

A PARALLEL

BINARY/DECIMAL FIXED-POINT MULTIPLIER

WITH BINARY PARTIAL PRODUCTS ACCUMULATION

By

Mervat Mohammed Adel Mahmoud

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2011

A PARALLEL

BINARY/DECIMAL FIXED-POINT MULTIPLIER

WITH BINARY PARTIAL PRODUCTS ACCUMULATION

By

Mervat Mohammed Adel Mahmoud

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Amin Nassar

Professor

Electronics and Communications

Engineering

Cairo University

Hossam Fahmy

Associate Professor

Electronics and Communications

Engineering

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2011

ii

Abstract

Combined binary/decimal arithmetic has become an important topic to support

decimal and binary applications with high speed and low area. This thesis presents a

combined binary/decimal fixed-point multiplier design. Since the partial products

accumulation stage has the largest area and delay of the multiplier, it is the most

significant stage. A novel binary column tree is shared for binary and decimal

reduction tree. A comparison between the proposed design and the previously

published designs shows a significant decrease in area with almost the same delay as

the fastest known design.

The structure of this thesis is as follows. Chapter 1 presents an overview of decimal

and binary computer arithmetic. Chapter 2 summarize the multiplication algorithms.

Chapter 3 show a background of decimal multiplication techniques. Chapter 4 focused

on previous published combined binary/decimal multipliers. In chapter 5, the

proposed parallel combined binary/decimal multiplier is explained. Chapter 6 goes

over testing procedure and comparison between the proposed and previous designs in

area and delay. Finally we present the conclusions and future work.

iii

Acknowledgment

This research would not have been possible without the support of many people. I

would like to sincerely thank my supervisors: Dr. Amin Nassar for his supervision,

and Dr. Hossam Fahmy for his step-by-step support, guidance throughout the whole

process of research and writing, and patience with me to help this thesis to achieve

success.

I would like also to thank Ghada and SilMinds group, Rodaina, Amira, Tarek, and

Ramy for their cooperation. And special thanks to A. ElShafiey for his time and

expertise in ASIC simulation.

Finally, I would like to thank my parents, sisters, and numerous friends who

endured this long process with me, always offering support and love.

iv

Contents

Abstract ... ii

Acknowledgment .. iii

Contents ... iv

List of Figures ... vii

List of Tables ... xi

Chapter 1 Introduction .. 1

Chapter 2 Multiplication Techniques ... 5

2.1 Signed Integer's Representation ... 6

2.1.1 Sign-and-magnitude representation .. 6

2.1.2 Two’s complement representation .. 8

2.2 Add-and-shift multiplication algorithm ... 10

2.2.1 Sequential multiplication .. 15

2.2.2 Parallel (Combinational) multiplication ... 21

2.2.3 Adders connection approaches ... 28

2.3 "Composition of smaller multipliers" multiplication algorithm 32

v

2.4 Bit/Digit serial multiplication algorithm .. 35

2.5 Booth multiplication algorithm .. 37

2.5.1 Original Booth algorithm .. 37

2.5.2 Modified Booth algorithm .. 40

2.6 Conclusion .. 43

Chapter 3 Decimal Multipliers ... 45

3.1 Multiplicand Multiples Generation .. 47

3.2 Multiplier recoding for multiples selection .. 55

3.3 Partial Products accumulation .. 56

3.3.1 Sequential accumulation approach ... 57

3.3.2 Parallel accumulation approach .. 59

3.3.3 Decimal adder block implementation ... 60

3.3.3 Decimal trees .. 63

3.4 Conclusion ... 68

Chapter 4 Combined Binary/Decimal Multipliers ... 69

4.1 Vázquez combined binary/decimal multiplier ... 69

4.2 Hickmann combined binary/decimal multiplier .. 72

4.3 Conclusion .. 73

Chapter 5 Proposed Combined Binary/Decimal Fixed-Point Multiplier 74

5.1 First Proposed Design .. 75

5.1.1 Multiplicand Multiples Generation Stage ... 75

5.1.2 Partial Products Selection Stage ... 80

5.1.3 Partial Products Accumulation Stage ... 84

5.2 Second proposed Design .. 88

vi

5.2.1 Multiplicand Multiples Generation Stage ... 89

5.2.2 Partial Products Selection Stage ... 91

5.2.3 Partial Products Accumulation Stage ... 94

5.3 Third Proposed Design ... 94

5.3.1 Multiplicand Multiples Generation Stage ... 96

5.3.2 Partial Products Selection Stage ... 96

5.3.3 Partial Products Accumulation Stage ... 101

5.4 Final Proposed Design ... 111

5.5 Conclusion .. 114

Chapter 6 Verification and Results ... 115

6.1 Testing .. 115

6.2 Results .. 117

6.3 Conclusion .. 119

6.4 Future Work ... 119

References .. 121

vii

List of Figures

Figure 2.1 Multiplication example for (a) sign-and-magnitude representation

(b) two’s complement representation ... 9

Figure 2.2 Multiplication of two 4-bit unsigned binary numbers in dot notation 11

Figure 2.3 Partial product selection logic for 8-bit add-and-shift 12

Figure 2.4 Sequential multiplication accumulation schemes 15

Figure 2.5 Sequential multiplication .. 16

Figure 2.6 High radix sequential multiplication ... 17

Figure 2.7 High radix sequential multiplier design .. 19

Figure 2.8 High radix sequential multiplier design using two recoding values,

radix4 and/or radix-2, (for radices higher than 4) .. 20

Figure 2.9 General structure of a combinational full-tree multiplier 22

Figure 2.10 Radix-4 recoding in parallel multiplication .. 23

Figure 2.11 Partial products for 8-digit multiplication ... 25

Figure 2.12 Carry save Adder (counter) ... 26

Figure 2.13 CSA Compressor ... 27

Figure 2.14 Addition of 8 partial products in an array topology

using CSAs and CPA at the end ... 29

viii

Figure 2.15 Regular tree (a) Using CPAs (b) Using [4:2] compressors....................... 30

Figure 2.16 Irregular tree topology using [3:2] CSAs and CPA for last level 31

Figure 2.17 Addition of four 4-bit partial products

(a) using Wallace tree (b) using Dadda tree ... 32

Figure 2.18 Implementation of 8 × 8 multiplier using four 4 x 4 multipliers 33

Figure 2.19 Using 4 × 4 multiplier with 8-bit product

for various multiplier arrays up to 64 × 64 ... 34

Figure 2.20 4 4 Bit Serial Multiplier .. 36

Figure 2.21 Digit Serial Multiplier. .. 37

Figure 2.22 16 bit Booth 2 multiply ... 42

Figure 3.1 4-bit Decimal multiplication example... 46

Figure 3.2 BCD multiplication by two ... 48

Figure 3.3 Multiplicand multiples generation (generate all multiplicand multiples) ... 49

Figure 3.4 Decimal multiplicand multiples generation sets ... 50

Figure 3.5 Signed digit recoding by Tomás Lang and Alberto Nannarelli 50

Figure 3.6 signed digit-by-digit multiplier block ... 52

Figure 3.7 Sequential Decimal Multiplication Design ... 58

Figure 3.8 Sequential Decimal Multiplication Design ... 59

Figure 3.9 Parallel Decimal Multiplier Design .. 60

Figure 3.10 Generic design for the 3:2 decimal CSA .. 62

Figure 3.11 Decimal carry-save addition example (a) in BCD-4221 format (b) in

BCD-5211 format ... 63

Figure 3.12 (a) n-digit radix-10 CSA (b) m-digit radix-10 counter. 64

Figure 3.13 Array for partial products. Solid circles indicate BCD digits, hollow

circles indicate carry bits. ... 64

ix

Figure 3.14 A Radix-10 Combinational Multiplier Adder tree 65

Figure 3.15 (a) 4-bit 3:2 decimal CSA (b) decimal multiplication by 2 for BCD-4221

 .. 66

Figure 3.16 16:2 decimal CSA tree .. 67

Figure 3.17 basic decimal column adder scheme for N=33 addends 68

Figure 4.1 Vázquez binary/decimal multiplier. .. 70

Figure 4.2 Vázquez binary/decimal CSA Tree... 71

Figure 4.3 Binary/Decimal multiplication by two block. ... 71

Figure 4.4 Hickmann binary/decimal multiplier. ... 72

Figure 4.5 Hickmann split binary/decimal CSA Tree. ... 73

Figure 5.1 First combined binary/decimal multiplier block diagram. 76

Figure 5.2 Binary multiples generation .. 77

Figure 5.3 Decimal multiples generation ... 77

Figure 5.4 Multiplexers design for each multiplier digit. ... 83

Figure 5.5 Binary column tree scheme. .. 85

Figure 5.6 CSA binary tree (for 32 digits, 4-bit). ... 86

Figure 5.7 64-bit binary CSA tree for the 16 partial products out of MUXs3. 87

Figure 5.8 CSA binary tree (for 16 partial products, 64-bit). 87

Figure 5.9 Second combined binary/decimal multiplier block diagram. 89

Figure 5.10 Three input, 64-bit, Carry Save Adder .. 90

Figure 5.11 1-bit Carry Save Adder ... 90

Figure 5.12 binary multiples generation ... 91

Figure 5.13 Partial products selection. ... 92

x

Figure 5.14 Proposed combined binary/decimal multiplier (a) shared design, (b) split

design. ... 95

Figure 5.15 Used binary multiples generation. .. 96

Figure 5.16 Partial products selection. ... 98

Figure 5.17 Multiplexers design for each multiplier digit. ... 99

Figure 5.18 Proposed binary column tree scheme (S and C maximally 8 bits). 101

Figure 5.19 33 digits CSA binary tree. ... 102

Figure 5.20 The four binary bit-vectors after rearranging. ... 103

Figure 5.21 The six decimal bit-vectors after rearranging. .. 103

Figure 5.22 8-bit binary to decimal converter example. ... 105

Figure 5.23 8-bit binary to decimal converter block diagram. 106

Figure 5.24 9-bit, max. value 319, binary to decimal converter block diagram. 107

Figure 5.25 (a) Tiny split binary tree. (b) Tiny split decimal tree. 108

Figure 5.26 Tiny shared binary/decimal tree .. 108

Figure 5.27 Split Binary/Decimal Kogge-Stone based carry propagate adder 109

Figure 5.28 Shared Binary/Decimal Kogge-Stone based carry propagate adder 110

Figure 5.29 Final proposed Binary/Decimal Multiplier design (split scheme). 112

Figure 5.30 The three decimal bit-vectors after rearranging. 112

Figure 5.31 Tiny split binary and decimal trees. .. 113

Figure 5.32 Tiny shared binary/decimal tree. ... 113

xi

List of Tables

Table 2.1 radix-4 multiplier recoding ... 13

Table 2.2 Radix-4 recoding in parallel multiplication ... 23

Table 2.3 Summary of number of partial products for various multipliers using small

multiplier where n is the operand size. ... 35

Table 2.4 Original booth recoding scheme ... 38

Table 2.5 Booth radix 4 recoding scheme .. 41

Table 3.1 Complexity of digit-by-digit products for different ranges of decimal inputs

 .. 51

Table 3.2 Signed digit-by-digit products .. 52

Table 3.3 BCD coding formats ... 53

Table 3.4 Example of multiplier recoding .. 56

Table 5.1 BCD-8421 to BCD-5421 conversion ... 78

Table 5.2 BCD-5421 to BCD-8421 conversion ... 79

Table 5.3 9’s complement of BCD-8421 digits... 80

Table 5.4 Binary multiplicand multiples selection. .. 81

Table 5.5 Decimal multiplicand multiples selection. ... 82

Table 5.6 Binary multiplicand multiples selection. .. 92

xii

Table 5.7 Binary partial products selection according to Booth4 recoding. 98

Table 6.1 Test cases .. 116

Table 7.1 Area/Delay figure for different Binary/decimal multipliers using FPGA

virtex5. .. 118

Table 7.2 Area/Delay figure for different Binary/decimal multipliers using FPGA

virtex5. .. 118

Table 7.3 Area/Delay figure for different binary/decimal multipliers using ASIC low

power CMOS 130nm technology. .. 119

1

Chapter 1

Introduction

Decimal arithmetic is the norm in human calculations. Early mechanical

computers were almost all decimal machines; they mirrored human manual

calculations of commerce and science. Also the first general-purpose electronic

computer, ENIAC, in 1946, holds a ten-digit decimal number in memory.

However, in 1961, most computers turned to binary representation of numbers

as shown by a survey in computer systems in USA. It reported that “131 utilize

a straight binary system internally, whereas 53 utilize the decimal system

(primarily binary coded decimal)...” [2]. The use of binary arithmetic reduces

the number of components and is simpler. The difference between data and

hardware representation is controlled using software programs. Today, few

computing systems include decimal hardware. However, the growing

importance of commercial and financial which deals with decimal data and the

quick advancement of technology speed, support of decimal arithmetic is

regaining popularity in the computing community. Also Initial benchmarks

indicate that some applications spend 50% to 90% of their time in decimal

processing. In 2002, „telco‟ benchmark by Cowlishaw shows that the decimal

processing overhead could reach over 90% in a telephone company‟s daily

billing application. [2]

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Decimal

2

The need for decimal in hardware is urgent. So some companies added a

hardware decimal arithmetic unit to its processor (i.e. The IBM z9 Decimal

floating point Arithmetic Unit in 2007) [4].

Decimal arithmetic units are inherently more complex than binary

arithmetic units, since they need to handle a wider range of digits, 10 digits

versus 2 digits for binary arithmetic. Also the six invalid BCD-8421 digits need

a correction blocks. Therefore most computers today support binary in

hardware where it is simpler, faster and less in area and cost compared to

decimal.

However, Binary arithmetic gives an inexact solution when decimal

fractions are involved. It implies inexact conversions between binary and

decimal representations. For example, using the Java or C double binary

floating point for multiplying 0.1 × 8 gives the result

0.8000000000000000444089209850062616169452667236328125 but adding

0.1 to itself 8 times give a different answer

0.79999999999999993338661852249060757458209991455078125. The two

results would not compare equal, and further, if these values are multiplied by

ten and rounded to the nearest integer below („floor‟ function), the result will

be 8 in one case and 7 in the other.

Another example, consider a calculation involving a 5% sales tax on an item

such as a $0.70 telephone call, rounded to the nearest cent, Using double binary

floating-point, the result of 0.70 x 1.05 is

0.73499999999999998667732370449812151491641998291015625; the result

should have been 0.735, which would be rounded up to $0.74, but instead the

rounded result would be $0.73. [23]

Now, decimal arithmetic is supported through software on most machines.

And while using decimal floating-point arithmetic software gives the right

answer, sometimes the software conversions between decimal and binary are

3

time consuming. For example, in some applications like databases the

conversion time between binary and decimal using software programs takes

large time. Initial benchmarks indicate that some applications spend 50% to

90% of their time in decimal processing, because software decimal arithmetic

takes a 100× to 1000× over hardware time. [2]

Moreover, in other applications like simulation programs, if the simulation

takes long time and conversions only needed at the start and end of the

simulation, binary hardware arithmetic will be faster. So conversion problem

between hardware and application data representation depends on how frequent

conversions are needed.

Binary arithmetic hardware is better than decimal arithmetic hardware in

some applications which do not need high accuracy or have a long run time or

do not deal with decimal numbers, such as numerical analysis, scientific

computing, simulations, and addressing. Decimal arithmetic provide higher

accuracy in financial and commercial applications like banking, tax

calculations, currency conversion, insurance, accounting which need high

precision. Decimal data in these applications can not be represented exactly

using binary arithmetic, also it is better to use decimal arithmetic in databases

applications where most databases data types is decimal or integer ≈ 98.7% [2].

 Optimally two hardware arithmetic units, binary and decimal, are needed in

processors. [2]

This thesis proposes a combined binary/decimal multiplier with binary

partial products reduction tree. Chapter 2 describes the multiplication

algorithms. Chapter 3 and 4 show a background of decimal multiplication

techniques and previous proposed combined binary/decimal multipliers

respectively. In chapter 5 the proposed parallel combined binary/decimal

multiplier is explained. Chapter 6 goes over testing procedure and comparison

4

between the proposed and previous designs in area and delay. Finally present

the future work.

5

Chapter 2

Multiplication Techniques

In this chapter we consider the multiplication algorithms for signed integers.

The multiplication operation is

 (2.1)

where is the multiplicand, is the multiplier, and is the product. The

multiplication operands, and , are represented by a sign bit and an n-bit

magnitude

 = a n-1 2 1 0 (2.2)

 = b n-1 2 1 0 (2.3)

and the result P is represented by a sign and a 2n-bit magnitude

 = P 2n-1 2 1 0 (2.4)

6

where a, b, and P are the sign bit of , , and respectively. The digits i,

 i, and i are number digits (i.e. binary digit, 0 and 1, or decimal digit, from 0

to 9, etc.).

In this chapter the signed integer‟s representation and the multiplication

techniques are discussed focusing on binary and decimal multiplications.

2.1 Signed Integer's Representation

The signed integers can be represented in two ways: sign-and-magnitude

representation and two‟s complement representation. [5]

2.1.1 Sign-and-magnitude representation

In sign-and-magnitude representation, the operands are represented by a

sign bit and an n-bit magnitude, and the product is represented by a sign and a

2n-bit magnitude where

 (2.5)

 (2.6)

The sign bit takes the values „0‟ and „1‟ for positive and negative signs,

respectively. The notation in equation 2.5 represents the value of the sign

bit. The implementation of product sign can be implemented separately from

magnitude using XOR gate where operands with similar signs give product

with the same sign, and operands with different signs give negative product

sign.

 (2.7)

7

where notation in equation 2.7 represents the logic of the sign bit.

For any radix r, the operands magnitude values are

 | | =

1

0

.
n

i

i

i ra (0 ≤ i ≤
–1 , 0 ≤ | | ≤ n

–1) (2.8)

 | | =

1

0

n

i

i

irb (0 ≤ i ≤
–1 , 0 ≤ | | ≤ n

–1) (2.9)

And the product can be represented as

 | | = | | . | | =

12

0

n

i

i

irp (0 ≤ i ≤ –1 , 0 ≤ | | ≤ (n
–1)

2
) (2.10)

The basic method to implement the value of the product is to multiply the

multiplicand by each digit of the multiplier regarding its weight then adding

these values.

 | | = | |

1

0

n

i

i

irb (2.11)

Different methods are used to implement the magnitude of the product like

add-and-shift, composition of smaller multiplications, digit serial

8

multiplication, and booth multiplication. These methods are discussed in next

sections of this chapter.

2.1.2 Two’s complement representation

Two‟s-complement is a representation in which negative numbers are

represented by the two's complement of the absolute value. An n-bit two's

complement number can represent every integer in the

range to . For multiplication, by representing each operand

by n-bit vector, the product is 2n-bit vector and has values in the range ()

() to () () = . [12]

Let R , R , and R are the corresponding positive integer representations of ,

 , and , respectively. When the two operands are positive, they are

represented as R , R so the product will be R × R. And when the two

operands are negative, they are represented by their two's complement value (2
n

− R), (2
n
 − R) so the product will be (2

n
 − R) × (2

n
 − R) and it‟s a positive

value. However, when one of the operands is positive (e.g.) and the other

operand is negative (i.e.), they are represented as R , (2
n
 − R) so the

product will be the two‟s complement of R × (2
n
 − R) because it has a

negative value. The multiplication algorithm can be described as in [12].

 R R if ≥ 0, ≥ 0

 R = 2
2n

 − (2
n
 − AR) BR if < 0, ≥ 0

2
2n

 − R (2
n
 − R) if ≥ 0, < 0 (2.12)

(2
n
 − R) (2

n
 − R) if < 0, < 0

9

Figure 2.1(a) shows the multiplication of – 910 × 310 in base 2 in sign-and-

magnitude representation. The 4-bit multiplicand magnitude 910 = 10112 is

stored in an 8-bit word as 000010112. Then multiply it to each bit of the

multiplier magnitude 310 = 00112 regarding its weight. Then add these

multiplication values. The sign value is the XOR of multiplicand sign and

multiplier sign which is 12.

Figure 2.1 Multiplication example for (a) sign-and-magnitude representation

(b) two‟s complement representation

However, Figure 2.1(b) shows the multiplication of –910 × 310 in base 2 in

two‟s complement representation. The multiplicand and multiplier is stored in

8-bit word in its two‟s complement form if it has negative sign. Then multiply

them as in sign-and-magnitude representation. If the product is negative

according to eqn.2.8, the two‟s complement of it is determined.

Sign-and-magnitude representation is preferred in multipliers implementation

where it does not require the two‟s complement conversion steps. The two‟s

complement representation is used in addition and subtraction circuitry where it

1 1 0 0 1 (-9)

0 0 0 1 1 (3)

1 0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 1 0

1 0 0 0 1 1 0 1 1 (-) (27)

1 1 0 0 1 (-9)

0 0 0 1 1 (3)

 1 1 1 1 0 1 1 1

0 0 0 0 0 0 1 1

(2n - AR)

(BR)

 1 1 1 1 0 1 1 1

 1 1 1 0 1 1 1 0

 1 1 1 0 0 1 0 1

22n − (2n − AR)BR = (-) (27)

(2n − AR)BR

1 0 0 0 1 1 0 1 1

= -27

Sign bit

Sign bit

(a) (b)

10

does not need to examine the signs of the operands to determine whether to add

or subtract.

In the next sections of this chapter, the multiplication algorithms: Add-and-

shift, Composition of smaller multipliers, Bit/Digit serial, and Booth

multiplication are considered. Also the sequential and parallel approaches are

discussed.

2.2 Add-and-shift multiplication algorithm

The common and simplest method of multiplication is the add-and-shift

multiplication algorithm. Let the two multiplication operands and called

multiplicand and multiplier respectively, and each operand has n bits. This

algorithm conditionally adds together copies of the multiplicand according to

multiplier bits to produce the final product based on the following equation

 [12].

 × =

1

0

n

i

i

irbA (2.13)

Figure 2.2 shows the multiplication of two 4-bit unsigned numbers. The two

operands and are shown at the top. Each of the following four rows

corresponds to the product of the multiplicand and a single digit of the

multiplier generating four partial products (), with each row shifted one

bit to the left. Then all partial products are added to generate the final product

(). [19]

11

Figure 2.2 Multiplication of two 4-bit unsigned binary numbers in dot notation

High Radix Multiplication

The multiplier digits can represent one bit in radix-2 design, binary

system, or a set of bits (2, 3, 4 ….etc.) in higher radix designs. The simplest

implementation is obtained by using radix-2 since the multiplier digits are

either 1 or 0 so the multiples of the multiplicand are either or zero and the

number of partial products generated are , where is the number of bits in .

This number of partial products is reduced by using higher radices. For -bit

multiplier digit, , the number of partial products are , where ,

and is the radix. But the number of multiplicand multiples are . [5]

For example, radix-4 has to multiples to be generated, partial

products. Radix-8 has to multiples to be generated, partial products.

Radix-16 has to multiples to be generated, partial products. For

decimal multiplication, the multiples from to are generated, where Binary

Coded Decimal, BCD, format is used.

In Binary Multiplication, is in {0, 1} set, so each term is either 0

or . Figure 2.3 shows the partial product selection logical AND for 8-bit

multiplicand [8]. Thus the problem of add-and-shift binary multiplication

12

reduces to adding n partial products, each of which is 0 or a shifted version of

the multiplicand .

Figure 2.3 Partial product selection logic for 8-bit add-and-shift

In Decimal Multiplication, is in {0, 9} set. Each term is one of the

multiplicand multiples . Decimal

multiplication needs to generate the multiplicand multiples then select the

suitable multiple due to multiplier digits to generate the partial products.

Decimal adders are used to accumulate the partial products.

High Radix Multiplier digit, , Recoding

The main problem with high radix multiplication is the digit multiplication,

since now the digit of the multiplier has values.

For radix-4, the multiplier digit , corresponding to two bits, has the

values 0, 1, 2, and 3. When multiplying these digit values by the multiplicand,

the generation of the multiples and by shifting the multiplicand , are

simple. But the multiple requires an addition to and . To avoid this

multiple, the multiplier is recoded into a signed-digit set as {–1, 0, 1, 2} since

13

the multiplication by these values is simple needing only the complementation

and shifting of the multiplicand. [5]

The recoding algorithm in [5] recodes the digits of the multiplier from Least

Significant Digit (LSD). Using as radix-4 recoded multiplier signed digit,

and as the carry bit. The recoding produces such that

 (2.14)

Where and . The carry is

selected so that the value = 3 is avoided. Consequently, when ≥ 3,

 and . This recoding is described by the following

table.

0 0 0

1 1 0

2 2 0

3 –1 1

4 0 1

Table 2.1 radix-4 multiplier recoding

For further reduction of partial products, a radix higher than 4 is used. The

algorithm is a direct extension of the radix-4 case, for example, radix-8 and

radix 16.

For radix-8, the multiplier recoded into the digit set {–3, –2, –1, 0, 1, 2, 3,

4}, where

14

 (2.15)

where . The main problem with the implementation

of this multiplication is the generation of 3 , where it needs an extra addition

step of 2 plus . [5]

The extension to even higher radices requires the generation of more

multiplicand multiples. An alternative is to use several radix-4 and/or radix-2

stages in one iteration [5].

For radix-16, the multiplier can be recoded into the digit set {–7, –6, ……,

0, 1, ……, 7, 8} where

 (2.16)

where , and when ≥ 9. This

requires a generation of many multiplicand multiples. So this recoding can be

performed by recoding the multiplier into two redundant radix-4 digits

and [5] such that

 – – (2.17)

So only the multiple and are generated then an adder is used.

In the next two sections we will consider the sequential and combinational

implementation techniques for add-and-shift algorithm for binary and high

radix multipliers.

15

2.2.1 Sequential multiplication

Sequential multiplication can be done using a cumulative partial product

register (initialized by 0) and successively adding to it the properly shifted

terms . Since each term to be added to the cumulative partial product

register is shifted by one digit with respect to the preceding one, the cumulative

partial product register is shifted one digit in order to align its digits with those

of the next partial product.

Two schemes of this algorithm can be derived, depending on whether the

partial product term are processed from top to bottom or from bottom to

top (see Figure 2.4) depending on starting from the least significant digit or

most significant digit of the multiplier, and right shift or left shift the

cumulative partial product register, respectively. [14]

Figure 2.4 Sequential multiplication accumulation schemes

The hardware implementation of top to bottom accumulation multiplication

algorithm is more logical and has less area so that it is the preferred method.

16

Sequential multiplication algorithm with top-to-bottom accumulation

In multiplication with top to bottom accumulation, a right shift cumulative

partial product register is used. Figure 2.5 shows a right shift sequential

multiplier using radix-2, binary. [14]

Figure 2.5 Sequential multiplication

For high radix sequential multiplication, the 1-bit right shift is replaced by a 1-

digit right shift. Also the AND gate block which chooses between 0 and

multiplicand due to multiplier bits is replaced by a multiplicand multiples

generator block to generate the multiplicand multiples for the radix used then a

selector block is added to select the suitable multiplicand multiple due to

multiplier digits . Figure 2.6 shows a right shift sequential multiplier for high

radices.

17

Figure 2.6 High radix sequential multiplication

Generally for right shift sequential multiplication the following steps are

performed [14]

1. Store multiplicand in an n-digit register, multiplier in an n-digit

right shift register, and initialize the cumulative partial product

register with zero.

2. Add 0 or one of the multiplicand multiples to the left digit of

the cumulative partial product register according to multiplier least

significant digit .

3. Shift the cumulative partial product register and multiplier register

one digit to the right.

4. Repeat step 2 and 3 till the end of the n iterations.

5. After n iteration, the final product is stored in the cumulative partial

product register.

18

The accumulation of partial products can be described as

 – (2.18)

 |–––– add –––––|

 |–––– shift right ––––|

because the right shifts will cause the first partial product to multiplied by ,

multiplicand is pre-multiplied by to offset the effect of the right shifts.

This pre-multiplication is done simply by aligning A with the upper half of the

2 -cumulative partial product register in the addition steps. [14]

The control portion of the multiplier, which is not shown in the figures,

consists of a counter to keep track of the number of iterations and a simple

circuit to effect initialization and detect termination. [5]

The delay of the sequential multiplier shown in Figure 2.6 is equal to

 where is the delay of Carry Propagate Adder (CPA). It has a

large delay where the delay of n-bit ripple carry adder is of O(n), and the carry

lookahead and other prefix adders are of O(). To decrease this delay a

carry save adder is used for the iterations and a CPA is used at the end of

iterations as shown in Figure 2.7. [5]

19

Figure 2.7 High radix sequential multiplier design

To avoid the generation of large number of multiplicand multiples in high

radices, the multiplier digits is recoded into two values and each one

follow radix-4 and/or radix-2 recoding. In the iterations, two CSAs are used for

each recoding digit as shown in Figure 2.8. [14]

20

Figure 2.8 High radix sequential multiplier design using two recoding values,

radix4 and/or radix-2, (for radices higher than 4)

The sequential multiplication can be divided into three stages as follows

Stage1: Multiplier recoding.

Stage2: Multiplicand multiples generation.

Stage3: Sequential addition and shift.

21

2.2.2 Parallel (Combinational) multiplication

Instead of performing the multiplication in several cycles (iterations) in

sequential multiplication, parallel multiplication reuses the hardware to perform

the operation in a single cycle. [5]

In parallel multiplication, all the partial products, s, of the multiplicand

are produced at once. For each digit, -bit, generate the suitable partial product

according to multiplier digit i. Then an -input CSA tree is used to reduce

the partial products to two operands for the final addition. Finally, a Carry

Propagate Adder CPA is used to generate the final product. [19]

 =

1

0

n

i

i

irbA (2.19)

In this case all the multiples are obtained simultaneously and applied as

operands in the first level of the tree. Therefore, the recoding has to be done in

a parallel fashion.

Figure 2.9 shows the general structure of a full tree multiplication. Various

multiples of the multiplicand are generated corresponding to multiplier radix

formed at the top. These multiples are added in a combinational partial

products CSA reduction tree, which produces their sum in redundant form

(carry save form). Finally, a CPA is used to generate the final product result.

 [14]

22

Figure 2.9 General structure of a combinational full-tree multiplier

The parallel multiplication can be divided into three stages

Stage1: Multiplier recoding.

Stage2: Shifted multiplicand multiples generation
 .

Stage3: Partial products accumulation.

Stage1: Multiplier recoding

As discussed for the sequential case, radix-4 multiplier digits have the

values 0, 1, 2, and 3. The generation of the multiples and 2 are simple, but

the multiple 3 requires an addition. To avoid this multiple, the multiplier is

23

recoded into a signed-digit set {−1, 0, 1, 2} since the multiplication by these

values is simple, the parallel multiplication recoding produce i such that

 , and (2.20)

where so . [12] Table

2.2 and Figure 2.10 show the radix-4 multiplier recoding [5]

Table 2.2 Radix-4 recoding in parallel multiplication

Figure 2.10 Radix-4 recoding in parallel multiplication

0 0 0

1 1 0

2 −2 1

3 −1 1

24

For parallel multiplication the addition step which generates should be

performed without carry propagation. This is achieved if

 , and (2.21)

consequently, the algorithm is as equation 2.22. [12]

 (2.22)

The extension to higher radices has the same idea of radix-4 parallel

multiplication recoding; trying to reduce the number of multiples which need

an extra addition step.

Stage2: Multiplicand multiples generation

For a certain multiplier , the multiplicand multiples due to the multiplier

digits i are defined as] where

 , where 0 ≤ ≤ – 1

 (2.23)

This corresponds to a multiplication of the multiplicand by each digit, , of

the multiplier and an arithmetic shift left by digits. Figure 2.11 shows the

resulting partial products in dot notation form where each dot represents one

digit. [12]

25

Figure 2.11 Partial products for 8-digit multiplication

In parallel multiplication, all possible multiplicand multiples due to the range

of multiplier digit, , are generated firstly. Then for each

multiplier digit select the suitable multiple. For radix-2, the result of this

digit multiplication is partial products and the shift is one bit. In general, for

any radix , the number of partial products are , where is the number of

multiplier bits, and is the number of bits in each digit. So is in the range 0 ≤

 ≤ and the shift is one digit, bits. The high radix multiplication is

used to reduce the number of multiples and, therefore, the complexity of the

partial products addition, but the number of multiplicand multiples needed to

be generated increase.

An AND-OR network for each bit is used in the implementation of the

multiples generation circuit to select among the different possible multiples.

Multiples like 2 , 4 , 8 , and 16 are generated by only shifting. It is fast,

easy, and has no additional area cost. Some other multiples like 3A, 5 , and

7 need an addition steps which take large delay and area. They have different

techniques to be generated. Some of them will be discussed in the next chapter.

26

The trade-offs for high radix multiplication are: higher radix gives more

multiplicand multiples and more complex multiples circuit which has extra

delay in some radices, but it leads to less partial products and more simple

reduction tree having less delay.

Stage3: Partial products accumulation

After the partial products are generated, they must be accumulated to

obtain the final product. Using carry propagate adders, the time consuming

carry propagate addition is repeated times. The most commonly used

method is carry save addition. In carry save addition, the carry propagation is

done in the last step while in all other intermediate steps a sum and carry are

generated for each bit position. [8]

The basic element used in reducing partial products is the Carry Save Adder

(CSA). This is a binary full adder that takes 3 bits of the same weight as inputs

and produces a sum bit and a carry bit (of one bit higher weight). Sometimes

the [3:2] CSA is called a counter. Figure 2.12 shows a 1-bit CSA

implementation and the addition of three n-bit partial products using CSAs.

Figure 2.12 Carry save Adder (counter)

27

The compressor is a special form of [3:2] CSA or counter. It is designed to

support regular tree implementation. The most common compressor is the

[4:2]. The advantage of compressors is in their regularity. Figure 2.13 shows a

[4:2] and [7:2] compressors implementation using counters ([3:2] CSAs). [7]

Figure 2.13 CSA Compressor

The adders used in the partial products accumulation can be connected in

several approaches. In the next section these approaches are discussed.

28

2.2.3 Adders connection approaches

The implementation of the partial products accumulation is done using

some variation of a carry save adders. These CSAs can be connected by

different methods called topology. The topologies are classified into regular

and irregular according to the way the counters are interconnected, and the

wires required to connect the counters. In a regular topology, the CSAs are

connected in a regular pattern that is replicated. The regular connections make

the design of the partial product array a hierarchical design. In contrast, in an

irregular topology, the CSAs are connected in order to minimize the delay,

disregarding the ease of laying out the multiplier [8].

Regular topology

The regular topology is most commonly used, since it provides a

compromise between optimization and design effort. The regularity allows

designers to build a small group of building blocks that contain connected

counters and compressors and then connect these blocks to form the topology.

The delay of this topology is defined as the maximum number of counters and

compressors connected in series. Regular topologies can be classified as either

array or tree topology. [8]

Regular array topology

 In an array, the counters and compressors are connected serially in an

identical manner [8]. Figure 2.14 shows the addition of 8 partial products in an

array topology. [8]

It is the slowest topology but it is very regular in its structure and uses short

wires. Thus, it has a very simple and efficient layout in VLSI. Furthermore, it

can be easily and efficiently pipelined by inserting latches after every CSA or

after every few rows. [19]

29

Figure 2.14 Addition of 8 partial products in an array topology

using CSAs and CPA at the end

Regular tree topology

To reduce the number of adder‟s level, a tree is used. In a tree, counters and

compressors are connected in parallel. Although trees are faster than arrays,

they both use approximately the same number of counters and compressors,

same area, to accumulate the partial products. The difference is in the

interconnections between the adders. [8]

Trees are either regular or irregular. Regular trees have an easy structure for

summing partial products and their delay is a known function of number of

partial products. While irregular trees connected in order to minimize the total

delay and their delay is determined by design layout.

Regular topologies allow a multiplier to be structured from building blocks

where the interconnections between the adders are in a consistent pattern as

shown in Figure 2.15(a) [8] and Figure 2.15(b) [5]. A CPA or a [4:2]

30

compressors are used which has a fast, symmetric and regular design. If the

number of partial products is , the number of CPA or [4:2] compressor levels

is plus one level CPA. [5]

It must be noted that the [4:2] compressor delay is approximately equivalent to

two CSA levels and the CPA delay equivalent to n CSA levels for ripple carry

or for carry lookahead, where n is the number of partial product bits.

Figure 2.15 Regular tree (a) Using CPAs (b) Using [4:2] compressors

Irregular topology

Irregular topologies connect the counters and compressors in order to

minimize the total delay but the design and layout is more difficult because

they do not have a regular pattern for connection. Wallace tree and Dadda tree

are examples for irregular trees. Wallace tree reduces the partial products by

rows as array and regular tree while Dadda tree reduces the partial products by

columns. [18]

31

Wallace tree

The Wallace tree combines partial product bits at the earliest opportunity

which leads to the fastest possible design. If the number of partial products

is , the number of [3:2] CSA levels is approximately plus one

level CPA. Figure 2.16 shows [3:2] adder tree. [5]

Figure 2.16 Irregular tree topology using [3:2] CSAs and CPA for last level

Dadda’s tree (Reduction by column)

All previous adder topologies use the reduction by row scheme in partial

product accumulation. Dadda‟s tree uses reduction by column scheme. Dadda

Tree Combine as late as possible, while keeping the critical path length

(number of levels) of the tree minimal which leads to simpler CSA tree

structure, but wider CPA at the end. [12]

32

Figure 2.17 shows a comparison between wallace and dadda trees for four

4-bit partial products. [19]

Figure 2.17 Addition of four 4-bit partial products

(a) using Wallace tree (b) using Dadda tree

2.3 "Composition of smaller multipliers" multiplication

algorithm

Another way to multiply two numbers is to divide the multiplication

operation into small similar multiplication operations. For example, the 8bit ×

8bit multiplier can be implemented using four 4bit × 4bit multipliers, as shown

in Figure 2.18. [7]

33

Figure 2.18 Implementation of 8 × 8 multiplier using four 4 x 4 multipliers

 Generally, consider an multiplier used to implement 2 2 .

Denoting the high and low halves of the multiplicand and multiplier by H , L

and H , L respectively. four multipliers are used to compute the four

partial products L. L , L. H , H. L , and H. H. These four values must

then be added to obtain the final product. By rearranging the non-overlapping

partial products, only three values need to be added as shown in Figure 2.18. So

the 2 2 multiplication problem has been reduced to four

multiplication and three operand addition problem. The multiplication

can be performed by smaller hardware multipliers or via lookup table, for

example, a 8-bit 8-bit multiplication can be implemented using four 2
8 8

ROMs (as lookup table), where each ROM performs 4 4 multiplication. The

three partial products can be computed using single level of carry save adder,

followed by a carry propagate adder. [19]

34

Larger multipliers, such as 3 3 or 4 4 , can be similarly

implemented from multiplier building blocks. A generalization of this

scheme is shown in Figure 2.19 for various multiplier arrays up to 64×64

multiplier. Each rectangle represents a 8-bit partial product as result of 4×4

multiplier. Assuming = 4, it can be seen that the 4 4 multiplication

leads to seven partial products to be added, and 8 8 multiplication

produces fifteen partial products. [7]

Figure 2.19 Using 4 × 4 multiplier with 8-bit product

for various multiplier arrays up to 64 × 64

35

Table 5.3 summarizes the partial products matrix for various multipliers

using 4×4 multiplier and 8×8 multiplier. It can be seen that the number of

partial products decreases when using 8×8 multiplier as a basic building block.

When using a lookup table basic block, the delay of the two schemes is the

same but the 8×8 multiplier has double the area of the 4×4 multiplier. When

using hardware multipliers basic block, the area and delay of the 8×8 multiplier

are higher than the 4×4 multiplier. [7]

Table 2.3 Summary of number of partial products for various multipliers using

small multiplier where n is the operand size.

2.4 Bit/Digit serial multiplication algorithm

Serial arithmetic has the advantages of its smaller area and reduced wire

length. In fact, the compactness of the design may allow us to run a serial

multiplier at a clock rate high enough to make the unit almost competitive with

much more complex designs with regard to speed. In addition, in certain

application contexts inputs are supplied serially anyway. In such a case, using a

parallel multiplier would be quite wasteful, since the parallelism may not lead

to any speed benefit. Furthermore, in applications that call for a large number

of independent multiplications, multiple serial multipliers may be more cost

effective than a complex highly pipelined unit. [19]

Basic building block
Number of PPs

(general formula)

Number of Partial

Products(PPs)

Number of bits

8 16 24 32 40 48 56 64

1×1 multiplier N 8 16 24 32 40 48 56 64

4×4 multiplier (n/2) – 1 3 7 11 15 19 23 27 31

8×8 multiplier (n/4) – 1 1 3 4 7 9 11 13 15

36

A serial multiplier can be defined as a serial input/output pipelined

sequential add-and-shift multiplier.

Bit/Digit serial multipliers can be designed as synchronous arrays of

processing elements. Figure 2.20 shows a 4 4 bit serial multiplier. The

multiplicand is supplied in parallel from above and the multiplier is

supplied bit-serially from the right, with its least significant bit arriving first.

Each bit of the multiplier is multiplied by and the result added to the

cumulative partial product, kept in carry save form in the carry and sum

latches. The carry bit stays in its current position, while the sum bit is passed on

to the neighbouring cell on the right. This corresponds to shifting the partial

product to the right before the next addition step. Bits of the result emerge

serially from the right as they become available. [19]

Figure 2.20 4 4 Bit Serial Multiplier

Figure 2.21 shows a digit serial multiplier. Multiplicand multiples generator

is used to generate all possible multiplicand multiples of the multiplier digit

(i.e. from A to 3 for 2-bit digit, from to 15 for 4-bit digit, and so on). The

suitable multiplicand multiple is selected according to multiplier digit using a

37

selector. Then the partial product is added and shifted to the right before the

next multiplier digit is serially supplied. Digits of the result emerge serially

from the right as they become available.

Figure 2.21 Digit Serial Multiplier.

2.5 Booth multiplication algorithm

Booth algorithm gives a procedure for multiplying binary integers in

unsigned or signed two‟s complement representation.

2.5.1 Original Booth algorithm

The original Booth algorithm used for binary multiplication allows the

multiplication operation to skip over any continuous string of all 1‟s and all 0‟s

in the multiplier, rather than form a partial product to each bit. Skipping a

string of 0‟s is straightforward, but in skipping over a string of 1‟s the

following property is put to use: a string of 1‟s is the same as 1 followed by

 0‟s less 1. [7]

38

How it works?

Consider a positive multiplier consisting of a block of 1s surrounded by 0s.

For example, the product of a multiplicand by a multiplier 00111110 is given

by:

The number of addition operations can be reduced to two by rewriting the same

as

where means negative 1. In fact, it can be shown that any sequence of 1's in

a binary number can be broken into the difference of two binary numbers as

The multiplier is divided into substrings of 2 bits, with adjacent groups sharing

a common bit. Table 2.4 shows the Original booth recoding scheme.

Bit

Meaning Operation 2
0
 2

-1

 i i-1

0 0 no string 0

0 1 end of string +

1 0 beginning of string −

1 1 center of string 0

Table 2.4 Original booth recoding scheme

39

This works for negative multipliers as well. When the ones in a multiplier are

grouped into long blocks, Booth algorithm performs fewer additions and

subtractions than the normal multiplication algorithm.

Procedure

Let and be the multiplicand and multiplier, respectively. is the

negative value of and P is the product. And let and represent the number

of bits in the multiplicand and multiplier.

1. Set the values of and , and the initial value of . All of these

numbers should have a length equal to ().

a. : Fill the most significant bits with the value of a. Fill the

remaining () bits with zeros.

b. : Fill the most significant bits with the value of () in two's

complement notation. Fill the remaining () bits with zeros.

c. : Fill the most significant m bits with zeros. To the right of this,

append the value of . Fill the least significant bit with a zero.

2. Determine the two most significant bits of .

a. If they are 01, find the value of . Ignore any overflow.

b. If they are 10, find the value of . Ignore any overflow.

c. If they are 00, do nothing.

d. If they are 11, do nothing.

3. Arithmetically shift the value of obtained in the 2nd step by a single

place to the right. Let now equal this new value.

40

4. Repeat steps 2 and 3 until they have been done times.

5. Drop the least significant bit from . The value of is the product

of .

Original Booth algorithm can be summarized as performing an addition when it

encounters the first digit of a block of ones (0 1) and a subtraction when it

encounters the end of a block of ones (1 0). Also an extra bit can be added to

the left of , , and , to represent the multiplicand if it has the largest

negative number (i.e. if the multiplicand has 8 bits then this value is −128).

The disadvantages of this algorithm are that it generates a varying (at most)

number of partial products, depending on the bit pattern of the multiplier. The

extreme, worst case, occurs when the multiplier is alternating between 1‟s and

0‟s. The number of addition or subtraction process is instead of for add-

and-shift algorithm. Of course, hardware implementation lends itself only to a

fixed independent number of partial products.

Booth algorithm can be designed using sequential approach, as mentioned

above. Or parallel approach, by recoding every two side by side bits to

multiplicand or its negative value or zero.

2.5.2 Modified Booth algorithm

The modified version of Booth algorithm is more commonly used. The

difference between the Booth and the modified Booth algorithm is that the

modified booth always generates a fixed number of partial products. It encodes

every bit of multiplier into one partial product. So for bit multiplier, it

introduces partial products as the high radix multiplication. Several

versions of modified booth algorithm are introduced depending on the value of

 . As the value of is increased, the number of partial products decreases but

the number of hard multiplicand multiples required to generate increases. [7]

41

Booth radix 4 recoding scheme, Booth 2

The modified Booth 2 multiplier encoding scheme encodes every 2-bit

groups of multiplier. For an 8-bit multiplier, it produces four partial products

for a signed multiplier, as the most significant input bit represents the sign, or

five partial products for an unsigned multiplier number. The multiplier is

divided into substrings of 3 bits, with adjacent groups sharing a common bit. It

requires that the multiplier be padded with a 0 to the right, for unsigned or

positive numbers, and with 1 to the right for negative numbers, in two‟s

complement representation. Also it is padded with one or two zeros to the left.

Table 2.5 is the encoding table of the eight possible combinations of the three

multiplier bits. [7]

Bit

Operation 2
1
 2

0
 2

-1

 i+1 i i-1

0 0 0 0

0 0 1 +

0 1 0 +

0 1 1 +2

1 0 0 −2

1 0 1 −

1 1 0 −

1 1 1 0

Table 2.5 Booth radix 4 recoding scheme

By inspection of the table, only one action (addition or subtraction) is required

for each two multiplier bits. Thus, the use of the algorithm insures that for an

odd number of multiplier bits, only actions will be required for any

multiplier bit pattern where the last action will be defined by 0 n−1. n−2 for

42

unsigned numbers. And for an even number of multiplier bits, + 1 actions

are required, the last action being defined by 0.0. n−1 for unsigned numbers. [7]

Figure 2.22 shows a 16 bit 16 bit multiplication using Booth 2 algorithm [8].

Figure 2.22 16 bit Booth 2 multiply

For example [7], suppose a multiplicand () is to be multiplied by an

unsigned multiplier = (11101011)2 which is equivalent to decimal 235. When

using modified Booth 2 algorithm. The multiplier must be decomposed into

overlapping 3-bit segments and actions determined for each segment. Note that

the first segment has an implied “0” to the right of the binary point. Thus, we

can label each segment as follows:

while segment (1) is referenced to the original binary point, segment (2) is four

times more significant. Thus, any segment (2) action on the multiplicand must

be scaled by a factor of four. Similarly, segment (3) is four times more

43

significant than (2), and 16 times more significant than (1). Now, by using the

table and scaling as appropriate, we get the following actions:

Segment number Bits Action Scale factor Result
(1) 110 − 1 −
(2) 101 − 4 −4
(3) 101 − 16 −16
(4) 111 0 64 0
(5) 001 + 256 +256

Total action 235

The actions specified in the table are independent of one another so the five

result actions can be summed in parallel using carry save adders.

Booth radix 8 recoding scheme, Booth 3

It is an extension of the modified Booth algorithm which involves an

encoding of three bits at a time while examining four multiplier bits. This

scheme would generate only partial products. [7]

However, its encoding requires the generation of [8], which is not as

trivial as generating . Thus, most hardware implementations use only Booth

2 scheme.

2.6 Conclusion

The multiplication operation can be designed in sequential or combinational

approach. Sequential multipliers have less area while combinational multipliers

have lower latency.

Also the multiplication is done in radix-2 or high radix scheme. Radix-2

lead to small area design nevertheless high radix has the advantage of low

latency.

44

Four techniques are used for the multiplier implementation, add-and-shift,

composition of small multipliers, bit/digit serial, and booth multiplication.

Add-and-shift is the most common and simplest method of multiplication. It

can be implemented sequentially or combinational in radix-2 or high radix.

Composition of smaller multipliers has the same area and speed of complete

multiplier. It only divides the large components to small ones and rearranges

them. Bit/Digit serial multiplier (radix-2/high radix serial multiplier) has small

area, but larger than sequential add-and-shift, high latency, high throughput,

and can be easily pipelined. It is useful in applications where the inputs are

supplied serially anyway. Original booth tries to decrease the number of partial

product. It has a worst case number of partial products , but it generates a

variable number of partial products. Modified booth generates a fixed number

of partial products , the same as high radix add-and-shift. Booth

multiplication can be implemented sequentially or combinationaly.

45

Chapter 3

Decimal Multipliers

The decimal multiplication is more complex than the binary multiplication.

Since the multiplier 4-bit digit takes values between 0 and 9. Let the

multiplicand and the multiplier be two signed numbers represented as sign

and an -digit magnitude. The multiplication will create a sign and

2 -digit product . The multiplication operation is described as:

 (3.1)

 (3.2)

The sign of the product is implemented using XOR gate. And the

magnitude of the product is implemented using some algorithms similar to

binary algorithms but here we deal with digits instead of bits. For example in

2846 × 3715, we assume 3715 a multiplier and 2846 a multiplicand and assume

that we have all multiplicand multiples (2×2846, 3×2846, 4×2846, ……,

9×2846). The digits in the multiplier are examined one at a time and the

suitable multiplicand multiple is selected according to the multiplier digit. A

46

number of shifted multiples are added according to multiplier digit position as

shown in Figure 3.1 to form the final product.

Figure 3.1 4-bit Decimal multiplication example

From this example we can divide the multiplication operation into three

stages: Multiplicand multiples generation (from to), multiplier recoding

to select the suitable multiple for each multiplier digit which generate the

partial products (), and partial products addition.

Decimal multipliers can be implemented using sequential or parallel

approaches. Sequential multipliers have a small area compared to parallel ones.

But, parallel multipliers have a significant low latency advantage over

sequential multipliers. The choice between sequential and parallel approaches

depends on the more important issue in the application, area or delay.

In the next sections the history of the decimal multiplication stages, which

are multiplicand multiples generation, multiplier recoding for multiples

selection, and partial products accumulation, are discussed.

47

3.1 Multiplicand Multiples Generation

Decimal multiples generation is more complex than binary multiples

generation because it deals with Binary Coded Decimal (BCD) format so the

left shifting of multiplicand, , will not introduce as in binary. The decimal

multiplicand multiples are generated by successively adding the multiplicand

using BCD adders
1
, decimal adders, which has large area and delay, or via a

lookup table for the multiplicand multiples, which has large area.

Generation of and

It can be seen that the generation of and is simpler than

the other multiples where the carry propagate only to next digit [13] [20]. When

any BCD digit with a value from 0 to 9 is doubled, it gives two digits from 00

to 18. The least significant digit value is even, i.e. least significant bit is 0 and

maximally equal 8 and the carry value is maximally 1. By adding the carry to

next significant digit, the maximum value obtained is 9, this addition can be

done by only putting the carry bit in the LSB of next digit. So the generation of

 for a digit can be summarized as shown in Figure 3.2.

Also the multiple generation depends on that the fifth multiple of any

digit, gives only two digits. The least significant digit value is 0 or 5 due to the

input digit is even or odd, respectively. The most significant digit, carry digit,

value is maximally 4 (since) so by adding the carry to next

significant digit, the maximum value obtained is 9. So its carry is propagated

only to next digit. The carry digit is equal to the value of input digit divided by

two. Where shifted left one decimal digit. It can be

implemented by right shifting the input digit and skips its carry bit. These two

multiples have approximately the area of n-bit carry propagate adder and the

1
 In BCD addition, a correction of six must be added if a digit sum is greater than nine to skip

over the invalid BCD digits, A16-F16. So the decimal CPA has a delay of O(2n) instead of

O(n) for binary CPA.

48

delay is approximately of O(4), 4-bit carry propagation where carry propagate

only to next digit.

Figure 3.2 BCD multiplication by two

Multiplicand multiples generation stage

Simple decimal multipliers as those designed in the early days of decimal

circuits [20]generate all decimal multiplicand multiples, from to , and

store them in registers before the start of the algorithm as shown in Figure 3.3.

This technique needs a large area for the decimal carry propagate adders and

for the registers needed to store the multiples. Also it has a large delay due to

the delay of decimal carry propagate adders [20].

To reduce the area and delay, a reduced set of decimal multiplicand

multiples is generated and stored in registers before the start of the algorithm

then the remaining multiples are obtained dynamically during the algorithm

using a decimal carry propagate adder. A secondary set or tertiary set is

sometimes used. A secondary set of multiplicand multiples

is proposed in [6](a) where only two members of the set are need to be added to

generate missing multiples. It need only one decimal carry propagate adder of

49

Figure 3.3 Multiplicand multiples generation (generate all multiplicand

multiples)

 for the multiple generation, Figure 3.4(a). Also a tertiary set of

multiples is proposed where at most three members of the set

are added to generate missing multiples. The set does not need

to generate the multiple but it requires an extra addition for the generation

of the missing multiple . The extra adder can be a decimal

carry save adder which has less delay, , than the decimal carry propagate

adder, Figure 3.4(b).

Another secondary multiplicand multiples set is introduced in

 [20] [6](a)] [10]. This set is generated faster than the previous sets. This set

reduces the delay of the multiplicand multiples generation stage, Figure 3.4(c).

50

Figure 3.4 Decimal multiplicand multiples generation sets

For more reduction of the area and delay for the pre-calculated multiples, a

signed digit recoding technique is proposed by Lang and Nannarelli in [13].

They generate the secondary set of multiples. The two groups

 and are used to generate the missing

multiples, Figure 3.5. Using the () block for signed digit

recoding can convert the tertiary set to secondary set by

generating the missing multiple .

Figure 3.5 Signed digit recoding by Tomás Lang and Alberto Nannarelli

51

Erle et al. in [6](b) propose a different recoding technique for an efficient

generation of partial products. He depends on digit-by-digit multiplication not

word-by-digit as before. He recodes the two multiplication operands,

multiplicand and multiplier, into signed digits from -5 to 5 to simplify the

partial products generation process. And since the magnitude of product is

independent on the sign of operands and the multiplication by zero and one can

be done using multiplexer, the range of multiplied digits is reduced to [2→5] x

[2→5]. Thereby he has only 10 different combinations of inputs to be

multiplied. He shows the complexity of the digit-by-digit products for different

ranges of decimal inputs (Table 3.1).

Figure 3.6 shows the block diagram of a digit multiplier block, where the

superscript S indicates that the result of the recoding is a signed-magnitude

digit, the superscript T indicates that the sub-function output is realized via a

lookup table or a combinational circuit structure, and the superscript O

indicates that the partial product is in an overlapped form since each digit

multiplier block yields two digits.

range of inputs
input

combinations
unique products

[0→9] x[0→9] 100 37

[1→9] x[1→9] 81 36

[2→9] x[2→9] 64 30

[0→5] x[0→5] 36 15

[1→5] x[1→5] 25 14

[2→5] x[2→5] 16 10

Table 3.1 Complexity of digit-by-digit products

for different ranges of decimal inputs

52

Figure 3.6 signed digit-by-digit multiplier block

The partial products are generated using a digit-by-digit multiplier on a word

by digit basis, first in a signed digits form with two digits per position, Table

3.2, and then combined via a combinational circuit. Although the least

significant digit has a negative sign in some instances, the most significant digit

is always positive, and thus the two-digit product is a positive value. The

signed digit partial products are developed one at a time while passing through

the recoded multiplier operand from the LSD to the MSD in sequential form,

and then each partial product is added along with the accumulated sum of

previous partial products via a signed digit decimal adder.

 2 3 4 5

2 04 41 21 10

3 41 11 12 15

4 21 12 42 20

5 10 15 20 25

Table 3.2 Signed digit-by-digit products

53

The partial products generation process for a sequential multiplier design using

this method takes n + 1 cycle, also its generation for a combinational design

takes ten logic levels delay to convert the overlapped partial products form to

non-overlapped form and recode them in a manner appropriate for the signed

digit decimal adder.

Most of previous multiplicand multiples generation methods have a

considerable delay because of the decimal correction stage in adders which

increases the total delay of the multiplication operation. However, Vázquez et

al. in [22] propose a new different signed digit, SD, decimal multiplicand

multiples generation techniques. Firstly, they introduce three recoding schemes,

SD-radix-10 which generates the secondary set multiples,

SD-radix-5 which generates the secondary set multiples, and

SD-radix-4 which generates the secondary set multiples.

To simplify the decimal multiples generation process, different redundant BCD

recoding formats are used. Table 3.3 shows various BCD coding formats such

as BCD-5421, BCD-5211 and BCD-4221.

 BCD-8421 BCD-5421 BCD-5211 BCD-4221

0 0000 0000 0000 0000

1 0001 0001 0001 | 0010 0001

2 0010 0010 0100 | 0011 0010 | 0100

3 0011 0011 0101 | 0110 0011 | 0101

4 0100 0100 0111 1000 | 0110

5 0101 1000 | 0101 1000 1001 | 0111

6 0110 0110 | 1001 1010 | 1001 1100 | 1010

7 0111 0111 | 1010 1100 | 1011 1101 | 1011

8 1000 1011 1110 | 1101 1110

9 1001 1100 1111 1111

Table 3.3 BCD coding formats

54

These BCD formats depend on different binary bits weight. The table

represents the formats as BCD-xxxx where x‟s is the weight of every binary

bit. For example, 1111 has a value of 8+4+2+1 = 15 in BCD-8421 format, a

value of 4+2+2+1 = 9 in BCD-4221 format, and a value of 5+4+2+1 =12 in

BCD-5421 format.

These formats allow the generation of 2A and 5A multiples in a few levels of

logic gates using recoding block and wired left shifts. For example: BCD-5421

format allow a fast decimal 2A multiple generation in two steps. Firstly recode

each BCD-8421 digit to BCD-5421 then left shift the recoded multiplicand by

one obtaining the 2A multiple in BCD-8421.

Also it ease the 5A multiple by left shifting the multiplicand A, BCD-8421,

three bits then recode each digit of the shifted multiplicand from BCD-5421 to

BCD-8421.

For the BCD-4221, the multiplication by two obtained by recoding each

multiplicand digit to BCD-5211 then left shifts the recoded multiplicand by

one, the 5A multiple in BCD-4221 format is obtained.

55

Also a three bit left shifting of the BCD-4221 multiplicand obtain a 5A in

BCD-5211.

More multiplicand multiples generation in different BCD formats is discussed

in [22].

Vázquez et al. in 123 use the BCD-4221 and BCD-5211 in decimal adders

where they give a valid decimal digit values for all 16 combinations. These

avoid the extra delay and area of the adders‟ decimal corrections. Also it allows

binary addition/subtraction to be used for partial products accumulation where

BCD-4221 format is self-complementing. So the addition of a negative value of

the multiplicand can be obtained only using inverters and setting the carry-in

bit of binary adder by 1.

3.2 Multiplier recoding for multiples selection

Multiplexers controlled by the multiplier digits are used to choose the

correct multiplicand multiples to generate the partial products to be added in

the next stage. If all decimal multiplicand multiples are generated

in the previous stage, only one multiplexer, MUX, is needed. While, if a

reduced set of multiplicand multiples are generated, a multiplier recoding will

be needed to represent each multiplier digit into two digits. Thereby, two

56

MUXs are needed to choose the two suitable multiplicand multiples for each

multiplier digit. Table 3.4 shows an example of multiplier digits recoding for

the secondary set multiples.

When all multiplicand multiples are generated, one partial product for each

multiplier digit is selected so partial products are generated, where is the

number of multiplier bits. Nevertheless, when a reduced set of multiplicand

multiples are generated, two partial products for each multiplier digit is

selected so partial products are generated. It seems that the first scheme

has less delay for next accumulation stage, but the generation of all decimal

multiplicand multiples needs a large area and delay because it needs CPAs. The

number of partial products is increased in the second scheme but it increases

the delay by one level CSA only in the partial products accumulation stage, it

will be discussed in next section.

3.3 Partial Products accumulation

Partial products accumulation stage in decimal multipliers can be

implemented using any of high radix methods discussed in previous chapter,

sequential designs, or parallel designs (array or tree topology). The only

difference between decimal and high radix design is that a decimal CSAs and

decimal CPAs is used. Decimal adders are like binary adders except an extra

bi bi′ bi″ bi bi′ bi″

0 0 0 5 4 1

1 1 0 6 4 2

2 2 0 7 8 1

3 1 2 8 8 0

4 2 2 9 8 1

Table 3.4 Example of multiplier recoding

57

correction block after each digit addition. A correction of six is added if a digit

sum is greater than nine to skip over the invalid BCD digits, .

3.3.1 Sequential accumulation approach

Several sequential decimal multipliers are proposed in [6](a) [14] [13] [6](b)

 [10] [20]. The basic sequential approach of decimal multiplication is to iterate

over the digits of the multiplier and based on the value of the current digit,

successively add multiples of the multiplicand to a product register called

intermediate product () with shifting one digit in each iteration.

When one partial product is generated for each multiplier digit [6] [20], the

equation for the sequential partial products accumulation is as follows

 (3.3)

where and . And after iterations, corresponds

to the final product .

To implement this, a decimal CPA is used as in Figure 3.7a. However, when

two partial products are generated for each multiplier digit (secondary set of

multiplicand), a decimal CSA is used before the decimal CPA [10] (see Figure

3.7b) and the following equation is used

 (3.4)

where

 . Although the secondary multiple approach

reduces the delay and area of partial products generation (i.e. the area and delay

of the decimal CPA), it introduces a delay overhead in the extra decimal CSA

in each iteration.

58

Using decimal CSAs only in the iterations has a significant delay reduction as

in Figure 3.8. The carry save adders are used in iterations then one decimal

CPA is used at the end of process to add the sum and carry outputs of the

decimal CSA from last iteration [15] [16] [6](b).

Figure 3.7 Sequential Decimal Multiplication Design

59

Figure 3.8 Sequential Decimal Multiplication Design

3.3.2 Parallel accumulation approach

Parallel decimal multiplication offers a good delay reduction with an

increase in area [13] [22]. In parallel decimal multiplication, all partial products

are generated in parallel according to the multiplier digits then the partial

products are accumulated using a decimal carry save adders tree. This tree

reduce all partial products into two partial products then a carry propagate

adder is used to obtain the final product as in Figure 3.9. The same as binary

60

trees, the delay of decimal CSAs tree depends on the number of input partial

products and the design and arrangement of the decimal CSAs. For example,

the accumulation of 16 partial products needs 6 levels of decimal CSAs.

Figure 3.9 Parallel Decimal Multiplier Design

3.3.3 Decimal adder block implementation

Decimal addition can be implemented using binary adder with decimal

correction block for every digit to correct the binary digits out of BCD range

 [15] [16] [17], or using direct decimal addition technique [21]. Vázquez et al. in

 [22] present a decimal adder using all-valid BCD formats, which have a valid

decimal value for all 16 combinations. It gives a valid sum and carry values

without the need of correction blocks which decrease the area and delay of the

adder [22].

61

Binary addition with decimal correction block

The decimal addition of two decimal digits of the same order yields a two

digit decimal sum in the range [0 → 18]. When using a binary adder for the

addition, there are 5 bits out from the adder. The four LSBs represent the LSD

of the decimal sum, and the MSB represent the carry bit or the MSD of the

decimal sum. The LSD of the sum may actually range from [0 → 15], instead

of BCD digit values from [0 → 9]. In the case of the LSD being in the range

[10 → 15], the LSD need to be adjusted to bring it into the valid range for a

decimal digit. This can be achieved by incrementing the LSD by six. Also in

this case, the carry needs to be changed from zero to one to represent a carry of

10. Also, in the case of the carry is one and the LSD is in the range [0 → 2], the

sum needs to be incremented by six to adjust the weight of the carry from 16 to

10. Thus, there are two different reasons for the correction, but both situations

are handled by the addition of six. See [10] for more details in this type of

decimal addition.

Direct decimal addition

Direct decimal addition implements logic units that accepts as inputs two 4-

bit BCD digits with a 1-bit carry-in, and directly produces a 4-bit BCD sum

digit and a 1-bit carry-out where the weight of carry-out bit is 10 times the

weight of sum digit.

Binary addition with All-valid BCD formats

When BCD-4221 format or BCD-5211 format is used in CSA or CPA

blocks, it gives a correct sum and carry values in the range of [0 → 9].

However a decimal multiplication by is required before using the carry digit

in the computations. The carry is multiplied by two, left shift in binary

addition, using BCD-4221 or BCD-5211 as discussed in the decimal

multiplicand multiples generation stage. Figure 3.10 shows a general design of

62

3:2 decimal CSA where , , and are the three inputs of the CSA. , and

 are the sum and carry outputs of the CSA. is the carry digit after

recoding then it shifted left one bit for the multiplication by two generation.

Figure 3.10 Generic design for the 3:2 decimal CSA

Figure 3.11 explain two examples for BCD-4221 and BCD-5211 decimal

CSAs. The following equation describes the CSA operation: Ai + Bi + Ci = Si +

2Hi. In Figure 3.11a, BCD-4221 format is used. The three input digits are

added using binary CSA and give two digits sum and carry. The carry digit is

recoded to BCD–5211, using combinational circuit, then left shifted one bit to

obtain 2H in BCD-4221 format. However, Figure 3.11b uses BCD-5211

format. The carry digit is recoded to BCD–4221 then left shifted one bit to

obtain 2H in BCD-5211 format.

63

Figure 3.11 Decimal carry-save addition example (a) in BCD-4221 format (b)

in BCD-5211 format

3.3.3 Decimal trees

Radix-10 CSA

Lang and Nannarelli in [13] use a radix-10 CSA tree to accumulate the

partial products. Their multiplier uses SD-radix-5 for multiplicand multiples

generation, which generates the (A, 2A, 5A, 10A) multiples set. This set

generates two partial products for each digit and carry bit for negative. The 2

partial products and the carry bit are added using radix-10 CSA to generate 16

partial products in carry save format. Radix-10 CSA adds a carry save operand,

sum and carry, plus another BCD operand to produce a carry save result, see

Figure 3.12a. Also a carry counter adds an array of carry vectors of the same

weight and produces a decimal digit as shown in Figure 3.12b.

64

Figure 3.12 (a) n-digit radix-10 CSA (b) m-digit radix-10 counter.

For example to add 16 carry save partial products, , arranged as in

Figure 3.13. The first level of the tree needs only 8 radix-10 CSAs leaving the

carries of 8 partial products not accounted for. And by arranging the radix-10

carry-save adders and the carry counters as in Figure 3.14, the partial products

are accumulated in a 6-level tree.

Figure 3.13 Array for partial products. Solid circles indicate BCD digits,

hollow circles indicate carry bits.

65

Figure 3.14 A Radix-10 Combinational Multiplier Adder tree

The final carry-propagating addition consists in converting the radix-10

carry save representation into BCD one. This is done with a radix-10 CPA in

which the input is just a value in radix-10 carry-save representation and the

output is the product represented in BCD.

Decimal 3:2 CSA

Vázquez in [22] proposes a 4-bit 3:2 decimal CSA using BCD-4221 format

as shown in Figure 3.15a.

66

Figure 3.15 (a) 4-bit 3:2 decimal CSA (b) decimal multiplication by 2 for

BCD-4221

For 16 partial products, a 16:2 decimal CSA tree is used. Figure 3.16 shows

two examples of a 16:2 decimal CSA trees. The 3:2 blocks represent a 4-bit

binary 3:2 CSA. The blocks represent decimal multiplication by 2. In the

first implementation, shown in Figure 3.16a, every carry output is multiplied by

2 before connecting to any other input. Since the carry path is slightly more

complex than the sum path, outputs of block are connected to fast inputs

of the 3:2 CSA. The second implementation, Figure 3.16b reduces the

hardware complexity by adding the carry outputs of the previous tree level

before being multiplied by 2. Therefore it is necessary to perform several

operations in a row for some paths. Both implementations present similar

critical path delays but the second implementation is preferable because of

reduced hardware complexity.

67

Figure 3.16 16:2 decimal CSA tree

Reduction by column tree (dadda tree) [3]

Dadda proposes a decimal column addition for the partial products via a

network of carry save adders. The sum is converted to decimal format using

binary to decimal converter. The decimal values are aligned then added to

obtain the total sum through the addition of a few (2, 3, and at most 4) decimal

numbers. This scheme, shown in Figure 3.17, is based on the following steps:

1. Binary addition of N (4-bit) column digits of equal decimal weight.

2. Binary to decimal conversion of each column sum.

3. Decimal column sums alignment according to their decimal weights. It

forms an array of few (2, 3, or 4) decimal numbers, each of them n digits

68

long, Major Partial Sums, MPSs.

4. Decimal addition of the MPSs to obtain the final sum.

Figure 3.17 basic decimal column adder scheme for N=33 addends

3.4 Conclusion

Decimal multiplication can be implemented using sequential or parallel

approaches. Parallel decimal multiplication offers a good delay reduction. It

generates all partial products in parallel according to the multiplier digits then

the partial products are accumulated using a decimal CSA tree. This tree

reduces all partial products into two partial products then a CPA is used to

obtain the final product. Decimal multiplication can be divided into three

stages: multiplicand multiples generation, multiplier recoding for multiples

selection, and partial products accumulation.

100

. . .

. . .
binary

addition

101

. . .

102

. . .

103

decimal

conv.

binary

addition

decimal

conv.

binary

addition

decimal

conv.

binary

addition

decimal

conv.

N=33

2 2

9

2

9

7

2

9

7

9

7 7

3 2 9 9 6 7

Major

Partial

Sums

decimal adder

SUM

69

Chapter 4

Combined Binary/Decimal Multipliers

Recently, two combined binary/decimal multipliers are proposed. The first

is proposed by Vázquez in 2007 and the other by Hickmann in 2008. This

chapter introduces the two multipliers and their advantages and disadvantages.

4.1 Vázquez combined binary/decimal multiplier

Vázquez et al. [22] propose the first combined binary/decimal multiplier

design approach. They use BCD-4221 format for decimal digits representation.

Figure 4.1 shows a block diagram for Vázquez combined binary/decimal

multiplier proposed in [22]. For multiplicand multiples generation, a binary SD

radix–4 recoding and a decimal SD radix–4 or decimal SD radix–5 recoding is

used. SD radix–4 generates multiples and SD radix–5

generates multiples. Two multiplexers, controlled by the

multiplier digits, are used to select the suitable two multiplicand multiples for

each digit. XOR gates are used for negative multiples.

70

Figure 4.1 Vázquez binary/decimal multiplier.

For partial products accumulation, a shared binary/decimal carry save adder

tree is used. The use of BCD-4221 format eliminates the decimal corrections

needed to obtain correct decimal outputs from carry save adders. Figure 4.2

shows the carry save adder tree used. A binary/decimal multiplication by two

block, , is used for carry outputs of the tree, Figure 4.3. Finally, a

modified carry propagate quaternary tree adder, Q-T adder, is used to perform

binary and decimal additions. To produce a correct decimal addition a

conversion to BCD-8421 then a +6 operation is done to produce correct

decimal digits before the Q-T addition.

B
/D

 c
o
n

tr
o
l

M
u

lt
ip

li
er

17 Partial

Products

MUX then XOR

Binary Multiples

Generation

Decimal Multiples

Generation

Multiplicand

Binary/Decimal

 CSA Tree

128-bit Q–T Final Adder

128-bit Product

A

MUX

2A

4A 8A

A 2A

5A 10A

16 Partial

Products

+6×2

71

Figure 4.2 Vázquez binary/decimal CSA Tree.

Figure 4.3 Binary/Decimal multiplication by two block.

3:2 CSA

3:2 CSA

4:2

CSA

4:2

CSA

4:2

CSA

4:2

CSA

4:2

CSA

4:2

CSA

3:2 CSA

4:2

CSA

4:2

CSA

3:2 CSA3:2 CSA3:2 CSA3:2 CSA

3:2 CSA3:2 CSA3:2 CSA

×2 10/2

3:2 CSA

3:2 CSA

(1)(1) (1) (1) (1) (1)(2) (2) (2) (2) (2)

(2) (2) (1) (2) (1)(4)

(2)

(4) (2)

(4)

(1)

(1)(2)

(2)

(4)(8)

3:2 CSA

3:2 CSA

(in brackets required multiplicative factor)

×2 10/2 ≡ binary/decimal ×2

×2 10/2 ×2 10/2 ×2 10/2 ×2 10/2 ×2 10/2 ×2 10/2 ×2 10/2

×2 10/2

×2 10/2

×2 10/2

×2 10/2

×2 10/2

×2 10/2

×2 10/2

×2 10/2

×2 10/2

BCD-4221 to BCD-5211 Recoder

MUX
binary decimal

Left Shift 1bit

carry-in

carry-out Output digit

B/D control

Input digit

72

4.2 Hickmann combined binary/decimal multiplier

Figure 4.4 shows Hickmann et al. multiplier proposed in [9]. They improve

Vázquez multiplier trying to decrease the area and delay, specially the delay of

binary path. They use only 3:2 CSAs in the carry save adder tree to reduce the

number of binary/decimal blocks. Sharing of block for binary and

decimal increases the area and delay of binary and decimal paths, because of

the multiplexer used in it. They propose to split the binary/decimal tree at the

beginning of using blocks, Figure 4.5, to avoid the extra multiplexers

used compared to standalone multipliers. So the delay of binary and decimal

paths are significantly reduced but with a reasonable area penalty.

Figure 4.4 Hickmann binary/decimal multiplier.

For multiplicand multiples generation and selection, they use same Vázquez

design. Also a +6 is added to sum before the final Q-T carry propagate adder.

They split the carry propagate adder for binary and decimal final adder to

decrease the delay but with more area increase.

B
/D

 c
o

n
tr

o
l

M
u

lt
ip

li
er

17 Partial

Products

MUX then XOR

Binary Multiples

Generation

Decimal Multiples

Generation

Multiplicand

Split

Binary/Decimal

 CSA Tree

128-bit Q–T

Final Adder

A

MUX then XOR

2A

4A 8A

A 2A

5A 10A

16 Partial

Products

Binary Output Decimal Output

+6×210<<1

128-bit Q–T

Final Adder

128-bit

binary Product

128-bit

decimal Product

73

Figure 4.5 Hickmann split binary/decimal CSA Tree.

4.3 Conclusion

Vázquez et al. propose the first combined binary/decimal multiplier design.

They propose a shared binary/decimal CSA tree. A multiplexer is used in each

 block to select between binary and decimal , which lead to some

increase in the area and delay specially in the binary path. Hickmann et al. split

the binary and decimal CSA trees at the start of using blocks. They have

some increase in area but the delay of binary and decimal paths are decreased.

(in brackets required multiplicative factor)

3:2

CSA

3:2 CSA3:2 CSA

(2) (1)(2) (1)(2) (1)

3:2 CSA3:2 CSA

(2) (1)(2) (1)(2) (1)

3:2 CSA3:2 CSA

(2) (1)(2) (1)(2) (1)

(2) (1)(2) (1)(2) (1) (2)(4)(2)(4)(2)(4)

3:2 CSA3:2 CSA3:2 CSA

(2) (1)(2)(4)(4)(8)

3:2 CSA

(2)(4)

(2) (1)(1)(2)

3:2 CSA3:2 CSA

(1) (1) (1)(2) (2) (2)

3:2 CSA

(4) (4) (4)

×2

(2)

×2

(8)

(1)(4) (2) (1)(4) (2)(8) (4)

3:2 CSA 3:2 CSA

×2

(2)

(1)

×2×2

(1)(4)

×2

(1)(2) (1) (8) (4)

3:2 CSA×2

(2)

×2

(4)

×2

(2)

×2

(1)

3:2 CSA

(2) (1)

(4) (2)

×2

(2)

×2

(1)

×2

(1)

×2

(2)

3:2 CSA×2

(1) (2) (1)

3:2 CSA ×2

(1)

3:2 CSA

(2) (1)

×2

combined

portion

decimal

portion

binary

portion

<<1

(1) (1) (1)(2) (2) (2)(4) (2) (2)(4)(8) (4)

4:2 CSA4:2 CSA

<<1

4:2 CSA

3:2 CSA

(1)(2)(2)(4)(4)(8)

<<1

3:2 CSA

(1)(2)(4)(8)

4:2 CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

<<1 <<1

<<1<<2<<3

<< ≡ Shift Left

×2

74

Chapter 5

Proposed Combined Binary/Decimal Fixed-Point

Multiplier

In this chapter, the proposed combined binary/decimal multiplier design is

discussed. It allows the use of binary or decimal multiplication according to

application. Binary multiplication is faster and decimal multiplication is more

accurate in financial applications. We try to decrease the total area and delay of

each path. The proposed multiplier takes two operands, 64-bit multiplicand

and 64-bit multiplier . It also takes a signal to determine

whether the operands are binary or decimal, BCD-8421. When the B/D control

signal has a value, operands are binary and when it has a value, operands

are decimal, BCD-8421. The design consists of three stages: multiplicand

multiples generation, partial products selection, and partial products

accumulation. We deal with each multiplier four bits as a digit for binary and

decimal multiplication so multiples from 1 to 9 for decimal and multiples from

1 to 15 for binary are generated in multiplicand multiples generation stage. The

multiplier and multiplicand is presented by 16 digits.

We propose three designs for the multiplier. The first design uses

 binary multiplicand multiples and

decimal multiplicand multiples. These multiples output three partial products

75

for each binary digit and two partial products for each decimal digit. Two trees

are used in the partial products accumulation stage, one shared for binary and

decimal, Dadda column tree. And the other for binary, Wallace tree. A final

Kogge-Stone carry propagate adder is used to produce the final product.

Second design uses one column tree in the partial product accumulation stage

to reduce the area. The binary multiplicand

multiples and decimal multiplicand multiples are generated.

These multiples generate only two partial products for binary and decimal

digits.

Third design uses Booth 4 for binary recoding which reduce the number of

multiplicand multiples need to be generated without increasing the number of

partial products of each digit. The binary multiplicand

multiples and decimal multiplicand multiples are generated.

Two versions of this design is proposed, shared and split. Some improvements

are used to decrease area and delay for the final proposed design.

5.1 First Proposed Design

Figure 5.1 shows the block diagram of the first proposed multiplier. The

multiplier has three inputs, Multiplicand , Multiplier , and

Binary/Decimal Control signal .

5.1.1 Multiplicand Multiples Generation Stage

The first stage of the multiplier is generating basic multiplicand multiples.

The remaining multiples is generating dynamically during the next stages by

adding two/three basic multiplicand multiples. In order to decrease the delay of

this stage, the tertiary set is generated for binary

multiplicand multiples and the secondary set is

generated for decimal multiplicand multiples. A tertiary set is used in binary, to

eliminate the generation of 3A or 5A multiples which take a large delay O(n),

76

Figure 5.1 First combined binary/decimal multiplier block diagram.

where n is the number of multiplicand bits. So for each binary multiplier digit,

three multiplicand multiples are selected and for each decimal multiplier digit,

two multiplicand multiples are selected.

Binary multiples are generated using only shifting as shown in Figure 5.2.

 and multiples are generated using 1bit, 2bit, 3bit, and 4bit left

shifting. Negative multiples are generated using 2‟s complement operation

obtained by generating 1‟s complement in this stage, by inverting each bit of

positive multiple using NOT gate, then at the partial products selection stage a

 , sign bit, is generated to be added to partial products in

accumulation stage.

M
u

lt
ip

li
c
a
n

d

M
u

lt
ip

le
s

G
e
n

e
ra

ti
o

n
S

ta
g

e

P
a
rt

ia
l

P
ro

d
u

c
ts

S

e
le

c
ti

o
n

S

ta
g

e

P
a
rt

ia
l

P
ro

d
u

c
ts

A

c
c
u

m
u

la
ti

o
n

 S
ta

g
e

7

77

Figure 5.2 Binary multiples generation

Decimal multiples use BCD-8421 signed-digit radix-5 recoding [22],

where it has a fast generation of multiplicand multiples 2A, 5A, and 10A.

and multiples are generated using shifting and conversion between different

BCD formats as shown in Figure 5.3. Decimal multiple is generated using

4-bit shifting. For negative multiples, a 9‟s complement is obtained for each

digit using two level gates combinational function. Then at the partial products

selection stage a , sign bit, is generated. Only – and

negative multiples are needed and generated.

Figure 5.3 Decimal multiples generation

A (BCD-8421)

2A4A8A

1-bit

Left Shift

2-bit

Left Shift

3-bit

Left Shift

NOT

–2A–1

NOT

–A–1 A16A

4-bit

Left Shift

A (BCD-8421)

2A

3-bit

Left Shift

5A

4-bit

Left Shift

10A

BCD-8421 to BCD-5421

Encoder

A

1-bit

Left Shift

BCD-5421 to BCD-8421

Encoder

Output multiples in BCD-8421

5A (BCD-5421) A (BCD-5421)

9's

comp.

9's

comp.

–2A–1 –A–1

78

For the BCD-8421 to BCD-5421 encoder block, Table 5.1 shows a digit

conversion from BCD-8421 to BCD-5421.

Each digit of this encoder is described by the following equations

 (5.1)

 (5.2)

 (5.3)

 (5.4)

For the BCD-5421 to BCD-8421 encoder block, Table 5.2 shows a digit

conversion from BCD-5421 to BCD-8421. Χ means don‟t care where these

values do not appear after shifting the BCD-8421 three bits to the left.

 BCD-8421 BCD-5421

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 0

3 0 0 1 1 0 0 1 1

4 0 1 0 0 0 1 0 0

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

Table 5.1 BCD-8421 to BCD-5421 conversion

79

Each digit of this block is described by the following equations

 (5.5)

 (5.6)

 (5.7)

 (5.8)

The decimal BCD-8421 9‟s complement block is implemented using two level

logic gates. Table 5.3 shows a BCD-8421 9‟s complement truth table.

 BCD-5421 BCD-8421

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 0

3 0 0 1 1 0 0 1 1

4 0 1 0 0 0 1 0 0

5 0 1 0 1 Χ Χ Χ Χ

6 0 1 1 0 Χ Χ Χ Χ

7 0 1 1 1 Χ Χ Χ Χ

5 1 0 0 0 0 1 0 1

6 1 0 0 1 0 1 1 0

7 1 0 1 0 0 1 1 1

8 1 0 1 1 1 0 0 0

9 1 1 0 0 1 0 0 1

10 1 1 0 1 Χ Χ Χ Χ

11 1 1 1 0 Χ Χ Χ Χ

12 1 1 1 1 Χ Χ Χ Χ

Table 5.2 BCD-5421 to BCD-8421 conversion

80

It is described by the following equations

 (5.9)

 (5.10)

 (5.11)

 (5.12)

5.1.2 Partial Products Selection Stage

After generating the basic multiplicand multiples, the suitable two/three

multiplicand multiples is selected according to multiplier digits using two/three

(BCD-8421) 9‟s complement

(BCD-8421)

0 0 0 0 0 1 0 0 1 9

1 0 0 0 1 1 0 0 0 8

2 0 0 1 0 0 1 1 1 7

3 0 0 1 1 0 1 1 0 6

4 0 1 0 0 0 1 0 1 5

5 0 1 0 1 0 1 0 0 4

6 0 1 1 0 0 0 1 1 3

7 0 1 1 1 0 0 1 0 2

8 1 0 0 0 0 0 0 1 1

9 1 0 0 1 0 0 0 0 0

Table 5.3 9‟s complement of BCD-8421 digits

81

multiplexers for decimal/binary paths. Binary multiplicand multiples set is

divided into three groups for the three multiplexers while decimal multiplicand

multiples set is divided into two groups for the two multiplexers. Two

multiplexers are shared between binary and decimal selection to choose the two

suitable multiplicand multiples. The third multiplexer is used for the binary

third group which chooses the third suitable binary multiplicand multiple.

Binary set is divided into , and

groups. The third group is to generate 11A and 13A multiples without the need

to generate 3A or 5A multiples. The binary partial products are selected

according to Table 5.4.

Multiple MUX1

selection

MUX2

selection

MUX3

selection

0 0 0 0

 0 0

2 2 0 0

3 4 0

4 0 4 0

5 4 0

6 2 4 0

7 8 0

8 0 8 0

9 8 0

10 2 8 0

11 2 8

12 4 8 0

13 4 8

14 16 0

15 16 0

Table 5.4 Binary multiplicand multiples selection.

82

Decimal set is divided into and groups. Table

5.5 shows the decimal partial products selection from the two multiplexers.

Multiple MUX1 multiple

selection

MUX2 multiple

selection

0 0 0

 0

2 0

3

4

5 0

6

7

8

Table 5.5 Decimal multiplicand multiples selection.

This stage outputs 49 binary partial products, (multiplier digit)

(for sign bits). 33 decimal partial products, (multiplier digit)

 (for sign bits) are output.

A two level gate multiplexer is used as shown in Figure 5.4. Where cond1

means condition of selecting multiple, cond2B means condition of selecting

 multiple for binary operands, cond2D means condition of selecting

multiple for decimal operands, Inv means condition of inverting for negative

multiples, and so on. The conditions that control them depend on multiplier

digits and signal , where means binary input

operands and means decimal input operands. The conditions that

control the multiplexers are similar for all digits. First digit equations are:

83

For MUX1

 (5.13)

 (5.14)

 (5.15)

 (5.15)

 (5.16)

 (5.17)

Figure 5.4 Multiplexers design for each multiplier digit.

-2AD
Inv.B -AD

Inv.D-2AB
Inv.B -AB

cond.2Bcond.4B

4AB

cond.2D

2AD

cond.4B

4AB

cond.8B

8AB

cond.5D

5AD

cond.10D

10AD

(b) MUX2

A

cond.1B

(c) MUX3

2AB A

cond.16B

16AB

cond.1Dcond.2B cond.1cond.2D

(a) MUX1

Inv.B

cond.1B

B/D Control

Inv.D

B/D Control

Inv.B

selected partial product

sign bit

selected partial product

selected partial product

84

For MUX2

 (5.18)

 (5.19)

 (5.20)

 (5.21)

 (5.22)

For MUX3

 (5.23)

5.1.3 Partial Products Accumulation Stage

After generating all partial products, a tree of adders is used to add them.

Irregular tree topologies are used in order to minimize the total delay. MUX1

output 17 partial products and MUX2 output 16 partial products. They are

common for binary and decimal. Each partial product is shifted to its right

weight according to its multiplier digit position. Then they enter to a binary

column tree, shared for binary and decimal. A binary tree is used here to save

the correction delays of decimal addition due to the six invalid BCD-8421

digits, from 10 to 15. Column tree did not allow the pass of carry bit to next

digit which should be of order 16 in binary addition and of order 10 in decimal

addition. These different between binary and decimal need a multiplexer to

choose the correct carry for each path. Binary tree solve this problem which

85

save delay and area. The binary column tree used here is similar to Dadda‟s

tree in [3]. Nevertheless, the proposed tree replaces the binary addition by a

carry save addition to decrease the delay. Also, each column has different

number of digits to be added according to partial products different weights. It

adds every 4-bit digit for the 33 partial products out from MUXs1 and MUXs2

using binary carry save adders. Each column out sum and carry output. Figure

5.5 shows the scheme of the binary column tree used.

Figure 5.5 Binary column tree scheme.

Every column has a different number of digits. A CSA tree used for each

column to add its digits as in [3]. Column number 0 has two digits from first

two partial products, for first multiplier digit, and one sign bit for negative

multiplicand multiples. Column number 15 has the maximum number of digits

to be added, 32 digits plus 1 sign bit. Figure 5.6 shows the binary CSA tree of

digit(15). Sign bit is added to first bit of shifted carry digits in the tree. Sign

col.(0)

32 partial

products

col.(1)col.(32) col.(16)

. . .

. . .

. . .

.

. . .

. . .

CSA

binary tree

SC

sign bits

partial product
. . .

CSA

binary tree

SC

CSA

binary tree

SC

CSA

binary tree

SC

col.(17)

.

CSA

binary tree

SC

col.(15)

.

CSA

binary tree

SC

. . .

. . .

86

extension is not needed here where multiplicand and multiplier are positive,

there output sign is calculated separately. Two partial products are generated

for each multiplier digit, there summation is positive.

In parallel to the column tree, a binary row tree, Wallace tree, is used to

add the binary partial products out from MUXs3. Figure 5.7 shows a scheme of

the row tree. Figure 5.8 shows the CSA binary tree block diagram.

Figure 5.6 CSA binary tree (for 32 digits, 4-bit).

<<1

(in brackets required multiplicative factor)

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2 CSA

<<1<<1<<1<<1<<1<<1<<1<<1<<1<<1

3:2 CSA3:2 CSA3:2 CSA3:2 CSA3:2 CSA3:2 CSA

3:2 CSA

<<1

3:2 CSA

<<1<<1

3:2 CSA

<<1

3:2 CSA

<<1<<1

3:2 CSA

<<1

<<1<<1<<1<<1

3:2 CSA3:2 CSA3:2 CSA

<<1<<1<<1

3:2 CSA3:2 CSA

<<1<<1

3:2 CSA

<<1

3:2 CSA

3:2 CSA

<<1

87

Figure 5.7 64-bit binary CSA tree for the 16 partial products out of MUXs3.

Figure 5.8 CSA binary tree (for 16 partial products, 64-bit).

PP(0)

16 partial

products

PP(1)

. . .

. . .

.

. . .

CSA binary tree

SC

.

PP(15)

.

. . .

72-bit 3:2 CSA72-bit 3:2 CSA72-bit 3:2 CSA72-bit 3:2 CSA72-bit 3:2 CSA

84-bit 3:2 CSA

<<1

84-bit 3:2 CSA

76-bit 3:2 CSA

84-bit 3:2 CSA

<<1

84-bit 3:2 CSA

<<1

<<25

<<1

106-bit 3:2 CSA

122-bit 3:2 CSA

124-bit 3:2 CSA

<<1<<13<<1 <<12 <<12

<<4<<8<<4<<8<<4<<8<<4<<8<<4<<8

<<13<<12

<<25

S(72bit)C(68bit)S(72bit)C(68bit)S(72bit)C(68bit)S(72bit)C(68bit)S(72bit)C(68bit)

S(84bit)C(72bit)S(84bit)C(72bit)

S(76bit)C(72bit)

S(84bit)C(81bit)S(84bit) C(81bit)

100-bit 3:2 CSA

<<1

S(106bit)C(84bit)

<<25

S(100bit) C(97bit)

<<24

<<1

S(122bit)C(106bit)

<<24

(124bit)(122bit)

SC

88

The output of column tree is rearranged [3], according to the B/D Control

signal. In case of Binary, it is rearranged to 2 Major Partial Sums and 2 Major

Partial Carries. In case of Decimal, it is firstly converted to BCD-4221, all

valid BCD code, to use binary CSA without decimal correction. Then they

rearranged to 3 Major Partial Sums and 3 Major Partial Carries. Two separate

trees are used after that, a decimal one to add the 6 decimal Major Partial Sums

and Carries, and a binary one to add the 4 binary Major Partial Sums and

Carries with the sum and carry out from the binary CSA tree.

Finally a two parallel Kogge-Stone carry propagate adders are used to add

the final sum and carry partial products to produce the final product (P). The

separation between binary and decimal trees eliminates the latency of decimal

corrections from the binary multiplication path.

5.2 Second proposed Design

Partial products accumulation stage is the most significant multiplier stage

since it has the largest area and delay. In the second design, we try to decrease

its area with small increase of the delay by generating 11A and 13A

multiplicand multiples in the first stage. These two multiples need an addition

of three multiplicand multiples from basic multiples ,

which generated using only shifting. So we use a secondary set for binary and

decimal multiplicand multiples generation. The second tree, binary CSA row

tree, is not needed. We use only one tree, binary column tree. Figure 5.9 shows

the second combined binary/decimal multiplier design block diagram.

89

Figure 5.9 Second combined binary/decimal multiplier block diagram.

5.2.1 Multiplicand Multiples Generation Stage

Secondary sets are used which generate 32 partial products for the 16 digits

multiplier plus 1 partial product for sign bits. Tertiary sets are not considered

where it generates 49 partial products which need an extra tree in the partial

product accumulation stage and increase the area by high factor.

For binary multiples,

 secondary set is generated. The subscript indicates sum and the

subscript indicates carry, for the output of the CSA. Two carry save adders

M
u
lt

ip
li

c
a
n
d

M
u
lt

ip
le

s

G
e
n
e
ra

ti
o
n

S
ta

g
e

P
a
rt

ia
l

P
ro

d
u
c
ts

S
e
le

c
ti

o
n

S
ta

g
e

P
a
rt

ia
l

P
ro

d
u
c
ts

A
c
c
u
m

u
la

ti
o
n
 S

ta
g
e

6

90

are used to generate the multiples and in CSA format where these two

multiples need the addition of three multiples and

 . Figure 5.10 and Figure 5.11 show the design of the CSA.

They take a delay of CSA, four gate delays, but they save 16 extra partial

products for using a tertiary set. Negative multiples are generated using 2‟s

complement operation obtained by generating 1‟s complement in this stage

then at the partial products selection stage a , sign bit, is generated

to be added to partial products in accumulation stage. Figure 5.12 shows the

binary multiplicand multiples generation.

Figure 5.10 Three input, 64-bit, Carry Save Adder

Figure 5.11 1-bit Carry Save Adder

1-bit

CSA

1-bit

CSA

1-bit

CSA

1-bit

CSA

1-bit

CSA

1-bit

CSA
.

S0C0S1C1S2C2S3C3S62C62S63C63

91

Figure 5.12 binary multiples generation

For decimal, we generate the multiplicand multiples

 as in first design, Figure 5.3.

5.2.2 Partial Products Selection Stage

Each binary and decimal multiplicand multiples set is divided into two

groups, where secondary sets are used for binary and decimal. Two

multiplexers are used to choose the two suitable multiplicand multiples for each

multiplier digit.

Binary set is divided into and

 groups. The binary partial products are selected according to

Table 5.6.

Decimal set is divided into and groups as in

first design. Table 5.5 shows the decimal partial products selection from the

two multiplexers.

A (BCD-8421)

2A4A8A16A

1-bit

Left Shift

2-bit

Left Shift

4-bit

Left Shift

3-bit

Left Shift

A

64-bit CSA64-bit CSA

A 2A 8AA 4A 8A

11A 13A

sumcarrysumcarry

NOT

–2A–1

NOT

–A–1

92

Multiple MUX1 multiple

selection

MUX2 multiple

selection

0 0 0

 0

2 0

3

4 0

5

6

7

8 0

9

10

11

12

13

14

15

Table 5.6 Binary multiplicand multiples selection.

This stage outputs 33 partial products. Figure 5.13 shows the partial

products selection block diagram for binary and decimal multiplication.

Figure 5.13 Partial products selection.

MUXs 1

2A11SA13SA 04A–A

MUXs 2

8A11CA13CA 16A 4A

binary

multiples
decimal

multiple

binary

multiples

5A

decimal

multiples

10A

B/D

control
Multipler

.

16 partial

products

16 partial

products

sign

partial product

–A–2A2A A–2A

93

The conditions that control the multiplexers depend on multiplier digits

and B/D Control signal , where for binary input operands and

 for decimal input operands. The equations that control the two

multiplexers are:

For MUXs1

 (5.24)

 (5.25)

 (5.26)

 (5.27)

 (5.28)

 (5.29)

 (5.30)

 (5.31)

For MUXs2

 (5.32)

 (5.33)

 (5.34)

94

 (5.35)

 (5.36)

 (5.37)

 (5.38)

5.2.3 Partial Products Accumulation Stage

One binary column tree is used to add the 33 binary/decimal partial

products outputs from MUXs1 and MUXs2, Figure 5.5 and Figure 5.6.

The output of the column tree is rearranged according to the B/D Control

signal. In case of Binary, it is rearranged into two Major Partial Sums and two

Major Partial Carries. In case of Decimal, it is firstly converted to BCD-4221,

all valid BCD code, to use binary CSA without decimal correction. Then they

rearranged to 3 Major Partial Sums and 3 Major Partial Carries. Two separate

trees are used after that, a decimal one to add the 6 decimal Major Partial Sums

and Carries, and a binary one to add the 4 binary Major Partial Sums and

Carries.

Finally a binary/decimal Kogge-Stone based carry propagate adder is used

to add the final sum and carry partial products which produce the final

product .

5.3 Third Proposed Design

To eliminate the delay of the two CSAs that generate and without

the need to use tertiary sets in multiplicand multiples generation, Booth-4

binary recoding is used. It reduces the number of multiplicand multiples needed

to be generated without increasing the number of partial products of each digit.

Only the secondary set multiplicand multiples are generated for

95

binary multiplication. 33 partial products are generated and added using the

binary column tree for binary and decimal partial products. After the binary

column tree, columns output is rearranged in 4/6 bit vectors for binary/decimal

multiplication. Two schemes are implemented for the addition of these bit

vectors, shared and split. Figure 5.14 shows the block diagram of the proposed

combined binary/decimal multiplier design.

Figure 5.14 Proposed combined binary/decimal multiplier (a) shared design,

(b) split design.

B
/D

 c
o

n
tr

o
l

4 Binary
bit vectors

. . . .
33 Partial Products

MUXs

Binary Multiples

Generation

Decimal Multiples

Generation

Multiplicand

Binary Column

Tree

Tiny Decimal

Tree

Tiny Binary

Tree

Decimal Kogge-

Stone CPA

A,2A,5A,10A

Decimal
Product

A,2A,4A,8A

6 Decimal
bit vectors

Binary final
carry/sum vectors

Decimal final
carry/sum vectors

M
u

lt
ip

li
er

rearrange

33 variable
length/weight digits

rearrange

8-bit maximum

Binary to BCD

conversion

Binary Kogge-

Stone CPA

Binary
Product

B
/D

 c
o

n
tr

o
l

4 Binary
bit vectors

. . . 33 Partial Products

MUXs

Binary Column

Tree

Tiny Shared Binary/Decimal

Tree

Shared Binary/Decimal

Kogge-Stone CPA

A,2A,5A,10A

Final

Product

A,2A,4A,8A

6 Decimal

bit vectors

Binary final

carry/sum vectors
Decimal final

carry/sum vectors

M
u

lt
ip

li
er

rearrange

33 variable

length/weight digits

rearrange

8-bit maximum

Binary to BCD

conversion

Binary Multiples

Generation

Decimal Multiples

Generation

Multiplicand

(b)(a)

96

5.3.1 Multiplicand Multiples Generation Stage

For binary multiplicand multiples, Booth4 recoding is used which only

need the generation of multiplicand

multiples, Figure 5.15. All multiplicand multiples are generated using only

shifting. Negative multiples are generated using 2‟s complement operation.

Figure 5.15 Used binary multiples generation.

Decimal multiplicand multiples are generated as in first design, Figure 5.3.

5.3.2 Partial Products Selection Stage

Each binary and decimal multiplicand multiples set is divided into two

groups, where secondary sets are used for binary and decimal. Binary set is

divided into and groups. Table 5.7

shows the partial products selection according to Booth4 recoding,

where . . . represent the present multiplier digit, and

represent the most significant bit of the previous digit. Negative multiples are

needed in the two groups, so two sign bits are generated for each multiplier

A (BCD-8421)

2A4A8A

1-bit

Left Shift

2-bit

Left Shift

3-bit

Left Shift

NOT

–2A–1

NOT

–A–1 A

NOT

–8A–1

NOT

–4A–1

97

digit. For binary booth4, the multiplier is padded with one bit to the right

and four bits to the left, so it divided into 17 digits. For the first 16

multiplier digits, two multiplicand multiples are selected. The last digit, last

five bits, is or , so it needs only one partial product, where it

selects between or multiplicand multiple.

Bit

Operation

MUX1

multiple

selection

MUX2

multiple

selection

2
3
 2

2
 2

1
 2

0
 2

-1

0 0 0 0 0 0 0 0

0 0 0 0 1 + 0

0 0 0 1 0 + 0

0 0 0 1 1 +2 2 0

0 0 1 0 0 +2

0 0 1 0 1 +3

0 0 1 1 0 +3 4

0 0 1 1 1 +4 0

0 1 0 0 0 +4 0

0 1 0 0 1 +5 4

0 1 0 1 0 +5 4

0 1 0 1 1 +6

0 1 1 0 0 +6

0 1 1 0 1 +7

0 1 1 1 0 +7

0 1 1 1 1 +8 0

1 0 0 0 0 8 0

1 0 0 0 1 7

1 0 0 1 0 7

1 0 0 1 1 6

1 0 1 0 0 6

1 0 1 0 1 5

1 0 1 1 0 5

98

Bit

Operation

MUX1

multiple

selection

MUX2

multiple

selection

2
3
 2

2
 2

1
 2

0
 2

-1

1 0 1 1 1 4 0

1 1 0 0 0 4 0

1 1 0 0 1 3

1 1 0 1 0 3

1 1 0 1 1 2

1 1 1 0 0 2 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0 0 0

Table 5.7 Binary partial products selection according to Booth4 recoding.

Decimal set is divided into and groups as in

previous designs, Table 5.5. Figure 5.16 shows the partial products selection

block diagram for binary and decimal multiplications. MUXs1 output 17 partial

products plus 1 partial product for sign bits, MUXs2 output 16 partial products

plus 1 partial product for sign bits.

Figure 5.16 Partial products selection.

MUXs 1

–2A 0–A

MUXs 2

8A 4A

binary

multiples

decimal

multiple
binary

multiples

5A

decimal

multiples

10A

B
/D

 c
o

n
tr

o
l

M
u

lt
ip

le
r

.

17 partial

products

16 partial

products
16 sign bits

–A2A–2A A2A–8A –4A

16 sign bits

99

This stage outputs 33 binary/decimal partial products plus two sign partial

products. A two level multiplexer design is used as shown in Figure 5.17.

Figure 5.17 Multiplexers design for each multiplier digit.

The conditions that control the multiplexers depend on multiplier current

digit , most significant bit of previous multiplier digit and

B/D Control signal , where for binary input operands and for

decimal input operands. The equations that control the two multiplexers are

-4AB

Inv2B

cond.4B

4AB

cond.8B

8AB

MUX2

cond.4B

-8AB

cond.8B

Inv2B

cond.5D

5AD

cond.10D

10AD

-2AD

Inv1B
-AD

Inv1D
-2AB

Inv1B -AB

cond.2Bcond.2D

2AD
2AB A

cond.1Dcond.2B cond.1cond.2D

MUX1

Inv1B

cond.1B
B/D Control

Inv1D

B/D Control

Inv1.B

sign bit 1

B/D Control

Inv2D

B/D Control

Inv2B

sign bit 2

100

For MUXs1

 (5.39)

 (5.40)

 (5.41)

 (5.42)

 (5.43)

For MUXs2

 (5.44)

 (5.45)

 (5.46)

 (5.47)

 (5.48)

Sign bits outputs from MUX1 and MUX2, Inv1 and Inv2 signals, are added in

column trees. It is entered to first bit of shifted carry digits.

101

5.3.3 Partial Products Accumulation Stage

This stage consists of four steps as shown in Figure 5.14. Binary column

tree, rearrange column tree outputs, tiny binary/decimal tree, and final carry

propagate adder.

Binary column tree

A CSA binary column tree is used for the 35 partial products. It is the first

step of partial products accumulation for binary and decimal multiplication

paths. Figure 5.18 shows the scheme of the proposed binary column tree.

Columns output different size sums and carries according to number of digits

added.

Figure 5.18 Proposed binary column tree scheme (S and C maximally 8 bits).

col.(0)

33

digits

col.(1)col.(32) col.(16)

. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

CSA

binary tree

SC

sign

bits. . .

. . .

CSA

binary tree

SC

CSA

binary tree

SC

CSA

binary tree

SC

col.(17)

.

CSA

binary tree

SC

col.(15)

.

CSA

binary tree

SC

102

The worst case number of digits to be added is 33 plus 2 sign bits. Figure

5.19 shows the 33 digits CSA binary column tree. Sign bits added to the first

bit of shifted carry digits in the tree levels.

Figure 5.19 33 digits CSA binary tree.

<<1

(in brackets required multiplicative factor)

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2

CSA

3:2 CSA

<<1<<1<<1<<1<<1<<1<<1<<1<<1<<1

3:2 CSA3:2 CSA3:2 CSA3:2 CSA3:2 CSA3:2 CSA

3:2 CSA

<<1

3:2 CSA

<<1<<1

3:2 CSA

<<1

3:2 CSA

<<1<<1

3:2 CSA

<<1

<<1<<1<<1<<1

3:2 CSA3:2 CSA3:2 CSA

<<1<<1<<1

3:2 CSA3:2 CSA

<<1<<1

3:2 CSA

<<1

3:2 CSA

3:2 CSA

<<1

3:2

CSA

<<1

103

Rearrange column tree outputs

For Binary operands, column trees output 4 bits to 8 bits sums and carries.

Columns outputs are rearranged to multiply each one by its relevant weight.

Four bit-vectors are produced, two for output sums and two for output carries,

Figure 5.20.

Figure 5.20 The four binary bit-vectors after rearranging.

For decimal operands, column trees output 4 bits, 1 BCD digit, to 10 bits, 3

BCD digits, sums and carries. A binary to decimal converters is used to convert

each binary column output to BCD-8421, and then converted to BCD-4221,

and then it is rearranged to multiply each column output by its relevant weight.

After rearranging column trees output six bit-vectors, three for output sums and

three for output carries, Figure 5.21.

Figure 5.21 The six decimal bit-vectors after rearranging.

S(7) S(7) S(5) S(5) S(3) S(3) S(1) S(0)

C(7) C(7) C(5) C(5) C(3) C(3) C(1) C(0)

S(6) S(6) S(4) S(4) S(2)

C(6) C(6) C(4) C(4) C(2)

S1

C1

S2

C2

S(1)

C(1)

S(2)

C(2)

S(31) S(31)

C(31) C(31)

S(30)

C(30) C(30)

S(30)

digit no.8 7 6 5 4 3 1 0232 31 30

.

.

.

.

S(3) S(1) S(0)

C(3) C(1) C(0)

S(2)

C(2)

S1

C1

S2

C2

S(1)

C(1)

S(2)

C(2)

digit no.8 7 6 5 4 3 1 0231 30 29 26

S(7)

C(7)

S3

C3

S(28)

C(28)

.

.

25 9

S(7)

S(7)

S(7)

S(7)

28

S(28)

C(28)

32 27

S(5) S(5) S(5) S(3)

C(5) C(5) C(5) C(3)

S(29)

C(29) C(29)

S(29)

.

S(26)

C(26)

S(26)

C(26)C(31)

S(31) S(26)

C(26)

S(6) S(6) S(6) S(4) S(4)

C(6) C(6) C(6) C(4) C(4)

S(31)

S(30)

C(31)

C(30)

.

.C(30)

S(30) S(27)

C(27)

S(27)

C(27)

S(27)

C(27)

104

The conversion to decimal, BCD-8421, takes some delay. However, this extra

decimal delay is approximately equal to decimal blocks delay used in

decimal path in Hickmann design [9]. But it is separated from binary path

without significant increase in area. Where the area of binary to decimal

converters is much less than the area of another tree as in [9]. The conversion

from binary to decimal, BCD-8421, is discussed in next section. the decimal

bit-vectors is converted from BCD-8421 to BCD-4221 before the tiny tree to

allow the use of binary CSA design and out valid decimal values for all 4-bit

combinations. So we need not a decimal correction after the addition.

The BCD-8421(x3x2x1x0) to BCD-4221(h3h2h1h0) converter equations are

 (5.49)

 (5.50)

 (5.51)

 (5.52)

Binary to BCD-8421 Conversion (Shift and Add-3 Algorithm) [1]

The algorithm starts with the three most significant bits of the binary

number. If the three bits value is greater than or equal to five, add binary three

to the number and shift the result one bit to the left. If the three bits value is less

than five, shift to the left without adding. Then take the next bit from the right

and repeat the operation till we reach the least significant bit. Figure 5.22

shows the steps to convert 8-bit binary number to BCD-8421 using the Shift

and Add-3 Algorithm [1]. The steps of this example:

1. Shift the binary number left three bits.

105

2. If the binary value in any of the BCD columns is 5 or greater, add 3 to

that value in that BCD column.

3. Shift the binary number left one bits

4. Go to 2.

5. After 8 shifts, the BCD number is obtained.

Figure 5.22 8-bit binary to decimal converter example.

Figure 5.23 shows the block diagram of the 8-bit binary to BCD-8421

converter using this algorithm.

Start

Shift 1

Shift 2

Shift 3

Add 3

Shift 4

Add 3

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 0 1 0 1 1 1 1 1

 1 0 1 0 1 1 1 1 1

 1 1 0 0 0 1 1 1 1

Shift 5 1 1 0 0 0 1 1 1 1

Shift 6

Add 3

Shift 7

Add 3

Shift 8

BCD

 1 1 0 0 0 1 1 1 1

1 0 0 1 0 0 1 1 1 1

 1 0 0 1 0 0 1 1 1 1

 1 0 0 1 0 1 0 1 0 1

 1 0 0 1 0 1 0 1 0 1

2 5 5

BCD Digits

Operation Hundreds Tens Units
Binary

106

Figure 5.23 8-bit binary to decimal converter block diagram.

In the final proposed design a binary to BCD-8421 converters are used for

each column output of the binary column tree. A 5-bit to 9-bit binary to BCD-

8421 converters are used for different outputs. The 9-bit one has a largest

delay. It adds 33 decimal digit plus 2 sign bits. Its maximum value of it is 299D,

100101011B. Its most significant three bits are always less than five so its first

level can be eliminated. Figure 5.24 shows the binary to decimal converter used

for 9-bit binary input.

107

Figure 5.24 9-bit, max. value 319, binary to decimal converter block diagram.

Tiny Binary/Decimal Tree

Two designs are implemented for this step, which add the 4/6 bit-vectors

output from the column tree for binary/decimal multiplication. A tiny split

binary/decimal tree design is obtained to eliminate the latency of the decimal

 from the binary multiplication path, Figure 5.25. A tiny shared

binary/decimal tree design is obtained to decrease the area, Figure 5.26, where

one 128-bit CSA is shared between binary and decimal, using multiplexer.

108

Figure 5.25 (a) Tiny split binary tree. (b) Tiny split decimal tree.

Figure 5.26 Tiny shared binary/decimal tree

Decimal final

carry/sum vectors

Binary final

 carry/sum vectors

×2 10

×2 10

×2 10

128-bit CSA

128-bit CSA

128-bit CSA

<<1

128-bit CSA

128-bit CSA

MUX

Binary bit vectors Decimal bit vectors

Decimal final

carry/sum vectors

Binary final

 carry/sum vectors

<<1

109

It was found that the difference in area between the split and shared tiny

binary/decimal trees is not large. The area of shared design is slightly less than

split design, where one 128-bit CSA is replaced by a three 128-bit MUXs for

three binary/decimal bit vectors.

Final Carry Propagate Adder

The final carry/sum vectors are added using Kogge-Stone based carry

propagate adder [11]. Two designs are implemented, shared and split

binary/decimal Kogge-Stone based carry propagate adder. Figure 5.27 shows

the proposed split binary/decimal Kogge-Stone based carry propagate adder

scheme. In this scheme binary and decimal carry propagate adders are

separated to decrease the delay of binary and decimal multiplication paths.

Figure 5.27 Split Binary/Decimal Kogge-Stone based carry propagate adder

p→x+y = 15

g→x+y≥16

(for each digit)

p g

Binary final

128-bit carry/sum vectors

propagate/generate

carry tree

g

32-bit

g =1 →Sum+1

g = 0 →Sum

(for each digit)

Binary

sum/sum+1

(for each digit)

Sumb (Sum+1)b

128-bit

Binary

Product

128-bit

p→x+y = 9

g→x+y≥10

(for each digit)

p g

Decimal final

128-bit carry/sum vectors

propagate/generate

carry tree

g

32-bit

g =1 →Sum+1

g = 0 →Sum

(for each digit)

Decimal

sum/sum+1

(for each digit)

Sumd (Sum+1)d

128-bit

Binary

Product

128-bit

110

Another scheme is implemented to decrease the area, novel shared

binary/decimal Kogge-Stone based carry propagate adder, Figure 5.28.

Figure 5.28 Shared Binary/Decimal Kogge-Stone based carry propagate adder

This permits the use of the same generate/propagate carry tree for decimal and

binary multiplications. Only first level of Kogge-Stone adder is split for binary

and decimal. This level outputs the first propagate and generate signals for each

digit. The remaining levels are shared for decimal and binary. Parallel to these

levels, the decimal and binary and for every digit are generated.

After the generate/propagate carry tree are finished, the correct sum according

to last level carry and B/D control signal is chosen. A BCD-4221 format is used

B
/D

 c
o

n
tr

o
l

p→x+y = 9

g→x+y≥10

(for each digit)

p g

p→x+y = 15

g→x+y≥16

(for each digit)

p g

Decimal final

128-bit

carry/sum

vectors

Binary final

128-bit

carry/sum

vectors

propagate/generate

carry tree

g

32-bit32-bit

g =1 →Sum+1

g = 0 →Sum

(for each digit)

MUX

p g
32-bit

Binary

sum/sum+1
(for each digit)

Decimal

sum/sum+1

(for each digit)

MUX

Sumd (Sum+1)d

Sum Sum+1

Sumb (Sum+1)b

128-bit 128-bit

128-bit Product

111

to eliminate decimal correction delay and area. At the end of design a BCD-

4221 to BCD-8421 conversion is performed to produce the final product in

BCD-8421format. The equations of the conversion from BCD-4221(x3x2x1x0)

to BCD-8421(h3h2h1h0) are

 (5.53)

 (5.54)

 (5.55)

 (5.56)

5.4 Final Proposed Design

Figure 5.29 shows the final proposed binary/decimal multiplier design. It is

similar to third proposed combined binary/decimal multiplier discussed with a

carry/sum addition block before the rearranging of decimal operands output

from column tree.

This block adds every sum/carry output from binary column tree using

binary Kogge-Stone CPAs, maximum 8 bit. After sum/carry addition, tree

columns output 5 binary bits, 2 BCD digits, to 9 binary bits, 3 BCD digits,

sums and carries. A binary to decimal converters based on [1] is used to

convert each binary column output to BCD-8421, and then converted to BCD-

4221, and then it is rearranged to multiply each column output BCD digits by

its relevant weight. Figure 5.30 shows the three bit-vectors output after

rearranging.

112

Figure 5.29 Final proposed Binary/Decimal Multiplier design (split scheme).

Figure 5.30 The three decimal bit-vectors after rearranging.

B
/D

 c
o
n
tr

o
l

4 Binary
bit vectors

. . . . 33 Partial
Products

MUXs

Binary Multiples

Generation

Decimal Multiples

Generation

Multiplicand

Binary Column

Tree

Tiny Decimal

Tree

Tiny Binary

Tree

Kogge-Stone

Decimal CPA

A,2A,5A,10A

Decimal
product

A,2A,4A,8A

3 Decimal
bit vectors

Binary final
sum/carry vectors

Decimal final
sum/carry vectors

M
u
lt

ip
li

er

PP

Generation

PP

Selection

PP

Accumulation

rearrange

33 variable length/weight
sum/carry digits

rearrange

9-bit maximum

Binary to BCD

conversion

Kogge-Stone

Binary CPA

Binary
product

sum/carry

addition

S(6) S(6) S(6) S(4) S(4) S(2) S(0) S(0) S1

S2

S(2)

S(1)

S(31) S(29)

S(30)

digit no.8 7 6 5 4 3 1 0231 30 29

.

. S(1)

S(7) S3S(28)

S(31)

.

S(8) S(8)

11 10 9

S(7)

S(8)

S(7)

S(9)S(9)S(9)S(29)

S(26)

28

S(28)

S(27)

32

S(26)

S(25)

S(27)

S(30)

S(25) S(25)

27

S(26) S(5) S(5) S(5) S(3) S(3)

113

Two schemes are used for the binary and decimal tiny tree, Split and

shared, to add the four and three bit-vectors output from the column tree,

respectively, Figure 5.31 and Figure 5.32.

Figure 5.31 Tiny split binary and decimal trees.

Figure 5.32 Tiny shared binary/decimal tree.

Binary

3:2 CSA

<<1

3:2 CSA

<<1 Decimal

3:2 CSA

×210

×2 10<<1

128-bit CSA

128-bit CSA

MUX

Binary bit vectors Decimal bit vectors

Decimal final

carry/sum vectors
Binary final

 carry/sum vectors

<<1

114

The two final vectors output from tiny binary/decimal tree are added using

binary/decimal Kogge-Stone based carry propagate adder, Figure 5.27, and

Figure 5.28.

5.5 Conclusion

Four designs are proposed for the combined binary/decimal multiplier. The

final proposed design groups all good ideas for the previous proposals within

this thesis. We use the smallest area and delay binary multiplicand multiples

generation method, booth4 recoding. We also include the decimal SD radix-5

recoding for decimal multiplicand multiples generation from Vazquez, which

has a small area and delay. Dadda binary column tree is included to add the

binary/decimal partial products. It saves the use of decimal adders and

corrections which increase the area and delay of the multiplier. Two schemes

are used for the addition of the three/four bit vectors output from column tree,

shared and split. The shared one tries to decrease the area of the multiplier, and

the split one tries to decrease the delay of the multiplier. Next we discuss the

testing of our designs and the implementation results.

115

Chapter 6

Verification and Results

6.1 Testing

The proposed combined binary/decimal multiplier, Vázquez, and

Hickmann designs are implemented in FPGAadv tool. In order to verify the

implementations, test cases are generated then a test bench is developed for the

implemented design using VHDL language. A C program is written equivalent

to multiplier design. Using ActiveFileCompare program, the test bench results

and the C program results is compared.

Test Cases

The multiplier has two 64-bit inputs, multiplicand and multiplier, and a

control bit. It is difficult to test all possible combinations of the inputs where

2
128

 = 3.4e38. So a group of test cases is generated trying to handle all possible

errors. We divided the 128-bit inputs to 8 parts, each one 16-bit. Table 6.1

shows the test cases used. (i.e. we use C character to represent a truth table of

all possible combination of the 16-bit, from 0000000000000000 to

1111111111111111, 2
16

 row). First part of test cases shown in Table 6.1

represents a binary 8-bit truth table, but instead of „1‟ logic, a C is used. So

each row of the truth table represents 2
16

 rows. In the second and last part of the

116

table the C truth table is used to test each part when the other bits are 0 and 1

respectively.

Testing Approach

A test bench is developed for each block of the multiplier then a test bench

for the whole multiplier is implemented. A C program is written for each block

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 C

0 0 0 0 0 0 C 0

0 0 0 0 0 0 C C

.

.

C C C C C C 0 0

C C C C C C 0 C

C C C C C C C 0

C C C C C C C C

0 0 0 0 0 0 0 C

0 0 0 0 0 0 C 0

.

C 0 0 0 0 0 0 0

1 1 1 1 1 1 1 C

.

1 C 1 1 1 1 1 1

C 1 1 1 1 1 1 1

Table 6.1 Test cases

117

and for the multiplier equivalent to VHDL design. ActiveFileCompare program

is used to compare between test benches results and C programs results.

6.2 Results

This section presents an area/delay comparison between the proposed

binary/decimal multiplier designs and the two previous ones [9] [22]. The main

difference between them is the accumulation stage. Vázquez et al. propose a

shared binary/decimal CSA tree using binary/BCD-4221 format. The CSAs for

binary and decimal are shared. A MUX is used in each block to select

between binary and decimal. They lead to some increase in the delay of binary

and decimal paths. Hickmann et al. split the binary and decimal CSA trees at

the start of using blocks. They have an increase in area but the decimal

and binary is separated, so no MUXs are used. A comparison between

these designs and third design, shared and split, and final proposed design,

shared and split is introduced.

Third proposed design

The proposed designs use two tree stages. The first is a binary tree used to

decrease the binary/decimal partial products to four/six bit-vectors. Then a tiny

split/shared CSA tree is used to add the four/six bit-vectors for binary/decimal

multiplication. Table 7.1 presents area-delay figure for the different

binary/decimal multipliers on FPGA virtex5. The area of the two proposed

designs, split and shared, is less than Vázquez and Hickmann designs.

118

Final proposed design

In the final proposed design, a carry/sum addition of the column outputs

from binary column tree is included before rearranging, to decrease the delay of

binary and decimal paths. Table 7.2 shows an area-delay figure for the different

binary/decimal multipliers on FPGA virtex5.

Also each design is synthesized on the low power CMOS 130nm

technology. Table 7.3 shows an area/delay figure for the different

binary/decimal multipliers [15].

Table 7.1 Area/Delay figure for different Binary/decimal

multipliers using FPGA virtex5.

Vázquez Hickmann

Proposed

Design

(split)

Proposed

Design

(shared)

Worst

path delay

Binary
≈ 55 ns

≈ 42 ns ≈ 43 ns
≈ 56 ns

Decimal ≈ 48 ns ≈ 51 ns

Total equivalent gate

count
116081 108472 92658 92098

Table 7.2 Area/Delay figure for different Binary/decimal

multipliers using FPGA virtex5.

Vázquez Hickmann

Proposed

Design

(split)

Proposed

Design

(shared)

Worst

path delay

Binary
≈ 55 ns

≈ 42 ns ≈ 43 ns
≈ 54 ns

Decimal ≈ 48 ns ≈ 48 ns

Total equivalent gate

count
116081 108472 87605 88613

119

The proposed design has almost the same delays as the fastest known

multiplier, Hickmann multiplier design, but significantly reduces the required

area.

6.3 Conclusion

This thesis presents a parallel combined binary/decimal fixed-point

multiplier design with novel partial product accumulation design to decrease

the area of the multiplication without increasing the delay. In this stage, a

binary column tree is used for binary and decimal multiplication. Then a tiny

binary/decimal CSA tree is used to generate the final product in sum/carry

format. A comparison between proposed and previous binary/decimal

multipliers shows that the proposed design has the smallest area. It is 16% less

than Vázquez design area and 27.5% less than Hickmann design area. For the

delay, the proposed design is almost the same as Hickmann multiplier (fastest

in the literature) and less than Vázquez multiplier for decimal and binary paths.

6.4 Future Work

Finally, this section presents some suggestions for future work. These

suggestions are as follows:

- Design a floating point binary/decimal multiplier.

 Vázquez Hickmann
Proposed

Design

(split)

Proposed

Design

(shared)

Worst path

delay (ns)

Binary

8.03
4.55 4.61

7.86
Decimal

7.18 7.05

Area (µm
2
)

932044 782643 567681 596330

Table 7.3 Area/Delay figure for different binary/decimal

multipliers using ASIC low power CMOS 130nm technology.

120

- Implement a combined binary/decimal floating point adder and a

combined floating point binary/decimal divider then include them into a

processor.

121

References

[1] Benedek, M., “Developing Large Binary to BCD Conversion

Structures”, IEEE Transactions on Computers, vol. C-26, pages: 688 –

700, July 1977.

[2] Cowlishaw, M. F., “Decimal Floating-Point: Algorism for Computers”,

IEEE 3rd Symposium on Computer Arithmetic, 2003.

[3] Dadda, L., “Multioperand Parallel Decimal Adder: A Mixed Binary and

BCD Approach”, IEEE Transactions on Computers, Volume 56, No. 10,

October 2007.

[4] Duale, A.Y. et al, “Decimal floating-point in z9: An implementation and

testing perspective”, IBM Journal of Research and Development , vol.

51, pages: 217-227, 2007.

[5] Ercegovac, M. D., and Lang, T., “Digital Arithmetic”, Morgan

Kaufmann Publishers, 2004.

[6] (a) Erle, M. A. and Schulte, M. J., “Decimal Multiplication Via Carry-

Save Addition”, Proceedings of IEEE International Conference on

Application-specific Systems, Architectures and Processors, June 2003.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520

122

[6] (b) Erle, M. A. et al., “Decimal Multiplication With Efficient Partial

Product Generation”, Proceedings of IEEE Symposium on Computer

Arithmetic, June 2005.

[7] Fahmy, H. et al, “Computer Arithmetic”, Not Yet Published.

[8] Flynn, M. J. and Oberman, S. F., “Advanced Computer Arithmetic

Design”, Wiley, John & sons Incorporated, April 2001.

[9] Hickmann, B. et al., “Improved Combined Binary/Decimal Fixed-Point

Multipliers”, IEEE International Conference on Computer Design,

October 2008.

[10] Kenney, R. D. et al., “A High-Frequency Decimal Multiplier”,

Proceedings of IEEE International Conference on Computer Design:

VLSI in Computers and Processors, October 2004.

[11] Kogge, P. M. and Stone, H. S., “A Parallel Algorithm for the Efficient

Solution of a General Class of Recurrence Equations”, IEEE

Transactions on Computers, August 1973.

[12] Koren, I., “Computer arithmetic algorithms”, A K Peters, Ltd., 2002.

[13] Lang, T. and Nannarelli, A., “A Radix-10 Combinational Multiplier”,

Proceeding in Asilomar Conference on Signals, Systems and

Computers, November 2006.

[14] Lu, M., “Arithmetic and logic in computer systems”, John Wiley and

Sons, 2004.

[15] Mahmoud, M. and Fahmy, H., “A Parallel Combined Binary/Decimal

Fixed-Point Multiplier with Binary Partial Products Reduction Tree”,

21
st
 International Conference on Computer Theory and Applications,

October 2011

123

[16] Nicoud, J.D., “Iterative Arrays ror Radix Conversion”, IEEE

Transactions on Computers, December 1971.

[17] Ohtsuki, T. et al., “Apparatus for Decimal Multiplication”, United

States Patent, no. 4677583, June 1987.

[18] Palmam, B., “High Performance Computing for Computational

Science”, Springer, 2003.

[19] Parhami, B., “Computer Arithmetic: Algorithms and Hardware

Designs”, Oxford University Press, USA, September 1999.

[20] Richards, R. K., “Arithmetic Operations in Digital Computers”, Van

Nostrand Company, 1955.

[21] Schmookler, M. S. and Weinberger, A. W., “High Speed Decimal

Addition”, IEEE Transactions on Computers, Volume C-20, Issue 8,

pages 862-866, August 1971.

[22] Vázquez, A. et al., “A New Family of High–Performance Parallel

Decimal Multipliers”, Proceedings of IEEE Symposium on Computer

Arithmetic, June 2007

[23] http://speleotrove.com/decimal/decifaq1.html#emphasis

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12

 نبذة

موضوعا ىاما لدعم التطبيقات العشرية جهيزةفي الأالعشري /الثنائيالحسابات بالنظام المشترك أصبحت

بما و . للأعداد الصحيحة عشري/ثنائيمضاعف تصميم لقدم ىذه الرسالة ت. مساحة صغيرةعالية و بسرعة والثنائية

لذلك . المرحمة الأكثر أىميةفيي ، أطول وقت أكبر مساحة و تأخذ في المضاعف أن مرحمة جهمع النواتج الجهزئية

مقارنة ايضا تم . تم استخدام النظام الثنائي لجهمع النواتج الجهزئية الناتجهة في المضاعف بالنظام الثنائي والعشري

نفس السرعو مع المساحةانخفاضا كبيرا في التصميم المقترح انتج . التصاميم المنشورة سابقامع التصميم المقترح

 .سابقا معروفةفي التصاميم المتصميم الأسرع با لتقري

. الثنائية والعشرية الفصل الاول يعرض مقدمة عن النظم الحسابية. ىيكل الرسالة يتكون عمى النحو التالي

الفصل الثالث يعرض تقنيات الضرب بالنظام . الفصل الثاني يمخص الطرق المستخدمو لعمميات الضرب

تصميم الفصل الخامس يشرح ال. العشرية المقترحة سابقا/عمى المضاعفات الثنائية الفصل الرابع يركز. العشري

ترح والتصاميم الفصل السادس يتناول المقارنة بين التصميم المق. العشري/لتحقيق المضاعف الثنائي مقترحال

 .دم الاستنتاجهات والعمل المستقبميوأخيرا نق. السابقة

 الصحيحةعشري للأعداد /مضاعف ثنائي

 باستخدام النظام الثنائي في جمع النواتج الجزئية

 إعداد

 مرفت محمد عادل محمود

 رسالة مقدمة إلى كمية اليندسة ، جهامعة القاىرة
 كجهزء من متطمبات الحصول عمى درجهة الماجهستير

 والأتصالات الكيربية في الألكترونيات

 تحت إشراف

 حسام فيمي
 أستاذ مساعد

 قسم الأتصالات والألكترونيات اليندسية
 جهامعة القاىرة

 أمين نصار
 أستاذ

 قسم الأتصالات والألكترونيات اليندسية
القاىرةجهامعة

 كمية الهندسة ، جامعة القاهرة

 الجيزة ، جمهورية مصر العربية

3122

 عشري للأعداد الصحيحة/مضاعف ثنائي

 باستخدام النظام الثنائي في جمع النواتج الجزئية

 إعداد

 مرفت محمد عادل محمود

 رسالة مقدمة إلى كمية اليندسة ، جهامعة القاىرة
 الماجهستيركجهزء من متطمبات الحصول عمى درجهة

 والأتصالات الكيربية في الألكترونيات

 كمية الهندسة ، جامعة القاهرة

 الجيزة ، جمهورية مصر العربية

3122

