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Abstract 

Rounding errors in digital computations using floating point numbers may 

result in totally inaccurate results. One of the mathematical solutions to 

monitor and control rounding errors is the classical interval arithmetic (CIA). 

A generalized extension of the classical intervals was presented in 1980 which 

is the modal intervals. Modal Intervals Arithmetic (MIA) proved to be a good 

tool in many branches of applied mathematics. This leads to solving serious 

problems in applications like control and computer graphics. The increasing 

demand of high speed applications and in the same time accurate results lead 

researches to hardware implementation of MIA.  

This work introduces, for the first time, the hardware implementation of 

the Modal Interval Double Floating Point Adder/Subtractor and Multiplier 

units. It proposes two different hardware implementation approaches (serial 

and parallel) for each of these units. Serial implementations have smaller areas 

than those of the parallel implementations but they are slower than parallel 

implementations. Also, there is no overhead in supporting modal intervals 

instead of supporting classical intervals only. Moreover, certain modal interval 

implementations have smaller areas than their classical counterparts. 

Accordingly, modal interval Adder/Subtractor and multiplier units are more 

efficient than their classical counterparts.  

The application nature and the cost are the major benchmarks that 

determine whether the serial approach (smaller but slower) or the parallel 

approach (bigger but faster) is suitable. 
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Chapter 1 

1 Introduction 

1.1 Overview 

One of the main shortages of the floating point representation in digital 

systems is the rounding [1]. The rounding can result in catastrophic errors 

which make the floating point computations result in a totally different result 

from the exact one. Consider for example, b = 3.34, a =  1.22, and c =

 2.28. The exact value of b2 − 4ac = 0.0292 . But (in a system with three 

decimal places) b2 rounds to 11.2 and 4ac rounds to 11.1, hence the final 

answer is 0.1 which is an error by 700 ulps, even though 11.2 - 11.1 is exactly 

equal to 0.1 . The subtraction did not introduce any error, but rather exposed 

the error introduced in the earlier multiplications [1]. The previous example is 

a simple one but we can have more complex examples that yield totally wrong 

results as in the following arithmetic expression [37]:  

𝑓 = 333.75𝑏6 + 𝑎2 11𝑎2𝑏2 − 𝑏6 − 121𝑏4 − 2 + 5.5𝑏8 +
𝑎

2𝑏
 

For 𝑎 = 77617 𝑎𝑛𝑑 𝑏 = 33096 , Using IEEE 754 arithmetic operations with 

a round-to-nearest rounding we have the following results for 32, 64 and 128 

floating point representations: 

 32-bit:  𝑓 ≈ 1.172604 

 64-bit:  𝑓 ≈ 1.1726039400531786 

 128-bit: 𝑓 ≈ 1.1726039400531786318588349045201838 

According to [37] and [38], the true value is 𝑓 = −0.827386... 

We have these wrong results in different precisions due to the heavy 

cancellation in the floating point computations. The more important in the 
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previous example that no matter we use higher floating point precision 

arithmetic we may still have wrong results. 

Due to this inaccuracy of floating point computations, several numerical 

methods are used to account for rounding errors in floating point computations 

or even eliminate them. One of these numerical methods is the interval 

computations which was greatly popularized as classical interval arithmetic by 

Ramon E.Moore in 1966 [2]. The basic idea of the classical intervals is to use 

intervals instead of real numbers. For example, the number 3.145 lies in the 

interval [3.13, 3.15]. Thus when we represent the classical interval bounds 

(3.13 and 3.15) using floating point numbers and apply the different floating 

point computations on it, we can monitor and control the rounding errors in 

the floating point computations. Also this approach allows us to represent the 

uncertainty of the measurements of the different systems. Consider for 

example, that we want to measure the temperature of a certain system. Instead 

of representing the temperature value with a single uncertain value, we can 

represent it with an interval that we are sure that the real system's temperature 

lies in it [2]. After the definition of classical interval arithmetic (or set-

theoretical interval arithmetic) many mathematicians tried to extend it to 

eliminate some of its problems. One of these extensions is the modal interval 

arithmetic [5].  

Several software packages were introduced to implement many forms of 

interval computations. Many interval applications need not only the accurate 

computations but also to be as fast as the floating point computations. The 

increasing need to have interval computations with a performance comparable 

to floating point computations leads us to the hardware implementation of the 

interval computations [3], [4]. Hardware implementation of the interval 

addition, subtraction and multiplication is what we will discuss. 
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1.2 Classical Intervals 

1.2.1 Historical Background 

The history of intervals in general goes back to the very first publications on 

the topic of interval calculus. There are two papers considered as the 

pioneering works in this field: one by the mathematician T. Sunaga in 1958 

[32], and another by M. Warmus in 1956 [33]. Both were apparently 

completed independent of each other. In 1961, a second paper appeared by 

Warmus [34]. In the paper by Sunaga, almost all foundational elements of the 

interval calculus, as known today, are presented [6].  

Since the publications of Sunaga and Warmus, Classical interval 

arithmetic or set-theoretical interval arithmetic was greatly popularized by 

Ramon E.Moore in 1966 [2]. Classical interval arithmetic defines all the 

mathematical operations under intervals with their bounds of real numbers. 

The first reason behind using classical interval arithmetic is to control 

round off errors resulting from using floating point computations and to put 

bounds on measurement errors in mathematical computations [2], [4]. After 

that, classical intervals analysis was found to be a good tool in so many 

branches of applied mathematics like solving linear and non linear equations, 

differential equations and global optimization [3], [4]. 

1.2.2 Basic Idea 

The basic idea behind classical intervals is that instead of working with an 

uncertain real value (𝑥) we can work with the two bounds of the interval [𝑎, 𝑏]  

which contains 𝑥 (𝑥 lies between 𝑎 and 𝑏) or could be one of the bounds. 

Consider for example, instead of estimating the height of someone using 

standard arithmetic as 2.0 meters, using interval arithmetic we might be 

certain that the person is somewhere between 1.97 and 2.03 meters [2], [28]. 

In other words, Classical interval arithmetic states the range of possible 

http://en.wikipedia.org/wiki/Real_%28number%29
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outcomes explicitly. Simply, results are no longer stated as numbers, but as 

intervals which represent imprecise values. The sizes of the intervals are 

similar to error bars to a metric in expressing the extent of uncertainty. Simple 

arithmetic operations, such as basic arithmetic and trigonometric functions, 

enable the calculation of outer limits of intervals [2], [28]. 

Due to the heavy usage of classical interval analysis in so many 

mathematical applications, it found its way in many scientific and engineering 

fields. Some of these fields are chemical engineering, computer graphics, 

computer aided design tools, electrical engineering, Robotics, Control and so 

many other fields [2], [3], [4]. 

1.2.3 Definition 

The definition of classical intervals is as follows [2]: 

   

 ( ) {[ , ] | , , }I R a b a b R a b    

1.2.4 Interval Extensions of Continuous Functions 

One of the main objectives of classical interval analysis is to obtain an optimal 

interval extension in 𝐼(𝑹) for each real function in 𝑹 

1.2.4.1 Interval Extensions of Basic Operations 

The basic operations of interval arithmetic are, for two intervals  1 2,  A a a  

and  1 2,  bB b that are subsets of the real line (-∞,∞): 

                       

1 1 2 2

1 2 2 1

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

[ , ]

[ , ]

* [min( , , , ),max( , , , )]

/ [min( / , / , / , / ),max( / , / , / , / )],0

A B a b a b

A B a b a b

A B a b a b a b a b a b a b a b a b

A B a b a b a b a b a b a b a b a b B
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The addition and multiplication operations have the following properties [2], 

[28]: 

Commutative  

  𝑋 × 𝑌 = 𝑌 × 𝑋 

  𝑋 + 𝑌 = 𝑌 + 𝑋 

Associative 

  𝑋 ×  𝑌 × 𝑍 = (𝑌 × 𝑋) × 𝑍 

  𝑋 +  𝑌 + 𝑍 =  𝑌 + 𝑋 + 𝑍 

Sub-distributive 

  𝑋 ×  𝑌 + 𝑍 ⊆ 𝑋 × 𝑌 + 𝑋 × 𝑍 

 

As stated above, the interval multiplication operation (or interval division 

operation) costs four real multiplication operations and six comparisons (three 

comparisons for each bound of the resulting interval). There are other 

formulas which reduce the number of multiplication or division operations 

using signs tests on input intervals bounds as following: 

 

𝐴 ∗ 𝐵 =

 
 
 
 
 
 

 
 
 
 
 

  
𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  𝑎1𝑏1,𝑎2𝑏2 

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [𝑎2𝑏1, 𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛  𝑎2𝑏1, 𝑎1𝑏2 

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  𝑎1𝑏2, 𝑎2𝑏2 

 𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0                                   

                     𝑡𝑒𝑛  𝑚𝑖𝑛 𝑎2𝑏1, 𝑎1𝑏2 , 𝑚𝑎𝑥 𝑎1𝑏1,𝑎2𝑏2  

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛  𝑎2𝑏1, 𝑎1𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  𝑎1𝑏2, 𝑎2𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  𝑎1𝑏2, 𝑎1𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2𝑏2, 𝑎1𝑏1]

  

 

       𝐴 𝐵 =

 
 
 

 
 
𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏2, 𝑎2/𝑏1]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏2, 𝑎1/𝑏1]

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏1,𝑎2/𝑏1]

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏2, 𝑎1/𝑏2]

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏1,𝑎2/𝑏2]

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏1, 𝑎1/𝑏2]

  

http://en.wikipedia.org/wiki/Commutative
http://en.wikipedia.org/wiki/Associative
http://en.wikipedia.org/wiki/Distributive
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Except for case 3 in multiplication we have only two multiplication or 

division operations and sign tests instead of four multiplication or division 

operation and six comparisons. This dramatically affects the performance of 

interval multiplication and division algorithms either in software or hardware 

implementations as we will see for the multiplication operation. 

1.2.4.2 Interval Extensions of Monotonic Functions 

Interval methods can also apply to functions which do not just use simple 

arithmetic such as functions that have monotonicity properties [2], [28]. 

 

Figure 1.1: Increasingly Monotonic Function 

 

If 𝑓: ℝ → ℝ is monotonically rising or falling in the interval[𝑥1, 𝑥2], then 

for all values in the interval 𝑦1, 𝑦2 ∈ [𝑥1, 𝑥2] such that 𝑦1 ≤ 𝑦2, one of the 

following inequalities applies: 

 

𝑓(𝑦1) ≤ 𝑓 𝑦2 𝑜𝑟𝑓(𝑦1) ≥ 𝑓(𝑦2) 

Thus the range corresponding to the interval [y1, y2] ⊆ [x1, x2] can be 

calculated by applying the function to the endpoints y1and y2  [2], [28]: 

𝑓([𝑦1, 𝑦2]) =  min 𝑓(𝑦1 , 𝑓 𝑦2  , max 𝑓(𝑦1 , 𝑓 𝑦2 }] 
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More generally, one can say that for piecewise monotonic functions it is 

sufficient to consider the endpoints x1, x2 of the interval [x1, x2], together with 

the so-called critical points within the interval (those points where the 

monotonicity of the function changes direction) [2], [28]. 

 

1.2.4.3 Interval Extensions of Elementary Functions 

We can easily deduce formulas to calculate the interval results for elementary 

functions (due to the monotinicity properties) as following [2]: 

 

Exponential function:   

a[x1 ,x2] =  ax1 , ax2 , for a > 1 

 

Logarithmic function:  

𝑙𝑜𝑔𝑎  𝑥1, 𝑥2  =  𝑙𝑜𝑔𝑎𝑥1, 𝑙𝑜𝑔𝑎𝑥2 , 𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠  𝑥1, 𝑥2 𝑎𝑛𝑑 𝑎

> 1 

Power function: 

For Odd n ∈ N 

[𝑥1, 𝑥2]𝑛 =  𝑥1
𝑛 , 𝑥2

𝑛   

 

For Even n ∈ N 

              [𝑥1, 𝑥2]𝑛 =  𝑥1
𝑛 , 𝑥2

𝑛  , 𝑖𝑓𝑥1 ≥ 0 

              [𝑥1, 𝑥2]𝑛 =  𝑥2
𝑛 , 𝑥1

𝑛  , 𝑖𝑓𝑥2 < 0 

               

 [𝑥1 , 𝑥2]𝑛 =  0, max({𝑥1
𝑛 , 𝑥2

𝑛}) , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 

 

For even powers, the range of values being considered is important, and 

needs to be dealt with before doing any multiplication [2], [28]. 

 

 

http://en.wikipedia.org/wiki/Exponential_function
http://en.wikipedia.org/wiki/Exponential_function
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For the sine and cosine functions, the critical points are at  1
2 + 𝑛 . 𝜋 or . 𝜋 

for all 𝑛 ∈ Ζ respectively. Only up to five points matter as the resulting 

interval will be [− 1,1] if at least half a period is in the input interval. For sine 

and cosine, only the endpoints need full evaluation as the critical points lead to 

easily pre-calculated values namely -1, 0 , +1 [2], [28]. 

1.2.4.4 Interval extensions of General Functions 

In general, we can combine the function rules 𝑓(𝑥1, 𝑥2 , ………𝑥𝑛) with the 

equivalents of the basic arithmetic and elementary functions. This is called 

natural interval extension. We should note that there may be more than one 

real expression that are equivalent but each one has interval extension that is 

not equivalent to the other [2]. For example: 

 

   𝐹 𝑋 = 𝑋(1 − 𝑋) 

𝐺 𝑋 = 𝑋 − 𝑋2 

                    𝐻 𝑋 = 1 4 − (𝑋 − 1 2 )2 

 

𝐹 𝑋 , 𝐺 𝑋 , 𝐻(𝑋) are the interval extensions of the corresponding real 

functions 𝑓 𝑥 , 𝑔 𝑥 , (𝑥) (capital letters denotes the interval extensions and 

small letters denotes the real functions).we should note that 𝑓 𝑥 , 𝑔 𝑥 , (𝑥) 

are equivalent as a real functions but their interval extensions are not 

equivalent and each has different interval result (this is one of the problems of 

the classical interval analysis as we will discuss in the next section). Consider 

for example the interval results for 𝑋 = [0,1]. 

 

𝐹  0,1  =  0,1 ×   1,1 −  0,1   

 =  0,1 ×  0,1  

 = [0,1] 

 

𝐺  0,1  =  0,1 −  0,1 2 

http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Cosine
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 =  0,1 −  0,1  

 = [−1,1] 

 

𝐻  0,1  = 1 4 −   0,1 −  1 2 , 1 2   2 

 = 1 4 −  1 2 , 1 2  2 

 =  1 4 , 1 4  −  0, 1 4   

 = [0, 1 4 ]  

 

One of the important points of interval analysis is to obtain the interval 

extension that gives the tightest result. 

1.2.5 Problems in Classical Intervals 

Unfortunately, there are problems that appeared in classical interval analysis. 

Some of them are mentioned below [5] , [6]. 

 

1- Amplification of Dependence 

When we calculate interval functions, we may have wider interval result 

than the actual result. Consider for example  

𝑓 𝑥 = 𝑥 − 𝑥 {𝑥 − 𝑥|𝑥 ∈  1,2 = [0,0]} 

While with interval operation on 𝐼(𝑅) 

𝐹 𝑋 = 𝑋 − 𝑋 =  1,2 −  1,2 =  −1,1  

 

2- Sub-Distributive Law 

The distributive property of multiplication is weakened in interval 

multiplication 

𝐴.  𝐵 + 𝐶 ⊆ 𝐴. 𝐵 + 𝐴. 𝐶 
 

 

For example: 

 1,3   1,1 +  −1, −1  =  0,0  

𝑤𝑖𝑙𝑒  1,3 .  1,1 +  1,3 .  −1, −1  =  −2,2  
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         𝑐𝑙𝑒𝑎𝑟𝑙𝑦,  0,0 ⊆  −2,2  

 

3- No Additive Inverse 

In the real space – x is the additive inverse of x such that 

𝑥– x = 0 but in the interval space 𝑋– X ≠ [0,0] 
 2,5 −  2,5 =  −3,3  

 

4- No Multiplicative Inverse 

In the real space 1 𝑥  is the multiplicative inverse of 𝑥 such 

that 𝑥.  
1

𝑥
 = 1 but in the interval space X X ≠ [1,1] 

[2,5] [2,5] =  2,5 . [1 5 , 1 2 ] = [2 5 , 5 2 ] 
 

5- Failure to solve some interval equations 

Some interval equations couldn't be solved in the I(R) space. Even the 

simple equations like  𝑎, 𝑏 +  𝑥, 𝑦 =  0,0 . If [a, b] is a non degenerate 

interval (a < b), there exists no interval  𝑥, 𝑦  solves this simple equation. 

Also the linear equation  𝑎, 𝑏 +  𝑥, 𝑦 = [𝑐, 𝑑]  the 𝐼(𝑅) system fails to 

obtain the solution from any set-theoretical interval operation between 

 𝑎, 𝑏 and [𝑐, 𝑑]. For Example 

  

  1, 3 +  𝑥, 𝑦 =  4,5  

 𝑥, 𝑦 =  4,5 −  1, 3 = [1,4]  

 

the solution is   𝑥, 𝑦 =  1,4  then if we substitute in the equation we 

have  1, 3 +  1, 4 =  2,7 ≠ [4,5] but  2,7 ⊃ [4,5]. 

 

Due to the problems that appeared in classical interval analysis; many 

extensions were proposed to solve these problems. One of them is the modal 

interval analysis which is believed to be the general case of classical interval 

arithmetic like complex numbers are the general case of real numbers [5] , [6]. 
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1.3 Modal Intervals 

1.3.1 Historical Background 

As we mentioned before, the papers of T.Sunaga and M.Warmus are 

considered the first publications that talk about interval calculus in general 

[32], [33], [34]. Moreover, Sunaga   and Warmus introduced some basic 

principles in the Modal Intervals. Sunaga proposed [1,3] as a solution of the 

equation  

 1,2 + 𝑋 = [2,5] 

This solution can only be obtained by modal interval arithmetic (as we will see 

later). 

𝑋 =  2,5 − 𝐷𝑢𝑎𝑙  1,2  =  2,5 −  2,1 = [1,3] 

 

The Dual operator that is mentioned above reverses the interval bounds (it will 

be discussed in more details latter). Also Warmus proposed (in paper [33]) the 

system:  

𝐼∗ 𝑹 = {[𝑎, 𝑏]|𝑎, 𝑏 ∈ 𝑹} 

which (as we will see later) is the basic definition of the modal intervals space. 

Formal algebraic properties of proper intervals (intervals that have 𝑎 ≤ 𝑏 or 

simply classical intervals) and improper intervals (intervals that have 𝑎 ≥ 𝑏) 

were studied by H.J Ortolf (1968) and by E. Kausher (1973)[7]. Modal 

intervals in its form now was conceived by E.Gardenes (1985) who put the 

grounding construction of modal interval analysis [6]. 

1.3.2 Aim of Modal Intervals 

The aim of modal intervals is to have interpretation of the interval results. 

Consider for example if a cable reel has an actual length within A = [9, 11] m 

and another within B = [19, 21] m, by connecting them it would be possible to 

reach a length of A + B = [9, 11] + [19, 21] = [28, 32]. Is it possible to cover 
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any length between 28 and 32 m? The answer is no, since we cannot reach a 

length of 32 m if the actual lengths for the reels were 10 and 20 m. What has 

happened? We are confusing two different propositional headings: 

 

          ∃𝑥 ∈ [28,32]: there exists an element of [28, 32], 

∀𝑥 ∈ [28,32]: every element of [28, 32] 

 

These are two opposed selection methods for values within an interval 

cannot be accounted for in classical intervals 𝐼 𝑹  [5]. 

The problem of tolerance modelling is another real world example that 

shows us why we need an interval system that accounts for interpreting the 

equations and their results as mentioned in [39]. Suppose that we need to 

model the tolerance values for certain industrial parts A, B and C that need to 

be assembled as shown in Figure 1.2(a). As shown in the figure we need to 

fulfil the equation 𝑎 + 𝑏 = 𝑐 for dimensions a, b and c in Figure 1.2(a). When 

we model this equation we need to model also the possibility of having 

uncontrollable parts (e.g. parts are given from another factory) that have 

uncontrollable tolerances. For example we may have parts A and B are given 

from another factory with a given tolerances for the dimensions a ,b as shown 

in Figure 1.2(b). In that case we need part C to fit A and B and this can be 

modelled with the interpretation: 

∀𝑎 ∈ 𝐴′ , ∀𝑏 ∈ 𝐵′ ,∃𝑐 ∈ 𝐶 ′ ,𝑎 + 𝑏 = 𝑐 

 

From now, we will represent the classical interval with a single quote as in A', 

B' and C' (As we will see in the next sections modal intervals consists of one 

of the modal logics ∀, ∃ combined with classical intervals but don't stuck into 

this point for now) 
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Figure 1.2: Different types of interpretations for tolerance modeling  

 

In another case, we are given parts B and C as shown in Figure 1.2(c). 

Thus we need to fit parts B and C with A. This will be modelled with the 

interpretation:  

∀𝑎 ∈ 𝐴′ , ∃𝑏 ∈ 𝐵′ ,∃𝑐 ∈ 𝐶 ′ ,𝑎 + 𝑏 = 𝑐 

 

Another case shown in Figure 1.2(d) which will be interpreted as: 

∀𝑐 ∈ 𝐶 ′ ,∃𝑎 ∈ 𝐴′ , ∃𝑏 ∈ 𝐵′ ,𝑎 + 𝑏 = 𝑐 

 

The classical interval arithmetic cannot account for these different 

interpretations. On the other hand modal intervals are established to involve 

these different interpretations into arithmetic operations as we will see 

 

1.3.3 Predicates and Quantifiers 

Predicates and quantifiers are the foundation of modal theory. Together, they 

form the essential mathematical engine used to define the modal interval 

solution sets of real expressions [6]. 

 

An example of a predicate: 

 P(x): x is greater than 3 

o P(x) is the statement 

o P is the propositional function 

o x is the subject 

o "is greater than 3" is the preditcate (a property the subject can have) 
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The purpose of the predicate is to transform the subject of the statement 

into a standard of truth, i.e., true or false. For this reason, the propositional 

function can be thought of as a Boolean function of one or more variables 

(subjects like x) [6]. The followings are some examples: 

 

 Example-1: 

                               𝑃 𝑥 : 𝑥 > 3 

                                  𝑃 4 = 𝑡𝑟𝑢𝑒 

                                  𝑃 2 = 𝑓𝑎𝑙𝑠𝑒 

 

Example-2: 

                               𝑄 𝑥, 𝑦 : 𝑥 = 𝑦 + 3 

                                   𝑄 1,2 = 𝑓𝑎𝑙𝑠𝑒 

                                   𝑄 3,0 = 𝑡𝑟𝑢𝑒 

 
Quantifiers “quantify” the truth of a statement by providing a mode of 

selection for a given variable in the predicate. In modal intervals there are 

exactly two modes to choose from, namely, ∀ (universal) and ∃ (existential). 

The ∀ and ∃ symbols are read “for all” and “there exists,” respectively [6]. 

 

Given a statement P(x) and x ∈ D where x is a variable and D is a domain 

of values that x may take on, the proposition 

 ∀x ∈ D P(x) 

requires P(x) to be true “for all” values in the domain of x while 

 ∃x ∈ D P(x) 

requires P(x) to be true for at least one value in the domain of x, i.e., “there 

exists” in the domain of x an element such that P(x)  is true [6]. 
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1.3.4 Modal Intervals Building Blocks 

The building blocks of the modal interval theory are: 

 The set of real numbers R 

 The set of classical intervals I(R) 

 The set of classic predicates on the real line, P .  : R → {true, false} 

More particularly, if 

Pred R ≔ {P(. )|P .  : R →  true, false  } 

is the set of classic predicates on the real line and 

Pred x ≔ {P(. ) ∈ Pred R |P x = true } 

is the set of predicates a real number x accepts, then modal analysis stands on 

the identification 

x ↔ Pred x  

This is the main point of departure from the classical analysis which 

instead builds on a singleton interpretation of real numbers  x ↔  x  [6]. 

 

A modal interval X is an element of the Cartesian product (X′ , Q) where X′  

is a classical interval and Q ∈ {∀, ∃} is one of the classic quantifier modes. To 

distinguish between modal interval and classical interval a prime symbol is put 

on the classical interval (as in X′ ). From this perspective, modal interval space 

can be defined as 

 

I∗ R ≔   X′ , Q  X′ ∈ I R , Q ∈  ∀, ∃  } 

 

This is a similar method to that in which real numbers are associated in 

pairs having the same absolute value but opposite signs. Modal intervals in the 

system I∗ R  are likewise associated in pairs having the same set but opposite 

modes [6]. 

 

Modal Intervals can be defined using another notation. Let 𝑎, 𝑏 ∈ 𝑹 then 

the canonical notation of a modal interval is: 
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 𝑎, 𝑏 =  
( a, b ′ ,∃) if a ≤ b

( b, a ′ , ∀) if a ≥ b
  

 

 

With the canonical notation, another definition for the set of modal interval is 

as following: 

𝐼∗ 𝑹 = {[𝑎, 𝑏]|𝑎, 𝑏 ∈ 𝑹} 

 

This reveals another reason why modal intervals are an extension of the 

classical intervals. In words, I R  is isomorphic to a portion of I∗ R , namely 

the existential modal intervals [5],[6]. 

The importance of canonical notation comes from that all the 

mathematical properties of modal intervals are derived from this notation [5], 

[6], [29]. 

Some properties of a modal interval X ≔ [a, b] are as following: 

 

Inf X ≔ a 

Sup X ≔ b 

Mode X ≔  
∃ if a ≤ b
∀ if a ≥ b

  

Set X ≔ [min a, b , max a, b ]′ 

 

The derivation of the canonical notation and its properties can be found in 

[29]. Inf X  and Sup X  are important definitions which form the canonical 

coordinates of a quite important diagram called (Inf, Sup)-diagram as shown  

in Figure 1.3. 
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A (existentional)

Sup

Inf

B (universal)

R (the real numbers)

C (point)

Figure 1.3: (Inf, Sup)-Diagram 

 
This Diagram is useful as it reveals the underlying structure of the modal 

intervals. The (Inf = Sup) line is the set of all real numbers, i.e., the set of 

degenerate modal intervals. The half plane above is the set of existential 

intervals, and the half plane below is the set of universal modal intervals. For 

degenerate modal intervals, quantifier modes “for all” and “there exists” 

coincide, i.e., they have the same meaning. The (Inf, Sup)-diagram reveals the 

structural difference between the classical and modal intervals. For example, 

the shaded area below the (Inf = Sup) line represents a set of invalid intervals 
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that do not belong to the I R  system. But this is the set of universal modal 

intervals in the I∗ R  system. If one views the (Inf, Sup)-diagram as an 

interval analogy of R divided into complimentary sets of positive and negative 

real numbers, a geometric insight is then provided into why I R  is not 

structurally complete. Restricting interval arithmetic to I R  is, by analogy, 

like restricting real arithmetic on R to the non-negative real numbers. Only the 

system I∗ R  completes the analogy by providing complementary sets of 

intervals which are the existential and universal modal intervals [6]. 

Other names for the existential and universal intervals are the proper and 

improper intervals respectively. This comes from that for existential (proper) 

intervals a ≤ b  while the universal (improper) intervals a ≥ b. 

1.3.5 Interval Extensions of Continuous Functions 

1.3.5.1 Modal Semantic Extensions 

One of the basic objectives of the interval analysis is to find an interval 

extension to any real function in 𝐑. In the Modal Interval Analysis, we have 

two objectives: 

 

1- Find an interval extension Rn  to R for a given real function 𝑓 from 

I∗(𝐑n )  to I∗(𝐑)   

2- The semantic meaning of the interval extension of that function 

 

The semantic meaning of the interval extensions is one of the major 

advantages that the modal intervals have over the classical intervals. To obtain 

a semantic meaning to the interval computations, we must relate the modal 

interval extensions to one of the two semantic extensions (* and ** 

extensions) which play the grounding role in the modal intervals theory by 

providing the semantic meaning (interpretations) to the interval calculations 

[5], [30]. 
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The definitions of the two semantic extensions are as following: 

Given a real function 𝑓 is an 𝐑n  to 𝐑 continuous function, 𝑋 =  𝑋𝑝 , 𝑋𝑖 ∈

I∗(𝐑n ) (where  𝑋 is a given vector of modal interval variables which can be 

divided into a vector of variables that have improper interval values 𝑋𝑖  and a 

vector of variables that have proper interval values 𝑋𝑝 ), 𝑥𝑝 ∈ 𝑋′𝑝 , 𝑥𝑖 ∈ 𝑋′𝑖   

(where 𝑋′𝑝  ,𝑋′𝑖   are the classical counterparts of 𝑋𝑝 , 𝑋𝑖)then: 

 

𝑓∗ 𝑋 ≔ 

=  min 𝑥𝑝 , 𝑋 ′
𝑝 max   𝑥𝑖 , 𝑋

′
𝑖 𝑓 𝑥𝑝 , 𝑥𝑖 , max 𝑥𝑝 , 𝑋 ′

𝑝 min 𝑥𝑖 , 𝑋
′
𝑖 𝑓 𝑥𝑝 , 𝑥𝑖    

 

𝑓∗∗ 𝑋 ≔  

=  max 𝑥𝑝 , 𝑋 ′
𝑝 min   𝑥𝑖 , 𝑋

′
𝑖 𝑓 𝑥𝑝 , 𝑥𝑖 , min 𝑥𝑝 , 𝑋 ′

𝑝 max 𝑥𝑖 , 𝑋
′
𝑖 𝑓 𝑥𝑝 , 𝑥𝑖   

   

We should note that in case there is no improper interval i.e. Xi =  ∅ then: 

 

𝑓∗ 𝑋 = 𝑓∗∗ 𝑋 =  min 𝑥𝑝 , 𝑋 ′
𝑝 𝑓 𝑥𝑝 , max 𝑥𝑝 , 𝑋 ′

𝑝 𝑓 𝑥𝑝   

 

Which is the united extension of the real continuous function in classical 

interval analysis [2], [5].The derivations of the previous semantic extensions 

can be found in [30]. 

The semantic extensions 𝑓∗ and 𝑓∗∗ can be equal or not, but 

(unfortunately) both 𝑓∗ and 𝑓∗∗  are out of reach for any direct computation 

(This comes from applying the original definitions of 𝑓∗ and 𝑓∗∗ mentioned 

above), except for simple real functions such as basic arithmetic operations. 

Fortunately, we can relate the modal interval extensions of some specific 

functions to the * and ** semantic extensions such that we can obtain a 

meaningful result. Theorems 4.3 through 4.9 in [5] specify the rules that make 

a modal interval extension interpretable by one of the semantic extensions (𝑓∗ 

and 𝑓∗∗).  
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One remaining thing in the * and ** semantic extensions is the semantic 

meaning of the interval results. Theorem 4.1 and Theorem 4.2 in [5], [30] 

reveal completely the meaning of the interval results of f ∗ and f ∗∗. The details 

of these theorems are stated in [5], [30]. 

1.3.6 Modal Interval Extensions of Basic Arithmetic Operations 

The modal interval extensions of the basic interval operations (+, -, *, /) can 

follow f*-extension or f**-extension [5], [30], [31]: 

If 𝐴 =  𝑎1, 𝑎2  𝑎𝑛𝑑 𝐵 =  𝑏1, 𝑏2   are modal intervals then 

 

𝐴 ⊚ 𝐵 = 𝑓∗ 𝐴, 𝐵 = 𝑓∗∗ 𝐴, 𝐵  

where ⊚∈  ⊕,⊖,⊙,⊘  

 

We should note that f*-extension and f**-extension are equal in the case 

of basic operations. This is mentioned in details in [5], [30], [31]. 

From the above we can conclude the following formulas for the basic 

modal interval arithmetic operations (addition, subtraction, multiplication and 

division) using the interval bounds [5], [30]. 

 

 𝐴 + 𝐵 =   𝑎1 + 𝑏1  ,𝑎2  +  𝑏2                                                                        

 

𝐴 − 𝐵 =   𝑎1 − 𝑏2  , 𝑎2 −  𝑏1                                                                       
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𝐴 ∗ 𝐵 =

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  
𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [𝑎1𝑏1,𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛  𝑎1𝑏1, 𝑎1𝑏2 

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [𝑎2𝑏1, 𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2𝑏1, 𝑎1𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [𝑎1𝑏1, 𝑎2𝑏1]

 𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 < 0                                   

                 𝑡𝑒𝑛  𝑚𝑎𝑥 𝑎1𝑏1,𝑎2𝑏2 , 𝑚𝑖𝑛 𝑎2𝑏1, 𝑎1𝑏2  

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  0,0              

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛  𝑎2𝑏2, 𝑎1𝑏2 

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  𝑎1𝑏2, 𝑎2𝑏2 

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛  0,0              
𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0                                  

                  𝑡𝑒𝑛  𝑚𝑖𝑛 𝑎2𝑏1, 𝑎1𝑏2 , 𝑚𝑎𝑥 𝑎1𝑏1,𝑎2𝑏2  

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛  𝑎2𝑏1, 𝑎1𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  𝑎1𝑏2, 𝑎2𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛  𝑎2𝑏2, 𝑎2𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  𝑎1𝑏2, 𝑎1𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2𝑏2, 𝑎1𝑏1]

  

 

 

𝐴
𝐵 =

 
 
 
 
 

 
 
 
 
𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏2, 𝑎2/𝑏1]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏2, 𝑎1/𝑏1]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏2,𝑎2/𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏1, 𝑎1/𝑏1]
𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏1,𝑎2/𝑏1]

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏2, 𝑎1/𝑏2]

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏1,𝑎2/𝑏2]

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏1, 𝑎1/𝑏2]

  

 

 

We should note that: 

1- For multiplication and division, we have different output depending on 

the input intervals bounds signs. 

 

2- The modal interval basic operations formulas coincide with Kaucher 

interval basic operations[7] (Kaucher Intervals were proposed by 

E.Kaucher in 1980.  They are another extension to the classical 

intervals which take into account the improper intervals in the interval 
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computations and try to solve the major shortages which we mentioned 

in the classical interval space. For further information about kaucher 

intervals, review [7]). 

 

3- Classical basic operations formulas are subset of modal basic 

operations formulas which may indicate that modal intervals are the 

generalization form of classical intervals. 

 

Another important definition is the Dual operator which is used in many 

modal theorems. One of its uses is to express inner rounding in terms of outer 

rounding as we will see later [5]. 

 

𝐼𝑓 𝐴 =   𝑎1 ,𝑎2   𝑡𝑒𝑛 𝐷𝑢𝑎𝑙 𝐴 =   𝑎2 , 𝑎1    

1.3.7 Advantages over classical intervals: 

The modal intervals managed to solve some of the problems in classical 

intervals[5], [6]. 

1- There is additive inverse in modal intervals 

For example, the additive inverse of 𝑋 = [0,1] is −𝐷𝑢𝑎𝑙 𝑋 =

−𝐷𝑢𝑎𝑙  0,1  = − 1,0 = [0, −1] such that 𝑋 − 𝐷𝑢𝑎𝑙 𝑋 =

 0,1 −  1,0 =  0,1 + [0, −1] = [0,0] 

 

2- There is multiplicative inverse in modal intervals 

For example, the multiplicative inverse of 𝑋 = [1,2] is 1/

𝐷𝑢𝑎𝑙(𝑋) = 1/[2,1] such that 𝑋 ×  1 𝐷𝑢𝑎𝑙 𝑋   =  1,2 ×

1 [2,1] =  1,2 ×  1, 1 2  = [1,1] 

 

3- The sub-distributive law is stronger than that of the classical 

 

𝐼𝑚𝑝𝑟 𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐶 ⊆ 𝐴 ∙  𝐵 + 𝐶 ⊆ 𝑃𝑟𝑜𝑝 𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐶 

 

Given that  

𝑃𝑟𝑜𝑝  𝑎, 𝑏  =  min 𝑎, 𝑏 , max 𝑎, 𝑏   

𝐼𝑚𝑝𝑟𝑜𝑝  𝑎, 𝑏  =  max 𝑎, 𝑏 , min 𝑎, 𝑏    
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For example, 

 1,3 ∙   1,1 +  −1, −1   

=  3,1 ∙  1,1 +  1,3 ∙  −1, −1  

=  3,1 +  −3, −1 = [0,0] 

While in the classical: 

 1,3 ′ ∙  1,1 ′ +  1,3 ′ ∙  −1, −1 ′ = [−2,2]′ 

 

4- Not only solving the interval equations that the classical failed in 

solving it but also obtaining a meaningful interval results when solving 

these equations (As shown in the example in the "Aim of Modal 

Intervals" section) 

 

Unfortunately, the dependency problem is not solved in the modal 

intervals but in some cases we can obtain tighter intervals than the classical 

ones (as in the case of the sub-distributive law). 

To show the significant difference between the classical and modal 

intervals in real applications, let us consider the simulation of the derivative 

control process as stated in [39]. The derivative equation is as following: 

𝑑𝑣

𝑑𝑡
= 𝑘𝑑 𝑣0 − 𝑣 −

1

𝑠
 𝑣 − 𝑣𝑎  

Where: 

v   : sensored tooling speed 

v0 : nominal control speed 

kd  : action factor of control 

va  : sensor shift due to surroundings 

s   : sensitivity factor of sensor 

The numerical version of the above equation is as following: 

𝑣 𝑘 + 1 = 𝑣 𝑘 + 𝑘𝑑 𝑣0 − 𝑣 𝑘  −
1

𝑠
 𝑣 𝑘 − 𝑣𝑎   

Where k is the simulation time. 

 

Now, consider that we want to implement the uncertainty in the 

parameters of this equation; we simply implement the parameters with 
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intervals and use the corresponding interval extensions. The naive classical 

extension of the simulation equation is: 

𝑉 𝑘 + 1 = 𝑉 𝑘 + 𝐾𝑑  𝑉0 − 𝑉 𝑘  −
1

𝑆
[𝑉 𝑘 − 𝑉𝑎 ] 

 

The modal extension of the simulation equation is: 

𝑉 𝑘 + 1 = 𝑉 𝑘 + 𝐾𝑑 [𝑉0 − 𝐷𝑢𝑎𝑙(𝑉 𝑘 )] −
1

𝑆
[𝐷𝑢𝑎𝑙(𝑉 𝑘 ) − 𝑉𝑎 ] 

 

Consider now the uncertain parameters take the following interval values: 

V0 = [240 , 241]  

Kd = [0.004 , 0.005]  

Va = [2 , 3]  

S =  1000 , 1001  

V(0) = [3 , 3]     

Figure 1.4 shows the modelling of the tooling speed (V) with time for the 

midpoints real function, classical and modal interval extensions. 

     

Figure 1.4: variation estimation based on modal interval  

compared to classic interval methods 
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The figure shows the significant difference between the modal and classical 

interval methods. It appears that the modal solution is tighter than the classical 

one. We should note also that the above naive classical extension not only has 

a much wider interval solution but also has totally wrong values (negative 

values) as shown in the figure. 

Of course, the classical interval analysis provides many ways to overcome the 

amplification of wideness in the resulting intervals. One simple method is to 

reformulate the equation to decrease the severity of dependency problem [2]. 

Considering the previous Classical extension equation, if we rewrite it as 

following:  

𝑉 𝑘 + 1 = 𝑉 𝑘 [1 − 𝐾𝑑 − 1 𝑆 ] + 𝐾𝑑𝑉0 + 𝑉𝑎 𝑆 ] 

The classical interval results will be enhanced as seen in the Figure 1.5. 

Nevertheless, the modal results are tighter than that of the classical. 

 

 

Figure 1.5: variation estimation based on modal interval  

compared to classic interval methods (equation reformulation) 
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Another method, to enhance the classical results, is to subdivide each 

input interval into N sub-intervals then recalculate the interval equation N-

times. So we will have N-interval results which we make union for them to 

obtain the final result. As the subdivision method is not in the scope of this 

thesis, we will mention only the effect of using this method on the interval 

results (Check [2], [37] for more information about this method). Figure 1.6 

shows the classical and modal interval results after uniformly subdividing each 

input interval (Kd , V0 , Va , S) into N = 4 sub-intervals. 

 

 

Figure 1.6: variation estimation based on modal interval  

compared to classic interval methods (Sub-division method) 

 

Clearly, the subdivision method enhances the classical results and makes 

them closer to the modal results. But this comes on the cost of consuming time 

as we repeat calculations N-times (as we have N Sub-intervals). Other 

examples that show the advantages of modal intervals over the classical 



 

27 

 

counterparts can be found in [5], [6], [39]. 

From the above discussion, we can see that the modal intervals space 

mathematically completes the classical intervals space and overcomes some of 

its problems. In chapter two, we will first introduce the concept of rounded 

interval arithmetic and how intervals can be implemented on digital systems 

(either in software or in hardware) then we will discuss the motivation behind 

this work. After that we will discuss some of the previous works done in that 

field. In chapter three, we will move to the hardware implementation of the 

Modal Interval Adder/Subtractor and Multiplier and show the results of two 

different implementations for each unit (serial and parallel implementations) 

on FPGAs and ASICs. In chapter four, we will discuss the testing results and 

show comparisons with other implementations. Also in chapter four, we will 

give a conclusion of the thesis work and the future work directions.  
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Chapter 2 

2 Previous Work and Motivation 

2.1 Rounded Interval Arithmetic 

As we mentioned before in the Introduction section, the floating point 

representation of real numbers is not exact and due to this limitation, rounding 

errors occur in the numerical computations which results in catastrophic 

errors.  

In case of representation of intervals, either modal or classical, on 

computers, we map the real interval bounds into floating point numbers with 

proper rounding for each bound. Unlike the floating point representation of the 

real numbers, the floating point representation of the two interval bounds with 

proper rounding for each bound leads to monitoring and controlling the errors 

in numerical computations. 

In case of classical intervals, to correctly enclose all the interval values we 

make rounding out which means the lower interval bound rounded to -∞ 

(sometimes called rounded down) and the upper interval bound rounded to +∞ 

(sometimes called rounded up)[2]. 

 

    𝑂𝑢𝑡  𝑎1, 𝑎2 ′ =  ∇𝑎1, ∆𝑎2 ′  

 

When doing interval addition, subtraction, multiplication or division, the 

result of each operation is rounded down for lower bound and rounded up for 

the upper bound[8].  
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1 1 2 2

1 2 2 1

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2 1 1 1 2

' ' [ ( ), ( )]

' ' [ ( ), ( )]

'* ' [min( ( ), ( ), ( ), ( )),max( ( ), ( ), ( ), ( ))]

'/ ' [min( ( / ), ( / ), ( / ), ( / )),max( ( / ), ( / )

A B a b a b

A B a b a b

A B a b a b a b a b a b a b a b a b

A B a b a b a b a b a b a b

     

     

        

       2 1 2 2, ( / ), ( / ))],0a b a b B  

 

Unfortunately, out rounding the interval is not always right if we talk 

about modal intervals. We may need inner rounding[5], [6]. Inner rounding is 

rounding the first interval bound up and the second interval bound down. 

 

𝐼𝑛𝑛  𝑎1, 𝑎2  =  ∆𝑎1, ∇𝑎2  

 

To know why inner rounding is also needed, consider the following 

example: 

The exact solution of the following equation: 

 4 3 , 5 3  +  𝑥1, 𝑥2 =  2,7  

  𝑥1, 𝑥2 =  2,7 − 𝐷𝑢𝑎𝑙  4 3 , 5 3    

 =  2,7 +  − 4 3 , − 5 3   

 = [2 3 , 16 3 ] 

 

But for  𝑂𝑢𝑡 𝐴 + 𝑋 = 𝐵 

𝑂𝑢𝑡( 4 3 , 5 3  ) +  𝑥1, 𝑥2 =  2,7  

  𝑥1, 𝑥2 =  2,7 − 𝐷𝑢𝑎𝑙  1.3,1.7   

 =  2,7 +  −1.3, −1.7  

 = [0.7,5.3] 

Which doesn't contain the exact interval result, but for 𝐼𝑛𝑛 𝐴 + 𝑋 = 𝐵 

𝐼𝑛𝑛( 4 3 , 5 3  ) +  𝑥1, 𝑥2 =  2,7  

  𝑥1, 𝑥2 =  2,7 − 𝐷𝑢𝑎𝑙  1.4,1.6   

 =  2,7 +  −1.4, −1.6  

 = [0.6,5.4] 

Which contains the exact result. 
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As we will see later, due to the Dual operator we can express the inner 

rounding in terms of the outer rounding so there is no need to implement inner 

rounding. Only outer rounding can be used. 

2.2 Digital Representation 

The two interval bounds can be digitally represented as fixed point or floating 

point numbers. Fixed point numbers are suitable for digital signal processing 

control units[9]. Floating point representation can be single, double or variable 

precision. As our main target is to add support for modal interval basic 

operations in common computer systems, the best solution is representing 

modal interval bounds using double precision binary floating point numbers. 

IEEE standard for double precision binary floating point numbers specifies 64 

bit for each number as following[10]: 

 

S E                          M 

 

1 bit for the sign bit (S), 11 bits for the biased exponent (E) and 52 bits for the 

mantissa (M). The mantissa contains a hidden one according to the IEEE 

standard so the actual precision is 53 bits. The value of a normalized IEEE 

double precision number is 

 

(−1)𝑆 ∗ 1. M ∗ 2E−1023   

 

This means to minimally represent modal interval we need 128 bits each 64 bit 

representing one IEEE double precision binary floating point number. 
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2.3 Motivation 

2.3.1 Modal versus classical intervals 

Choosing to implement modal interval addition, subtraction and multiplication 

comes from the fact that modal intervals overcome some problems in classical 

intervals as we mentioned before. Besides, it is believed that modal intervals 

are the natural extension of classical intervals. Also modal interval analysis 

found the way to some applications in computer graphics and control[5], [6], 

[11]. 

2.3.2 Hardware versus Software Implementation 

The problem of software implementation of intervals basic operations is the 

bad performance. Several reasons make software slower than hardware: 

1- Changing rounding mode which causes a large overhead in case of 

pipeline architecture because of pipeline flushing. 

 

2- Function's calls if interval operations are implemented as functions 

 

3- Sign test and choosing the correct case which is in multiplication and 

division operations 

 

Some software implementations may have all the reasons and others may 

have one or two. In general the need for hardware support for interval 

arithmetic is increasing due to the increase in applications using interval 

arithmetic and the need to have arithmetic units giving higher accuracy with a 

speed comparable to that of the normal floating point arithmetic units [3], [4], 

[6], [8].   

 

This thesis presents the hardware implementation of the modal interval 

adder, subtractor and multiplier using IEEE double precision binary floating 

point adder, subtractor and multiplier. 
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2.4 Previous Work 

2.4.1 Classical Intervals 

Many papers describe the hardware implementation of classical interval basic 

operations. For example: 

 

1- Hardware support for interval instructions is provided in UltraSPARC-

III processors with the “Set Interval Arithmetic Mode” (SIAM) 

instructions. These instructions improve the efficiency of interval 

arithmetic by enabling the rounding mode bits in the floating-point 

status register (FSR) to be overridden without the resulting overhead of  

pipeline flush. It enables the interval rounding mode to be changed 

every cycle without flushing the pipeline. Typical interval performance 

improvement from the SIAM instruction has been measured to be 

approximately 30% [19], [26]. 

  

2- Changing in the architecture of the basic floating point arithmetic unit 

to overcome the problem of changing rounding mode and thus 

eliminates the pipeline flushing in case of interval arithmetic 

operations. As in [27], we can modify the double path adder 

architecture such that it works on two addition operations in the close 

and far path instead of one. The double path floating point adders are 

based on performing speculatively addition on two distinct low latency 

paths (CLOSE and FAR path) [35], [36]. The correct result is selected 

at the end of the computation. The modified addition unit exploits the 

parallelism of the double adder’s structure by performing the two 

operations required for an interval addition/subtraction simultaneously, 

each on a different path. In order to do so, several changes have been 

made to the classic architecture of the floating point adder: 

a. The sign and exponents computation circuits have been 

duplicated (two signs and two exponents are computed). 

b. A dedicated module has been placed before the splitting of the 

two paths.  

The role is to dispatch the required operands (along with the effective 

operation and rounding mode) on their corresponding path. The two 

operations required for an interval addition/subtraction can be 

performed either simultaneously (favourable case), or sequentially. The 
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favourable case is the case when we have operations (effective 

additions and subtractions) with exponents’ difference equal to 0 or 1 

which can be executed properly on the CLOSE path. 

 

Also the multiplier is modified such that it produces results with 

multiple rounding schemes (i.e. the multiplier has more than one result, 

one rounded towards negative infinity and the other rounded towards 

positive infinity). By this way we do not need to change rounding mode 

each cycle. 

 

3- Fixed point Interval-ALU for digital signal processing and control 

applications [9]: 

 

The overall architecture of the I-ALU can be seen in the block diagram 

shown in Figure 2.1. The hardware model is divided into four parts. the 

flag generator, lower bound and upper bound modules, and the 

rounding unit. The flag generator module is responsible for generating 

the control signals for the more complicated classical interval 

multiplication operation. Based on the signs of the input operands, the 

flag generator generates control signals to select the appropriate 

multiplication case among the nine cases that we mentioned earlier in 

classical intervals section. The lower bound module and the upper 

bound module calculate the lower and upper bounds of the output 

interval, respectively. These two modules are independent of each other 

and hence operate in parallel. The rounding unit implements the 

Outward Rounding of the interval result. 
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Figure 2.1: Block Diagram of I-ALU 

 

The ALU is designed for operation on 16 bit input interval numbers in 

the two’s complement form. The I-ALU operations are 16-bit fixed 

point interval addition, subtraction, multiplication and multiply-

accumulate. This ALU is suitable for specific DSP and control 

applications which do not need high precision and have small range of 

variations to be suitable with fixed point implementation 

 

 

4- A combined interval floating point arithmetic units that can work either 

in floating point mode (normal mode) or in interval mode [20],[21]: 

 

These designs are based on the approach that an interval multiplier (or 

divider) can share hardware with an existing floating point multiplier 

(or divider), thereby achieving the performance benefits of a interval 

multiplier (or divider) at relatively low costs. The multiplier design 

does not solve the uncommon case of multiplication where both end-

points contain zero. Instead, it resorts to software solutions to solve it. 

Interval multiplication (or division ) in that case requires only one more 

cycle than floating point operation, and is one to two orders of 

magnitude faster than software implementations of interval 

multiplication. 
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5- Full hardware implementation for interval arithmetic operations (to be 

as fast as floating point operations) as suggested in [24]: 

 

The author suggests implementations for the interval basic operations 

(addition, subtraction, multiplication and division) such that the interval 

operations speed can be as fast as the normal floating point operations. 

This comes by using parallelism. To speed up interval operations, we 

should have two operation units (two adder, subtractors, multipliers or 

dividers). One unit is to calculate the result's lower bound and the other 

is to calculate the result's upper bound. Once again, we should notice 

that in case of multiplication and division the matters are a little more 

complicated as we reduce number of operations dependent on the input 

operands. 

 

6- Variable precision interval arithmetic processors [22], [23]: 

 

The author presents designs, arithmetic algorithms and software 

support for a family of variable precision, interval arithmetic 

processors. These processors give the programmer the ability to detect, 

and if desired, to correct the implicit errors in finite precision numerical 

computations. The processors are two to three orders of magnitude 

faster than software packages that provide similar functionality. 

 

2.4.2 Modal Intervals 

There is no published work about the hardware implementation of the modal 

interval basic operations which is our point of research. 

From the above, we can see that there are many contributions done in 

hardware support of classical interval basic operations while there is no work 

done for the modal interval hardware support. As we will see the cost of 

adding support to modal intervals may be lower than the cost of adding 

support to classical intervals only. 
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Chapter 3 

3 Hardware Implementation 

3.1 Modal Interval Double Floating Point Adder/Subtractor 

Implementation 

Usually the addition and subtraction operations are combined into one unit 

thus the modal interval adder/subtractor will be one unit. 

The definition of modal interval addition and subtraction with outer 

rounding as following: 

If 𝐴 =   𝑎1, 𝑎2 , 𝐵 =   𝑏1,𝑏2  are modal intervals then 

 

𝐴 + 𝐵 =  ∇ 𝑎1 + 𝑏1  ,∆ 𝑎2 + 𝑏2    

 

𝐴 − 𝐵 =  ∇ 𝑎1 − 𝑏2  , ∆ 𝑎2 − 𝑏1    

 

It should be noticed that from hardware point of view there is no difference 

between classical and modal intervals addition/subtraction except for 

1- A, B are modal intervals 

 

2- According to Theorems 4.5, 4.8 and 4.9 in [6], the DUAL operator may 

be used in addition or subtraction operation. 

   

3- As mentioned before, outer rounding does not assure the enclosure of 

all results so inner rounding may be used. 

 

The DUAL operator may be parsed and handled by the compiler without any 

overhead (No additional clock cycles to make the DUAL operation). 
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For inner rounding, from the following relations [5][6]: 

 

( ) ( ( ( )))Inn X Dual Out Dual X  

( ) ( ( ( ) ( )))Inn A B Dual Out Dual A Dual B   

Where ∘ denotes addition or subtraction 

We can express inner rounding in terms of outer rounding thus inner rounding 

may be realized also by the compiler. 

From the above discussion, the modal interval double precision floating 

point adder/subtractor can be implemented exactly as the floating point 

classical interval adder/subtractor if we rely on the compiler to resolve the 

DUAL operator and inner rounding. 

3.1.1 Handling Infinities in input intervals 

One or the two bounds of the input operands may contain ±∞.This is called 

extended modal interval addition/subtraction. The following two tables write 

down all the cases of inputs including ±∞ for addition and subtraction 

respectively. 

Table 3.1: Extended Modal Interval Addition 

 

Table 3.2: Extended Modal Interval Subtraction 
 

Addition (−∞, b2] [b1, b2] [b1, +∞  (−∞,+∞  (+∞,−∞) (+∞, b2] [b1, −∞) 

(−∞, a2] (−∞, a2+b2] (−∞, a2+b2] (−∞,+∞  (−∞,+∞  (Nan, −∞) (Nan, a2+b2] (−∞,+∞  

[a1, a2] (−∞, a2+b2] [a1+b1, a2+b2] [a1+b1,+∞  (−∞,+∞  (+∞,−∞) (+∞, a2+b2] [a1+b1, −∞) 

[a1, +∞  (−∞,+∞  [a1+b1,+∞  [a1+b1,+∞  (−∞,+∞  (+∞, Nan) (+∞,+∞) [a1+b1, Nan) 

(−∞,+∞  (−∞,+∞  (−∞,+∞  (−∞,+∞  (−∞,+∞  (Nan, Nan) (Nan, +∞  (−∞,Nan) 

(+∞,−∞) (Nan, −∞) (+∞,−∞) (+∞,Nan) (Nan, Nan) (+∞,−∞) (+∞,−∞) (+∞,−∞) 

(+∞, a2] (Nan, a2+b2] (+∞, a2+b2] (+∞,+∞  (Nan, +∞  (+∞,−∞) (+∞, a2+b2] (+∞,−∞) 

[a1, −∞) (−∞,−∞) [a1+b1, −∞) [a1+b1, Nan) (−∞,Nan) (+∞,−∞) (+∞,−∞) [a1+b1, −∞) 

Subtraction (−∞, b2] [b1, b2] [b1, +∞  (−∞,+∞  (+∞,−∞) (+∞, b2] [b1, −∞) 

(−∞, a2] (−∞,−∞) (−∞, a2− b1] (−∞, a2− b1] (−∞,+∞  (Nan, −∞) (−∞,−∞) (Nan, a2− b1] 

[a1, a2] [a1− b2, +∞  [a1− b2, a2− b1] (−∞, a2− b1] (−∞,+∞  (+∞, −∞) [a1− b2, −∞) (+∞, a2− b1] 

[a1, +∞  [a1− b2, +∞  [a1− b2, +∞  (−∞,+∞  (−∞,+∞  (+∞,Nan) [a1− b2, Nan) (+∞,+∞  

(−∞,+∞  (−∞,+∞  (−∞,+∞  (−∞,+∞  (−∞,+∞  (Nan, Nan) (−∞,Nan) (Nan,+∞  

(+∞,−∞) (+∞,Nan) (+∞,−∞) (Nan, −∞) (Nan, Nan) (+∞, −∞) (+∞, −∞) (+∞, −∞) 

(+∞, a2] (+∞,Nan) (+∞, a2− b1] (Nan, a2− b1] (Nan, +∞  (+∞, −∞) (+∞, −∞) (+∞, a2− b1] 

[a1, −∞) [a1− b2, Nan) [a1− b2, −∞) (−∞,−∞) (−∞,Nan) (+∞, −∞) [a1− b2, −∞) (+∞, −∞) 
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Note that the shaded part coincides with the classical cases as in [8]. From 

modal interval addition and subtraction equations, we can say that the modal 

interval addition/subtraction consists of two normal floating point 

addition/subtraction operations rounded to -∞ and +∞ respectively.  Thus 

handling infinities in the modal interval addition/subtraction coincide with 

handling infinities in the normal floating point addition/subtraction with the 

proper rounding. Table 3.3: Floating Point Addition and Table 3.4: Floating 

Point Subtraction show the floating point addition/subtraction including ±∞ in 

inputs according to the IEEE 754 standard [10]. 

 

Addition −∞ B +∞ 

−∞ −∞ −∞ Nan 

A −∞ A+B +∞ 

+∞ Nan +∞ +∞ 

Table 3.3: Floating Point Addition 

 

Subtraction −∞ B +∞ 

−∞ Nan −∞ −∞ 

A +∞ A−B −∞ 

+∞ +∞ +∞ Nan 

Table 3.4: Floating Point Subtraction 

3.1.2 Hardware Implementation 

The implementation of modal interval double floating point adder/subtractor 

can be realized by many ways.  Two designs are presented here, one design to 

maximize the speed and the other to minimize the area.  
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3.1.2.1 Serial Interval Adder/Subtractor 

3.1.2.1.1 Hardware Architecture 

The high level architecture of the MIBFP Add/Sub (Modal Interval Binary 

Floating Point Adder/Subtractor) as in Figure 3.1 

 

Interval 

Pre-processing 

Unit

Double floating point

Adder/Subtractor 

Interval 

Post-Processing

Unit

Interval A

128

Interval B

128

Add/Sub
ClkResetEnable

Operand

A

Operand

B Add/Sub

Rounding

Mode
6464

Rounded 

Result

64

Interval 

Result

Result Ready 

Flag

128

 

Figure 3.1: Modal Interval Double Floating Point Adder/Subtractor 

(Serial Implementation) 

 

Interval Pre-processing unit:  

Divides the interval operands into two sequential floating point 

addition/subtraction operations with the appropriate rounding mode for 



 

40 

 

each operation (the first operation which is the first bound in the interval 

result rounded to −∞ and the other rounded to +∞). The logic circuit of the 

pre-processing unit is shown in the following figure. 

D Q

0

1

D Q

D Q

0

1

D Q

0

1

D Q

0

1

0

1

Add_Sub
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SBIB
FBIB

clk

clk

clk

clk

clk

64 64

64

64

Rounding_Mode

Add_Sub_out

Operand_A

Operand_B

 

Figure 3.2: pre-processing unit logic circuit 

 

 

BFP Adder/Subtractor: 

It is a normal double floating point adder/subtractor. The floating point unit 

was originally built using the open source VHDL code of the IEEE-754 

compliant double precision floating point core posted at opencores site [40]. 

The VHDL source code of the floating point adder and subtractor were 

massively modified to fix bugs in pipelining, handling special cases (like 
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denormalized numbers and infinities), reduces number of pipeline stages 

and to merge both units (adder and subtrtactor) into one Adder/Subtractor 

unit. The design and implementation of the floating point adder/subtractor 

unit will not be discussed as this is out of the scope of the thesis topic. 

However, the area and timings results of this unit are used to compare with 

the results obtained for the Modal interval designs. 

  

Interval Post-Processing unit: 

Collects the two floating point results into one interval result then raises a 

flag for ready result. The logic circuit of the post-processing unit is shown 

in the following figure. 

D Q

clk

Result_Ready

1

0

D Q

D Q

clk

IntervalResult_FB

IntervalResult_SB

clk

64

64

64

Rounded_Result

 

Figure 3.3: post-processing unit logic circuit 

 

3.1.2.1.2 Pipeline stages 

The following figure shows a schematic for the pipeline stages of executing 

two modal interval addition (or subtraction) operations. 
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Figure 3.4: Pipeline stages for Serial MIBFP Adder/Subtractor 

As shown, the pre-processing unit applies the inputs to the floating point 

adder/subtractor on two cycles (Pre-Process C-1 and Pre-Process C-2 cycles). 

The floating point adder/subtractor takes seven clock cycles to execute (from 

Adder/Sub C-1 to Adder/Sub C-7). The post-processing unit receives the first 

result's bound in the Post-Process C-1 cycle then receives the second result's 

bound in the Post-Process C-2 cycle and flags result ready. 

3.1.2.1.3 Logic Synthesis 

The modules are written in VHDL and synthesized using Quartus-II Altera 

software tool. Two types of Altera FPGAs are used to implement the MIBFP 

Adder/Subtractor as a prototype [12]: 

1- Cyclone II (lower power, cost and speed) 

Device EP2C35F672C6 of Cyclone II Family is used. The results are as 

shown in Table 3.5: 

 
 Area Timings 

 

No. of LEs  
No. of 

Registers 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP Adder/Subtractor 1813 741 121 7 1 

Serial 

MIBFP Adder/Subtractor 
2007 950 120.5 10 0.5 

Table 3.5: Area and Timings (Serial MIBFP adder/subtractor – Cyclone II) 

 
2- Stratix III (higher power, cost and speed) 

Device EP3SL50F780C2 of Stratix III Family is used. The results are 

as shown in Table 3.6: 
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 Area Timings 

 

No. of LEs  
No. of 

Registers 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP Adder/Subtractor 1178 745 250 7 1 

Serial 

MIBFP Adder/Subtractor 
1230 997 250 10 0.5 

      Table 3.6: Area and Timings (Serial MIBFP adder/subtractor – Stratix III) 

 

The FPGA synthesis is good to make a fast prototype of the hardware 

implementation but it has the disadvantage of lower speed than ASIC speed. 

Besides, we don't have solid information about the area (in terms of area units 

not in terms of number of logic elements as in ALTERA FPGAs). So, the 

design is implemented using an ASIC standard cell library (the Nangate 45nm 

Open Cell Library) [13]. The synthesis is done using the Synopsis Design 

Compiler software tool. The results are as shown in Table 3.7: 

 
 Area (mm2) Timings 

 Combinational 

Area 
(𝑚𝑚2)  

Registers  

Area 
(𝑚𝑚2) 

Interconnect 

Area 
(𝑚𝑚2) 

Clock 

Frequency 

(GHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP 

Adder/Subtractor 
0.0055 0.0039 0.0032 1.176 7 1 

Serial MIBFP 

Adder/Subtractor 
0.0059 0.0051 0.0037 1.176 10 0.5 

Table 3.7: Area and Timings (Serial MIBFP adder/subtractor – Nangate 45nm) 

 

As we notice from the previous tables that the pipeline throughput is 1 

result per two clock cycles which is half the throughput of normal floating 

point adder/subtractor. Percentage increase in the area is about 16% of the 

normal BFP adder/subtractor. 

The advantage of that design is that we use only one floating point 

adder/subtractor to implement modal interval adder/subtractor. This 

implementation decreases the area and power consumption. On the other hand 

it decreases the interval operation speed to half speed of the normal floating 

point operation which means that we have interval result each two clock 

cycles (in case of pipelining) as shown in tables 3.5, 3.6 and 3.7. 
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3.1.2.2 Parallel Interval Adder/Subtractor 

3.1.2.2.1 Hardware Architecture 

The high level architecture of the parallel BFP Modal Interval 

Adder/Subtractor is as in Figure 3.5 
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Double floating point
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Operand A_2Add/Sub

Rounding Down Rounding Up

64
64 64

64

Rounded

Result

 

Figure 3.5: Modal Interval Double Floating Point Adder/Subtractor 

(Parallel Implementation) 

 

Interval Pre-processing unit:  

Divides the interval operands into two parallel floating point 

addition/subtraction operations with the appropriate rounding mode for 
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each operation (one operation which is the first bound in the interval result 

rounded to −∞ and the other to +∞). The logic circuit of the pre-processing 

unit is shown in the following figure. 
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Add_Sub
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64 64

64

64
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64

64

Operand_B_2

Operand_A_2

Operand_A_1

64

64

 Figure 3.6: pre-processing unit logic circuit 

 

BFP Adder/Subtractors: 

They are normal double floating point adder/subtractor units. As mentioned 

in the Serial Implementation section, the floating point unit was built on a 

modified VHDL source code posted at opencores site. 

3.1.2.2.2 Pipeline stages 

The following figure shows a schematic for the pipeline stages of executing 

three modal interval addition (or subtraction) operations. 
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Figure 3.7: Pipeline stages for Parallel MIBFP Adder/Subtractor 

As shown, the pre-processing unit applies the inputs to the two floating 

point adder/subtractor units in one clock cycle (Pre-Process C-1). The floating 

point adder/subtractors take seven clock cycles to execute (from Adder/Sub C-

1 to Adder/Sub C-7). The output of each unit is fed into the corresponding 

result operand register directly. 

3.1.2.2.3 Logic Synthesis 

As mentioned before, The modules are written in VHDL and synthesized 

using Quartus-II Altera software tool (for FPGA) and Synopsis Design 

Compiler (for ASIC). Two types of Altera FPGAs are used to implement the 

MIBFP Adder/Subtractor [12]: 

1- Cyclone II (lower power, cost and speed) 

Device EP2C35F672C6 of Cyclone II Family is used. The results are as 

shown in Table 3.8: 

 

 Area Timings 

 No. of 

LEs 

No. of 

Registers 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP Adder/Subtractor 1813 741 121 7 1 

Parallel 

MIBFP Adder/Subtractor 
3784 1716 118 8 1 

Table 3.8: Area and Timings (Parallel MIBFP adder/subtractor – Cyclone II) 

 

2- Stratix III (higher power, cost and speed) 

Device EP3SL50F780C2 of Stratix III Family is used. The results are 

as shown in Table 3.9: 

 

 Area Timings 
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 No. of 

ALUTs 

No. of 

Registers 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP Adder/Subtractor 1178 745 250 7 1 

Parallel 

MIBFP Adder/Subtractor 
2358 1719 250 8 1 

Table 3.9: Area and Timings (Parallel MIBFP adder/subtractor – Stratix III) 

 

The ASIC results are as shown in Table 3.10: 

 

 Area (mm2) Timings 

 Combinational 

Area 
(𝑚𝑚2) 

Registers  

Area 
(𝑚𝑚2) 

Interconnect 

Area 
(𝑚𝑚2) 

Clock 

Frequency 

(GHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP 

Adder/Subtractor 
0.0055 0.0039 0.0032 1.176 7 1 

Parallel 

MIBFP 

Adder/Subtractor 

0.0113 0.0089 0.0068 1.176 8 1 

Table 3.10: Area and Timings (Parllel MIBFP adder/subtractor – Nangate 45nm) 

 

As we notice from the previous tables that the modal interval 

adder/subtraction pipeline throughput is the same as the normal BFP 

adder/subtractor. Percentage increase in the area is about 115% of the normal 

BFP adder/subtractor while percentage increase over the serial modal interval 

adder/subtractor is about 84%. 

Clearly from the above we use two parallel floating point adder/subtractor 

units to implement modal floating point adder/subtractor thus the modal 

interval addition/subtraction operation executes as fast as the normal floating 

point addition/subtraction operation i.e we have interval result each clock 

cycle (in case of pipelining). This comes on the cost of increasing the area 

(almost the double) as shown in tables 3.8, 3.9, and 3.10. 

 

 

 

 

 

Combined results for the serial and parallel designs are in the following table: 
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 Cyclone II Stratix III Nangate 45nm Cell 

Library 

 Area 

Increase % 

Clock 

Frequency 

(MHz) 

Area 

Increase % 

Clock 

Frequency 

(MHz) 

Area 

Increase % 

Clock 

Frequency 

(MHz) 

BFP Add/Sub - 121 - 250 - 1176 

Serial 

MIBFP Add/Sub 

15.8% 120.5 15.8%  250 16.7% 1176 

Parallel 

MIBFP Add/Sub 

115.3% 118 112% 250 114.3% 1176 

Table 3.11: Interval Adder/Subtrtactor (Combined Results) 

 

We should notice that, the percentage increases are close for the two devices 

which are from two different families. The clock frequencies differ from the 

BFP adder/subtractor for the same device although they should be the same 

but this is due to variations in the ALTERA CAD tool design rules. 
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3.2 Modal Interval Double Floating Point Multiplier 

Implementation 

The definition of modal interval multiplication with outward rounding is as 

follows: 

𝐴 ∗ 𝐵 =

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  
𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [∇𝑎1𝑏1,∆𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛  ∇𝑎1𝑏1, ∆𝑎1𝑏2 

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [∇𝑎2𝑏1, ∆𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [∇𝑎2𝑏1, ∆𝑎1𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [∇𝑎1𝑏1, ∆𝑎2𝑏1]
 𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 < 0                                         

            𝑡𝑒𝑛  𝑚𝑎𝑥 ∇𝑎1𝑏1,∇𝑎2𝑏2 , 𝑚𝑖𝑛 ∆𝑎2𝑏1, ∆𝑎1𝑏2  

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  0,0                    

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛  ∇𝑎2𝑏2, ∆𝑎1𝑏2 

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  ∇𝑎1𝑏2, ∆𝑎2𝑏2 

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛  0,0                    
 𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0                                         

            𝑡𝑒𝑛  𝑚𝑖𝑛 ∇𝑎2𝑏1, ∇𝑎1𝑏2 , 𝑚𝑎𝑥 ∆𝑎1𝑏1,∆𝑎2𝑏2  

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛  ∇𝑎2𝑏1, ∆𝑎1𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  ∇𝑎1𝑏2, ∆𝑎2𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛  ∇𝑎2𝑏2, ∆𝑎2𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛  ∇𝑎1𝑏2, ∆𝑎1𝑏1 

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [∇𝑎2𝑏2, ∆𝑎1𝑏1]

  

Figure 3.8: Outward rounded Modal Interval Multiplication 

 

The differences, from hardware point of view, between classical and modal 

interval multiplications are 

1- It should be noted that cases 1, 3, 4, 9, 10, 11, 12, 14 and 15 are exactly 

the same as in classical multiplication. The other 7 cases one or the two 

operands are pure modal intervals. This ensure that modal interval 

arithmetic is the generalization form of classical interval arithmetic 

 

2- According to Theorems 4.5, 4.8 and 4.9 in [5], the DUAL operator may 

be used in multiplication operation 
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3- As mentioned before, outer rounding cannot assure the enclosure of all 

results so inner rounding may be used 

  

As we mentioned before, we need outer and inner rounding. As we can 

express inner rounding in terms of outer rounding thus inner rounding may be 

resolved by the compiler like the outer rounding. 

From the above discussion, the only difference between modal interval 

double precision floating point multiplier and that of the classical is the new 7 

cases added in modal interval multiplication. 

3.2.1 Handling Infinities in input intervals  

One or the two bounds of the input operands may contain ±∞.This is called 

extended modal interval multiplication. Table 3.12 writes down all the cases 

of inputs including ±∞  except the cases that one of the interval bounds or the 

two bounds are zeros) for modal interval multiplication. Note that the shaded 

part coincides with the classical cases as in [8]. The cases that one of the 

interval bounds or the two bounds are zeros follow the same rules specified in 

multiplication cases. The only difference (in these cases) from the normal 

floating point multiplication that one of the operands is ±∞ and the other is 

zero. In that case we will have 0 as the result instead of Nan as stated in the 

IEEE-754 floating point standard [10].  

 

0 ∗ ∞ = 0 

 

This is the only rule that goes beyond the IEEE-754 standard as mentioned in 

[8]. 

From modal interval multiplication equations, we can say that the modal 

interval multiplication consists of two or four normal floating point 

multiplication operations rounded to -∞ and +∞ respectively.  Thus handling 

infinities in the modal interval multiplication coincide with handling infinities 

in the normal floating point multiplication with the proper rounding except for 
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cases 7, 10 in modal interval multiplication which result in degenerate interval 

with zero value. These two cases need to generate intervals with zero bounds 

so they need special handling in the implementation. 

  

Table 3.13 shows the floating point multiplication including ±∞ in inputs 

according to the IEEE-754 standard [10]. 
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Table 3.12: Extended Modal Interval Multiplication 
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Multiplication −∞ B < 0 0 B > 0 +∞ 
−∞ +∞ +∞ Nan −∞ −∞ 

A < 0 +∞ A×B 0 A×B −∞ 
0 Nan 0 0 0 Nan 

A > 0 −∞ A×B 0 A×B +∞ 
+∞ −∞ −∞ Nan +∞ +∞ 

Table 3.13: Floating Point Multiplication 

 

3.2.2 Hardware Implementation 

The problem in modal interval multiplication that dependent on the signs of 

the input interval bounds, the interval result calculations change as stated 

before. Besides, cases 6 and 11 need four multiplication operations and two 

comparisons instead of two multiplication operations as in all other cases. 

 

It can be shown that the four multiplication operations in the two special 

cases can be reduced to three multiplication operations and four comparisons 

[17],[18]. Many algorithms are proposed for classical and modal interval 

multiplication in [17]. These algorithms are suitable for software. We present 

here two hardware implementations. Serial interval multiplier which uses one 

double floating point multiplier and the other one is parallel interval multiplier 

which uses two double floating point multipliers. Serial interval multiplier 

minimizes the area as it uses one floating point multiplier while parallel 

interval multiplier maximizes the area as it uses two floating point multipliers. 

The details of each implementation are in the next sections. 

 

3.2.2.1 Parallel Interval Multiplier 

As we mentioned before based on sign distinction of the two interval bounds 

of each input interval, the multiplication operation can be reduced to two 

multiplications except for cases 6 and 11 of the multiplication cases. 
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Let the two input intervals 𝐴 =  𝑎1, 𝑎2 , 𝐵 =  𝑏1,𝑏2  and  

the interval result 𝑅 = 𝐴 × 𝐵 =  𝑟1, 𝑟2  then 

 

𝐼𝑓 𝑎1 ≥ 0 𝑡𝑒𝑛 𝑥3 = 0 𝑒𝑙𝑠𝑒 𝑥3 = 1 

𝐼𝑓 𝑎2 ≥ 0 𝑡𝑒𝑛 𝑥2 = 0 𝑒𝑙𝑠𝑒 𝑥2 = 1 

𝐼𝑓 𝑏1 ≥ 0 𝑡𝑒𝑛 𝑥1 = 0 𝑒𝑙𝑠𝑒 𝑥1 = 1 

𝐼𝑓 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑥0 = 0 𝑒𝑙𝑠𝑒 𝑥0 = 1 

 

𝑥3, 𝑥2, 𝑥1𝑎𝑛𝑑 𝑥0 are simply flags that represent the signs of the intervals 

bounds  𝑎1, 𝑎2 , 𝑏1 𝑎𝑛𝑑 𝑏2 respectively. These flags are used to express the 

interval multiplication in terms of the signs of the four input floating point 

numbers (𝑎1, 𝑎2 , 𝑏1 𝑎𝑛𝑑 𝑏2) as shown in the following table. 

 

# 𝑥3𝑥2𝑥1𝑥0 𝑟1 𝑟2 

1 0000 ∇𝑎1𝑏1 ∆𝑎2𝑏2 

2 0001 ∇𝑎1𝑏1 ∆𝑎1𝑏2 

3 0010 ∇𝑎2𝑏1 ∆𝑎2𝑏2 

4 0011 ∇𝑎2𝑏1 ∆𝑎1𝑏2 

5 0100 ∇𝑎1𝑏1 ∆𝑎2𝑏1 

6 0101 𝑚𝑎𝑥 ∇𝑎1𝑏1,∇𝑎2𝑏2  𝑚𝑖𝑛 ∆𝑎1𝑏2, ∆𝑎2𝑏1  
7 0110 0 0 

8 0111 ∇𝑎2𝑏2 ∆𝑎1𝑏2 

9 1000 ∇𝑎1𝑏2 ∆𝑎2𝑏2 

10 1001 0 0 

11 1010 𝑚𝑖𝑛 ∇𝑎1𝑏2, ∇𝑎2𝑏1  𝑚𝑎𝑥 ∆𝑎1𝑏1,∆𝑎2𝑏2  
12 1011 ∇𝑎2𝑏1 ∆𝑎1𝑏1 

13 1100 ∇𝑎1𝑏2 ∆𝑎2𝑏1 

14 1101 ∇𝑎2𝑏2 ∆𝑎2𝑏1 

15 1110 ∇𝑎1𝑏2 ∆𝑎1𝑏1 

16 1111 ∇𝑎2𝑏2 ∆𝑎1𝑏1 

Table 3.14: Interval Multiplication in terms of bounds' signs 

 

In case of parallel design, we have two floating point multipliers. 

Assuming that 𝑦1 ,𝑦2 ,𝑦3 ,𝑦4  are the input operands of the two multipliers 

successively and 𝑧1 ,𝑧2 are the outputs of the multipliers respectively then we 

can rewrite the above table as following. 
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# 𝑥3𝑥2𝑥1𝑥0 𝑦1 𝑦2 𝑧1 𝑦3 𝑦4 𝑧2 𝑟1 𝑟2 

1 0000 𝑎1 𝑏1 ∇ 𝑎2 𝑏2 ∆ 𝑧1 𝑧2 

2 0001 𝑎1 𝑏1 ∇ 𝑎1 𝑏2 ∆ 𝑧1 𝑧2 

3 0010 𝑎2 𝑏1 ∇ 𝑎2 𝑏2 ∆ 𝑧1 𝑧2 

4 0011 𝑎2 𝑏1 ∇ 𝑎1 𝑏2 ∆ 𝑧1 𝑧2 

5 0100 𝑎1 𝑏1 ∇ 𝑎2 𝑏1 ∆ 𝑧1 𝑧2 

6 0101 𝑎1 
𝑏2 

 𝑏1 

∆ 

∇ 
𝑎2 

𝑏1  
𝑏2 

∆ 

∇ 

- 

𝑚𝑎𝑥(𝑧1, 𝑧2) 

𝑚𝑖𝑛 𝑧1 , 𝑧2  
- 

7 0110 0 0 0 0 0 0 𝑧1 𝑧2 

8 0111 𝑎2 𝑏2 ∇ 𝑎1 𝑏2 ∆ 𝑧1 𝑧2 

9 1000 𝑎1 𝑏2 ∇ 𝑎2 𝑏2 ∆ 𝑧1 𝑧2 

10 1001 0 0 0 0 0 0 𝑧1 𝑧2 

11 1010 𝑎1 
𝑏2 

𝑏1 

∇ 

∆ 
𝑎2 

𝑏1 

 𝑏2 

∇ 

∆ 

𝑚𝑖𝑛 𝑧1 , 𝑧2  
- 

- 

𝑚𝑎𝑥(𝑧1, 𝑧2) 

12 1011 𝑎2 𝑏1 ∇ 𝑎1 𝑏1 ∆ 𝑧1 𝑧2 

13 1100 𝑎1 𝑏2 ∇ 𝑎2 𝑏1 ∆ 𝑧1 𝑧2 

14 1101 𝑎2 𝑏2 ∇ 𝑎2 𝑏1 ∆ 𝑧1 𝑧2 

15 1110 𝑎1 𝑏2 ∇ 𝑎1 𝑏1 ∆ 𝑧1 𝑧2 

16 1111 𝑎2 𝑏2 ∇ 𝑎1 𝑏1 ∆ 𝑧1 𝑧2 

Table 3.15: Inputs and outputs for each floating point multiplier 

in terms of bounds' signs  

(𝛁 𝐨𝐫 ∆ 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐬 𝐨𝐧𝐥𝐲 𝐫𝐨𝐮𝐧𝐝𝐢𝐧𝐠 𝐦𝐨𝐝𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐨𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧) 

 

Table 3.15 is the same as 3.14 except for cases 6 & 11. In these two cases 

we have four multiplications so we can do two multiplication operations in 

one clock cycle and the other two multiplications in the second clock cycle. To 

maximize the efficiency we had to reformulate the input operands such that we 

have the first result bound calculated first then the second result bound 

calculated in the next cycle. This reformulation has the advantage that the two 

comparisons are done in two different cycles thus we can use only one 

comparator instead of two without increasing the number of clock cycles. 

By using the simple and effective Karnaugh map method, we can 

implement the circuitry to get 𝑦1 ,𝑦2 ,𝑦3 ,𝑦4  keeping in mind that a special  

circuitry need to be added for cases 6 and 11 to handle the other two 

multiplication operations and the comparison before obtaining the final result. 

There are some issues we should take into account in interval 
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multiplication. One issue we should note that the sign distinction is not as 

simple as checking the sign bit of each number. The IEEE-754 floating point 

standard [10] states that there are two zeros (+0, -0) with the double formats 

different in sign bit as following: 

 

 

  

 

 

Accordingly when we say 𝑎1 ≥ 0, we mean that 𝑎1 ≥ +0 & 𝑎1 ≥ −0 so 

we must take into account (−0) when we implement sign distinction. Another 

issue related to IEEE-754 floating point standard that when we have ±∞ in one 

of the bounds of the input intervals, the rules will be as that of the normal 

floating point multiplications except for two cases. The first case when we 

have  (∞ × 0) which gives Nan in the IEEE-754 standard [10] but in interval 

multiplication it gives 0 as mentioned in [8] (for the classical case) and as 

implemented in the software Libraries (Intlab for classical intervals and  

ivalDb for modal intervals) [14],[15]. For that reason the double floating point 

multiplier must be modified to override this case when we do interval 

multiplication. A flag is added to the two floating point multipliers to 

distinguish between the normal case and the interval one. The last issue is 

about the cases that result in degenerate intervals with zero value (cases 7 & 

10 in Table 3.15). As in Table 3.15, we can simply obtain the zero interval by 

detecting these cases and apply zeros as input operands for the floating point 

multipliers. Once again the problem appears when we have ±∞ in the input 

intervals. Consider for example 

 −∞, 2 × (+∞, −5] 

 

There is no reference for this issue except the IVALDB library which simply 

gives the result (Nan, Nan) [15]. 

0 0………….0 000…………………………………….0 

1 0………….0 000…………………………………….0 

0+ 

0- 
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3.2.2.1.1 Hardware Architecture 

The high level architecture of the Parallel MIBFP Multiplier (Parallel Modal 

Interval Binary Floating Point Multiplier) is as in Figure 3.9 

result_ready

Interval 

Pre-processing 

Unit

Double floating point

Multiplier (1)

Interval A

128

Interval B

128

ClkResetEnable

64

Interval Result

128

Double floating point

Multiplier (2)

64
Z2

Y1

Y2

Y4

Y3
ieee_flag

Rounding_Mode_1 Rounding_Mode_2

64
64 64

64

Interval

Post-processing

unit

Z2

special_cases_flag

Interval_Multiplication_Type

2

Figure 3.9: Modal Interval Double Floating Point Multiplier 

(Parallel Implementation) 
 

Interval Pre-processing unit:  

Its function is as follows: 

1- It divides the interval operands into two parallel floating point 

multiplication operations with the appropriate rounding mode for 

each operation.Y1, Y2, Rounding_Mode_1 are inputs to the first 
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multiplier and Y3,Y4, Rounding_Mode_2 are inputs to the second 

multiplier. 

   

2- For the two special cases 6, 11 in Table 3.15, the four 

multiplication operations are divided into two multiplication 

operations on two cycles. The special_cases_flag output port rises 

when one of these two cases happens in the input intervals 

 

3- Set ieee_flag to zero to override the case (∞ × 0) as mentioned in 

the previous section. 

 

4- It informs the Post-processing unit what the type of the interval 

multiplication that it will handle. The interval multiplication is 

divided into three types. One is the normal interval multiplication 

which consists of two floating point multiplications and the other 

two are the two special cases (cases 6 and 11 in Table 3.15) that 

have four multiplication operations. 

  

Logic equations and circuits: 

Consider 𝐼𝐴𝐹𝐵 , 𝐼𝐴𝑆𝐵 , 𝐼𝐵𝐹𝐵 , 𝐼𝐵𝑆𝐵  are first and second bounds of intervals 

A and B. The following internal signals are constructed using simple 

AND, OR and NOT logic gates.  

 

𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (3) =  𝐼𝐴𝐹𝐵 0 + 𝐼𝐴𝐹𝐵 1 + ⋯ + 𝐼𝐴𝐹𝐵 62  ∙ 𝐼𝐴𝐹𝐵 63  

𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (2) =  𝐼𝐴𝑆𝐵 0 + 𝐼𝐴𝑆𝐵 1 + ⋯ + 𝐼𝐴𝑆𝐵 62  ∙ 𝐼𝐴𝑆𝐵 63  

𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (1) =  𝐼𝐵𝐹𝐵 0 + 𝐼𝐵𝐹𝐵 1 + ⋯ + 𝐼𝐵𝐹𝐵 62  ∙ 𝐼𝐵𝐹𝐵 63  

𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0) =  𝐼𝐵𝑆𝐵 0 + 𝐼𝐵𝑆𝐵 1 + ⋯ + 𝐼𝐵𝑆𝐵 62  ∙ 𝐼𝐵𝑆𝐵 63  

 

𝑀𝑢𝑙𝐷𝑖𝑠𝑡  3 , 𝑀𝑢𝑙𝐷𝑖𝑠𝑡  2 , 𝑀𝑢𝑙𝐷𝑖𝑠𝑡  1  𝑎𝑛𝑑 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0) are representing 

𝑥3, 𝑥2, 𝑥1 𝑎𝑛𝑑 𝑥0 (in Table 3.15) respectively. 

 

𝐼𝑛𝑓𝐼𝐴𝐹𝐵
=  𝐼𝐴𝐹𝐵 62 + ⋯ + 𝐼𝐴𝐹𝐵 52  ∙ 𝐼𝐴𝐹𝐵 51 + ⋯ + 𝐼𝐴𝐹𝐵 0  

𝐼𝑛𝑓𝐼𝐴𝑆𝐵
=  𝐼𝐴𝑆𝐵 62 + ⋯ + 𝐼𝐴𝑆𝐵 52  ∙ 𝐼𝐴𝑆𝐵 51 + ⋯ + 𝐼𝐴𝑆𝐵 0  

𝐼𝑛𝑓𝐼𝐵𝐹𝐵
=  𝐼𝐵𝐹𝐵 62 + ⋯ + 𝐼𝐵𝐹𝐵 52  ∙ 𝐼𝐵𝐹𝐵 51 + ⋯ + 𝐼𝐵𝐹𝐵 0  
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𝐼𝑛𝑓𝐼𝐵𝑆𝐵
=  𝐼𝐵𝑆𝐵 62 + ⋯ + 𝐼𝐵𝑆𝐵 52  ∙ 𝐼𝐵𝑆𝐵 51 + ⋯ + 𝐼𝐵𝑆𝐵 0  

 

𝑛𝑓𝑓𝑙𝑎𝑔 = 𝐼𝑛𝑓𝐼𝐴𝐹𝐵
+ 𝐼𝑛𝑓𝐼𝐴𝑆𝐵

+ 𝐼𝑛𝑓𝐼𝐵𝐹𝐵
+ 𝐼𝑛𝑓𝐼𝐵𝑆𝐵

 

 

𝑁𝑎𝑛𝑅𝑒𝑠𝑢𝑙𝑡𝑓𝑙𝑎𝑔

= 𝐼𝑛𝑓𝑓𝑙𝑎𝑔

+  𝑀𝑢𝑙𝐷𝑖𝑠𝑡  3 ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (2) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (1) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0) 

+  𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (3) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡  2 ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (1) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0)  

  

The 𝐼𝑛𝑓𝑓𝑙𝑎𝑔  indicates if one or more of the input interval bounds is ±∞. 

The 𝑁𝑎𝑛𝑅𝑒𝑠𝑢𝑙𝑡𝑓𝑙𝑎𝑔  indicates if the result will be Nan or not. 

 

𝑆𝐶𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (3) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡  2 ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (1) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0) 

𝑆𝐶𝑀𝑜𝑑𝑎𝑙 = 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (3) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (2) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡  1 ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0) 

𝑆𝐶𝐸𝑛𝑎𝑏𝑙𝑒 = 𝑆𝐶𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 ∙ 𝑆𝐶𝑀𝑜𝑑𝑎𝑙  

  

The 𝑆𝐶𝐸𝑛𝑎𝑏𝑙𝑒  signal indicates if the input intervals result in one of the 

two multiplication special cases (cases 6 and 11 in Table 3.15). 

 

Now we can generate the output signals of the interval pre-processing 

unit in terms of the above signals. The logic circuits of the outputs are 

presented in the following figures. 
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Figure 3.10: Special case extension output signal 

      

D Q

Rounding_Mode_1

ModalSC

clk

0

1

ExtensionSC

 

Figure 3.11: Rounding mode (input to the first floating point multiplier) 
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    Figure 3.12: Operand_A_1 (operand_A of the first floating point multiplier) 
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   Figure 3.13: Operand_B_1 (operand_B of the first floating point multiplier)  
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Figure 3.14: Rounding mode (input to the second floating point multiplier) 
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   Figure 3.15: Operand_A_2 (operand_A of the second floating point multiplier)
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   Figure 3.16: Operand_B_2 (operand_B of the second floating point multiplier) 
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Figure 3.17: Multiplication Type (normal, classical special case or modal special case)  
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BFP Multipliers: 

They are normal double floating point Multiplier units. As in the modal 

interval adder/subtractor designs, the floating point unit was originally 

built using the open source VHDL code of the IEEE-754 compliant double 

precision floating point core posted at opencores site [40]. The VHDL 

source code of the floating point multiplier was massively modified to fix 

bugs in pipelining, to handle special cases (like denormalized numbers and 

infinities), and to reduce the number of pipeline stages. Also, the ieee_flag 

is added to override the case (∞ × 0) as mentioned before. The design and 

implementation of the floating point multiplier unit will not be discussed as 

this is out of the scope of the thesis topic. However, the area and timings 

results of this unit are used to compare with the results obtained for the 

Modal interval multiplier designs. 

 

Interval Post-processing unit:  

Its function is as follows: 

1- Depending on interval multiplication type, it assigns the interval 

result bounds. In case of normal interval, the two bounds are the 

output of the two floating point multipliers. In case of the two 

special cases, we have four multiplications in two cycles so we 

have two floating point results per cycle. In the first cycle, the two 

floating point results are fed into a comparator to decide which 

result will be output to one of the bounds. In the second cycle, the 

other two floating point results are fed into the same comparator 

to decide which result will be output to the other bound. 

 

2- Set the result_ready flag when there is a ready interval result 
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Logic circuits: 
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Figure 3.18: Interval result bounds 
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Figure 3.19: Result ready flag logic circuit 

 

As we notice in the logic circuit of interval result bounds (Figure 3.18), we 

use only one comparator to get the smaller or the bigger value to assign it to 

one of the interval result bounds (dependent on one of the special cases as in 

Table 3.15). This comes from that the two inputs of the comparator have equal 

signs. The only special case for that rule is the case of having (+0) and (-0) as 

inputs to the comparator. The above figure is a simplified one that doesn't 

handle this case. 
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3.2.2.1.2 Pipeline stages 

The following figure shows a schematic for the pipeline stages of executing 

two modal interval multiplication operations. The first operation is a normal 

case (which takes two multiplication operations) while the second operation is 

one of the two special cases (which need four multiplication operations). 

  

 

Figure 3.20: Pipeline stages for the Parallel MIBFP Multiplier 

As shown, the pre-processing unit applies the inputs to the two floating 

point multipliers every clock cycle for the normal case and every two clock 

cycles for the special case. Each floating point multiplier takes seven clock 

cycles to execute (from MUL C-1 to MUL C-7). The post-processing unit 

outputs the interval result each clock cycle for the normal case (at Post-

Process C-1) or each two clock cycles for the special case (at Post-Process C-

2). 

3.2.2.1.3 Logic Synthesis 

The logic synthesis is done using both FPGA (using ALTERA Quartus-II tool) 

and ASIC cell-based libraries (using Synopsis Design Compiler tool). For 

FPGA synthesis; two types of Altera FPGAs are used to implement the 

MIBFP Multiplier [12]: 

1- Cyclone II (lower power, cost and speed) 

Device EP2C35F672C6 of Cyclone II Family is used. The results are as 

shown in Table 3.16: 
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 Area Timings 

 No. of 

LEs 

No. of  

Embedded 

Multipliers 

No. of 

Registers 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP Multiplier 2468 18 1071 128 7 1 

Parallel 

MIBFP Multiplier 
6005 36 2793 120 9(10) 1(0.5) 

Table 3.16: Area and Timings (Parallel MIBFP multiplier – Cyclone II) 

 

2- Stratix III (higher power, cost and speed) 

Device EP3SL50F780C2 of Stratix III Family is used. The results are 

as shown in Table 3.17: 

 

 Area Timings 

 No. of 

ALUTs 

No. of  

Embedded 

Multipliers 

No. of 

Registers 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP Multiplier 1484 18 1071 181.5 7 1 

Parallel 

MIBFP Multiplier 
3491 36 2793 167 9(10) 1(0.5) 

Table 3.17: Area and Timings (Parallel MIBFP multiplier – Stratix III) 

 

The ASIC results are as shown in Table 3.18: 

 

 Area (mm2) Timings 

 Combinational 

Area 
(𝑚𝑚2)   

Registers  

Area 
(𝑚𝑚2) 

Interconnect 

Area 
(𝑚𝑚2) 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP Multiplier 0.0262 0.0048 0.0106 870 7 1 

Parallel 

MIBFP Multiplier 
0.0584 0.0127 0.0237 870 9(10) 1(0.5) 

Table 3.18: Area and Timings (Parallel MIBFP multiplier – Nangate 45nm) 

 

As we notice from the previous tables that the modal interval multiplier 

pipeline throughput is the same as the normal BFP multiplier except for the 

two special cases (we have half the throughput). Percentage increase in the 

area is about 148%, 145.5%, and 128% of the normal BFP multiplier for the 

CYCLONE FPGA, STRATIX FPGA, and ASIC cell library. The first two 

percentages are quite misleading as we assume that the embedded multipliers 

and ALUTs have equal area weight which is not correct. Thus percentage 

increase in case of ASIC cell library is the closest number which is 128%. 
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Clearly from the above we use two parallel floating point multiplier units 

to implement modal floating point multiplier thus the modal interval 

multiplication operation executes as fast as the normal floating point 

multiplication operation (except for the two special cases) i.e we nearly have 

one interval result every one clock cycle (in case of pipelining). This comes on 

the cost of increasing the area almost the double as shown in tables 3.16, 3.17, 

and 3.18. 

3.2.2.2 Serial interval multiplier 

 

Just like in the parallel interval multiplier, by applying case distinction on the 

bounds of the input intervals the multiplication operation can be reduced to 

two multiplication operations except for cases 6 & 11. These two cases 

originally have four multiplication operations but we can reduce them to three 

multiplications using two comparators as we will see. 

 

Let the two input intervals 𝐴 =  𝑎1, 𝑎2 , 𝐵 =  𝑏1,𝑏2  and  

the interval result 𝑅 = 𝐴 × 𝐵 =  𝑟1, 𝑟2  then 

 

𝐼𝑓 𝑎1 ≥ 0 𝑡𝑒𝑛 𝑥3 = 0 𝑒𝑙𝑠𝑒 𝑥3 = 1 

𝐼𝑓 𝑎2 ≥ 0 𝑡𝑒𝑛 𝑥2 = 0 𝑒𝑙𝑠𝑒 𝑥2 = 1 

𝐼𝑓 𝑏1 ≥ 0 𝑡𝑒𝑛 𝑥1 = 0 𝑒𝑙𝑠𝑒 𝑥1 = 1 

𝐼𝑓 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑥0 = 0 𝑒𝑙𝑠𝑒 𝑥0 = 1 

 

𝐼𝑓  𝑎2 ≥  𝑎1  𝑡𝑒𝑛 𝑐0 = 1 𝑒𝑙𝑠𝑒 𝑐0 = 0 

𝐼𝑓  𝑏2 ≥  𝑏1  𝑡𝑒𝑛 𝑐1 = 1 𝑒𝑙𝑠𝑒 𝑐1 = 0 

 

As we mentioned before, 𝑥3, 𝑥2 , 𝑥1𝑎𝑛𝑑 𝑥0 represents the signs of the 

intervals bounds  𝑎1, 𝑎2 , 𝑏1 𝑎𝑛𝑑 𝑏2 respectively. 𝑐0 𝑎𝑛𝑑 𝑐1 are flags that 

represent the comparison results of the two bounds of each interval. 

𝑥3, 𝑥2, 𝑥1𝑎𝑛𝑑 𝑥0 are used to express the interval multiplication in terms of the 
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signs of the four input floating point numbers (𝑎1, 𝑎2, 𝑏1 𝑎𝑛𝑑 𝑏2) as shown in 

Table 3.19. 𝑐0  𝑎𝑛𝑑 𝑐1 are used to reduce the number of multiplications for the 

cases 6 and 11 from four multiplications to three as shown in Table 3.19. 

 

 

# 𝑥3𝑥2𝑥1𝑥0 𝑟1 𝑟2 

1 0000 ∇𝑎1𝑏1 ∆𝑎2𝑏2 

2 0001 ∇𝑎1𝑏1 ∆𝑎1𝑏2 

3 0010 ∇𝑎2𝑏1 ∆𝑎2𝑏2 

4 0011 ∇𝑎2𝑏1 ∆𝑎1𝑏2 

5 0100 ∇𝑎1𝑏1 ∆𝑎2𝑏1 

6 0101 

𝑐1𝑐0   

00 ∇𝑎1𝑏1 𝑚𝑖𝑛 ∆𝑎1𝑏2, ∆𝑎2𝑏1  
01 𝑚𝑎𝑥 ∇𝑎1𝑏1,∇𝑎2𝑏2  ∆𝑎1𝑏2 

10 𝑚𝑎𝑥 ∇𝑎1𝑏1,∇𝑎2𝑏2  ∆𝑎2𝑏1 

11 ∇𝑎2𝑏2 𝑚𝑖𝑛 ∆𝑎1𝑏2, ∆𝑎2𝑏1  
7 0110 0 0 

8 0111 ∇𝑎2𝑏2 ∆𝑎1𝑏2 

9 1000 ∇𝑎1𝑏2 ∆𝑎2𝑏2 

10 1001 0 0 

11 1010 

𝑐1𝑐0   

00 𝑚𝑖𝑛 ∇𝑎1𝑏2, ∇𝑎2𝑏1  ∆𝑎1𝑏1 

01 ∇𝑎2𝑏1 𝑚𝑎𝑥 ∆𝑎1𝑏1,∆𝑎2𝑏2  
10 ∇𝑎1𝑏2 𝑚𝑎𝑥 ∆𝑎1𝑏1,∆𝑎2𝑏2  
11 𝑚𝑖𝑛 ∇𝑎1𝑏2, ∇𝑎2𝑏1  ∆𝑎2𝑏2 

12 1011 ∇𝑎2𝑏1 ∆𝑎1𝑏1 

13 1100 ∇𝑎1𝑏2 ∆𝑎2𝑏1 

14 1101 ∇𝑎2𝑏2 ∆𝑎2𝑏1 

15 1110 ∇𝑎1𝑏2 ∆𝑎1𝑏1 

16 1111 ∇𝑎2𝑏2 ∆𝑎1𝑏1 

Table 3.19: Interval Multiplication in terms of bounds' signs & comparisons 

 

The reduction of the four multiplication operations to three can be easily 

deduced for cases 6 and 11. Consider for example 𝑥3𝑥2𝑥1𝑥0 = 0101 which 

means that 𝑎1𝑏1 ≥ 0, 𝑎2𝑏2 ≥ 0, 𝑎1𝑏2 < 0, 𝑎𝑛𝑑 𝑎2𝑏1 < 0. Now consider that 

𝑐1𝑐0 = 00 which means that 𝑎2 <  𝑎1  𝑎𝑛𝑑  𝑏2 <  𝑏1 . From this we 

conclude that  𝑎1𝑏1 <  𝑎2𝑏2  thus 𝑎1𝑏1 < 𝑎2𝑏2 so 𝑚𝑎𝑥 𝑎1𝑏1, 𝑎2𝑏2 = 𝑎1𝑏1. 

The same method applies for all other cases.    
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In case of the serial design, we have one floating point multiplier. 

Assuming that 𝑦1 ,𝑦2  are the input operands of the multiplier and 𝑧1  is the 

output of the multiplier then we can rewrite the above table as following: 

 

 

# 𝑥3𝑥2𝑥1𝑥0 𝑦1 𝑦2 𝑧1 𝑟1 𝑟2 𝑡 
First Cycle 

1 0000 𝑎1 𝑏1 ∇ 𝑧1 - - 

2 0001 𝑎1 𝑏1 ∇ 𝑧1 - - 

3 0010 𝑎2 𝑏1 ∇ 𝑧1 - - 

4 0011 𝑎2 𝑏1 ∇ 𝑧1 - - 

5 0100 𝑎1 𝑏1 ∇ 𝑧1 - - 

6 0101 

𝑐1𝑐0  

00 𝑎1 𝑏2 ∆ - - 𝑧1 

01 𝑎1 𝑏1 ∇ - - 𝑧1 

10 𝑎1 𝑏1 ∇ - - 𝑧1 

11 𝑎1 𝑏2 ∆ - - 𝑧1 

7 0110 0 0 0 𝑧1 - - 

8 0111 𝑎2 𝑏2 ∇ 𝑧1 - - 

9 1000 𝑎1 𝑏2 ∇ 𝑧1 - - 

10 1001 0 0 0 𝑧1 - - 

11 1010 

𝑐1𝑐0  

00 𝑎1 𝑏2 ∇ - - 𝑧1 

01 𝑎1 𝑏1 ∆ - - 𝑧1 

10 𝑎1 𝑏1 ∆ - - 𝑧1 

11 𝑎1 𝑏2 ∇ - - 𝑧1 

12 1011 𝑎2 𝑏1 ∇ 𝑧1 - - 

13 1100 𝑎1 𝑏2 ∇ 𝑧1 - - 

14 1101 𝑎2 𝑏2 ∇ 𝑧1 - - 

15 1110 𝑎1 𝑏2 ∇ 𝑧1 - - 

16 1111 𝑎2 𝑏2 ∇ 𝑧1 - - 

Second Cycle 

1 0000 𝑎2 𝑏2 ∆ - 𝑧1 - 

2 0001 𝑎1 𝑏2 ∆ - 𝑧1 - 

3 0010 𝑎2 𝑏2 ∆ - 𝑧1 - 

4 0011 𝑎1 𝑏2 ∆ - 𝑧1 - 

5 0100 𝑎2 𝑏1 ∆ - 𝑧1 - 

6 0101 

𝑐1𝑐0  

00 𝑎2 𝑏1 ∆ - 𝑚𝑖𝑛 𝑧1, 𝑡  - 

01 𝑎2 𝑏2 ∇ 𝑚𝑎𝑥 𝑧1, 𝑡  - - 

10 𝑎2 𝑏2 ∇ 𝑚𝑎𝑥 𝑧1, 𝑡  - - 
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11 𝑎2 𝑏1 ∆ - 𝑚𝑖𝑛 𝑧1, 𝑡  - 

7 0110 0 0 0 - 𝑧1 - 

8 0111 𝑎1 𝑏2 ∆ - 𝑧1 - 

9 1000 𝑎2 𝑏2 ∆ - 𝑧1 - 

10 1001 0 0 0 - 𝑧1 - 

11 1010 

𝑐1𝑐0  

00 𝑎2 𝑏1 ∇ 𝑚𝑖𝑛 𝑧1, 𝑡  - - 

01 𝑎2 𝑏2 ∆ - 𝑚𝑎𝑥 𝑧1, 𝑡  - 

10 𝑎2 𝑏2 ∆ - 𝑚𝑎𝑥 𝑧1, 𝑡  - 

11 𝑎2 𝑏1 ∇ 𝑚𝑖𝑛 𝑧1, 𝑡  - - 

12 1011 𝑎1 𝑏1 ∆ - 𝑧1 - 

13 1100 𝑎2 𝑏1 ∆ - 𝑧1 - 

14 1101 𝑎2 𝑏1 ∆ - 𝑧1 - 

15 1110 𝑎1 𝑏1 ∆ - 𝑧1 - 

16 1111 𝑎1 𝑏1 ∆ - 𝑧1 - 

Third Cycle 

6 0101 

𝑐1𝑐0  

00 𝑎1 𝑏1 ∇ 𝑧1 - - 

01 𝑎1 𝑏2 ∆ - 𝑧1 - 

10 𝑎2 𝑏1 ∆ - 𝑧1 - 

11 𝑎2 𝑏2 ∇ 𝑧1 - - 

11 1010 

𝑐1𝑐0  

00 𝑎1 𝑏1 ∆ - 𝑧1 - 

01 𝑎2 𝑏1 ∇ 𝑧1 - - 

10 𝑎1 𝑏2 ∇ 𝑧1 - - 

11 𝑎2 𝑏2 ∆ - 𝑧1 - 

Table 3.20: Inputs and outputs for each floating point multiplier  

in terms of bounds' signs & comparisons 

(𝛁 𝐨𝐫 ∆ 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐬 𝐨𝐧𝐥𝐲 𝐫𝐨𝐮𝐧𝐝𝐢𝐧𝐠 𝐦𝐨𝐝𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐨𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧) 

 

As we have only one multiplier, the two bounds are obtained in two cycles 

for all cases except case 6 and 11 which need three cycles. Table 3.20 shows 

the inputs and outputs in each cycle. In the two special cases, we had to 

reorder the three multiplication operations such that we obtain the two results 

that are fed into the comparator first. This is to have the interval result in three 

cycles instead if four. 

By using the simple and effective Karnaugh map method, we can 

implement the circuitry to get 𝑦1 ,𝑦2  (in each cycle) keeping in mind that a 

special circuitry need to be added for cases 6 and 11 to handle the third 
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multiplication operation and the comparison before obtaining the final result. 

The serial implementation has the same issues mentioned in the parallel 

implementation. Accordingly the design should take care of these issues (as in 

parallel design). 

 

3.2.2.2.1 Hardware Architecture 

The high level architecture of the Serial MIBFP Multiplier (Serial Modal 

Interval Binary Double Floating Point Multiplier) is as in Figure 3.21 
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Figure 3.21: Modal Interval Double Floating Point Multiplier 

(Serial Implementation) 
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Interval Pre-processing unit:  

Its function is as follows: 

1- It divides the interval operands into two (or three) sequential 

floating point multiplication operations with the appropriate 

rounding mode for each operation.Y1, Y2, Rounding_Mode are 

inputs to the multiplier. 

   

2- For the two special cases 6 and 11, two comparators are used to 

reduce the four multiplications to three then set the 

special_cases_flag output port when one of these two cases happens 

in the input intervals 

 

3- Set ieee_flag to zero to override the case (∞ × 0) 

 

4- It informs the Post-processing unit about the type of the interval 

multiplication that it will handle. The interval multiplication is 

divided into three types. One is the normal interval multiplication 

which consists of two floating point multiplications and the other 

two are the two special cases (cases 6 and 11 in Table 3.20) that 

have three multiplication operations. 

  

Logic equations and circuits: 

Consider 𝐼𝐴𝐹𝐵 , 𝐼𝐴𝑆𝐵 , 𝐼𝐵𝐹𝐵 , 𝐼𝐵𝑆𝐵  are the first and second bounds of 

intervals A and B. The following internal signals are constructed using 

simple AND, OR and NOT logic gates. 

As mentioned in the parallel interval multiplier section, we need to 

implement 𝑀𝑢𝑙𝐷𝑖𝑠𝑡  3 , 𝑀𝑢𝑙𝐷𝑖𝑠𝑡  2 , 𝑀𝑢𝑙𝐷𝑖𝑠𝑡  1  𝑎𝑛𝑑 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0) flags 

which are representing  𝑥3, 𝑥2, 𝑥1 𝑎𝑛𝑑 𝑥0 (in Table 3.20) respectively. 

 

𝐶𝑚𝑝_𝐴 =   
1, 𝑖𝑓 𝐼𝐴𝐹𝐵 62 ∶ 0 ≤ 𝐼𝐴𝑆𝐵(62 ∶ 0)
0, 𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒                                       

  

𝐶𝑚𝑝_𝐵 =   
1, 𝑖𝑓 𝐼𝐵𝐹𝐵 62 ∶ 0 ≤ 𝐼𝐵𝑆𝐵(62 ∶ 0)
0, 𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒                                       

  

 

𝐶𝑚𝑝_𝐴 𝑎𝑛𝑑 𝐶𝑚𝑝_𝐵 are implemented using two 63-bits comparators. 

They are representing 𝑐0 𝑎𝑛𝑑 𝑐1 signals (in Table 3.20) respectively. 
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Also we will need to implement the circuitry of the signals 𝐼𝑛𝑓𝑓𝑙𝑎𝑔  ,

𝑁𝑎𝑛𝑅𝑒𝑠𝑢𝑙𝑡𝑓𝑙𝑎𝑔  , 𝑆𝐶𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙  , 𝑆𝐶𝑀𝑜𝑑𝑎𝑙  𝑎𝑛𝑑 𝑆𝐶𝐸𝑛𝑎𝑏𝑙𝑒  as specified in the 

Logic circuitry section of the parallel interval multiplier. 

The 𝑆𝐶𝐸𝑛𝑎𝑏𝑙𝑒  signal indicates if the input intervals result in one of 

the two multiplication special cases (cases 6 and 11 in Table 3.20). 

Now we can generate the output signals of the interval pre-processing 

unit in terms of the above signals. The logic circuits of the outputs are 

presented in the following figures. 
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Figure 3.22: Cycle Number 
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Figure 3.23: Special case extension output signal 
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Figure 3.25: Multiplication Type logic circuit 
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   Figure 3.26: Operand_A logic circuit 
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  Figure 3.27: Operand_B logic circuit  
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BFP Multiplier: 

It is a normal double floating point Multiplier unit. The ieee_flag is added 

to override the case (∞ × 0) as mentioned before. 

 

Interval Post-processing unit:  

Its function is as follows: 

1- Depending on interval multiplication type, it assigns the interval 

result bounds. In case of normal interval, the two bounds are the 

output of the floating point multiplier in two cycles. In case of the 

two special cases, we have three multiplications in three cycles so 

we have one floating point results per cycle. In the first cycle, the 

first floating point result is stored in a temporary register until the 

second result is ready in the second cycle then both numbers are fed 

into the comparator to decide which result will be output to one of 

the bounds. In the third cycle, the last floating point result is fed 

directly into the other bound. 

 

2- Set the result_ready flag when there is a ready interval result 

 

Logic circuits: 
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Figure 3.28: Cycle Number 
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Figure 3.29: Result Ready logic circuit 
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  Figure 3.30: Interval result bounds logic circuit 

 

Once again we should notice that we use only one comparator to get the 

smaller or the bigger value to assign it to one of the interval result bounds 

(dependent on one of the special cases in Table 3.20). This comes from that 

the two inputs of the comparator have equal signs. The only special case for 

that rule is the case of having (+0) and    (-0) as inputs to the comparator. The 

above figure is a simplified one that doesn't handle this case. 

3.2.2.2.2 Pipeline stages 

The following figure shows a schematic for the pipeline stages of executing 

two modal interval multiplication operations. The first operation is a normal 
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case (which takes two multiplication operations) while the second operation is 

one of the two special cases (which needs four multiplication operations). 

  

 

Figure 3.31: Pipeline stages for the Serial MIBFP Multiplier 

As shown, the pre-processing unit applies the inputs to the floating point 

multiplier on two clock cycles for the normal case and on three clock cycles 

for the special case. The floating point multiplier takes seven clock cycles to 

execute (from MUL C-1 to MUL C-7). The post-processing unit outputs the 

interval result every two clock cycles for the normal case (at Post-Process C-2) 

or every three clock cycles for the special case (at Post-Process C-3). 

3.2.2.2.3 Logic Synthesis 

The logic synthesis is done using both FPGA (using ALTERA Quartus-II tool) 

and ASIC cell-based libraries (using Synopsis Design Compiler tool). For 

FPGA synthesis; two types of Altera FPGAs are used to implement the 

MIBFP Multiplier [12]: 

1- Cyclone II (lower power, cost and speed) 

Device EP2C35F672C6 of Cyclone II Family is used. The results are as 

shown in Table 3.21: 

 
 Area Timings 

 
No. of 

LEs  

No. of 

Embedded 

Multipliers 

No. of 

Registers 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP Multiplier 2468 18 1071 128 7 1 

Serial 

MIBFP Multiplier 
3648 18 1818 124.5 10(11) 0.5(0.33) 

Table 3.21: Area and Timings (Serial MIBFP multiplier – Cyclone II) 
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2- Stratix III (higher power, cost and speed) 

Device EP3SL50F780C2 of Stratix III Family is used. The results are 

as shown in Table 3.22: 

 

 

 Area Timings 

 
No. of 

LEs  

No. of 

Embedded 

Multipliers 

No. of 

Registers 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

(Cycles) 

Pipeline 

Throughput 

BFP Multiplier 1484 18 1071 181.5 7 1 

Serial 

MIBFP Multiplier 2319 18 1818 177 10(11) 0.5(0.33) 

Table 3.22: Area and Timings (Serial MIBFP multiplier – Stratix III) 

 

The ASIC results are as shown in Table 3.23: 

 

 Area (mm2) Timings 

 Combinational 

Area  
(𝑚𝑚2)  

Registers 

Area 
(𝑚𝑚2) 

Interconnect 

Area  
(𝑚𝑚2) 

Clock 

Frequency 

(MHz) 

Pipeline 

Depth 

Pipeline 

Throughput 

BFP Multiplier 0.0262 0.0048 0.0106 870 7 1 

Serial 

MIBFP Multiplier 0.0311 0.0082 0.0132 870 10(11) 0.5(0.33) 

Table 3.23: Area and Timings (Serial MIBFP multiplier – Nangate 45nm) 

 

As we notice from the previous tables that the pipeline throughput is 1 

result per two clock cycles which is half the throughput of normal floating 

point multiplier except for the two special cases (throughput is one-third that 

of the normal floating point multiplier).  

Percentage increase in the area is about 54%, 61.5%, and 26% of the 

normal BFP multiplier for the CYCLONE FPGA, STRATIX FPGA, and 

ASIC cell library successively. The first two percentages are quite misleading 

as we assume that the embedded multipliers and ALUTs have equal area 

weight which is not correct. Thus percentage increase in case of ASIC cell 

library is the most accurate number which is 26%. 

The advantage of that design is that we use only one floating point 

multiplier to implement modal interval multiplier thus decreasing the area and 

power consumption however, this area and power reduction is balanced by the 
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loss of speed (The interval operation is half (or one-third) the speed of the 

normal floating point operation which means we have one interval result each 

two (or three) clock cycles (in case of pipelining) as shown in tables 3.21, 3.22 

and 3.23). 

Combined results for the serial and parallel designs are in the following 

table: 

 Cyclone II Stratix III Nangate 45nm Cell Library 

 Area 

Increase % 

Clock 

Frequency 

(MHz) 

Area 

Increase % 

Clock 

Frequency 

(MHz) 

Area 

Increase % 

Clock 

Frequency 

(MHz) 

BFP Multiplier - 128 - 181.5 - 870 

Parallel 

MIBFP Multiplier 

148% 120 145.5% 167 128% 870 

Serial 

MIBFP Multiplier 

54% 124.5 61.5% 177 26% 870 

Table 3.24: Interval multiplier (Combined Results) 

 

We should notice that, the percentage increases are close for the two 

FPGA devices which are from two different families. The clock frequencies 

differ from the BFP multiplier for the same device although they should be the 

same but this is due to variations in the ALTERA CAD tool design rules. 
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Chapter 4 

4 Testing, Comparisons and Future Work 

4.1 Testing 

4.1.1 Testing Libraries 

The Designs are tested using two libraries: 

1- INTLAB library which is a classical interval arithmetic MATLAB 

toolbox [14]. This library is used to test the classical intervals part only. 

The only deviation from the library is that it doesn't support (-0( 

  

2- IvalDb library which is a C++ modal interval arithmetic library [16]. 

This library supports handling both proper and improper intervals. One 

major difference in that library that it doesn't make rounding down and 

up for the two interval result bounds [16]. Instead, it adds one ULP to 

the upper bound and subtracts one ULP from the lower bound to 

guarantee the enclosure of the solution. This leads to a better speed but 

lower accuracy (wider intervals) as we have a maximum of two ULPs 

wider interval. The library is modified to properly round interval 

results. There is another difference in handling infinities. In case of 

modal interval multiplication many cases gives NAN for the two 

interval bounds which is not correct. 

 

4.1.2 Test Bench 

The same Test Bench method is used in testing the modal interval addition, 

subtraction and multiplication units. The Testing is divided into two steps. 

First, Generate the testing vectors then apply input testing vectors to the unit 

under test (UAT) then compare the output with the output testing vectors. 

These two steps are explained in more details in the following section. 
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4.1.2.1 Generate Testing Vectors 

The input and output testing vectors are generated using one of the above 

interval libraries (INTLAB library for classical intervals only or IvalDb library 

for modal intervals). The MATLAB software tool is used in case of generating 

the testing vectors using INTLAB while the Microsoft Visual C++ 6.0 

software tool is used in case of using the IvalDb library. The input testing 

vectors are written into a text file (in the hexadecimal format) while the 

corresponding output vector written into another file (in the hexadecimal 

format). The following table shows samples of the generated input and output 

testing vectors respectively for the testing of the multiplication operation. As 

shown, each entry in the input column represents the two input interval 

operands (written in the hexadecimal format) and the corresponding entry in 

the output column represents the actual output after applying those two inputs. 

Each input test row contains four double floating point numbers adjacent to 

each other. The first hexadecimal floating point number represents the first 

operand's first bound, the second number represents the first operand's second 

bound, the third one represents the second operand's first bound and the last 

one represents the second operand's second bound. Each output row contains 

two double floating point numbers written in hexadecimal format. The first 

number represents the result's first bound and the second one represents the 

result's second bound. 

 

Input Output 

bfe6131b8bae450b3fe42041085363743fc77be29c123d323fba23cfe3a68848 bfb2083ab042facd3fb070baddb7143a 

3fdd1f52644242b3bfe673f888229135c031ef4319daa37fbfe28b85a4442477 3fda0642a2cbcec8bfd0e09805f5c00a 

c00002b6ed6c1725404341004edd305fc000058dc268b02bbfe83d8aece84cb8 c05347af35baaab940100845a10c0122 

c0256b52b52b52b6bff0a3fab294aa63bfeec9e60acb0f26bfe75723e7989ba1 3fe846595b734f0d40249bc1a3f680a3 

Table 4.1: Samples of Input and Output Testing Vectors 
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4.1.2.2 Running the Test 

The test bench was run using the ModelSim simulation tool. The 

following figure shows block diagram of running the test. 

Feed-Input Process

UAT

Compare-Output Process

Clk

Input Test rows

Output Test rows

Figure 4.1: Test Bench Block Diagram 

     

The Feed-Input and Compare-Output are running in two parallel clocked 

processes (VHDL processes). The Feed-Input process reads the testing input 

operands and feed them into the unit under test (UAT). It feeds input every 

one clock cycle (if the UAT is a parallel design) or every two clock cycles (if 

the UAT is a serial design). In case of multiplier, the Feed-Input process 

should take care of waiting one additional clock cycle when the input operands 

result in one of the multiplication special cases. 
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The Compare-Output process starts to compare the output from the UAT 

with the actual output when the Result_Ready (exists in all modal interval 

units) flag is logical one. The testing of all the units was done before the logic 

synthesis (pre-synthesis simulation) and after it (post-synthesis simulation). 

 

4.1.3 Testing coverage 

As mentioned before, testing is done using INTLAB (to test the classical 

part only) and IvalDb to test the more general case (modal and classical 

intervals). The input testing vector contains of two interval numbers (each one 

has two floating point numbers which represent the first and second bounds of 

the interval). As these four input numbers are double floating point numbers, it 

is impossible to cover all the possible numbers in the test bench. Thus the 

testing takes two approaches. The first approach is to randomly generate large 

number of testing inputs. The second approach is to try to divide the floating 

point domain into different ranges that we can coverage each of them partially. 

The different ranges are shown in the below table. This allows us to apply 

testing on the boundaries of the floating point space as well as the normal 

numbers.  

 

Floating Point Sub-Domain Description 

Norm-Num Normalized numbers in the normal floating point range 

Big-Num Normalized numbers close to ±∞ 

Denorm-Number Denormalized numbers  

±0  

±∞  

Table 4.2: Different floating point ranges 
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Table 4.3 shows the combinations of the different ranges to generate the 

input testing vectors. 

 

First Operand Second Operand 

First Bound Second Bound First Bound Second Bound 

Norm-Num Norm-Num Norm-Num Norm-Num 

Big-Num Big-Num Norm-Num Norm-Num 

Big-Num Big-Num Big-Num Big-Num 

Norm-Num Norm-Num Big-Num Big-Num 

Denorm-Num Denorm-Num Denorm-Num Denorm-Num 

Denorm-Num Denorm-Num Norm-Num Norm-Num 

Big-Num Big-Num Denorm-Num Denorm-Num 

Norm-Num Norm-Num ±∞ ±∞ 

±∞ ±∞ Big-Num Big-Num 

±∞ ±∞ ±∞ ±∞ 

±∞ ±∞ ±0 ±0 

Big-Num Big-Num 

The additive inverse  of 

the first operand's first 

bound 

The additive inverse of 

the first operand's 

second bound 

Big-Num Big-Num 

The multiplicative 

inverse  of the first 

operand's first bound 

The multiplicative 

inverse of the first 

operand's second bound 

Table 4.3: Covered ranges in Testing for all units 

 

4.2 Comparison with classical interval counterparts 

The major difference between all the previous works (mentioned in Previous 

Works section) and the proposed implementation is that most of them handled 

the case of hardware implementation of classical interval arithmetic units 

(with different approaches). Even for the classical interval multiplication 

work, most of the previous proposals avoid implementing the special cases of 

interval multiplications (which need four multiplications instead of two like 

other cases) and delegate this task to software programs due to its complexity. 

This is unacceptable (in so many applications) for one of the basic arithmetic 
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operations like multiplication. Also, none of the classical interval hardware 

implementations mentioned how infinites as input operands can be handled. 

Although this case is easy in interval addition/subtraction (handling is like that 

of the normal floating point adder/subtractor), it is more complex in interval 

multiplication and needs special circuitry. 

To compare the proposed modal interval units with the classical ones, we 

need to design classical interval units that cover the above two points 

(handling multiplication special cases and infinities in input). Accordingly, the 

modal interval adder/subtractor and multiplier are modified to implement the 

classical interval adder/subtractor and multiplier. 

4.2.1 Classical Interval Adder/Subtractor 

The only modification that may be needed is to generate an exception flag that 

indicates that at least one of the interval inputs is a non classical interval (an 

improper interval). This modification can be delegated to software. In case of 

implementing the exception flag in hardware, it needs two 64 bit comparators 

in case of parallel classical interval adder/subtractor (or one 64 bit comparator 

in case of the serial design) to compare the interval bounds of each input 

operand. As we noticed, if we implement the improper interval exception flag 

this leads to an area increase more than that of the modal interval 

adder/subtractor. Table 4.4 shows different areas (in terms of number of logic 

elements and number of registers) for different modal/classical and 

parallel/serial adder/subtractor implementations. 

 

 Serial Parallel 

 
No. of 

ALUTs 

No. of 

Registers 

No. of 

LEs 

No. of 

Registers 

Modal Interval  

Adder/Sub 
1230 997 2358 1716 

Classical Interval  

Adder/Sub 1346 998 2493 1717 

Table 4.4: Classical/Modal Add-Sub Area Comparisons (Stratix III) 
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As shown above, the classical implementations lead to 9.4% utilization 

increase (of logic elements) in case of serial approach and 5.7% utilization  

increase (of logic elements) in case of parallel approach. 

The Timings won't be affected in pipeline schemes as the delay of the two 

comparators is embedded into clock cycles that the pre-processing unit takes 

in both serial and parallel implementations. 

As we mentioned, one other possible solution is to leave the improper 

detection handling to the software. In this case the classical interval 

adder/subtractor will be the same as its modal counterpart. But there will be 

timing overhead due to handling of improper interval detection in software. 

4.2.2 Classical Interval Multiplier 

As we mentioned before, the difference between classical and modal 

interval units is that we need to check that the input operands are proper 

intervals, otherwise we generate an exception. This exception can be generated 

in hardware of by software. If we generate the improper interval exception in 

hardware, the same modification (done in classical adder/subtractor) will be 

done in case of multiplication, too. Besides, the logic of selecting the modal 

interval multiplication case will change as the number of classical 

multiplication cases is nine cases only. Also, these nine cases don't include 

cases that lead to Nan results (in case of infinity inputs) which will save 

another piece of hardware. 

Table 4.5 shows different areas (in terms of Logic Elements) for different 

modal/classical and parallel/serial multiplier implementations. As we can see, 

in case of hardware support of improper interval detection there is a utilization 

decrease (in number of logic elements) by 1.3% in the serial implementation 

while there is a utilization increase (in number of logic elements) by 2.6% in 

the parallel implementation. On the other hand, in case of leaving improper 

interval detection to software there is a utilization decrease by 1.3% in the 

serial implementation (the same percentage as in the hardware support) while 
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there is utilization decrease by 1.7 in the parallel implementation (on the 

contrary of the hardware support). These results are totally expected. 

  

 Serial Parallel 

 
No. of 

ALUTs 

No. of 

Registers 

No. of 

Embedded 

MULs 

No. of 

LEs 

No. of 

Registers 

No. of 

Embedded 

MULs 

Modal Interval  

Multiplier 
2319 1818 18 3491 2793 36 

Classical Interval  

Multiplier  

(Hardware exception) 
2288 1811 18 3583 2792 36 

Classical Interval  

Multiplier  

(Software exception) 

2287 1810 18 3431 2791 36 

Table 4.5: Classical/Modal Multiplier Area Comparisons (Stratix III) 

 

As we said before, in case of hardware support for the improper interval 

detection at inputs we need comparators to check the two input intervals if the 

proper or improper intervals. These two comparators are originally present in 

the serial implementation of the modal interval multiplier (review the Serial 

Interval Multiplier section), so we don't add them again. But we need to add 

these two comparators in case of classical parallel implementation. On the 

other hand, there is lot of logic need to be removed (in both serial and parallel 

classical implementations) as we handle nine cases in classical interval 

multiplication instead of sixteen cases in the modal interval multiplication. 

The above reasons cause an area decrease in classical serial 

implementation (with hardware exception) and a reduction in the area increase 

of the classical parallel implementation (with hardware exception). 

Apparently, if improper interval detection is left to software, we will have an 

area decrease in both serial and parallel classical interval multipliers that their 

modal counterparts. 

For Timings, in case of hardware exception the timings won't be affected 

in pipeline schemes as the delay of the two comparators is embedded into 

clock cycles that the pre-processing unit takes in both serial and parallel 

implementations. 
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4.3 Future Work 

The future work need to be done for the current modal interval adder, 

subtractor and multiplier is to add support for floating point exceptions like 

overflow, underflow and inexact result exceptions. We should note that the 

interval results consist of two floating point numbers so we may have two 

exceptions of the same type in the design or we can just indicate that an 

exception occurs in the interval result. Another modification can be done in 

these units is to add the support to operate in two different modes (classical 

and modal). Thus if the user needs to work with classical intervals only, he 

will set the Modal flag off so any modal interval input will through and 

exception.   

The previous modifications were to enhance the already done units and 

they are simple but if we want to make a fully hardware support for the double 

floating point modal intervals, we need to implement much more units. The 

first unit that we can think of supporting is the modal interval double floating 

point divider. Also, there are some important functions like the basic interval 

elementary functions (trigonometric, exponential and logarithmic functions) 

and the power functions. All of the previous functions can be built using the 

corresponding normal floating point units. Another class of operations are the 

comparison relation operations mentioned in [5]. Although they are built on 

the normal comparison relations but their definitions are slightly different in 

modal intervals and have more varieties than those in real numbers system [5], 

[6]. Another class of operations needed for modal intervals are the midpoint, 

Infimum, Suprimum and Mode of the interval. The definition of those 

operations is defined in the "Modal Intervals Building Blocks" section except 

the midpoint operation which is simply the subtraction of the two bounds 

divided by two. Two new operations (need to be implemented specifically for 

intervals) are the intersect and union of two intervals. The definition of both is 

in [5]. 
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 We should note that some of the previous operations (till the moment this 

thesis were written) are not completely defined in the modal intervals space 

but they are totally defined in the classical intervals space. Thus they can be 

implemented with a certain level of support to the modal intervals. The 

support of all the previous functions in modal intervals will benefit all the 

users who concern in applications that need accurate results and high speed.  

Different topic can be done as a future work is building multiple precision 

floating point modal interval units. There is no published references mention 

the need to use multiple precision support for modal intervals but there are 

many references discuss the need of supporting multiple precision classical 

intervals [8], [38], [22]. The complex equation which is mentioned in the 

Introduction chapter (Overview Section) is an example of why we need 

multiple precision for certain applications. This example shows that the 

floating point result will be wrong regardless of the precision of the floating 

point numbers. Unfortunately, when we apply classical interval methods on 

this example, we have wide interval results for different precisions as shown 

in Table 4.6 [38].  

 

Precision Interval Width 

32-bit 6.3E+30 

64-bit 1.1E+22 

128-bit 5.1E+03 

Table 4.6: Rump's Example: Result Widths using different precision Intervals 

 

We should notice that the more precision we use the tighter interval result 

we have. Thus using multiple precision intervals will give us the opportunity 

to have more accurate (tighter) interval results. As the modal intervals support 

add a slightly more cost to the classical support then it will be better to 

implement multiple precision modal interval units. 
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Conclusions 

This work introduces for the first time the hardware implementations of the 

Modal Interval Adder/Subtractor and Modal Interval Multiplier units. It 

studies two different implementations of these modal interval units using 

normal double floating point adders/subtrtactors and multipliers respectively. 

The serial designs represent the execution of the interval operations serially 

with minimal area increase. On the other hand, the parallel designs make the 

execution of the interval operations as fast as the execution of normal floating 

point operations but this comes at the cost of area increase and power 

consumption. The results shows that the Serial and parallel MIBFP 

Adder/Subtractors areas are larger than the BFP adder/subtractor area by 16% 

and 115% respectively .The Serial and parallel MIBFP Multipliers areas are 

larger than the BFB Multiplier area by 26% and 128% respectively. 

Generally speaking, we can say that the hardware serial modal interval 

multiplier is faster than the different software implementations of modal 

interval multipliers with a small cost of area increase. Although, the hardware 

parallel modal interval multiplier is almost double the speed of the serial 

counterpart, it consumes almost double the area which is a big cost for a unit 

like the floating point multiplier. According to the modal interval 

adder/subtractor, only the hardware parallel design makes an improvement 

over the software implementations but it also costs almost double the area. 

It is shown also that the modal interval adder/subtractor and the modal 

interval multiplier implementations don't have any cost increase than that of 

their classical counterpart. In fact, it is shown that if we want to add the 

improper interval detection exception to hardware, this will make the classical 

units have more areas than those of their classical counterparts (except for the 

serial modal interval multiplier as explained before). 

After all, we can say that only the application nature and the cost are the 

major benchmarks that determine either the serial approach (smaller but 
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slower) or the parallel approach (bigger but faster) is suitable.  

As the Modal Intervals Analysis is a new branch of Mathematics, there are 

lots of research points in it, especially in the topic of hardware implementation 

of the arithmetic units. As mentioned in the "Future Work" section in the 

previous chapter, there are plenty of Modal Interval arithmetic units that are 

not implemented in hardware, yet. 
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