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ABSTRACT 

   Floating-point unit is an integral part of any modern microprocessor. The fused 

multiply add (FMA) operation is very important in many scientific and engineering 

applications. It is a key feature of the floating-point unit (FPU), which greatly increases 

the floating-point performance and accuracy. With the recent advancement in FPGA 

architecture and area density, latency has been the main focus of attention in order to 

improve performance. Many floating-point fused multiply add algorithms are developed 

to reduce the overall latency. The greatest deviation from the original IBM RS/6000 

architecture comes from a paper by T. Lang and J.D. Bruguera on a reduced latency fused 

multiplier-adder. The paper claims an estimated 15-20% reduction in latency as 

compared to a standard fused multiply add. This result is calculated theoretically, and the 

actual architecture has yet to be implemented in either a synthesized or a custom CMOS 

silicon design. 

 
The main objective of our work is to implement this algorithm but with little change to 

facilitate the implementation and on the other hand do not affect the performance. The 

implementation includes full design of blocks are not included before in Lang/Bruguera 

algorithm like sign detection module. Both the proposed and the basic architecture are 

designed using the Verilog hardware description language and then synthesized, placed 

and routed for Cyclone II FPGA device using Quartus II 9.1. The proposed architecture 

achieves a delay improvement about 25.5% as compared to the basic architecture. The 

increase of area in the proposed architecture is about 6.2%. 
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Chapter 1 : Introduction 
 

 Floating-point unit (FPU) is one of the most important custom applications 

needed in most hardware designs as it adds accuracy and ease of use. Recently, the 

floating-point units of several commercial processors like IBM PowerPC,  

Intel/HP Itanium, MIPS-compatible Loongson-2F and HP PA-8000 [8], [24] have 

included a floating-point fused multiply add (FMA) unit to execute the double-

precision fused multiply add operation 𝐴𝐴 + (𝐵𝐵 × 𝐶𝐶) as an indivisible operation, 

with no intermediate rounding.  

The FMA operation is very important in many scientific and engineering 

applications like digital signal processing (DSP), Finite impulse response (FIR) 

filters, graphics processing, fast Fourier transform (FFTs) [4], [11] division and 

argument reduction [20], [28]. The first FMA is introduced in 1990 by IBM 

RS/6000 [12], [13]. After that FMA is implemented by several companies like HP, 

MIPS, ARM and Intel. It is a key feature of the floating-point unit because it 

greatly increases the floating-point performance and accuracy since rounding is 

performed only once for the result  𝐴𝐴 + (𝐵𝐵 × 𝐶𝐶 ) rather than twice for the 

multiplier and then for the adder. It also realizes reduction in the latency and 

hardware cost. FMA can be used instead of floating-point addition and floating-

point multiplication by using constants e.g., 0.0 +  (𝐵𝐵 × 𝐶𝐶) for multiplication and 

𝐴𝐴 +  (𝐵𝐵 ×  1.0) for addition. 

A Field Programmable Gate Array, FPGA, provides a versatile and 

inexpensive way to implement and test VLSI designs. It is mostly used in low 

volume applications that cannot afford silicon fabrication or designs which require 

frequent changes or upgrades.  

http://en.wikipedia.org/wiki/MIPS_architecture�
http://en.wikipedia.org/wiki/Loongson�
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In FPGAs, the bottleneck for designing efficient floating-point units has 

mostly been area. With advancement in FPGA architecture, there is a significant 

increase in FPGA densities so latency has been the main focus of attention in order 

to improve performance. 

1.1 Motivation and Contribution 

Floating-point fused multiply add unit is one of the most important blocks 

that exist in floating-point unit as it increases its accuracy and performance. It is 

useful in many computations which involve the accumulation of products such as 

scientific and engineering applications. Many algorithms are developed on 

floating-point fused multiply add unit to decrease its latency [2], [10], [18], [25], 

[31]. The biggest deviation from the original IBM RS/6000 architecture comes 

from a paper by T. Lang and J.D. Bruguera [10] on a reduced latency fused 

multiply add units. However, to the best of our knowledge, Lang/ Bruguera 

algorithm is not implemented till now. 

The main contribution and objective of our work is to implement the 

architecture which is proposed by Lang/Bruguera but with little change to 

facilitate the implementation. This thesis also shows the full design of some blocks 

which are not included in Lang/Bruguera work like sign detection module. This 

algorithm and the basic algorithm are implemented   in the Verilog hardware 

description language, and then are synthesized, placed and routed for Cyclone II 

FPGA device using Quartus II 9.1. Area and timing information for each design 

approach is reported and analyzed. 

1.2 Outline 

 This thesis is structured as follows. Chapter 2 gives an overview of IEEE 

floating-point standard and brief information on fused multiply-add unit.  

Chapter 3 shows previous architectures of the fused multiply add and the 

design details of the components used to implement them. Chapter 4 shows the 



3 
 

proposed fused multiply add fused unit and the design details of its components. 

Chapter 5 goes over the testing procedure, simulation, and results. Chapter 6 

concludes the thesis and provides recommendations for further research. 
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Chapter 2 : Standard Floating Point Representations 
and Fused Multiply-Add Algorithm 

 

2.1 Fraction representation 

Beside integer’s representation, there is a need to represent fractions. A radix 

point is used to divide the number into two parts, an integer part (on the left to the 

radix point) with using positive powers and a fraction part (on the right to radix 

point) with using negative powers. As an example, the binary number (10.01)2

2. 1.1 Fixed point representation 

 is 

interpreted to (1𝑥𝑥21 + 0𝑥𝑥20 + 0𝑥𝑥2−1  + 1𝑥𝑥2−2)  which equals to (2.25) in 

decimal. However an exact representation of all fractions is impossible in binary 

notation. For example consider the number 1/3, it can be written as a decimal by 

(0.333333…..) for a finite number assigned for the fractional part the 

representation is not exact. Fixed and floating point representations are used to 

handle fractions in computers.  

Fixed point representation is a simple and easy way to express fractional 

numbers using a fixed number of bits. The precision of a fixed point 

number is the total number of bits for the fractional part of the number. 

The location of the radix point is variable and non-compulsory so the 

precision of the fixed point can be any number up to and including all bits 

used.  The dynamic range of fixed point is the ratio of the largest 

representable number to the smallest non-zero representable number. 

Accordingly, The more precision the less dynamic range we have. 
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Fixed point representation suffers from lack of dynamic range where 

very large and very small numbers cannot be represented together in the 

same representation.  

2. 1.2 Floating point representation 

Floating-point representation basically represents real numbers in 

scientific notation. Scientific notation represents numbers as a base 

number and an exponent. In general, a floating-point number consists of 

three main parts: sign (S), mantissa (M) and exponent (E). Its value can be 

given by (−1)s × M × baseE the base is one of the most important aspects 

needed to know when using floating point representation. It is equal 2 for 

binary, 10 for decimal and 16 for hexadecimal numbers.    

The main feature of floating point representation is its large dynamic 

range. This is because the largest representable number is approximately 

equal to the base raised to the power of maximum positive exponent and 

the smallest non-zero number is approximately equal to the base raised to 

the power of the maximum negative exponent.   

The precision is another important factor of floating-point 

representation. It equals the number of bits used to represent the mantissa 

(significand). It determines how close two adjacent floating point numbers 

can be.  

2.2 IEEE floating point representation 

A floating point system defines the base of the number system, the location 

of the fractional point , precision and  whether the numbers are normalized  or not. 

Many formats appeared to specify these issues such as IBM, CDC and DEC 

formats [34]. These formats suffered from compatibility and conversion problems. 
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Thus there is a need to standardize the formats Regardless of manufacturers and 

programming languages. The IEEE standard is developed for this need. 

   IEEE 754 is an IEEE Standard for Floating-Point Arithmetic which is 

developed for binary floating point arithmetic in 1985. In 1987 a second 

complementary standard (IEEE 854) is developed for radix independent floating 

point arithmetic. The current version is (IEEE 754–2008) which appeared in 2008. 

It is a revised version which combines two previous standards in addition to the 

inclusion of decimal floating point and its operations. 

The standard specifies basic and extended floating-point number formats, 

arithmetic operations, conversions between various number formats, rounding 

algorithms, and floating-point exceptions. The standard also includes extensive 

recommendations for advanced exception handling. 

Formats in IEEE standards describe sets of floating-point data and encodings 

for interchanging them. A given format comprises finite numbers, including its 

base and three fields needed to specify sign, significand and exponent, Two 

infinities +∞ and −∞ and Two kinds of Not a Number (NaN) quiet  and signaling.  

2.2.1 Basic formats 

The standard defines five basic formats, see Table (2-1), the first three 

formats named single, double and quadruple precision basic formats are used to 

encode binary floating point numbers and use 32, 64 and 128 bits respectively. 

The last two formats are used for decimal floating point numbers and use 64 and 

128 bits to encode them. 

All the basic formats may be available in both hardware and software 

implementations. 

 

http://wapedia.mobi/en/IEEE�
http://wapedia.mobi/en/NaN�
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This thesis concerns only on binary floating point with double precision 

format, so it will be discussed in more details. 

 
Table  2-1: five basic formats of IEEE standard 

Name Common name Base Digits E E  min max 

binary 32 Single precision 2 23+1 -126 +127 

binary 64 Double precision 2 52+1 -1022 +1023 

binary 128 Quadruple precision 2 112+1 -16382 +16383 

decimal 64  10 16 -383 +384 

decimal 128  10 34 -6143 +6144 
       

Double precision format 

Double -precision format uses 1-bit for sign bit, 11-bits for bias exponent and 

52-bits to represent the fraction as shown in Figure (2-1). 

 

Figure  2-1:  IEEE 754 double precision format 

The double- precision floating-point number is calculated as (−1𝑠𝑠) × 1. 𝐹𝐹 ×

2(𝐸𝐸−1023) . The sign bit (s) is either 0 for non-negative number or 1 for negative 

numbers. The exponent field represents both positive and negative exponents. To 

do this, a bias is added to the actual exponent. For IEEE double-precision format, 

this value is 1023, for example, a stored value of 2011 indicates an exponent of 

(2011-1023), or 988. The mantissa or significand is composed of an implicit 

leading bit and the fraction bits, and represents the precision bits of the number. 

Sign
s

Exponent-E
(11) bit

Fraction-F 
(52) bit

05263

http://wapedia.mobi/en/Single_precision_floating-point_format�
http://wapedia.mobi/en/Double_precision_floating-point_format�
http://wapedia.mobi/en/Quadruple_precision_floating-point_format�
http://wapedia.mobi/en/Decimal64_floating-point_format�
http://wapedia.mobi/en/Decimal128_floating-point_format�
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Exponent values (biased) of all 0’s and all 1’s are reserved to encode special 

numbers such as zero, denormalized numbers, infinity, and NaNs.  

 

I. Normalized numbers 

 A floating-point number is said to be normalized if the exponent field 

contains the real biased exponent other than all 0’s and all 1’s. For all the 

normalized numbers, the first bit just left to the decimal point is considered to be 1 

and not encoded in the floating-point representation and thus also called the 

implicit or the hidden bit. 

Assuming 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚  to be the largest mantissa and exponent 

respectively, we can represent the largest normalized positive number for double 

precision format  𝑀𝑀𝑀𝑀𝑀𝑀 as: 

                                                𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚  ×  2𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚                         (2-1) 

    

Similarly, we get the minimum positive representable number 𝑀𝑀𝑀𝑀𝑀𝑀 from the 

minimum normalized mantissa 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚  and the minimum exponent 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 : 

                     

                                                 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚  ×  2𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚                            (2-2) 

 

 Table (2-2) shows the maximum and minimum representable numbers 

which are encoded to approximate decimal values. 

II. Denormalized numbers  

 A floating-point number is considered to be denormalized if the biased 

exponent field contains all 0’s and the fraction field doesn’t contain all 0’s. The 

implicit or the hidden bit is always set to 0. Denormalized numbers fill in the gap 

between zero and the lowest normalized number. 
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Table  2-2 : The maximum and minimum representable numbers and there’s approximate 
decimal values. 

 Fraction 

F 

Mantissa 

M 

(with hidden one) 

Exponent 

E 

(not biased) 

Approximate 

Decimal 

Min All zeros 1 -1022 2-1022≈10-307.66 

Max All ones 1 +(1-2-52 1023 ) 21024≈10+308.25 

 

III. Infinity 

 In double-precision format, infinity is represented by biased exponent field 

of all 1’s and the whole fraction field of 0’s. 

IV. Not a Number (NaN) 

  In double-precision format, NaN is similar to infinity in biased exponent 

field but the fraction field doesn’t include all 0’s. 

V. Zero 

In double-precision format, zero is represented by biased exponent field of all 

0’s and the whole fraction field of 0’s. The sign bit represents -0 and +0, 

respectively. 

The mapping from an encoding of a double-precision floating-point number 

to the number’s value is summarized in Table (2-3). 

2.2.2 Rounding modes 
The result of an operation or function on floating point numbers may not be 

exactly a floating point number so it has to be rounded. The IEEE 754-2008 

standard specifies five rounding modes.   
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Table  2-3 : Summary of corresponding values for double precision format. 

 

I. Round toward −∞ (Rn):  

Rn(x): is the largest floating-point number (possibly −∞) less than or equal 

to x. 

II. Round toward +∞ (Rp): 

Rp(x): is the smallest floating-point number (possibly +∞) greater than or 

equal to x. 

III. Round toward zero (RZ):  

        RZ(x): is the closest floating-point number to x that is no greater in 

magnitude than x. 

IV.  Round to nearest even (RN): 

         RN(x): is the floating-point number that is the closest to x. A tie-case 

happens when x falls exactly halfway between two consecutive floating-point 

numbers. It is rounded to the nearest value with an even (zero) least significant bit. 

 

Fraction 

(F) 

Biased Exponent 

(E) 
Value 

± Zero All zeros All zeros ±0 

Denormalized 

number 
Non zero 

All zeros 

 
(-1)s × 0. F × 2-1022 

Normalized 

Numbers 

From all zeros 

to all ones 

Not all ones and  

not all zeros 
(-1)s × 1. F × 2(E-1023) 

± Infinity All zeros All ones ±∞ 

Not a number Non zeros All ones ± NaN 
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V. Round to nearest ties away from zero (RNZ): 

RNZ(x): is the floating-point number that is the closest to x. When a tie 

case happens it is rounded to the nearest value with larger magnitude.  

2.2.3 Exceptions 
An exception can be signaled along with the result of an operation in IEEE 

standard. When exception occurs a status flag is raised which can be checked after 

the end of the operation. It may be with or replaced by some trap mechanism. 

The standard defines five exceptions: 

I. Invalid operation  

This exception is signaled when an input is invalid for the function. The 

result is a quiet Not a Number qNaN.  

Examples: (+∞) − (+∞), 0/0. 

II.  Divide By Zero  

This exception is signaled when an exact infinite result is defined for a 

function on finite inputs.  

Examples: 1 0�   and  log B(0). 

III.   Overflow 

This exception is signaled when the rounded result with an unbounded 

exponent range would have an exponent larger than Emax . 

 

IV. Underflow 

 This exception is signaled when a tiny nonzero result is detected. This can be 

done before rounding or after rounding. If the result of an operation is exact, then 

the underflow flag is not raised. 

 

 



12 
 

V.   Inexact 

This exception is signaled when the exact result is not exactly representable. 

2.3 Standard floating point fused multiply-add Algorithm 
   A fused multiply add unit performs the multiplication B × C  followed 

immediately by an addition of product and a third operand A so that the calculation 

of   (A +  B ×  C) is done as a single and indivisible operation. It is also capable of 

performing multiplies only, by setting A = 0.0, and adds (or subtract) only by 

setting for example B = 1.0. 

The fused multiply add (FMA) operation was introduced in 1990 on the IBM 

RS/6000 [12], [13] for the single instruction execution of the equation              

(A +  B ×  C) with single and double precision floating-point operands. Because 

of its use in many applications as DSP, graphics processing, FFTs, FIR filters and 

division applications many algorithms are introduced after that for it.  

This operation reduces the number of interconnections between floating point 

units, the number of adders and normalizers, and provides additional accuracy 

compared to separate multiply and add units. That is because of performing a 

single, instead of two, round /normalizes steps. On the other hand it increases the 

precision and delay of the adder and requires more complex normalizers.  

 

2.3.1 Basic Algorithm  
 

Let A , B  and C  be the operands represented by ( Ma , Ea ),  (Mb , Eb)  and 

(Mc , Ec) respectively. The significand are signed and normalized, and the result W 

is given by: 

    W = A + (B × C)                        (2-3) 
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Where W is represented by  (Mw  , Ew ) , where Mw  is also signed and 

normalized. The high level description of this operation is composed of the 

following five steps: 
 

1. Multiply significand 𝑀𝑀𝑏𝑏 and  𝑀𝑀𝑐𝑐 , add exponents  𝐸𝐸𝑏𝑏 R  

2. Add the product and the aligned Ma . 

and  𝐸𝐸𝑐𝑐 , and 

determine the alignment shift and shift 𝑀𝑀𝑎𝑎 , produce the intermediate 

result exponent   𝐸𝐸𝑤𝑤 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝑎𝑎 ,  𝐸𝐸𝑏𝑏 + 𝐸𝐸𝑐𝑐). 

3. Normalize the adder output and update the result exponent. 

4. Round. 

5. Determine the exception flags and special values. 

2.3.2 Basic implementation 

 Using the above algorithm, the standard floating point fused multiply-add 

was designed. The organization of a FMA unit is shown in Figure (2-2). We can 

see that the addition of the multiplier product and the aligned addend is done 

firstly by carry save adder (CSA) then a carry propagate adder (CPA). The sticky 

bit calculation which is needed for rounding and the anticipation of the leading 

zeros which is needed for normalization are performed parallel with CPA. The 

standard architecture is the baseline algorithm for floating-point fused multiply-

add in any kind of hardware and software design. 

2.4 Conclusion 

The aim of this thesis is to implement double-precision binary floating point 

fused multiply add unit so in this chapter we give an overview of IEEE standard of 

floating point arithmetic with focusing in double-precision binary floating point 

format. We also briefly explain the standard algorithm of the fused multiply add 

operation and give the basic block of it.   
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Figure  2-2 Basic implementation of FMA operation
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Chapter 3 : Previous Work on the Floating-Point Fused 
Multiply Add Architecture 

3.1 Basic architecture IBM RS/6000       

As cited before in chapter 2, the first implementations of fused multiply add 

unit (FMA) was in 1990 by IBM RS/6000 [12], [13]. Several general-purpose 

processors like IBM PowerPC, the HP PA-8000, and the HP/Intel Itanium 

implemented FMA unit after that [8], [24] Their implementations were modified 

versions from the original implementation of IBM RS/6000. Figure (3-1) shows 

the original fused multiply-add architecture. 

3.2 A fused multiply add unit with reduced latency 

The greatest deviation from the original IBM RS/6000 architecture comes 

from a paper by T. Lang and J.D. Bruguera on a reduced latency fused multiply 

add unit [10]. This paper introduces a new approach to improve the performance 

of the fused multiply add unit. The idea depends on the combination of the 

addition and rounding stages into one stage. Although this idea is used before in 

floating-point adder and floating-point multiplier architectures as in [17], [33] it is 

more difficult to apply in fused multiply add unit. That is because of the 

postponement of normalization after add/round module is not possible in FMA 

operation because the rounding position is not known until the normalization has 

been performed; on the contrary, in case of addition it is possible because no 

rounding is required when massive normalization occurs.  Lang and Bruguera 

describe that in order to combine the addition and rounding stages in a fused 

multiply add unit, the normalization must be done first.  
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Figure  3-1: original fused multiply-add architecture. 
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The reduced latency fused multiply-add architecture is shown in Figure (3-2). 

In this design, the aligned addend is combined with the multiplier product in the 

same way as in the IBM RS/6000. The anticipation of leading zeros is done first in 

LZA block parallel to the reduction of vectors by using carry save adder (CSA) 

and a detection of output sign in sign detection module. Because the normalization 

shifter has to begin its job after LZA block and the LZA block is on the critical 

path authors propose to overlap the operation of LZA with the operation of the 

normalization shifter. It is done by designing a new LZA encoder which produces 

control signals which control the normalization shifter once they are calculated. 

However, despite the overlap, a time gap still exists between LZA block and the 

normalization shifter. To overcome this gap a part of dual adder (next stage) is 

anticipated before the normalization. 

When the data exits the normalization stage, it enters the add/round module. 

The data is split into two groups, a 51-bit in dual adder and a 108-bit in 

carry/sticky block. The carry/sticky block creates and passes the rounding 

information bits to rounding control, which then selects the correct augmented 

adder output. The data are post-normalized, and the fused multiply-add is 

complete. 

The paper claims an estimated 15-20% reduction in latency as compared to a 

standard fused multiply-add [10]. This result is calculated theoretically, and the 

actual architecture has yet to be implemented in either a synthesized or a custom 

CMOS silicon design [19]. 

3.3 Basic floating point Fused Multiply-Add components 

This part introduces design details of blocks used in basic architecture.  
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Figure  3-2: Lang/Bruguera combined addition/rounding stage fused multiply-add 
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3.3.1 The multiplier  

Multiplication is the process of generation and addition of the partial 

products. Multiplication algorithms differ in how the generate partial products and 

how the partial products are added together to produce the final result.   

3.3.1.1 Partial Product Generation 

Floating point fused multiply add unit includes a multiplier which uses a 

modified Booth’s algorithm to generate partial products. In Booth’s algorithm the 

multiplier operand C is often recoded into a radix higher than 2 in orders to reduce 

the number of partial products. The most common recoding is radix-4 recoding 

(modified booth’s recoding) with the digit set {−2, −1, 0, 1, 2} is shown in table 

(3-1).  For a series of consecutive 1’s, the recoding algorithm converts them into 

0’s surrounded by a 1 and a    (−1), which has the potential of reducing switching 

activity. 

 

Each three consecutive  bits of  the multiplier C represent the  input  to booth 

recoding block and the output from this block selects the right operation on the 

multiplicand B which may be  “shift and invert” or “invert”  or  “equal  zero”  or  

“no operation” or  “shift ”   ( -2B, -B, 0, B, 2B) respectively due to the bits of 

multiplier.  Also there is an output bit 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to indicate the sign and complete the 

2’s complement if the partial product is negative.  Figure (3-3) shows the 

generation of one partial product. For double precision format the multiplier has 

53 bits. By using modified booth recoding the number of partial products are 

reduced to 27 partial products. Figure (3-4) shows the generation of all 27 partial 

products. 
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Table  3-1: Modified Booth’s recoding 

 

 

Figure  3-3: One partial product generation 
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Figure  3-4: All partial products generation 

 

3.3.1.2  Partial product reduction 
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Figure  3-5: The block diagram of CSA reduction tree. 
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When d < 0, the addend A would have to be aligned with a right shift of d 

bits. In this case, the maximum alignment shift would be 105 bits for double 

precision format see Figure (3-6) (b).   

 

 

 

(a) 

 

 

(b) 

Figure  3-6: Position of addend using bidirectional shift (a) Maximum left shift. (b) 
Maximum right shift. 

 

For shift amounts larger than 105, d < −105, the operand A is placed to the 

right of the least-significant bit of  B × C, affecting only the calculation of the 

sticky bit. 

To avoid bidirectional shifter the alignment is implemented as a right shift by 

placing the addend A to the left of the most significant bit of the product B × C by 

56 bits. This is shown in Figure (3-7) (a). Two extra bits are placed between the 

addend A and the product B × C to allow correct rounding when A is not shifted. 

For d ≥  0 with this implementation, A is right shifted (56 − d)bits; then, the 

shift amount is shift amount = max{0,56 − d}, see Figure 3-7 (b).  
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For  d <  0 , A is right shifted 56 − d  bits, see Figure (3-7) (c), then  

shift amount = min⁡{161,56 − d}.By combining both cases, the shift amount is 

in the range [0:161], requiring  a 161-bit right shifter. Moreover, the shift amount 

is computed as shift amount = 56 − d 

 

 

(a) 

 

 

(b) 

 

 (c) 
 

Figure  3-7: Alignment of A. (a) before alignment. (b) Alignment with d ≥ 0. (c) Alignment 
with d < 0. 
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3.3.3 3:2 CSA  

The multiplier produce 106-bit sum and carry vectors that are reduced 

together with the aligned A using 3:2 CSA. Although the output of the multiplier 

must be positive number because we multiply two positive numbers (sign and 

magnitude representation), one of the two output vectors of the multiplier (sum 

and carry) may be negative because of using booth algorithm which use negative 

sets {-1,-2} which convert a positive number with sign and magnitude 

representation to a negative number with two’s complement representation.  The 

addition of sum and carry vectors must be a positive number but one of them, not 

both, may be negative.  

Instead of using 161-bit CSA, Only the 106 least-significant bits of the 

aligned A are needed as input to the 3:2 CSA, because the product (i.e. sum and 

carry vectors) has only 106 bits and The 55 most-significant bits will be sign 

extension bits which have two cases {0, 0} if both sum and carry vectors are 

positive or {0, 1} if one of them is negative. For the 55 most significant bits, we 

use two multiplexers, one to select between A and inverted A as a sum vector and 

the second one to select between zeros and A as a carry vector by Xor-ing   sign 

extension bits then the outputs of the two multiplexers are concatenated at the 

output of the CSA to obtain the 161-bit sum and carry words, see Figure (3-8).   

3.3.4 Carry propagate adder (CPA) and leading zero anticipator (LZA) 

The output vectors of 3:2 CSA are now input to a 161-bit carry propagate 

adder (CPA) and a leading zero anticipator (LZA) in the same stage.  

 

We use the prefix adder to implement the carry propagate adder in this thesis 

because it is very efficient in binary addition due to its regular structure and fast 

performance. 
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Figure  3-8: Selection of MSB of sum and carry words of CSA by sign bits. 
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leading zero detector (LZD), counts the number of zero digits from the left-most 

position until the first nonzero digit is reached (i.e. leading one position). since the 

detection is done from most significant bit to least significant bit (from left to 

right) regardless of the carry that may come from the least significant bit, the 

detection of leading one position may  be off by one bit.  

The LZA logic takes two input strings and uses a set of logical equations  

given in [23], cited in Equation (3-1), to predict the bit position of the leading ‘1’ 

after a subtraction that causes massive cancellation. If the bits are numbered such 

that bit 0 is the most significant, then, the indicator 𝑓𝑓𝑖𝑖  is equal to one when: 

 

             fi = ti−1. (gi. zi+1 + zi. g� i+1) ⊕ t ̅i+1(zi. z�i+1 + gi. g� i+1), i > 0    (3-1)                                

                                             

f0 = t ̅0. t1 

Where 
𝑡𝑡𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖  

                                                                          𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖  .  𝑏𝑏𝑖𝑖                                                                    (3-2) 

𝑧𝑧𝑖𝑖 = 𝑎𝑎�𝑖𝑖   .  𝑏𝑏�𝑖𝑖  

After LZA logic LZD is used to drive the normalization shifter by encoding 

the position of leading one to its weighted binary representation. The LZD unit 

assumes n bits as input and produces log2 n bits of the leading one position. The 

LZD proposed by Oklobdzija [15] is used to implement the LZD for the floating 

points fused multiply add of IBM RS/6000 in this thesis. Table (3-2) shows the 

truth table of 2-bits LZD. By using two 2-bit LZD’s we can get 4-bit LZD as 

shown in Figure (3-9) (a), the logic structure of 4-bit LZD is shown in Figure (3-9) 

(b). Following the same concept we can get LZD with higher number of output 

using hierarchical structure, as an example a 16-bit LZD is shown in Figure         

(3-10). It can be included that the numbers of levels needed are  log2 n level. 
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Number of levels can be reduced by one by implementing 4-bits LZD directly 

from original bits. Figure (3-11) shows direct implementation of 4-bit LZD using 

original bits using truth table shown in Table (3-3).   

Table  3-2: Truth table of 2-bit LZD 
 
                                            

 

 
 
 
 

 

(a) 

 

(b) 

Figure  3-9: 4-bit LZD (a) using two 2-bits LZD’s.  (b) the logic structure of 4-bit LZD block.   
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Figure  3-10: Structure of 16-bit LZD 
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Figure  3-11 :  One level implementation of 4 bit LZD 

 

As cited before, the prediction of the position of the leading digit may differ 
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an additional left shift by one position is needed. The exponent should be also 
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anticipated leading digit; vector contains zeros except the digit indicates the 

position of the leading one, and adder output [3], [21].  The comparison is done by 

a bitwise AND of the one-hot vector with the adder output. 

 If all the bits of the derived word are equal to zero then the predicted 

position of the leading digit is not correct.  
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A transformation is needed to obtain the one hot vector from LZA logic 

output. To derive this one-hot representation, an intermediate S string is produced 

at first. The S vector is produced where its bits that follow the leading digit are set 

to one, while the other more-significant bits remain to zero. For example, for the 

vector 00110101 the S vector is equal to 00111111. Assume the vector output 

from LZA logic is defined as A = An−1An−2 … . . A0 where An−1  is the most 

significant bit, the ith  bit of S denoted as si , is defined as follow:           

                  Si = An−1 + An−2 + ⋯+ Ai+1 + Ai                                  (3-3) 

                    

Where                

0 ≤ i ≤ n − 1 

The one-hot representation of the leading digit (L word) is produced from S 

by detecting the case of different consecutive bits. Hence 

 

                                  Li = S�i+1. Si           For       0 ≤ i ≤ n − 2                       (3-4) 

                  

                     And   

Ln−1 = Sn−1 

The circuit that computes the L word is called a priority encoder. This 

transformation is done in parallel with the operation of the LZD then there is no 

increase in delay, in addition the LZA is not in the critical path as Shown in Figure 

(3-12). 
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Figure  3-12: block diagram of LZA module. 
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Figure  3-13: n-bits normalization shifter 
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The rounding block  rounds the result to nearest floating point number due 
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3.4 Conclusion 

We discuss in this chapter previous works in fused multiply add architectures and 

concern two main architectures which are the basic architecture IBM RS/6000 and 

the fused multiply add with reduced latency proposed by Bruguera/Lang .  

That is because the proposed architecture has a lot of details like the fused 

multiply add proposed by Bruguera/Lang and then is compared with basic 

architecture. We maintain also design details of blocks used in basic fused 

multiply add architecture like multiplier, alignment shifter, LZA, normalizer and 

rounder.   
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Chapter 4 : Implementation of Fused Multiply Add Unit 
4.1 Proposed Fused Multiply Add 

The proposed fused multiply add is actually the first implementation of the 

Lang/ Bruguera fused multiply add algorithm. The implementation is done with 

slight change in Lang/ Bruguera architecture.          

In Lang/Bruguera design the LZA and the sign detection modules have three 

inputs coming from the output of the multiplier and the aligned addend, but in the 

proposed design the inputs to these modules come from the output from 3:2 CSA 

after combining the multiplier outputs and the aligned addend. 

The sign detection module is used to detect negative sign of output. If the sign 

is negative the output of the 3:2 CSA is complemented. Comparison is needed 

between the output of the multiplier B × C  (i.e. two output vectors from CSA 

reduction tree) and the aligned A. To compare between these three vectors there 

are two solutions, adding the two vectors output from the multiplier first by a carry 

propagate adder then comparing its output with aligned A or reducing these three 

vectors using 3:2 CSA then comparing the output of this CSA. The second 

solution is preferred to eliminate using of carry propagate adder in order to 

decrease its delay because the output of this block, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 signal, is used after that 

to select inputs to normalization shifter which are needed to be available as soon 

as possible before shift amount of normalization shifter is calculated.     

  Lang/Bruguera fused multiply-add architecture provides three inputs to the 

LZA block. The three inputs may be combined with a 3:2 CSA before entering the 

LZA logic unit. The Xiao-Lu paper [30] presents new equations that allow this 

three input string to predict the leading ‘1’. 
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 A three input LZA removes the requirement for a 3:2 CSA and therefore 

decreases the number of logic stages. In our case it is suitable to use 3:2 CSA    as 

used in sign detection module, as shown in Figure (4-1), because both blocks are 

in critical path and affect the overall delay.  

 
 

 

Figure  4-1: Three inputs LZA and sign detection module.  

 

Instead of using three 3:2 CSA, we use only one in the proposed fused multiply 

add and then take its output to two inputs sign detection and LZA blocks. This 
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critical path. The proposed architecture is shown in Figure (4-2). 
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from the basic architecture to be suitable in this implementation like LZA 

block and the anticipated part of the adder.  

 
Figure  4-2: The proposed Fused Multiply Add. 
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4.2.1 Leading zero anticipator (LZA) and Normalization shifter 

As cited before in chapter 3 the LZA block is used to determine the 

normalization amount. It is composed of two main modules the detection and the 

correction modules. The detection module has two main parts, the LZA logic 

which determines the position of the leading one by getting a string of bits having 

the same number of leading zeros as the sum and LZD which encodes the number 

of leading zeros in a binary representation. 

In the reduced latency Fused Multiply Add the LZA block is in the critical 

path. So to reduce its delay there is a solution proposed by Lang/Bruguera paper 

[10] by overlapping part of the LZA with the normalization shifter  in such a way 

that the shift amount is obtained starting from the most-significant- bit and, once 

the first bit (MSB) is obtained, the normalization shift can start. It is contrary to 

what happen in conventional LZA where the normalization shifter has to begin its 

job after getting output from LZD. 

Lang/Bruguera made this modification by replacing the LZD by a set of 

gates and Multiplexers. The basic idea of the encoding is to check the existence of 

the leading one in different groups of bits in LZA logic output where the number 

and the position of the checked bits depend on the weight of the output bit [1].  

Figure (4-3) (a) shows which groups are explored to get each bit for a 16-

bit normalization shift, for example, to get the most significant bit s1 the 8 most-

significant bits of LZA logic output are checked and if all of them are zeros (s1=1) 

a normalization shift is needed by 8 bits. To get s2 two different groups of four 

bits are checked and then selected by s1 and so on. Figure (4-3) (b) shows the 

implementation of this algorithm. NOR gates are used to determine if there is 

some 1 in different groups of the string. Each bit si+1 is obtained after a delay of 

2:1 Multiplexer from the previous bit 𝑠𝑠𝑠𝑠.   
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A Multiplexer with more than two inputs can be implemented using a tree 

of 2:1 Multiplexer’s. 

It is clear that the most significant bits are computed first so the 

normalization operation can be started with the most significant bit after a delay of 

computing s1 only.  

 

(a) 

 

 
(b) 

Figure  4-3: Encoding of the 16-bit normalization shift amount. (a) Bits checked to 
determine the shift amount. (b) Encoding of the shift amount. 
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Lang/Bruguera proposed another approach to overlap the operation of LZA 

and the operation of normalization shifter. They split the 162-bit normalization 

shifter into two stages a 54-bit normalization shifter followed by a 108-bit 

normalization shifter [10]. It is possible because the shift amount is greater than 56 

if d is negative (d<0) which makes the 56-most significant bits are zero and a 

normalization shift of 54-bit,at least, can be performed in this case. LZA controls 

only the 108-bit normalization shift. 

The second module of the LZA is the correction module which is 

responsible for the detection and correction of the error which may occur in the 

determination of the position of the leading one.  Many approaches are proposed 

to correct this error without adding a large delay to the critical path. 

The simplest method used is to check the most significant bit of the output 

of the normalization shifter, as shown in Figure (4-4) (a), and if it equals zero an 

error exists and it is corrected by adding a compensation shifter after the 

normalization stage [29]. The second method is proposed in [6], [16] and shown in 

Figure (4-4) (b). It uses the carries from the adder and checks the output of the 

LZD by a carry select circuit, then uses its output to feed the shift correction 

circuit. The third one is used before in chapter 3 and shown in Figure (4-4) (c). It 

uses a LZA that generates a one-hot vector having the same number of bits as the 

sum. It corrects the error by comparing the one hot vector with the sum from the 

adder in parallel with the shifter.  A method proposed by Hinds and Lutz [5] uses a 

correction circuit which decides if the location of the leading one in the sum which 

may be in either an odd or even bit position agrees with the oddness of the 

predicted shift count from LZD. This is shown in figure (4-4) (d). Bruguera and 

Lang [9] have developed a scheme, shown in figure (4-4) (e), to detect the error in 

parallel with the LZA logic and generate a correction signal which may be used in 

parallel with the coarse shifter to generate a fine correction shift signal.  
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Figure  4-4: Correction of error of LZA based on (a) compensation shifter correction. (b) 
Carry select correction. (c) One hot vector. (d) Oddness detection. (e) Parallel correction. 

adder
LZA logic

LZD

Normalization 
shifter

Compensation
shifter

Adder

   

carries

sum

LZA logic

LZD

Normalization 
shifter

Carry select

adder

LZA logic

One hot 
vector

Normalization 
shifter

encoding

correction

correction

adder

LZA logic

LZD

Normalization 
shifter

Oddness
detect. 

correction

adder

Encoding 
tree

Detection 
tree

Pr-encoding
logic

Normalization 
shifter

Correction 
module

correction

(a)
(b)

(c) (d) (e)



42 
 

All these methods except the last one use information from the adder and 

provide that the normalization step is performed after the addition but our 

architecture is based on the combination of the addition and rounding (using a dual 

adder) and the anticipation of the normalization before the addition. So we can’t 

use these schemes in our design. 

The last design proposed by Bruguera/Lang [9] is only applicable and needed 

when the effective operation is a subtraction and operates on positive significand. 

The two significand are in sign-and-magnitude representation. It is not applicable 

here where the inputs to the LZA are from the 3:2 CSA outputs which are in two’s 

complement representation and may be positive or negative.  So in this 

architecture, we postpone the correction of the error to add / round module.  

4.2.2 Sign detection module 

 The function of the sign detection module is to detect the sign of the adder 

output and complement the outputs of the CSA when the result is negative. The 

two’s complement of the CSA output is performed by inverting the sum and carry 

words and adding two in the least-significant position.  

The result can be negative only for effective subtraction. Moreover, since, in 

effective subtraction, we always complement the significand of A, the result can 

be negative only for d ≥ 0 (i.e.  Ea >  (𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸)).  When d ≥  2, the result is 

always negative, While for d=0 or d=1 with overflow in multiplication (i.e. case of 

equal exponents) the result may be positive or negative.  A magnitude (unsigned) 

comparison between the two vectors output from CSA has to be performed.  In 

this case the shift amount is equal 56 or 55 so at least the 55 most significant bits 

of aligned A are sign extension. Also the sign bit in the multiplier output appears 

in bit 108, so we need only 109-bit magnitude comparator to include at least one 

sign bit in the two vectors.  It is shown in Figure (4-5).  
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Figure  4-5: Inputs to sign detection module to include sign extension bit. 
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Table  4-1: Sign bits of the output of CSA. 

Sign bit of 

aligned A 

Sign bit of multiplier 

output 

Sign bit of CSA output 

S C Sum Carry 

1 0 0 1 0 

1 1 0 0 1 

1 0 1 0 1 

  

A binary tree comparator proposed in [7] is used here. The design is based 

on a technique previously used for operand normalization [1]. In the first stage of 

our magnitude comparator, 2-bit pairs from the first operand, X, are compared in 

parallel with the corresponding 2-bit pairs from the second operand, Y , to  

determine if  the two bits from 𝑋𝑋 are equal , greater than, or less than the two bits 

from Y. If the bits pairs in X and Y are denoted as X[2i +  1, 2i] and Y[2i + 1, 2i], 

then the greater than GT[i] and less than, LT[i] signals are computed as: 

 

𝐺𝐺𝐺𝐺[𝑖𝑖] = (𝑋𝑋[2𝑖𝑖 + 1].𝑌𝑌�[2𝑖𝑖 + 1]) + (𝑋𝑋[2𝑖𝑖 + 1].𝑋𝑋[2𝑖𝑖].𝑌𝑌�[2𝑖𝑖])

+ (𝑋𝑋[2𝑖𝑖].𝑌𝑌�[2𝑖𝑖 + 1].𝑌𝑌�[2𝑖𝑖]) 

 

𝐿𝐿𝐿𝐿[𝑖𝑖] = (𝑋𝑋�[2𝑖𝑖 + 1].𝑌𝑌[2𝑖𝑖 + 1]) + (𝑋𝑋�[2𝑖𝑖 + 1].𝑋𝑋�[2𝑖𝑖].𝑌𝑌[2𝑖𝑖])

+ (𝑋𝑋�[2𝑖𝑖].𝑌𝑌[2𝑖𝑖 + 1].𝑌𝑌[2𝑖𝑖]) 

     (4-1) 
 

For (0 ≤  i ≤  n/2 −  1),  where n is the operand size and n = 109 for the 

proposed implementation. The relationships between X[2i +  1, 2i]  and Y[2i +

 1, 2i] for the different values of GT[i] and LT[i] are shown in Table (4-2). 
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Table  4-2:  2-Bit Magnitude Comparison. 

GT[i] LT[i] Description 

0 0 X[2i+1: 2i] = Y[2i+1: 2i] 

0 1 X[2i+1: 2i] < Y[2i+1: 2i] 

1 0 X[2i+1: 2i] > Y[2i+1: 2i] 

1 1 Invalid 

In subsequent comparator stages, a similar process is used, but  X[i] signal 

is replaced by GT[i]j  signals and Y[i] signal is replaced by  LT[i]j  signals, where 

the subscript ”j” indicates comparator stage j. Furthermore, since  GT[i]j  and 

 LT[i]j  cannot both be one simultaneously, the greater than and less than equations 

can be simplified to: 

                    GT[i]j+1 = GT[2i + 1]j + GT[2i]j . LT���[2i + 1]j        (4-2) 

                     LT[i]j+1 = LT[2i + 1]j + GT����[2i + 1]j. LT[2i]j                

For  1 ≤ j ≤ (log2 n − 1)  and 0 ≤ i ≤ (n 2i+1⁄ − 1) after a total of  log2(n) 

comparator stages, in our implementation n = 109 so 7 stages are needed.  A block 

diagram of 109-bit tree comparator is shown in Figure (4-6). 

The output of the sign detection module is the complement signal, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and it 

equals one if d is positive (the most significant bit is one), but in case of equal 

exponents it takes the sign of the input which has greater magnitude. When the 

comparator output is greater than (GT = 1 and LT = 0) the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 signal takes the 

sign of the sum vector S and if it is less than the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 signal takes sign of the 

carry vector C. 
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Figure  4-6:  A 109-bit tree comparator. 

 

The complement signal, comp can be deduced in the following equation. 

 

         comp = �(GT. Smsb + LT. Cmsb ). E + dmsb . E��. sub                      (4-3) 

 

The E signal indicates the case of equal exponents. And sub signal indicates 

effective subtraction.  
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  The comparison using one’s complement (magnitude-1) makes error in two 

values. It can be shown using this example, assume a negative number (-5) by 

comparing it with any positive numbers two general cases appear, see Figure       

(4-7). 

 

Figure  4-7: Comparison (magnitude) and (magnitude-1) of -5 with any positive number. 

 

1- For positive numbers which are less and  greater  than both magnitude 

(5) and  magnitude minus one (4) , (1,2,3) and (6,7,8,..) respectively ,  

the result be the same whether  we use magnitude or magnitude minus 

one in comparison  and no error occurs. 

2-   There is an error when comparing -5 with its magnitude and magnitude 

minus one, 5 and 4 respectively. 

This error can be overcome by the following discussion.  When comparing the 

negative number -5 with +4 using the conventional comparison which use 
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We can overcome this error by making comp=1 if the output of the comparator is 

equal signal. 

 When comparing the negative number -5 with its magnitude (+5) the 

conventional output of the comparator has to be equal and comp=0 by using eq. 

(4-3). In our case as we compare +4 with +5 the comp signal takes the sign of 

greater magnitude number (+5) so comp=0 as in conventional comparison so no 

modification is needed.  

 A complete block of sign detection module is shown in Figure (4-8). The 

eq. (4-3) can be modified to include equal signal to correct the error.   

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �(𝐺𝐺𝐺𝐺. 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐿𝐿𝐿𝐿.𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐺𝐺𝐺𝐺����. 𝐿𝐿𝐿𝐿����).𝐸𝐸 + 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 .𝐸𝐸��. 𝑠𝑠𝑠𝑠𝑠𝑠         (4-4) 

4.2.3 Add/Round module 

  The add/round module implements only the four round modes defined in 

the standard (IEEE 754-1985), round to nearest/ even (RN), round to + ∞ (Rp) , 

round to -∞ (Rn) and round to zero (RZ).  The round to nearest/even mode is 

obtained by rounding to nearest/up first then the least -significant bit (LSB) is 

corrected [22]. Round to nearest/up produces the same result as round to 

nearest/even except when a tie occurs; then, the sticky bit identifies the tie case 

and the correct rounded to nearest/even result is obtained by forcing the LSB to 0. 

The add/round module for the proposed FMA differs from the 

corresponding modules for floating-point addition [14], [27]. The difference is that 

now there can be a carry propagating from the 108 least significant bits to the 53 

more-significant bits. This carry has to be added with the rounding bits to obtain 

the 53-bit rounded result. On the other hand, in floating point addition, as both 

operands are 53-bit wide and one of them is aligned, there is no carry from the 
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least-significant part, which corresponds to the positions that are right shifted out 

in the alignment.  

 

Figure  4-8:  A complete block of sign detection module. 
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The fused multiply add operation is similar to floating-point multiplication 

in rounding algorithm where the rounded output is computed from a carry-save 

representation.  From the three schemes that were proposed in [22], [26], [32],[33] 

for the add/round module in multiplication, we choose the one called The YZ 

rounding algorithm described in [26],[33] and edit it to be used in proposed FMA. 

The add/round module accepts two numbers in carry save form.  When these 

numbers are added there are two cases appearing, see Figure (4-9). 

1- An error occurs in LZA, it means there is no overflow (𝑜𝑜𝑜𝑜𝑜𝑜 = 0). The 

mantissa from bit 1 to bit 53 and the round bit is bit 54. 

2- No error occurs, it means there is an overflow ( 𝑜𝑜𝑜𝑜𝑜𝑜 = 1 ). The 

mantissa is taken from bit 0 to bit 52 and bit 53 will be the round bit. 

Also a right shift is needed and the exponent of the result is increased 

by one.   

 

Figure  4-9: cases appear due to one bit error in lZA. 
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the rounding bits created from round decision block. The position of the rounding 

bit depends on the value of the overflow bit so the processing of this part is split 

into two paths; one working under the assumption that the  result  will not 

overflow (i.e. less than 2), and the other path working under the assumption that 

the result will overflow.  Positions [0: 50]  are fed into the dual adder, which 

outputs the sum Y0 which assumes no carry is propagated from least significant 

bits [51: 54] and the incremented sum Y1 which assumes a carry is propagated. 

The correct rounded result is chosen by Multiplexers and control signals computed 

in select decision block. The block diagram of the add/round module is shown in 

Figure (4-10). 

4.2.3.1 Select decision and bits selection 

The select decision box has three outputs O, ovf and inc signals. O Signal 

decides if the case before rounding is an overflow or no overflow and selects 

between 𝑍𝑍𝑍𝑍 and 𝑍𝑍𝑍𝑍 to produce 𝑍𝑍 vector. If the case before rounding is an overflow 

it will be the same after rounding in both 𝑌𝑌0 and 𝑌𝑌1 except when all bits of 𝑌𝑌1 are 

1’s which causes a carry propagation till the most significant bit of 𝑌𝑌1[0] (bit of 

overflow) and set 𝑌𝑌1[−1] to be one, see Figure(4-11) (a), similarly in the case of 

no overflow it will remain the same after rounding in both 𝑌𝑌0 and 𝑌𝑌1 except in 

case of all ones in 𝑌𝑌1 where the overflow bit 𝑌𝑌1[0] will be one, it is shown in 

Figure (4-11)(b). 

The O signal can be computed from the following equation 

O = Y0[0] + Y1[0] + Y1[−1] + �Y1[0]. Y1����[1]. Y1����[2] … Y1����[50]�������������������������������������      (4-10)                                                                                                                    
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Figure  4-10: Block diagram of the add/round module. 
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The  inc   signal selects between outputs from dual adder, the sum 

Y0 [0: 50] and the incremented sum Y1 [0: 50] to produce Y vector.  

It can be determined by the most significant bit of the Z vector. The inc 

signal is computed by eq. (4-11). 

                                                 inc = Z[50]                                            (4-11) 

The ovf  signal determines the correct rounded result, Figure (4-12), and 

updates the exponent. It decides if the 50 most significant bits are Y [0: 49] or 

Y [1: 50] and consequently decides the 3 least significant bits.  It can be done by 

checking the most significant bit of Y. ovf signal is computed as follows: 

                                                          ovf = Y[0]                                             (4-12) 

4.2.3.2 Sticky bit calculation and round decision 

The sticky bit which is needed to perform the correct rounding is composed 

of two components:  st1 , obtained by ORing the bits shifted out during the 

alignment of A, and st2, obtained from the add/round module. The final sticky bit 

is obtained by OR-ing both of them st = st1 + st2. To obtain the partial sticky 

bit st2, typically, the lower 107 bits of the sum and carry vectors are summed and 

OR'ed together. However, as proposed in [33] the sticky bit can be computed 

directly from carry save form without the need for an adder to generate the sum. 

We define:     

                                              Pi = Si ⊕ Ci                                             (4-5) 

hi = Si + Ci 

    ti = Pi ⊕ hi+1 
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(a) 

 

  (b) 

Figure  4-11: The rounded result in case of (a) overflow, (b) No overflow.   
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Figure  4-12: Selection of rounded result using 𝒊𝒊𝒊𝒊𝒊𝒊 and 𝒐𝒐𝒐𝒐𝒐𝒐 signals. 

Where Si  and Ci  are the sum and carry output from CSA.55 ≤ i ≤ 161, The sticky 
bit is computed directly by the eq. (4-6). 

 

                                         st2 = t55 + t56 + t57 + ⋯+ t161                              (4-6) 
 
 

For the overflow path bit 54 should be included in sticky calculation, eq. 

(4-7) shows how to compute sticky bit in case of overflow 

 

                                                    t54 = P54 ⊕ h55                                           (4-7) 

st2ovf = t54 + st2 

The final sticky bits for both the overflow and no overflow cases are input 

now to the round decision block with the rounding mode to determine the number 

to be added to the right position of the round bit. We have four rounding modes so 

need two bits (r [0] r [1]) to identify them; it is shown in Table (4-3). For rounding 

to zero, RZ, the mantissa is truncated and no bits are added. In case of rounding to 
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nearest even, RN, a 1 is always added to the round bit then a correction is made in 

case of a tie case. For rounding toward +∞, Rp, in case of positive result if all the 

bits to the right of the LSB of the desired result are 0 then the result is correct. If 

any of these bits are a 1, (i.e. R=l or sticky=l) then a 1 should be added to the LSB 

of the result. If the result is negative it should be truncated. For rounding toward -

∞, Rn, the exact opposite holds. 

Table  4-3: Rounding modes. 

Rounding bits 

r[0]     r[1] 

Rounding 

mode 

0          0 RZ 

0          1 Rp 

1           0 Rn 

1           1 RN 

 

Rounding toward +∞ (Rp) can be considered two separate modes ,rounding 

to infinity (RI) in case of  positive numbers  and round to zero (RZ) if the number 

is negative. This can applied in rounding toward -∞ also. There are three general 

rounding modes are considered in this thesis, rounding to nearest even (RN), 

rounding to zero (RZ) and rounding to infinity (RI). They can be generated from 

rounding bits (r [0] r [1]) as shown in eq. (4-8). 

𝑅𝑅𝑅𝑅 = 𝑟𝑟[0]. 𝑟𝑟[1] 

𝑅𝑅𝑅𝑅 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠������. 𝑟̅𝑟[0]. 𝑟𝑟[1]) + (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑟𝑟[0]. 𝑟̅𝑟[1])                         (4-8) 

𝑅𝑅𝑅𝑅 = (𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅�����������) 

The round decision block generates two bits Rd and Rd1 to determine 

numbers to be added to the round bit. Rd equals one if the mode is RN or RI and 
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Rd1 equals one in case of RI mode and sticky bit is set. The logic equation of Rd 

and Rd1 is shown in eq.  (4-9). 

Rd = RN + RI 

                                            Rd1 = RI. St                                        (4-9) 

The two bits are added first in HA then the results are added to bits [53:54] 

of the sum and carry vectors in case of no overflow path and to bits [52:53] in case 

of overflow path using CSA. It is shown in Figure (4-13). 

If the mode is RN one is added to the round bit (𝑅𝑅𝑅𝑅 = 1,𝑅𝑅𝑅𝑅1 = 0) and 

when the mode is 𝑅𝑅𝑅𝑅 with sticky bit is not set and round bit is set (𝑅𝑅𝑅𝑅 = 1,𝑅𝑅𝑅𝑅1 =

0) a one is added to the round bit and a carry is propagated to the LSB. If sticky bit 

is set then Rd1=1 and a carry is generated and propagated to the LSB. In case of 

RZ, 𝑅𝑅𝑅𝑅 = 0 and 𝑅𝑅𝑅𝑅1 = 0. 

4.2.3.3  LSB correction 

A LSB correction is needed in case of round to nearest /even.  It was stated 

earlier that round to nearest /even is done by rounding to nearest/up which 

produces exactly the same result as round to nearest/even except when a tie 

occurs. A tie can only occur when the result is exactly halfway between two 

numbers of representable precision.  

The bit to be added to the round bit (𝑅𝑅) for correct round to nearest/even is 

based upon the least significant (𝐿𝐿), round (𝑅𝑅), and sticky (𝑆𝑆) bits as shown in 

Table (4-4). In contrast, round to nearest up assumes that the bit to be added to the 

𝑅𝑅 bit for correct rounding is always one. The only case where round to nearest/up 

mode produces a different result from round to nearest/even mode is shown in 

Table (4-4) (bold raw). In this case round to nearest up changes only the 𝐿𝐿 bit from 

a 0 to a 1 where no carry propagates after that. While round to nearest even leaves 
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the 𝐿𝐿 bit unchanged (𝐿𝐿 = 0). This means that the correct round to nearest even 

result can be obtained from the round to nearest up result by restoring the 𝐿𝐿 bit to a 

0. 

 

Figure  4-13: Block diagram of round decision 

Table  4-4: Round to Nearest/even versus Round to Nearest/up. 

Before rounding 

L           R            S Nearest/even     nearest/up 

Bit added to R 

Nearest/even       nearest /up 

L after rounding  

𝑋𝑋           0            0 0                         1           𝑋𝑋                         𝑋𝑋             

𝑋𝑋           0            1 0                         1           𝑋𝑋                    𝑋𝑋             

0          1            0           0                         1           0                         1 

1            1            0 1                         1 0                         0 

𝑋𝑋            1            1 1                         1 𝑋𝑋�                       𝑋𝑋� 
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In a LSB correction block sticky bits and round bits are needed to be 

computed to know if there is a tie case. The sticky bits are already computed in 

sticky calculation part as cited before. The round bits are not available and can be 

computed only after carry propagate addition of positions [51: 54] of sum and 

carry vectors then take the positions 53 and 54 of the result as the round bits for 

overflow and no overflow paths respectively.   

Round bits can be computed from a carry save form without using carry 

propagate adder by using eq.’s (4-10) and (4-11). It is equivalent to compute the 

result of adding bits 54 and 53 of sum and carry vectors using propagate and 

generate signals as used in prefix adder. Once round bits are computed a tie case 

can be determined if R = 1 and S = 0 then the LSB is forced to zero using logic 

gates, see Figure (4-12). 

 

                                          𝑃𝑃54 = 𝑠𝑠𝑠𝑠𝑠𝑠[54] ⊕ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[54]                                (4-10) 

𝑃𝑃53 = 𝑠𝑠𝑠𝑠𝑠𝑠[53] ⊕ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[53] 

𝑔𝑔54 = 𝑠𝑠𝑠𝑠𝑠𝑠[54] . 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[54] 

 

                                                               𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃54 ⊕𝐶𝐶54                                                      (4-11) 

𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃53 ⊕ (𝑔𝑔54 + 𝑃𝑃54 .𝐶𝐶54) 

4.2.4 Anticipated part of the adder 

As referred before in Lang/Bruguera algorithm [10] there are some approaches 

used to decrease the delay of FMA. The first approach, cited before, is to overlap 

the operation of the LZA and the operation of normalization shifter. However, 

despite the overlap, the operation of the normalization shifter cannot begin at the 

same time as the LZA. The normalization shifter has to wait for computation of 

first digit of LZA (S1).  
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Figure  4-14: LSB correction block. 

The second approach is to anticipate part of dual adder in the time gap between 

LZA and the normalization shifter. The anticipated part of the dual adder may be 

the half adder (HA) and the generation of propagate and generate signals.  

As shown in part 4.2.3, a row of HA is used in higher part of data [0: 54] to 

limit the maximum value in bits 51 to 54 and assure that only one carry is 

produced to bit 50 during the rounding and the assimilation of the lower part. To 

anticipate HA before the normalization operation it is obligatory to include HA for 

the 162 bits because before the normalization the position of most significant bit 

of the result is unknown. 

The HA is duplicated, with and without inverted inputs, to make bit inversion 

of sum and carry words if the comp signal is one (negative result) to avoid 
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additional delay.  However, the sum word is the same both with inverted inputs 

and without inverted inputs as shown in table (4-6); then, it is only necessary to 

replicate the calculation of the carry word. 

The two 1s needed to complete the two’s complement of the inputs of the HA 

have to be added in the least-significant position of these inputs. The first 1 is 

incorporated as the least significant bit of the carry word and the second 1 is added 

in the add/round module. 

Some part of the dual adder can be anticipated also before the normalization; 

moreover, the anticipated part of the dual adder has to be replicated, considering 

as input the inverted and non-inverted HA outputs. 

Table  4-5: Truth table of H.A with inverted and non inverted inputs. 

 

Inputs to HA 

       A             B  

 

Outputs of HA 

   S          C  

Inverted inputs to 

HA 

      A       B     

Outputs due to 

inverted inputs 

     S           C  

         0             0       0             0         1           1        0             1 

         0            1       1             0         1           0        1             0 

         1            0       1             0         0           1        1             0 

         1            1       0             1         0           0        0             0 
 

It seems reasonable that, at most, the calculation of the bit carry generate gi 

and bit carry propagate pi can be anticipated. However, some more logic could be 

placed before the normalization; for example, the calculation of carry generated 

and carry propagated signals of groups of 2 or 4 bits, but it will make the design of 

the add/round module more complex, also the anticipation of the first level only of 

the dual adder does not  imply  changes in its design due to the effect of the shift 

over the already calculated carry generate and carry-propagate signals, G and P. 

Figure (4-13) shows the anticipated part of dual adder. 
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Figure  4-15: Anticipated part of HA and bit carry propagate and generate signals selection. 

 

4.3 Conclusion  

We discuss in this chapter design of blocks used to implement the proposed 

fused multiply add unit like sign detection and add round modules. Sign detection 

module produces the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 signal which is used after that to select inputs to the 

normalization shifter. These inputs are needed to be available as soon as possible 

before shift amount of normalization shifter is calculated. Because of this reason 

we use a new scheme to implement sign detection module to reduce its latency. 

We use magnitude minus one (1’s complement) instead of magnitude (2’s 

complement) in magnitude comparator to eliminate the need of carry propagate 

adder.    
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Chapter 5 : Simulation Verification and Results 
5.1 Simulation verification  

Both the proposed and the basic architecture of the fused multiply add 

(IBM/6000) were implemented in the Verilog hardware description language, 

some of them are shown in appendix. ModelSim10.0c is a used to compile Verilog 

codes and to simulate them.  The simple way to test the design is to write a test 

bench that exercises various features of the design. Test vectors are used, some 

examples of these test vectors and their syntax  are shown in Figure (5-1), these 

test vectors are divided into two text files one for the inputs of the design under 

test (DUT) and the other is for the expected (right) results. 

The input text file is read by test bench using test bench verilog syntax 

$readmemh then the output is written to a text file using test bench verilog syntax 

$fopen, $fdisplay and $fclose. The output text file is now compared to the already 

exist output file (right outputs) using Active File Compare program. An example 

of a comparison is shown in Figure (5-2). 

About 12,800 test vectors are used. A part from them includes special cases 

which raise overflow, underflow and invalid operation flags.  100% accuracy was 

reported for all designs for normalized and denormalized numbers. An example 

test run is shown in Figure (5-3). 

5.2 Simulation Results 

 The two implemented architectures of fused multiply add are synthesized, 

placed and routed for Cyclone II FPGA device using Quartus II 9.1.  
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Figure  5-1: Test vectors examples and their syntax. 

 

      b64  *+  =0   C44722533BBD52C9   00C7E4456C3BA9E7    04C0EECCFEFA972A  -> 852101F7604041E9   x
        b64  *+  0   8601FB6F60C50CF5    B46D1769D2CE4A5A      8000000000000000   -> 0000000000000000  xu 

       b64  *+    >   63422049A8BCB6B9    5DB011030A85CFD8      FE62B5DAF250D6A3  -> 7FF0000000000000 xo
    b64  *+    <     FFF0000000000000    C22200EFAD00230B       FFF0000000000000  -> FFF8000000000000   i

The Syntax is as follow:

1- "b64" : indicates that the type of the operation is binary operation and the precision of the operation is 64.

2- "*+": means that the operation is Fused Multiply Add operation( multiplication follow by addition).

3- " =0 "  indicates that the rounding mode is nearest to even,

     " 0"     indicates that the rounding mode is rounding to Zero,

      ">"     indicates that the rounding mode is rounding to Positive infinity, 

     " <"     indicates that the rounding mode is rounding to Negative infinity.

4-  The following three parts of data are the three inputs of the operation in IEEE binary floating-    point                 
format in Hexadecimal format . The first two inputs are the multiplication inputs then add the result of the   
multiplication to the third input.

5- "->": this symbol is to separate the inputs from the result.  

6- The following part is the output of the operation  in IEEE binary floating-point format in Hexadecimal   
format.

7- "x"  indicates that the inexact flag is raised. 

   "xo"  indicates that the inexact flag is raised and the overflow flag is raised.

   "xu"  indicates that the inexact flag is raised and the Underflow flag is raised. 

    "i"    indicates that the invalid flag is raised.
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Figure  5-2: A window of Active File Compare Program. 

 

 

Figure  5-3: Example ModelSim run for floating-point fused multiply add unit. 
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  In the FPGA’s technology logic functions are implemented by truth tables 

defined by programming the SRAM that defines the FPGA’s functionality.  Each 

of the truth tables has a delay which contributes to the delay from inputs to outputs 

of the function being implemented. In addition, the connections in the FPGA 

between the inputs, truth tables, and outputs pass through buffers, multiplexers and 

pass transistors as determined by the circuit specification and the routing paths 

determined by the implementation tools. The decomposition into truth tables 

combined with the routing of the interconnections between them yields 

considerable uncertainty in the propagation delay from input to output of an 

implemented circuit. The worst case delay which occurs in the circuit from any 

combinational logic input to any combinational logic output is determined by 

adding up the maximum expected delays through the combinational circuit 

including both logic and interconnections. To decrease uncertainty we use 

constraints to specify the maximum delay allowable, forcing the tools to attempt to 

meet or better this delay.  

  The worst case delay of both the basic and the proposed architectures of 

fused multiply add unit is shown in Figure (5-4). It is clear that the delay 

improvement is 25.5%. 

 Worest-case delay (ns) 
 

Basic architecture 
 95.345 

Proposed architecture 
 70.985 

 

Figure  5-4: Worst case delay of basic and proposed architectures. 

The total number of logic elements that are used by FPGA is an important 

issue in comparing the performance in addition to the worst case delay 
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measurement. A summary of the compilation report is shown in Figure (5-5) (a, b) 

for both the basic and the proposed architectures.   

 
(a) 

 
(b) 

Figure  5-5: Compilation report of (a) basic architecture (b) proposed architecture. 
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From compilation reports it is clear that the basic architecture occupies 

13,122 form 68,416 total logic elements which are corresponding to occupying 

19% of total logic elements. The proposed architecture occupies 13,930 logic 

elements; about 20% of total logic elements. The increment in the number of logic 

gates in the proposed architecture is about 6.2% only.     

Both basic and proposed architectures are similar in upper part (multiplier, 

bit invert and 3:2 CSA) and differ in the lower part, CPA, complementer,  

normalizer and rounder in basic architecture, three parallel paths (i.e. sign 

detection ,LZA,  normalization shifter and anticipated part of adder) and add round 

module for proposed architecture. Each block of lower part in two architectures is 

synthesized separately; Table (5-1) shows the worst case delay and the number of 

logic gates of each individual block. 

Table  5-1: worst case delay and number of logic gates of lower part of(a) basic (b) proposed 
architectures. 

 Worst Case Delay (ns) Number of logic gates 

Carry propagate adder 19.434 1998 

Complementer 52.308 220 

Normalizer 17.468 1693 

Rounder 22.971 106 
 (a) 

 Worst Case Delay (ns) Number of logic gates 

Three parallel paths 27.124 1700 

Add-round module 24.932 712 
 (b) 

5.3 Conclusion  

Both basic and proposed architectures are implemented in the Verilog 

hardware description language and then synthesized for Cyclone II FPGA device 
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using Quartus II 9.1. For the proposed architecture the overall delay is 70.985 ns. 

It occupies 13,930 from 68,416 total logic elements which are corresponding to 

occupying 20% of total logic elements. The basic architecture has an overall delay 

95.345 ns and occupies 13,122 logic elements, about 19% of total logic elements. 

The proposed architecture achieves a delay improvement about 25.5% as 

compared to the basic architecture. The increase of area in the proposed 

architecture is about 6.2% which is not a big matter. Each block of lower part of 

two architectures is individually synthesized. The best delay is the delay of 

normalizer which equals 17.468 ns but the rounder has better area delay product.   
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Chapter 6 :  Conclusion 
Floating-point unit is an integral part of any modern microprocessor. 

Floating point units are available in forms of intellectual property for FPGAs to be 

bought and used by customers. The fused multiply add (FMA) operation was 

introduced in 1990 on the IBM RS/6000 for the single instruction execution of the 

equation A+ (B x C) with single and double precision floating-point operands. 

This hardware unit was designed to reduce the latency of dot product calculations 

and provided greater floating-point arithmetic accuracy since only a single 

rounding is performed. FMA is implemented by several commercial processors 

like IBM, HP, MIPS, ARM and Intel. FMA can be used instead of floating-point 

addition and floating-point multiplication by using constants e.g., 0.0 + (B x C) for 

multiplication and A+ (B x 1.0) for addition. 

  Many approaches are developed on floating-point fused multiply add unit 

to decrease its latency. The greatest deviation from the original IBM RS/6000 

architecture comes from a paper by Lang and Bruguera on a reduced latency fused 

multiply add. Theirs proposal claims to achieve a significant increase in fused 

multiply add unit performance by the combination of the addition and rounding 

stage into one block. The paper claims an estimated 15-20% reduction in latency 

as compared to a standard fused multiply add. This result is calculated 

theoretically, and the actual architecture has yet to be implemented in either a 

synthesized or a custom CMOS silicon design. 

The main objective of our work is to implement this algorithm with making 

some changes in the architecture to facilitate the implementation and on the other 

hand do not affect the performance. The change is to take the inputs to sign 

detection and LZA blocks from 3:2 CSA instead of the multiplier outputs and the 

aligned addend  𝐴𝐴. This is more efficient because using three inputs (multiplier 

output and aligned addend  𝐴𝐴) to sign detection module makes the need of a carry 



71 
 

propagate adder is obligatory to add multiplier ouput before making comparison. 

This change will not increase the overall delay as the delay of CSA already exists 

in the critical path. The implementation includes full design of blocks are not used 

before like sign detection module. The basic fused multiply add (IBM RS/6000) 

architecture is implemented also to make relative comparison. Each block of two 

architectures is designed using the Verilog hardware description language, and 

then synthesized, placed and routed for Cyclone II FPGA device using Quartus II 

9.1. Area and timing information for each design approach and algorithm is 

reported and analyzed. 

For the proposed Fused multiply add unit the overall delay is 70.985 ns. It 

occupies 13,930 form 68,416 total logic elements which are corresponding to 

occupying 20% of total logic elements. The basic fused multiply add architecture 

has an overall delay 95.345 ns and occupies 13,122 logic elements, about 19% of 

total logic elements. It is clear that the proposed architecture achieves a delay 

improvement about 25.5% as compared to the basic architecture. The increase of 

area in the proposed architecture is about 6.2% which is not a big matter. 

6.1 Future Work 

 In order to expand our research further some of the works proposed are 

converting the Verilog codes so that it can accommodate any exponent and 

mantissa length. This will give the design more versatility to use any precision of 

IEEE binary format also it can be designed for decimal floating point.  
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APPENDIX 

Sign Processing 

module sign_processing 
(Sa,Sb,Sc,o,comp,Sw,eff_o); 

input  Sa,Sb,Sc,o,comp;  //o:sign of operation 
if add o='0',if sub o='1' 

output Sw; 

output eff_o;  //eff_o is effective operation  

wire Sbc;  //sign of bxc 

assign Sbc=Sb^Sc; 

assign eff_o=o^Sa^Sbc; 

assign Sw=(comp&Sa)|(~comp&(Sbc^o)); 

endmodule 

module  

Multiplier 

module multiplier (A,B,s,c); 

input [52:0] A,B; 

output [107:0] s,c; 

wire [106:0] 
pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,p
p10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,p
p18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,p
p26; 

wire  [80:0] Ab; 

booth_vector ua3 (A,Ab); 

ppg ua1 
(Ab,B,pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8
,pp9,pp10,pp11,pp12,pp13,pp14,pp15,pp16,
pp17,pp18,pp19,pp20,pp21,pp22,pp23,pp24,
pp25,pp26); 

red_tree2 u2 
(pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,
pp10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,

pp18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,
pp26, s,c); 

endmodule 

module booth (x,b); 

input [2:0] x;    //x[0]=z  x[1]=y , x[2]=x 

output [2:0] b;    //b[2]=a , b[1]=b  ,b[0]=c 

assign b[2]=x[2]&(~x[1]|~x[0]); 

assign b[1]=x[2]^(x[1]&x[0]); 

assign b[0]=x[1]^x[0]; 

endmodule 

module booth_vector (A,Ab); 

input [52:0] A; 

output [80:0] Ab; 

booth u1 ({A[1:0],1'b0},Ab[2:0]); 

booth u2 (A[3:1],Ab[5:3]); 

booth u3 (A[5:3],Ab[8:6]); 

booth u4 (A[7:5],Ab[11:9]); 

booth u5 (A[9:7],Ab[14:12]); 

booth u6 (A[11:9],Ab[17:15]); 

booth u7 (A[13:11],Ab[20:18]); 

booth u8 (A[15:13],Ab[23:21]); 

booth u9 (A[17:15],Ab[26:24]); 

booth u10 (A[19:17],Ab[29:27]); 

booth u11 (A[21:19],Ab[32:30]); 

booth u12 (A[23:21],Ab[35:33]); 

booth u13 (A[25:23],Ab[38:36]); 

booth u14 (A[27:25],Ab[41:39]); 

booth u15 (A[29:27],Ab[44:42]); 
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booth u16 (A[31:29],Ab[47:45]); 

booth u17 (A[33:31],Ab[50:48]); 

booth u18 (A[35:33],Ab[53:51]); 

booth u19 (A[37:35],Ab[56:54]); 

booth u20 (A[39:37],Ab[59:57]); 

booth u21 (A[41:39],Ab[62:60]); 

booth u22 (A[43:41],Ab[65:63]); 

booth u23 (A[45:43],Ab[68:66]); 

booth u24 (A[47:45],Ab[71:69]); 

booth u25 (A[49:47],Ab[74:72]); 

booth u26 (A[51:49],Ab[77:75]); 

booth u27 ({1'b0,A[52:51]},Ab[80:78]); 

endmodule  

module ppg 
(Ab,B,pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8
,pp9,pp10,pp11,pp12,pp13,pp14,pp15,pp16,
pp17,pp18,pp19,pp20,pp21,pp22,pp23,pp24,
pp25,pp26); 

input [52:0] B; 

input [80:0] Ab; 

output [106:0] 
pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,p
p10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,p
p18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,p
p26; 

wire [26:0] y; 

wire [105:0] 
p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,
p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p
23,p24,p25,p26; 

pp u1 (B,Ab[2:0],y[0],p0); 

pp u2 (B,Ab[5:3],y[1],p1); 

pp u3 (B,Ab[8:6],y[2],p2); 

pp u4 (B,Ab[11:9],y[3],p3); 

pp u5 (B,Ab[14:12],y[4],p4); 

pp u6 (B,Ab[17:15],y[5],p5); 

pp u7 (B,Ab[20:18],y[6],p6); 

pp u8 (B,Ab[23:21],y[7],p7); 

pp u9 (B,Ab[26:24],y[8],p8); 

pp u10 (B,Ab[29:27],y[9],p9); 

pp u11 (B,Ab[32:30],y[10],p10); 

pp u12 (B,Ab[35:33],y[11],p11); 

pp u13 (B,Ab[38:36],y[12],p12); 

pp u14 (B,Ab[41:39],y[13],p13); 

pp u15 (B,Ab[44:42],y[14],p14); 

pp u16 (B,Ab[47:45],y[15],p15); 

pp u17 (B,Ab[50:48],y[16],p16); 

pp u18 (B,Ab[53:51],y[17],p17); 

pp u19 (B,Ab[56:54],y[18],p18); 

pp u20 (B,Ab[59:57],y[19],p19); 

pp u21 (B,Ab[62:60],y[20],p20); 

pp u22 (B,Ab[65:63],y[21],p21); 

pp u23 (B,Ab[68:66],y[22],p22); 

pp u24 (B,Ab[71:69],y[23],p23); 

pp u25 (B,Ab[74:72],y[24],p24); 

pp u26 (B,Ab[77:75],y[25],p25); 

pp u27 (B,Ab[80:78],y[26],p26); 

assign pp0={p0[105],p0}; 

assign pp1={p1[104:0],1'b0,y[0]}; 

assign pp2={p2[102:0],1'b0,y[1],2'b0}; 
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assign pp3={p3[100:0],1'b0,y[2],4'b0}; 

assign pp4={p4[98:0],1'b0,y[3],6'b0}; 

assign pp5={p5[96:0],1'b0,y[4],8'b0}; 

assign pp6={p6[94:0],1'b0,y[5],10'b0}; 

assign pp7={p7[92:0],1'b0,y[6],12'b0}; 

assign pp8={p8[90:0],1'b0,y[7],14'b0}; 

assign pp9={p9[88:0],1'b0,y[8],16'b0}; 

assign pp10={p10[86:0],1'b0,y[9],18'b0}; 

assign pp11={p11[84:0],1'b0,y[10],20'b0}; 

assign pp12={p12[82:0],1'b0,y[11],22'b0}; 

assign pp13={p13[80:0],1'b0,y[12],24'b0}; 

assign pp14={p14[78:0],1'b0,y[13],26'b0}; 

assign pp15={p15[76:0],1'b0,y[14],28'b0}; 

assign pp16={p16[74:0],1'b0,y[15],30'b0}; 

assign pp17={p17[72:0],1'b0,y[16],32'b0}; 

assign pp18={p18[70:0],1'b0,y[17],34'b0}; 

assign pp19={p19[68:0],1'b0,y[18],36'b0}; 

assign pp20={p20[66:0],1'b0,y[19],38'b0}; 

assign pp21={p21[64:0],1'b0,y[20],40'b0}; 

assign pp22={p22[62:0],1'b0,y[21],42'b0}; 

assign pp23={p23[60:0],1'b0,y[22],44'b0}; 

assign pp24={p24[58:0],1'b0,y[23],46'b0}; 

assign pp25={p25[56:0],1'b0,y[24],48'b0}; 

assign pp26={p26[54:0],1'b0,y[25],50'b0} 

endmodule 

module  pp (A,bt,s,p); 

input [52:0] A;   //A=multiplicand 

input [2:0] bt;  //bt=booth encoding 

output s; 

output [105:0] p;  //o/p PP 

wire h; 

wire [105:0] B,x,y; 

assign h=~bt[1]&~bt[0]; 

assign B={53'b0,A}; 

assign x=bt[0]?B:{B[104:0],1'b0}; 

assign y=bt[2]?~x:x; 

assign p=h?106'b0:y; 

assign s=h?1'b0:bt[2]; 

endmodule 

module red_tree2 
(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,
p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p
23,p24,p25,p26, s,c)    

input [106:0] 
p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,
p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p
23,p24,p25,p26;                  

output [107:0] s,c; 

wire [106:0] 
s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c3,c4,c5,c6,c7,c8,
pp24,pp25,pp26;  

wire [106:0] 
ss1,ss2,ss3,ss4,ss5,ss6,cc1,cc2,cc3,cc4,cc5,cc6
,ppp26; 

wire [106:0] 
sss1,sss2,sss3,sss4,ccc1,ccc2,ccc3,ccc4,px26; 

wire [106:0] sv1,sv2,sv4,cv1,cv2,cv4,pv26; 

wire [106:0] sx1,sx4,cx1,cx2,cx4,pxx26;             

wire [106:0] sy1,cy1,sy4,cy4,py26;              

wire [106:0] su1,cu1,su4,pu26;           
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wire [106:0] sn1,cn1,pn26; 

L1_m u1 
(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,
p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p
23,p24,p25,p26,s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c
3,c4,c5,c6,c7,c8,pp24,pp25,pp26); 

L2_m u2 
(s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c3,c4,c5,c6,c7,c
8,pp24,pp25,pp26,ss1,ss2,ss3,ss4,ss5,ss6,cc1,
cc2,cc3,cc4,cc5,cc6,ppp26); 

L3_m u3 
(ss1,ss2,ss3,ss4,ss5,ss6,cc1,cc2,cc3,cc4,cc5,cc
6,ppp26,sss1,sss2,sss3,sss4,ccc1,ccc2,ccc3,cc
c4,px26); 

L4_m u4 
(sss1,sss2,sss3,sss4,ccc1,ccc2,ccc3,ccc4,px26,
sv1,sv2,sv4,cv1,cv2,cv4,pv26); 

L5_m u5 
(sv1,sv2,sv4,cv1,cv2,cv4,pv26,sx1,sx4,cx1,cx2
,cx4,pxx26); 

L6_m u6 
(sx1,sx4,cx1,cx2,cx4,pxx26,sy1,cy1,sy4,cy4,py
26); 

L7_m u7 
(sy1,cy1,sy4,cy4,py26,su1,cu1,su4,pu26); 

L8_m u8 (su1,cu1,su4,pu26,sn1,cn1,pn26); 

L9_m u9 (sn1,cn1,pn26,s,c); 

endmodule  

module L1_m 
(pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,
pp10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,
pp18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,
pp26,             
s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c3,c4,c5,c6,c7,c8,
p24,p25,p26);  

input [106:0] 
pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,p
p10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,p

p18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,p
p26; 

output [106:0] 
s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c3,c4,c5,c6,c7,c8,
p24,p25,p26;  

csaa u1 (pp0,pp1,pp2,s1,c1); 

csaa u2 (pp3,pp4,pp5,s2,c2); 

csaa u3 (pp6,pp7,pp8,s3,c3); 

csaa u4 (pp9,pp10,pp11,s4,c4); 

csaa u5 (pp12,pp13,pp14,s5,c5); 

csaa u6 (pp15,pp16,pp17,s6,c6); 

csaa u7 (pp18,pp19,pp20,s7,c7); 

csaa u8 (pp21,pp22,pp23,s8,c8); 

assign p24=pp24; 

assign p25=pp25; 

assign p26=pp26; 

endmodule 

module L2_m 
(ss1,ss2,ss3,ss4,ss5,ss6,ss7,ss8,cc1,cc2,cc3,cc
4,cc5,cc6,cc7,cc8,pp24,pp25,pp26,s1,s2,s3,s4
,s5,s6,c1,c2,c3,c4,c5,c6,p26);     

input [106:0] 
ss1,ss2,ss3,ss4,ss5,ss6,ss7,ss8,cc1,cc2,cc3,cc4
,cc5,cc6,cc7,cc8,pp24,pp25,pp26; 

output [106:0] 
s1,s2,s3,s4,s5,s6,c1,c2,c3,c4,c5,c6,p26;              

csaa u1 (ss1,ss2,{cc1[105:0],1'b0},s1,c1); 

csaa u2 
({cc2[105:0],1'b0},ss3,{cc3[105:0],1'b0},s2,c2)
; 

csaa u3 (ss4,{cc4[105:0],1'b0},ss5,s3,c3); 
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csaa u4 
({cc5[105:0],1'b0},{cc6[105:0],1'b0},ss6,s4,c4)
; 

csaa u5 (ss7,{cc7[105:0],1'b0},ss8,s5,c5); 

csaa u6 (pp24,{cc8[105:0],1'b0},pp25,s6,c6); 

assign p26=pp26; 

endmodule   

module L3_m 
(ss1,ss2,ss3,ss4,ss5,ss6,cc1,cc2,cc3,cc4,cc5,cc
6,pp26, s1,s2,s3,s4,c1,c2,c3,c4,p26); 

input [106:0] 
ss1,ss2,ss3,ss4,ss5,ss6,cc1,cc2,cc3,cc4,cc5,cc6
,pp26; 

output [106:0]  s1,s2,s3,s4,c1,c2,c3,c4,p26;        

csaa u1 (ss1,ss2,{cc1[105:0],1'b0},s1,c1); 

csaa u2 
({cc2[105:0],1'b0},{cc3[105:0],1'b0},ss3,s2,c2)
; 

csaa u4 (ss4,ss5,{cc4[105:0],1'b0},s3,c3); 

csaa u3 
({cc6[105:0],1'b0},ss6,{cc5[105:0],1'b0},s4,c4)
; 

assign p26=pp26; 

endmodule 

module L4_m ( 
ss1,ss2,ss3,ss4,cc1,cc2,cc3,cc4,pp26, 
s1,s2,s4,c1,c2,c4,p26); 

input [106:0] 
ss1,ss2,ss3,ss4,cc1,cc2,cc3,cc4,pp26; 

output [106:0] s1,s2,s4,c1,c2,c4,p26;                   

 csaa u1 (ss1,ss2,{cc1[105:0],1'b0},s1,c1); 

csaa u2 
(ss3,{cc2[105:0],1'b0},{cc3[105:0],1'b0},s2,c2)
; 

assign s4=ss4; 

assign c4=cc4; 

assign p26=pp26; 

endmodule 

module L5_m (ss1,ss2,ss4,cc1,cc2,cc4,pp26, 

             s1,s4,c1,c2,c4,p26); 

input [106:0] ss1,ss2,ss4,cc1,cc2,cc4,pp26; 

output [106:0] s1,s4,c1,c2,c4,p26;              

csaa u1 (ss1,ss2,{cc1[105:0],1'b0},s1,c1); 

assign c2=cc2; 

assign s4=ss4; 

assign c4=cc4; 

assign p26=pp26; 

endmodule 

module L6_m (ss1,ss4,cc1,cc2,cc4,pp26, 

             s1,c1,s4,c4,p26); 

input [106:0] ss1,ss4,cc1,cc2,cc4,pp26; 

output [106:0] s1,c1,s4,c4,p26;                 

csaa u1 
({cc1[105:0],1'b0},ss1,{cc2[105:0],1'b0},s1,c1)
; 

assign s4=ss4; 

assign c4=cc4; 

assign p26=pp26; 

endmodule 

module L7_m ( ss1,cc1,ss4,cc4,pp26, 

             s1,c1,c4,p26); 

input [106:0] ss1,cc1,ss4,cc4,pp26;              
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output [106:0] s1,c1,c4,p26; 

csaa u1 ({cc1[105:0],1'b0},ss1,ss4,s1,c1); 

assign c4=cc4; 

assign p26=pp26; 

endmodule 

module L8_m ( ss1,cc1,cc4,pp26, 

               s1,c1,p26); 

input [106:0]  ss1,cc1,cc4,pp26;              

output [106:0] s1,c1,p26;              

csaa u1 
({cc1[105:0],1'b0},ss1,{cc4[105:0],1'b0},s1,c1)
; 

assign p26=pp26; 

endmodule 

module L9_m ( ss1,cc1,pp26,s,c); 

input [106:0]  ss1,cc1,pp26;              

output [107:0] s,c; 

wire [106:0] s1,c1; 

csaa u1 ({cc1[105:0],1'b0},ss1,pp26,s1,c1); 

assign s={s1[106],s1}; 

assign c={c1,1'b0}; 

endmodule 

Bit invert 

module bit_invert (A,Ainv,sub); 

input [0:52] A; 

input sub; 

output [0:160] Ainv; 

assign Ainv=sub? 
{~A,108'hfffffffffffffffffffffffffff}:{A,108'b0}; 

endmodule 

 

Alignment Shifter & Sticky bit st1 calculation 

module align_shifter 
(A,sh_amount,sub,As,st1); 

input [0:160] A; 

input sub; 

input [0:7] sh_amount; 

output [0:160] As; 

output st1; //sticky bit 

wire [0:160] A1,A2,A3,A4,A5,A6,A7; 

wire 
st_1,st_2,st_3,st_4,st_5,st_6,st_7,st_8,t1,t2,t
3,t4,t5,t6,t7,t8; 

align_sh1 u1 (A,sh_amount[0],sub,A1,st_1);    
//sh1=shift_amount[0]--> msb 

align_sh2 u2 (A1,sh_amount[1],sub,A2,st_2);    

align_sh3 u3 (A2,sh_amount[2],sub,A3,st_3);    

align_sh4 u4 (A3,sh_amount[3],sub,A4,st_4);    

align_sh5 u5 (A4,sh_amount[4],sub,A5,st_5);    

align_sh6 u6 (A5,sh_amount[5],sub,A6,st_6);    

align_sh7 u7 (A6,sh_amount[6],sub,A7,st_7);    

align_sh8 u8 (A7,sh_amount[7],sub,As,st_8);   
//sh8=shift_amount[7] -->lsb 

assign t1=sh_amount[0]&st_1; 

assign t2=sh_amount[1]&st_2; 

assign t3=sh_amount[2]&st_3; 

assign t4=sh_amount[3]&st_4; 

assign t5=sh_amount[4]&st_5; 

assign t6=sh_amount[5]&st_6; 



82 
 

assign t7=sh_amount[6]&st_7; 

assign t8=sh_amount[7]&st_8; 

assign st1=t1|t2|t3|t4|t5|t6|t7|t8; 

endmodule 

module align_sh1 (a,sh1,sub,b,st_1); 

input [0:160] a; 

input sh1,sub;     //shift by 128 to right 

output [0:160] b; 

output st_1; 

wire [0:160] g; 

assign 
g=sub?{128'hffffffffffffffffffffffffffffffff,a[0:32]
}:{128'b0,a[0:32]}; 

assign b=sh1? g:a; 

assign st_1=sub? 
~(!(~a[33:160])):~(!a[33:160]);  //if sub=0 
check if all bits=0,if sub=1 check if all bits =1 

endmodule 

module align_sh2 (a,sh2,sub,b,st_2); 

input [0:160] a; 

input sh2,sub;     //shift by 64 to right 

output [0:160] b; 

output st_2; 

wire [0:160] g; 

assign g=sub? 
{64'hffffffffffffffff,a[0:96]}:{64'b0,a[0:96]}; 

assign b=sh2? g:a; 

assign st_2=sub? 
~(!(~a[97:160])):~(!a[97:160]); 

endmodule 

module align_sh3 (a,sh3,sub,b,st_3); 

input [0:160] a; 

input sh3,sub;   //shift by 32 to right 

output [0:160] b; 

output st_3; 

wire [0:160] g; 

assign g=sub? 
{32'hffffffff,a[0:128]}:{32'b0,a[0:128]}; 

assign b=sh3?g:a; 

assign st_3=sub? 
~(!(~a[129:160])):~(!a[129:160]); 

endmodule 

module align_sh4 (a,sh4,sub,b,st_4); 

input [0:160] a; 

input sh4,sub;   //shift by 16 to right 

output [0:160] b; 

output st_4; 

wire [0:160] g; 

assign g=sub? 
{16'hffff,a[0:144]}:{16'b0,a[0:144]}; 

assign b=sh4? g:a; 

assign st_4=sub? 
~(!(~a[145:160])):~(!a[145:160]); 

endmodule 

module align_sh5 (a,sh5,sub,b,st_5); 

input [0:160] a; 

input sh5,sub;   //shift by 8 to right 

output [0:160] b; 

output st_5; 
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wire [0:160] g; 

assign g=sub? {8'hff,a[0:152]}:{8'b0,a[0:152]}; 

assign b=sh5? g:a; 

assign st_5=sub? 
~(!(~a[153:160])):~(!a[153:160]); 

endmodule 

module align_sh6 (a,sh6,sub,b,st_6); 

input [0:160] a; 

input sh6,sub;   //shift by 4 to right 

output [0:160] b; 

output st_6; 

wire [0:160] g; 

assign g=sub? {4'hf,a[0:156]}:{4'b0,a[0:156]}; 

assign b=sh6? g:a; 

assign st_6=sub? 
~(!(~a[157:160])):~(!a[157:160]); 

endmodule 

module align_sh7 (a,sh7,sub,b,st_7); 

input [0:160] a; 

input sh7,sub;   //shift by 2 to right 

output [0:160] b; 

output st_7; 

wire [0:160] g; 

assign g=sub? 
{2'b11,a[0:158]}:{2'b0,a[0:158]}; 

assign b=sh7?g:a;  

assign 
st_7=sub?~(!(~a[159:160])):~(!a[159:160]); 

endmodule 

module align_sh8 (a,sh8,sub,b,st_8); 

input [0:160] a; 

input sh8,sub;   //shift by 1 to right 

output [0:160] b; 

output st_8; 

wire [0:160] g; 

assign g=sub?{1'b1,a[0:159]}:{1'b0,a[0:159]}; 

assign b=sh8? g:a; 

assign st_8=sub? ~a[160]:a[160]; 

endmodule 

LZA 

module lza (a,b,f); 

input [0:107] a,b; 

output [0:107] f; 

wire [0:107] t,g,z,g1,z1,t1,x; 

assign t=a^b; 

assign g=a&b; 

assign z=~a&~b; 

assign g1={g[1:107],1'b0}; 

assign z1={z[1:107],1'b0}; 

assign t1={1'b0,t[0:106]}; 

assign 
x=(t1&((g&~z1)|(z&~g1)))|(~t1&((z&~z1)|(g&
~g1))); 

assign f[0]=~t[0]&t[1]; 

assign f[1:107]=x[1:107]; 

endmodule 

Multiplixer 
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module mux0 (a,b,s,c); 

input [161:0] a,b; 

input s; 

output [161:0] c; 

assign c=s? b:a; 

Shift amount 

module encode_norm 
(f,S1,S2,S3,S4,S5,S6,S7); 

input [0:107] f; 

output S1,S2,S3,S4,S5,S6,S7; 

S1 U1(f,S1); 

S2 u2 (f,S1,S2); 

S3 u3 (f,S1,S2,S3); 

S4 u4 (f,S1,S2,S3,S4); 

S5 u5 (f,S1,S2,S3,S4,S5); 

S6 u6 (f,S1,S2,S3,S4,S5,S6); 

S7 u7 (f,S1,S2,S3,S4,S5,S6,S7); 

Endmodule 

module S1 (A,S1); 

input [0:107] A; 

output S1; 

assign S1=!A[0:63]; 

endmodule 

module S2 (A,S1,S2); 

input [0:107] A; 

input S1; 

output S2; 

wire x1,x2; 

assign x1=!A[0:31]; 

assign x2=!A[64:95]; 

assign S2=S1?X2:X1; 

endmodule 

module S3 (A,S1,S2,S3); 

input [0:107] A; 

input S1,S2; 

output S3; 

wire x1,x2,x3,x4; 

wire f1,f2; 

assign x1=!A[0:15]; 

assign x2=!A[64:79]; 

assign x3=!A[32:47]; 

assign x4=!A[96:107]; 

mux0 u1 (x1,x2,S1,f1); 

mux0 u2 (x3,x4,S1,f2); 

mux0 u3 (f1,f2,S2,S3); 

endmodule 

module S4 (A,S1,S2,S3,S4); 

input [0:107] A; 

input S1,S2,S3; 

output S4; 

wire x1,x2,x3,x4,x5,x6,x7; 

wire f1,f2,f3,f4,f5; 

assign x1=!A[0:7]; 

assign x2=!A[64:71]; 

assign x3=!A[32:39]; 

assign x4=!A[96:103]; 
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assign x5=!A[16:23]; 

assign x6=!A[80:87]; 

assign x7=!A[48:55]; 

mux0 u1 (x1,x2,S1,f1); 

mux0 u2 (x3,x4,S1,f2); 

mux0 u3 (x5,x6,S1,f3); 

mux0 u4 (f1,f2,S2,f4); 

mux0 u5 (f3,x7,S2,f5); 

mux0 u6 (f4,f5,S3,S4); 

endmodule 

module S5 (A,S1,S2,S3,S4,S5); 

input [0:107] A; 

input S1,S2,S3,S4; 

output S5; 

wire 
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x1
4; 

wire f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12; 

assign x1=!A[0:3]; 

assign x2=!A[64:67]; 

assign x3=!A[32:35]; 

assign x4=!A[96:99]; 

assign x5=!A[16:19]; 

assign x6=!A[80:83]; 

assign x7=!A[48:51]; 

assign x8=!A[8:11]; 

assign x9=!A[72:75]; 

assign x10=!A[40:43]; 

assign x11=!A[104:107]; 

assign x12=!A[24:27]; 

assign x13=!A[88:91]; 

assign x14=!A[56:59]; 

mux0 u1 (x1,x2,S1,f1); 

mux0 u2 (x3,x4,S1,f2); 

mux0 u3 (x5,x6,S1,f3); 

mux0 u4 (x8,x9,S1,f4); 

mux0 u5 (x10,x11,S1,f5); 

mux0 u6 (x12,x13,S1,f6); 

mux0 u7 (f1,f2,S2,f7); 

mux0 u8 (f3,x7,S2,f8); 

mux0 u9 (f4,f5,S2,f9); 

mux0 u10 (f6,x14,S2,f10); 

mux0 u11(f7,f8,S3,f11); 

mux0 u12 (f9,f10,S3,f12); 

mux0 u13 (f11,f12,S4,S5); 

endmodule 

module S6 (A,S1,S2,S3,S4,S5,S6); 

input [0:107] A; 

input S1,S2,S3,S4,S5; 

output S6; 

wire 
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x1
4,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24,x
25,x26,x27; 

wire f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11; 

wire k1,k2,k3,k4,k5,k6,k7,k8; 

wire m1,m2,m3,m4; 
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wire n1,n2; 

assign x1=!A[0:1]; 

assign x2=!A[64:65]; 

assign x3=!A[32:33]; 

assign x4=!A[96:97]; 

assign x5=!A[16:17]; 

assign x6=!A[80:81]; 

assign x7=!A[48:49]; 

assign x8=!A[8:9]; 

assign x9=!A[72:73]; 

assign x10=!A[40:41]; 

assign x11=!A[104:105]; 

assign x12=!A[24:25]; 

assign x13=!A[88:89]; 

assign x14=!A[56:57]; 

assign x15=!A[4:5]; 

assign x16=!A[68:69]; 

assign x17=!A[36:37]; 

assign x18=!A[100:101]; 

assign x19=!A[20:21]; 

assign x20=!A[84:85]; 

assign x21=!A[52:53]; 

assign x22=!A[12:13]; 

assign x23=!A[76:77]; 

assign x24=!A[44:45]; 

assign x25=!A[28:29]; 

assign x26=!A[92:93]; 

assign x27=!A[60:61]; 

mux0 u1 (x1,x2,S1,f1); 

mux0 u2 (x3,x4,S1,f2); 

mux0 u3 (x5,x6,S1,f3); 

mux0 u4 (x8,x9,S1,f4); 

mux0 u5 (x10,x11,S1,f5); 

mux0 u6 (x12,x13,S1,f6); 

mux0 u7 (x15,x16,S1,f7); 

mux0 u8 (x17,x18,S1,f8); 

mux0 u9 (x19,x20,S1,f9); 

mux0 u10 (x22,x23,S1,f10); 

mux0 u11 (x25,x26,S1,f11); 

mux0 u12 (f1,f2,S2,k1); 

mux0 u13 (f3,x7,S2,k2); 

mux0 u14 (f4,f5,S2,k3); 

mux0 u15 (f6,x14,S2,k4); 

mux0 u16(f7,f8,S2,k5); 

mux0 u17 (f9,x21,S2,k6); 

mux0 u18 (f10,x24,S2,k7); 

mux0 u19 (f11,x27,S2,k8); 

mux0 u20 (k1,k2,S3,m1); 

mux0 u21 (k3,k4,S3,m2); 

mux0 u22 (k5,k6,S3,m3); 

mux0 u23 (k7,k8,S3,m4); 

mux0 u24 (m1,m2,S4,n1); 

mux0 u25 (m3,m4,S4,n2); 

mux0 u26 (n1,n2,S5,S6); 

endmodule 

module S7 (f,S1,S2,S3,S4,S5,S6,S7); 
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input [0:107] f; 

input S1,S2,S3,S4,S5,S6; 

output S7; 

wire [0:107] A; 

wire 
f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f1
5,f16,f17,f18,f19,f20,f21,f22; 

wire 
k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k
14,k15,k16; 

wire m1,m2,m3,m4,m5,m6,m7,m8; 

wire n1,n2,n3,n4; 

wire g1,g2; 

assign A=~f; 

mux0 u1 (A[0],A[64],S1,f1); 

mux0 u2 (A[32],A[96],S1,f2); 

mux0 u3 (A[16],A[80],S1,f3); 

mux0 u4 (A[8],A[72],S1,f4); 

mux0 u5 (A[40],A[104],S1,f5); 

mux0 u6 (A[24],A[88],S1,f6); 

mux0 u7 (A[4],A[68],S1,f7); 

mux0 u8 (A[36],A[100],S1,f8); 

mux0 u9 (A[20],A[84],S1,f9); 

mux0 u10 (A[12],A[76],S1,f10); 

mux0 u11 (A[28],A[92],S1,f11); 

mux0 u12 (A[2],A[66],S1,f12); 

mux0 u13 (A[34],A[98],S1,f13); 

mux0 u14 (A[18],A[82],S1,f14); 

mux0 u15 (A[10],A[74],S1,f15); 

mux0 u16 (A[42],A[106],S1,f16); 

mux0 u17 (A[26],A[90],S1,f17); 

mux0 u18 (A[6],A[70],S1,f18); 

mux0 u19 (A[38],A[102],S1,f19); 

mux0 u20 (A[22],A[86],S1,f20);   

mux0 u21 (A[14],A[78],S1,f21); 

mux0 u23 (A[30],A[94],S1,f22); 

mux0 u24 (f1,f2,S2,k1); 

mux0 u25 (f3,A[48],S2,k2); 

mux0 u26 (f4,f5,S2,k3); 

mux0 u27 (f6,A[56],S2,k4); 

mux0 u28(f7,f8,S2,k5); 

mux0 u29 (f9,A[52],S2,k6); 

mux0 u30 (f10,A[44],S2,k7); 

mux0 u31 (f11,A[60],S2,k8); 

mux0 u32 (f12,f13,S2,k9); 

mux0 u33 (f14,A[50],S2,k10); 

mux0 u34 (f15,f16,S2,k11); 

mux0 u35 (f17,A[58],S2,k12); 

mux0 u36 (f18,f19,S2,k13); 

mux0 u37 (f20,A[54],S2,k14); 

mux0 u38 (f21,A[46],S2,k15); 

mux0 u39 (f22,A[62],S2,k16); 

mux0 u40 (k1,k2,S3,m1); 

mux0 u41 (k3,k4,S3,m2); 

mux0 u42 (k5,k6,S3,m3); 

mux0 u43 (k7,k8,S3,m4); 

mux0 u44 (k9,k10,S3,m5); 
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mux0 u45 (k11,k12,S3,m6); 

mux0 u46 (k13,k14,S3,m7); 

mux0 u47 (k15,k16,S3,m8); 

mux0 u48 (m1,m2,S4,n1); 

mux0 u49 (m3,m4,S4,n2); 

mux0 u50 (m5,m6,S4,n3); 

mux0 u51 (m7,m8,S4,n4); 

mux0 u52 (n1,n2,S5,g1); 

mux0 u53 (n3,n4,S5,g2); 

mux0 u54 (g1,g2,S6,S7); 

endmodule 

Round decision 

module Round_decision (RI,RN,S,Rd,Rd1); 

input RI,RN,S; 

output Rd,Rd1; 

assign Rd=RI|RN; 

assign Rd1=RI&S; 

endmodule 

LSB correction 

module LSB_correct 
(RN,N,Sn,Sun,Rn,Run,LSB,Lc); 

input RN,Sn,Sun,Rn,Run,LSB,N; 

output Lc; 

wire x1,x2,x3,x4; 

assign x1=Rn&~Sn;  //tie case for normalized   
Rn=Ro 

assign x2=Run&~Sun;  //tie case for unnor.      
Run=Rn 

assign x3=N?x1:x2; 

assign x4=x3&RN; 

assign Lc=LSB&~x4; 

endmodule 
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