipliers have less area while combinational multipliers

have lower latency.

Also the multiplication is done in radix-2 or high radix scheme. Radix-2
lead to small area design nevertheless high radix has the advantage of low

latency.

43

Four techniques are used for the multiplier implementation, add-and-shift,
composition of small multipliers, bit/digit serial, and booth multiplication.
Add-and-shift is the most common and simplest method of multiplication. It
can be implemented sequentially or combinational in radix-2 or high radix.
Composition of smaller multipliers has the same area and speed of complete
multiplier. It only divides the large components to small ones and rearranges
them. Bit/Digit serial multiplier (radix-2/high radix serial multiplier) has small
area, but larger than sequential add-and-shift, high latency, high throughput,
and can be easily pipelined. It is useful in applications where the inputs are
supplied serially anyway. Original booth tries to decrease the number of partial
product. It has a worst case number of partial products n/2, but it generates a
variable number of partial products. Modified booth generates a fixed number
of partial productsn/k, the same as high radix add-and-shift. Booth

multiplication can be implemented sequentially or combinationaly.

44

Chapter 3

Decimal Multipliers

The decimal multiplication is more complex than the binary multiplication.
Since the multiplier 4-bit digit takes values between 0 and 9. Let the
multiplicand A and the multiplier B be two signed numbers represented as sign
and an n-digit magnitude. The multiplication P = A x B will create a sign and

2n-digit product P. The multiplication operation is described as:

sign(P) = sign(A) - sign(B) (3.1)

|P| = |Al.B] (3.2)

The sign of the product is implemented using XOR gate. And the
magnitude of the product is implemented using some algorithms similar to
binary algorithms but here we deal with digits instead of bits. For example in
2846 x 3715, we assume 3715 a multiplier and 2846 a multiplicand and assume
that we have all multiplicand multiples (2x2846, 3x2846, 4x2846, ,
9%x2846). The digits in the multiplier are examined one at a time and the

suitable multiplicand multiple is selected according to the multiplier digit. A

45

number of shifted multiples are added according to multiplier digit position as

shown in Figure 3.1 to form the final product.

2 8 4 6

3 7 1 5
5x2 8 4 6
1x2 8 4 6
7x2 8 4 6
3x2 8 4 6

1 05 7 2 8 9 0

Figure 3.1 4-bit Decimal multiplication example

From this example we can divide the multiplication operation into three
stages: Multiplicand multiples generation (from A to 9A), multiplier recoding
to select the suitable multiple for each multiplier digit which generate the

partial products (PPs), and partial products addition.

Decimal multipliers can be implemented using sequential or parallel
approaches. Sequential multipliers have a small area compared to parallel ones.
But, parallel multipliers have a significant low latency advantage over
sequential multipliers. The choice between sequential and parallel approaches

depends on the more important issue in the application, area or delay.

In the next sections the history of the decimal multiplication stages, which
are multiplicand multiples generation, multiplier recoding for multiples

selection, and partial products accumulation, are discussed.

46

3.1 Multiplicand Multiples Generation

Decimal multiples generation is more complex than binary multiples
generation because it deals with Binary Coded Decimal (BCD) format so the
left shifting of multiplicand, A, will not introduce 24 as in binary. The decimal
multiplicand multiples are generated by successively adding the multiplicand
using BCD adders®, decimal adders, which has large area and delay, or via a

lookup table for the multiplicand multiples, which has large area.
Generation of BCD_2A and BCD_5A

It can be seen that the generation of BCD_2A and BCD_5A is simpler than
the other multiples where the carry propagate only to next digit [13][20]. When
any BCD digit with a value from 0 to 9 is doubled, it gives two digits from 00
to 18. The least significant digit value is even, i.e. least significant bit is 0 and
maximally equal 8 and the carry value is maximally 1. By adding the carry to
next significant digit, the maximum value obtained is 9, this addition can be
done by only putting the carry bit in the LSB of next digit. So the generation of

BCD_2A for a digit a; can be summarized as shown in Figure 3.2.

Also the BCD_5A multiple generation depends on that the fifth multiple of any
digit, gives only two digits. The least significant digit value is 0 or 5 due to the
input digit is even or odd, respectively. The most significant digit, carry digit,
value is maximally 4 (since9 x5 =45) so by adding the carry to next
significant digit, the maximum value obtained is 9. So its carry is propagated
only to next digit. The carry digit is equal to the value of input digit divided by
two. Where 5x = 10x/2 = x/2 shifted left one decimal digit. It can be
implemented by right shifting the input digit and skips its carry bit. These two

multiples have approximately the area of n-bit carry propagate adder and the

! In BCD addition, a correction of six must be added if a digit sum is greater than nine to skip
over the invalid BCD digits, As-F16. S0 the decimal CPA has a delay of O(2n) instead of
O(n) for binary CPA.

47

delay is approximately of O(4), 4-bit carry propagation where carry propagate

only to next digit.

di3) 4di2) 4i(1) 4di0)
I D
ai + a;

4-bit carry propagate adder
carryi or
combinational circuit carryi-1

Wi3) Wi2) Wi1) Wi(0)

[v v v v

Pi+1(0) Pisy P Piy Pio

Figure 3.2 BCD multiplication by two

Multiplicand multiples generation stage

Simple decimal multipliers as those designed in the early days of decimal
circuits [20]generate all decimal multiplicand multiples, from A to 94, and
store them in registers before the start of the algorithm as shown in Figure 3.3.
This technique needs a large area for the decimal carry propagate adders and
for the registers needed to store the multiples. Also it has a large delay due to

the O(2n) delay of decimal carry propagate adders [20].

To reduce the area and delay, a reduced set of decimal multiplicand
multiples is generated and stored in registers before the start of the algorithm
then the remaining multiples are obtained dynamically during the algorithm
using a decimal carry propagate adder. A secondary set or tertiary set is
sometimes used. A secondary set of multiplicand multiples (4, 24, 34, 4A4, 84)
Is proposed in [6](a) where only two members of the set are need to be added to

generate missing multiples. It need only one decimal carry propagate adder of
48

| A (BCD-8421)

x5 x2
SA y2A y5A lA v 2A v2A lA
Decimal CPA Decimal CPA x2 Decimal CPA
n-bit n-bit n-bit
carry propagate delay carry propagate delay carry propagate delay
5A l4A
\ 4 4A
Decimal CPA x
n-bit x2
carry propagate delay
l l A\ 4 v v A\ 4 v A\ 4 v
9A 8A 7A 6A 5A 4A 3A 2A A

Figure 3.3 Multiplicand multiples generation (generate all multiplicand

multiples)

0(2n) for the 3A multiple generation, Figure 3.4(a). Also a tertiary set of
multiples (4,2A4,4A,8A) is proposed where at most three members of the set
are added to generate missing multiples. The (4, 24,44, 8A) set does not need
to generate the multiple 34 but it requires an extra addition for the generation
of the missing multiple 74 = 1A + 2A + 4A. The extra adder can be a decimal
carry save adder which has less delay, 0(1), than the decimal carry propagate
adder, Figure 3.4(b).

Another secondary multiplicand multiples set (4,24, 4A4,5A) is introduced in
[20][6](a)][10]. This set is generated faster than the previous sets. This set

reduces the delay of the multiplicand multiples generation stage, Figure 3.4(c).

49

A (BCD-8421)

x2
2A v2A lA
Y Decimal CPA
x2 n-bit
carry propagate delay
4
A
x2
l v v
8A 4A 3A 2A

(a)

A (BCD-8421)

x2
IZA
x2
[4A
x2
8A 4A 2A A
(b)

| A (BCD-8421)

v v
x5 x2
IZA
x2
l v v
5A 4A 2A A
(c)

Figure 3.4 Decimal multiplicand multiples generation sets

For more reduction of the area and delay for the pre-calculated multiples, a

signed digit recoding technique is proposed by Lang and Nannarelli in [13].

They generate the secondary set (4, 24,5A4, 104) of multiples. The two groups
(0,54,10A) and (—2A4,—A,0,A4,2A) are used to generate the missing

multiples, Figure 3.5. Using the (invert & C;, = 1) block for signed digit

recoding can convert the tertiary set (A,24,4A4,8A4) to secondary set by

generating the missing multiple 74 = 84 — A.

A (BCD-8421)

v v
x10 x5 x2
! !
Invert &| | |Invert &
Cin=1 Cin=1
10A 5A —2A 2A -A A

Figure 3.5 Signed digit recoding by Tomas Lang and Alberto Nannarelli

50

Erle et al. in [6](b) propose a different recoding technique for an efficient
generation of partial products. He depends on digit-by-digit multiplication not
word-by-digit as before. He recodes the two multiplication operands,
multiplicand and multiplier, into signed digits from -5 to 5 to simplify the
partial products generation process. And since the magnitude of product is
independent on the sign of operands and the multiplication by zero and one can
be done using multiplexer, the range of multiplied digits is reduced to [2—5] x
[2—5]. Thereby he has only 10 different combinations of inputs to be
multiplied. He shows the complexity of the digit-by-digit products for different

ranges of decimal inputs (Table 3.1).

range of inputs comlbniﬁl;:ions unique products
[0—9] x[0—9] 100 37
[1—-9] x[1-9] 81 36
[2—9] x[2—9] 64 30
[0—5] x[0—5] 36 15
[1-5] x[1—5] 25 14
[2—5] x[2—5] 16 10

Table 3.1 Complexity of digit-by-digit products
for different ranges of decimal inputs

Figure 3.6 shows the block diagram of a digit multiplier block, where the
superscript S indicates that the result of the recoding is a signed-magnitude
digit, the superscript T indicates that the sub-function output is realized via a
lookup table or a combinational circuit structure, and the superscript O
indicates that the partial product is in an overlapped form since each digit

multiplier block yields two digits.

51

a,°[3:0] b,5[3:0]

00 2.5 a.S[2: S12:01 000
sor of l_‘.w] 7 [2:0] b;°[2:0]
xiull\ '

Pisr [1:0] 2]
e ———]
T T
“ pi 3] [p;i [2:0]
Xor
—]
A A y \
mux \ mux /
L/ ‘;———*‘ Y ¥
O O O O
Pis1 [2] Pisr [1:0] pi 3] pi [2:0]
v v
pi+|()|2:()l I)l()l3:()l

Figure 3.6 signed digit-by-digit multiplier block

The partial products are generated using a digit-by-digit multiplier on a word
by digit basis, first in a signed digits form with two digits per position, Table
3.2, and then combined via a combinational circuit. Although the least
significant digit has a negative sign in some instances, the most significant digit
is always positive, and thus the two-digit product is a positive value. The
signed digit partial products are developed one at a time while passing through
the recoded multiplier operand from the LSD to the MSD in sequential form,
and then each partial product is added along with the accumulated sum of

previous partial products via a signed digit decimal adder.

2 3 4 5

04 (14 |12 |10

2

3 14 111 12 |15
2 = =

)

12 |12 24 | 20
10 |15 [20 | 25

Table 3.2 Signed digit-by-digit products

52

The partial products generation process for a sequential multiplier design using
this method takes n + 1 cycle, also its generation for a combinational design
takes ten logic levels delay to convert the overlapped partial products form to
non-overlapped form and recode them in a manner appropriate for the signed

digit decimal adder.

Most of previous multiplicand multiples generation methods have a
considerable delay because of the decimal correction stage in adders which
increases the total delay of the multiplication operation. However, Vazquez et
al. in [22] propose a new different signed digit, SD, decimal multiplicand
multiples generation techniques. Firstly, they introduce three recoding schemes,
SD-radix-10 which generates the secondary set (4, 24, 34,4A4,5A) multiples,
SD-radix-5 which generates the secondary set (4, 24,54,10A4) multiples, and
SD-radix-4 which generates the secondary set (4, 24, 44, 84) multiples.

To simplify the decimal multiples generation process, different redundant BCD
recoding formats are used. Table 3.3 shows various BCD coding formats such
as BCD-5421, BCD-5211 and BCD-4221.

BCD-8421 | BCD-5421 | BCD-5211 | BCD-4221
0 0000 0000 0000 0000
1 0001 0001 0001 | 0010 0001
2 0010 0010 0100 | 0011 | 0010 | 0100
3 0011 0011 0101|0110 | 0011|0101
4 0100 0100 0111 1000 | 0110
5 0101 1000 | 0101 1000 1001 | 0111
6 0110 0110|1001 | 1010|1001 | 1100 | 1010
7 0111 0111|1010 | 1100|1011 | 1101|1011
8 1000 1011 1110 1101 1110
9 1001 1100 1111 1111

Table 3.3 BCD coding formats

53

These BCD formats depend on different binary bits weight. The table
represents the formats as BCD-xxxx where x’s is the weight of every binary
bit. For example, 1111 has a value of 8+4+2+1 = 15 in BCD-8421 format, a
value of 4+2+2+1 = 9 in BCD-4221 format, and a value of 5+4+2+1 =12 in
BCD-5421 format.

These formats allow the generation of 2A and 5A multiples in a few levels of
logic gates using recoding block and wired left shifts. For example: BCD-5421
format allow a fast decimal 2A multiple generation in two steps. Firstly recode
each BCD-8421 digit to BCD-5421 then left shift the recoded multiplicand by
one obtaining the 2A multiple in BCD-8421.

BCD-5421

/ Shift left 1 bit

BCD-8421

\/

carry

Also it ease the 5A multiple by left shifting the multiplicand A, BCD-8421,
three bits then recode each digit of the shifted multiplicand from BCD-5421 to
BCD-8421.

BCD-842 1 \
% Shift left 3 bits
BCD-5421 5421 /
weight 10 digit weight 1 digit

For the BCD-4221, the multiplication by two obtained by recoding each
multiplicand digit to BCD-5211 then left shifts the recoded multiplicand by
one, the 5A multiple in BCD-4221 format is obtained.

BCD-5211

j Shift left 1 bit

BCD-4221

&/

carry

Also a three bit left shifting of the BCD-4221 multiplicand obtain a 5A in
BCD-5211.

BCD-8421 \
% Shift left 3 bits
BCD-5421 5421 /
weight 10 digit weight 1 digit

More multiplicand multiples generation in different BCD formats is discussed
in [22].

Véazquez et al. in 123 use the BCD-4221 and BCD-5211 in decimal adders
where they give a valid decimal digit values for all 16 combinations. These
avoid the extra delay and area of the adders’ decimal corrections. Also it allows
binary addition/subtraction to be used for partial products accumulation where
BCD-4221 format is self-complementing. So the addition of a negative value of
the multiplicand can be obtained only using inverters and setting the carry-in

bit of binary adder by 1.
3.2 Multiplier recoding for multiples selection

Multiplexers controlled by the multiplier digits are used to choose the
correct multiplicand multiples to generate the partial products to be added in
the next stage. If all decimal multiplicand multiples (A — 9A) are generated
in the previous stage, only one multiplexer, MUX, is needed. While, if a
reduced set of multiplicand multiples are generated, a multiplier recoding will

be needed to represent each multiplier digit into two digits. Thereby, two
55

MUXs are needed to choose the two suitable multiplicand multiples for each
multiplier digit. Table 3.4 shows an example of multiplier digits recoding for
the secondary set (4, 24,44, 84) multiples.

bi bi' bi" bi bi' bi"
0|0 |0 514 |1
111 1|0 64 |2
212 |0 718 | -1
3|11 |2 818 |0
4 12 |2 918 |1

Table 3.4 Example of multiplier recoding

When all multiplicand multiples are generated, one partial product for each
multiplier digit is selected so n/4 partial products are generated, where n is the
number of multiplier bits. Nevertheless, when a reduced set of multiplicand
multiples are generated, two partial products for each multiplier digit is
selected so n/2 partial products are generated. It seems that the first scheme
has less delay for next accumulation stage, but the generation of all decimal
multiplicand multiples needs a large area and delay because it needs CPAs. The
number of partial products is increased in the second scheme but it increases
the delay by one level CSA only in the partial products accumulation stage, it

will be discussed in next section.
3.3 Partial Products accumulation

Partial products accumulation stage in decimal multipliers can be
implemented using any of high radix methods discussed in previous chapter,
sequential designs, or parallel designs (array or tree topology). The only
difference between decimal and high radix design is that a decimal CSAs and

decimal CPAs is used. Decimal adders are like binary adders except an extra

56

correction block after each digit addition. A correction of six is added if a digit

sum is greater than nine to skip over the invalid BCD digits, A, — F¢.
3.3.1 Sequential accumulation approach

Several sequential decimal multipliers are proposed in [6](a)[14][13][6](b)
[10][20]. The basic sequential approach of decimal multiplication is to iterate
over the digits of the multiplier B and based on the value of the current digit,
successively add multiples of the multiplicand A to a product register called

intermediate product (/P) with shifting one digit in each iteration.

When one partial product is generated for each multiplier digit [6][20], the

equation for the sequential partial products accumulation is as follows

Pi+1 = (Pl + A bl) . 10_1 (33)

where P, =0 and 0 <i <n/4— 1. And after n/4 iterations, P, corresponds
to the final product P.

To implement this, a decimal CPA is used as in Figure 3.7a. However, when
two partial products are generated for each multiplier digit (secondary set of
multiplicand), a decimal CSA is used before the decimal CPA [10] (see Figure

3.7b) and the following equation is used

P+1=(P,+A-b/+A-b]")-1071 (3.4)

where A-b; + A-b;’ = A-b;. Although the secondary multiple approach
reduces the delay and area of partial products generation (i.e. the area and delay
of the decimal CPA), it introduces a delay overhead in the extra decimal CSA

in each iteration.

57

Using decimal CSAs only in the iterations has a significant delay reduction as
in Figure 3.8. The carry save adders are used in iterations then one decimal
CPA is used at the end of process to add the sum and carry outputs of the
decimal CSA from last iteration [15][16][6](b).

Multiplier Multiplicand
Register Register
Multiplier Multiplicand _ | v
Register Register IOne dlglt 1t digit Multiples
| 7 Right Shifter Generation
One digit J 1 digit Multiples | T, v
Right Shifter ! Generation Partial Product
Recoder l ~~~~~~~ i control Selection
Partial Product
control Selection
.|Intermediate Product
I Register
Intermediate Product ¢ 1 \
Register Decimal
v v Carry Save Adder
= 2 gate delay
Decimal T T
Carry Propagate Adder Sum Carry
n-bit carry propagate delay l l
— Decimal
L R'Orr:t‘;esdrlngltt < Carry Propagate Adder
'9 e n-bit carry propagate delay
.’ || Onedigit |
. Right Shifter|"
Final Product (P) g

\4

Final Product (P)
(a) (b)

Figure 3.7 Sequential Decimal Multiplication Design

58

Multiplier Multiplicand
Register Register
v
One digit 1%t digit Multiples
Right Shifter Generation
Lo
Partial Product
atiteol Selection
—— v
IP Carry IP Sum
Register Register
¢ ¢ Y
Decimal
Carry Save Adder
2 gate delay
Suml Carry1
¢ ¢ 4
Decimal
Carry Save Adder
2 gate delay
T T
| One digit |, Sum2 Carry2
Right Shifter |~
One digit

Right Shifter [€

Y A 4

Decimal
Carry Propagate Adder
n-bit carry propagate delay

v

Final Product (P)

Figure 3.8 Sequential Decimal Multiplication Design

3.3.2 Parallel accumulation approach

Parallel decimal multiplication offers a good delay reduction with an
increase in area [13][22]. In parallel decimal multiplication, all partial products
are generated in parallel according to the multiplier digits then the partial
products are accumulated using a decimal carry save adders tree. This tree
reduce all partial products into two partial products then a carry propagate

adder is used to obtain the final product as in Figure 3.9. The same as binary

59

trees, the delay of decimal CSAs tree depends on the number of input partial
products and the design and arrangement of the decimal CSAs. For example,

the accumulation of 16 partial products needs 6 levels of decimal CSAs.

Multiplier Multiplicand
Register Register

!

Multiples
Generation

Recoder
Partial Products
control Selection

Partial Products
Carry Save Adder
Reduction Tree

Sum Ce;rry
| |
Decimal

Carry Propagate Adder
n-bit carry propagate delay

|

Final Product (P)

Figure 3.9 Parallel Decimal Multiplier Design

3.3.3 Decimal adder block implementation

Decimal addition can be implemented using binary adder with decimal
correction block for every digit to correct the binary digits out of BCD range
[15][16][17], or using direct decimal addition technique [21]. Vazquez et al. in
[22] present a decimal adder using all-valid BCD formats, which have a valid
decimal value for all 16 combinations. It gives a valid sum and carry values
without the need of correction blocks which decrease the area and delay of the
adder [22].

60

Binary addition with decimal correction block

The decimal addition of two decimal digits of the same order yields a two
digit decimal sum in the range [0 — 18]. When using a binary adder for the
addition, there are 5 bits out from the adder. The four LSBs represent the LSD
of the decimal sum, and the MSB represent the carry bit or the MSD of the
decimal sum. The LSD of the sum may actually range from [0 — 15], instead
of BCD digit values from [0 — 9]. In the case of the LSD being in the range
[10 — 15], the LSD need to be adjusted to bring it into the valid range for a
decimal digit. This can be achieved by incrementing the LSD by six. Also in
this case, the carry needs to be changed from zero to one to represent a carry of
10. Also, in the case of the carry is one and the LSD is in the range [0 — 2], the
sum needs to be incremented by six to adjust the weight of the carry from 16 to
10. Thus, there are two different reasons for the correction, but both situations
are handled by the addition of six. See [10] for more details in this type of

decimal addition.
Direct decimal addition

Direct decimal addition implements logic units that accepts as inputs two 4-
bit BCD digits with a 1-bit carry-in, and directly produces a 4-bit BCD sum
digit and a 1-bit carry-out where the weight of carry-out bit is 10 times the

weight of sum digit.
Binary addition with All-valid BCD formats

When BCD-4221 format or BCD-5211 format is used in CSA or CPA
blocks, it gives a correct sum and carry values in the range of [0 — 9].
However a decimal multiplication by 2 is required before using the carry digit
in the computations. The carry is multiplied by two, left shift in binary
addition, using BCD-4221 or BCD-5211 as discussed in the decimal

multiplicand multiples generation stage. Figure 3.10 shows a general design of

61

3:2 decimal CSA where A4;, B;, and C; are the three inputs of the CSA. S;, and
H; are the sum and carry outputs of the CSA. W; is the carry digit after

recoding then it shifted left one bit for the multiplication by two generation.

i3 bj3 Ciz aj2bjCis a1bj1Ci1 @iobioCio

N I B

3:2 3:2 3:2 3:2
h; h; h
hi,3 si*S 1,2 SL i1 Si,*1 1,0 Sfo
Y / Y y Carry-in
x2 l_<
. | I | |
i3 Wi2 Wi 1 Wio W3
Carry-out

Figure 3.10 Generic design for the 3:2 decimal CSA

Figure 3.11 explain two examples for BCD-4221 and BCD-5211 decimal
CSAs. The following equation describes the CSA operation: Aj+ Bi+ C;=S; +
2H;. In Figure 3.11a, BCD-4221 format is used. The three input digits are
added using binary CSA and give two digits sum and carry. The carry digit is
recoded to BCD-5211, using combinational circuit, then left shifted one bit to
obtain 2H in BCD-4221 format. However, Figure 3.11b uses BCD-5211
format. The carry digit is recoded to BCD-4221 then left shifted one bit to
obtain 2H in BCD-5211 format.

62

4221 5211
A: 5 1001 A: 5 1000
B: 6 1100 B: 6 1001
C: 9 1111 C: 9 1111
S:6 1010 S:8 1110
H'.' 7 1101 H'-.' 6 1001,(‘,‘)”}/.”)
X2 ¥ L1-shift
x2 l W,:7 1100 (BCD-5211) 2H,:12(9 00 1C) gopa221
2H;: 14(100>) L-shift (W) Cary-out 75 1 010- BCD-5211
Carry-out ¥ ———— Carry-in +B+C. =S i
- E—— A+B+C, = S+2H, = 20

(a) (b)

Figure 3.11 Decimal carry-save addition example (a) in BCD-4221 format (b)
in BCD-5211 format

3.3.3 Decimal trees
Radix-10 CSA

Lang and Nannarelli in [13] use a radix-10 CSA tree to accumulate the
partial products. Their multiplier uses SD-radix-5 for multiplicand multiples
generation, which generates the (A, 2A, 5A, 10A) multiples set. This set
generates two partial products for each digit and carry bit for negative. The 2
partial products and the carry bit are added using radix-10 CSA to generate 16
partial products in carry save format. Radix-10 CSA adds a carry save operand,
sum and carry, plus another BCD operand to produce a carry save result, see
Figure 3.12a. Also a carry counter adds an array of carry vectors of the same

weight and produces a decimal digit as shown in Figure 3.12b.

63

A

BD

nafrak kn

r-10 CSA

n‘4,I ,i’n
S C

n—1 1 0
A aaaa aaaa aaaa
B bbbb bbbb bbbb
D d d d
S ssss ssss ssss
8 c c 0

(a)

Figure 3.12 (a) n-digit radix-10 CSA (b) m-digit radix-10 counter.

For example to add 16 carry save partial products, xy;, arranged as in
Figure 3.13. The first level of the tree needs only 8 radix-10 CSAs leaving the
carries of 8 partial products not accounted for. And by arranging the radix-10

carry-save adders and the carry counters as in Figure 3.14, the partial products

are accumulated in a 6-level tree.

-

r-10 CC

m*4,i'Z

(b)

[]
Q0

:

000000000000 00000
P98 00R0RORRRRRORS

[]
Q
[]

00000000000000000

Figure 3.13 Array for partial products. Solid circles indicate BCD digits,

(X X1X)]
000000000

hollow circles indicate carry bits.

64

Xp XY Xy R Y, Xy, xy xy WY, XY, ®Y, Y, Xy, WY, Xy, Ry XY g camies

B A o a 7 & c el 2

10 csal | =10 c:sal | —10 c-s_xl | r—10 c-s_al | 10 cs_xl

r—lDC.‘:i.—\l | Hoc:ssl | 1-—IOCSA| |

r-10 CC

15*4* +1a 13-4* l/18 13-4,{ J{1a 13’4{ +1.3 1.3-4,i ,|'1a 1a~=,f +15 15*4{« +1a 15*4){ *13
sty st st s1, s1, sl, s1, s1,
LE"ELJ/ sl, 81, 51, sl, 51 g1, sl -
LEVEL 2 [I I | ||
| 10 C.‘:i.—\l | 10 c-s.al | 110 c-s_al | r-10 cs_xl

2:’4{/ *20 :n*4J{ *20 20~=+ *20 ZD‘:,i' ,fz:
82, 82, 82, 2,

LeveLs s 2 @, T m, T T
L I 1 1]

| 1—10c:s.-\| | r—1crc:s.a|

2 51,
k] z

24%4 J{ ,{f:: 2='4* *:4
53, 53,

LEVEL 6

Figure 3.14 A Radix-10 Combinational Multiplier Adder tree

l’ 37+4
a1

The final carry-propagating addition consists in converting the radix-10

carry save representation into BCD one. This is done with a radix-10 CPA in

which the input is just a value in radix-10 carry-save representation and the

output is the product represented in BCD.

Decimal 3:2 CSA

Vazquez in [22] proposes a 4-bit 3:2 decimal CSA using BCD-4221 format

as shown in Figure 3.15a.

65

33b3C3 a2b2c2 a1byics 0Di0Ci0

I N L o L

32 32 32 32
hlS Stg h"2 5?2 h._] 51?1 h|_o ‘
#0 Carry-ir hi-3 hi-2 hi.1 hI.O
| x2 | @ @] @] m]
g | | | BCD-4221 to BCD-5211 Recoder
w N -‘
(;-:m,-om Wi2 Wi wi0 Wi-1,3 Wil Wig Wi Wig Ca\l;?: ;n
ay by iy a by ¢y ¥5) ¥2) y(1) y(1) y(0.5) :
=\ = I L1-shifter ‘
Wi3 (10] (4i (21 (2‘ (1)‘
Mux?’ Carry-out Wi2 Wi1 Wio Wi13
|
¥ v \]
hyy Sij hiy Sij
3:2 config. (a) 3:2 config. (b)
(a) (b)
Figure 3.15 (a) 4-bit 3:2 decimal CSA (b) decimal multiplication by 2 for
BCD-4221

For 16 partial products, a 16:2 decimal CSA tree is used. Figure 3.16 shows
two examples of a 16:2 decimal CSA trees. The 3:2 blocks represent a 4-bit
binary 3:2 CSA. The x 2 blocks represent decimal multiplication by 2. In the
first implementation, shown in Figure 3.16a, every carry output is multiplied by
2 before connecting to any other input. Since the carry path is slightly more
complex than the sum path, outputs of block x 2 are connected to fast inputs
of the 3:2 CSA. The second implementation, Figure 3.16b reduces the
hardware complexity by adding the carry outputs of the previous tree level
before being multiplied by 2. Therefore it is necessary to perform several x 2
operations in a row for some paths. Both implementations present similar
critical path delays but the second implementation is preferable because of

reduced hardware complexity.

66

16 digits BCD-4221 (same digit weight)

(in brackets required multiplicative factor)
3:2 3:2 I 3:2 | 3:2 | 3:2 I

Il
m @M @ [32 || 32 |[32 || 32 |[32
2] (1) (2

16 digits BCD-4221 (same weight)
Sin brackletls quuilreidlmultlip{iclative factor)

@ [a) @[[m_L2 M@
T =
| 32 | l_sz_] | 3:2
@) |@ @ lm | 4 (1)
3:2
FE— @ 1
3:2
4] |2
| 3:2 1)
“‘8 . == [22
| 3:2 | X (1)
[2 | e || x
i dzj m‘ (L)
%) :
Ce] 3:2 :
(1)
[x|
2) (1)
(a)

Figure 3.16 16:2 decimal CSA tree

Reduction by column tree (dadda tree) [3]

Dadda proposes a decimal column addition for the partial products via a
network of carry save adders. The sum is converted to decimal format using
binary to decimal converter. The decimal values are aligned then added to
obtain the total sum through the addition of a few (2, 3, and at most 4) decimal

numbers. This scheme, shown in Figure 3.17, is based on the following steps:
1. Binary addition of N (4-bit) column digits of equal decimal weight.
2. Binary to decimal conversion of each column sum.

3. Decimal column sums alignment according to their decimal weights. It

forms an array of few (2, 3, or 4) decimal numbers, each of them n digits
67

long, Major Partial Sums, MPSs.

4. Decimal addition of the MPSs to obtain the final sum.

103 102 10! 100
o000 0000 o000 oo0ooe
o000 o000 o000 oo
0000 oeocee o000 oooo

. N=33
e00e0 o000 o000 o000
e00e0 0000 oco00e ococoo

°® °

° °

binary binary binary binary

addition| |addition| |addition| |addition
decimal decimal decimal decimal

conv. conv. conv. conv.
21222 Major
91919 Partial
Sums
717 7
decimal adder
31219/9(6|7]| sum

Figure 3.17 basic decimal column adder scheme for N=33 addends

3.4 Conclusion

Decimal multiplication can be implemented using sequential or parallel
approaches. Parallel decimal multiplication offers a good delay reduction. It
generates all partial products in parallel according to the multiplier digits then
the partial products are accumulated using a decimal CSA tree. This tree
reduces all partial products into two partial products then a CPA is used to
obtain the final product. Decimal multiplication can be divided into three
stages: multiplicand multiples generation, multiplier recoding for multiples

selection, and partial products accumulation.

68

Chapter 4

Combined Binary/Decimal Multipliers

Recently, two combined binary/decimal multipliers are proposed. The first
is proposed by Vazquez in 2007 and the other by Hickmann in 2008. This

chapter introduces the two multipliers and their advantages and disadvantages.
4.1 Vazquez combined binary/decimal multiplier

Vazquez et al. [22] propose the first combined binary/decimal multiplier
design approach. They use BCD-4221 format for decimal digits representation.
Figure 4.1 shows a block diagram for Vazquez combined binary/decimal
multiplier proposed in [22]. For multiplicand multiples generation, a binary SD
radix—4 recoding and a decimal SD radix—4 or decimal SD radix-5 recoding is
used. SD radix—4 generates (A,2A,4A,8A) multiples and SD radix-5
generates (A, 2A,5A,10A) multiples. Two multiplexers, controlled by the
multiplier digits, are used to select the suitable two multiplicand multiples for

each digit. XOR gates are used for negative multiples.

69

Multiplicand 5 |8
| = |
{ y S |8
Decimal Multiples Binary Multiples| |3 g
Generation Generation
A 2A A 2A
o4 vy
<_
| MIUXthenXOR | e
5A 10A 4A 8A
vy v
MUX P
A 16 Partial 17 Partial
v Products v Products

A

Binary/Decimal

CSA Tree
I
x2 +6
I

A

128-bit Q-T Final Adder
f 128-bit Product

Figure 4.1 Vazquez binary/decimal multiplier.

For partial products accumulation, a shared binary/decimal carry save adder
tree is used. The use of BCD-4221 format eliminates the decimal corrections
needed to obtain correct decimal outputs from carry save adders. Figure 4.2
shows the carry save adder tree used. A binary/decimal multiplication by two
block, (x 2), is used for carry outputs of the tree, Figure 4.3. Finally, a
modified carry propagate quaternary tree adder, Q-T adder, is used to perform
binary and decimal additions. To produce a correct decimal addition a
conversion to BCD-8421 then a +6 operation is done to produce correct

decimal digits before the Q-T addition.

70

(in brackets required multiplicative factor)

DL LD L L L L L

4:2 4:2 4:2 4:2 4:2 4:2 4:2 4:2
CSA CSA CSA CSA CSA CSA CSA CSA
¥

|x210/2| |X210/2| |X210/2| |X210/2| |X210/2| |X210/2| |X210/2| |><21o/2|

3:2CSA 3:2CSA 3:2CSA 3:2CSA 3:2CSA
(2)| (1)| @ (@) (2j 1 2y (@) @ @ @
!
| s2csa| | 3:2csA |
“4) (2 (2 (1

—

3:2CSA
T
3:2CSA X21012
® @ |

|x2]_0/2| |X210/2| 3:2CSA
@ @

|x210/2| |x210/2| |x210/2|

@ 3:2 CSA_—I
2

|x210/2| ><210,2E binary/decimal x2

Figure 4.2 VVazquez binary/decimal CSA Tree.

- Input digit
M A
2 2 ¥
BCD-4221 to BCD-5211 Recoder
IR
binary MUX decimal | B/D control
carry-in

[[T]
| Left Shift Lbit |

carry-out l l l l Output digit

Figure 4.3 Binary/Decimal multiplication by two block.
71

4.2 Hickmann combined binary/decimal multiplier

Figure 4.4 shows Hickmann et al. multiplier proposed in [9]. They improve
Vazquez multiplier trying to decrease the area and delay, specially the delay of
binary path. They use only 3:2 CSAs in the carry save adder tree to reduce the
number of binary/decimal(x 2) blocks. Sharing of x 2 block for binary and
decimal increases the area and delay of binary and decimal paths, because of
the multiplexer used in it. They propose to split the binary/decimal tree at the
beginning of using (x 2) blocks, Figure 4.5, to avoid the extra multiplexers
used compared to standalone multipliers. So the delay of binary and decimal

paths are significantly reduced but with a reasonable area penalty.

Multiplicand
|

v
Binary Multiples
Generation

||

v
Decimal Multiples
Generation

% |

Multiplier
B/D control

3 I

MUX then XOR

e

5A 10A | 4A 8A
¥ ¥ ¥ ¥

MUX then XOR

|

16 Partial
Products
\ 4

17 Partial
Products
\ 4

Split
Binary/Decimal
CSA Tree

Decimal Output

128-bit Q-T

Final Adder
/vr128-bit
decimal Product

Binary Output
|

128-bit Q-T

Final Adder
flzs-bit
binary Product

Figure 4.4 Hickmann binary/decimal multiplier.

For multiplicand multiples generation and selection, they use same Vazquez
design. Also a +6 is added to sum before the final Q-T carry propagate adder.
They split the carry propagate adder for binary and decimal final adder to

decrease the delay but with more area increase.
72

(in brackets required multiplicative factor)

! Hi Hi lH Hl lH Hl lH Hl Hi Hl

CSA

CSA

CSA CSA

CSA

CSA CSA

CSA

CSA

@

N

ay @ aera
ﬁv

N

(11 (2% (1% 2T

(1} 2% (13 2ﬁ a

—
|3:2 CSA| |3:2 CSA| 3:2 CSA
(41(21 (81 (41 combined 7y T (1)
portion
®) @)@ @ @@ @ @ o a @ @ @a e e eewada
x2 |3ZCSA||3ZCSA||32CSA|
(1) @ (’ﬁ @) (4 (2)1 @ @
a2csA | | a2csa | | a2csa
@ @ @ @ @ 3:2 CSA :
3 2 CSA 3 2 CSA|
@ @
<<3 << <<
4:2CSA
T

<<= Shift Left

binary
portion

decimal
portion

Figure 4.5 Hickmann split binary/decimal CSA Tree.

4.3 Conclusion

73

Vazquez et al. propose the first combined binary/decimal multiplier design.
They propose a shared binary/decimal CSA tree. A multiplexer is used in each
X 2 block to select between binary and decimal x 2, which lead to some
increase in the area and delay specially in the binary path. Hickmann et al. split
the binary and decimal CSA trees at the start of using x 2 blocks. They have

some increase in area but the delay of binary and decimal paths are decreased.

Chapter 5

Proposed Combined Binary/Decimal Fixed-Point

Multiplier

In this chapter, the proposed combined binary/decimal multiplier design is
discussed. It allows the use of binary or decimal multiplication according to
application. Binary multiplication is faster and decimal multiplication is more
accurate in financial applications. We try to decrease the total area and delay of
each path. The proposed multiplier takes two operands, 64-bit multiplicand (A)
and 64-bit multiplier (B). It also takes a B/D Control signal to determine
whether the operands are binary or decimal, BCD-8421. When the B/D control
signal has a ‘0" value, operands are binary and when it has a "1’ value, operands
are decimal, BCD-8421. The design consists of three stages: multiplicand
multiples generation, partial products selection, and partial products
accumulation. We deal with each multiplier four bits as a digit for binary and
decimal multiplication so multiples from 1 to 9 for decimal and multiples from
1 to 15 for binary are generated in multiplicand multiples generation stage. The

multiplier and multiplicand is presented by 16 digits.

We propose three designs for the multiplier. The first design uses
(A,24,4A,8A4,16A) binary multiplicand multiples and (4,2A4,5A4,104)

decimal multiplicand multiples. These multiples output three partial products
74

for each binary digit and two partial products for each decimal digit. Two trees
are used in the partial products accumulation stage, one shared for binary and
decimal, Dadda column tree. And the other for binary, Wallace tree. A final

Kogge-Stone carry propagate adder is used to produce the final product.

Second design uses one column tree in the partial product accumulation stage
to reduce the area. The (4,2A4,4A4,84,11A4,13A4,16A) binary multiplicand
multiples and (A4, 24,54, 10A) decimal multiplicand multiples are generated.
These multiples generate only two partial products for binary and decimal

digits.

Third design uses Booth 4 for binary recoding which reduce the number of
multiplicand multiples need to be generated without increasing the number of
partial products of each digit. The (A4,2A4,4A4,84) binary multiplicand
multiples and (4, 24,54, 104) decimal multiplicand multiples are generated.
Two versions of this design is proposed, shared and split. Some improvements

are used to decrease area and delay for the final proposed design.
5.1 First Proposed Design

Figure 5.1 shows the block diagram of the first proposed multiplier. The
multiplier has three inputs, Multiplicand (A), Multiplier (B), and
Binary/Decimal Control signal (B/D Control).

5.1.1 Multiplicand Multiples Generation Stage

The first stage of the multiplier is generating basic multiplicand multiples.
The remaining multiples is generating dynamically during the next stages by
adding two/three basic multiplicand multiples. In order to decrease the delay of
this stage, the tertiary set (—24, —A, A, 24A,4A,84,16A) is generated for binary
multiplicand multiples and the secondary set (—2A4,—A,A,2A,54,104) is
generated for decimal multiplicand multiples. A tertiary set is used in binary, to

eliminate the generation of 3A or 5A multiples which take a large delay O(n),
75

A B B/D Control
4’54
585 ; .
2885 Decimal Binary
SE5S Multiples Multiples
= § s9 Generation Generation
s<O 14,24 |Sh, 104 14,24, 44 84, 164
L
—85, MUX-3 MUX-2 M-
@ O.= VA4 .
2= B(lA) B(44, 34,164) B(-24,4, 14,24 44)
%'é cg D(SA, 104) DC2A,-A, 1A, 28) ||
=N
ey » 16% 64-bit 16* &3-bit 1 7% é5-bit
k. ¥ 4
fid-bit Binary Tree Binary Coluran Tree
r2%127-ba B(33% 59 bat)
D(33*8~10ha
(6]
28
gn ' ¥
B85 Binary Decirmal
o 'c_*_g Re-arrange Re-amange
< :ES 6 * 125-bit 6 % [25-hit
£ 3) (Binaxy) (BCD-4221)
a - .
éf 127-bit Binary Tree 125-bit Decirnal Tree
2% 128-htt 2% 28-h
L
|| 128-bit Kogge-Store based Canry Propagation Adder je—————

{12%11

Figure 5.1 First combined binary/decimal multiplier block diagram.

where n is the number of multiplicand bits. So for each binary multiplier digit,
three multiplicand multiples are selected and for each decimal multiplier digit,

two multiplicand multiples are selected.

Binary multiples are generated using only shifting as shown in Figure 5.2.
2A,4A, 8A, and 16A multiples are generated using 1bit, 2bit, 3bit, and 4bit left
shifting. Negative multiples are generated using 2’s complement operation
obtained by generating 1’s complement in this stage, by inverting each bit of
positive multiple using NOT gate, then at the partial products selection stage a
plus one bit, sign bit, is generated to be added to partial products in

accumulation stage.
76

|A (BCD-8421)

v v v v
4-bit 3-bit 2-bit 1-bit
Left Shift| | Left Shift| | Left Shift Left Shift
v v
NOT NOT
v v v l v l v
16A 8A 4A 2A-1 2A -A-1 A

Figure 5.2 Binary multiples generation

Decimal multiples use BCD-8421 signed-digit radix-5 recoding [22],
where it has a fast generation of multiplicand multiples 2A, 5A, and 10A. 2A
and 5A multiples are generated using shifting and conversion between different
BCD formats as shown in Figure 5.3. Decimal 10A multiple is generated using
4-bit shifting. For negative multiples, a 9’s complement is obtained for each
digit using two level gates combinational function. Then at the partial products
selection stage aplus one bit, sign bit, is generated. Only -A and —2A

negative multiples are needed and generated.

| A (BCD-8421)

v v v
4-bit 3-bit BCD-8421 to BCD-5421
Left Shift Left Shift Encoder
5A|(BCD-5421) A|(BCD-5421)
A\ 4 A\ 4
BCD-5421 to BCD-8421 1-bit
Encoder Left Shift
v v
9's 9's
comp. comp.
v \ 4 i v ¢ \ 4
10A 5A —2A-1 2A -A-1 A

Output multiples in BCD-8421

Figure 5.3 Decimal multiples generation

77

For the BCD-8421 to BCD-5421 encoder block, Table 5.1 shows a digit
conversion from BCD-8421 to BCD-5421.

BCD-8421 BCD-5421

X3 | Xy | X1 |Xg | hs|hy| hy | By
ojojojofjojojo0j0]|O
110/0(0}1,0]0]0]1
2/0(0|1|0}0|0]1]|O0
310j0|1{1}j0|0|1]|1
410(1|0|0J0|21]0]O
5/0(1|0|1}1|0]0]O0
6/0[1(1|{0})1|0|0]|1
717011111 }1/0|1/|0
g/1/0(0|0}1|0|1]|1
9/1/0|0f1}1|1]|0]O0

Table 5.1 BCD-8421 to BCD-5421 conversion

Each digit of this encoder is described by the following equations

ho = Xo X3 X3 + X X1 X2 + X X3 (5.1)
hy = xpx; + X1 %5 + x3X, (5.2)
hy =Xy X1 X2 + X X3 (5.3)
hs = xy x5 + %1 X5 + X3 (5.4)

For the BCD-5421 to BCD-8421 encoder block, Table 5.2 shows a digit
conversion from BCD-5421 to BCD-8421. X means don’t care where these
values do not appear after shifting the BCD-8421 three bits to the left.

78

BCD-5421 BCD-8421

>
w
>
N
>
(=
>
o

OO N OO N0 AW N | O

=
o

|
|

R PP PP P RPRPPOO OO OO O O

P PO OKFR KPP OOk KPP O Ok L O] O

Rlolr|lolr|lolrlolrlolrl okl olrlo
XXM | o] ol o 4| X ¥ o o o o ol

XX K| oo k| k| k| X X X ol o o olX

M X A ol o| k| ko X4 X K o k|~ ol ol
I = = R I = I =1 I =] B

Pl PP PO OO ORI FPEFPO O OO

12

Table 5.2 BCD-5421 to BCD-8421 conversion

Each digit of this block is described by the following equations

Xo = ho @ hj (5.5)
x; =hyhy +hghy + hohy hs (5.6)
X, = hy hy + hy hy hy + hg hy hs (5.7)
X3 = ho hy hs + hy hy (5.8)

The decimal BCD-8421 9’s complement block is implemented using two level

logic gates. Table 5.3 shows a BCD-8421 9°s complement truth table.
79

(BCD-8421) 9’s complement
(BCD-8421)

Y3 | Y2 |YV1|Yo|23|22|21 |20
0oj0j0j0j0J1]0]0|1}9
110/{0(0(1}j1(0(0]|0}|8
2/0(0j1|0)0 |2 |21 |17
3j0j0j1{1/0|1]1|0)6
410/1|0|0}J0|21]0|1}5
5|011/0(1}]0(1]0|0}4
6/]0(1}1{0}]0j0|2 1,3
7170/1}1{1}]0}0(1|0)2
8/1/0j0|0}J0}j0|0|1)1
9]1/0(0(212}0}0|0|0/0

Table 5.3 9’s complement of BCD-8421 digits

It is described by the following equations

Zo = Vo (5.9

Z =V, (5.10)
Z; =1 DY (5.11)
Zs =Y, V3 V3 (5.12)

5.1.2 Partial Products Selection Stage

After generating the basic multiplicand multiples, the suitable two/three

multiplicand multiples is selected according to multiplier digits using two/three

80

multiplexers for decimal/binary paths. Binary multiplicand multiples set is
divided into three groups for the three multiplexers while decimal multiplicand
multiples set is divided into two groups for the two multiplexers. Two
multiplexers are shared between binary and decimal selection to choose the two
suitable multiplicand multiples. The third multiplexer is used for the binary

third group which chooses the third suitable binary multiplicand multiple.

Binary set is divided into (—2A,—A, A, 2A,4A), (4A,8A,16A) and (A)
groups. The third group is to generate 11A and 13A multiples without the need
to generate 3A or 5A multiples. The binary partial products are selected

according to Table 5.4.

Multiple MUX1 MUX?2 MUX3
selection | selection | selection

0 0 0 0
A 0 0

2A 2A 0 0
3A —A 4A 0
4A 0 4A 0
5A A 4A 0
6A 2A 4A 0
7A —A 8A 0
8A 0 8A 0
%A A 8A 0
10A 2A 8A 0
11A 2A 8A A
12A 4A 8A 0
13A 4A 8A A
14A —2A 16A 0
15A —A 16A 0

Table 5.4 Binary multiplicand multiples selection.

81

Decimal set is divided into (—2A,—A, A, 2A) and (5A, 10A) groups. Table

5.5 shows the decimal partial products selection from the two multiplexers.

Multiple MUX1 multiple | MUX2 multiple
selection selection

0 0 0

A 0
2A 2A 0
3A —2A 5A
4A —A 5A
SA 0 5A
6A A 5A
TA 2A 5A
8A —2A 10A
9A —A 10A

Table 5.5 Decimal multiplicand multiples selection.

This stage outputs 49 binary partial products, 3 x (16 multiplier digit) + 1
(for plus one sign bits). 33 decimal partial products, 2 x(16 multiplier digit)

+ 1 (for plus one sign bits) are output.

A two level gate multiplexer is used as shown in Figure 5.4. Where condl
means condition of selecting A multiple, cond2g means condition of selecting
2A multiple for binary operands, cond2p means condition of selecting 24
multiple for decimal operands, Inv means condition of inverting for negative
multiples, and so on. The conditions that control them depend on multiplier
digits (b;) and B/D Control signal, (c¢), where ¢ ='0" means binary input
operands and ¢ ='1" means decimal input operands. The conditions that

control the multiplexers are similar for all digits. First digit equations are:

82

For MUX1

cond1 = (by bs + by by by + by by by) - ¢+ (by b, + by by by) - ¢

(5.13)
cond2g = (by by + by by bs) - € (5.14)
cond4y = (by by b3) - C (5.15)
cond2p, = (by b3 + by by + by by) - ¢ (5.15)
Invg = (b by by + by b, by) (5.16)
cond.4g cond.2p cond.2p cond.2s cond.2g cond.lp cond.lg cond.1
Inv.g Inv.g Inv.p Inv.g
4Ag l -2Ap l 2Ap l -2Ag l 2Ag l -Ap l -As l A l B/D Control ~ B/D Control
l L * l * # l + l + |nV.D Inv.B
v v
sign bit
selected partial product
(a) MUX1
cond.10p cond.5p cond.16g cond.8g cond.4g
10A, l 5Ap l 16ABl 8As l 4Ag l cond.1g
v v v v v
A
v
selected partial product
selected partial product
(b) MUX2 (c) MUX3

Figure 5.4 Multiplexers design for each multiplier digit.
83

For MUX?2

cond4g = (bg by by + by by by + by by b, by) € (5.18)

cond8g = (b, by + by by + by by b, b3) - € (5.19)

COTld16B = (bl bz b3) ' C (520)

cond5, = (bg by + by bs) - ¢ (5.21)

cond10p, = (b3) - ¢ (5.22)
For MUX3

5.1.3 Partial Products Accumulation Stage

After generating all partial products, a tree of adders is used to add them.
Irregular tree topologies are used in order to minimize the total delay. MUX1
output 17 partial products and MUX2 output 16 partial products. They are
common for binary and decimal. Each partial product is shifted to its right
weight according to its multiplier digit position. Then they enter to a binary
column tree, shared for binary and decimal. A binary tree is used here to save
the correction delays of decimal addition due to the six invalid BCD-8421
digits, from 10 to 15. Column tree did not allow the pass of carry bit to next
digit which should be of order 16 in binary addition and of order 10 in decimal
addition. These different between binary and decimal need a multiplexer to

choose the correct carry for each path. Binary tree solve this problem which
84

save delay and area. The binary column tree used here is similar to Dadda’s
tree in [3]. Nevertheless, the proposed tree replaces the binary addition by a
carry save addition to decrease the delay. Also, each column has different
number of digits to be added according to partial products different weights. It
adds every 4-bit digit for the 33 partial products out from MUXs1 and MUXs2
using binary carry save adders. Each column out sum and carry output. Figure

5.5 shows the scheme of the binary column tree used.

col.(32) col.(17) col.(16) col.(15) col.(1) col.(0)
o000 0000 - 0000 o000)
o000 @000 - - 0000 0000
o000 o000 0000 - 0000
eoeo0o0 eeo0e o000 ... 0000
32 partial
> products
0000 ... 06000 o000 oo
o000 - -. 0000 0000 o000
J
° ° sign bits
' partial product
! : : : ! |
CSA CSA CSA CSA CSA CSA
binary tree binary tree||binary tree||binary tree binary tree| |binary tree
C s C s C s cC s C s C s
Vo Vo Vo Vo Vo Vo

Figure 5.5 Binary column tree scheme.

Every column has a different number of digits. A CSA tree used for each
column to add its digits as in [3]. Column number 0 has two digits from first
two partial products, for first multiplier digit, and one sign bit for negative
multiplicand multiples. Column number 15 has the maximum number of digits
to be added, 32 digits plus 1 sign bit. Figure 5.6 shows the binary CSA tree of
digit(15). Sign bit is added to first bit of shifted carry digits in the tree. Sign

85

extension is not needed here where multiplicand and multiplier are positive,
there output sign is calculated separately. Two partial products are generated

for each multiplier digit, there summation is positive.

In parallel to the column tree, a binary row tree, Wallace tree, is used to
add the binary partial products out from MUXs3. Figure 5.7 shows a scheme of

the row tree. Figure 5.8 shows the CSA binary tree block diagram.

(in brackets requwed multiplicative factor

lllllllllll Hll lllllilllllll
32 |[3:2

CSA CSA CSA CSA CSA CSA CSA CSA CSA || CSA

7 7 7 7
|<<1| |<<1| |<<1| |<<1| |<<1| |<<1| |<<1| |<<1| |<<1| |<<1|
| ! ! | | ! | | |

3:2CSA||3:2CSA|[3:2 CSA||3:2CSA|[3:2 CSA||3:2 CSA 3:2CSA

| [|<11|L|<11| =] |<<1|L|<<1|
| S ! S

3:2 CSA 3:2 CSA 3:2 CSA 3:2 CSA 3:2CSA
) o) o)
- 1 i
3:2 CSA 3:2 CSA 3:2 CSA
<<1 <<1 <<1
1
3:2CSA 3:2 CSA
¥ ¥
=
¥
3:2 CSA
<<1
1
3:2 CSA
12
1 I v
3:2 CSA
[

Figure 5.6 CSA binary tree (for 32 digits, 4-bit).

86

o000 o000 --- o000 oeee PP
eeee o000 oo0ee - o00e PP
>16partia|
products
o000 ... o000 0000 o000 o0 PP15
J

CSA binary tree

c 5
! |

Figure 5.7 64-bit binary CSA tree for the 16 partial products out of MUXs3.
y { ' y ' i
|<<8||<<4| |<<8||<<4| |<<8||<<4| |

N S S B A

¥ !
|<<8||<<4|
L

72-bit 3:2 CSA | | 72-bit 3:2 CSA | | 72-bit 3:2 CSA| | 72-bit 3:2 CSA [[72-bit 3:2 CSA

C(68bit) S(72bit) C(6i3bit) S(72bity C(68bit) S(72bity C(68bit) S(72bit)y C(88bit) S(72bit)
7] [o B G | EEEE
84-bit 3:2 CSA 84-hit 3:2 CSA
) obi bi C(72bi b
76-bit 3:2 CSA C(72bit) S(84bit) (72bit) S(84bit)
— T <<1 <<l
C(72bity S(76hit)
<<25| =<4 84-bit 3:2 CSA 84-bit 3:2 CSA
S(84bit) C(Silbit) C(81bit) S(84bit)
100-bit 3:2 CSA 106-bit 3:2 CSA
S(100bit) C(97bit) C(84bit) S(106bit)

|<<24|

122-bit 3:2 CSA

C(106bit) S(122bit)

124-bit 3:2 CSA

(122bit) (124bit)

C S

Figure 5.8 CSA binary tree (for 16 partial products, 64-bit).

87

The output of column tree is rearranged [3], according to the B/D Control
signal. In case of Binary, it is rearranged to 2 Major Partial Sums and 2 Major
Partial Carries. In case of Decimal, it is firstly converted to BCD-4221, all
valid BCD code, to use binary CSA without decimal correction. Then they
rearranged to 3 Major Partial Sums and 3 Major Partial Carries. Two separate
trees are used after that, a decimal one to add the 6 decimal Major Partial Sums
and Carries, and a binary one to add the 4 binary Major Partial Sums and

Carries with the sum and carry out from the binary CSA tree.

Finally a two parallel Kogge-Stone carry propagate adders are used to add
the final sum and carry partial products to produce the final product (P). The
separation between binary and decimal trees eliminates the latency of decimal

corrections from the binary multiplication path.
5.2 Second proposed Design

Partial products accumulation stage is the most significant multiplier stage
since it has the largest area and delay. In the second design, we try to decrease
its area with small increase of the delay by generating 11A and 13A
multiplicand multiples in the first stage. These two multiples need an addition
of three multiplicand multiples from basic multiples (4,2A4,4A4,84,16A),
which generated using only shifting. So we use a secondary set for binary and
decimal multiplicand multiples generation. The second tree, binary CSA row
tree, is not needed. We use only one tree, binary column tree. Figure 5.9 shows

the second combined binary/decimal multiplier design block diagram.

88

A B B/D Control

- J64
58 S ' v

— '; D .
=200 Declmal Binary Multiples
o2 g3 Multiples G)
=S ch . eneration
Eb Generation
S<O0 1A, 2A 5A, 10A 1A.2A 4A SA]11A, 13A, 16A

Y Y

n C MUX-2 MUX-1
= "5’ S o B(4A, 8A. 16A, 11cA, 13cA) B(2A-A A QA 4A 11:A,13A) | ¢ |
=38 = D(34, 10A) D(2A.-A, 1A, 24)
- O
89 % & 16 * 69-bit 16 * 68-bit 5

Qwn Partial Product|Selection

h J A 4

4-bit Binary Column Tree

B(33*5 ~9bit)
D(33* 8~ 10 bit)

% Partial Product Reduction| Tree
L ©
(&) m v
3 c : !
o _g Binary Decimal
o © Re-arrange Re-arrange
I g 6% 125-bit 6* 125-bit
S 35 (Binary) (BCD-4221)
a (&) A4
2 ‘ 127-bit Binary Tree ‘ ‘ 125-bit Decimal Tree ‘
2* 128-bit 2*128-bit
Y A4

‘ 128-bit Kogge-Stone based Carry Propagation Adder }47
i 128-bit

Figure 5.9 Second combined binary/decimal multiplier block diagram.

5.2.1 Multiplicand Multiples Generation Stage

Secondary sets are used which generate 32 partial products for the 16 digits
multiplier plus 1 partial product for sign bits. Tertiary sets are not considered
where it generates 49 partial products which need an extra tree in the partial

product accumulation stage and increase the area by high factor.

For binary multiples, (—2A4,—A,A,2A,4A,8A,11,A,11:A,135A,13/A4,
16A) secondary set is generated. The subscript S indicates sum and the
subscript C indicates carry, for the output of the CSA. Two carry save adders

89

are used to generate the multiples 11A and 13A in CSA format where these two
multiples need the addition of three multiples (8A + 2A+ A = 11A and 8A +
4A + A = 13A). Figure 5.10 and Figure 5.11 show the design of the CSA.
They take a delay of CSA, four gate delays, but they save 16 extra partial
products for using a tertiary set. Negative multiples are generated using 2’s
complement operation obtained by generating 1’s complement in this stage
then at the partial products selection stage a plus one bit, sign bit, is generated
to be added to partial products in accumulation stage. Figure 5.12 shows the

binary multiplicand multiples generation.

bl Wb i) bl

L-bit Lit | voit | [1bit | [1bit | [1-bit
CSA CSA CSA CSA CSA CSA
Ce3 Se3 Ce2 Se2 Cs S3 C, S Ci S: Co So

Figure 5.10 Three input, 64-bit, Carry Save Adder

Figure 5.11 1-bit Carry Save Adder

90

|A (BCD-8421)

v v v v
4-bit 3-bit 2-bit 1-bit
Left Shift| | Left Shift| | Left Shift| | Left Shift

A [4A 18BA |A [2A |BA

N A 4 A Y A 4 Y

v v
64-bit CSA 64-bit CSA NOT NOT
carry sum carry sum l
l l l l v \4 v v v
13A 11A 16A 8A 4A 2A-1 2A -A-1 A

Figure 5.12 binary multiples generation

For decimal, we generate the multiplicand multiples (=24, —A, A, 24,54,
10A) as in first design, Figure 5.3.

5.2.2 Partial Products Selection Stage

Each binary and decimal multiplicand multiples set is divided into two
groups, where secondary sets are used for binary and decimal. Two
multiplexers are used to choose the two suitable multiplicand multiples for each

multiplier digit.

Binary set is divided into (—2A,—A A, 2A,4A,115A,135A) and (44, 84,
11cA, 13¢A, 16A) groups. The binary partial products are selected according to
Table 5.6.

Decimal set is divided into (—2A, —A, A,2A) and (5A,10A) groups as in
first design. Table 5.5 shows the decimal partial products selection from the

two multiplexers.

91

Multiple | MUX1 multiple | MUX2 multiple
selection selection
0 0 0
A 0
2A 2A 0
3A —A 4A
4A 0 4A
5A A 4A
6A 2A 4A
TA —A 8A
8A 0 8A
9A A 8A
10A 2A SA
11A 115A 11A
12A 4A 8A
13A 135A 13cA
14A —2A 16A
15A —A 16A

Table 5.6 Binary multiplicand multiples selection.

This stage outputs 33 partial products. Figure 5.13 shows the partial

products selection block diagram for binary and decimal multiplication.

decimal binary decimal binf”:lry cc?r{t[r)ol Multipler
multiples multiples multiple mulglkples
A 14 N\ Y

T 0 o R
10A 5A 13cA 11cA 16A 8A 4A 2A —A —2A 13sA 11A 4A 2A-A—2A A O
vV ¥V VvV v Vv ¥ Y vV Vv vV VvV vV ¥V vV ¥V Vv

MUXs 2 T Muxs

16 partial 16 partial sign

products products partial product

Figure 5.13 Partial products selection.
92

The conditions that control the multiplexers depend on multiplier digits (b;)
and B/D Control signal (¢), where ¢ ='0" for binary input operands and
c ='1" for decimal input operands. The equations that control the two

multiplexers are:

For MUXs1

cond1 = (by bs + by by by + by by by) - ¢+ (bg b, + by by by) - €

(5.24)
cond2p = (b_o bl) C (5.25)
cond4g = (by by b, bs) - € (5.26)
cond11Sg = (by by b, by) - € (5.27)
cond13Sg = (by by by by) - € (5.28)
cond2p, = (by b3 + by by + by by) - ¢ (5.29)
Invg = (b by by + by by by) (5.30)
Inv,, = (bs + by by b, + by by by) (5.31)

For MUXs2

cond4g = (by b, by + byby by + by by by by) € (5.32)

cond8y = (by by by + by b, by + by b, by + by by b, bs) « € (5.33)
cond11Cy = (by by by b3) - € (5.34)

93

cond13Cp = (by by b, b3) - € (5.35)

COTld16B = (bl bz b3) ' C (536)
cond5, = (bg by + by bs) - ¢ (5.37)
cond10p, = (b3) - c (5.38)

5.2.3 Partial Products Accumulation Stage

One binary column tree is used to add the 33 binary/decimal partial
products outputs from MUXs1 and MUXs2, Figure 5.5 and Figure 5.6.

The output of the column tree is rearranged according to the B/D Control
signal. In case of Binary, it is rearranged into two Major Partial Sums and two
Major Partial Carries. In case of Decimal, it is firstly converted to BCD-4221,
all valid BCD code, to use binary CSA without decimal correction. Then they
rearranged to 3 Major Partial Sums and 3 Major Partial Carries. Two separate
trees are used after that, a decimal one to add the 6 decimal Major Partial Sums
and Carries, and a binary one to add the 4 binary Major Partial Sums and

Carries.

Finally a binary/decimal Kogge-Stone based carry propagate adder is used
to add the final sum and carry partial products which produce the final
product (P).

5.3 Third Proposed Design

To eliminate the delay of the two CSAs that generate 114 and 134 without
the need to use tertiary sets in multiplicand multiples generation, Booth-4
binary recoding is used. It reduces the number of multiplicand multiples needed
to be generated without increasing the number of partial products of each digit.

Only the secondary set (4, 24, 44, 84) multiplicand multiples are generated for
94

binary multiplication. 33 partial products are generated and added using the
binary column tree for binary and decimal partial products. After the binary

column tree, columns output is rearranged in 4/6 bit vectors for binary/decimal

multiplication. Two schemes are implemented for the addition of these bit
vectors, shared and split. Figure 5.14 shows the block diagram of the proposed

combined binary/decimal multiplier design.

Multiplicand

I
v v
Decimal Multiples || Binary Multiples
Generation Generation
A2A 5A 10A A2A4A8A
(21! Vi

MUXs

YYyvyy YYYY

33 Partial Products

Binary Column
Tree

33 variable

A\ 7

8-bit maximum
Binary to BCD

length/weight digits

rearrange

conversion 4 Binary conversion 4 Binary
bit vectors bit vectors
rearrange rearrange
6 Decimal 6 Decimal
bit vectors bit vectors
v _ r v
Tiny Shared Binary/Decimal Tiny Decimal Tiny Binary
Tree Tree Tree
Decimal final Binary final Decimal final Binary final

carry/sum vectors

carry/sum vectors

Shared Binary/Decimal

Kogge-Stone CPA

s |5 Multiplicand -
= |5 K]
3 — s
§ A | Decimal Multiples| | Binary Multiples g
D Generation Generation
A,2A.5A,10A A,2A4A 8A
Wi VU 4_
MUXs ¢

YYyvyy YYYY

33 Partial Products

Binary Column
Tree

33 variable
length/weight digits

8-bit maximum
Binary to BCD

rearrange

carry/sum vectors

carry/sum vectors

Product

I Final

(@)

Decimal Kogge-

Binary Kogge- |,

B/D control

Stone CPA Stone CPA
Decimal Binary
Product Product

(b)

Figure 5.14 Proposed combined binary/decimal multiplier (a) shared design,

(b) split design.

95

5.3.1 Multiplicand Multiples Generation Stage

For binary multiplicand multiples, Booth4 recoding is used which only
need the generation of (—8A,—4A,—2A,—A A 2A,4A,8A) multiplicand
multiples, Figure 5.15. All multiplicand multiples are generated using only

shifting. Negative multiples are generated using 2’s complement operation.

A (BCD-8421)

3-hit 2-hit 1-bit
Left Shift Left Shift Left Shift

v v v 2
NOT NOT NOT NOT

RYRYNYN

-8A-1 8A —4A-14A-2A-1 2A -A-1 A

Figure 5.15 Used binary multiples generation.

Decimal multiplicand multiples are generated as in first design, Figure 5.3.
5.3.2 Partial Products Selection Stage

Each binary and decimal multiplicand multiples set is divided into two
groups, where secondary sets are used for binary and decimal. Binary set is
divided into (—2A,—A,A,2A) and (—8A,—4A,4A,8A) groups. Table 5.7
shows the partial products selection according to Booth4 recoding,
where (b;;3. b;4,. b; 1. b;) represent the present multiplier digit, and b;_,
represent the most significant bit of the previous digit. Negative multiples are

needed in the two groups, so two sign bits are generated for each multiplier
96

digit. For binary booth4, the multiplier is padded with one ‘0’ bit to the right
and four ‘0’ bits to the left, so it divided into 17 digits. For the first 16
multiplier digits, two multiplicand multiples are selected. The last digit, last
five bits, is ‘00000’ or ‘00001’ so it needs only one partial product, where it

selects between 0 or A multiplicand multiple.

Bit MUX1 | MUX2
2° | 22 | 28 | 2° | 2% |Operation | multiple | multiple
bit3 | biys | biyz1 | b; | bi—4 selection | selection
0 0 0 0 0 0 0 0
0 0 0 0 1 +A A 0
0 0 0 1 0 +A A 0
0 0 0 1 1 +2A 2A 0
0 0 1 0 0 +2A —2A 4A
0 0 1 0 1 +3A —A 4A
0 0 1 1 0 +3A —A 4A
0 0 1 1 1 +4A 0 4A
0 1 0 0 0 +4A 0 4A
0 1 0 0 1 +5A A 4A
0 1 0 1 0 +5A A 4A
0 1 0 1 1 +6A 2A 4A
0 1 1 0 0 +6A —2A 8A
0 1 1 0 1 +7A —A 8A
0 1 1 1 0 +7A —A 8A
0 1 1 1 1 +8A 0 8A
1 0 0 0 0 —8A 0 —8A
1 0 0 0 1 —7A —8A
1 0 0 1 0 —7A A —8A
1 0 0 1 1 —b6A 2A —8A
1 0 1 0 0 —b6A —2A —4A
1 0 1 0 1 —5A —A —4A
1 0 1 1 0 —5A —A —4A

97

Bit MUX1 | MUX2

2° | 22 [22 | 2° | 27 | Operation | multiple | multiple
biss | biss | biry | b; | iy selection | selection

1o [111 -4 0 —4A

1 1 0 0 0 —4A 0 —4A

1 1 0 0 1 —-3A A —4A

1 1 0 1 0 —-3A A —4A

1 1 0 1 1 —2A 2A —4A

1 1 1 0 0 —2A —2A 0

1 1 1 0 1 —A —A 0

1 1 1 1 0 —A —A 0

1 1 1 1 1 -0 0 0

Table 5.7 Binary partial products selection according to Booth4 recoding.

Decimal set is divided into (—2A,—A, A, 2A) and (54, 10A) groups as in
previous designs, Table 5.5. Figure 5.16 shows the partial products selection
block diagram for binary and decimal multiplications. MUXs1 output 17 partial
products plus 1 partial product for sign bits, MUXs2 output 16 partial products
plus 1 partial product for sign bits.

decimal binary decimal binary gl 5
multiples multiples multiple multiples sl £
—M A N 7 A N\ 7 A N a >
I R T N I [Y | 5 =

I o
10A 5A —8A —4A8A 4A 2A-A2A 2A-A2AA 0
Y V¥V VvV VvV VvV ¥ Y VvV V VvV VvV VvVvy

I <
MUXs 2 MUXs 1
oMYA <
16 partial ¢ sign bits 17 partial 16 sign bits
products products

Figure 5.16 Partial products selection.

98

This stage outputs 33 binary/decimal partial products plus two sign partial

products. A two level multiplexer design is used as shown in Figure 5.17.

cond.2p cond.2p cond.2g cond.2g cond.lp mmdchli B/D Control B/ Control

Invlg Invlg Invlp Inle
-2A -2A 2A -A
¢Dll Z'i‘Dl ﬁll fl il l l |nv1D |nv1B
w sign bit 1
MUX1
cond.8g cond.4g cond 4
cond.10p cond.5p |n\/2B Insz cond.8g . B/D Control B/D Control
1OAD 5AD 8AB 4AB 8AB 4AB
InVZD InVZB
sign bit 2
MUX2

Figure 5.17 Multiplexers design for each multiplier digit.

The conditions that control the multiplexers depend on multiplier current
digit (bs. b,. b;. by), most significant bit of previous multiplier digit (b_;) and
B/D Control signal (c¢), where ¢ = '0’ for binary input operands and ¢ = "1’ for

decimal input operands. The equations that control the two multiplexers are

99

For MUXs1

cond1 = (bgb_y + by b_y) - ¢+ (by b, + by by by) - C (5.39)

cond2g = (b by b_; + by by b_,) - € (5.40)
cond2p, = (by by + by by + by by) - ¢ (5.41)
Invlg = (by by + by b_1) (5.42)
Invl, = (b3 + by by b, + by by b,) (5.43)
For MUXs2
cond4g = (by b, + byb,) - € (5.44)
cond8g = (by by by + by by b3) - € (5.45)
cond5, = (by by + b, bs) - ¢ (5.46)
cond10, = (b3) - c (5.47)
Inv2; = (b3) (5.48)

Sign bits outputs from MUX1 and MUX2, Inv1 and Inv2 signals, are added in

column trees. It is entered to first bit of shifted carry digits.

100

5.3.3 Partial Products Accumulation Stage

This stage consists of four steps as shown in Figure 5.14. Binary column
tree, rearrange column tree outputs, tiny binary/decimal tree, and final carry

propagate adder.

Binary column tree

A CSA binary column tree is used for the 35 partial products. It is the first
step of partial products accumulation for binary and decimal multiplication
paths. Figure 5.18 shows the scheme of the proposed binary column tree.

Columns output different size sums and carries according to number of digits
added.

col.(32) col.(17) col.(16) col.(15) col.(1) col.(0)
o000 o00ee - - 0000 o000)
o000 0000 .- 0000 0000
- 90000 (X N W) o000 . 0000
- 90000 0000 o0000O .. 0000
33
>digits
o000 o000 o000 o000
o000 o000 o000 0000
(XN N o000 o000 p,
o ...) ® | sign
o ... ° ° bits
\ / / \ / N\ \ / /
Y Y Y Y Y 4
CSA CSA CSA CSA CSA CSA
binary tree binary tree| [binary tree||binary tree binary tree| [binary tree
cC s C s cC s C s cC s C S
Vo Vo Vo Vo Vo Vo

Figure 5.18 Proposed binary column tree scheme (S and C maximally 8 bits).

101

The worst case number of digits to be added is 33 plus 2 sign bits. Figure
5.19 shows the 33 digits CSA binary column tree. Sign bits added to the first

bit of shifted carry digits in the tree levels.

(in brackets re(iuired multiplicative factori
VWL Vb Pl PP P e Pl PP bbbl by
3:2 3:2 3:2 3:2 3:2 3:2 3:2 3:2 3:2 3:2 3:2
CSA ||CSA || CSA || CSA||CSA || CSA || CSA || CSA || CSA || CSA || CSA
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
|<<t| [<<1]||[<<1]]|[<<1]| |<<1]| |<<t|||<<t|| [<<1]] [<<1]| [<<1]][<<1]

S S S S S N

3:2 CSA|[3:2 CSA||3:2 CSA| [3:2 CSA||3:2 CSA||3:2 CSA| |3:2CSA

L|<il| < | <
=

3:2CSA 3:2 CSA 3:2 CSA 3:2 CSA 3:2 CSA
Y Y Y
=]
R i
3:2 CSA 3:2 CSA 3:2 CSA
1
3:2 CSA 3:2 CSA
<<1
v
3:2 CSA
1
3:2 CSA
I
3:2 CSA
I

Figure 5.19 33 digits CSA binary tree.

102

Rearrange column tree outputs

For Binary operands, column trees output 4 bits to 8 bits sums and carries.
Columns outputs are rearranged to multiply each one by its relevant weight.
Four bit-vectors are produced, two for output sums and two for output carries,
Figure 5.20.

32 31 30 8 7 6 5 4 3 2 1 0 digitno.

s@lsELy| ..., S(7) | S() | SB) | sGB) | SB) | S@)|S@) |s@) |s©)| s1

c@EylcEy ... c()|c@ |cE)|cG)|cE) | cE | cw|cw|co| c1
S@o)s@Eo)| ... S(6) | S(6) | S(@) | S(4) | S(2) | S(2) s2
c(30)[C(30)| c(6) | C(6) | Cc@) | c@) | c@) | c@) c2

Figure 5.20 The four binary bit-vectors after rearranging.

For decimal operands, column trees output 4 bits, 1 BCD digit, to 10 bits, 3
BCD digits, sums and carries. A binary to decimal converters is used to convert
each binary column output to BCD-8421, and then converted to BCD-4221,
and then it is rearranged to multiply each column output by its relevant weight.
After rearranging column trees output six bit-vectors, three for output sums and

three for output carries, Figure 5.21.

32 31 30 29 28 27 26 9 8 7 6 5 4 3 2 1 0 digitno.
S(31)[S(31)[S(29)|S(29)[S(26) S(26)[S(26)| SG) [SG) | s6) | S@) | S@)|s@) | s@)|s©)| st
c(31)|c(31)|c(29)|c(29)|c(26)C(26)|C(26)] c() | c) | cE) |cE) | cE) |cw) | cw |co) | c1
S(30)[S(30)|S(27)|s(27)s(@7)| S©)| S(6) | S(6) | S(4) [S®) | S | S(2) s2
c@o)|c@o)c@n|c@encen ... c(6)| c6) | c®) | c@) | c@) | c@) | cE) c2
S(@8)[s@8)| s@) s |s@) s3
cEe)lcee)| s@) s |co) c3

Figure 5.21 The six decimal bit-vectors after rearranging.
103

The conversion to decimal, BCD-8421, takes some delay. However, this extra
decimal delay is approximately equal to decimal x 2 blocks delay used in
decimal path in Hickmann design[9]. But it is separated from binary path
without significant increase in area. Where the area of binary to decimal
converters is much less than the area of another tree as in [9]. The conversion
from binary to decimal, BCD-8421, is discussed in next section. the decimal
bit-vectors is converted from BCD-8421 to BCD-4221 before the tiny tree to
allow the use of binary CSA design and out valid decimal values for all 4-bit

combinations. So we need not a decimal correction after the addition.

The BCD-8421(X3X2X1Xq) to BCD-4221(hsh,h;hg) converter equations are

hy =x (5.49)
0 0

h'l = .X3 (550)
h2 = X1 + X3 (551)
h3 = xz + X3 (552)

Binary to BCD-8421 Conversion (Shift and Add-3 Algorithm) [1]

The algorithm starts with the three most significant bits of the binary
number. If the three bits value is greater than or equal to five, add binary three
to the number and shift the result one bit to the left. If the three bits value is less
than five, shift to the left without adding. Then take the next bit from the right
and repeat the operation till we reach the least significant bit. Figure 5.22
shows the steps to convert 8-bit binary number to BCD-8421 using the Shift
and Add-3 Algorithm [1]. The steps of this example:

1. Shift the binary number left three bits.

104

2. If the binary value in any of the BCD columns is 5 or greater, add 3 to

that value in that BCD column.
3. Shift the binary number left one bits
4.Goto 2.

5. After 8 shifts, the BCD number is obtained.

BCD Digits)
Operation|Hundreds| Tens Units Binary
Start 1111 1111
Shift 1 111111 111
Shift 2 11 (1111 |11
Shift 3 111 |1111 |1
Add 3 1010 (1111 |1
Shift 4 1 0101 |1111
Add 3 1 ({1000 1111
Shift 5 11({0001 (111
Shift 6 110({ 0011 |11
Add 3 1001|0011 (11
Shift 7 110010(|0111 |12
Add 3 110010(1010 |1
Shift 8 10{ 0101|0101
BCD 2 5 5

Figure 5.22 8-bit binary to decimal converter example.

Figure 5.23 shows the block diagram of the 8-bit binary to BCD-8421

converter using this algorithm.

105

S-bit binary input
A
r ™
BY BS B2 B4 B3 B2 B1 EO

|

| more than 4
add 3

| more than 4 |
add 3

| more than 4 |

0 add 3
¢ h 4 ¢
more than 4 more than 4
more than E| more than

HHHHv

Pa Pg P7 P6 PS5 P4 P3 P2 P1 PO
. FARN J

Y Y

hunds tens units

BCD output

Figure 5.23 8-bit binary to decimal converter block diagram.

In the final proposed design a binary to BCD-8421 converters are used for
each column output of the binary column tree. A 5-bit to 9-bit binary to BCD-
8421 converters are used for different outputs. The 9-bit one has a largest
delay. It adds 33 decimal digit plus 2 sign bits. Its maximum value of it is 299p,
100101011g. Its most significant three bits are always less than five so its first
level can be eliminated. Figure 5.24 shows the binary to decimal converter used

for 9-bit binary input.

106

B3 BY B BS B4 B3 B2 B1EO

'

more than 4
add 3

more than 4
add 3

-l

more than 4

-
-~
-~
-
-~

more than q more than 4
more than 4 more than

I i iy

PO Ps P7 P6 P5 P4 P3 P2 P1FO
L FARN J

Y Y

hunds tens units

ECD output

Figure 5.24 9-bit, max. value 319, binary to decimal converter block diagram.

Tiny Binary/Decimal Tree

Two designs are implemented for this step, which add the 4/6 bit-vectors
output from the column tree for binary/decimal multiplication. A tiny split
binary/decimal tree design is obtained to eliminate the latency of the decimal
(x 2) from the binary multiplication path, Figure 5.25. A tiny shared
binary/decimal tree design is obtained to decrease the area, Figure 5.26, where

one 128-bit CSA is shared between binary and decimal, using multiplexer.

107

0 N B

J' J' J' 128-bit CSA || 128-bit CSA
128-bit CSA [szl ,
128-bit CSA
128-bit CSA
‘ | 128-bit CSA |
Binary final l l
carry/sum vectors Decimal final
carry/sum vectors

(a) (b)

Figure 5.25 (a) Tiny split binary tree. (b) Tiny split decimal tree.

Decimal bit vectors

Binary bit vectors
A A

r N

I MUX | [128-bit CSA
I T
128-bit CSA
8-bit CS m
<<1 |><21O|
128-bit CSA 128-bit CSA
128-bit CSA
Binary final
carry/sum vectors J {
Decimal final

carry/sum vectors

Figure 5.26 Tiny shared binary/decimal tree

108

It was found that the difference in area between the split and shared tiny
binary/decimal trees is not large. The area of shared design is slightly less than
split design, where one 128-bit CSA is replaced by a three 128-bit MUXs for

three binary/decimal bit vectors.
Final Carry Propagate Adder

The final carry/sum vectors are added using Kogge-Stone based carry
propagate adder [11]. Two designs are implemented, shared and split
binary/decimal Kogge-Stone based carry propagate adder. Figure 5.27 shows
the proposed split binary/decimal Kogge-Stone based carry propagate adder
scheme. In this scheme binary and decimal carry propagate adders are

separated to decrease the delay of binary and decimal multiplication paths.

Decimal final
128-bit carry/sum vectors

Binary final
128-bit carry/sum vectors

p—x+ty=15 p—xty=9
g—x+y>16 v \ 4 g—x+y>10 v \ 4
(for each digit) Binary (for each digit) Decimal
A'32-bitf sum/sum-+1 A4 32-bit4f’ sum/sum+1
pl gl (for each digit) Pl gl (for each digit)
propagate/generate | | propagate/generate | |
carry tree SUMs (Sum+1), carry tree Sumg (Sum+1)q

g {128-bit g {128-bit

0=1— Sum+1
g=0— Sum
(for each digit)

128—bit,t Binary
Product

g=1- Sum+1
g=0— Sum
(for each digit)

128-bit,t Binary
Product

Figure 5.27 Split Binary/Decimal Kogge-Stone based carry propagate adder

Another scheme is implemented to decrease the area, novel shared

binary/decimal Kogge-Stone based carry propagate adder, Figure 5.28.

Binary final Decimal final
128-bit 128-bit
carry/sum carry/sum
vectors vectors

B/D control

p—xty=15 p—oxty=9
g—x+ty>16 g—x+y>10

(for each digit) (for each digit)
y v 32-bit 32-bitf Y y

Binary 9 Pl 9] Decima
sum/sum-+1 | MUX | sum/sum-+1
(folr each digljit) P g 32-bit (for each digit)
Sumy (Sum+1), P9 Sums (Sum+1)q

propagate/generate
carry tree
128-hit | 128-bit
MUX
I I
Sum Sum+1
| o |
g=1- Sum+1
g=0— Sum

(for each digit)
1128-bit Product

Figure 5.28 Shared Binary/Decimal Kogge-Stone based carry propagate adder

This permits the use of the same generate/propagate carry tree for decimal and
binary multiplications. Only first level of Kogge-Stone adder is split for binary
and decimal. This level outputs the first propagate and generate signals for each
digit. The remaining levels are shared for decimal and binary. Parallel to these
levels, the decimal and binary sum and sum + 1 for every digit are generated.
After the generate/propagate carry tree are finished, the correct sum according
to last level carry and B/D control signal is chosen. A BCD-4221 format is used

110

to eliminate decimal correction delay and area. At the end of design a BCD-
4221 to BCD-8421 conversion is performed to produce the final product in
BCD-8421format. The equations of the conversion from BCD-4221(X3X,X1Xg)
to BCD-8421(h3h,h;hg) are

hy = x, (5.53)
hy =x;.%, + x1. %, (5.54)
h, =x1.x3 + X;.x3 + x1.%,.X3 (5.55)
hs = x1.%x5.%3 (5.56)

5.4 Final Proposed Design

Figure 5.29 shows the final proposed binary/decimal multiplier design. It is
similar to third proposed combined binary/decimal multiplier discussed with a
carry/sum addition block before the rearranging of decimal operands output

from column tree.

This block adds every sum/carry output from binary column tree using
binary Kogge-Stone CPAs, maximum 8 bit. After sum/carry addition, tree
columns output 5 binary bits, 2 BCD digits, to 9 binary bits, 3 BCD digits,
sums and carries. A binary to decimal converters based on [1] is used to
convert each binary column output to BCD-8421, and then converted to BCD-
4221, and then it is rearranged to multiply each column output BCD digits by
its relevant weight. Figure 5.30 shows the three bit-vectors output after

rearranging.

111

PP
Generation

PP
Selection

PP

Accumulation

Figure 5.29 Final proposed Binary/Decimal Multiplier design (split scheme).

{

B/D control

<

Multiplicand =
| =
v v =
Decimal Multiples Binary Multiples §
Generation Generation
A,2A,5A,10A A2A 4A 8A
(RN L
MUXs DIl
33 Partial
. Products

Binary Column

Tree

33 variable length/weight
sum/carry digits

v

sum/carry
addition

v

9-bit
Bina

conversion

maximum
ry to BCD

|rearrange|

Y
| rearrange
/]

sum/carry vectors

3 Decimal ¥ 4 Binary
bit vectors bit vectors
_ Y _ _ V_
Tiny Decimal Tiny Binary
Tree Tree
Decimal final Binary final

sum/carry vectors

Kogge-Stone | | Kogge-Stone

Decimal CPA| | Binary CPA |
Decimal Binary
product product

32 31 30 29 28 27 117 100 9 8 7 6 5 4 3 2 1 0
S(31)|S(31)[S(29)|s(29)|s(27)|S(27)]. S(9) | s9) | s(9) | S6) | S6) | S(6) | S(4) | S4) | S(2) | S(2) | S00) | S(0)
S(30)S(30) S(26),S(26)|S(26)]. s@)|s®)|s@) |sE)|s6E)|s6)|s@)|sE)]| sa)]| s

S(28)[S(28)[S(25)|S(25)[S(25)|. s s |s@)

Figure 5.30 The three decimal bit-vectors after rearranging.

112

digit no.
S1

S2

S3

Two schemes are used for the binary and decimal tiny tree, Split and
shared, to add the four and three bit-vectors output from the column tree,

respectively, Figure 5.31 and Figure 5.32.

I
3:2 CSA l l l
y 3:2 CSA
<<1 l
\ 4 ¢ \4 x210
3:2 CSA
T v
<<1 l Decimal
v
Binary

Figure 5.31 Tiny split binary and decimal trees.

Binary tﬂt vectors Decimal bit vectors

r N\ ,—/%
I R O
| MUX |
vy
128-bit CSA
, !
<<]1 %210

! T |

128-bit CSA
<£1 ,
l Decimal final

. . carry/sum vectors
Binary final y

carry/sum vectors

Figure 5.32 Tiny shared binary/decimal tree.

113

The two final vectors output from tiny binary/decimal tree are added using
binary/decimal Kogge-Stone based carry propagate adder, Figure 5.27, and
Figure 5.28.

5.5 Conclusion

Four designs are proposed for the combined binary/decimal multiplier. The
final proposed design groups all good ideas for the previous proposals within
this thesis. We use the smallest area and delay binary multiplicand multiples
generation method, booth4 recoding. We also include the decimal SD radix-5
recoding for decimal multiplicand multiples generation from Vazquez, which
has a small area and delay. Dadda binary column tree is included to add the
binary/decimal partial products. It saves the use of decimal adders and
corrections which increase the area and delay of the multiplier. Two schemes
are used for the addition of the three/four bit vectors output from column tree,
shared and split. The shared one tries to decrease the area of the multiplier, and
the split one tries to decrease the delay of the multiplier. Next we discuss the

testing of our designs and the implementation results.

114

Chapter 6

Verification and Results

6.1 Testing

The proposed combined binary/decimal multiplier, Véazquez, and
Hickmann designs are implemented in FPGAadv tool. In order to verify the
implementations, test cases are generated then a test bench is developed for the
implemented design using VHDL language. A C program is written equivalent
to multiplier design. Using ActiveFileCompare program, the test bench results

and the C program results is compared.
Test Cases

The multiplier has two 64-bit inputs, multiplicand and multiplier, and a
control bit. It is difficult to test all possible combinations of the inputs where
2% = 3.4e38. So a group of test cases is generated trying to handle all possible
errors. We divided the 128-bit inputs to 8 parts, each one 16-bit. Table 6.1
shows the test cases used. (i.e. we use C character to represent a truth table of
all possible combination of the 16-bit, from 0000000000000000 to
1111111111111111, 2 row). First part of test cases shown in Table 6.1
represents a binary 8-bit truth table, but instead of ‘1’ logic, a C is used. So

each row of the truth table represents 2'° rows. In the second and last part of the
115

table the C truth table is used to test each part when the other bits are 0 and 1

respectively.

ojo0ojo0o|0joO0Oj]0|0]O
ojo0ojo0j0jo0o}]0|0]|C
o/0[(0[0]0]0]C]|O
o/0[(0[0|O0]0]C]|C
c,c,c,cy,cyc|oyo
c,c,c,c,c,c|0|C
c|c;cycjcy|ycjc|o
c|c;jcycjcy|jcjc|c
o/0[0[0|O0]0]0]C
o/0[(0[0]O0]O0]C]|O
ci,0,0,0,0,0|0/0O0
1/1}]1]1]1]1]|1]|C
1|{]Ccj1|]1]1]1|1]1
ci1,1,1,1, 1|11

Table 6.1 Test cases

Testing Approach

A test bench is developed for each block of the multiplier then a test bench

for the whole multiplier is implemented. A C program is written for each block

116

and for the multiplier equivalent to VHDL design. ActiveFileCompare program

is used to compare between test benches results and C programs results.
6.2 Results

This section presents an area/delay comparison between the proposed
binary/decimal multiplier designs and the two previous ones [9][22]. The main
difference between them is the accumulation stage. Vazquez et al. propose a
shared binary/decimal CSA tree using binary/BCD-4221 format. The CSAs for
binary and decimal are shared. A MUX is used in each x 2 block to select
between binary and decimal. They lead to some increase in the delay of binary
and decimal paths. Hickmann et al. split the binary and decimal CSA trees at
the start of using x 2 blocks. They have an increase in area but the decimal x 2
and binary x 2 is separated, so no MUXs are used. A comparison between
these designs and third design, shared and split, and final proposed design,

shared and split is introduced.
Third proposed design

The proposed designs use two tree stages. The first is a binary tree used to
decrease the binary/decimal partial products to four/six bit-vectors. Then a tiny
split/shared CSA tree is used to add the four/six bit-vectors for binary/decimal
multiplication. Table 7.1 presents area-delay figure for the different
binary/decimal multipliers on FPGA virtex5. The area of the two proposed

designs, split and shared, is less than Vazquez and Hickmann designs.

117

Proposed | Proposed
Vézquez | Hickmann Design Design
(split) (shared)
Binar ~ 42 ns ~43 ns
Worst - LS 55ns ~56ns
path delay | pecimal ~ 48 ns ~51ns
Totalequivalentgate | 15091 | 1084720 | 92658 92098

count

Table 7.1 Area/Delay figure for different Binary/decimal
multipliers using FPGA virtex5.

In the final proposed design, a carry/sum addition of the column outputs

Final proposed design

binary/decimal multipliers on FPGA virtex5.

from binary column tree is included before rearranging, to decrease the delay of

binary and decimal paths. Table 7.2 shows an area-delay figure for the different

Proposed | Proposed
Vazquez | Hickmann Design Design
(split) (shared)
Binar ~42 ~43
Worst - LA 55 ns w w ~54ns
path delay | Decimal ~ 48 ns ~ 48 ns
Total equivalentgate | ;5091 | 108470 | 87605 88613

count

Table 7.2 Area/Delay figure for different Binary/decimal
multipliers using FPGA virtex5.

Also each design is synthesized on the low power CMOS 130nm

binary/decimal multipliers [15].

118

technology. Table 7.3 shows an area/delay figure for the different

Vazquez | Hickmann P[r)(g?gsgd P[r)c;p;?gSﬁd
(split) (shared)
Worst path | Binary 4.55 4.61
delay (ns) ["pecimal 8.03 718 705 7.86
Area (um’) 032044 | 782643 | 567681 | 596330

Table 7.3 Area/Delay figure for different binary/decimal
multipliers using ASIC low power CMOS 130nm technology.

The proposed design has almost the same delays as the fastest known
multiplier, Hickmann multiplier design, but significantly reduces the required

area.
6.3 Conclusion

This thesis presents a parallel combined binary/decimal fixed-point
multiplier design with novel partial product accumulation design to decrease
the area of the multiplication without increasing the delay. In this stage, a
binary column tree is used for binary and decimal multiplication. Then a tiny
binary/decimal CSA tree is used to generate the final product in sum/carry
format. A comparison between proposed and previous binary/decimal
multipliers shows that the proposed design has the smallest area. It is 16% less
than Vazquez design area and 27.5% less than Hickmann design area. For the
delay, the proposed design is almost the same as Hickmann multiplier (fastest

in the literature) and less than VVazquez multiplier for decimal and binary paths.

6.4 Future Work

Finally, this section presents some suggestions for future work. These

suggestions are as follows:

- Design a floating point binary/decimal multiplier.
119

- Implement a combined binary/decimal floating point adder and a
combined floating point binary/decimal divider then include them into a

processor.

120

References

[1] Benedek, M., “Developing Large Binary to BCD Conversion
Structures”, IEEE Transactions on Computers, vol. C-26, pages: 688 —
700, July 1977.

[2] Cowlishaw, M. F., “Decimal Floating-Point: Algorism for Computers”,

IEEE 3rd Symposium on Computer Arithmetic, 2003.

[3] Dadda, L., “Multioperand Parallel Decimal Adder: A Mixed Binary and
BCD Approach”, IEEE Transactions on Computers, Volume 56, No. 10,
October 2007.

[4] Duale, A.Y. et al, “Decimal floating-point in z9: An implementation and
testing perspective”, IBM Journal of Research and Development , vol.
51, pages: 217-227, 2007.

[5] Ercegovac, M. D., and Lang, T., “Digital Arithmetic”’, Morgan
Kaufmann Publishers, 2004.

[6] (@) Erle, M. A. and Schulte, M. J., “Decimal Multiplication Via Carry-
Save Addition”, Proceedings of IEEE International Conference on

Application-specific Systems, Architectures and Processors, June 2003.

121

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520

[6] (b) Erle, M. A. et al., “Decimal Multiplication With Efficient Partial
Product Generation”, Proceedings of IEEE Symposium on Computer

Arithmetic, June 2005.
[7] Fahmy, H. et al, “Computer Arithmetic”, Not Yet Published.

[8] Flynn, M. J. and Oberman, S. F., “Advanced Computer Arithmetic
Design”, Wiley, John & sons Incorporated, April 2001.

[9] Hickmann, B. et al., “Improved Combined Binary/Decimal Fixed-Point

Multipliers”, IEEE International Conference on Computer Design,

October 2008.

[10] Kenney, R. D. et al., “A High-Frequency Decimal Multiplier”,
Proceedings of IEEE International Conference on Computer Design:

VLSI in Computers and Processors, October 2004.

[11] Kogge, P. M. and Stone, H. S., “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations”, IEEE

Transactions on Computers, August 1973.
[12] Koren, L., “Computer arithmetic algorithms”, A K Peters, Ltd., 2002.

[13] Lang, T. and Nannarelli, A., “A Radix-10 Combinational Multiplier”,
Proceeding in Asilomar Conference on Signals, Systems and

Computers, November 2006.

[14] Lu, M., “Arithmetic and logic in computer systems”, John Wiley and
Sons, 2004.

[15] Mahmoud, M. and Fahmy, H., “A Parallel Combined Binary/Decimal
Fixed-Point Multiplier with Binary Partial Products Reduction Tree”,
21° International Conference on Computer Theory and Applications,
October 2011

122

[16] Nicoud, J.D., “Iterative Arrays ror Radix Conversion”, IEEE

Transactions on Computers, December 1971.

[17] Ohtsuki, T. et al., “Apparatus for Decimal Multiplication”, United
States Patent, no. 4677583, June 1987.

[18] Palmam, B., “High Performance Computing for Computational

Science”, Springer, 2003.

[19] Parhami, B., “Computer Arithmetic: Algorithms and Hardware
Designs”, Oxford University Press, USA, September 1999.

[20] Richards, R. K., “Arithmetic Operations in Digital Computers”, Van
Nostrand Company, 1955.

[21] Schmookler, M. S. and Weinberger, A. W., “High Speed Decimal
Addition”, IEEE Transactions on Computers, Volume C-20, Issue 8,
pages 862-866, August 1971.

[22] Vazquez, A. et al., “A New Family of High—Performance Parallel
Decimal Multipliers”, Proceedings of IEEE Symposium on Computer

Arithmetic, June 2007

[23] http://speleotrove.com/decimal/decifagl.html#emphasis

123

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12

*

5

el Gliglall acal Ll leginse Bjea¥l b gpdall/ S isd) Uadly clleal) ol

Lass Aapnall slaeS (g e/ A Cieliadl apenal 238 Ayl o34 .5 pim daliey Adlle de o ALl
A L Aganl V) A jall g8 ¢ iy Jshals dalie 5S) 280 Cacliadl 8 385al) sl aea Aage o
Djlie 5 L) L gpinlly LD Uailly CaeLiaal) 3 Aall Aial) il aead LD HUail oo
acyull Gudl ge dalisall 8 L€ Lalels) o) o il apenail L Uyl 5y sl apabiaill g o i) apansill

Milas 3 g yeal) apalicill 3 g3 apaaill Ly

gyally LD Aybaal) Al ce Aasie Gy oY) Jeadll L saill e S Al (S
Wil il il ey BN Jeadl) Lyl illeal 4ol Gyl Gadl G Jead)
aranail 5 Gualal) Joadl) LWl G i) dgpdall/AGEN cilielimd) o 30 abl) Jaadll (5)8al)
asabiailly el aranaill (A Jslity Gealadl Juadll (g pkallf SUE) Cieliadll Gadl - sial)

bl Jaally colalim) axis)yl aaL)

dasaal) Aaed gpde/ AU Cielias

Ll milsil) pan B AU AU aladiuly
Aac)

Q gana dJLc RV-C W &—\9)40

38l drala ¢ Awnigl) A) A Al
Siwald) day0 Lo Jgeanl) cilidlia (e g 308
el VL g il pSl) 3

-l}‘zl - -

ogd alua Dlal Gl

ac e 3 A
Apuigh) il g 51 VLAY and Auigh) il g 5V VLAY ol
3,88l daals 3,88l daals

5 AN Anala ¢ Audigl duls
Faall s &y gen < Bl

2011

dasaal) Aaed gude/ AU Cielias

Ll milsil) pan B AU AU aladiuly
Aac)

Q gana dJLc RV-C W &_\S)A

38l drala ¢ Awnigl) A) A Al
Siald) day0 o Jgeanl) cilidlia (e o30S
el VL g il pSl) 3

5alel) drala « duigd) Auls
Al pan dy)sgen ¢ Bl

2011

