
Hardware Implementation of Modal

Interval Adder/Subtractor and

Multiplier

by

Eng. Ayman Abd-ElAziz Bakr Omar

Electronics and Communications Department

Faculty of Engineering, Cairo University

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2012

Hardware Implementation of Modal

Interval Adder/Subtractor and

Multiplier

by

Eng. Ayman Abd-ElAziz Bakr Omar

Electronics and Communications Department

Faculty of Engineering, Cairo University

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the supervision of

Associate Prof. Hossam A. H. Fahmy

Electronics and Communications Dept.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2012

Hardware Implementation of Modal

Interval Adder/Subtractor and

Multiplier

by

Eng. Ayman Abd-ElAziz Bakr Omar

Electronics and Communications Department

Faculty of Engineering, Cairo University

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Approved by the

Examining Committee

Associate Prof. Hossam A. H. Fahmy , Thesis Main Advisor

Prof. Dr. Amin M. Nassar, Member

Prof. Dr. Ashraf M. F. Salem, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2012

i

Acknowledgements

First of all, I would like to thank Allah for helping me, supporting me, giving

me the strength in hard times and for all unlimited graces he is giving to me.

Secondly, I would like to thank my parents who took care of me all these years

and was encouraging me to complete my thesis. Lastly, I would like to thank

Prof. Hossam for his kindness and patience with me. He was like a big brother

to me who advised me and taught me lots of things that I had never learnt

without his help.

ii

Abstract

Rounding errors in digital computations using floating point numbers may

result in totally inaccurate results. One of the mathematical solutions to

monitor and control rounding errors is the classical interval arithmetic (CIA).

A generalized extension of the classical intervals was presented in 1980 which

is the modal intervals. Modal Intervals Arithmetic (MIA) proved to be a good

tool in many branches of applied mathematics. This leads to solving serious

problems in applications like control and computer graphics. The increasing

demand of high speed applications and in the same time accurate results lead

researches to hardware implementation of MIA.

This work introduces, for the first time, the hardware implementation of

the Modal Interval Double Floating Point Adder/Subtractor and Multiplier

units. It proposes two different hardware implementation approaches (serial

and parallel) for each of these units. Serial implementations have smaller areas

than those of the parallel implementations but they are slower than parallel

implementations. Also, there is no overhead in supporting modal intervals

instead of supporting classical intervals only. Moreover, certain modal interval

implementations have smaller areas than their classical counterparts.

Accordingly, modal interval Adder/Subtractor and multiplier units are more

efficient than their classical counterparts.

The application nature and the cost are the major benchmarks that

determine whether the serial approach (smaller but slower) or the parallel

approach (bigger but faster) is suitable.

iii

Contents

Acknowledgements ... i

Abstract .. ii

Contents .. iii

List of Figures .. v

List of Tables ... vii

1 Introduction .. 1

1.1 Overview ... 1

1.2 Classical Intervals ... 3

1.2.1 Historical Background ... 3

1.2.2 Basic Idea .. 3

1.2.3 Definition ... 4

1.2.4 Interval Extensions of Continuous Functions.............................. 4

1.2.5 Problems in Classical Intervals ... 9

1.3 Modal Intervals ... 11

1.3.1 Historical Background ... 11

1.3.2 Aim of Modal Intervals ... 11

1.3.3 Predicates and Quantifiers ... 13

1.3.4 Modal Intervals Building Blocks ... 15

1.3.5 Interval Extensions of Continuous Functions............................ 18

1.3.6 Modal Interval Extensions of Basic Arithmetic Operations 20

1.3.7 Advantages over classical intervals: .. 22

2 Previous Work and Motivation .. 28

2.1 Rounded Interval Arithmetic .. 28

2.2 Digital Representation .. 30

2.3 Motivation ... 31

2.3.1 Modal versus classical intervals .. 31

2.3.2 Hardware versus Software Implementation 31

iv

2.4 Previous Work... 32

2.4.1 Classical Intervals .. 32

2.4.2 Modal Intervals .. 35

3 Hardware Implementation .. 36

3.1 Modal Interval Double Floating Point Adder/Subtractor

Implementation .. 36

3.1.1 Handling Infinities in input intervals ... 37

3.1.2 Hardware Implementation ... 38

3.2 Modal Interval Double Floating Point Multiplier Implementation .. 49

3.2.1 Handling Infinities in input intervals ... 50

3.2.2 Hardware Implementation ... 53

4 Testing, Comparisons and Future Work .. 84

4.1 Testing ... 84

4.1.1 Testing Libraries .. 84

4.1.2 Test Bench ... 84

4.1.3 Testing coverage .. 87

4.2 Comparison with classical interval counterparts 88

4.2.1 Classical Interval Adder/Subtractor .. 89

4.2.2 Classical Interval Multiplier .. 90

4.3 Future Work .. 92

Conclusions .. 94

References .. 96

v

List of Figures

Figure 1.1: Increasingly Monotonic Function ... 6

Figure 1.2: Different types of interpretations for tolerance modeling 13

Figure 1.3: (Inf, Sup)-Diagram .. 17

Figure 1.4: variation estimation based on modal interval 24

Figure 1.5: variation estimation based on modal interval 25

Figure 1.6: variation estimation based on modal interval 26

Figure 2.1: Block Diagram of I-ALU .. 34

Figure 3.1: Modal Interval Double Floating Point Adder/Subtractor 39

Figure 3.2: pre-processing unit logic circuit .. 40

Figure 3.3: post-processing unit logic circuit .. 41

Figure 3.4: Pipeline stages for Serial MIBFP Adder/Subtractor 42

Figure 3.5: Modal Interval Double Floating Point Adder/Subtractor 44

Figure 3.6: pre-processing unit logic circuit .. 45

Figure 3.7: Pipeline stages for Parallel MIBFP Adder/Subtractor 46

Figure 3.8: Outward rounded Modal Interval Multiplication 49

Figure 3.9: Modal Interval Double Floating Point Multiplier 57

Figure 3.10: Special case extension output signal ... 60

Figure 3.11: Rounding mode (input to the first floating point multiplier) 60

Figure 3.12: Operand_A_1 (operand_A of the first floating point multiplier) 61

Figure 3.13: Operand_B_1 (operand_B of the first floating point multiplier) 62

Figure 3.14: Rounding mode (input to the second floating point multiplier) . 63

Figure 3.15: Operand_A_2 (operand_A of the second floating point multiplier)

Figure 3.16: Operand_B_2 (operand_B of the second floating point multiplier)

.. 63

Figure 3.17: Multiplication Type (normal, classical special case or modal

special case) .. 64

Figure 3.18: Interval result bounds .. 66

vi

Figure 3.19: Result ready flag logic circuit ... 66

Figure 3.20: Pipeline stages for the Parallel MIBFP Multiplier 67

Figure 3.21: Modal Interval Double Floating Point Multiplier 73

Figure 3.22: Cycle Number ... 75

Figure 3.23: Special case extension output signal ... 75

Figure 3.24: Rounding mode logic circuit ... 76

Figure 3.25: Multiplication Type logic circuit .. 76

Figure 3.26: Operand_A logic circuit .. 77

Figure 3.27: Operand_B logic circuit .. 78

Figure 3.28: Cycle Number ... 79

Figure 3.29: Result Ready logic circuit ... 79

Figure 3.30: Interval result bounds logic circuit .. 80

Figure 3.31: Pipeline stages for the Serial MIBFP Multiplier 81

Figure 4.1: Test Bench Block Diagram ... 86

vii

List of Tables

Table 3.1: Extended Modal Interval Addition ... 37

Table 3.2: Extended Modal Interval Subtraction ... 37

Table 3.3: Floating Point Addition .. 38

Table 3.4: Floating Point Subtraction .. 38

Table 3.5: Area and Timings (Serial MIBFP adder/subtractor – Cyclone II) . 42

Table 3.6: Area and Timings (Serial MIBFP adder/subtractor – Stratix III) .. 43

Table 3.7: Area and Timings (Serial MIBFP adder/subtractor – Nangate

45nm) .. 43

Table 3.8: Area and Timings (Parallel MIBFP adder/subtractor – Cyclone II)

 .. 46

Table 3.9: Area and Timings (Parallel MIBFP adder/subtractor – Stratix III) 47

Table 3.10: Area and Timings (Parllel MIBFP adder/subtractor – Nangate

45nm) .. 47

Table 3.11: Interval Adder/Subtrtactor (Combined Results) 48

Table 3.12: Extended Modal Interval Multiplication 52

Table 3.13: Floating Point Multiplication ... 53

Table 3.14: Interval Multiplication in terms of bounds' signs 54

Table 3.15: Inputs and outputs for each floating point multiplier 55

Table 3.16: Area and Timings (Parallel MIBFP multiplier – Cyclone II) 68

Table 3.17: Area and Timings (Parallel MIBFP multiplier – Stratix III) 68

Table 3.18: Area and Timings (Parallel MIBFP multiplier – Nangate 45nm) 68

Table 3.19: Interval Multiplication in terms of bounds' signs & comparisons 70

Table 3.20: Inputs and outputs for each floating point multiplier 72

Table 3.21: Area and Timings (Serial MIBFP multiplier – Cyclone II) 81

Table 3.22: Area and Timings (Serial MIBFP multiplier – Stratix III) 82

Table 3.23: Area and Timings (Serial MIBFP multiplier – Nangate 45nm) ... 82

Table 3.24: Interval multiplier (Combined Results) .. 83

viii

Table 4.1: Samples of Input and Output Testing Vectors 85

Table 4.2: Different floating point ranges ... 87

Table 4.3: Covered ranges in Testing for all units .. 88

Table 4.4: Classical/Modal Add-Sub Area Comparisons (Stratix III) 89

Table 4.5: Classical/Modal Multiplier Area Comparisons (Stratix III)........... 91

Table 4.6: Rump's Example: Result Widths using different precision Intervals

 .. 93

1

Chapter 1

1 Introduction

1.1 Overview

One of the main shortages of the floating point representation in digital

systems is the rounding [1]. The rounding can result in catastrophic errors

which make the floating point computations result in a totally different result

from the exact one. Consider for example, b = 3.34, a = 1.22, and c =

 2.28. The exact value of b2 − 4ac = 0.0292 . But (in a system with three

decimal places) b2 rounds to 11.2 and 4ac rounds to 11.1, hence the final

answer is 0.1 which is an error by 700 ulps, even though 11.2 - 11.1 is exactly

equal to 0.1 . The subtraction did not introduce any error, but rather exposed

the error introduced in the earlier multiplications [1]. The previous example is

a simple one but we can have more complex examples that yield totally wrong

results as in the following arithmetic expression [37]:

𝑓 = 333.75𝑏6 + 𝑎2 11𝑎2𝑏2 − 𝑏6 − 121𝑏4 − 2 + 5.5𝑏8 +
𝑎

2𝑏

For 𝑎 = 77617 𝑎𝑛𝑑 𝑏 = 33096 , Using IEEE 754 arithmetic operations with

a round-to-nearest rounding we have the following results for 32, 64 and 128

floating point representations:

 32-bit: 𝑓 ≈ 1.172604

 64-bit: 𝑓 ≈ 1.1726039400531786

 128-bit: 𝑓 ≈ 1.1726039400531786318588349045201838

According to [37] and [38], the true value is 𝑓 = −0.827386...

We have these wrong results in different precisions due to the heavy

cancellation in the floating point computations. The more important in the

2

previous example that no matter we use higher floating point precision

arithmetic we may still have wrong results.

Due to this inaccuracy of floating point computations, several numerical

methods are used to account for rounding errors in floating point computations

or even eliminate them. One of these numerical methods is the interval

computations which was greatly popularized as classical interval arithmetic by

Ramon E.Moore in 1966 [2]. The basic idea of the classical intervals is to use

intervals instead of real numbers. For example, the number 3.145 lies in the

interval [3.13, 3.15]. Thus when we represent the classical interval bounds

(3.13 and 3.15) using floating point numbers and apply the different floating

point computations on it, we can monitor and control the rounding errors in

the floating point computations. Also this approach allows us to represent the

uncertainty of the measurements of the different systems. Consider for

example, that we want to measure the temperature of a certain system. Instead

of representing the temperature value with a single uncertain value, we can

represent it with an interval that we are sure that the real system's temperature

lies in it [2]. After the definition of classical interval arithmetic (or set-

theoretical interval arithmetic) many mathematicians tried to extend it to

eliminate some of its problems. One of these extensions is the modal interval

arithmetic [5].

Several software packages were introduced to implement many forms of

interval computations. Many interval applications need not only the accurate

computations but also to be as fast as the floating point computations. The

increasing need to have interval computations with a performance comparable

to floating point computations leads us to the hardware implementation of the

interval computations [3], [4]. Hardware implementation of the interval

addition, subtraction and multiplication is what we will discuss.

3

1.2 Classical Intervals

1.2.1 Historical Background

The history of intervals in general goes back to the very first publications on

the topic of interval calculus. There are two papers considered as the

pioneering works in this field: one by the mathematician T. Sunaga in 1958

[32], and another by M. Warmus in 1956 [33]. Both were apparently

completed independent of each other. In 1961, a second paper appeared by

Warmus [34]. In the paper by Sunaga, almost all foundational elements of the

interval calculus, as known today, are presented [6].

Since the publications of Sunaga and Warmus, Classical interval

arithmetic or set-theoretical interval arithmetic was greatly popularized by

Ramon E.Moore in 1966 [2]. Classical interval arithmetic defines all the

mathematical operations under intervals with their bounds of real numbers.

The first reason behind using classical interval arithmetic is to control

round off errors resulting from using floating point computations and to put

bounds on measurement errors in mathematical computations [2], [4]. After

that, classical intervals analysis was found to be a good tool in so many

branches of applied mathematics like solving linear and non linear equations,

differential equations and global optimization [3], [4].

1.2.2 Basic Idea

The basic idea behind classical intervals is that instead of working with an

uncertain real value (𝑥) we can work with the two bounds of the interval [𝑎, 𝑏]

which contains 𝑥 (𝑥 lies between 𝑎 and 𝑏) or could be one of the bounds.

Consider for example, instead of estimating the height of someone using

standard arithmetic as 2.0 meters, using interval arithmetic we might be

certain that the person is somewhere between 1.97 and 2.03 meters [2], [28].

In other words, Classical interval arithmetic states the range of possible

http://en.wikipedia.org/wiki/Real_%28number%29

4

outcomes explicitly. Simply, results are no longer stated as numbers, but as

intervals which represent imprecise values. The sizes of the intervals are

similar to error bars to a metric in expressing the extent of uncertainty. Simple

arithmetic operations, such as basic arithmetic and trigonometric functions,

enable the calculation of outer limits of intervals [2], [28].

Due to the heavy usage of classical interval analysis in so many

mathematical applications, it found its way in many scientific and engineering

fields. Some of these fields are chemical engineering, computer graphics,

computer aided design tools, electrical engineering, Robotics, Control and so

many other fields [2], [3], [4].

1.2.3 Definition

The definition of classical intervals is as follows [2]:

 () {[,] | , , }I R a b a b R a b

1.2.4 Interval Extensions of Continuous Functions

One of the main objectives of classical interval analysis is to obtain an optimal

interval extension in 𝐼(𝑹) for each real function in 𝑹

1.2.4.1 Interval Extensions of Basic Operations

The basic operations of interval arithmetic are, for two intervals 1 2, A a a

and 1 2, bB b that are subsets of the real line (-∞,∞):

1 1 2 2

1 2 2 1

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

[,]

[,]

* [min(, , ,),max(, , ,)]

/ [min(/ , / , / , /),max(/ , / , / , /)],0

A B a b a b

A B a b a b

A B a b a b a b a b a b a b a b a b

A B a b a b a b a b a b a b a b a b B

5

The addition and multiplication operations have the following properties [2],

[28]:

Commutative

 𝑋 × 𝑌 = 𝑌 × 𝑋

 𝑋 + 𝑌 = 𝑌 + 𝑋

Associative

 𝑋 × 𝑌 × 𝑍 = (𝑌 × 𝑋) × 𝑍

 𝑋 + 𝑌 + 𝑍 = 𝑌 + 𝑋 + 𝑍

Sub-distributive

 𝑋 × 𝑌 + 𝑍 ⊆ 𝑋 × 𝑌 + 𝑋 × 𝑍

As stated above, the interval multiplication operation (or interval division

operation) costs four real multiplication operations and six comparisons (three

comparisons for each bound of the resulting interval). There are other

formulas which reduce the number of multiplication or division operations

using signs tests on input intervals bounds as following:

𝐴 ∗ 𝐵 =

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑎1𝑏1,𝑎2𝑏2

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [𝑎2𝑏1, 𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 𝑎2𝑏1, 𝑎1𝑏2

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑎1𝑏2, 𝑎2𝑏2

 𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0

 𝑡𝑒𝑛 𝑚𝑖𝑛 𝑎2𝑏1, 𝑎1𝑏2 , 𝑚𝑎𝑥 𝑎1𝑏1,𝑎2𝑏2

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 𝑎2𝑏1, 𝑎1𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑎1𝑏2, 𝑎2𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑎1𝑏2, 𝑎1𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2𝑏2, 𝑎1𝑏1]

 𝐴 𝐵 =

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏2, 𝑎2/𝑏1]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏2, 𝑎1/𝑏1]

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏1,𝑎2/𝑏1]

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏2, 𝑎1/𝑏2]

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏1,𝑎2/𝑏2]

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏1, 𝑎1/𝑏2]

http://en.wikipedia.org/wiki/Commutative
http://en.wikipedia.org/wiki/Associative
http://en.wikipedia.org/wiki/Distributive

6

Except for case 3 in multiplication we have only two multiplication or

division operations and sign tests instead of four multiplication or division

operation and six comparisons. This dramatically affects the performance of

interval multiplication and division algorithms either in software or hardware

implementations as we will see for the multiplication operation.

1.2.4.2 Interval Extensions of Monotonic Functions

Interval methods can also apply to functions which do not just use simple

arithmetic such as functions that have monotonicity properties [2], [28].

Figure 1.1: Increasingly Monotonic Function

If 𝑓: ℝ → ℝ is monotonically rising or falling in the interval[𝑥1, 𝑥2], then

for all values in the interval 𝑦1, 𝑦2 ∈ [𝑥1, 𝑥2] such that 𝑦1 ≤ 𝑦2, one of the

following inequalities applies:

𝑓(𝑦1) ≤ 𝑓 𝑦2 𝑜𝑟𝑓(𝑦1) ≥ 𝑓(𝑦2)

Thus the range corresponding to the interval [y1, y2] ⊆ [x1, x2] can be

calculated by applying the function to the endpoints y1and y2 [2], [28]:

𝑓([𝑦1, 𝑦2]) = min 𝑓(𝑦1 , 𝑓 𝑦2 , max 𝑓(𝑦1 , 𝑓 𝑦2 }]

7

More generally, one can say that for piecewise monotonic functions it is

sufficient to consider the endpoints x1, x2 of the interval [x1, x2], together with

the so-called critical points within the interval (those points where the

monotonicity of the function changes direction) [2], [28].

1.2.4.3 Interval Extensions of Elementary Functions

We can easily deduce formulas to calculate the interval results for elementary

functions (due to the monotinicity properties) as following [2]:

Exponential function:

a[x1 ,x2] = ax1 , ax2 , for a > 1

Logarithmic function:

𝑙𝑜𝑔𝑎 𝑥1, 𝑥2 = 𝑙𝑜𝑔𝑎𝑥1, 𝑙𝑜𝑔𝑎𝑥2 , 𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑥1, 𝑥2 𝑎𝑛𝑑 𝑎

> 1

Power function:

For Odd n ∈ N

[𝑥1, 𝑥2]𝑛 = 𝑥1
𝑛 , 𝑥2

𝑛

For Even n ∈ N

 [𝑥1, 𝑥2]𝑛 = 𝑥1
𝑛 , 𝑥2

𝑛 , 𝑖𝑓𝑥1 ≥ 0

 [𝑥1, 𝑥2]𝑛 = 𝑥2
𝑛 , 𝑥1

𝑛 , 𝑖𝑓𝑥2 < 0

 [𝑥1 , 𝑥2]𝑛 = 0, max({𝑥1
𝑛 , 𝑥2

𝑛}) , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

For even powers, the range of values being considered is important, and

needs to be dealt with before doing any multiplication [2], [28].

http://en.wikipedia.org/wiki/Exponential_function
http://en.wikipedia.org/wiki/Exponential_function

8

For the sine and cosine functions, the critical points are at 1
2 + 𝑛 . 𝜋 or . 𝜋

for all 𝑛 ∈ Ζ respectively. Only up to five points matter as the resulting

interval will be [− 1,1] if at least half a period is in the input interval. For sine

and cosine, only the endpoints need full evaluation as the critical points lead to

easily pre-calculated values namely -1, 0 , +1 [2], [28].

1.2.4.4 Interval extensions of General Functions

In general, we can combine the function rules 𝑓(𝑥1, 𝑥2 , ………𝑥𝑛) with the

equivalents of the basic arithmetic and elementary functions. This is called

natural interval extension. We should note that there may be more than one

real expression that are equivalent but each one has interval extension that is

not equivalent to the other [2]. For example:

 𝐹 𝑋 = 𝑋(1 − 𝑋)

𝐺 𝑋 = 𝑋 − 𝑋2

 𝐻 𝑋 = 1 4 − (𝑋 − 1 2)2

𝐹 𝑋 , 𝐺 𝑋 , 𝐻(𝑋) are the interval extensions of the corresponding real

functions 𝑓 𝑥 , 𝑔 𝑥 , (𝑥) (capital letters denotes the interval extensions and

small letters denotes the real functions).we should note that 𝑓 𝑥 , 𝑔 𝑥 , (𝑥)

are equivalent as a real functions but their interval extensions are not

equivalent and each has different interval result (this is one of the problems of

the classical interval analysis as we will discuss in the next section). Consider

for example the interval results for 𝑋 = [0,1].

𝐹 0,1 = 0,1 × 1,1 − 0,1

 = 0,1 × 0,1

 = [0,1]

𝐺 0,1 = 0,1 − 0,1 2

http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Cosine

9

 = 0,1 − 0,1

 = [−1,1]

𝐻 0,1 = 1 4 − 0,1 − 1 2 , 1 2 2

 = 1 4 − 1 2 , 1 2 2

 = 1 4 , 1 4 − 0, 1 4

 = [0, 1 4]

One of the important points of interval analysis is to obtain the interval

extension that gives the tightest result.

1.2.5 Problems in Classical Intervals

Unfortunately, there are problems that appeared in classical interval analysis.

Some of them are mentioned below [5] , [6].

1- Amplification of Dependence

When we calculate interval functions, we may have wider interval result

than the actual result. Consider for example

𝑓 𝑥 = 𝑥 − 𝑥 {𝑥 − 𝑥|𝑥 ∈ 1,2 = [0,0]}

While with interval operation on 𝐼(𝑅)

𝐹 𝑋 = 𝑋 − 𝑋 = 1,2 − 1,2 = −1,1

2- Sub-Distributive Law

The distributive property of multiplication is weakened in interval

multiplication

𝐴. 𝐵 + 𝐶 ⊆ 𝐴. 𝐵 + 𝐴. 𝐶

For example:

 1,3 1,1 + −1, −1 = 0,0

𝑤𝑖𝑙𝑒 1,3 . 1,1 + 1,3 . −1, −1 = −2,2

10

 𝑐𝑙𝑒𝑎𝑟𝑙𝑦, 0,0 ⊆ −2,2

3- No Additive Inverse

In the real space – x is the additive inverse of x such that

𝑥– x = 0 but in the interval space 𝑋– X ≠ [0,0]
 2,5 − 2,5 = −3,3

4- No Multiplicative Inverse

In the real space 1 𝑥 is the multiplicative inverse of 𝑥 such

that 𝑥.
1

𝑥
 = 1 but in the interval space X X ≠ [1,1]

[2,5] [2,5] = 2,5 . [1 5 , 1 2] = [2 5 , 5 2]

5- Failure to solve some interval equations

Some interval equations couldn't be solved in the I(R) space. Even the

simple equations like 𝑎, 𝑏 + 𝑥, 𝑦 = 0,0 . If [a, b] is a non degenerate

interval (a < b), there exists no interval 𝑥, 𝑦 solves this simple equation.

Also the linear equation 𝑎, 𝑏 + 𝑥, 𝑦 = [𝑐, 𝑑] the 𝐼(𝑅) system fails to

obtain the solution from any set-theoretical interval operation between

 𝑎, 𝑏 and [𝑐, 𝑑]. For Example

 1, 3 + 𝑥, 𝑦 = 4,5

 𝑥, 𝑦 = 4,5 − 1, 3 = [1,4]

the solution is 𝑥, 𝑦 = 1,4 then if we substitute in the equation we

have 1, 3 + 1, 4 = 2,7 ≠ [4,5] but 2,7 ⊃ [4,5].

Due to the problems that appeared in classical interval analysis; many

extensions were proposed to solve these problems. One of them is the modal

interval analysis which is believed to be the general case of classical interval

arithmetic like complex numbers are the general case of real numbers [5] , [6].

11

1.3 Modal Intervals

1.3.1 Historical Background

As we mentioned before, the papers of T.Sunaga and M.Warmus are

considered the first publications that talk about interval calculus in general

[32], [33], [34]. Moreover, Sunaga and Warmus introduced some basic

principles in the Modal Intervals. Sunaga proposed [1,3] as a solution of the

equation

 1,2 + 𝑋 = [2,5]

This solution can only be obtained by modal interval arithmetic (as we will see

later).

𝑋 = 2,5 − 𝐷𝑢𝑎𝑙 1,2 = 2,5 − 2,1 = [1,3]

The Dual operator that is mentioned above reverses the interval bounds (it will

be discussed in more details latter). Also Warmus proposed (in paper [33]) the

system:

𝐼∗ 𝑹 = {[𝑎, 𝑏]|𝑎, 𝑏 ∈ 𝑹}

which (as we will see later) is the basic definition of the modal intervals space.

Formal algebraic properties of proper intervals (intervals that have 𝑎 ≤ 𝑏 or

simply classical intervals) and improper intervals (intervals that have 𝑎 ≥ 𝑏)

were studied by H.J Ortolf (1968) and by E. Kausher (1973)[7]. Modal

intervals in its form now was conceived by E.Gardenes (1985) who put the

grounding construction of modal interval analysis [6].

1.3.2 Aim of Modal Intervals

The aim of modal intervals is to have interpretation of the interval results.

Consider for example if a cable reel has an actual length within A = [9, 11] m

and another within B = [19, 21] m, by connecting them it would be possible to

reach a length of A + B = [9, 11] + [19, 21] = [28, 32]. Is it possible to cover

12

any length between 28 and 32 m? The answer is no, since we cannot reach a

length of 32 m if the actual lengths for the reels were 10 and 20 m. What has

happened? We are confusing two different propositional headings:

 ∃𝑥 ∈ [28,32]: there exists an element of [28, 32],

∀𝑥 ∈ [28,32]: every element of [28, 32]

These are two opposed selection methods for values within an interval

cannot be accounted for in classical intervals 𝐼 𝑹 [5].

The problem of tolerance modelling is another real world example that

shows us why we need an interval system that accounts for interpreting the

equations and their results as mentioned in [39]. Suppose that we need to

model the tolerance values for certain industrial parts A, B and C that need to

be assembled as shown in Figure 1.2(a). As shown in the figure we need to

fulfil the equation 𝑎 + 𝑏 = 𝑐 for dimensions a, b and c in Figure 1.2(a). When

we model this equation we need to model also the possibility of having

uncontrollable parts (e.g. parts are given from another factory) that have

uncontrollable tolerances. For example we may have parts A and B are given

from another factory with a given tolerances for the dimensions a ,b as shown

in Figure 1.2(b). In that case we need part C to fit A and B and this can be

modelled with the interpretation:

∀𝑎 ∈ 𝐴′ , ∀𝑏 ∈ 𝐵′ ,∃𝑐 ∈ 𝐶 ′ ,𝑎 + 𝑏 = 𝑐

From now, we will represent the classical interval with a single quote as in A',

B' and C' (As we will see in the next sections modal intervals consists of one

of the modal logics ∀, ∃ combined with classical intervals but don't stuck into

this point for now)

13

Figure 1.2: Different types of interpretations for tolerance modeling

In another case, we are given parts B and C as shown in Figure 1.2(c).

Thus we need to fit parts B and C with A. This will be modelled with the

interpretation:

∀𝑎 ∈ 𝐴′ , ∃𝑏 ∈ 𝐵′ ,∃𝑐 ∈ 𝐶 ′ ,𝑎 + 𝑏 = 𝑐

Another case shown in Figure 1.2(d) which will be interpreted as:

∀𝑐 ∈ 𝐶 ′ ,∃𝑎 ∈ 𝐴′ , ∃𝑏 ∈ 𝐵′ ,𝑎 + 𝑏 = 𝑐

The classical interval arithmetic cannot account for these different

interpretations. On the other hand modal intervals are established to involve

these different interpretations into arithmetic operations as we will see

1.3.3 Predicates and Quantifiers

Predicates and quantifiers are the foundation of modal theory. Together, they

form the essential mathematical engine used to define the modal interval

solution sets of real expressions [6].

An example of a predicate:

 P(x): x is greater than 3

o P(x) is the statement

o P is the propositional function

o x is the subject

o "is greater than 3" is the preditcate (a property the subject can have)

14

The purpose of the predicate is to transform the subject of the statement

into a standard of truth, i.e., true or false. For this reason, the propositional

function can be thought of as a Boolean function of one or more variables

(subjects like x) [6]. The followings are some examples:

 Example-1:

 𝑃 𝑥 : 𝑥 > 3

 𝑃 4 = 𝑡𝑟𝑢𝑒

 𝑃 2 = 𝑓𝑎𝑙𝑠𝑒

Example-2:

 𝑄 𝑥, 𝑦 : 𝑥 = 𝑦 + 3

 𝑄 1,2 = 𝑓𝑎𝑙𝑠𝑒

 𝑄 3,0 = 𝑡𝑟𝑢𝑒

Quantifiers “quantify” the truth of a statement by providing a mode of

selection for a given variable in the predicate. In modal intervals there are

exactly two modes to choose from, namely, ∀ (universal) and ∃ (existential).

The ∀ and ∃ symbols are read “for all” and “there exists,” respectively [6].

Given a statement P(x) and x ∈ D where x is a variable and D is a domain

of values that x may take on, the proposition

 ∀x ∈ D P(x)

requires P(x) to be true “for all” values in the domain of x while

 ∃x ∈ D P(x)

requires P(x) to be true for at least one value in the domain of x, i.e., “there

exists” in the domain of x an element such that P(x) is true [6].

15

1.3.4 Modal Intervals Building Blocks

The building blocks of the modal interval theory are:

 The set of real numbers R

 The set of classical intervals I(R)

 The set of classic predicates on the real line, P . : R → {true, false}

More particularly, if

Pred R ≔ {P(.)|P . : R → true, false }

is the set of classic predicates on the real line and

Pred x ≔ {P(.) ∈ Pred R |P x = true }

is the set of predicates a real number x accepts, then modal analysis stands on

the identification

x ↔ Pred x

This is the main point of departure from the classical analysis which

instead builds on a singleton interpretation of real numbers x ↔ x [6].

A modal interval X is an element of the Cartesian product (X′ , Q) where X′

is a classical interval and Q ∈ {∀, ∃} is one of the classic quantifier modes. To

distinguish between modal interval and classical interval a prime symbol is put

on the classical interval (as in X′). From this perspective, modal interval space

can be defined as

I∗ R ≔ X′ , Q X′ ∈ I R , Q ∈ ∀, ∃ }

This is a similar method to that in which real numbers are associated in

pairs having the same absolute value but opposite signs. Modal intervals in the

system I∗ R are likewise associated in pairs having the same set but opposite

modes [6].

Modal Intervals can be defined using another notation. Let 𝑎, 𝑏 ∈ 𝑹 then

the canonical notation of a modal interval is:

16

 𝑎, 𝑏 =
(a, b ′ ,∃) if a ≤ b

(b, a ′ , ∀) if a ≥ b

With the canonical notation, another definition for the set of modal interval is

as following:

𝐼∗ 𝑹 = {[𝑎, 𝑏]|𝑎, 𝑏 ∈ 𝑹}

This reveals another reason why modal intervals are an extension of the

classical intervals. In words, I R is isomorphic to a portion of I∗ R , namely

the existential modal intervals [5],[6].

The importance of canonical notation comes from that all the

mathematical properties of modal intervals are derived from this notation [5],

[6], [29].

Some properties of a modal interval X ≔ [a, b] are as following:

Inf X ≔ a

Sup X ≔ b

Mode X ≔
∃ if a ≤ b
∀ if a ≥ b

Set X ≔ [min a, b , max a, b]′

The derivation of the canonical notation and its properties can be found in

[29]. Inf X and Sup X are important definitions which form the canonical

coordinates of a quite important diagram called (Inf, Sup)-diagram as shown

in Figure 1.3.

17

A (existentional)

Sup

Inf

B (universal)

R (the real numbers)

C (point)

Figure 1.3: (Inf, Sup)-Diagram

This Diagram is useful as it reveals the underlying structure of the modal

intervals. The (Inf = Sup) line is the set of all real numbers, i.e., the set of

degenerate modal intervals. The half plane above is the set of existential

intervals, and the half plane below is the set of universal modal intervals. For

degenerate modal intervals, quantifier modes “for all” and “there exists”

coincide, i.e., they have the same meaning. The (Inf, Sup)-diagram reveals the

structural difference between the classical and modal intervals. For example,

the shaded area below the (Inf = Sup) line represents a set of invalid intervals

18

that do not belong to the I R system. But this is the set of universal modal

intervals in the I∗ R system. If one views the (Inf, Sup)-diagram as an

interval analogy of R divided into complimentary sets of positive and negative

real numbers, a geometric insight is then provided into why I R is not

structurally complete. Restricting interval arithmetic to I R is, by analogy,

like restricting real arithmetic on R to the non-negative real numbers. Only the

system I∗ R completes the analogy by providing complementary sets of

intervals which are the existential and universal modal intervals [6].

Other names for the existential and universal intervals are the proper and

improper intervals respectively. This comes from that for existential (proper)

intervals a ≤ b while the universal (improper) intervals a ≥ b.

1.3.5 Interval Extensions of Continuous Functions

1.3.5.1 Modal Semantic Extensions

One of the basic objectives of the interval analysis is to find an interval

extension to any real function in 𝐑. In the Modal Interval Analysis, we have

two objectives:

1- Find an interval extension Rn to R for a given real function 𝑓 from

I∗(𝐑n) to I∗(𝐑)

2- The semantic meaning of the interval extension of that function

The semantic meaning of the interval extensions is one of the major

advantages that the modal intervals have over the classical intervals. To obtain

a semantic meaning to the interval computations, we must relate the modal

interval extensions to one of the two semantic extensions (* and **

extensions) which play the grounding role in the modal intervals theory by

providing the semantic meaning (interpretations) to the interval calculations

[5], [30].

19

The definitions of the two semantic extensions are as following:

Given a real function 𝑓 is an 𝐑n to 𝐑 continuous function, 𝑋 = 𝑋𝑝 , 𝑋𝑖 ∈

I∗(𝐑n) (where 𝑋 is a given vector of modal interval variables which can be

divided into a vector of variables that have improper interval values 𝑋𝑖 and a

vector of variables that have proper interval values 𝑋𝑝), 𝑥𝑝 ∈ 𝑋′𝑝 , 𝑥𝑖 ∈ 𝑋′𝑖

(where 𝑋′𝑝 ,𝑋′𝑖 are the classical counterparts of 𝑋𝑝 , 𝑋𝑖)then:

𝑓∗ 𝑋 ≔

= min 𝑥𝑝 , 𝑋 ′
𝑝 max 𝑥𝑖 , 𝑋

′
𝑖 𝑓 𝑥𝑝 , 𝑥𝑖 , max 𝑥𝑝 , 𝑋 ′

𝑝 min 𝑥𝑖 , 𝑋
′
𝑖 𝑓 𝑥𝑝 , 𝑥𝑖

𝑓∗∗ 𝑋 ≔

= max 𝑥𝑝 , 𝑋 ′
𝑝 min 𝑥𝑖 , 𝑋

′
𝑖 𝑓 𝑥𝑝 , 𝑥𝑖 , min 𝑥𝑝 , 𝑋 ′

𝑝 max 𝑥𝑖 , 𝑋
′
𝑖 𝑓 𝑥𝑝 , 𝑥𝑖

We should note that in case there is no improper interval i.e. Xi = ∅ then:

𝑓∗ 𝑋 = 𝑓∗∗ 𝑋 = min 𝑥𝑝 , 𝑋 ′
𝑝 𝑓 𝑥𝑝 , max 𝑥𝑝 , 𝑋 ′

𝑝 𝑓 𝑥𝑝

Which is the united extension of the real continuous function in classical

interval analysis [2], [5].The derivations of the previous semantic extensions

can be found in [30].

The semantic extensions 𝑓∗ and 𝑓∗∗ can be equal or not, but

(unfortunately) both 𝑓∗ and 𝑓∗∗ are out of reach for any direct computation

(This comes from applying the original definitions of 𝑓∗ and 𝑓∗∗ mentioned

above), except for simple real functions such as basic arithmetic operations.

Fortunately, we can relate the modal interval extensions of some specific

functions to the * and ** semantic extensions such that we can obtain a

meaningful result. Theorems 4.3 through 4.9 in [5] specify the rules that make

a modal interval extension interpretable by one of the semantic extensions (𝑓∗

and 𝑓∗∗).

20

One remaining thing in the * and ** semantic extensions is the semantic

meaning of the interval results. Theorem 4.1 and Theorem 4.2 in [5], [30]

reveal completely the meaning of the interval results of f ∗ and f ∗∗. The details

of these theorems are stated in [5], [30].

1.3.6 Modal Interval Extensions of Basic Arithmetic Operations

The modal interval extensions of the basic interval operations (+, -, *, /) can

follow f*-extension or f**-extension [5], [30], [31]:

If 𝐴 = 𝑎1, 𝑎2 𝑎𝑛𝑑 𝐵 = 𝑏1, 𝑏2 are modal intervals then

𝐴 ⊚ 𝐵 = 𝑓∗ 𝐴, 𝐵 = 𝑓∗∗ 𝐴, 𝐵

where ⊚∈ ⊕,⊖,⊙,⊘

We should note that f*-extension and f**-extension are equal in the case

of basic operations. This is mentioned in details in [5], [30], [31].

From the above we can conclude the following formulas for the basic

modal interval arithmetic operations (addition, subtraction, multiplication and

division) using the interval bounds [5], [30].

 𝐴 + 𝐵 = 𝑎1 + 𝑏1 ,𝑎2 + 𝑏2

𝐴 − 𝐵 = 𝑎1 − 𝑏2 , 𝑎2 − 𝑏1

21

𝐴 ∗ 𝐵 =

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [𝑎1𝑏1,𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛 𝑎1𝑏1, 𝑎1𝑏2

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [𝑎2𝑏1, 𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2𝑏1, 𝑎1𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [𝑎1𝑏1, 𝑎2𝑏1]

 𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 < 0

 𝑡𝑒𝑛 𝑚𝑎𝑥 𝑎1𝑏1,𝑎2𝑏2 , 𝑚𝑖𝑛 𝑎2𝑏1, 𝑎1𝑏2

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 0,0

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 𝑎2𝑏2, 𝑎1𝑏2

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑎1𝑏2, 𝑎2𝑏2

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛 0,0
𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0

 𝑡𝑒𝑛 𝑚𝑖𝑛 𝑎2𝑏1, 𝑎1𝑏2 , 𝑚𝑎𝑥 𝑎1𝑏1,𝑎2𝑏2

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 𝑎2𝑏1, 𝑎1𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑎1𝑏2, 𝑎2𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛 𝑎2𝑏2, 𝑎2𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑎1𝑏2, 𝑎1𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2𝑏2, 𝑎1𝑏1]

𝐴
𝐵 =

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏2, 𝑎2/𝑏1]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏2, 𝑎1/𝑏1]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏2,𝑎2/𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏1, 𝑎1/𝑏1]
𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏1,𝑎2/𝑏1]

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏2, 𝑎1/𝑏2]

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 > 0, 𝑏2 > 0 𝑡𝑒𝑛 [𝑎1/𝑏1,𝑎2/𝑏2]

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [𝑎2/𝑏1, 𝑎1/𝑏2]

We should note that:

1- For multiplication and division, we have different output depending on

the input intervals bounds signs.

2- The modal interval basic operations formulas coincide with Kaucher

interval basic operations[7] (Kaucher Intervals were proposed by

E.Kaucher in 1980. They are another extension to the classical

intervals which take into account the improper intervals in the interval

22

computations and try to solve the major shortages which we mentioned

in the classical interval space. For further information about kaucher

intervals, review [7]).

3- Classical basic operations formulas are subset of modal basic

operations formulas which may indicate that modal intervals are the

generalization form of classical intervals.

Another important definition is the Dual operator which is used in many

modal theorems. One of its uses is to express inner rounding in terms of outer

rounding as we will see later [5].

𝐼𝑓 𝐴 = 𝑎1 ,𝑎2 𝑡𝑒𝑛 𝐷𝑢𝑎𝑙 𝐴 = 𝑎2 , 𝑎1

1.3.7 Advantages over classical intervals:

The modal intervals managed to solve some of the problems in classical

intervals[5], [6].

1- There is additive inverse in modal intervals

For example, the additive inverse of 𝑋 = [0,1] is −𝐷𝑢𝑎𝑙 𝑋 =

−𝐷𝑢𝑎𝑙 0,1 = − 1,0 = [0, −1] such that 𝑋 − 𝐷𝑢𝑎𝑙 𝑋 =

 0,1 − 1,0 = 0,1 + [0, −1] = [0,0]

2- There is multiplicative inverse in modal intervals

For example, the multiplicative inverse of 𝑋 = [1,2] is 1/

𝐷𝑢𝑎𝑙(𝑋) = 1/[2,1] such that 𝑋 × 1 𝐷𝑢𝑎𝑙 𝑋 = 1,2 ×

1 [2,1] = 1,2 × 1, 1 2 = [1,1]

3- The sub-distributive law is stronger than that of the classical

𝐼𝑚𝑝𝑟 𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐶 ⊆ 𝐴 ∙ 𝐵 + 𝐶 ⊆ 𝑃𝑟𝑜𝑝 𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐶

Given that

𝑃𝑟𝑜𝑝 𝑎, 𝑏 = min 𝑎, 𝑏 , max 𝑎, 𝑏

𝐼𝑚𝑝𝑟𝑜𝑝 𝑎, 𝑏 = max 𝑎, 𝑏 , min 𝑎, 𝑏

23

For example,

 1,3 ∙ 1,1 + −1, −1

= 3,1 ∙ 1,1 + 1,3 ∙ −1, −1

= 3,1 + −3, −1 = [0,0]

While in the classical:

 1,3 ′ ∙ 1,1 ′ + 1,3 ′ ∙ −1, −1 ′ = [−2,2]′

4- Not only solving the interval equations that the classical failed in

solving it but also obtaining a meaningful interval results when solving

these equations (As shown in the example in the "Aim of Modal

Intervals" section)

Unfortunately, the dependency problem is not solved in the modal

intervals but in some cases we can obtain tighter intervals than the classical

ones (as in the case of the sub-distributive law).

To show the significant difference between the classical and modal

intervals in real applications, let us consider the simulation of the derivative

control process as stated in [39]. The derivative equation is as following:

𝑑𝑣

𝑑𝑡
= 𝑘𝑑 𝑣0 − 𝑣 −

1

𝑠
 𝑣 − 𝑣𝑎

Where:

v : sensored tooling speed

v0 : nominal control speed

kd : action factor of control

va : sensor shift due to surroundings

s : sensitivity factor of sensor

The numerical version of the above equation is as following:

𝑣 𝑘 + 1 = 𝑣 𝑘 + 𝑘𝑑 𝑣0 − 𝑣 𝑘 −
1

𝑠
 𝑣 𝑘 − 𝑣𝑎

Where k is the simulation time.

Now, consider that we want to implement the uncertainty in the

parameters of this equation; we simply implement the parameters with

24

intervals and use the corresponding interval extensions. The naive classical

extension of the simulation equation is:

𝑉 𝑘 + 1 = 𝑉 𝑘 + 𝐾𝑑 𝑉0 − 𝑉 𝑘 −
1

𝑆
[𝑉 𝑘 − 𝑉𝑎]

The modal extension of the simulation equation is:

𝑉 𝑘 + 1 = 𝑉 𝑘 + 𝐾𝑑 [𝑉0 − 𝐷𝑢𝑎𝑙(𝑉 𝑘)] −
1

𝑆
[𝐷𝑢𝑎𝑙(𝑉 𝑘) − 𝑉𝑎]

Consider now the uncertain parameters take the following interval values:

V0 = [240 , 241]

Kd = [0.004 , 0.005]

Va = [2 , 3]

S = 1000 , 1001

V(0) = [3 , 3]

Figure 1.4 shows the modelling of the tooling speed (V) with time for the

midpoints real function, classical and modal interval extensions.

Figure 1.4: variation estimation based on modal interval

compared to classic interval methods

25

The figure shows the significant difference between the modal and classical

interval methods. It appears that the modal solution is tighter than the classical

one. We should note also that the above naive classical extension not only has

a much wider interval solution but also has totally wrong values (negative

values) as shown in the figure.

Of course, the classical interval analysis provides many ways to overcome the

amplification of wideness in the resulting intervals. One simple method is to

reformulate the equation to decrease the severity of dependency problem [2].

Considering the previous Classical extension equation, if we rewrite it as

following:

𝑉 𝑘 + 1 = 𝑉 𝑘 [1 − 𝐾𝑑 − 1 𝑆] + 𝐾𝑑𝑉0 + 𝑉𝑎 𝑆]

The classical interval results will be enhanced as seen in the Figure 1.5.

Nevertheless, the modal results are tighter than that of the classical.

Figure 1.5: variation estimation based on modal interval

compared to classic interval methods (equation reformulation)

26

Another method, to enhance the classical results, is to subdivide each

input interval into N sub-intervals then recalculate the interval equation N-

times. So we will have N-interval results which we make union for them to

obtain the final result. As the subdivision method is not in the scope of this

thesis, we will mention only the effect of using this method on the interval

results (Check [2], [37] for more information about this method). Figure 1.6

shows the classical and modal interval results after uniformly subdividing each

input interval (Kd , V0 , Va , S) into N = 4 sub-intervals.

Figure 1.6: variation estimation based on modal interval

compared to classic interval methods (Sub-division method)

Clearly, the subdivision method enhances the classical results and makes

them closer to the modal results. But this comes on the cost of consuming time

as we repeat calculations N-times (as we have N Sub-intervals). Other

examples that show the advantages of modal intervals over the classical

27

counterparts can be found in [5], [6], [39].

From the above discussion, we can see that the modal intervals space

mathematically completes the classical intervals space and overcomes some of

its problems. In chapter two, we will first introduce the concept of rounded

interval arithmetic and how intervals can be implemented on digital systems

(either in software or in hardware) then we will discuss the motivation behind

this work. After that we will discuss some of the previous works done in that

field. In chapter three, we will move to the hardware implementation of the

Modal Interval Adder/Subtractor and Multiplier and show the results of two

different implementations for each unit (serial and parallel implementations)

on FPGAs and ASICs. In chapter four, we will discuss the testing results and

show comparisons with other implementations. Also in chapter four, we will

give a conclusion of the thesis work and the future work directions.

28

Chapter 2

2 Previous Work and Motivation

2.1 Rounded Interval Arithmetic

As we mentioned before in the Introduction section, the floating point

representation of real numbers is not exact and due to this limitation, rounding

errors occur in the numerical computations which results in catastrophic

errors.

In case of representation of intervals, either modal or classical, on

computers, we map the real interval bounds into floating point numbers with

proper rounding for each bound. Unlike the floating point representation of the

real numbers, the floating point representation of the two interval bounds with

proper rounding for each bound leads to monitoring and controlling the errors

in numerical computations.

In case of classical intervals, to correctly enclose all the interval values we

make rounding out which means the lower interval bound rounded to -∞

(sometimes called rounded down) and the upper interval bound rounded to +∞

(sometimes called rounded up)[2].

 𝑂𝑢𝑡 𝑎1, 𝑎2 ′ = ∇𝑎1, ∆𝑎2 ′

When doing interval addition, subtraction, multiplication or division, the

result of each operation is rounded down for lower bound and rounded up for

the upper bound[8].

29

1 1 2 2

1 2 2 1

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2 1 1 1 2

' ' [(), ()]

' ' [(), ()]

'* ' [min((), (), (), ()),max((), (), (), ())]

'/ ' [min((/), (/), (/), (/)),max((/), (/)

A B a b a b

A B a b a b

A B a b a b a b a b a b a b a b a b

A B a b a b a b a b a b a b

 2 1 2 2, (/), (/))],0a b a b B

Unfortunately, out rounding the interval is not always right if we talk

about modal intervals. We may need inner rounding[5], [6]. Inner rounding is

rounding the first interval bound up and the second interval bound down.

𝐼𝑛𝑛 𝑎1, 𝑎2 = ∆𝑎1, ∇𝑎2

To know why inner rounding is also needed, consider the following

example:

The exact solution of the following equation:

 4 3 , 5 3 + 𝑥1, 𝑥2 = 2,7

 𝑥1, 𝑥2 = 2,7 − 𝐷𝑢𝑎𝑙 4 3 , 5 3

 = 2,7 + − 4 3 , − 5 3

 = [2 3 , 16 3]

But for 𝑂𝑢𝑡 𝐴 + 𝑋 = 𝐵

𝑂𝑢𝑡(4 3 , 5 3) + 𝑥1, 𝑥2 = 2,7

 𝑥1, 𝑥2 = 2,7 − 𝐷𝑢𝑎𝑙 1.3,1.7

 = 2,7 + −1.3, −1.7

 = [0.7,5.3]

Which doesn't contain the exact interval result, but for 𝐼𝑛𝑛 𝐴 + 𝑋 = 𝐵

𝐼𝑛𝑛(4 3 , 5 3) + 𝑥1, 𝑥2 = 2,7

 𝑥1, 𝑥2 = 2,7 − 𝐷𝑢𝑎𝑙 1.4,1.6

 = 2,7 + −1.4, −1.6

 = [0.6,5.4]

Which contains the exact result.

30

As we will see later, due to the Dual operator we can express the inner

rounding in terms of the outer rounding so there is no need to implement inner

rounding. Only outer rounding can be used.

2.2 Digital Representation

The two interval bounds can be digitally represented as fixed point or floating

point numbers. Fixed point numbers are suitable for digital signal processing

control units[9]. Floating point representation can be single, double or variable

precision. As our main target is to add support for modal interval basic

operations in common computer systems, the best solution is representing

modal interval bounds using double precision binary floating point numbers.

IEEE standard for double precision binary floating point numbers specifies 64

bit for each number as following[10]:

S E M

1 bit for the sign bit (S), 11 bits for the biased exponent (E) and 52 bits for the

mantissa (M). The mantissa contains a hidden one according to the IEEE

standard so the actual precision is 53 bits. The value of a normalized IEEE

double precision number is

(−1)𝑆 ∗ 1. M ∗ 2E−1023

This means to minimally represent modal interval we need 128 bits each 64 bit

representing one IEEE double precision binary floating point number.

31

2.3 Motivation

2.3.1 Modal versus classical intervals

Choosing to implement modal interval addition, subtraction and multiplication

comes from the fact that modal intervals overcome some problems in classical

intervals as we mentioned before. Besides, it is believed that modal intervals

are the natural extension of classical intervals. Also modal interval analysis

found the way to some applications in computer graphics and control[5], [6],

[11].

2.3.2 Hardware versus Software Implementation

The problem of software implementation of intervals basic operations is the

bad performance. Several reasons make software slower than hardware:

1- Changing rounding mode which causes a large overhead in case of

pipeline architecture because of pipeline flushing.

2- Function's calls if interval operations are implemented as functions

3- Sign test and choosing the correct case which is in multiplication and

division operations

Some software implementations may have all the reasons and others may

have one or two. In general the need for hardware support for interval

arithmetic is increasing due to the increase in applications using interval

arithmetic and the need to have arithmetic units giving higher accuracy with a

speed comparable to that of the normal floating point arithmetic units [3], [4],

[6], [8].

This thesis presents the hardware implementation of the modal interval

adder, subtractor and multiplier using IEEE double precision binary floating

point adder, subtractor and multiplier.

32

2.4 Previous Work

2.4.1 Classical Intervals

Many papers describe the hardware implementation of classical interval basic

operations. For example:

1- Hardware support for interval instructions is provided in UltraSPARC-

III processors with the “Set Interval Arithmetic Mode” (SIAM)

instructions. These instructions improve the efficiency of interval

arithmetic by enabling the rounding mode bits in the floating-point

status register (FSR) to be overridden without the resulting overhead of

pipeline flush. It enables the interval rounding mode to be changed

every cycle without flushing the pipeline. Typical interval performance

improvement from the SIAM instruction has been measured to be

approximately 30% [19], [26].

2- Changing in the architecture of the basic floating point arithmetic unit

to overcome the problem of changing rounding mode and thus

eliminates the pipeline flushing in case of interval arithmetic

operations. As in [27], we can modify the double path adder

architecture such that it works on two addition operations in the close

and far path instead of one. The double path floating point adders are

based on performing speculatively addition on two distinct low latency

paths (CLOSE and FAR path) [35], [36]. The correct result is selected

at the end of the computation. The modified addition unit exploits the

parallelism of the double adder’s structure by performing the two

operations required for an interval addition/subtraction simultaneously,

each on a different path. In order to do so, several changes have been

made to the classic architecture of the floating point adder:

a. The sign and exponents computation circuits have been

duplicated (two signs and two exponents are computed).

b. A dedicated module has been placed before the splitting of the

two paths.

The role is to dispatch the required operands (along with the effective

operation and rounding mode) on their corresponding path. The two

operations required for an interval addition/subtraction can be

performed either simultaneously (favourable case), or sequentially. The

33

favourable case is the case when we have operations (effective

additions and subtractions) with exponents’ difference equal to 0 or 1

which can be executed properly on the CLOSE path.

Also the multiplier is modified such that it produces results with

multiple rounding schemes (i.e. the multiplier has more than one result,

one rounded towards negative infinity and the other rounded towards

positive infinity). By this way we do not need to change rounding mode

each cycle.

3- Fixed point Interval-ALU for digital signal processing and control

applications [9]:

The overall architecture of the I-ALU can be seen in the block diagram

shown in Figure 2.1. The hardware model is divided into four parts. the

flag generator, lower bound and upper bound modules, and the

rounding unit. The flag generator module is responsible for generating

the control signals for the more complicated classical interval

multiplication operation. Based on the signs of the input operands, the

flag generator generates control signals to select the appropriate

multiplication case among the nine cases that we mentioned earlier in

classical intervals section. The lower bound module and the upper

bound module calculate the lower and upper bounds of the output

interval, respectively. These two modules are independent of each other

and hence operate in parallel. The rounding unit implements the

Outward Rounding of the interval result.

34

Figure 2.1: Block Diagram of I-ALU

The ALU is designed for operation on 16 bit input interval numbers in

the two’s complement form. The I-ALU operations are 16-bit fixed

point interval addition, subtraction, multiplication and multiply-

accumulate. This ALU is suitable for specific DSP and control

applications which do not need high precision and have small range of

variations to be suitable with fixed point implementation

4- A combined interval floating point arithmetic units that can work either

in floating point mode (normal mode) or in interval mode [20],[21]:

These designs are based on the approach that an interval multiplier (or

divider) can share hardware with an existing floating point multiplier

(or divider), thereby achieving the performance benefits of a interval

multiplier (or divider) at relatively low costs. The multiplier design

does not solve the uncommon case of multiplication where both end-

points contain zero. Instead, it resorts to software solutions to solve it.

Interval multiplication (or division) in that case requires only one more

cycle than floating point operation, and is one to two orders of

magnitude faster than software implementations of interval

multiplication.

35

5- Full hardware implementation for interval arithmetic operations (to be

as fast as floating point operations) as suggested in [24]:

The author suggests implementations for the interval basic operations

(addition, subtraction, multiplication and division) such that the interval

operations speed can be as fast as the normal floating point operations.

This comes by using parallelism. To speed up interval operations, we

should have two operation units (two adder, subtractors, multipliers or

dividers). One unit is to calculate the result's lower bound and the other

is to calculate the result's upper bound. Once again, we should notice

that in case of multiplication and division the matters are a little more

complicated as we reduce number of operations dependent on the input

operands.

6- Variable precision interval arithmetic processors [22], [23]:

The author presents designs, arithmetic algorithms and software

support for a family of variable precision, interval arithmetic

processors. These processors give the programmer the ability to detect,

and if desired, to correct the implicit errors in finite precision numerical

computations. The processors are two to three orders of magnitude

faster than software packages that provide similar functionality.

2.4.2 Modal Intervals

There is no published work about the hardware implementation of the modal

interval basic operations which is our point of research.

From the above, we can see that there are many contributions done in

hardware support of classical interval basic operations while there is no work

done for the modal interval hardware support. As we will see the cost of

adding support to modal intervals may be lower than the cost of adding

support to classical intervals only.

36

Chapter 3

3 Hardware Implementation

3.1 Modal Interval Double Floating Point Adder/Subtractor

Implementation

Usually the addition and subtraction operations are combined into one unit

thus the modal interval adder/subtractor will be one unit.

The definition of modal interval addition and subtraction with outer

rounding as following:

If 𝐴 = 𝑎1, 𝑎2 , 𝐵 = 𝑏1,𝑏2 are modal intervals then

𝐴 + 𝐵 = ∇ 𝑎1 + 𝑏1 ,∆ 𝑎2 + 𝑏2

𝐴 − 𝐵 = ∇ 𝑎1 − 𝑏2 , ∆ 𝑎2 − 𝑏1

It should be noticed that from hardware point of view there is no difference

between classical and modal intervals addition/subtraction except for

1- A, B are modal intervals

2- According to Theorems 4.5, 4.8 and 4.9 in [6], the DUAL operator may

be used in addition or subtraction operation.

3- As mentioned before, outer rounding does not assure the enclosure of

all results so inner rounding may be used.

The DUAL operator may be parsed and handled by the compiler without any

overhead (No additional clock cycles to make the DUAL operation).

37

For inner rounding, from the following relations [5][6]:

() ((()))Inn X Dual Out Dual X

() ((() ()))Inn A B Dual Out Dual A Dual B

Where ∘ denotes addition or subtraction

We can express inner rounding in terms of outer rounding thus inner rounding

may be realized also by the compiler.

From the above discussion, the modal interval double precision floating

point adder/subtractor can be implemented exactly as the floating point

classical interval adder/subtractor if we rely on the compiler to resolve the

DUAL operator and inner rounding.

3.1.1 Handling Infinities in input intervals

One or the two bounds of the input operands may contain ±∞.This is called

extended modal interval addition/subtraction. The following two tables write

down all the cases of inputs including ±∞ for addition and subtraction

respectively.

Table 3.1: Extended Modal Interval Addition

Table 3.2: Extended Modal Interval Subtraction

Addition (−∞, b2] [b1, b2] [b1, +∞ (−∞,+∞ (+∞,−∞) (+∞, b2] [b1, −∞)

(−∞, a2] (−∞, a2+b2] (−∞, a2+b2] (−∞,+∞ (−∞,+∞ (Nan, −∞) (Nan, a2+b2] (−∞,+∞

[a1, a2] (−∞, a2+b2] [a1+b1, a2+b2] [a1+b1,+∞ (−∞,+∞ (+∞,−∞) (+∞, a2+b2] [a1+b1, −∞)

[a1, +∞ (−∞,+∞ [a1+b1,+∞ [a1+b1,+∞ (−∞,+∞ (+∞, Nan) (+∞,+∞) [a1+b1, Nan)

(−∞,+∞ (−∞,+∞ (−∞,+∞ (−∞,+∞ (−∞,+∞ (Nan, Nan) (Nan, +∞ (−∞,Nan)

(+∞,−∞) (Nan, −∞) (+∞,−∞) (+∞,Nan) (Nan, Nan) (+∞,−∞) (+∞,−∞) (+∞,−∞)

(+∞, a2] (Nan, a2+b2] (+∞, a2+b2] (+∞,+∞ (Nan, +∞ (+∞,−∞) (+∞, a2+b2] (+∞,−∞)

[a1, −∞) (−∞,−∞) [a1+b1, −∞) [a1+b1, Nan) (−∞,Nan) (+∞,−∞) (+∞,−∞) [a1+b1, −∞)

Subtraction (−∞, b2] [b1, b2] [b1, +∞ (−∞,+∞ (+∞,−∞) (+∞, b2] [b1, −∞)

(−∞, a2] (−∞,−∞) (−∞, a2− b1] (−∞, a2− b1] (−∞,+∞ (Nan, −∞) (−∞,−∞) (Nan, a2− b1]

[a1, a2] [a1− b2, +∞ [a1− b2, a2− b1] (−∞, a2− b1] (−∞,+∞ (+∞, −∞) [a1− b2, −∞) (+∞, a2− b1]

[a1, +∞ [a1− b2, +∞ [a1− b2, +∞ (−∞,+∞ (−∞,+∞ (+∞,Nan) [a1− b2, Nan) (+∞,+∞

(−∞,+∞ (−∞,+∞ (−∞,+∞ (−∞,+∞ (−∞,+∞ (Nan, Nan) (−∞,Nan) (Nan,+∞

(+∞,−∞) (+∞,Nan) (+∞,−∞) (Nan, −∞) (Nan, Nan) (+∞, −∞) (+∞, −∞) (+∞, −∞)

(+∞, a2] (+∞,Nan) (+∞, a2− b1] (Nan, a2− b1] (Nan, +∞ (+∞, −∞) (+∞, −∞) (+∞, a2− b1]

[a1, −∞) [a1− b2, Nan) [a1− b2, −∞) (−∞,−∞) (−∞,Nan) (+∞, −∞) [a1− b2, −∞) (+∞, −∞)

38

Note that the shaded part coincides with the classical cases as in [8]. From

modal interval addition and subtraction equations, we can say that the modal

interval addition/subtraction consists of two normal floating point

addition/subtraction operations rounded to -∞ and +∞ respectively. Thus

handling infinities in the modal interval addition/subtraction coincide with

handling infinities in the normal floating point addition/subtraction with the

proper rounding. Table 3.3: Floating Point Addition and Table 3.4: Floating

Point Subtraction show the floating point addition/subtraction including ±∞ in

inputs according to the IEEE 754 standard [10].

Addition −∞ B +∞

−∞ −∞ −∞ Nan

A −∞ A+B +∞

+∞ Nan +∞ +∞

Table 3.3: Floating Point Addition

Subtraction −∞ B +∞

−∞ Nan −∞ −∞

A +∞ A−B −∞

+∞ +∞ +∞ Nan

Table 3.4: Floating Point Subtraction

3.1.2 Hardware Implementation

The implementation of modal interval double floating point adder/subtractor

can be realized by many ways. Two designs are presented here, one design to

maximize the speed and the other to minimize the area.

39

3.1.2.1 Serial Interval Adder/Subtractor

3.1.2.1.1 Hardware Architecture

The high level architecture of the MIBFP Add/Sub (Modal Interval Binary

Floating Point Adder/Subtractor) as in Figure 3.1

Interval

Pre-processing

Unit

Double floating point

Adder/Subtractor

Interval

Post-Processing

Unit

Interval A

128

Interval B

128

Add/Sub
ClkResetEnable

Operand

A

Operand

B Add/Sub

Rounding

Mode
6464

Rounded

Result

64

Interval

Result

Result Ready

Flag

128

Figure 3.1: Modal Interval Double Floating Point Adder/Subtractor

(Serial Implementation)

Interval Pre-processing unit:

Divides the interval operands into two sequential floating point

addition/subtraction operations with the appropriate rounding mode for

40

each operation (the first operation which is the first bound in the interval

result rounded to −∞ and the other rounded to +∞). The logic circuit of the

pre-processing unit is shown in the following figure.

D Q

0

1

D Q

D Q

0

1

D Q

0

1

D Q

0

1

0

1

Add_Sub

FBIA

SBIA

SBIB
FBIB

clk

clk

clk

clk

clk

64 64

64

64

Rounding_Mode

Add_Sub_out

Operand_A

Operand_B

Figure 3.2: pre-processing unit logic circuit

BFP Adder/Subtractor:

It is a normal double floating point adder/subtractor. The floating point unit

was originally built using the open source VHDL code of the IEEE-754

compliant double precision floating point core posted at opencores site [40].

The VHDL source code of the floating point adder and subtractor were

massively modified to fix bugs in pipelining, handling special cases (like

41

denormalized numbers and infinities), reduces number of pipeline stages

and to merge both units (adder and subtrtactor) into one Adder/Subtractor

unit. The design and implementation of the floating point adder/subtractor

unit will not be discussed as this is out of the scope of the thesis topic.

However, the area and timings results of this unit are used to compare with

the results obtained for the Modal interval designs.

Interval Post-Processing unit:

Collects the two floating point results into one interval result then raises a

flag for ready result. The logic circuit of the post-processing unit is shown

in the following figure.

D Q

clk

Result_Ready

1

0

D Q

D Q

clk

IntervalResult_FB

IntervalResult_SB

clk

64

64

64

Rounded_Result

Figure 3.3: post-processing unit logic circuit

3.1.2.1.2 Pipeline stages

The following figure shows a schematic for the pipeline stages of executing

two modal interval addition (or subtraction) operations.

42

Figure 3.4: Pipeline stages for Serial MIBFP Adder/Subtractor

As shown, the pre-processing unit applies the inputs to the floating point

adder/subtractor on two cycles (Pre-Process C-1 and Pre-Process C-2 cycles).

The floating point adder/subtractor takes seven clock cycles to execute (from

Adder/Sub C-1 to Adder/Sub C-7). The post-processing unit receives the first

result's bound in the Post-Process C-1 cycle then receives the second result's

bound in the Post-Process C-2 cycle and flags result ready.

3.1.2.1.3 Logic Synthesis

The modules are written in VHDL and synthesized using Quartus-II Altera

software tool. Two types of Altera FPGAs are used to implement the MIBFP

Adder/Subtractor as a prototype [12]:

1- Cyclone II (lower power, cost and speed)

Device EP2C35F672C6 of Cyclone II Family is used. The results are as

shown in Table 3.5:

 Area Timings

No. of LEs
No. of

Registers

Clock

Frequency

(MHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP Adder/Subtractor 1813 741 121 7 1

Serial

MIBFP Adder/Subtractor
2007 950 120.5 10 0.5

Table 3.5: Area and Timings (Serial MIBFP adder/subtractor – Cyclone II)

2- Stratix III (higher power, cost and speed)

Device EP3SL50F780C2 of Stratix III Family is used. The results are

as shown in Table 3.6:

43

 Area Timings

No. of LEs
No. of

Registers

Clock

Frequency

(MHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP Adder/Subtractor 1178 745 250 7 1

Serial

MIBFP Adder/Subtractor
1230 997 250 10 0.5

 Table 3.6: Area and Timings (Serial MIBFP adder/subtractor – Stratix III)

The FPGA synthesis is good to make a fast prototype of the hardware

implementation but it has the disadvantage of lower speed than ASIC speed.

Besides, we don't have solid information about the area (in terms of area units

not in terms of number of logic elements as in ALTERA FPGAs). So, the

design is implemented using an ASIC standard cell library (the Nangate 45nm

Open Cell Library) [13]. The synthesis is done using the Synopsis Design

Compiler software tool. The results are as shown in Table 3.7:

 Area (mm2) Timings

 Combinational

Area
(𝑚𝑚2)

Registers

Area
(𝑚𝑚2)

Interconnect

Area
(𝑚𝑚2)

Clock

Frequency

(GHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP

Adder/Subtractor
0.0055 0.0039 0.0032 1.176 7 1

Serial MIBFP

Adder/Subtractor
0.0059 0.0051 0.0037 1.176 10 0.5

Table 3.7: Area and Timings (Serial MIBFP adder/subtractor – Nangate 45nm)

As we notice from the previous tables that the pipeline throughput is 1

result per two clock cycles which is half the throughput of normal floating

point adder/subtractor. Percentage increase in the area is about 16% of the

normal BFP adder/subtractor.

The advantage of that design is that we use only one floating point

adder/subtractor to implement modal interval adder/subtractor. This

implementation decreases the area and power consumption. On the other hand

it decreases the interval operation speed to half speed of the normal floating

point operation which means that we have interval result each two clock

cycles (in case of pipelining) as shown in tables 3.5, 3.6 and 3.7.

44

3.1.2.2 Parallel Interval Adder/Subtractor

3.1.2.2.1 Hardware Architecture

The high level architecture of the parallel BFP Modal Interval

Adder/Subtractor is as in Figure 3.5

Interval

Pre-processing

Unit

Double floating point

Adder/Subtractor (1)

Interval A

128

Interval B

128

Add/Sub
ClkResetEnable

64

Interval

Result

128

Double floating point

Adder/Subtractor (2)

64

Rounded

Result

Operand A_1

Operand B_1

Operand B_2

Operand A_2Add/Sub

Rounding Down Rounding Up

64
64 64

64

Rounded

Result

Figure 3.5: Modal Interval Double Floating Point Adder/Subtractor

(Parallel Implementation)

Interval Pre-processing unit:

Divides the interval operands into two parallel floating point

addition/subtraction operations with the appropriate rounding mode for

45

each operation (one operation which is the first bound in the interval result

rounded to −∞ and the other to +∞). The logic circuit of the pre-processing

unit is shown in the following figure.

D Q

D Q

D Q

0

1

0

1

Add_Sub

FBIA

SBIA

SBIB
FBIB

clk

64 64

64

64

Add_Sub_out

Operand_B_1

D Q

D Q
64

64

Operand_B_2

Operand_A_2

Operand_A_1

64

64

 Figure 3.6: pre-processing unit logic circuit

BFP Adder/Subtractors:

They are normal double floating point adder/subtractor units. As mentioned

in the Serial Implementation section, the floating point unit was built on a

modified VHDL source code posted at opencores site.

3.1.2.2.2 Pipeline stages

The following figure shows a schematic for the pipeline stages of executing

three modal interval addition (or subtraction) operations.

46

Figure 3.7: Pipeline stages for Parallel MIBFP Adder/Subtractor

As shown, the pre-processing unit applies the inputs to the two floating

point adder/subtractor units in one clock cycle (Pre-Process C-1). The floating

point adder/subtractors take seven clock cycles to execute (from Adder/Sub C-

1 to Adder/Sub C-7). The output of each unit is fed into the corresponding

result operand register directly.

3.1.2.2.3 Logic Synthesis

As mentioned before, The modules are written in VHDL and synthesized

using Quartus-II Altera software tool (for FPGA) and Synopsis Design

Compiler (for ASIC). Two types of Altera FPGAs are used to implement the

MIBFP Adder/Subtractor [12]:

1- Cyclone II (lower power, cost and speed)

Device EP2C35F672C6 of Cyclone II Family is used. The results are as

shown in Table 3.8:

 Area Timings

 No. of

LEs

No. of

Registers

Clock

Frequency

(MHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP Adder/Subtractor 1813 741 121 7 1

Parallel

MIBFP Adder/Subtractor
3784 1716 118 8 1

Table 3.8: Area and Timings (Parallel MIBFP adder/subtractor – Cyclone II)

2- Stratix III (higher power, cost and speed)

Device EP3SL50F780C2 of Stratix III Family is used. The results are

as shown in Table 3.9:

 Area Timings

47

 No. of

ALUTs

No. of

Registers

Clock

Frequency

(MHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP Adder/Subtractor 1178 745 250 7 1

Parallel

MIBFP Adder/Subtractor
2358 1719 250 8 1

Table 3.9: Area and Timings (Parallel MIBFP adder/subtractor – Stratix III)

The ASIC results are as shown in Table 3.10:

 Area (mm2) Timings

 Combinational

Area
(𝑚𝑚2)

Registers

Area
(𝑚𝑚2)

Interconnect

Area
(𝑚𝑚2)

Clock

Frequency

(GHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP

Adder/Subtractor
0.0055 0.0039 0.0032 1.176 7 1

Parallel

MIBFP

Adder/Subtractor

0.0113 0.0089 0.0068 1.176 8 1

Table 3.10: Area and Timings (Parllel MIBFP adder/subtractor – Nangate 45nm)

As we notice from the previous tables that the modal interval

adder/subtraction pipeline throughput is the same as the normal BFP

adder/subtractor. Percentage increase in the area is about 115% of the normal

BFP adder/subtractor while percentage increase over the serial modal interval

adder/subtractor is about 84%.

Clearly from the above we use two parallel floating point adder/subtractor

units to implement modal floating point adder/subtractor thus the modal

interval addition/subtraction operation executes as fast as the normal floating

point addition/subtraction operation i.e we have interval result each clock

cycle (in case of pipelining). This comes on the cost of increasing the area

(almost the double) as shown in tables 3.8, 3.9, and 3.10.

Combined results for the serial and parallel designs are in the following table:

48

 Cyclone II Stratix III Nangate 45nm Cell

Library

 Area

Increase %

Clock

Frequency

(MHz)

Area

Increase %

Clock

Frequency

(MHz)

Area

Increase %

Clock

Frequency

(MHz)

BFP Add/Sub - 121 - 250 - 1176

Serial

MIBFP Add/Sub

15.8% 120.5 15.8% 250 16.7% 1176

Parallel

MIBFP Add/Sub

115.3% 118 112% 250 114.3% 1176

Table 3.11: Interval Adder/Subtrtactor (Combined Results)

We should notice that, the percentage increases are close for the two devices

which are from two different families. The clock frequencies differ from the

BFP adder/subtractor for the same device although they should be the same

but this is due to variations in the ALTERA CAD tool design rules.

49

3.2 Modal Interval Double Floating Point Multiplier

Implementation

The definition of modal interval multiplication with outward rounding is as

follows:

𝐴 ∗ 𝐵 =

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [∇𝑎1𝑏1,∆𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛 ∇𝑎1𝑏1, ∆𝑎1𝑏2

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [∇𝑎2𝑏1, ∆𝑎2𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [∇𝑎2𝑏1, ∆𝑎1𝑏2]

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 [∇𝑎1𝑏1, ∆𝑎2𝑏1]
 𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 < 0

 𝑡𝑒𝑛 𝑚𝑎𝑥 ∇𝑎1𝑏1,∇𝑎2𝑏2 , 𝑚𝑖𝑛 ∆𝑎2𝑏1, ∆𝑎1𝑏2

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 0,0

𝑖𝑓 𝑎1 ≥ 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 ∇𝑎2𝑏2, ∆𝑎1𝑏2

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 ∇𝑎1𝑏2, ∆𝑎2𝑏2

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛 0,0
 𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 ≥ 0

 𝑡𝑒𝑛 𝑚𝑖𝑛 ∇𝑎2𝑏1, ∇𝑎1𝑏2 , 𝑚𝑎𝑥 ∆𝑎1𝑏1,∆𝑎2𝑏2

𝑖𝑓 𝑎1 < 0, 𝑎2 ≥ 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 ∇𝑎2𝑏1, ∆𝑎1𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 ∇𝑎1𝑏2, ∆𝑎2𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 ≥ 0, 𝑏2 < 0 𝑡𝑒𝑛 ∇𝑎2𝑏2, ∆𝑎2𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 ≥ 0 𝑡𝑒𝑛 ∇𝑎1𝑏2, ∆𝑎1𝑏1

𝑖𝑓 𝑎1 < 0, 𝑎2 < 0, 𝑏1 < 0, 𝑏2 < 0 𝑡𝑒𝑛 [∇𝑎2𝑏2, ∆𝑎1𝑏1]

Figure 3.8: Outward rounded Modal Interval Multiplication

The differences, from hardware point of view, between classical and modal

interval multiplications are

1- It should be noted that cases 1, 3, 4, 9, 10, 11, 12, 14 and 15 are exactly

the same as in classical multiplication. The other 7 cases one or the two

operands are pure modal intervals. This ensure that modal interval

arithmetic is the generalization form of classical interval arithmetic

2- According to Theorems 4.5, 4.8 and 4.9 in [5], the DUAL operator may

be used in multiplication operation

50

3- As mentioned before, outer rounding cannot assure the enclosure of all

results so inner rounding may be used

As we mentioned before, we need outer and inner rounding. As we can

express inner rounding in terms of outer rounding thus inner rounding may be

resolved by the compiler like the outer rounding.

From the above discussion, the only difference between modal interval

double precision floating point multiplier and that of the classical is the new 7

cases added in modal interval multiplication.

3.2.1 Handling Infinities in input intervals

One or the two bounds of the input operands may contain ±∞.This is called

extended modal interval multiplication. Table 3.12 writes down all the cases

of inputs including ±∞ except the cases that one of the interval bounds or the

two bounds are zeros) for modal interval multiplication. Note that the shaded

part coincides with the classical cases as in [8]. The cases that one of the

interval bounds or the two bounds are zeros follow the same rules specified in

multiplication cases. The only difference (in these cases) from the normal

floating point multiplication that one of the operands is ±∞ and the other is

zero. In that case we will have 0 as the result instead of Nan as stated in the

IEEE-754 floating point standard [10].

0 ∗ ∞ = 0

This is the only rule that goes beyond the IEEE-754 standard as mentioned in

[8].

From modal interval multiplication equations, we can say that the modal

interval multiplication consists of two or four normal floating point

multiplication operations rounded to -∞ and +∞ respectively. Thus handling

infinities in the modal interval multiplication coincide with handling infinities

in the normal floating point multiplication with the proper rounding except for

51

cases 7, 10 in modal interval multiplication which result in degenerate interval

with zero value. These two cases need to generate intervals with zero bounds

so they need special handling in the implementation.

Table 3.13 shows the floating point multiplication including ±∞ in inputs

according to the IEEE-754 standard [10].

52

M
ul

tip
lic

at
io

n

[b
1,

b 2
]

 b 1
 <

 0
, b

2
<

0

[b
1,

b 2
]

 b 1
 <

 0
, b

2
>

0

[b
1,

b 2
]

 b 1
 >

 0
, b

2
>

0

(−
∞

, b
2]

,

b 2
 <

 0

(−
∞

, b
2]

,

b 2
 >

 0

[b
1,
+
∞

),

b 1
 <

 0

[b
1,
+
∞

),

b 1
 >

 0

(−
∞

,+
∞

[b

1,
b 2

]
 b 1

 >
 0

, b
2
<

0

[b
1,
−

∞
),

b 1

 <
 0

[b

1,
−

∞
),

b 1

 >
 0

(+

∞
, b

2]
,

b 2

 <
 0

(+

∞
, b

2]
,

b 2

 >
 0

(+

∞
,−

∞
)

[a
1,

a 2
]

 a 1
 <

 0
,

a 2
 <

 0

[a
2b

2,
a 1

b 1
]

[a

1b
2,

a 1
b 1

]

[a
1b

2,
a 2

b 1
]

[a

2b
2,
+
∞

)

[a
1b

2,+
∞

)

(−
∞

, a
1b

1]

(−
∞

, a
2b

1]

(−
∞

, +
∞

)

[a
2b

2,
a 2

b 1
]

(−

∞
,a

1b
1]

(+

∞
,a

2b
1]

[a

2b
2,
−

∞
)

[a

1b
2,
−

∞
)

(+

∞
, −

∞
)

[a
1,

a 2
]

 a 1
 <

 0
,

a 2
 >

 0

[a
2b

1,
a 1

b 1
]

[m

in
(a

1b
2,

a 2
b 1

),

 m
ax

(a
1b

1,
a 2

b 2
)]

[a

1b
2,

a 2
b 2

]

(−
∞

, +
∞

)

(−
∞

, +
∞

)

(−
∞

, +
∞

)

(−
∞

, +
∞

)

(−
∞

, +
∞

)

[0
, 0

]

[a
2b

1,a
1b

1]

[0
, 0

]

[0
, 0

]

[a
1b

2,a
2b

2]

[0
, 0

]

[a
1,

a 2
]

 a 1
 >

 0
,

a 2
 >

 0

[a
2b

1,
a 1

b 2
]

[a

2b
1,

a 2
b 2

]

[a
1b

1,
a 2

b 2
]

(−

∞
, a

1b
2]

(−

∞
, a

2b
2]

[a

2b
1,+

∞
)

[a

1b
1,+

∞
)

(−

∞
, +

∞
)

[a

1b
1,

a 1
b 2

]

[a
2b

1,
−

∞
)

[a

1b
1,−

∞
)

(+

∞
,a

1b
2]

(+

∞
,a

2b
2]

(+

∞
, −

∞
)

(−
∞

, a
2]

, a
2
<

0

[a
2b

2,
+
∞

(−

∞
, +

∞

(−

∞
, a

2b
1]

[a

2b
2,
+
∞

(−

∞
, +

∞

(−

∞
, +

∞

(−

∞
, a

2b
1]

(−

∞
, +

∞
)

[a

2b
2,

a 2
b 1

]

(+
∞

,+
∞

)

(+
∞

,a
2b

1]

[a
2b

2,
−

∞
)

(−

∞
, −

∞
)

(+

∞
, −

∞
)

(−

∞
, a

2]
, a

2
>

0

[a
2b

1,
+
∞

(−

∞
, +

∞
)

(−

∞
, a

2b
2]

(−

∞
, +

∞
)

(−

∞
, +

∞
)

(−

∞
, +

∞
)

(−

∞
, +

∞
)

(−

∞
, +

∞
)

[0

, 0
]

[a

2b
1,+

∞
)

[0

, 0
]

[0

, 0
]

(−

∞
,a

2b
2]

[0

, 0
]

[a

1,
+
∞

),
a 1

 <
 0

(−

∞
, a

1b
1]

(−

∞
, +

∞
)

[a

1b
2,
+
∞

)

(−
∞

, +
∞

)

(−
∞

, +
∞

)

(−
∞

, +
∞

)

(−
∞

, +
∞

)

(−
∞

, +
∞

)

[0
, 0

]

(−
∞

,a
1b

1]

[0
, 0

]

[0
, 0

]

[a
1b

2,
+
∞

)

[0
, 0

]

[a
1,
+
∞

),
a 1

 >
 0

(−

∞
, a

1b
2]

(−

∞
, +

∞
)

[a

1b
1,
+
∞

)

(−
∞

, a
1b

2]

(−
∞

, +
∞

)

(−
∞

, +
∞

)

[a
1b

1,+
∞

)

(−
∞

, +
∞

)

[a
1b

1,
a 1

b 2
]

(−

∞
, −

∞
)

[a

1b
1,−

∞
)

(+

∞
,a

1b
2]

(+

∞
, +

∞
)

(+

∞
, −

∞
)

(−

∞
,+
∞

(−

∞
, +

∞
)

(−

∞
, +

∞
)

(−

∞
, +

∞
)

(−

∞
, +

∞
)

(−

∞
, +

∞
)

(−

∞
, +

∞
)

(−

∞
, +

∞
)

(−

∞
, +

∞
)

[0

, 0
]

(−

∞
, +

∞
)

[0

, 0
]

[0

, 0
]

(−

∞
, +

∞
)

[0

, 0
]

[a

1,
a 2

]
 a 1

 >
 0

,
 a

2
<

0

[a
2b

2,
a 1

b 2
]

[0

, 0
]

[a

1b
1,

a 2
b 1

]

[a
2b

2,
a 1

b 2
]

[0

, 0
]

[0

, 0
]

[a

1b
1,a

2b
1]

[0

, 0
]

[m

ax
(a

1b
1,

a 2
b 2

),

m
in

(a
1b

2,
 a

2b
1)

]

(+
∞

, −
∞

)

(+
∞

, −
∞

)

(+
∞

, −
∞

)

(+
∞

, −
∞

)

(+
∞

, −
∞

)

[a
1,
−

∞
),

a 1
 <

 0

(−
∞

, a
1b

1]

[a
1b

2,
a 1

b 1
]

[a

1b
2,
−

∞
)

(+

∞
, +

∞
)

[a

1b
2,+

∞
)

(−

∞
, a

1b
1]

(−

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
,a

1b
1]

(+

∞
, −

∞
)

(+

∞
, −

∞
)

[a

1b
2,
−

∞
)

(+

∞
, −

∞
)

[a

1,
−

∞
),

a 1
 >

 0

(+
∞

, a
1b

2]

[0
, 0

]

[a
1b

1,
−

∞
)

(+

∞
, a

1b
2]

[0

, 0
]

[0

, 0
]

[a

1b
1,
−

∞
)

[0

, 0
]

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, a

2]
, a

2
<

0

[a
2b

2,
−

∞
)

[0

, 0
]

(+

∞
, a

2b
1]

[a

2b
2,
−

∞
)

[0

, 0
]

[0

, 0
]

(+

∞
, −

∞
)

[0

, 0
]

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, a

2]
, a

2
>

0

[a
2b

1,
−

∞
)

[a

2b
1,

a 2
b 2

]

(+
∞

, a
2b

2]

(−
∞

, −
∞

)

(−
∞

, a
2b

2]

[a
2b

1,+
∞

)

(+
∞

,+
∞

)

(−
∞

, +
∞

)

(+
∞

, −
∞

)

[a
2b

1,
−

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, a

2b
2]

(+

∞
, −

∞
)

(+

∞
,−

∞
)

(+

∞
, −

∞
)

[0

, 0
]

(+

∞
, −

∞
)

(+

∞
, −

∞
)

[0

, 0
]

[0

, 0
]

(+

∞
, −

∞
)

[0

, 0
]

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

(+

∞
, −

∞
)

Table 3.12: Extended Modal Interval Multiplication

53

Multiplication −∞ B < 0 0 B > 0 +∞
−∞ +∞ +∞ Nan −∞ −∞

A < 0 +∞ A×B 0 A×B −∞
0 Nan 0 0 0 Nan

A > 0 −∞ A×B 0 A×B +∞
+∞ −∞ −∞ Nan +∞ +∞

Table 3.13: Floating Point Multiplication

3.2.2 Hardware Implementation

The problem in modal interval multiplication that dependent on the signs of

the input interval bounds, the interval result calculations change as stated

before. Besides, cases 6 and 11 need four multiplication operations and two

comparisons instead of two multiplication operations as in all other cases.

It can be shown that the four multiplication operations in the two special

cases can be reduced to three multiplication operations and four comparisons

[17],[18]. Many algorithms are proposed for classical and modal interval

multiplication in [17]. These algorithms are suitable for software. We present

here two hardware implementations. Serial interval multiplier which uses one

double floating point multiplier and the other one is parallel interval multiplier

which uses two double floating point multipliers. Serial interval multiplier

minimizes the area as it uses one floating point multiplier while parallel

interval multiplier maximizes the area as it uses two floating point multipliers.

The details of each implementation are in the next sections.

3.2.2.1 Parallel Interval Multiplier

As we mentioned before based on sign distinction of the two interval bounds

of each input interval, the multiplication operation can be reduced to two

multiplications except for cases 6 and 11 of the multiplication cases.

54

Let the two input intervals 𝐴 = 𝑎1, 𝑎2 , 𝐵 = 𝑏1,𝑏2 and

the interval result 𝑅 = 𝐴 × 𝐵 = 𝑟1, 𝑟2 then

𝐼𝑓 𝑎1 ≥ 0 𝑡𝑒𝑛 𝑥3 = 0 𝑒𝑙𝑠𝑒 𝑥3 = 1

𝐼𝑓 𝑎2 ≥ 0 𝑡𝑒𝑛 𝑥2 = 0 𝑒𝑙𝑠𝑒 𝑥2 = 1

𝐼𝑓 𝑏1 ≥ 0 𝑡𝑒𝑛 𝑥1 = 0 𝑒𝑙𝑠𝑒 𝑥1 = 1

𝐼𝑓 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑥0 = 0 𝑒𝑙𝑠𝑒 𝑥0 = 1

𝑥3, 𝑥2, 𝑥1𝑎𝑛𝑑 𝑥0 are simply flags that represent the signs of the intervals

bounds 𝑎1, 𝑎2 , 𝑏1 𝑎𝑛𝑑 𝑏2 respectively. These flags are used to express the

interval multiplication in terms of the signs of the four input floating point

numbers (𝑎1, 𝑎2 , 𝑏1 𝑎𝑛𝑑 𝑏2) as shown in the following table.

𝑥3𝑥2𝑥1𝑥0 𝑟1 𝑟2

1 0000 ∇𝑎1𝑏1 ∆𝑎2𝑏2

2 0001 ∇𝑎1𝑏1 ∆𝑎1𝑏2

3 0010 ∇𝑎2𝑏1 ∆𝑎2𝑏2

4 0011 ∇𝑎2𝑏1 ∆𝑎1𝑏2

5 0100 ∇𝑎1𝑏1 ∆𝑎2𝑏1

6 0101 𝑚𝑎𝑥 ∇𝑎1𝑏1,∇𝑎2𝑏2 𝑚𝑖𝑛 ∆𝑎1𝑏2, ∆𝑎2𝑏1
7 0110 0 0

8 0111 ∇𝑎2𝑏2 ∆𝑎1𝑏2

9 1000 ∇𝑎1𝑏2 ∆𝑎2𝑏2

10 1001 0 0

11 1010 𝑚𝑖𝑛 ∇𝑎1𝑏2, ∇𝑎2𝑏1 𝑚𝑎𝑥 ∆𝑎1𝑏1,∆𝑎2𝑏2
12 1011 ∇𝑎2𝑏1 ∆𝑎1𝑏1

13 1100 ∇𝑎1𝑏2 ∆𝑎2𝑏1

14 1101 ∇𝑎2𝑏2 ∆𝑎2𝑏1

15 1110 ∇𝑎1𝑏2 ∆𝑎1𝑏1

16 1111 ∇𝑎2𝑏2 ∆𝑎1𝑏1

Table 3.14: Interval Multiplication in terms of bounds' signs

In case of parallel design, we have two floating point multipliers.

Assuming that 𝑦1 ,𝑦2 ,𝑦3 ,𝑦4 are the input operands of the two multipliers

successively and 𝑧1 ,𝑧2 are the outputs of the multipliers respectively then we

can rewrite the above table as following.

55

𝑥3𝑥2𝑥1𝑥0 𝑦1 𝑦2 𝑧1 𝑦3 𝑦4 𝑧2 𝑟1 𝑟2

1 0000 𝑎1 𝑏1 ∇ 𝑎2 𝑏2 ∆ 𝑧1 𝑧2

2 0001 𝑎1 𝑏1 ∇ 𝑎1 𝑏2 ∆ 𝑧1 𝑧2

3 0010 𝑎2 𝑏1 ∇ 𝑎2 𝑏2 ∆ 𝑧1 𝑧2

4 0011 𝑎2 𝑏1 ∇ 𝑎1 𝑏2 ∆ 𝑧1 𝑧2

5 0100 𝑎1 𝑏1 ∇ 𝑎2 𝑏1 ∆ 𝑧1 𝑧2

6 0101 𝑎1
𝑏2

 𝑏1

∆

∇
𝑎2

𝑏1
𝑏2

∆

∇

-

𝑚𝑎𝑥(𝑧1, 𝑧2)

𝑚𝑖𝑛 𝑧1 , 𝑧2
-

7 0110 0 0 0 0 0 0 𝑧1 𝑧2

8 0111 𝑎2 𝑏2 ∇ 𝑎1 𝑏2 ∆ 𝑧1 𝑧2

9 1000 𝑎1 𝑏2 ∇ 𝑎2 𝑏2 ∆ 𝑧1 𝑧2

10 1001 0 0 0 0 0 0 𝑧1 𝑧2

11 1010 𝑎1
𝑏2

𝑏1

∇

∆
𝑎2

𝑏1

 𝑏2

∇

∆

𝑚𝑖𝑛 𝑧1 , 𝑧2
-

-

𝑚𝑎𝑥(𝑧1, 𝑧2)

12 1011 𝑎2 𝑏1 ∇ 𝑎1 𝑏1 ∆ 𝑧1 𝑧2

13 1100 𝑎1 𝑏2 ∇ 𝑎2 𝑏1 ∆ 𝑧1 𝑧2

14 1101 𝑎2 𝑏2 ∇ 𝑎2 𝑏1 ∆ 𝑧1 𝑧2

15 1110 𝑎1 𝑏2 ∇ 𝑎1 𝑏1 ∆ 𝑧1 𝑧2

16 1111 𝑎2 𝑏2 ∇ 𝑎1 𝑏1 ∆ 𝑧1 𝑧2

Table 3.15: Inputs and outputs for each floating point multiplier

in terms of bounds' signs

(𝛁 𝐨𝐫 ∆ 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐬 𝐨𝐧𝐥𝐲 𝐫𝐨𝐮𝐧𝐝𝐢𝐧𝐠 𝐦𝐨𝐝𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐨𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧)

Table 3.15 is the same as 3.14 except for cases 6 & 11. In these two cases

we have four multiplications so we can do two multiplication operations in

one clock cycle and the other two multiplications in the second clock cycle. To

maximize the efficiency we had to reformulate the input operands such that we

have the first result bound calculated first then the second result bound

calculated in the next cycle. This reformulation has the advantage that the two

comparisons are done in two different cycles thus we can use only one

comparator instead of two without increasing the number of clock cycles.

By using the simple and effective Karnaugh map method, we can

implement the circuitry to get 𝑦1 ,𝑦2 ,𝑦3 ,𝑦4 keeping in mind that a special

circuitry need to be added for cases 6 and 11 to handle the other two

multiplication operations and the comparison before obtaining the final result.

There are some issues we should take into account in interval

56

multiplication. One issue we should note that the sign distinction is not as

simple as checking the sign bit of each number. The IEEE-754 floating point

standard [10] states that there are two zeros (+0, -0) with the double formats

different in sign bit as following:

Accordingly when we say 𝑎1 ≥ 0, we mean that 𝑎1 ≥ +0 & 𝑎1 ≥ −0 so

we must take into account (−0) when we implement sign distinction. Another

issue related to IEEE-754 floating point standard that when we have ±∞ in one

of the bounds of the input intervals, the rules will be as that of the normal

floating point multiplications except for two cases. The first case when we

have (∞ × 0) which gives Nan in the IEEE-754 standard [10] but in interval

multiplication it gives 0 as mentioned in [8] (for the classical case) and as

implemented in the software Libraries (Intlab for classical intervals and

ivalDb for modal intervals) [14],[15]. For that reason the double floating point

multiplier must be modified to override this case when we do interval

multiplication. A flag is added to the two floating point multipliers to

distinguish between the normal case and the interval one. The last issue is

about the cases that result in degenerate intervals with zero value (cases 7 &

10 in Table 3.15). As in Table 3.15, we can simply obtain the zero interval by

detecting these cases and apply zeros as input operands for the floating point

multipliers. Once again the problem appears when we have ±∞ in the input

intervals. Consider for example

 −∞, 2 × (+∞, −5]

There is no reference for this issue except the IVALDB library which simply

gives the result (Nan, Nan) [15].

0 0………….0 000…………………………………….0

1 0………….0 000…………………………………….0

0+

0-

57

3.2.2.1.1 Hardware Architecture

The high level architecture of the Parallel MIBFP Multiplier (Parallel Modal

Interval Binary Floating Point Multiplier) is as in Figure 3.9

result_ready

Interval

Pre-processing

Unit

Double floating point

Multiplier (1)

Interval A

128

Interval B

128

ClkResetEnable

64

Interval Result

128

Double floating point

Multiplier (2)

64
Z2

Y1

Y2

Y4

Y3
ieee_flag

Rounding_Mode_1 Rounding_Mode_2

64
64 64

64

Interval

Post-processing

unit

Z2

special_cases_flag

Interval_Multiplication_Type

2

Figure 3.9: Modal Interval Double Floating Point Multiplier

(Parallel Implementation)

Interval Pre-processing unit:

Its function is as follows:

1- It divides the interval operands into two parallel floating point

multiplication operations with the appropriate rounding mode for

each operation.Y1, Y2, Rounding_Mode_1 are inputs to the first

58

multiplier and Y3,Y4, Rounding_Mode_2 are inputs to the second

multiplier.

2- For the two special cases 6, 11 in Table 3.15, the four

multiplication operations are divided into two multiplication

operations on two cycles. The special_cases_flag output port rises

when one of these two cases happens in the input intervals

3- Set ieee_flag to zero to override the case (∞ × 0) as mentioned in

the previous section.

4- It informs the Post-processing unit what the type of the interval

multiplication that it will handle. The interval multiplication is

divided into three types. One is the normal interval multiplication

which consists of two floating point multiplications and the other

two are the two special cases (cases 6 and 11 in Table 3.15) that

have four multiplication operations.

Logic equations and circuits:

Consider 𝐼𝐴𝐹𝐵 , 𝐼𝐴𝑆𝐵 , 𝐼𝐵𝐹𝐵 , 𝐼𝐵𝑆𝐵 are first and second bounds of intervals

A and B. The following internal signals are constructed using simple

AND, OR and NOT logic gates.

𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (3) = 𝐼𝐴𝐹𝐵 0 + 𝐼𝐴𝐹𝐵 1 + ⋯ + 𝐼𝐴𝐹𝐵 62 ∙ 𝐼𝐴𝐹𝐵 63

𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (2) = 𝐼𝐴𝑆𝐵 0 + 𝐼𝐴𝑆𝐵 1 + ⋯ + 𝐼𝐴𝑆𝐵 62 ∙ 𝐼𝐴𝑆𝐵 63

𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (1) = 𝐼𝐵𝐹𝐵 0 + 𝐼𝐵𝐹𝐵 1 + ⋯ + 𝐼𝐵𝐹𝐵 62 ∙ 𝐼𝐵𝐹𝐵 63

𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0) = 𝐼𝐵𝑆𝐵 0 + 𝐼𝐵𝑆𝐵 1 + ⋯ + 𝐼𝐵𝑆𝐵 62 ∙ 𝐼𝐵𝑆𝐵 63

𝑀𝑢𝑙𝐷𝑖𝑠𝑡 3 , 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 2 , 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 1 𝑎𝑛𝑑 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0) are representing

𝑥3, 𝑥2, 𝑥1 𝑎𝑛𝑑 𝑥0 (in Table 3.15) respectively.

𝐼𝑛𝑓𝐼𝐴𝐹𝐵
= 𝐼𝐴𝐹𝐵 62 + ⋯ + 𝐼𝐴𝐹𝐵 52 ∙ 𝐼𝐴𝐹𝐵 51 + ⋯ + 𝐼𝐴𝐹𝐵 0

𝐼𝑛𝑓𝐼𝐴𝑆𝐵
= 𝐼𝐴𝑆𝐵 62 + ⋯ + 𝐼𝐴𝑆𝐵 52 ∙ 𝐼𝐴𝑆𝐵 51 + ⋯ + 𝐼𝐴𝑆𝐵 0

𝐼𝑛𝑓𝐼𝐵𝐹𝐵
= 𝐼𝐵𝐹𝐵 62 + ⋯ + 𝐼𝐵𝐹𝐵 52 ∙ 𝐼𝐵𝐹𝐵 51 + ⋯ + 𝐼𝐵𝐹𝐵 0

59

𝐼𝑛𝑓𝐼𝐵𝑆𝐵
= 𝐼𝐵𝑆𝐵 62 + ⋯ + 𝐼𝐵𝑆𝐵 52 ∙ 𝐼𝐵𝑆𝐵 51 + ⋯ + 𝐼𝐵𝑆𝐵 0

𝑛𝑓𝑓𝑙𝑎𝑔 = 𝐼𝑛𝑓𝐼𝐴𝐹𝐵
+ 𝐼𝑛𝑓𝐼𝐴𝑆𝐵

+ 𝐼𝑛𝑓𝐼𝐵𝐹𝐵
+ 𝐼𝑛𝑓𝐼𝐵𝑆𝐵

𝑁𝑎𝑛𝑅𝑒𝑠𝑢𝑙𝑡𝑓𝑙𝑎𝑔

= 𝐼𝑛𝑓𝑓𝑙𝑎𝑔

+ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 3 ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (2) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (1) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0)

+ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (3) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 2 ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (1) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0)

The 𝐼𝑛𝑓𝑓𝑙𝑎𝑔 indicates if one or more of the input interval bounds is ±∞.

The 𝑁𝑎𝑛𝑅𝑒𝑠𝑢𝑙𝑡𝑓𝑙𝑎𝑔 indicates if the result will be Nan or not.

𝑆𝐶𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (3) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 2 ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (1) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0)

𝑆𝐶𝑀𝑜𝑑𝑎𝑙 = 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (3) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (2) ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 1 ∙ 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0)

𝑆𝐶𝐸𝑛𝑎𝑏𝑙𝑒 = 𝑆𝐶𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 ∙ 𝑆𝐶𝑀𝑜𝑑𝑎𝑙

The 𝑆𝐶𝐸𝑛𝑎𝑏𝑙𝑒 signal indicates if the input intervals result in one of the

two multiplication special cases (cases 6 and 11 in Table 3.15).

Now we can generate the output signals of the interval pre-processing

unit in terms of the above signals. The logic circuits of the outputs are

presented in the following figures.

60

0

1

D Q

1

0

0

EnableSC

1

ExtensionSC

clk

Figure 3.10: Special case extension output signal

D Q

Rounding_Mode_1

ModalSC

clk

0

1

ExtensionSC

Figure 3.11: Rounding mode (input to the first floating point multiplier)

61

0

1

D Q

D Q

64

64

64

64

64

(3)MulDist

(1)MulDist

(2)MulDist

(0)MulDist

EnableSC

flagReN san
13

510

FBIA

SBIA

64

FBIA

Operand_A_1

Operand_A_2
nd

Cycle

ExtensionSC

 Figure 3.12: Operand_A_1 (operand_A of the first floating point multiplier)

62

0

1

D Q

D Q

EnableSC
64

Operand_B_2
nd

Cycle

SBIB

FBIB

FBIB

EnableSC

ExtensionSC

Operand_B_1

64

64

64

64

flagReN san

(3)MulDist

(2)MulDist

(1)MulDist

(0)MulDist

51

13

0

 Figure 3.13: Operand_B_1 (operand_B of the first floating point multiplier)

63

D Q

Rounding_Mode_2

clk

0

1

ExtensionSC

ModalSC

ClassicalSC

Figure 3.14: Rounding mode (input to the second floating point multiplier)

0

1

D Q

D Q

64

64

64

64

64

(3)MulDist

(1)MulDist

(2)MulDist

(0)MulDist

EnableSC

flagReN san
13

510

SBIA

64

FBIA

Operand_A_2

Operand_A_2
nd

Cycle

ExtensionSC
SBIA

 Figure 3.15: Operand_A_2 (operand_A of the second floating point multiplier)

64

0

1

D Q

D Q

EnableSC
64

Operand_B_2
nd

Cycle

SBIB

FBIBEnableSC

ExtensionSC

Operand_B_2

64

64

64

64

flagReN san

(3)MulDist

(2)MulDist

(1)MulDist

(0)MulDist

51

13

0

SBIB

 Figure 3.16: Operand_B_2 (operand_B of the second floating point multiplier)

D Q

clk

0

1

ExtensionSC

D Q

clk

0

1

ExtensionSC

ModalSC

ClassicalSC

D Q

D Q

(1)Multype

(0)Multype

clk

clk

Figure 3.17: Multiplication Type (normal, classical special case or modal special case)

65

BFP Multipliers:

They are normal double floating point Multiplier units. As in the modal

interval adder/subtractor designs, the floating point unit was originally

built using the open source VHDL code of the IEEE-754 compliant double

precision floating point core posted at opencores site [40]. The VHDL

source code of the floating point multiplier was massively modified to fix

bugs in pipelining, to handle special cases (like denormalized numbers and

infinities), and to reduce the number of pipeline stages. Also, the ieee_flag

is added to override the case (∞ × 0) as mentioned before. The design and

implementation of the floating point multiplier unit will not be discussed as

this is out of the scope of the thesis topic. However, the area and timings

results of this unit are used to compare with the results obtained for the

Modal interval multiplier designs.

Interval Post-processing unit:

Its function is as follows:

1- Depending on interval multiplication type, it assigns the interval

result bounds. In case of normal interval, the two bounds are the

output of the two floating point multipliers. In case of the two

special cases, we have four multiplications in two cycles so we

have two floating point results per cycle. In the first cycle, the two

floating point results are fed into a comparator to decide which

result will be output to one of the bounds. In the second cycle, the

other two floating point results are fed into the same comparator

to decide which result will be output to the other bound.

2- Set the result_ready flag when there is a ready interval result

66

Logic circuits:

D Q

Comparator
a(62:0) <= b(62:0)

a

b
D Q

0

1

0

1

Rounding_Result_2

Rounding_Result_1

0

1

0

1

(1)Multype

(0)Multype

IntervalResult_FB

IntervalResult_SB

clk

clk

64

64

Figure 3.18: Interval result bounds

(1)Multype

(0)Multype

D Q

D Q

0

1

Result_Ready

clk

clk

Figure 3.19: Result ready flag logic circuit

As we notice in the logic circuit of interval result bounds (Figure 3.18), we

use only one comparator to get the smaller or the bigger value to assign it to

one of the interval result bounds (dependent on one of the special cases as in

Table 3.15). This comes from that the two inputs of the comparator have equal

signs. The only special case for that rule is the case of having (+0) and (-0) as

inputs to the comparator. The above figure is a simplified one that doesn't

handle this case.

67

3.2.2.1.2 Pipeline stages

The following figure shows a schematic for the pipeline stages of executing

two modal interval multiplication operations. The first operation is a normal

case (which takes two multiplication operations) while the second operation is

one of the two special cases (which need four multiplication operations).

Figure 3.20: Pipeline stages for the Parallel MIBFP Multiplier

As shown, the pre-processing unit applies the inputs to the two floating

point multipliers every clock cycle for the normal case and every two clock

cycles for the special case. Each floating point multiplier takes seven clock

cycles to execute (from MUL C-1 to MUL C-7). The post-processing unit

outputs the interval result each clock cycle for the normal case (at Post-

Process C-1) or each two clock cycles for the special case (at Post-Process C-

2).

3.2.2.1.3 Logic Synthesis

The logic synthesis is done using both FPGA (using ALTERA Quartus-II tool)

and ASIC cell-based libraries (using Synopsis Design Compiler tool). For

FPGA synthesis; two types of Altera FPGAs are used to implement the

MIBFP Multiplier [12]:

1- Cyclone II (lower power, cost and speed)

Device EP2C35F672C6 of Cyclone II Family is used. The results are as

shown in Table 3.16:

68

 Area Timings

 No. of

LEs

No. of

Embedded

Multipliers

No. of

Registers

Clock

Frequency

(MHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP Multiplier 2468 18 1071 128 7 1

Parallel

MIBFP Multiplier
6005 36 2793 120 9(10) 1(0.5)

Table 3.16: Area and Timings (Parallel MIBFP multiplier – Cyclone II)

2- Stratix III (higher power, cost and speed)

Device EP3SL50F780C2 of Stratix III Family is used. The results are

as shown in Table 3.17:

 Area Timings

 No. of

ALUTs

No. of

Embedded

Multipliers

No. of

Registers

Clock

Frequency

(MHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP Multiplier 1484 18 1071 181.5 7 1

Parallel

MIBFP Multiplier
3491 36 2793 167 9(10) 1(0.5)

Table 3.17: Area and Timings (Parallel MIBFP multiplier – Stratix III)

The ASIC results are as shown in Table 3.18:

 Area (mm2) Timings

 Combinational

Area
(𝑚𝑚2)

Registers

Area
(𝑚𝑚2)

Interconnect

Area
(𝑚𝑚2)

Clock

Frequency

(MHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP Multiplier 0.0262 0.0048 0.0106 870 7 1

Parallel

MIBFP Multiplier
0.0584 0.0127 0.0237 870 9(10) 1(0.5)

Table 3.18: Area and Timings (Parallel MIBFP multiplier – Nangate 45nm)

As we notice from the previous tables that the modal interval multiplier

pipeline throughput is the same as the normal BFP multiplier except for the

two special cases (we have half the throughput). Percentage increase in the

area is about 148%, 145.5%, and 128% of the normal BFP multiplier for the

CYCLONE FPGA, STRATIX FPGA, and ASIC cell library. The first two

percentages are quite misleading as we assume that the embedded multipliers

and ALUTs have equal area weight which is not correct. Thus percentage

increase in case of ASIC cell library is the closest number which is 128%.

69

Clearly from the above we use two parallel floating point multiplier units

to implement modal floating point multiplier thus the modal interval

multiplication operation executes as fast as the normal floating point

multiplication operation (except for the two special cases) i.e we nearly have

one interval result every one clock cycle (in case of pipelining). This comes on

the cost of increasing the area almost the double as shown in tables 3.16, 3.17,

and 3.18.

3.2.2.2 Serial interval multiplier

Just like in the parallel interval multiplier, by applying case distinction on the

bounds of the input intervals the multiplication operation can be reduced to

two multiplication operations except for cases 6 & 11. These two cases

originally have four multiplication operations but we can reduce them to three

multiplications using two comparators as we will see.

Let the two input intervals 𝐴 = 𝑎1, 𝑎2 , 𝐵 = 𝑏1,𝑏2 and

the interval result 𝑅 = 𝐴 × 𝐵 = 𝑟1, 𝑟2 then

𝐼𝑓 𝑎1 ≥ 0 𝑡𝑒𝑛 𝑥3 = 0 𝑒𝑙𝑠𝑒 𝑥3 = 1

𝐼𝑓 𝑎2 ≥ 0 𝑡𝑒𝑛 𝑥2 = 0 𝑒𝑙𝑠𝑒 𝑥2 = 1

𝐼𝑓 𝑏1 ≥ 0 𝑡𝑒𝑛 𝑥1 = 0 𝑒𝑙𝑠𝑒 𝑥1 = 1

𝐼𝑓 𝑏2 ≥ 0 𝑡𝑒𝑛 𝑥0 = 0 𝑒𝑙𝑠𝑒 𝑥0 = 1

𝐼𝑓 𝑎2 ≥ 𝑎1 𝑡𝑒𝑛 𝑐0 = 1 𝑒𝑙𝑠𝑒 𝑐0 = 0

𝐼𝑓 𝑏2 ≥ 𝑏1 𝑡𝑒𝑛 𝑐1 = 1 𝑒𝑙𝑠𝑒 𝑐1 = 0

As we mentioned before, 𝑥3, 𝑥2 , 𝑥1𝑎𝑛𝑑 𝑥0 represents the signs of the

intervals bounds 𝑎1, 𝑎2 , 𝑏1 𝑎𝑛𝑑 𝑏2 respectively. 𝑐0 𝑎𝑛𝑑 𝑐1 are flags that

represent the comparison results of the two bounds of each interval.

𝑥3, 𝑥2, 𝑥1𝑎𝑛𝑑 𝑥0 are used to express the interval multiplication in terms of the

70

signs of the four input floating point numbers (𝑎1, 𝑎2, 𝑏1 𝑎𝑛𝑑 𝑏2) as shown in

Table 3.19. 𝑐0 𝑎𝑛𝑑 𝑐1 are used to reduce the number of multiplications for the

cases 6 and 11 from four multiplications to three as shown in Table 3.19.

𝑥3𝑥2𝑥1𝑥0 𝑟1 𝑟2

1 0000 ∇𝑎1𝑏1 ∆𝑎2𝑏2

2 0001 ∇𝑎1𝑏1 ∆𝑎1𝑏2

3 0010 ∇𝑎2𝑏1 ∆𝑎2𝑏2

4 0011 ∇𝑎2𝑏1 ∆𝑎1𝑏2

5 0100 ∇𝑎1𝑏1 ∆𝑎2𝑏1

6 0101

𝑐1𝑐0

00 ∇𝑎1𝑏1 𝑚𝑖𝑛 ∆𝑎1𝑏2, ∆𝑎2𝑏1
01 𝑚𝑎𝑥 ∇𝑎1𝑏1,∇𝑎2𝑏2 ∆𝑎1𝑏2

10 𝑚𝑎𝑥 ∇𝑎1𝑏1,∇𝑎2𝑏2 ∆𝑎2𝑏1

11 ∇𝑎2𝑏2 𝑚𝑖𝑛 ∆𝑎1𝑏2, ∆𝑎2𝑏1
7 0110 0 0

8 0111 ∇𝑎2𝑏2 ∆𝑎1𝑏2

9 1000 ∇𝑎1𝑏2 ∆𝑎2𝑏2

10 1001 0 0

11 1010

𝑐1𝑐0

00 𝑚𝑖𝑛 ∇𝑎1𝑏2, ∇𝑎2𝑏1 ∆𝑎1𝑏1

01 ∇𝑎2𝑏1 𝑚𝑎𝑥 ∆𝑎1𝑏1,∆𝑎2𝑏2
10 ∇𝑎1𝑏2 𝑚𝑎𝑥 ∆𝑎1𝑏1,∆𝑎2𝑏2
11 𝑚𝑖𝑛 ∇𝑎1𝑏2, ∇𝑎2𝑏1 ∆𝑎2𝑏2

12 1011 ∇𝑎2𝑏1 ∆𝑎1𝑏1

13 1100 ∇𝑎1𝑏2 ∆𝑎2𝑏1

14 1101 ∇𝑎2𝑏2 ∆𝑎2𝑏1

15 1110 ∇𝑎1𝑏2 ∆𝑎1𝑏1

16 1111 ∇𝑎2𝑏2 ∆𝑎1𝑏1

Table 3.19: Interval Multiplication in terms of bounds' signs & comparisons

The reduction of the four multiplication operations to three can be easily

deduced for cases 6 and 11. Consider for example 𝑥3𝑥2𝑥1𝑥0 = 0101 which

means that 𝑎1𝑏1 ≥ 0, 𝑎2𝑏2 ≥ 0, 𝑎1𝑏2 < 0, 𝑎𝑛𝑑 𝑎2𝑏1 < 0. Now consider that

𝑐1𝑐0 = 00 which means that 𝑎2 < 𝑎1 𝑎𝑛𝑑 𝑏2 < 𝑏1 . From this we

conclude that 𝑎1𝑏1 < 𝑎2𝑏2 thus 𝑎1𝑏1 < 𝑎2𝑏2 so 𝑚𝑎𝑥 𝑎1𝑏1, 𝑎2𝑏2 = 𝑎1𝑏1.

The same method applies for all other cases.

71

In case of the serial design, we have one floating point multiplier.

Assuming that 𝑦1 ,𝑦2 are the input operands of the multiplier and 𝑧1 is the

output of the multiplier then we can rewrite the above table as following:

𝑥3𝑥2𝑥1𝑥0 𝑦1 𝑦2 𝑧1 𝑟1 𝑟2 𝑡
First Cycle

1 0000 𝑎1 𝑏1 ∇ 𝑧1 - -

2 0001 𝑎1 𝑏1 ∇ 𝑧1 - -

3 0010 𝑎2 𝑏1 ∇ 𝑧1 - -

4 0011 𝑎2 𝑏1 ∇ 𝑧1 - -

5 0100 𝑎1 𝑏1 ∇ 𝑧1 - -

6 0101

𝑐1𝑐0

00 𝑎1 𝑏2 ∆ - - 𝑧1

01 𝑎1 𝑏1 ∇ - - 𝑧1

10 𝑎1 𝑏1 ∇ - - 𝑧1

11 𝑎1 𝑏2 ∆ - - 𝑧1

7 0110 0 0 0 𝑧1 - -

8 0111 𝑎2 𝑏2 ∇ 𝑧1 - -

9 1000 𝑎1 𝑏2 ∇ 𝑧1 - -

10 1001 0 0 0 𝑧1 - -

11 1010

𝑐1𝑐0

00 𝑎1 𝑏2 ∇ - - 𝑧1

01 𝑎1 𝑏1 ∆ - - 𝑧1

10 𝑎1 𝑏1 ∆ - - 𝑧1

11 𝑎1 𝑏2 ∇ - - 𝑧1

12 1011 𝑎2 𝑏1 ∇ 𝑧1 - -

13 1100 𝑎1 𝑏2 ∇ 𝑧1 - -

14 1101 𝑎2 𝑏2 ∇ 𝑧1 - -

15 1110 𝑎1 𝑏2 ∇ 𝑧1 - -

16 1111 𝑎2 𝑏2 ∇ 𝑧1 - -

Second Cycle

1 0000 𝑎2 𝑏2 ∆ - 𝑧1 -

2 0001 𝑎1 𝑏2 ∆ - 𝑧1 -

3 0010 𝑎2 𝑏2 ∆ - 𝑧1 -

4 0011 𝑎1 𝑏2 ∆ - 𝑧1 -

5 0100 𝑎2 𝑏1 ∆ - 𝑧1 -

6 0101

𝑐1𝑐0

00 𝑎2 𝑏1 ∆ - 𝑚𝑖𝑛 𝑧1, 𝑡 -

01 𝑎2 𝑏2 ∇ 𝑚𝑎𝑥 𝑧1, 𝑡 - -

10 𝑎2 𝑏2 ∇ 𝑚𝑎𝑥 𝑧1, 𝑡 - -

72

11 𝑎2 𝑏1 ∆ - 𝑚𝑖𝑛 𝑧1, 𝑡 -

7 0110 0 0 0 - 𝑧1 -

8 0111 𝑎1 𝑏2 ∆ - 𝑧1 -

9 1000 𝑎2 𝑏2 ∆ - 𝑧1 -

10 1001 0 0 0 - 𝑧1 -

11 1010

𝑐1𝑐0

00 𝑎2 𝑏1 ∇ 𝑚𝑖𝑛 𝑧1, 𝑡 - -

01 𝑎2 𝑏2 ∆ - 𝑚𝑎𝑥 𝑧1, 𝑡 -

10 𝑎2 𝑏2 ∆ - 𝑚𝑎𝑥 𝑧1, 𝑡 -

11 𝑎2 𝑏1 ∇ 𝑚𝑖𝑛 𝑧1, 𝑡 - -

12 1011 𝑎1 𝑏1 ∆ - 𝑧1 -

13 1100 𝑎2 𝑏1 ∆ - 𝑧1 -

14 1101 𝑎2 𝑏1 ∆ - 𝑧1 -

15 1110 𝑎1 𝑏1 ∆ - 𝑧1 -

16 1111 𝑎1 𝑏1 ∆ - 𝑧1 -

Third Cycle

6 0101

𝑐1𝑐0

00 𝑎1 𝑏1 ∇ 𝑧1 - -

01 𝑎1 𝑏2 ∆ - 𝑧1 -

10 𝑎2 𝑏1 ∆ - 𝑧1 -

11 𝑎2 𝑏2 ∇ 𝑧1 - -

11 1010

𝑐1𝑐0

00 𝑎1 𝑏1 ∆ - 𝑧1 -

01 𝑎2 𝑏1 ∇ 𝑧1 - -

10 𝑎1 𝑏2 ∇ 𝑧1 - -

11 𝑎2 𝑏2 ∆ - 𝑧1 -

Table 3.20: Inputs and outputs for each floating point multiplier

in terms of bounds' signs & comparisons

(𝛁 𝐨𝐫 ∆ 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐬 𝐨𝐧𝐥𝐲 𝐫𝐨𝐮𝐧𝐝𝐢𝐧𝐠 𝐦𝐨𝐝𝐞 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐨𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧)

As we have only one multiplier, the two bounds are obtained in two cycles

for all cases except case 6 and 11 which need three cycles. Table 3.20 shows

the inputs and outputs in each cycle. In the two special cases, we had to

reorder the three multiplication operations such that we obtain the two results

that are fed into the comparator first. This is to have the interval result in three

cycles instead if four.

By using the simple and effective Karnaugh map method, we can

implement the circuitry to get 𝑦1 ,𝑦2 (in each cycle) keeping in mind that a

special circuitry need to be added for cases 6 and 11 to handle the third

73

multiplication operation and the comparison before obtaining the final result.

The serial implementation has the same issues mentioned in the parallel

implementation. Accordingly the design should take care of these issues (as in

parallel design).

3.2.2.2.1 Hardware Architecture

The high level architecture of the Serial MIBFP Multiplier (Serial Modal

Interval Binary Double Floating Point Multiplier) is as in Figure 3.21

Interval

Pre-processing

Unit

Double floating point

Multiplier

Interval

Post-Processing

Unit

Interval A

128

Interval B

128
ClkResetEnable

Y1 Y2 ieee_flag

Rounding

Mode
6464

Z1

64

Interval

Result

result_ready

128

special_cases_flag

Interval_Multiplication_Type

Z1

4

Figure 3.21: Modal Interval Double Floating Point Multiplier

(Serial Implementation)

74

Interval Pre-processing unit:

Its function is as follows:

1- It divides the interval operands into two (or three) sequential

floating point multiplication operations with the appropriate

rounding mode for each operation.Y1, Y2, Rounding_Mode are

inputs to the multiplier.

2- For the two special cases 6 and 11, two comparators are used to

reduce the four multiplications to three then set the

special_cases_flag output port when one of these two cases happens

in the input intervals

3- Set ieee_flag to zero to override the case (∞ × 0)

4- It informs the Post-processing unit about the type of the interval

multiplication that it will handle. The interval multiplication is

divided into three types. One is the normal interval multiplication

which consists of two floating point multiplications and the other

two are the two special cases (cases 6 and 11 in Table 3.20) that

have three multiplication operations.

Logic equations and circuits:

Consider 𝐼𝐴𝐹𝐵 , 𝐼𝐴𝑆𝐵 , 𝐼𝐵𝐹𝐵 , 𝐼𝐵𝑆𝐵 are the first and second bounds of

intervals A and B. The following internal signals are constructed using

simple AND, OR and NOT logic gates.

As mentioned in the parallel interval multiplier section, we need to

implement 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 3 , 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 2 , 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 1 𝑎𝑛𝑑 𝑀𝑢𝑙𝐷𝑖𝑠𝑡 (0) flags

which are representing 𝑥3, 𝑥2, 𝑥1 𝑎𝑛𝑑 𝑥0 (in Table 3.20) respectively.

𝐶𝑚𝑝_𝐴 =
1, 𝑖𝑓 𝐼𝐴𝐹𝐵 62 ∶ 0 ≤ 𝐼𝐴𝑆𝐵(62 ∶ 0)
0, 𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒

𝐶𝑚𝑝_𝐵 =
1, 𝑖𝑓 𝐼𝐵𝐹𝐵 62 ∶ 0 ≤ 𝐼𝐵𝑆𝐵(62 ∶ 0)
0, 𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒

𝐶𝑚𝑝_𝐴 𝑎𝑛𝑑 𝐶𝑚𝑝_𝐵 are implemented using two 63-bits comparators.

They are representing 𝑐0 𝑎𝑛𝑑 𝑐1 signals (in Table 3.20) respectively.

75

Also we will need to implement the circuitry of the signals 𝐼𝑛𝑓𝑓𝑙𝑎𝑔 ,

𝑁𝑎𝑛𝑅𝑒𝑠𝑢𝑙𝑡𝑓𝑙𝑎𝑔 , 𝑆𝐶𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 , 𝑆𝐶𝑀𝑜𝑑𝑎𝑙 𝑎𝑛𝑑 𝑆𝐶𝐸𝑛𝑎𝑏𝑙𝑒 as specified in the

Logic circuitry section of the parallel interval multiplier.

The 𝑆𝐶𝐸𝑛𝑎𝑏𝑙𝑒 signal indicates if the input intervals result in one of

the two multiplication special cases (cases 6 and 11 in Table 3.20).

Now we can generate the output signals of the interval pre-processing

unit in terms of the above signals. The logic circuits of the outputs are

presented in the following figures.

00

01

11

2

00

01

1

EnableSC

Cycle_no
D Q

clk

2

Figure 3.22: Cycle Number

D Q

EnableSC

ExtensionSC

clk

00

01

11

2

Cycle_no

Figure 3.23: Special case extension output signal

76

D Q

Rounding_Mode

clk

00

01

11

2

Cycle_no

0

1

EnableSC

Cmp_A

Cmp_B

(3)MulDist

1

Figure 3.24: Rounding mode logic circuit

00

01

11

2

Cycle_no

0

1

Cmp_B

Cmp_A

(3)MulDist

1

0011 4

4

EnableSC

4

4-bit Shift

Register

typeMul
4

clk

Figure 3.25: Multiplication Type logic circuit

77

D Q

D Q

64

64

64

64

(3)MulDist

(1)MulDist

(2)MulDist

(0)MulDist

EnableSC

flagReN san
13

510

FBIA

SBIA

64

Operand_A

64

64

64

64

(3)MulDist

(1)MulDist

(2)MulDist

(0)MulDist

flagReN san
13

510

FBIA

SBIA

00

01

11

2

00

11

D Q

Cycle_no

0

1

Cmp_A

FBIA

SBIA 64

64

64

clk

clk

clk

Cycle_no

64

 Figure 3.26: Operand_A logic circuit

78

D Q

D Q

64

64

64

64

(3)MulDist

(1)MulDist

(2)MulDist

(0)MulDist

EnableSC

flagReN san
13

510

FBIA

SBIA

64

Operand_A

64

64

64

64

(3)MulDist

(1)MulDist

(2)MulDist

(0)MulDist

flagReN san
13

510

FBIA

SBIA

00

01

11

2

00

11

D Q

Cycle_no

0

1

Cmp_A

FBIA

SBIA 64

64

64

clk

clk

clk

Cycle_no

64

 Figure 3.27: Operand_B logic circuit

79

BFP Multiplier:

It is a normal double floating point Multiplier unit. The ieee_flag is added

to override the case (∞ × 0) as mentioned before.

Interval Post-processing unit:

Its function is as follows:

1- Depending on interval multiplication type, it assigns the interval

result bounds. In case of normal interval, the two bounds are the

output of the floating point multiplier in two cycles. In case of the

two special cases, we have three multiplications in three cycles so

we have one floating point results per cycle. In the first cycle, the

first floating point result is stored in a temporary register until the

second result is ready in the second cycle then both numbers are fed

into the comparator to decide which result will be output to one of

the bounds. In the third cycle, the last floating point result is fed

directly into the other bound.

2- Set the result_ready flag when there is a ready interval result

Logic circuits:

00

01

11

2

Cycle_no

D Q

0

1

(3)Multype

00

11

00

01

clk

2

Figure 3.28: Cycle Number

D Q
Result_Ready

00

01

11

2

Cycle_no

0

1

(3)Multype

clk

Figure 3.29: Result Ready logic circuit

80

D Q

Comparator
a(62:0) > b(62:0)

a

b

D Q

Rounded_Result

0

1

0

1

IntervalResult_FB

IntervalResult_SB

D Q D Q

D Q

D Q

1

0

0

1

0

1

01

00

clk
clk

1

0

(2)Multype

(1)Multype

(0)Multype

D Q

(3)Multype

(3)Multype

clk

clk

clk

clk

clk

Cycle_no

2

64

 Figure 3.30: Interval result bounds logic circuit

Once again we should notice that we use only one comparator to get the

smaller or the bigger value to assign it to one of the interval result bounds

(dependent on one of the special cases in Table 3.20). This comes from that

the two inputs of the comparator have equal signs. The only special case for

that rule is the case of having (+0) and (-0) as inputs to the comparator. The

above figure is a simplified one that doesn't handle this case.

3.2.2.2.2 Pipeline stages

The following figure shows a schematic for the pipeline stages of executing

two modal interval multiplication operations. The first operation is a normal

81

case (which takes two multiplication operations) while the second operation is

one of the two special cases (which needs four multiplication operations).

Figure 3.31: Pipeline stages for the Serial MIBFP Multiplier

As shown, the pre-processing unit applies the inputs to the floating point

multiplier on two clock cycles for the normal case and on three clock cycles

for the special case. The floating point multiplier takes seven clock cycles to

execute (from MUL C-1 to MUL C-7). The post-processing unit outputs the

interval result every two clock cycles for the normal case (at Post-Process C-2)

or every three clock cycles for the special case (at Post-Process C-3).

3.2.2.2.3 Logic Synthesis

The logic synthesis is done using both FPGA (using ALTERA Quartus-II tool)

and ASIC cell-based libraries (using Synopsis Design Compiler tool). For

FPGA synthesis; two types of Altera FPGAs are used to implement the

MIBFP Multiplier [12]:

1- Cyclone II (lower power, cost and speed)

Device EP2C35F672C6 of Cyclone II Family is used. The results are as

shown in Table 3.21:

 Area Timings

No. of

LEs

No. of

Embedded

Multipliers

No. of

Registers

Clock

Frequency

(MHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP Multiplier 2468 18 1071 128 7 1

Serial

MIBFP Multiplier
3648 18 1818 124.5 10(11) 0.5(0.33)

Table 3.21: Area and Timings (Serial MIBFP multiplier – Cyclone II)

82

2- Stratix III (higher power, cost and speed)

Device EP3SL50F780C2 of Stratix III Family is used. The results are

as shown in Table 3.22:

 Area Timings

No. of

LEs

No. of

Embedded

Multipliers

No. of

Registers

Clock

Frequency

(MHz)

Pipeline

Depth

(Cycles)

Pipeline

Throughput

BFP Multiplier 1484 18 1071 181.5 7 1

Serial

MIBFP Multiplier 2319 18 1818 177 10(11) 0.5(0.33)

Table 3.22: Area and Timings (Serial MIBFP multiplier – Stratix III)

The ASIC results are as shown in Table 3.23:

 Area (mm2) Timings

 Combinational

Area
(𝑚𝑚2)

Registers

Area
(𝑚𝑚2)

Interconnect

Area
(𝑚𝑚2)

Clock

Frequency

(MHz)

Pipeline

Depth

Pipeline

Throughput

BFP Multiplier 0.0262 0.0048 0.0106 870 7 1

Serial

MIBFP Multiplier 0.0311 0.0082 0.0132 870 10(11) 0.5(0.33)

Table 3.23: Area and Timings (Serial MIBFP multiplier – Nangate 45nm)

As we notice from the previous tables that the pipeline throughput is 1

result per two clock cycles which is half the throughput of normal floating

point multiplier except for the two special cases (throughput is one-third that

of the normal floating point multiplier).

Percentage increase in the area is about 54%, 61.5%, and 26% of the

normal BFP multiplier for the CYCLONE FPGA, STRATIX FPGA, and

ASIC cell library successively. The first two percentages are quite misleading

as we assume that the embedded multipliers and ALUTs have equal area

weight which is not correct. Thus percentage increase in case of ASIC cell

library is the most accurate number which is 26%.

The advantage of that design is that we use only one floating point

multiplier to implement modal interval multiplier thus decreasing the area and

power consumption however, this area and power reduction is balanced by the

83

loss of speed (The interval operation is half (or one-third) the speed of the

normal floating point operation which means we have one interval result each

two (or three) clock cycles (in case of pipelining) as shown in tables 3.21, 3.22

and 3.23).

Combined results for the serial and parallel designs are in the following

table:

 Cyclone II Stratix III Nangate 45nm Cell Library

 Area

Increase %

Clock

Frequency

(MHz)

Area

Increase %

Clock

Frequency

(MHz)

Area

Increase %

Clock

Frequency

(MHz)

BFP Multiplier - 128 - 181.5 - 870

Parallel

MIBFP Multiplier

148% 120 145.5% 167 128% 870

Serial

MIBFP Multiplier

54% 124.5 61.5% 177 26% 870

Table 3.24: Interval multiplier (Combined Results)

We should notice that, the percentage increases are close for the two

FPGA devices which are from two different families. The clock frequencies

differ from the BFP multiplier for the same device although they should be the

same but this is due to variations in the ALTERA CAD tool design rules.

84

Chapter 4

4 Testing, Comparisons and Future Work

4.1 Testing

4.1.1 Testing Libraries

The Designs are tested using two libraries:

1- INTLAB library which is a classical interval arithmetic MATLAB

toolbox [14]. This library is used to test the classical intervals part only.

The only deviation from the library is that it doesn't support (-0(

2- IvalDb library which is a C++ modal interval arithmetic library [16].

This library supports handling both proper and improper intervals. One

major difference in that library that it doesn't make rounding down and

up for the two interval result bounds [16]. Instead, it adds one ULP to

the upper bound and subtracts one ULP from the lower bound to

guarantee the enclosure of the solution. This leads to a better speed but

lower accuracy (wider intervals) as we have a maximum of two ULPs

wider interval. The library is modified to properly round interval

results. There is another difference in handling infinities. In case of

modal interval multiplication many cases gives NAN for the two

interval bounds which is not correct.

4.1.2 Test Bench

The same Test Bench method is used in testing the modal interval addition,

subtraction and multiplication units. The Testing is divided into two steps.

First, Generate the testing vectors then apply input testing vectors to the unit

under test (UAT) then compare the output with the output testing vectors.

These two steps are explained in more details in the following section.

85

4.1.2.1 Generate Testing Vectors

The input and output testing vectors are generated using one of the above

interval libraries (INTLAB library for classical intervals only or IvalDb library

for modal intervals). The MATLAB software tool is used in case of generating

the testing vectors using INTLAB while the Microsoft Visual C++ 6.0

software tool is used in case of using the IvalDb library. The input testing

vectors are written into a text file (in the hexadecimal format) while the

corresponding output vector written into another file (in the hexadecimal

format). The following table shows samples of the generated input and output

testing vectors respectively for the testing of the multiplication operation. As

shown, each entry in the input column represents the two input interval

operands (written in the hexadecimal format) and the corresponding entry in

the output column represents the actual output after applying those two inputs.

Each input test row contains four double floating point numbers adjacent to

each other. The first hexadecimal floating point number represents the first

operand's first bound, the second number represents the first operand's second

bound, the third one represents the second operand's first bound and the last

one represents the second operand's second bound. Each output row contains

two double floating point numbers written in hexadecimal format. The first

number represents the result's first bound and the second one represents the

result's second bound.

Input Output

bfe6131b8bae450b3fe42041085363743fc77be29c123d323fba23cfe3a68848 bfb2083ab042facd3fb070baddb7143a

3fdd1f52644242b3bfe673f888229135c031ef4319daa37fbfe28b85a4442477 3fda0642a2cbcec8bfd0e09805f5c00a

c00002b6ed6c1725404341004edd305fc000058dc268b02bbfe83d8aece84cb8 c05347af35baaab940100845a10c0122

c0256b52b52b52b6bff0a3fab294aa63bfeec9e60acb0f26bfe75723e7989ba1 3fe846595b734f0d40249bc1a3f680a3

Table 4.1: Samples of Input and Output Testing Vectors

86

4.1.2.2 Running the Test

The test bench was run using the ModelSim simulation tool. The

following figure shows block diagram of running the test.

Feed-Input Process

UAT

Compare-Output Process

Clk

Input Test rows

Output Test rows

Figure 4.1: Test Bench Block Diagram

The Feed-Input and Compare-Output are running in two parallel clocked

processes (VHDL processes). The Feed-Input process reads the testing input

operands and feed them into the unit under test (UAT). It feeds input every

one clock cycle (if the UAT is a parallel design) or every two clock cycles (if

the UAT is a serial design). In case of multiplier, the Feed-Input process

should take care of waiting one additional clock cycle when the input operands

result in one of the multiplication special cases.

87

The Compare-Output process starts to compare the output from the UAT

with the actual output when the Result_Ready (exists in all modal interval

units) flag is logical one. The testing of all the units was done before the logic

synthesis (pre-synthesis simulation) and after it (post-synthesis simulation).

4.1.3 Testing coverage

As mentioned before, testing is done using INTLAB (to test the classical

part only) and IvalDb to test the more general case (modal and classical

intervals). The input testing vector contains of two interval numbers (each one

has two floating point numbers which represent the first and second bounds of

the interval). As these four input numbers are double floating point numbers, it

is impossible to cover all the possible numbers in the test bench. Thus the

testing takes two approaches. The first approach is to randomly generate large

number of testing inputs. The second approach is to try to divide the floating

point domain into different ranges that we can coverage each of them partially.

The different ranges are shown in the below table. This allows us to apply

testing on the boundaries of the floating point space as well as the normal

numbers.

Floating Point Sub-Domain Description

Norm-Num Normalized numbers in the normal floating point range

Big-Num Normalized numbers close to ±∞

Denorm-Number Denormalized numbers

±0

±∞

Table 4.2: Different floating point ranges

88

Table 4.3 shows the combinations of the different ranges to generate the

input testing vectors.

First Operand Second Operand

First Bound Second Bound First Bound Second Bound

Norm-Num Norm-Num Norm-Num Norm-Num

Big-Num Big-Num Norm-Num Norm-Num

Big-Num Big-Num Big-Num Big-Num

Norm-Num Norm-Num Big-Num Big-Num

Denorm-Num Denorm-Num Denorm-Num Denorm-Num

Denorm-Num Denorm-Num Norm-Num Norm-Num

Big-Num Big-Num Denorm-Num Denorm-Num

Norm-Num Norm-Num ±∞ ±∞

±∞ ±∞ Big-Num Big-Num

±∞ ±∞ ±∞ ±∞

±∞ ±∞ ±0 ±0

Big-Num Big-Num

The additive inverse of

the first operand's first

bound

The additive inverse of

the first operand's

second bound

Big-Num Big-Num

The multiplicative

inverse of the first

operand's first bound

The multiplicative

inverse of the first

operand's second bound

Table 4.3: Covered ranges in Testing for all units

4.2 Comparison with classical interval counterparts

The major difference between all the previous works (mentioned in Previous

Works section) and the proposed implementation is that most of them handled

the case of hardware implementation of classical interval arithmetic units

(with different approaches). Even for the classical interval multiplication

work, most of the previous proposals avoid implementing the special cases of

interval multiplications (which need four multiplications instead of two like

other cases) and delegate this task to software programs due to its complexity.

This is unacceptable (in so many applications) for one of the basic arithmetic

89

operations like multiplication. Also, none of the classical interval hardware

implementations mentioned how infinites as input operands can be handled.

Although this case is easy in interval addition/subtraction (handling is like that

of the normal floating point adder/subtractor), it is more complex in interval

multiplication and needs special circuitry.

To compare the proposed modal interval units with the classical ones, we

need to design classical interval units that cover the above two points

(handling multiplication special cases and infinities in input). Accordingly, the

modal interval adder/subtractor and multiplier are modified to implement the

classical interval adder/subtractor and multiplier.

4.2.1 Classical Interval Adder/Subtractor

The only modification that may be needed is to generate an exception flag that

indicates that at least one of the interval inputs is a non classical interval (an

improper interval). This modification can be delegated to software. In case of

implementing the exception flag in hardware, it needs two 64 bit comparators

in case of parallel classical interval adder/subtractor (or one 64 bit comparator

in case of the serial design) to compare the interval bounds of each input

operand. As we noticed, if we implement the improper interval exception flag

this leads to an area increase more than that of the modal interval

adder/subtractor. Table 4.4 shows different areas (in terms of number of logic

elements and number of registers) for different modal/classical and

parallel/serial adder/subtractor implementations.

 Serial Parallel

No. of

ALUTs

No. of

Registers

No. of

LEs

No. of

Registers

Modal Interval

Adder/Sub
1230 997 2358 1716

Classical Interval

Adder/Sub 1346 998 2493 1717

Table 4.4: Classical/Modal Add-Sub Area Comparisons (Stratix III)

90

As shown above, the classical implementations lead to 9.4% utilization

increase (of logic elements) in case of serial approach and 5.7% utilization

increase (of logic elements) in case of parallel approach.

The Timings won't be affected in pipeline schemes as the delay of the two

comparators is embedded into clock cycles that the pre-processing unit takes

in both serial and parallel implementations.

As we mentioned, one other possible solution is to leave the improper

detection handling to the software. In this case the classical interval

adder/subtractor will be the same as its modal counterpart. But there will be

timing overhead due to handling of improper interval detection in software.

4.2.2 Classical Interval Multiplier

As we mentioned before, the difference between classical and modal

interval units is that we need to check that the input operands are proper

intervals, otherwise we generate an exception. This exception can be generated

in hardware of by software. If we generate the improper interval exception in

hardware, the same modification (done in classical adder/subtractor) will be

done in case of multiplication, too. Besides, the logic of selecting the modal

interval multiplication case will change as the number of classical

multiplication cases is nine cases only. Also, these nine cases don't include

cases that lead to Nan results (in case of infinity inputs) which will save

another piece of hardware.

Table 4.5 shows different areas (in terms of Logic Elements) for different

modal/classical and parallel/serial multiplier implementations. As we can see,

in case of hardware support of improper interval detection there is a utilization

decrease (in number of logic elements) by 1.3% in the serial implementation

while there is a utilization increase (in number of logic elements) by 2.6% in

the parallel implementation. On the other hand, in case of leaving improper

interval detection to software there is a utilization decrease by 1.3% in the

serial implementation (the same percentage as in the hardware support) while

91

there is utilization decrease by 1.7 in the parallel implementation (on the

contrary of the hardware support). These results are totally expected.

 Serial Parallel

No. of

ALUTs

No. of

Registers

No. of

Embedded

MULs

No. of

LEs

No. of

Registers

No. of

Embedded

MULs

Modal Interval

Multiplier
2319 1818 18 3491 2793 36

Classical Interval

Multiplier

(Hardware exception)
2288 1811 18 3583 2792 36

Classical Interval

Multiplier

(Software exception)

2287 1810 18 3431 2791 36

Table 4.5: Classical/Modal Multiplier Area Comparisons (Stratix III)

As we said before, in case of hardware support for the improper interval

detection at inputs we need comparators to check the two input intervals if the

proper or improper intervals. These two comparators are originally present in

the serial implementation of the modal interval multiplier (review the Serial

Interval Multiplier section), so we don't add them again. But we need to add

these two comparators in case of classical parallel implementation. On the

other hand, there is lot of logic need to be removed (in both serial and parallel

classical implementations) as we handle nine cases in classical interval

multiplication instead of sixteen cases in the modal interval multiplication.

The above reasons cause an area decrease in classical serial

implementation (with hardware exception) and a reduction in the area increase

of the classical parallel implementation (with hardware exception).

Apparently, if improper interval detection is left to software, we will have an

area decrease in both serial and parallel classical interval multipliers that their

modal counterparts.

For Timings, in case of hardware exception the timings won't be affected

in pipeline schemes as the delay of the two comparators is embedded into

clock cycles that the pre-processing unit takes in both serial and parallel

implementations.

92

4.3 Future Work

The future work need to be done for the current modal interval adder,

subtractor and multiplier is to add support for floating point exceptions like

overflow, underflow and inexact result exceptions. We should note that the

interval results consist of two floating point numbers so we may have two

exceptions of the same type in the design or we can just indicate that an

exception occurs in the interval result. Another modification can be done in

these units is to add the support to operate in two different modes (classical

and modal). Thus if the user needs to work with classical intervals only, he

will set the Modal flag off so any modal interval input will through and

exception.

The previous modifications were to enhance the already done units and

they are simple but if we want to make a fully hardware support for the double

floating point modal intervals, we need to implement much more units. The

first unit that we can think of supporting is the modal interval double floating

point divider. Also, there are some important functions like the basic interval

elementary functions (trigonometric, exponential and logarithmic functions)

and the power functions. All of the previous functions can be built using the

corresponding normal floating point units. Another class of operations are the

comparison relation operations mentioned in [5]. Although they are built on

the normal comparison relations but their definitions are slightly different in

modal intervals and have more varieties than those in real numbers system [5],

[6]. Another class of operations needed for modal intervals are the midpoint,

Infimum, Suprimum and Mode of the interval. The definition of those

operations is defined in the "Modal Intervals Building Blocks" section except

the midpoint operation which is simply the subtraction of the two bounds

divided by two. Two new operations (need to be implemented specifically for

intervals) are the intersect and union of two intervals. The definition of both is

in [5].

93

 We should note that some of the previous operations (till the moment this

thesis were written) are not completely defined in the modal intervals space

but they are totally defined in the classical intervals space. Thus they can be

implemented with a certain level of support to the modal intervals. The

support of all the previous functions in modal intervals will benefit all the

users who concern in applications that need accurate results and high speed.

Different topic can be done as a future work is building multiple precision

floating point modal interval units. There is no published references mention

the need to use multiple precision support for modal intervals but there are

many references discuss the need of supporting multiple precision classical

intervals [8], [38], [22]. The complex equation which is mentioned in the

Introduction chapter (Overview Section) is an example of why we need

multiple precision for certain applications. This example shows that the

floating point result will be wrong regardless of the precision of the floating

point numbers. Unfortunately, when we apply classical interval methods on

this example, we have wide interval results for different precisions as shown

in Table 4.6 [38].

Precision Interval Width

32-bit 6.3E+30

64-bit 1.1E+22

128-bit 5.1E+03

Table 4.6: Rump's Example: Result Widths using different precision Intervals

We should notice that the more precision we use the tighter interval result

we have. Thus using multiple precision intervals will give us the opportunity

to have more accurate (tighter) interval results. As the modal intervals support

add a slightly more cost to the classical support then it will be better to

implement multiple precision modal interval units.

94

Conclusions

This work introduces for the first time the hardware implementations of the

Modal Interval Adder/Subtractor and Modal Interval Multiplier units. It

studies two different implementations of these modal interval units using

normal double floating point adders/subtrtactors and multipliers respectively.

The serial designs represent the execution of the interval operations serially

with minimal area increase. On the other hand, the parallel designs make the

execution of the interval operations as fast as the execution of normal floating

point operations but this comes at the cost of area increase and power

consumption. The results shows that the Serial and parallel MIBFP

Adder/Subtractors areas are larger than the BFP adder/subtractor area by 16%

and 115% respectively .The Serial and parallel MIBFP Multipliers areas are

larger than the BFB Multiplier area by 26% and 128% respectively.

Generally speaking, we can say that the hardware serial modal interval

multiplier is faster than the different software implementations of modal

interval multipliers with a small cost of area increase. Although, the hardware

parallel modal interval multiplier is almost double the speed of the serial

counterpart, it consumes almost double the area which is a big cost for a unit

like the floating point multiplier. According to the modal interval

adder/subtractor, only the hardware parallel design makes an improvement

over the software implementations but it also costs almost double the area.

It is shown also that the modal interval adder/subtractor and the modal

interval multiplier implementations don't have any cost increase than that of

their classical counterpart. In fact, it is shown that if we want to add the

improper interval detection exception to hardware, this will make the classical

units have more areas than those of their classical counterparts (except for the

serial modal interval multiplier as explained before).

After all, we can say that only the application nature and the cost are the

major benchmarks that determine either the serial approach (smaller but

95

slower) or the parallel approach (bigger but faster) is suitable.

As the Modal Intervals Analysis is a new branch of Mathematics, there are

lots of research points in it, especially in the topic of hardware implementation

of the arithmetic units. As mentioned in the "Future Work" section in the

previous chapter, there are plenty of Modal Interval arithmetic units that are

not implemented in hardware, yet.

96

References

[1] D. Goldberg, "What Every Computer Scientist Should Know About Floating-Point

Arithmetic," ACM Computing Surveys , pp. 5-48, March 1991.

[2] R. E.Moore, "Interval Analysis," Prentice Hall Inc., Englewood Cliffs, New Jersey,

1966.

[3] R. B. Kearfott, "Interval Computations: Introduction, Uses, and Resources,"

Euromath Bulletin, pp.95-112, 1996.

[4] R. B. Kearfott, "Mainstream Contributions of Interval Computations in Engineering

and Scientific Computing," presented at SCAN 2008 Conference, EL Paso, Texas,

Sept., 2008.

[5] M. A. Ernest Gardenes, "Modal Intervals, Reliable Computing," vol.7, pp.77-111,

2001.

[6] N. T. Hayes, "Introduction to Modal Intervals," Prepared for the IEEE 1788 Working

Group, 2009.

[7] E. Kaucher, "Interval Analysis in the Extended Interval Space IR," Computing

Supplementum 2, Springer, Heidelberg, pp. 33–49, 1980.

[8] U. Kulish, "Computer Arithmetic and Validity-Theory, Implementation and

Applications," Walter de Gruyter GmbH & Co., 2008.

[9] R. Gupte, "Interval Arithmetic Logic Unit for DSP and Control Applications," MSc.,

Dept. Elect, Univ. North Carolina, 2006.

[10] 754-2008 IEEE Standard for Floating-Point Arithmetic,. August 2008. Retrieved from

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[11] P. H. Vioas, "Quantified Real Constraint Solving Using Modal Intervals with

Applications to Control," Ph.D., Dept. Elect, Univ. Girona, 2006.

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

97

[12] Altera Product Catalog, http://www.altera.com/literature/sg/product-catalog.pdf

[13] Nangate 45nm Open Cell Library DataBook, http://www.nangate.com

[14] Classical interval Matlab library (IntLab),

http://www.ti3.tu-harburg.de/rump/intlab/

[15] Modal interval software library (ivalDb),

http://sites.google.com/site/pauherrero/IVALDB.zip?attredirects=0

[16] ivalDb, REFERENCE DOCUMENTATION,

http://sites.google.com/site/pauherrero/IVALDB.zip?attredirects=0

[17] E. Popova, "On the Efficiency of Interal Multiplication Algorithms," Proceedings of

III-rd Int. Conference "Real Numbers and Computers", Paris, pp. 117-132, April 27-

29, 1998.

[18] E. Popova, S. Markov, "Towards Credible Implementation of Inner Interval

Operations," In A. Sydow (Ed.) 15th IMACS World Congress on Scientific

Computation, Modelling and Applied Mathematics, Vol. 2 Numerical Mathematics,

pp. 371-376, 1997.

[19] "Interval Arithmetic in High Performance Technical Computing," White Paper , Sun

Microsystems, Sept. 2002

[20] J. E. Stine and M. J. Schulte, "A Combined Interval and Floating Point Multiplier,"

Proceedings of the 8th Great Lakes Symposium on VLSI, Los Alamitos, Feb. 1998.

[21] J. E. Stine and M. J. Schulte "A Combined Interval and Floating Point Divider,"

Proceedings of the 8th Great Lakes Symposium on VLSI, Los Alamitos, Feb. 1998.

[22] M. J.Schulte, E. E.Swartzlaner, "Hardware Design and Arithmetic Algorithms for a

variable precision, Interval Arithmetic Processor", Proceedings of the 12th

Symposium on Computer Arithmetic, Bath, UK, July. 1995.

[23] M. J.Schulte, E. E.Swartzlaner, "A family of variable-precision Interval Arithmetic

Processors," IEEE Transactions on Computers, vol. 49, pp. 387 - 397, May 2000.

http://www.altera.com/literature/sg/product-catalog.pdf
http://www.nangate.com/?page_id=22
http://www.ti3.tu-harburg.de/rump/intlab/
http://sites.google.com/site/pauherrero/IVALDB.zip?attredirects=0
http://sites.google.com/site/pauherrero/IVALDB.zip?attredirects=0

98

[24] R. Kirchner, U. Kulisch, "Hardware Support for Interval Arithmetic," Reliable

Computing, Vol. 12, No. 3, 2006.

[25] S. Pikoriski, M. Kieffer, L. Lacassagne, D. Etiemble, "Efficient 16-bit Floating-Point

Interval Processor for Embedded Systems and Applications," presented at SCAN

2006 Conference, Sept. 2006.

[26] UltraSPARC III User’s Manual Book, Sun Microsystems, www.sun.com/ultrasparc

[27] A. Amaricai, M. Vladutiu, O. Boncalo, "Design of Floating Point Units for Interval

Arithmetic," In Research in Microelectronics and Electronics, pp.12-15, July 2009.

[28] Interval Arithmetic, http://en.wikipedia.org/wiki/Interval_arithmetic

[29] SIGLA/X Group (Calm R., Estela M.R., et. al.), “Ground Construction of Modal

Intervals,” Proc. of MISC’99, University of Girona, Spain.

[30] SIGLA/X Group (Calm R., Estela M.R., et. al.), “Interpretability and Optimality of

Rational Functions,” Proc. of MISC’99, University of Girona, Spain.

[31] SIGLA/X Group (Calm R., Estela M.R., et. al.), “Semantic and Rational Extensions of

Real Continuous Functions,” Proc. of MISC’99, University of Girona, Spain.

[32] T. Sunaga, Theory of interval algebra and its application to numerical analysis,

Research Association of Applied Geometry (RAAG) Memoirs, Vol. 2, pp.29‐46, 1958.

[33] M. Warmus, Calculus of Approximations, Bull. Acad. Polon. Sci., Cl. III, Vol. IV,

No. 5, pp. 253–259, 1956.

[34] M. Warmus, Approximations and Inequalities in the Calculus of Approximations.

Classification of Approximate Numbers, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys.,

Vol. IX, No. 4, pp. 241–245, 1961.

[35] S.F. Oberman “Floating Point Arithmetic Unit Including an Efficient Close Data

Path” US Patent 6094668, Advanced Micro Devices, 2000.

[36] P.M. Seidel, G. Even “Delay-Optimized Implementation of IEEE Floating Point

Addition” IEEE Transaction on Computers, Vol. 53, No.2 , pp. 97-113, 2004.

http://www.sun.com/ultrasparc
http://en.wikipedia.org/wiki/Interval_arithmetic

99

[37] S.M. Rump "Verification methods: Rigorous results using floating-point arithmetic,"

Acta Numerica, pp.287-449, 2010.

[38] E. Loh, W. Walaster "Rump's Example Revisited," Reliable Computing, pp.245-248,

2002.

[39] Y. Wang "Semantic Tolerance Modeling based on Modal Interval Analysis,"

proceedings of NSF Workshop on Reliable Engineering Computing (REC'06), pp.293-

318, 2006

[40] OpenCores IEEE-754 compliant double-precision Floating Point Unit,

http://opencores.org/project,fpu_double

http://opencores.org/project,fpu_double

