
Binary Floating Point Fused Multiply Add Unit

by

Eng. Walaa Abd El Aziz Ibrahim

A Thesis Submitted to the

 Faculty of engineering at Cairo University

in partial Fulfillment of the

Requirement for the Degree of

 MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

 GIZA, EGYPT

2012

Binary Floating Point Fused Multiply Add Unit

by

Eng. Walaa Abd El Aziz Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

Under the Supervision of

Ahmed Hussien Khalil

Associate Professor
Electronics and Communications

Engineering
Cairo University

Hossam Aly Fahmy

Associate Professor
Electronics and Communications

Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2012

i

Acknowledgment

First, I want to thank God for helping me in finishing this work. I want also to

thank my supervisors Dr. Ahmed Hussein and Dr. Hossam Fahmy for giving me

information, support and experience which I need in research and writing this

thesis.

I would like also to thank Eng. Ahmed el Shaf3y, Eng. Mervat and Eng. Ahmed

Mohee for their co-operation with me and a specially thank to Eng. Amr Abd

el-Fatah for helping me in testing my designs.

Finally, I want to thank my parent, sisters, fiancé and friends for giving me support

and confidence.

ii

ABSTRACT

 Floating-point unit is an integral part of any modern microprocessor. The fused

multiply add (FMA) operation is very important in many scientific and engineering

applications. It is a key feature of the floating-point unit (FPU), which greatly increases

the floating-point performance and accuracy. With the recent advancement in FPGA

architecture and area density, latency has been the main focus of attention in order to

improve performance. Many floating-point fused multiply add algorithms are developed

to reduce the overall latency. The greatest deviation from the original IBM RS/6000

architecture comes from a paper by T. Lang and J.D. Bruguera on a reduced latency fused

multiplier-adder. The paper claims an estimated 15-20% reduction in latency as

compared to a standard fused multiply add. This result is calculated theoretically, and the

actual architecture has yet to be implemented in either a synthesized or a custom CMOS

silicon design.

The main objective of our work is to implement this algorithm but with little change to

facilitate the implementation and on the other hand do not affect the performance. The

implementation includes full design of blocks are not included before in Lang/Bruguera

algorithm like sign detection module. Both the proposed and the basic architecture are

designed using the Verilog hardware description language and then synthesized, placed

and routed for Cyclone II FPGA device using Quartus II 9.1. The proposed architecture

achieves a delay improvement about 25.5% as compared to the basic architecture. The

increase of area in the proposed architecture is about 6.2%.

iii

Contents
Acknowledgment …………………………………………….…………..……………….i

Abstract………………………………………..………………………………..……..…ii

Contents……………………………...………..……………………………..…..………iii

List of Figure……………………...……………………...………………………………v

List of Table……………….…………..………………………………………………..vii

List of Abbreviations……...……………..……………………………………….……viii

Chapter 1 : Introduction... 1

1.1 Motivation and Contribution.. 2

1.2 Outline.. 2

Chapter 2 : Standard Floating Point Representations and Fused Multiply-Add
Algorithm ... 4

2.1 Fraction representation... 4
2. 1.1 Fixed point representation .. 4
2. 1.2 Floating point representation .. 5

2.2 IEEE floating point representation... 5
2.2.1 Basic formats .. 6
2.2.2 Rounding modes .. . 9
2.2.3 Exceptions... 11

2.3 Standard floating point fused multiply-add Algorithm.. 12
2.3.1 Basic Algorithm.. 12
2.3.2 Basic implementation ... 13

2.4 Conclusion ... 13

Chapter 3 : Previous Work on the Floating-Point Fused Multiply Add Architecture
... 15

3.1 Basic architecture IBM RS/6000 ... 15

3.2 A fused multiply add unit with reduced latency .. 15

iv

3.3 Basic floating point Fused Multiply-Add components.. 17
3.3.1 The multiplier 19

3.3.1.1 Partial Product Generation... 19
3.3.1.2 Partial product reduction.. 21

3.3.2 The alignment shifter.. 21
3.3.3 3:2 CSA .. 25
3.3.4 Carry propagate adder (CPA) and leading zero anticipator (LZA).................. 25
3.3.5 The normalization... 32
3.3.6 The rounding... 33

3.4 Conclusion ... 34

Chapter 4 : Implementation of Fused Multiply Add unit ... 35

4.1 Proposed Fused Multiply Add ... 35

4.2 Design details of blocks used in proposed FMA ... 36
4.2.1 Leading zero anticipator (LZA) and Normalization shifter 38
4.2.2 Sign detection module .. 42
4.2.3 Add/Round module... 48

0T4.2.3.10T 0TSelect decision and bits selection 0T .. 51
0T4.2.3.20T 0TSticky bit calculation and round decision 0T .. 53
0T4.2.3.30T 0TLSB correction 0T ... 57

0T4.2.40T 0TAnticipated part of the adder 0T .. 59

0T4.30T 0TConclusion0T ... 62

0TChapter 5 : Simulation Verification and Results 0T ... 63

0T5.10T 0TSimulation verification 0T ... 63

0T5.20T 0TSimulation Results0T ... 63

0T5.30T 0TConclusion0T ... 68

0TChapter 6 : Conclusion 0T... 70

0T6.10T 0TFuture Work 0T ... 71

0TUBIBLIOGRAPHY………………………………………..……………………… U0T……..72

0TAPPENDIX……………………………………..……………………………………….76

v

List of Figures

Figure 2-1: IEEE 754 double precision format ... ……7

Figure 2-2 Basic implementation of FMA operation ... 14
Figure 3-1: original fused multiply-add architecture. .. 16
Figure 3-2: Lang/Bruguera combined addition/rounding stage fused multiply-add 18
Figure 3-3: One partial product generation .. 20
Figure 3-4: All partial products generation .. 21
Figure 3-5: The block diagram of CSA reduction tree. .. 22
Figure 3-6: Position of addend using bidirectional shift (a) Maximum left shift. (b)
Maximum right shift. .. 23
Figure 3-7: Alignment of A. (a) before alignment. (b) Alignment with d ≥ 0. (c)
Alignment with d < 0. ... 24
Figure 3-8: Selection of MSB of sum and carry words of CSA by sign bits. 26
Figure 3-9: 4-bit LZD (a) using two 2-bits LZD’s. (b) the logic structure of 4-bit
LZD block. .. 28
Figure 3-10: Structure of 16-bit LZD ... 29
Figure 3-11 : One level implementation of 4 bit LZD .. 30
Figure 3-12: block diagram of LZA module. ... 32
Figure 3-13: n-bits normalization shifter .. 33
Figure 4-1: Three inputs LZA and sign detection module. .. 36
Figure 4-2: The proposed Fused Multiply Add. ... 37
Figure 4-3: Encoding of the 16-bit normalization shift amount. (a) Bits checked to
determine the shift amount. (b) Encoding of the shift amount. .. 39
Figure 4-4: Correction of error of LZA based on (a) compensation shifter correction. (b)
Carry select correction. (c) One hot vector. (d) Oddness detection. (e) Parallel correction.
 .. 41
Figure 4-5: Inputs to sign detection module to include sign extension bit....................... 43
Figure 4-6: A 109-bit tree comparator. .. 46
Figure 4-7: Comparison (magnitude) and (magnitude-1) of -5 with any positive number
 .. 47
Figure 4-8: A complete block of sign detection module. .. 49
Figure 4-9: cases appear due to one bit error in lZA. ... 50
Figure 4-10: Block diagram of the add/round module. .. 52
Figure 4-11: The rounded result in case of (a) overflow, (b) No overflow. 54
Figure 4-12: Selection of rounded result using inc and ovf signals. 55

vi

Figure 4-13: Block diagram of round decision... 58
Figure 4-14: LSB correction block. .. 60
Figure 4-15: Anticipated part of HA and bit carry propagate and generate signals
selection. ... 62
Figure 5-1: Test vectors examples and their syntax. .. 64
Figure 5-2: A window of Active File Compare Program. .. 65
Figure 5-3: Example ModelSim run for floating-point fused multiply add unit. 65
Figure 5-4: Worst case delay of basic and proposed architectures. 66
Figure 5-5: Compilation report of (a) basic architecture (b) proposed architecture. 67

vii

List of Tables

Table 2-1: five basic formats of IEEE standard .. . 7
Table 2-2 : The maximum and minimum representable numbers and there’s approximate
decimal values. ... 9
Table 2-3 : Summary of corresponding values for double precision format. 10
Table 3-1: Modified Booth’s recoding ... 20
Table 3-2: Truth table of 2-bit LZD ... 28
Table 3-3: Truth table of 4-bit LZD ... 29
Table 4-1: Sign bits of the output of CSA.. 44
Table 4-2: 2-Bit Magnitude Comparison. ... 45
Table 4-3: Rounding modes. .. 56
Table 4-4: Round to Nearest/even versus Round to Nearest/up. 58
Table 4-5: Truth table of H.A with inverted and non inverted inputs.............................. 61
Table 5-1: worst case delay and number of logic gates of lower part of (a) basic
(b) proposed architectures. ... 68

viii

ARM Application Response Measurement

CDC Control Data Corporation

CPA Carry Propagate Adder

CSA Carry Save Adder

DEC Digital Equipment corporation

DSP Digital Signal Processing

DUT Design Under Test

FFT Fast Fourier Transform

FIR Finite Impulse Response

FMA Fused Multiply Add

FPGA Field Programmable Gate Arrays

FPU Floating-Point Unit

HA Half Adder

 HP Hewlett-Packard

IBM International Business Machine

RS/6000 Reduced instruction set computing System 6000

IEEE Institute of Electrical and Electronics Engineers

LSB Least Significant Bit

List of Abbreviations

LZA Leading Zero Anticipator

ix

LZC Leading Zero Counter

LZD Leading Zero Detector

MIPS Microprocessor without Interlocked Pipeline Stages

MSB Most Significant Bit

NaN Not a Number

RI Round to Infinity

Rn Round towards +∞

RN Rounding to Nearest even

RP Round towards -∞

RZ Round towards 0

SRAM Static Random Access Memory

VLSI Very Large Scale Integrated

1

Chapter 1 : Introduction

 Floating-point unit (FPU) is one of the most important custom applications

needed in most hardware designs as it adds accuracy and ease of use. Recently, the

floating-point units of several commercial processors like IBM PowerPC,

Intel/HP Itanium, MIPS-compatible Loongson-2F and HP PA-8000 [8], [24] have

included a floating-point fused multiply add (FMA) unit to execute the double-

precision fused multiply add operation 𝐴𝐴 + (𝐵𝐵 × 𝐶𝐶) as an indivisible operation,

with no intermediate rounding.

The FMA operation is very important in many scientific and engineering

applications like digital signal processing (DSP), Finite impulse response (FIR)

filters, graphics processing, fast Fourier transform (FFTs) [4], [11] division and

argument reduction [20], [28]. The first FMA is introduced in 1990 by IBM

RS/6000 [12], [13]. After that FMA is implemented by several companies like HP,

MIPS, ARM and Intel. It is a key feature of the floating-point unit because it

greatly increases the floating-point performance and accuracy since rounding is

performed only once for the result 𝐴𝐴 + (𝐵𝐵 × 𝐶𝐶) rather than twice for the

multiplier and then for the adder. It also realizes reduction in the latency and

hardware cost. FMA can be used instead of floating-point addition and floating-

point multiplication by using constants e.g., 0.0 + (𝐵𝐵 × 𝐶𝐶) for multiplication and

𝐴𝐴 + (𝐵𝐵 × 1.0) for addition.

A Field Programmable Gate Array, FPGA, provides a versatile and

inexpensive way to implement and test VLSI designs. It is mostly used in low

volume applications that cannot afford silicon fabrication or designs which require

frequent changes or upgrades.

http://en.wikipedia.org/wiki/MIPS_architecture�
http://en.wikipedia.org/wiki/Loongson�

2

In FPGAs, the bottleneck for designing efficient floating-point units has

mostly been area. With advancement in FPGA architecture, there is a significant

increase in FPGA densities so latency has been the main focus of attention in order

to improve performance.

1.1 Motivation and Contribution

Floating-point fused multiply add unit is one of the most important blocks

that exist in floating-point unit as it increases its accuracy and performance. It is

useful in many computations which involve the accumulation of products such as

scientific and engineering applications. Many algorithms are developed on

floating-point fused multiply add unit to decrease its latency [2], [10], [18], [25],

[31]. The biggest deviation from the original IBM RS/6000 architecture comes

from a paper by T. Lang and J.D. Bruguera [10] on a reduced latency fused

multiply add units. However, to the best of our knowledge, Lang/ Bruguera

algorithm is not implemented till now.

The main contribution and objective of our work is to implement the

architecture which is proposed by Lang/Bruguera but with little change to

facilitate the implementation. This thesis also shows the full design of some blocks

which are not included in Lang/Bruguera work like sign detection module. This

algorithm and the basic algorithm are implemented in the Verilog hardware

description language, and then are synthesized, placed and routed for Cyclone II

FPGA device using Quartus II 9.1. Area and timing information for each design

approach is reported and analyzed.

1.2 Outline

 This thesis is structured as follows. Chapter 2 gives an overview of IEEE

floating-point standard and brief information on fused multiply-add unit.

Chapter 3 shows previous architectures of the fused multiply add and the

design details of the components used to implement them. Chapter 4 shows the

3

proposed fused multiply add fused unit and the design details of its components.

Chapter 5 goes over the testing procedure, simulation, and results. Chapter 6

concludes the thesis and provides recommendations for further research.

4

Chapter 2 : Standard Floating Point Representations
and Fused Multiply-Add Algorithm

2.1 Fraction representation

Beside integer’s representation, there is a need to represent fractions. A radix

point is used to divide the number into two parts, an integer part (on the left to the

radix point) with using positive powers and a fraction part (on the right to radix

point) with using negative powers. As an example, the binary number (10.01)2

2. 1.1 Fixed point representation

 is

interpreted to (1𝑥𝑥21 + 0𝑥𝑥20 + 0𝑥𝑥2−1 + 1𝑥𝑥2−2) which equals to (2.25) in

decimal. However an exact representation of all fractions is impossible in binary

notation. For example consider the number 1/3, it can be written as a decimal by

(0.333333…..) for a finite number assigned for the fractional part the

representation is not exact. Fixed and floating point representations are used to

handle fractions in computers.

Fixed point representation is a simple and easy way to express fractional

numbers using a fixed number of bits. The precision of a fixed point

number is the total number of bits for the fractional part of the number.

The location of the radix point is variable and non-compulsory so the

precision of the fixed point can be any number up to and including all bits

used. The dynamic range of fixed point is the ratio of the largest

representable number to the smallest non-zero representable number.

Accordingly, The more precision the less dynamic range we have.

5

Fixed point representation suffers from lack of dynamic range where

very large and very small numbers cannot be represented together in the

same representation.

2. 1.2 Floating point representation

Floating-point representation basically represents real numbers in

scientific notation. Scientific notation represents numbers as a base

number and an exponent. In general, a floating-point number consists of

three main parts: sign (S), mantissa (M) and exponent (E). Its value can be

given by (−1)s × M × baseE the base is one of the most important aspects

needed to know when using floating point representation. It is equal 2 for

binary, 10 for decimal and 16 for hexadecimal numbers.

The main feature of floating point representation is its large dynamic

range. This is because the largest representable number is approximately

equal to the base raised to the power of maximum positive exponent and

the smallest non-zero number is approximately equal to the base raised to

the power of the maximum negative exponent.

The precision is another important factor of floating-point

representation. It equals the number of bits used to represent the mantissa

(significand). It determines how close two adjacent floating point numbers

can be.

2.2 IEEE floating point representation

A floating point system defines the base of the number system, the location

of the fractional point , precision and whether the numbers are normalized or not.

Many formats appeared to specify these issues such as IBM, CDC and DEC

formats [34]. These formats suffered from compatibility and conversion problems.

6

Thus there is a need to standardize the formats Regardless of manufacturers and

programming languages. The IEEE standard is developed for this need.

 IEEE 754 is an IEEE Standard for Floating-Point Arithmetic which is

developed for binary floating point arithmetic in 1985. In 1987 a second

complementary standard (IEEE 854) is developed for radix independent floating

point arithmetic. The current version is (IEEE 754–2008) which appeared in 2008.

It is a revised version which combines two previous standards in addition to the

inclusion of decimal floating point and its operations.

The standard specifies basic and extended floating-point number formats,

arithmetic operations, conversions between various number formats, rounding

algorithms, and floating-point exceptions. The standard also includes extensive

recommendations for advanced exception handling.

Formats in IEEE standards describe sets of floating-point data and encodings

for interchanging them. A given format comprises finite numbers, including its

base and three fields needed to specify sign, significand and exponent, Two

infinities +∞ and −∞ and Two kinds of Not a Number (NaN) quiet and signaling.

2.2.1 Basic formats

The standard defines five basic formats, see Table (2-1), the first three

formats named single, double and quadruple precision basic formats are used to

encode binary floating point numbers and use 32, 64 and 128 bits respectively.

The last two formats are used for decimal floating point numbers and use 64 and

128 bits to encode them.

All the basic formats may be available in both hardware and software

implementations.

http://wapedia.mobi/en/IEEE�
http://wapedia.mobi/en/NaN�

7

This thesis concerns only on binary floating point with double precision

format, so it will be discussed in more details.

Table 2-1: five basic formats of IEEE standard

Name Common name Base Digits E E min max

binary 32 Single precision 2 23+1 -126 +127

binary 64 Double precision 2 52+1 -1022 +1023

binary 128 Quadruple precision 2 112+1 -16382 +16383

decimal 64 10 16 -383 +384

decimal 128 10 34 -6143 +6144

Double precision format

Double -precision format uses 1-bit for sign bit, 11-bits for bias exponent and

52-bits to represent the fraction as shown in Figure (2-1).

Figure 2-1: IEEE 754 double precision format

The double- precision floating-point number is calculated as (−1𝑠𝑠) × 1. 𝐹𝐹 ×

2(𝐸𝐸−1023) . The sign bit (s) is either 0 for non-negative number or 1 for negative

numbers. The exponent field represents both positive and negative exponents. To

do this, a bias is added to the actual exponent. For IEEE double-precision format,

this value is 1023, for example, a stored value of 2011 indicates an exponent of

(2011-1023), or 988. The mantissa or significand is composed of an implicit

leading bit and the fraction bits, and represents the precision bits of the number.

Sign
s

Exponent-E
(11) bit

Fraction-F
(52) bit

05263

http://wapedia.mobi/en/Single_precision_floating-point_format�
http://wapedia.mobi/en/Double_precision_floating-point_format�
http://wapedia.mobi/en/Quadruple_precision_floating-point_format�
http://wapedia.mobi/en/Decimal64_floating-point_format�
http://wapedia.mobi/en/Decimal128_floating-point_format�

8

Exponent values (biased) of all 0’s and all 1’s are reserved to encode special

numbers such as zero, denormalized numbers, infinity, and NaNs.

I. Normalized numbers

 A floating-point number is said to be normalized if the exponent field

contains the real biased exponent other than all 0’s and all 1’s. For all the

normalized numbers, the first bit just left to the decimal point is considered to be 1

and not encoded in the floating-point representation and thus also called the

implicit or the hidden bit.

Assuming 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 to be the largest mantissa and exponent

respectively, we can represent the largest normalized positive number for double

precision format 𝑀𝑀𝑀𝑀𝑀𝑀 as:

 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 × 2𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 (2-1)

Similarly, we get the minimum positive representable number 𝑀𝑀𝑀𝑀𝑀𝑀 from the

minimum normalized mantissa 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 and the minimum exponent 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 :

 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 × 2𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 (2-2)

 Table (2-2) shows the maximum and minimum representable numbers

which are encoded to approximate decimal values.

II. Denormalized numbers

 A floating-point number is considered to be denormalized if the biased

exponent field contains all 0’s and the fraction field doesn’t contain all 0’s. The

implicit or the hidden bit is always set to 0. Denormalized numbers fill in the gap

between zero and the lowest normalized number.

9

Table 2-2 : The maximum and minimum representable numbers and there’s approximate
decimal values.

 Fraction

F

Mantissa

M

(with hidden one)

Exponent

E

(not biased)

Approximate

Decimal

Min All zeros 1 -1022 2-1022≈10-307.66

Max All ones 1 +(1-2-52 1023) 21024≈10+308.25

III. Infinity

 In double-precision format, infinity is represented by biased exponent field

of all 1’s and the whole fraction field of 0’s.

IV. Not a Number (NaN)

 In double-precision format, NaN is similar to infinity in biased exponent

field but the fraction field doesn’t include all 0’s.

V. Zero

In double-precision format, zero is represented by biased exponent field of all

0’s and the whole fraction field of 0’s. The sign bit represents -0 and +0,

respectively.

The mapping from an encoding of a double-precision floating-point number

to the number’s value is summarized in Table (2-3).

2.2.2 Rounding modes
The result of an operation or function on floating point numbers may not be

exactly a floating point number so it has to be rounded. The IEEE 754-2008

standard specifies five rounding modes.

10

Table 2-3 : Summary of corresponding values for double precision format.

I. Round toward −∞ (Rn):

Rn(x): is the largest floating-point number (possibly −∞) less than or equal

to x.

II. Round toward +∞ (Rp):

Rp(x): is the smallest floating-point number (possibly +∞) greater than or

equal to x.

III. Round toward zero (RZ):

 RZ(x): is the closest floating-point number to x that is no greater in

magnitude than x.

IV. Round to nearest even (RN):

 RN(x): is the floating-point number that is the closest to x. A tie-case

happens when x falls exactly halfway between two consecutive floating-point

numbers. It is rounded to the nearest value with an even (zero) least significant bit.

Fraction

(F)

Biased Exponent

(E)
Value

± Zero All zeros All zeros ±0

Denormalized

number
Non zero

All zeros

(-1)s × 0. F × 2-1022

Normalized

Numbers

From all zeros

to all ones

Not all ones and

not all zeros
(-1)s × 1. F × 2(E-1023)

± Infinity All zeros All ones ±∞

Not a number Non zeros All ones ± NaN

11

V. Round to nearest ties away from zero (RNZ):

RNZ(x): is the floating-point number that is the closest to x. When a tie

case happens it is rounded to the nearest value with larger magnitude.

2.2.3 Exceptions
An exception can be signaled along with the result of an operation in IEEE

standard. When exception occurs a status flag is raised which can be checked after

the end of the operation. It may be with or replaced by some trap mechanism.

The standard defines five exceptions:

I. Invalid operation

This exception is signaled when an input is invalid for the function. The

result is a quiet Not a Number qNaN.

Examples: (+∞) − (+∞), 0/0.

II. Divide By Zero

This exception is signaled when an exact infinite result is defined for a

function on finite inputs.

Examples: 1 0� and log B(0).

III. Overflow

This exception is signaled when the rounded result with an unbounded

exponent range would have an exponent larger than Emax .

IV. Underflow

 This exception is signaled when a tiny nonzero result is detected. This can be

done before rounding or after rounding. If the result of an operation is exact, then

the underflow flag is not raised.

12

V. Inexact

This exception is signaled when the exact result is not exactly representable.

2.3 Standard floating point fused multiply-add Algorithm
 A fused multiply add unit performs the multiplication B × C followed

immediately by an addition of product and a third operand A so that the calculation

of (A + B × C) is done as a single and indivisible operation. It is also capable of

performing multiplies only, by setting A = 0.0, and adds (or subtract) only by

setting for example B = 1.0.

The fused multiply add (FMA) operation was introduced in 1990 on the IBM

RS/6000 [12], [13] for the single instruction execution of the equation

(A + B × C) with single and double precision floating-point operands. Because

of its use in many applications as DSP, graphics processing, FFTs, FIR filters and

division applications many algorithms are introduced after that for it.

This operation reduces the number of interconnections between floating point

units, the number of adders and normalizers, and provides additional accuracy

compared to separate multiply and add units. That is because of performing a

single, instead of two, round /normalizes steps. On the other hand it increases the

precision and delay of the adder and requires more complex normalizers.

2.3.1 Basic Algorithm

Let A , B and C be the operands represented by (Ma , Ea), (Mb , Eb) and

(Mc , Ec) respectively. The significand are signed and normalized, and the result W

is given by:

 W = A + (B × C) (2-3)

13

Where W is represented by (Mw , Ew) , where Mw is also signed and

normalized. The high level description of this operation is composed of the

following five steps:

1. Multiply significand 𝑀𝑀𝑏𝑏 and 𝑀𝑀𝑐𝑐 , add exponents 𝐸𝐸𝑏𝑏 R

2. Add the product and the aligned Ma .

and 𝐸𝐸𝑐𝑐 , and

determine the alignment shift and shift 𝑀𝑀𝑎𝑎 , produce the intermediate

result exponent 𝐸𝐸𝑤𝑤 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝑎𝑎 , 𝐸𝐸𝑏𝑏 + 𝐸𝐸𝑐𝑐).

3. Normalize the adder output and update the result exponent.

4. Round.

5. Determine the exception flags and special values.

2.3.2 Basic implementation

 Using the above algorithm, the standard floating point fused multiply-add

was designed. The organization of a FMA unit is shown in Figure (2-2). We can

see that the addition of the multiplier product and the aligned addend is done

firstly by carry save adder (CSA) then a carry propagate adder (CPA). The sticky

bit calculation which is needed for rounding and the anticipation of the leading

zeros which is needed for normalization are performed parallel with CPA. The

standard architecture is the baseline algorithm for floating-point fused multiply-

add in any kind of hardware and software design.

2.4 Conclusion

The aim of this thesis is to implement double-precision binary floating point

fused multiply add unit so in this chapter we give an overview of IEEE standard of

floating point arithmetic with focusing in double-precision binary floating point

format. We also briefly explain the standard algorithm of the fused multiply add

operation and give the basic block of it.

14

Figure 2-2 Basic implementation of FMA operation

M by m
 multiplierRight shifterShift distance

exponent

Carry save
adder(CSA)

normalizer

round

Exponent
update

Ma Mb Mc

Ec Eb Ea

Ew

Mw

d

5353 53

106106

161

161

54

53

Max(Ea,Eb+Ec)

Sticky
calculationAdder (CPA)Leading zero

anticipator(LZA)

15

Chapter 3 : Previous Work on the Floating-Point Fused
Multiply Add Architecture

3.1 Basic architecture IBM RS/6000

As cited before in chapter 2, the first implementations of fused multiply add

unit (FMA) was in 1990 by IBM RS/6000 [12], [13]. Several general-purpose

processors like IBM PowerPC, the HP PA-8000, and the HP/Intel Itanium

implemented FMA unit after that [8], [24] Their implementations were modified

versions from the original implementation of IBM RS/6000. Figure (3-1) shows

the original fused multiply-add architecture.

3.2 A fused multiply add unit with reduced latency

The greatest deviation from the original IBM RS/6000 architecture comes

from a paper by T. Lang and J.D. Bruguera on a reduced latency fused multiply

add unit [10]. This paper introduces a new approach to improve the performance

of the fused multiply add unit. The idea depends on the combination of the

addition and rounding stages into one stage. Although this idea is used before in

floating-point adder and floating-point multiplier architectures as in [17], [33] it is

more difficult to apply in fused multiply add unit. That is because of the

postponement of normalization after add/round module is not possible in FMA

operation because the rounding position is not known until the normalization has

been performed; on the contrary, in case of addition it is possible because no

rounding is required when massive normalization occurs. Lang and Bruguera

describe that in order to combine the addition and rounding stages in a fused

multiply add unit, the normalization must be done first.

16

Figure 3-1: original fused multiply-add architecture.

Multiplier

recode

CSA Tree

Bit invert

161-bit
alignment

shifter

3:2 CSA

161-bits
 adder

complementer

Normalization shifter

Rounder

Sticky

Exponent
processing

Exponent update

A B C

sub

56-d

Ea Eb Ec

106106106

55

LSB

MSB

LZA

17

The reduced latency fused multiply-add architecture is shown in Figure (3-2).

In this design, the aligned addend is combined with the multiplier product in the

same way as in the IBM RS/6000. The anticipation of leading zeros is done first in

LZA block parallel to the reduction of vectors by using carry save adder (CSA)

and a detection of output sign in sign detection module. Because the normalization

shifter has to begin its job after LZA block and the LZA block is on the critical

path authors propose to overlap the operation of LZA with the operation of the

normalization shifter. It is done by designing a new LZA encoder which produces

control signals which control the normalization shifter once they are calculated.

However, despite the overlap, a time gap still exists between LZA block and the

normalization shifter. To overcome this gap a part of dual adder (next stage) is

anticipated before the normalization.

When the data exits the normalization stage, it enters the add/round module.

The data is split into two groups, a 51-bit in dual adder and a 108-bit in

carry/sticky block. The carry/sticky block creates and passes the rounding

information bits to rounding control, which then selects the correct augmented

adder output. The data are post-normalized, and the fused multiply-add is

complete.

The paper claims an estimated 15-20% reduction in latency as compared to a

standard fused multiply-add [10]. This result is calculated theoretically, and the

actual architecture has yet to be implemented in either a synthesized or a custom

CMOS silicon design [19].

3.3 Basic floating point Fused Multiply-Add components

This part introduces design details of blocks used in basic architecture.

18

Figure 3-2: Lang/Bruguera combined addition/rounding stage fused multiply-add

Multiplier

recode

CSA Tree

Bit invert

161-bit
alignment

shifter

3:2 CSA

Exponent
processing

sub

56-d

Ea Eb Ec

106106

106

55

LSB

MSB
Sign

Detection

Bit-invert
HA and part of

adder

Normalization
 shifter

Rest of
 53-bits

 dual adder

sum+1 sum

round bit
guard bit

carry
and sticky

mux

Sign(d)

Sub

 d=0
or d=1

A B C

complement

Sign(d)
Other
control
signals

LZA

19

3.3.1 The multiplier

Multiplication is the process of generation and addition of the partial

products. Multiplication algorithms differ in how the generate partial products and

how the partial products are added together to produce the final result.

3.3.1.1 Partial Product Generation

Floating point fused multiply add unit includes a multiplier which uses a

modified Booth’s algorithm to generate partial products. In Booth’s algorithm the

multiplier operand C is often recoded into a radix higher than 2 in orders to reduce

the number of partial products. The most common recoding is radix-4 recoding

(modified booth’s recoding) with the digit set {−2, −1, 0, 1, 2} is shown in table

(3-1). For a series of consecutive 1’s, the recoding algorithm converts them into

0’s surrounded by a 1 and a (−1), which has the potential of reducing switching

activity.

Each three consecutive bits of the multiplier C represent the input to booth

recoding block and the output from this block selects the right operation on the

multiplicand B which may be “shift and invert” or “invert” or “equal zero” or

“no operation” or “shift ” (-2B, -B, 0, B, 2B) respectively due to the bits of

multiplier. Also there is an output bit 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to indicate the sign and complete the

2’s complement if the partial product is negative. Figure (3-3) shows the

generation of one partial product. For double precision format the multiplier has

53 bits. By using modified booth recoding the number of partial products are

reduced to 27 partial products. Figure (3-4) shows the generation of all 27 partial

products.

20

Table 3-1: Modified Booth’s recoding

Figure 3-3: One partial product generation

Booth Recoding

-2B -B 0 B 2B

5 : 1 MUX

Multiplicand B

Multiplier C

3 bits

PP

sel

3 bits

sign

Bits of multiplier C Encoding

Operation on

multiplicand B

C Ci+1 Ci i-1

0 0 0 +0

0 0 1 +B

0 1 0 +B

0 1 1 +2B

1 0 0 -2B

1 0 1 -B

1 1 0 -B

1 1 1 -0

21

Figure 3-4: All partial products generation

3.3.1.2 Partial product reduction

After generation of the partial products, the partial Products begin

compression using 3-2 CSA tree. The reduction occurs by rows where each three

partial product in same level will be input to CSA adder and output 2 operands

(i.e. partial products) to the next level, and so on. For 27 partial products, 8 stages

are required to produce a product in carry-save, or a carry vector and sum vector

that need only to be added for a complete multiply. Figure (3-5) shows the block

diagram of CSA reduction tree.

3.3.2 The alignment shifter

To reduce the latency in a fused multiply add unit, the inversion and

alignment of the significand of 𝐴𝐴 is done in parallel with the multiplication. The

inversion provides the one’s complement of A for an effective subtraction. The

shift amount for the alignment depends on the value of d = Ea − (Eb + Ec) ,

where Ea , Eb and Ec are the exponents of the A, B and C operands, respectively.

One PP gen. One PP gen. One PP gen. One PP gen.

Multiplicand B

PP26 PP1 PP0PP25

Multiplier C[1:-1]Multiplier C[3:1]Multiplier C[51:49]Multiplier{ 0,C[52:51]}

3 bits 3 bits 3 bits 3 bits

s1 s0s25s26

22

Figure 3-5: The block diagram of CSA reduction tree.

When d ≥ 0 (i.e. Ea > (Eb + Ec)), in a conventional alignment, B × C

would have to be aligned with a right shift of d bits. Instead of that, shift the

addend A to the left to perform the alignment parallel with multiplication. For

double precision format the maximum left alignment shift would be 56 bits, see

Figure (3-6) (a). When d ≥ 56, B × C is placed to the right of the least significant

bit of A; in this case, B × C affects only the calculation of the sticky bit. The

maximum left shift is obtained by observing that the guard (position 53) and the

round (position 54) bits are 0 when the result significand corresponds to the

addend. Consequently, two additional positions are included, resulting in the shift

of 56 positions.

CSA- level#1

CSA- level#2

CSA- level#3

CSA- level#8

pp26 pp25 pp24 pp2 pp1 pp0pp5 pp4 pp3

23

When d < 0, the addend A would have to be aligned with a right shift of d

bits. In this case, the maximum alignment shift would be 105 bits for double

precision format see Figure (3-6) (b).

(a)

(b)

Figure 3-6: Position of addend using bidirectional shift (a) Maximum left shift. (b)
Maximum right shift.

For shift amounts larger than 105, d < −105, the operand A is placed to the

right of the least-significant bit of B × C, affecting only the calculation of the

sticky bit.

To avoid bidirectional shifter the alignment is implemented as a right shift by

placing the addend A to the left of the most significant bit of the product B × C by

56 bits. This is shown in Figure (3-7) (a). Two extra bits are placed between the

addend A and the product B × C to allow correct rounding when A is not shifted.

For d ≥ 0 with this implementation, A is right shifted (56 − d)bits; then, the

shift amount is shift amount = max{0,56 − d}, see Figure 3-7 (b).

1.xxxxxx...xxxxxxx

product 00xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxxSum
 carry

addend

53 bits

56

00xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxx

106 bits

poduct Sum
 carry

addend

xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxx
xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxx

01.xxxxxx...xxxxxxx

106 bits

105

24

For d < 0 , A is right shifted 56 − d bits, see Figure (3-7) (c), then

shift amount = min⁡{161,56 − d}.By combining both cases, the shift amount is

in the range [0:161], requiring a 161-bit right shifter. Moreover, the shift amount

is computed as shift amount = 56 − d

(a)

(b)

 (c)

Figure 3-7: Alignment of A. (a) before alignment. (b) Alignment with d ≥ 0. (c) Alignment
with d < 0.

1.xxxxxx...xxxxxxx

poduct 00xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxxSum
 carry

addend

53 bits

56

00xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxx

106 bits

1.xxxxxx...xxxxxxx

poduct 00xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxxSum
 carry

addend

53 bits

56-d(<56)

00xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxx

106 bits

Bit shifted in

Position of MSB
of A for max.

shift=56

1.xxxxxx...xxxxxxx

poduct 00xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxxSum
 carry

addend

53 bits

56-d(>=56)

00xx.xxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxx

106 bits

Bit shifted in
Position of MSB

of A for max.
shift=161

25

3.3.3 3:2 CSA

The multiplier produce 106-bit sum and carry vectors that are reduced

together with the aligned A using 3:2 CSA. Although the output of the multiplier

must be positive number because we multiply two positive numbers (sign and

magnitude representation), one of the two output vectors of the multiplier (sum

and carry) may be negative because of using booth algorithm which use negative

sets {-1,-2} which convert a positive number with sign and magnitude

representation to a negative number with two’s complement representation. The

addition of sum and carry vectors must be a positive number but one of them, not

both, may be negative.

Instead of using 161-bit CSA, Only the 106 least-significant bits of the

aligned A are needed as input to the 3:2 CSA, because the product (i.e. sum and

carry vectors) has only 106 bits and The 55 most-significant bits will be sign

extension bits which have two cases {0, 0} if both sum and carry vectors are

positive or {0, 1} if one of them is negative. For the 55 most significant bits, we

use two multiplexers, one to select between A and inverted A as a sum vector and

the second one to select between zeros and A as a carry vector by Xor-ing sign

extension bits then the outputs of the two multiplexers are concatenated at the

output of the CSA to obtain the 161-bit sum and carry words, see Figure (3-8).

3.3.4 Carry propagate adder (CPA) and leading zero anticipator (LZA)

The output vectors of 3:2 CSA are now input to a 161-bit carry propagate

adder (CPA) and a leading zero anticipator (LZA) in the same stage.

We use the prefix adder to implement the carry propagate adder in this thesis

because it is very efficient in binary addition due to its regular structure and fast

performance.

26

Figure 3-8: Selection of MSB of sum and carry words of CSA by sign bits.

After the addition operation is done the adder output is left shifted by the

number of leading zeros to obtain a normalized result. It is called the

normalization step. Instead of waiting for the adder output to determine the

number of leading zeros it can be anticipated in parallel with the adder using a

leading zero anticipator (LZA) to eliminate this operation from the critical path.

LZA unit anticipates the number of leading zeros from the operands of the adder.

Since the shift amount is already determined by LZA the normalization operation

is performed once the result of addition is obtained.

The leading zero anticipator (LZA) has two main parts: the encoding of the

leading-one position (detection module) and the correction of this position

(correction module). The detection module are divided into two parts the first one

is called LZA logic and it determines the number of leading zeros (i.e. the position

of the leading one) by producing a string of zeros and ones where the position of

the most significant 1 is the position of the leading one. The second part, called

3:2 CSAmuxmux

Aligned
A

Multiplier
outputs

106 bits
161- bits

106 LSB

55 MSB

Sign bit of S

S C

Sign bit of C

sum carry

161- bits 161- bits

106 bits
{000…0}

106 bits

0 1 0 1

106 bits

27

leading zero detector (LZD), counts the number of zero digits from the left-most

position until the first nonzero digit is reached (i.e. leading one position). since the

detection is done from most significant bit to least significant bit (from left to

right) regardless of the carry that may come from the least significant bit, the

detection of leading one position may be off by one bit.

The LZA logic takes two input strings and uses a set of logical equations

given in [23], cited in Equation (3-1), to predict the bit position of the leading ‘1’

after a subtraction that causes massive cancellation. If the bits are numbered such

that bit 0 is the most significant, then, the indicator 𝑓𝑓𝑖𝑖 is equal to one when:

 fi = ti−1. (gi. zi+1 + zi. g� i+1) ⊕ t ̅i+1(zi. z�i+1 + gi. g� i+1), i > 0 (3-1)

f0 = t ̅0. t1

Where
𝑡𝑡𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 . 𝑏𝑏𝑖𝑖 (3-2)

𝑧𝑧𝑖𝑖 = 𝑎𝑎�𝑖𝑖 . 𝑏𝑏�𝑖𝑖

After LZA logic LZD is used to drive the normalization shifter by encoding

the position of leading one to its weighted binary representation. The LZD unit

assumes n bits as input and produces log2 n bits of the leading one position. The

LZD proposed by Oklobdzija [15] is used to implement the LZD for the floating

points fused multiply add of IBM RS/6000 in this thesis. Table (3-2) shows the

truth table of 2-bits LZD. By using two 2-bit LZD’s we can get 4-bit LZD as

shown in Figure (3-9) (a), the logic structure of 4-bit LZD is shown in Figure (3-9)

(b). Following the same concept we can get LZD with higher number of output

using hierarchical structure, as an example a 16-bit LZD is shown in Figure

(3-10). It can be included that the numbers of levels needed are log2 n level.

28

Number of levels can be reduced by one by implementing 4-bits LZD directly

from original bits. Figure (3-11) shows direct implementation of 4-bit LZD using

original bits using truth table shown in Table (3-3).

Table 3-2: Truth table of 2-bit LZD

(a)

(b)

Figure 3-9: 4-bit LZD (a) using two 2-bits LZD’s. (b) the logic structure of 4-bit LZD block.

LZD2 LZD2

LZD4

b0 b1 b2 b3

p0 v0 p1 v1

P V

2

mux sel

P0 P1

V0 V1

P V

2

01

pattern Position Valid

1x 0 Yes

01 1 Yes

00 X No

29

Figure 3-10: Structure of 16-bit LZD

Table 3-3: Truth table of 4-bit LZD

Pattern

b0b1b2b

3
Position

Position (binary)

P1P0

1011 0 00

0100 1 01

0011 2 10

0001 3 11

0000 X XX

LZD4 LZD4

LZD8

LZD16

b0 b1 b2 b3 b4 b5 b6 b7

P V P V

P V

2 2

 P V

3

4

LZD4 LZD4

LZD8

b8 b9 b10 b11 b12 b13 b14 b15

P V P V

P V

2 2

3

30

Figure 3-11 : One level implementation of 4 bit LZD

As cited before, the prediction of the position of the leading digit may differ

from that of the true result by one. Then, the result is not correctly normalized and

an additional left shift by one position is needed. The exponent should be also

decreased by one. Many methods have been proposed in [3] so far to handle the

one-bit error of the LZA logic. One of these methods, which are used here in this

thesis, compares the position of the leading one in one hot representation of the

anticipated leading digit; vector contains zeros except the digit indicates the

position of the leading one, and adder output [3], [21]. The comparison is done by

a bitwise AND of the one-hot vector with the adder output.

 If all the bits of the derived word are equal to zero then the predicted

position of the leading digit is not correct.

b0
b1 b2

P1 P0

31

A transformation is needed to obtain the one hot vector from LZA logic

output. To derive this one-hot representation, an intermediate S string is produced

at first. The S vector is produced where its bits that follow the leading digit are set

to one, while the other more-significant bits remain to zero. For example, for the

vector 00110101 the S vector is equal to 00111111. Assume the vector output

from LZA logic is defined as A = An−1An−2 … . . A0 where An−1 is the most

significant bit, the ith bit of S denoted as si , is defined as follow:

 Si = An−1 + An−2 + ⋯+ Ai+1 + Ai (3-3)

Where

0 ≤ i ≤ n − 1

The one-hot representation of the leading digit (L word) is produced from S

by detecting the case of different consecutive bits. Hence

 Li = S�i+1. Si For 0 ≤ i ≤ n − 2 (3-4)

 And

Ln−1 = Sn−1

The circuit that computes the L word is called a priority encoder. This

transformation is done in parallel with the operation of the LZD then there is no

increase in delay, in addition the LZA is not in the critical path as Shown in Figure

(3-12).

32

Figure 3-12: block diagram of LZA module.

3.3.5 The normalization

Using the results from the LZD, the result from the adder is shifted left to

normalize the result. That means now the first bit is 1.The normalizer is mostly a

large shifter. The shifter has more than one stage. As shown in Figure (3-13), the

stages are organized from the coarsest to the finest. The last stage performs a shift

by one or two due to correction signal. This should have a negligible effect on the

delay of the last stage.

ADDER

LZA-Logic

S-generation

LZD

Normalization shifter

Error
detection

operands

LZA

One-hot
representation

33

Figure 3-13: n-bits normalization shifter

3.3.6 The rounding

The rounding block rounds the result to nearest floating point number due

to the round mode and performs post-normalization in case of an overflow. The

round decision is taken by knowing also sticky and round bits. The sticky bit is

calculated from the result by OR-ing all least significant bits after the round bit.

Stage # 1
Shift by 2n

Stage # 2
Shift by 2n-1

Stage # n
Shift by 2

Stage # (n+1)
Shift by 1 or 2

n n-1 ….. ……….1 0

mux

0 1 2

Correction

Unnormalized
output from adder

normalized output

Output from n-bit LOD

MSB LSB

pn pn-1 ……… p1 p0

34

3.4 Conclusion

We discuss in this chapter previous works in fused multiply add architectures and

concern two main architectures which are the basic architecture IBM RS/6000 and

the fused multiply add with reduced latency proposed by Bruguera/Lang .

That is because the proposed architecture has a lot of details like the fused

multiply add proposed by Bruguera/Lang and then is compared with basic

architecture. We maintain also design details of blocks used in basic fused

multiply add architecture like multiplier, alignment shifter, LZA, normalizer and

rounder.

35

Chapter 4 : Implementation of Fused Multiply Add Unit
4.1 Proposed Fused Multiply Add

The proposed fused multiply add is actually the first implementation of the

Lang/ Bruguera fused multiply add algorithm. The implementation is done with

slight change in Lang/ Bruguera architecture.

In Lang/Bruguera design the LZA and the sign detection modules have three

inputs coming from the output of the multiplier and the aligned addend, but in the

proposed design the inputs to these modules come from the output from 3:2 CSA

after combining the multiplier outputs and the aligned addend.

The sign detection module is used to detect negative sign of output. If the sign

is negative the output of the 3:2 CSA is complemented. Comparison is needed

between the output of the multiplier B × C (i.e. two output vectors from CSA

reduction tree) and the aligned A. To compare between these three vectors there

are two solutions, adding the two vectors output from the multiplier first by a carry

propagate adder then comparing its output with aligned A or reducing these three

vectors using 3:2 CSA then comparing the output of this CSA. The second

solution is preferred to eliminate using of carry propagate adder in order to

decrease its delay because the output of this block, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 signal, is used after that

to select inputs to normalization shifter which are needed to be available as soon

as possible before shift amount of normalization shifter is calculated.

 Lang/Bruguera fused multiply-add architecture provides three inputs to the

LZA block. The three inputs may be combined with a 3:2 CSA before entering the

LZA logic unit. The Xiao-Lu paper [30] presents new equations that allow this

three input string to predict the leading ‘1’.

36

 A three input LZA removes the requirement for a 3:2 CSA and therefore

decreases the number of logic stages. In our case it is suitable to use 3:2 CSA as

used in sign detection module, as shown in Figure (4-1), because both blocks are

in critical path and affect the overall delay.

Figure 4-1: Three inputs LZA and sign detection module.

Instead of using three 3:2 CSA, we use only one in the proposed fused multiply

add and then take its output to two inputs sign detection and LZA blocks. This

change will not increase the overall delay as the delay of CSA already exists in the

critical path. The proposed architecture is shown in Figure (4-2).

4.2 Design details of blocks used in proposed FMA

To implement this architecture there is a need to fully design the sign

detection module with two inputs and redesign add/round module to include

the correction of LZA error. In the remaining part of this chapter we will

include the design of these blocks and the design of blocks that were modified

3:2 CSA3:2 CSA 3:2 CSA

2-inputs sign
detection
module

2-inputs LZA

Aligned A
Output of
multiplier
S C

37

from the basic architecture to be suitable in this implementation like LZA

block and the anticipated part of the adder.

Figure 4-2: The proposed Fused Multiply Add.

Multiplier

record

CSA Tree

Bit invert

161-bit
alignment

shifter

3:2 CSA

Exponent
processing

56-d

Ea Eb Ec

10610610655

LSB

MSB

Sign
Detection

Bit-invert
HA and part of

adder

Normalization
 shifter

Add/Round
Module

Sign(d)

Sub

 d=0 or
d=1

A B C

complement

Sign(d)
Other

control
signals

LZA

sub

38

4.2.1 Leading zero anticipator (LZA) and Normalization shifter

As cited before in chapter 3 the LZA block is used to determine the

normalization amount. It is composed of two main modules the detection and the

correction modules. The detection module has two main parts, the LZA logic

which determines the position of the leading one by getting a string of bits having

the same number of leading zeros as the sum and LZD which encodes the number

of leading zeros in a binary representation.

In the reduced latency Fused Multiply Add the LZA block is in the critical

path. So to reduce its delay there is a solution proposed by Lang/Bruguera paper

[10] by overlapping part of the LZA with the normalization shifter in such a way

that the shift amount is obtained starting from the most-significant- bit and, once

the first bit (MSB) is obtained, the normalization shift can start. It is contrary to

what happen in conventional LZA where the normalization shifter has to begin its

job after getting output from LZD.

Lang/Bruguera made this modification by replacing the LZD by a set of

gates and Multiplexers. The basic idea of the encoding is to check the existence of

the leading one in different groups of bits in LZA logic output where the number

and the position of the checked bits depend on the weight of the output bit [1].

Figure (4-3) (a) shows which groups are explored to get each bit for a 16-

bit normalization shift, for example, to get the most significant bit s1 the 8 most-

significant bits of LZA logic output are checked and if all of them are zeros (s1=1)

a normalization shift is needed by 8 bits. To get s2 two different groups of four

bits are checked and then selected by s1 and so on. Figure (4-3) (b) shows the

implementation of this algorithm. NOR gates are used to determine if there is

some 1 in different groups of the string. Each bit si+1 is obtained after a delay of

2:1 Multiplexer from the previous bit 𝑠𝑠𝑠𝑠.

39

A Multiplexer with more than two inputs can be implemented using a tree

of 2:1 Multiplexer’s.

It is clear that the most significant bits are computed first so the

normalization operation can be started with the most significant bit after a delay of

computing s1 only.

(a)

(b)

Figure 4-3: Encoding of the 16-bit normalization shift amount. (a) Bits checked to
determine the shift amount. (b) Encoding of the shift amount.

s1

s2 if (s1=0) s2 if (s1=1)
s3 if

(s1s2=00)
s3 if

(s1s2=01)
s3 if

(s1s2=10)
s3 if

(s1s2=11)

s4 s4 s4 s4 s4 s4 s4 s4

Output of the LZA logic
0 3 6 9 12 15

mux mux mux

mux

4:1 mux 4:1 mux

mux

S1

S2
S3

S4

Bits 0-7 Bits 0-3 Bits 8-11 0,1 8,9 4,5 12,13

0 4 8 12 2 6 10 14

40

Lang/Bruguera proposed another approach to overlap the operation of LZA

and the operation of normalization shifter. They split the 162-bit normalization

shifter into two stages a 54-bit normalization shifter followed by a 108-bit

normalization shifter [10]. It is possible because the shift amount is greater than 56

if d is negative (d<0) which makes the 56-most significant bits are zero and a

normalization shift of 54-bit,at least, can be performed in this case. LZA controls

only the 108-bit normalization shift.

The second module of the LZA is the correction module which is

responsible for the detection and correction of the error which may occur in the

determination of the position of the leading one. Many approaches are proposed

to correct this error without adding a large delay to the critical path.

The simplest method used is to check the most significant bit of the output

of the normalization shifter, as shown in Figure (4-4) (a), and if it equals zero an

error exists and it is corrected by adding a compensation shifter after the

normalization stage [29]. The second method is proposed in [6], [16] and shown in

Figure (4-4) (b). It uses the carries from the adder and checks the output of the

LZD by a carry select circuit, then uses its output to feed the shift correction

circuit. The third one is used before in chapter 3 and shown in Figure (4-4) (c). It

uses a LZA that generates a one-hot vector having the same number of bits as the

sum. It corrects the error by comparing the one hot vector with the sum from the

adder in parallel with the shifter. A method proposed by Hinds and Lutz [5] uses a

correction circuit which decides if the location of the leading one in the sum which

may be in either an odd or even bit position agrees with the oddness of the

predicted shift count from LZD. This is shown in figure (4-4) (d). Bruguera and

Lang [9] have developed a scheme, shown in figure (4-4) (e), to detect the error in

parallel with the LZA logic and generate a correction signal which may be used in

parallel with the coarse shifter to generate a fine correction shift signal.

41

Figure 4-4: Correction of error of LZA based on (a) compensation shifter correction. (b)
Carry select correction. (c) One hot vector. (d) Oddness detection. (e) Parallel correction.

adder
LZA logic

LZD

Normalization
shifter

Compensation
shifter

Adder

carries

sum

LZA logic

LZD

Normalization
shifter

Carry select

adder

LZA logic

One hot
vector

Normalization
shifter

encoding

correction

correction

adder

LZA logic

LZD

Normalization
shifter

Oddness
detect.

correction

adder

Encoding
tree

Detection
tree

Pr-encoding
logic

Normalization
shifter

Correction
module

correction

(a)
(b)

(c) (d) (e)

42

All these methods except the last one use information from the adder and

provide that the normalization step is performed after the addition but our

architecture is based on the combination of the addition and rounding (using a dual

adder) and the anticipation of the normalization before the addition. So we can’t

use these schemes in our design.

The last design proposed by Bruguera/Lang [9] is only applicable and needed

when the effective operation is a subtraction and operates on positive significand.

The two significand are in sign-and-magnitude representation. It is not applicable

here where the inputs to the LZA are from the 3:2 CSA outputs which are in two’s

complement representation and may be positive or negative. So in this

architecture, we postpone the correction of the error to add / round module.

4.2.2 Sign detection module

 The function of the sign detection module is to detect the sign of the adder

output and complement the outputs of the CSA when the result is negative. The

two’s complement of the CSA output is performed by inverting the sum and carry

words and adding two in the least-significant position.

The result can be negative only for effective subtraction. Moreover, since, in

effective subtraction, we always complement the significand of A, the result can

be negative only for d ≥ 0 (i.e. Ea > (𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸)). When d ≥ 2, the result is

always negative, While for d=0 or d=1 with overflow in multiplication (i.e. case of

equal exponents) the result may be positive or negative. A magnitude (unsigned)

comparison between the two vectors output from CSA has to be performed. In

this case the shift amount is equal 56 or 55 so at least the 55 most significant bits

of aligned A are sign extension. Also the sign bit in the multiplier output appears

in bit 108, so we need only 109-bit magnitude comparator to include at least one

sign bit in the two vectors. It is shown in Figure (4-5).

43

Figure 4-5: Inputs to sign detection module to include sign extension bit.

The sign bit of aligned A is always ‘1’ when the effective operation is

subtraction and the sign bits of the output of the multiplier are (0, 0), (0, 1) or

(1, 0), as cited before in part 3.3.3, when adding the three sign bits in CSA the sign

bits of the result will be (0, 1) or (1, 0) as shown in Table (4-1). That means in the

case of equal exponents the results of CSA are a positive and a negative numbers.

The magnitude comparator compares them and determines which is greater in

magnitude. To make magnitude comparison, the negative number has to be

converted to its positive value by getting the two’s complement value. These are

done by making inversion then add one.

Output of the
 multiplier

BxC

Aligned A
For d=0

107 bits

ssss……..ssssxxxxxxxxxxxxx..xxxxxxxxxxxxxxx

54 bits

ssss……..ssssxxxxxxxxxxxx..xxxxxxxxxxxxxxx

sum

carry

ssss……..ssssxxxxxxxxxxxxx..xxxxxxxxxxxxxxx

107 bits

ssss……..ssssxxxxxxxxxxxxx..xxxxxxxxxxxxxxx

54 bits

105 bits

sssss……..sssssxxxxxxxxxxxx..xxxxxxxxxxxxxx

56 bits

109 bits

To sign detection
module

Before CSA

After CSA

Sign bit
extension

S

C

44

Table 4-1: Sign bits of the output of CSA.

Sign bit of

aligned A

Sign bit of multiplier

output

Sign bit of CSA output

S C Sum Carry

1 0 0 1 0

1 1 0 0 1

1 0 1 0 1

A binary tree comparator proposed in [7] is used here. The design is based

on a technique previously used for operand normalization [1]. In the first stage of

our magnitude comparator, 2-bit pairs from the first operand, X, are compared in

parallel with the corresponding 2-bit pairs from the second operand, Y , to

determine if the two bits from 𝑋𝑋 are equal , greater than, or less than the two bits

from Y. If the bits pairs in X and Y are denoted as X[2i + 1, 2i] and Y[2i + 1, 2i],

then the greater than GT[i] and less than, LT[i] signals are computed as:

𝐺𝐺𝐺𝐺[𝑖𝑖] = (𝑋𝑋[2𝑖𝑖 + 1].𝑌𝑌�[2𝑖𝑖 + 1]) + (𝑋𝑋[2𝑖𝑖 + 1].𝑋𝑋[2𝑖𝑖].𝑌𝑌�[2𝑖𝑖])

+ (𝑋𝑋[2𝑖𝑖].𝑌𝑌�[2𝑖𝑖 + 1].𝑌𝑌�[2𝑖𝑖])

𝐿𝐿𝐿𝐿[𝑖𝑖] = (𝑋𝑋�[2𝑖𝑖 + 1].𝑌𝑌[2𝑖𝑖 + 1]) + (𝑋𝑋�[2𝑖𝑖 + 1].𝑋𝑋�[2𝑖𝑖].𝑌𝑌[2𝑖𝑖])

+ (𝑋𝑋�[2𝑖𝑖].𝑌𝑌[2𝑖𝑖 + 1].𝑌𝑌[2𝑖𝑖])

 (4-1)

For (0 ≤ i ≤ n/2 − 1), where n is the operand size and n = 109 for the

proposed implementation. The relationships between X[2i + 1, 2i] and Y[2i +

 1, 2i] for the different values of GT[i] and LT[i] are shown in Table (4-2).

45

Table 4-2: 2-Bit Magnitude Comparison.

GT[i] LT[i] Description

0 0 X[2i+1: 2i] = Y[2i+1: 2i]

0 1 X[2i+1: 2i] < Y[2i+1: 2i]

1 0 X[2i+1: 2i] > Y[2i+1: 2i]

1 1 Invalid

In subsequent comparator stages, a similar process is used, but X[i] signal

is replaced by GT[i]j signals and Y[i] signal is replaced by LT[i]j signals, where

the subscript ”j” indicates comparator stage j. Furthermore, since GT[i]j and

 LT[i]j cannot both be one simultaneously, the greater than and less than equations

can be simplified to:

 GT[i]j+1 = GT[2i + 1]j + GT[2i]j . LT���[2i + 1]j (4-2)

 LT[i]j+1 = LT[2i + 1]j + GT����[2i + 1]j. LT[2i]j

For 1 ≤ j ≤ (log2 n − 1) and 0 ≤ i ≤ (n 2i+1⁄ − 1) after a total of log2(n)

comparator stages, in our implementation n = 109 so 7 stages are needed. A block

diagram of 109-bit tree comparator is shown in Figure (4-6).

The output of the sign detection module is the complement signal, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and it

equals one if d is positive (the most significant bit is one), but in case of equal

exponents it takes the sign of the input which has greater magnitude. When the

comparator output is greater than (GT = 1 and LT = 0) the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 signal takes the

sign of the sum vector S and if it is less than the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 signal takes sign of the

carry vector C.

46

Figure 4-6: A 109-bit tree comparator.

The complement signal, comp can be deduced in the following equation.

 comp = �(GT. Smsb + LT. Cmsb). E + dmsb . E��. sub (4-3)

The E signal indicates the case of equal exponents. And sub signal indicates

effective subtraction.

To eliminate the need of the carry propagate adder used in two’s

complement conversion in order to decrease the delay of the sign detection module

a new scheme is proposed. This scheme uses the magnitude minus one (one’s

complement) value in comparison instead of the magnitude (two’s complement) of

the negative number.

2-bit
(1)

2-bit
(2)

2-bit comp.
L5 (1)

2-bit comp.
L5 (2)

2-bit comp.
L4 (1)

2-bit comp.
L4 (4)

2-bit comp.
L6

2-bit comp.
L3 (1)

2-bit comp.
L3 (2)

2-bit comp.
L2 (1)

2-bit
comp.
L2 (2)

2-bit
comp.
L2 (3)

2-bit
comp.
L2 (4)

2-bit
comp.
L1 (1)

2-bit
comp.
L1 (2)

2-bit
comp.
L1 (3)

2-bit
comp.
L1 (4)

2-bit
comp.
L1 (5)

2-bit
comp.
L1 (6)

2-bit
comp.
L1 (7)

2-bit
(3)

2-bit
(4)

2-bit
(5)

2-bit
(6)

2-bit
(7)

2-bit
(8)

2-bit
(9)

2-bit
(10)

2-bit
(11)

2-bit
(12)

2-bit
(13)

2-bit
(14)

2-bit
(15)

2-bit
(16)

2-bit
comp.
L1 (8)

2-bit
(52)

2-bit
(53)

2-bit
(54)

2-bit
(55)

2-bit
comp.
L1 (27)

2-bit
comp.
L1 (28)

2-bit
comp.

L2 (14)

2-bit comp.
L3 (7)

47

 The comparison using one’s complement (magnitude-1) makes error in two

values. It can be shown using this example, assume a negative number (-5) by

comparing it with any positive numbers two general cases appear, see Figure

(4-7).

Figure 4-7: Comparison (magnitude) and (magnitude-1) of -5 with any positive number.

1- For positive numbers which are less and greater than both magnitude

(5) and magnitude minus one (4) , (1,2,3) and (6,7,8,..) respectively ,

the result be the same whether we use magnitude or magnitude minus

one in comparison and no error occurs.

2- There is an error when comparing -5 with its magnitude and magnitude

minus one, 5 and 4 respectively.

This error can be overcome by the following discussion. When comparing the

negative number -5 with +4 using the conventional comparison which use

magnitude of -5 (+5) the comp signal equals 1 by using eq. (4-3), but when using

magnitude minus one (+4) instead the equate signal equals one (GT=0 and LT=0).

magitude (5) >
and

 (magitude -1) (4) >

No Error

magitude (5) <
and

 (magitude -1) (4) <

No Error

Magnitude
“2's comp.”

Magnitude-1
“1's comp.”

 1 2 3 4 5 6 7 8

-5

Error
appears
in these

Two
values

48

We can overcome this error by making comp=1 if the output of the comparator is

equal signal.

 When comparing the negative number -5 with its magnitude (+5) the

conventional output of the comparator has to be equal and comp=0 by using eq.

(4-3). In our case as we compare +4 with +5 the comp signal takes the sign of

greater magnitude number (+5) so comp=0 as in conventional comparison so no

modification is needed.

 A complete block of sign detection module is shown in Figure (4-8). The

eq. (4-3) can be modified to include equal signal to correct the error.

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �(𝐺𝐺𝐺𝐺. 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐿𝐿𝐿𝐿.𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐺𝐺𝐺𝐺����. 𝐿𝐿𝐿𝐿����).𝐸𝐸 + 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 .𝐸𝐸��. 𝑠𝑠𝑠𝑠𝑠𝑠 (4-4)

4.2.3 Add/Round module

 The add/round module implements only the four round modes defined in

the standard (IEEE 754-1985), round to nearest/ even (RN), round to + ∞ (Rp) ,

round to -∞ (Rn) and round to zero (RZ). The round to nearest/even mode is

obtained by rounding to nearest/up first then the least -significant bit (LSB) is

corrected [22]. Round to nearest/up produces the same result as round to

nearest/even except when a tie occurs; then, the sticky bit identifies the tie case

and the correct rounded to nearest/even result is obtained by forcing the LSB to 0.

The add/round module for the proposed FMA differs from the

corresponding modules for floating-point addition [14], [27]. The difference is that

now there can be a carry propagating from the 108 least significant bits to the 53

more-significant bits. This carry has to be added with the rounding bits to obtain

the 53-bit rounded result. On the other hand, in floating point addition, as both

operands are 53-bit wide and one of them is aligned, there is no carry from the

49

least-significant part, which corresponds to the positions that are right shifted out

in the alignment.

Figure 4-8: A complete block of sign detection module.

S

Amsb

109 bits`

109 bits`

C

Bmsb

109 bits`

109 bits`

GT LT

comp

d sub

E
dmsb

11 bits

Ovf mul

mux mux

Tree comparator

Equal
exponent
Control
signal

50

The fused multiply add operation is similar to floating-point multiplication

in rounding algorithm where the rounded output is computed from a carry-save

representation. From the three schemes that were proposed in [22], [26], [32],[33]

for the add/round module in multiplication, we choose the one called The YZ

rounding algorithm described in [26],[33] and edit it to be used in proposed FMA.

The add/round module accepts two numbers in carry save form. When these

numbers are added there are two cases appearing, see Figure (4-9).

1- An error occurs in LZA, it means there is no overflow (𝑜𝑜𝑜𝑜𝑜𝑜 = 0). The

mantissa from bit 1 to bit 53 and the round bit is bit 54.

2- No error occurs, it means there is an overflow (𝑜𝑜𝑜𝑜𝑜𝑜 = 1). The

mantissa is taken from bit 0 to bit 52 and bit 53 will be the round bit.

Also a right shift is needed and the exponent of the result is increased

by one.

Figure 4-9: cases appear due to one bit error in lZA.

As in the YZ algorithm [26] the sum and carry-strings are divided into a

high part [0: 54] and a low part [55: 161]from the low part the carry bit 𝑐𝑐[54] and

the sticky bit are computed. The higher part is input to a line of half adders then is

divided into two parts: positions [51: 54] are added with the carry bit 𝑐𝑐[54] and

Position
of ovf bit

0 1611 53 54 Inputs to
add/round

module

MSB LSBBit
position

0 1611 53 54
LSB

0 1611 53 54

LSB

1 0

When
added

no error in
LZA
(ovf)

error
 in LZA
(no ovf)

R

Sticy
calculation

Mantissa

R

Sticy
calculation

Mantissa

1

51

the rounding bits created from round decision block. The position of the rounding

bit depends on the value of the overflow bit so the processing of this part is split

into two paths; one working under the assumption that the result will not

overflow (i.e. less than 2), and the other path working under the assumption that

the result will overflow. Positions [0: 50] are fed into the dual adder, which

outputs the sum Y0 which assumes no carry is propagated from least significant

bits [51: 54] and the incremented sum Y1 which assumes a carry is propagated.

The correct rounded result is chosen by Multiplexers and control signals computed

in select decision block. The block diagram of the add/round module is shown in

Figure (4-10).

4.2.3.1 Select decision and bits selection

The select decision box has three outputs O, ovf and inc signals. O Signal

decides if the case before rounding is an overflow or no overflow and selects

between 𝑍𝑍𝑍𝑍 and 𝑍𝑍𝑍𝑍 to produce 𝑍𝑍 vector. If the case before rounding is an overflow

it will be the same after rounding in both 𝑌𝑌0 and 𝑌𝑌1 except when all bits of 𝑌𝑌1 are

1’s which causes a carry propagation till the most significant bit of 𝑌𝑌1[0] (bit of

overflow) and set 𝑌𝑌1[−1] to be one, see Figure(4-11) (a), similarly in the case of

no overflow it will remain the same after rounding in both 𝑌𝑌0 and 𝑌𝑌1 except in

case of all ones in 𝑌𝑌1 where the overflow bit 𝑌𝑌1[0] will be one, it is shown in

Figure (4-11)(b).

The O signal can be computed from the following equation

O = Y0[0] + Y1[0] + Y1[−1] + �Y1[0]. Y1����[1]. Y1����[2] … Y1����[50]������������������������������������� (4-10)

52

Figure 4-10: Block diagram of the add/round module.

0 5554

HA

Carry and sticy calculation

0 54

161

55 161

51 540 50 5352

0 50

Dual adder

Round
decision

sticky c54

RovfRnovf

4-bit adder

Round
mode

Zo

55

mux

Y0 Y1

5

mux

Select
decision

inc

inc O

ovf

ovf

Y0

Y1

Z[50]

5151

51

2

LSB
correction

4
4

53

Zn

51 545352

OZ[50:54]Y[0:50]

mux

CSACSA

4-bit adder

53

The inc signal selects between outputs from dual adder, the sum

Y0 [0: 50] and the incremented sum Y1 [0: 50] to produce Y vector.

It can be determined by the most significant bit of the Z vector. The inc

signal is computed by eq. (4-11).

 inc = Z[50] (4-11)

The ovf signal determines the correct rounded result, Figure (4-12), and

updates the exponent. It decides if the 50 most significant bits are Y [0: 49] or

Y [1: 50] and consequently decides the 3 least significant bits. It can be done by

checking the most significant bit of Y. ovf signal is computed as follows:

 ovf = Y[0] (4-12)

4.2.3.2 Sticky bit calculation and round decision

The sticky bit which is needed to perform the correct rounding is composed

of two components: st1 , obtained by ORing the bits shifted out during the

alignment of A, and st2, obtained from the add/round module. The final sticky bit

is obtained by OR-ing both of them st = st1 + st2. To obtain the partial sticky

bit st2, typically, the lower 107 bits of the sum and carry vectors are summed and

OR'ed together. However, as proposed in [33] the sticky bit can be computed

directly from carry save form without the need for an adder to generate the sum.

We define:

 Pi = Si ⊕ Ci (4-5)

hi = Si + Ci

 ti = Pi ⊕ hi+1

54

(a)

 (b)

Figure 4-11: The rounded result in case of (a) overflow, (b) No overflow.

1

100.0000000...00

Y1

+

 -1 0 1 2……….……50

Case of overflow

C[50]=1 C[50]=0

Y0

1 x.xxxx...x x x x x ….. xxxxxxx
Bit position

 -1 0 1 2………...……..……...….………........50

1x.xxxx...xxxxxxxxxxxx
0+

1x.xxxx...xxxxxxxxxxxx

 -1 0 1 2………………………..….………........50

1x.xxxx...xxxxxxxxxxxx

1x.xxxx...xxxx
 -1 0 1 2………………...........50 -1 0 1 2……………….........50

C[50]C[50]

Iff

11.1111...11

After rounding

51 52 53 54 161

 Before rounding

1

10.0000000...00

Y1

+

 -1 0 1 2……….……50

Case of No overflow

C[50]=1 C[50]=0

Y0

01.xxxx...x x x x x ….. xxxxxxx
Bit position

 -1 0 1 2………...……..……...….………........50

01.xxxx...xxxxxxxxxxxx
0+

01.xxxx...xxxxxxxxxxxx

 -1 0 1 2………………………..….………........50

01.xxxx...xxxxxxxxxxxx

01.xxxx...xxxx
 -1 0 1 2………………...........50 -1 0 1 2……………….......50

C[50]C[50]

Iff

01
.11

11
...1

1

After rounding

51 52 53 54 161

 Before rounding

55

Figure 4-12: Selection of rounded result using 𝒊𝒊𝒊𝒊𝒊𝒊 and 𝒐𝒐𝒐𝒐𝒐𝒐 signals.

Where Si and Ci are the sum and carry output from CSA.55 ≤ i ≤ 161, The sticky
bit is computed directly by the eq. (4-6).

 st2 = t55 + t56 + t57 + ⋯+ t161 (4-6)

For the overflow path bit 54 should be included in sticky calculation, eq.

(4-7) shows how to compute sticky bit in case of overflow

 t54 = P54 ⊕ h55 (4-7)

st2ovf = t54 + st2

The final sticky bits for both the overflow and no overflow cases are input

now to the round decision block with the rounding mode to determine the number

to be added to the right position of the round bit. We have four rounding modes so

need two bits (r [0] r [1]) to identify them; it is shown in Table (4-3). For rounding

to zero, RZ, the mantissa is truncated and no bits are added. In case of rounding to

mux

51
51

Dual adder

51

mux

inc

ovf

0

0 1

1

50

Y[0:50]

Y1[0:50]Y0[0:50]

Y[0:49]Y[1:50]

mux ovf0 1

3

Z[51:53]Z[51:52]

Y[50]
1

50 50

56

nearest even, RN, a 1 is always added to the round bit then a correction is made in

case of a tie case. For rounding toward +∞, Rp, in case of positive result if all the

bits to the right of the LSB of the desired result are 0 then the result is correct. If

any of these bits are a 1, (i.e. R=l or sticky=l) then a 1 should be added to the LSB

of the result. If the result is negative it should be truncated. For rounding toward -

∞, Rn, the exact opposite holds.

Table 4-3: Rounding modes.

Rounding bits

r[0] r[1]

Rounding

mode

0 0 RZ

0 1 Rp

1 0 Rn

1 1 RN

Rounding toward +∞ (Rp) can be considered two separate modes ,rounding

to infinity (RI) in case of positive numbers and round to zero (RZ) if the number

is negative. This can applied in rounding toward -∞ also. There are three general

rounding modes are considered in this thesis, rounding to nearest even (RN),

rounding to zero (RZ) and rounding to infinity (RI). They can be generated from

rounding bits (r [0] r [1]) as shown in eq. (4-8).

𝑅𝑅𝑅𝑅 = 𝑟𝑟[0]. 𝑟𝑟[1]

𝑅𝑅𝑅𝑅 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠������. 𝑟̅𝑟[0]. 𝑟𝑟[1]) + (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑟𝑟[0]. 𝑟̅𝑟[1]) (4-8)

𝑅𝑅𝑅𝑅 = (𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅�����������)

The round decision block generates two bits Rd and Rd1 to determine

numbers to be added to the round bit. Rd equals one if the mode is RN or RI and

57

Rd1 equals one in case of RI mode and sticky bit is set. The logic equation of Rd

and Rd1 is shown in eq. (4-9).

Rd = RN + RI

 Rd1 = RI. St (4-9)

The two bits are added first in HA then the results are added to bits [53:54]

of the sum and carry vectors in case of no overflow path and to bits [52:53] in case

of overflow path using CSA. It is shown in Figure (4-13).

If the mode is RN one is added to the round bit (𝑅𝑅𝑅𝑅 = 1,𝑅𝑅𝑅𝑅1 = 0) and

when the mode is 𝑅𝑅𝑅𝑅 with sticky bit is not set and round bit is set (𝑅𝑅𝑅𝑅 = 1,𝑅𝑅𝑅𝑅1 =

0) a one is added to the round bit and a carry is propagated to the LSB. If sticky bit

is set then Rd1=1 and a carry is generated and propagated to the LSB. In case of

RZ, 𝑅𝑅𝑅𝑅 = 0 and 𝑅𝑅𝑅𝑅1 = 0.

4.2.3.3 LSB correction

A LSB correction is needed in case of round to nearest /even. It was stated

earlier that round to nearest /even is done by rounding to nearest/up which

produces exactly the same result as round to nearest/even except when a tie

occurs. A tie can only occur when the result is exactly halfway between two

numbers of representable precision.

The bit to be added to the round bit (𝑅𝑅) for correct round to nearest/even is

based upon the least significant (𝐿𝐿), round (𝑅𝑅), and sticky (𝑆𝑆) bits as shown in

Table (4-4). In contrast, round to nearest up assumes that the bit to be added to the

𝑅𝑅 bit for correct rounding is always one. The only case where round to nearest/up

mode produces a different result from round to nearest/even mode is shown in

Table (4-4) (bold raw). In this case round to nearest up changes only the 𝐿𝐿 bit from

a 0 to a 1 where no carry propagates after that. While round to nearest even leaves

58

the 𝐿𝐿 bit unchanged (𝐿𝐿 = 0). This means that the correct round to nearest even

result can be obtained from the round to nearest up result by restoring the 𝐿𝐿 bit to a

0.

Figure 4-13: Block diagram of round decision

Table 4-4: Round to Nearest/even versus Round to Nearest/up.

Before rounding

L R S Nearest/even nearest/up

Bit added to R

Nearest/even nearest /up

L after rounding

𝑋𝑋 0 0 0 1 𝑋𝑋 𝑋𝑋

𝑋𝑋 0 1 0 1 𝑋𝑋 𝑋𝑋

0 1 0 0 1 0 1

1 1 0 1 1 0 0

𝑋𝑋 1 1 1 1 𝑋𝑋� 𝑋𝑋�

54535251

54535251

HA

RL
54535251

54535251

HA

RL

No_ovf
pathOvf. path

0 000

RnovfRovf

sum sum

carry carry

logic
Rd1(o)

logic

Rd Rd1(n)

RN RI

r sign stn sto

Round
decision

++

44

2

59

In a LSB correction block sticky bits and round bits are needed to be

computed to know if there is a tie case. The sticky bits are already computed in

sticky calculation part as cited before. The round bits are not available and can be

computed only after carry propagate addition of positions [51: 54] of sum and

carry vectors then take the positions 53 and 54 of the result as the round bits for

overflow and no overflow paths respectively.

Round bits can be computed from a carry save form without using carry

propagate adder by using eq.’s (4-10) and (4-11). It is equivalent to compute the

result of adding bits 54 and 53 of sum and carry vectors using propagate and

generate signals as used in prefix adder. Once round bits are computed a tie case

can be determined if R = 1 and S = 0 then the LSB is forced to zero using logic

gates, see Figure (4-12).

 𝑃𝑃54 = 𝑠𝑠𝑠𝑠𝑠𝑠[54] ⊕ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[54] (4-10)

𝑃𝑃53 = 𝑠𝑠𝑠𝑠𝑠𝑠[53] ⊕ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[53]

𝑔𝑔54 = 𝑠𝑠𝑠𝑠𝑠𝑠[54] . 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[54]

 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃54 ⊕𝐶𝐶54 (4-11)

𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃53 ⊕ (𝑔𝑔54 + 𝑃𝑃54 .𝐶𝐶54)

4.2.4 Anticipated part of the adder

As referred before in Lang/Bruguera algorithm [10] there are some approaches

used to decrease the delay of FMA. The first approach, cited before, is to overlap

the operation of the LZA and the operation of normalization shifter. However,

despite the overlap, the operation of the normalization shifter cannot begin at the

same time as the LZA. The normalization shifter has to wait for computation of

first digit of LZA (S1).

60

Figure 4-14: LSB correction block.

The second approach is to anticipate part of dual adder in the time gap between

LZA and the normalization shifter. The anticipated part of the dual adder may be

the half adder (HA) and the generation of propagate and generate signals.

As shown in part 4.2.3, a row of HA is used in higher part of data [0: 54] to

limit the maximum value in bits 51 to 54 and assure that only one carry is

produced to bit 50 during the rounding and the assimilation of the lower part. To

anticipate HA before the normalization operation it is obligatory to include HA for

the 162 bits because before the normalization the position of most significant bit

of the result is unknown.

The HA is duplicated, with and without inverted inputs, to make bit inversion

of sum and carry words if the comp signal is one (negative result) to avoid

Stn Stovf
Rn Rovf

RN LSBn

Corrected
LSB

ovf

LSBovf

mux
ovf

mux

61

additional delay. However, the sum word is the same both with inverted inputs

and without inverted inputs as shown in table (4-6); then, it is only necessary to

replicate the calculation of the carry word.

The two 1s needed to complete the two’s complement of the inputs of the HA

have to be added in the least-significant position of these inputs. The first 1 is

incorporated as the least significant bit of the carry word and the second 1 is added

in the add/round module.

Some part of the dual adder can be anticipated also before the normalization;

moreover, the anticipated part of the dual adder has to be replicated, considering

as input the inverted and non-inverted HA outputs.

Table 4-5: Truth table of H.A with inverted and non inverted inputs.

Inputs to HA

 A B

Outputs of HA

 S C

Inverted inputs to

HA

 A B

Outputs due to

inverted inputs

 S C

 0 0 0 0 1 1 0 1

 0 1 1 0 1 0 1 0

 1 0 1 0 0 1 1 0

 1 1 0 1 0 0 0 0

It seems reasonable that, at most, the calculation of the bit carry generate gi

and bit carry propagate pi can be anticipated. However, some more logic could be

placed before the normalization; for example, the calculation of carry generated

and carry propagated signals of groups of 2 or 4 bits, but it will make the design of

the add/round module more complex, also the anticipation of the first level only of

the dual adder does not imply changes in its design due to the effect of the shift

over the already calculated carry generate and carry-propagate signals, G and P.

Figure (4-13) shows the anticipated part of dual adder.

62

Figure 4-15: Anticipated part of HA and bit carry propagate and generate signals selection.

4.3 Conclusion

We discuss in this chapter design of blocks used to implement the proposed

fused multiply add unit like sign detection and add round modules. Sign detection

module produces the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 signal which is used after that to select inputs to the

normalization shifter. These inputs are needed to be available as soon as possible

before shift amount of normalization shifter is calculated. Because of this reason

we use a new scheme to implement sign detection module to reduce its latency.

We use magnitude minus one (1’s complement) instead of magnitude (2’s

complement) in magnitude comparator to eliminate the need of carry propagate

adder.

P,G signals P,G signals

MUX

sum carrry

comp

Cinv S C

From 3:2 CSA

H.A

1

To
normalization

shifter

63

Chapter 5 : Simulation Verification and Results
5.1 Simulation verification

Both the proposed and the basic architecture of the fused multiply add

(IBM/6000) were implemented in the Verilog hardware description language,

some of them are shown in appendix. ModelSim10.0c is a used to compile Verilog

codes and to simulate them. The simple way to test the design is to write a test

bench that exercises various features of the design. Test vectors are used, some

examples of these test vectors and their syntax are shown in Figure (5-1), these

test vectors are divided into two text files one for the inputs of the design under

test (DUT) and the other is for the expected (right) results.

The input text file is read by test bench using test bench verilog syntax

$readmemh then the output is written to a text file using test bench verilog syntax

$fopen, $fdisplay and $fclose. The output text file is now compared to the already

exist output file (right outputs) using Active File Compare program. An example

of a comparison is shown in Figure (5-2).

About 12,800 test vectors are used. A part from them includes special cases

which raise overflow, underflow and invalid operation flags. 100% accuracy was

reported for all designs for normalized and denormalized numbers. An example

test run is shown in Figure (5-3).

5.2 Simulation Results

 The two implemented architectures of fused multiply add are synthesized,

placed and routed for Cyclone II FPGA device using Quartus II 9.1.

64

Figure 5-1: Test vectors examples and their syntax.

 b64 *+ =0 C44722533BBD52C9 00C7E4456C3BA9E7 04C0EECCFEFA972A -> 852101F7604041E9 x
 b64 *+ 0 8601FB6F60C50CF5 B46D1769D2CE4A5A 8000000000000000 -> 0000000000000000 xu

 b64 *+ > 63422049A8BCB6B9 5DB011030A85CFD8 FE62B5DAF250D6A3 -> 7FF0000000000000 xo
 b64 *+ < FFF0000000000000 C22200EFAD00230B FFF0000000000000 -> FFF8000000000000 i

The Syntax is as follow:

1- "b64" : indicates that the type of the operation is binary operation and the precision of the operation is 64.

2- "*+": means that the operation is Fused Multiply Add operation(multiplication follow by addition).

3- " =0 " indicates that the rounding mode is nearest to even,

 " 0" indicates that the rounding mode is rounding to Zero,

 ">" indicates that the rounding mode is rounding to Positive infinity,

 " <" indicates that the rounding mode is rounding to Negative infinity.

4- The following three parts of data are the three inputs of the operation in IEEE binary floating- point
format in Hexadecimal format . The first two inputs are the multiplication inputs then add the result of the
multiplication to the third input.

5- "->": this symbol is to separate the inputs from the result.

6- The following part is the output of the operation in IEEE binary floating-point format in Hexadecimal
format.

7- "x" indicates that the inexact flag is raised.

 "xo" indicates that the inexact flag is raised and the overflow flag is raised.

 "xu" indicates that the inexact flag is raised and the Underflow flag is raised.

 "i" indicates that the invalid flag is raised.

65

Figure 5-2: A window of Active File Compare Program.

Figure 5-3: Example ModelSim run for floating-point fused multiply add unit.

66

 In the FPGA’s technology logic functions are implemented by truth tables

defined by programming the SRAM that defines the FPGA’s functionality. Each

of the truth tables has a delay which contributes to the delay from inputs to outputs

of the function being implemented. In addition, the connections in the FPGA

between the inputs, truth tables, and outputs pass through buffers, multiplexers and

pass transistors as determined by the circuit specification and the routing paths

determined by the implementation tools. The decomposition into truth tables

combined with the routing of the interconnections between them yields

considerable uncertainty in the propagation delay from input to output of an

implemented circuit. The worst case delay which occurs in the circuit from any

combinational logic input to any combinational logic output is determined by

adding up the maximum expected delays through the combinational circuit

including both logic and interconnections. To decrease uncertainty we use

constraints to specify the maximum delay allowable, forcing the tools to attempt to

meet or better this delay.

 The worst case delay of both the basic and the proposed architectures of

fused multiply add unit is shown in Figure (5-4). It is clear that the delay

improvement is 25.5%.

 Worest-case delay (ns)

Basic architecture
 95.345

Proposed architecture
 70.985

Figure 5-4: Worst case delay of basic and proposed architectures.

The total number of logic elements that are used by FPGA is an important

issue in comparing the performance in addition to the worst case delay

67

measurement. A summary of the compilation report is shown in Figure (5-5) (a, b)

for both the basic and the proposed architectures.

(a)

(b)

Figure 5-5: Compilation report of (a) basic architecture (b) proposed architecture.

68

From compilation reports it is clear that the basic architecture occupies

13,122 form 68,416 total logic elements which are corresponding to occupying

19% of total logic elements. The proposed architecture occupies 13,930 logic

elements; about 20% of total logic elements. The increment in the number of logic

gates in the proposed architecture is about 6.2% only.

Both basic and proposed architectures are similar in upper part (multiplier,

bit invert and 3:2 CSA) and differ in the lower part, CPA, complementer,

normalizer and rounder in basic architecture, three parallel paths (i.e. sign

detection ,LZA, normalization shifter and anticipated part of adder) and add round

module for proposed architecture. Each block of lower part in two architectures is

synthesized separately; Table (5-1) shows the worst case delay and the number of

logic gates of each individual block.

Table 5-1: worst case delay and number of logic gates of lower part of(a) basic (b) proposed
architectures.

 Worst Case Delay (ns) Number of logic gates

Carry propagate adder 19.434 1998

Complementer 52.308 220

Normalizer 17.468 1693

Rounder 22.971 106
 (a)

 Worst Case Delay (ns) Number of logic gates

Three parallel paths 27.124 1700

Add-round module 24.932 712
 (b)

5.3 Conclusion

Both basic and proposed architectures are implemented in the Verilog

hardware description language and then synthesized for Cyclone II FPGA device

69

using Quartus II 9.1. For the proposed architecture the overall delay is 70.985 ns.

It occupies 13,930 from 68,416 total logic elements which are corresponding to

occupying 20% of total logic elements. The basic architecture has an overall delay

95.345 ns and occupies 13,122 logic elements, about 19% of total logic elements.

The proposed architecture achieves a delay improvement about 25.5% as

compared to the basic architecture. The increase of area in the proposed

architecture is about 6.2% which is not a big matter. Each block of lower part of

two architectures is individually synthesized. The best delay is the delay of

normalizer which equals 17.468 ns but the rounder has better area delay product.

70

Chapter 6 : Conclusion
Floating-point unit is an integral part of any modern microprocessor.

Floating point units are available in forms of intellectual property for FPGAs to be

bought and used by customers. The fused multiply add (FMA) operation was

introduced in 1990 on the IBM RS/6000 for the single instruction execution of the

equation A+ (B x C) with single and double precision floating-point operands.

This hardware unit was designed to reduce the latency of dot product calculations

and provided greater floating-point arithmetic accuracy since only a single

rounding is performed. FMA is implemented by several commercial processors

like IBM, HP, MIPS, ARM and Intel. FMA can be used instead of floating-point

addition and floating-point multiplication by using constants e.g., 0.0 + (B x C) for

multiplication and A+ (B x 1.0) for addition.

 Many approaches are developed on floating-point fused multiply add unit

to decrease its latency. The greatest deviation from the original IBM RS/6000

architecture comes from a paper by Lang and Bruguera on a reduced latency fused

multiply add. Theirs proposal claims to achieve a significant increase in fused

multiply add unit performance by the combination of the addition and rounding

stage into one block. The paper claims an estimated 15-20% reduction in latency

as compared to a standard fused multiply add. This result is calculated

theoretically, and the actual architecture has yet to be implemented in either a

synthesized or a custom CMOS silicon design.

The main objective of our work is to implement this algorithm with making

some changes in the architecture to facilitate the implementation and on the other

hand do not affect the performance. The change is to take the inputs to sign

detection and LZA blocks from 3:2 CSA instead of the multiplier outputs and the

aligned addend 𝐴𝐴. This is more efficient because using three inputs (multiplier

output and aligned addend 𝐴𝐴) to sign detection module makes the need of a carry

71

propagate adder is obligatory to add multiplier ouput before making comparison.

This change will not increase the overall delay as the delay of CSA already exists

in the critical path. The implementation includes full design of blocks are not used

before like sign detection module. The basic fused multiply add (IBM RS/6000)

architecture is implemented also to make relative comparison. Each block of two

architectures is designed using the Verilog hardware description language, and

then synthesized, placed and routed for Cyclone II FPGA device using Quartus II

9.1. Area and timing information for each design approach and algorithm is

reported and analyzed.

For the proposed Fused multiply add unit the overall delay is 70.985 ns. It

occupies 13,930 form 68,416 total logic elements which are corresponding to

occupying 20% of total logic elements. The basic fused multiply add architecture

has an overall delay 95.345 ns and occupies 13,122 logic elements, about 19% of

total logic elements. It is clear that the proposed architecture achieves a delay

improvement about 25.5% as compared to the basic architecture. The increase of

area in the proposed architecture is about 6.2% which is not a big matter.

6.1 Future Work

 In order to expand our research further some of the works proposed are

converting the Verilog codes so that it can accommodate any exponent and

mantissa length. This will give the design more versatility to use any precision of

IEEE binary format also it can be designed for decimal floating point.

72

BIBLIOGRAPHY

[1] Antelo, E., Bruguera, J., and Zapata, E., “A Novel Design for a Two

Operand Normalization Circuit,” IEEE Transactions on VLSI Systems,

vol. 6, no. 1, March 1998, Pages: 173 - 176.

[2] Chen, C., Chen, L., and Cheng, J., “Architectural Design of a Fast

Floating-Point Multiplication-Add Fused Unit Using Signed-Digit

Addition,” Proceedings of the IEE Computer Digital Technology, vol.

149, no. 4, July 2002, Pages: 113 – 120.

[3] Dimitrakopoulos, G., Galanopoulos, K., Mavrokefalidis, C., and Nikolos,

D., “Low-Power Leading-Zero Counting and Anticipation Logic for High-

Speed Floating Point Units,” IEEE Transactions on VLSI Systems, vol.

16, no. 7, July 2008, Pages: 837 – 850.

[4] Hinds, C., “An Enhanced Floating Point Coprocessor for Embedded

Signal Processing and Graphics Applications,” Proceedings of the 33th

Asilomar Conference on Signals, Systems, and Computers, vol. 1, October

1999, Pages: 147 – 151.

[5] Hinds, C., and Lutz, D., “A Small and Fast Leading One Predictor

Corrector Circuit,” Proceedings of 39th Asilomar Conference on Signals,

Systems and Computers, October 2005, pages: 1181– 1185.

[6] Hokenek, E., and Montoye, R., “Leading-Zero Anticipator (LZA) in the

IBM RISC System/6000 Floating Point Execution Unit,” IBM Journal of

Research and Development, vol. 34, no.1, January1990, pages: 71-77.

[7] James, E., Michael J., “A Combined Two’s Complement and Floating-

Point Comparator” Proceedings of the IEEE International Symposium on

Circuits and Systems, vol. 1, May 2005, pages: 89 – 92.

[8] Kumar, A., “THE HP PA-8000 RISC CPU,” IEEE computer society, vol.

17, April 1997, pages: 27-32.

73

[9] Lang, T., and Bruguera, “Leading-One Prediction with Concurrent

Position Correction,” IEEE Transactions on Computers, vol. 48, no. 10,

October 1999, Pages: 1083 – 1097.

[10] Lang, T., and Bruguera, J., “Floating-Point Fused Multiply-Add with

Reduced Latency,” IEEE Transactions on Computers, vol. 53, no. 8,

August 2004, Pages: 42 – 51.

[11] Linzer, E., “Implementation of Efficient FFT Algorithms on Fused

Multiply-Add Architectures,” IEEE Transactions on Signal Processing,

vol. 41, no.1, January 1993, Pages: 93.

[12] Montoye, E., “Floating Point Unit for Calculating A=XY+Z Having

Simultaneous Multiply and Add,” United States patent, no. 4969118,

November 1990.

[13] Montoye, R., Hokenek, E., and Runyon, S., “Second –Generation RISC

Floating Point with Multiply-Add Fused,” IEEE journal of solid-state

circuits, vol. 25, no. 5, October 1990, Pages: 1207 – 1213.

[14] Oberman, S., Al-Twaijry, H., and Flynn, M., “The SNAP Project:

Design of Floating-Point Arithmetic Units,” Proceeding of the 13th IEEE

Symposium on Computer Arithmetic, July 1997, pages: 156-165.

[15] Oklobdzija, V., “An algorithmic and novel design of a leading zero

detector circuit: comparsion with logic synthesis,” IEEE Transactions on

VLSI Systems, vol. 2, no. 1, March 1994, Pages: 124 – 128.

[16] Quach, N., and Flynn, M., “Leading One Prediction – Implementation,

Generalization, and Application,” Technical Report CSL-TR-91-463,

Stanford University, March 1991.

[17] Quach, N., Flynn, M., and Takagi, N., “On Fast IEEE Rounding,”

Technical Report CSL-TR-91-459, Stanford University, January 1991.

[18] Quinnell, et al., “Three-path Fused Multiply Adder Circuit,” United

States Patent Application Publication, no. 0256150, October 2008.

74

[19] Quinnel, et al., Swartzlander, E., and Lemonds, C., “Floating-Point Fused

Multiply-Add Architectures.” Proceeding of the 41th Asilomar

Conference on Signals, Systems and Computers, November 2007, Pages:

42 – 51.

[20] Robison, A., “N-Bit Unsigned Division Via N-Bit Multiply-Add,”

Proceedings of the 17th IEEE Symposium on Computer Arithmetic, Cape

Cod, Massachusetts, USA, June 2005, Pages: 131 – 139.

[21] Rogenmoser, R., and O’Donnell, L., “Method and apparatus to correct

leading one prediction,” United States Patent application, no. 0165887,

November 2002.

[22] Santoro, M., Bewick, G., and Horowitz, M.A., “Rounding Algorithms for

IEEE Multipliers,” Proceedings of the 9th IEEE Symposium on Computer

Arithmetic, Santa Monica, California, USA, September 1989, Pages: 176 –

183.

[23] Schmookler, M., and Nowka, K., “Leading Zero Anticipation and

Detection -- A Comparison of Methods,” Proceedings of the 15th IEEE

Symposium on Computer Arithmetic, Vail, Colorado, June 2001, Pages: 7

– 12.

[24] Schmookler, M., Trong, S.D., Schwarz, E., and Kroener M., “P6 Binary

Floating-Point Unit,” Proceedings of the 18th IEEE Symposium on

Computer Arithmetic, Montpellier, France, June 2007, pages: 77-86.

[25] Seidel, P., “Multiple Path IEEE Floating-Point Fused Multiply-Add”,

Proceedings of the 46th IEEE International Midwest Symposium on Circuits

and Systems, 2003. MWSCAS '03, Pages: 1359 – 1362.

[26] Seidel, P., and Even, G., “A Comparison of Three Rounding Algorithms

for IEEE Floating-Point Multiplication,” Proceedings of the 14th IEEE

Symposium on Computer Arithmetic, Adelaide, Australia, vol. 49, no. 7,

April 1999. Pages: 638 – 650.

75

[27] Seidel, P., and Even, G., “How Many Logic Levels Does Floating- Point

Addition Require?” Proceedings of Int’l Conference Computer Design

(ICCD), October 1998, pages: 142 – 149.

[28] Smith, R. A., “A Continued-Fraction Analysis of Trigonometric

Argument Reduction,” IEEE Transactions on Computers, vol. 44, no. 11,

November 1995, Pages: 1348 – 1351.

[29] Suzuki, H., Morinaka, H., Makino, H., Nakase, Y., Mashiko, K., and

Sumi, T., “Leading-zero Anticipatory Logic for High-speed Floating Point

Addition,” IEEE Journal of Solid State Circuits, vol. 31, no. 8, August

1996, pages: 1157 – 1164.

[30] Xiao-Lul, M., “Leading Zero Anticipation for Latency Improvement in

Floating-Point Fused Multiply-Add Units,” 6th International Conference on

ASIC, vol. 2, October 2005, pages: 53 – 56.

[31] Yeh, H. “Fast method of floating point multiplication and accumulation,”

United States Patent, no. 5867413, February 1999.

[32] Yu, R., and Zyner, G. “Method and apparatus for partially supporting

subnormal operands in floating point multiplication,” United State patent,

no. 5602769, February 1997.

[33] Yu, R., and Zyner, G., “167 MHz Radix-4 Floating-Point Multiplier,”

Proceedings of the 12th IEEE Symposium on Computer Arithmetic, Bath,

England, UK. July 1995, Pages: 149 – 154.

[34] http://www.quadibloc.com/comp/cp0201.htm.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10726�

76

APPENDIX

Sign Processing

module sign_processing
(Sa,Sb,Sc,o,comp,Sw,eff_o);

input Sa,Sb,Sc,o,comp; //o:sign of operation
if add o='0',if sub o='1'

output Sw;

output eff_o; //eff_o is effective operation

wire Sbc; //sign of bxc

assign Sbc=Sb^Sc;

assign eff_o=o^Sa^Sbc;

assign Sw=(comp&Sa)|(~comp&(Sbc^o));

endmodule

module

Multiplier

module multiplier (A,B,s,c);

input [52:0] A,B;

output [107:0] s,c;

wire [106:0]
pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,p
p10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,p
p18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,p
p26;

wire [80:0] Ab;

booth_vector ua3 (A,Ab);

ppg ua1
(Ab,B,pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8
,pp9,pp10,pp11,pp12,pp13,pp14,pp15,pp16,
pp17,pp18,pp19,pp20,pp21,pp22,pp23,pp24,
pp25,pp26);

red_tree2 u2
(pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,
pp10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,

pp18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,
pp26, s,c);

endmodule

module booth (x,b);

input [2:0] x; //x[0]=z x[1]=y , x[2]=x

output [2:0] b; //b[2]=a , b[1]=b ,b[0]=c

assign b[2]=x[2]&(~x[1]|~x[0]);

assign b[1]=x[2]^(x[1]&x[0]);

assign b[0]=x[1]^x[0];

endmodule

module booth_vector (A,Ab);

input [52:0] A;

output [80:0] Ab;

booth u1 ({A[1:0],1'b0},Ab[2:0]);

booth u2 (A[3:1],Ab[5:3]);

booth u3 (A[5:3],Ab[8:6]);

booth u4 (A[7:5],Ab[11:9]);

booth u5 (A[9:7],Ab[14:12]);

booth u6 (A[11:9],Ab[17:15]);

booth u7 (A[13:11],Ab[20:18]);

booth u8 (A[15:13],Ab[23:21]);

booth u9 (A[17:15],Ab[26:24]);

booth u10 (A[19:17],Ab[29:27]);

booth u11 (A[21:19],Ab[32:30]);

booth u12 (A[23:21],Ab[35:33]);

booth u13 (A[25:23],Ab[38:36]);

booth u14 (A[27:25],Ab[41:39]);

booth u15 (A[29:27],Ab[44:42]);

77

booth u16 (A[31:29],Ab[47:45]);

booth u17 (A[33:31],Ab[50:48]);

booth u18 (A[35:33],Ab[53:51]);

booth u19 (A[37:35],Ab[56:54]);

booth u20 (A[39:37],Ab[59:57]);

booth u21 (A[41:39],Ab[62:60]);

booth u22 (A[43:41],Ab[65:63]);

booth u23 (A[45:43],Ab[68:66]);

booth u24 (A[47:45],Ab[71:69]);

booth u25 (A[49:47],Ab[74:72]);

booth u26 (A[51:49],Ab[77:75]);

booth u27 ({1'b0,A[52:51]},Ab[80:78]);

endmodule

module ppg
(Ab,B,pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8
,pp9,pp10,pp11,pp12,pp13,pp14,pp15,pp16,
pp17,pp18,pp19,pp20,pp21,pp22,pp23,pp24,
pp25,pp26);

input [52:0] B;

input [80:0] Ab;

output [106:0]
pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,p
p10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,p
p18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,p
p26;

wire [26:0] y;

wire [105:0]
p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,
p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p
23,p24,p25,p26;

pp u1 (B,Ab[2:0],y[0],p0);

pp u2 (B,Ab[5:3],y[1],p1);

pp u3 (B,Ab[8:6],y[2],p2);

pp u4 (B,Ab[11:9],y[3],p3);

pp u5 (B,Ab[14:12],y[4],p4);

pp u6 (B,Ab[17:15],y[5],p5);

pp u7 (B,Ab[20:18],y[6],p6);

pp u8 (B,Ab[23:21],y[7],p7);

pp u9 (B,Ab[26:24],y[8],p8);

pp u10 (B,Ab[29:27],y[9],p9);

pp u11 (B,Ab[32:30],y[10],p10);

pp u12 (B,Ab[35:33],y[11],p11);

pp u13 (B,Ab[38:36],y[12],p12);

pp u14 (B,Ab[41:39],y[13],p13);

pp u15 (B,Ab[44:42],y[14],p14);

pp u16 (B,Ab[47:45],y[15],p15);

pp u17 (B,Ab[50:48],y[16],p16);

pp u18 (B,Ab[53:51],y[17],p17);

pp u19 (B,Ab[56:54],y[18],p18);

pp u20 (B,Ab[59:57],y[19],p19);

pp u21 (B,Ab[62:60],y[20],p20);

pp u22 (B,Ab[65:63],y[21],p21);

pp u23 (B,Ab[68:66],y[22],p22);

pp u24 (B,Ab[71:69],y[23],p23);

pp u25 (B,Ab[74:72],y[24],p24);

pp u26 (B,Ab[77:75],y[25],p25);

pp u27 (B,Ab[80:78],y[26],p26);

assign pp0={p0[105],p0};

assign pp1={p1[104:0],1'b0,y[0]};

assign pp2={p2[102:0],1'b0,y[1],2'b0};

78

assign pp3={p3[100:0],1'b0,y[2],4'b0};

assign pp4={p4[98:0],1'b0,y[3],6'b0};

assign pp5={p5[96:0],1'b0,y[4],8'b0};

assign pp6={p6[94:0],1'b0,y[5],10'b0};

assign pp7={p7[92:0],1'b0,y[6],12'b0};

assign pp8={p8[90:0],1'b0,y[7],14'b0};

assign pp9={p9[88:0],1'b0,y[8],16'b0};

assign pp10={p10[86:0],1'b0,y[9],18'b0};

assign pp11={p11[84:0],1'b0,y[10],20'b0};

assign pp12={p12[82:0],1'b0,y[11],22'b0};

assign pp13={p13[80:0],1'b0,y[12],24'b0};

assign pp14={p14[78:0],1'b0,y[13],26'b0};

assign pp15={p15[76:0],1'b0,y[14],28'b0};

assign pp16={p16[74:0],1'b0,y[15],30'b0};

assign pp17={p17[72:0],1'b0,y[16],32'b0};

assign pp18={p18[70:0],1'b0,y[17],34'b0};

assign pp19={p19[68:0],1'b0,y[18],36'b0};

assign pp20={p20[66:0],1'b0,y[19],38'b0};

assign pp21={p21[64:0],1'b0,y[20],40'b0};

assign pp22={p22[62:0],1'b0,y[21],42'b0};

assign pp23={p23[60:0],1'b0,y[22],44'b0};

assign pp24={p24[58:0],1'b0,y[23],46'b0};

assign pp25={p25[56:0],1'b0,y[24],48'b0};

assign pp26={p26[54:0],1'b0,y[25],50'b0}

endmodule

module pp (A,bt,s,p);

input [52:0] A; //A=multiplicand

input [2:0] bt; //bt=booth encoding

output s;

output [105:0] p; //o/p PP

wire h;

wire [105:0] B,x,y;

assign h=~bt[1]&~bt[0];

assign B={53'b0,A};

assign x=bt[0]?B:{B[104:0],1'b0};

assign y=bt[2]?~x:x;

assign p=h?106'b0:y;

assign s=h?1'b0:bt[2];

endmodule

module red_tree2
(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,
p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p
23,p24,p25,p26, s,c)

input [106:0]
p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,
p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p
23,p24,p25,p26;

output [107:0] s,c;

wire [106:0]
s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c3,c4,c5,c6,c7,c8,
pp24,pp25,pp26;

wire [106:0]
ss1,ss2,ss3,ss4,ss5,ss6,cc1,cc2,cc3,cc4,cc5,cc6
,ppp26;

wire [106:0]
sss1,sss2,sss3,sss4,ccc1,ccc2,ccc3,ccc4,px26;

wire [106:0] sv1,sv2,sv4,cv1,cv2,cv4,pv26;

wire [106:0] sx1,sx4,cx1,cx2,cx4,pxx26;

wire [106:0] sy1,cy1,sy4,cy4,py26;

wire [106:0] su1,cu1,su4,pu26;

79

wire [106:0] sn1,cn1,pn26;

L1_m u1
(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,
p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p
23,p24,p25,p26,s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c
3,c4,c5,c6,c7,c8,pp24,pp25,pp26);

L2_m u2
(s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c3,c4,c5,c6,c7,c
8,pp24,pp25,pp26,ss1,ss2,ss3,ss4,ss5,ss6,cc1,
cc2,cc3,cc4,cc5,cc6,ppp26);

L3_m u3
(ss1,ss2,ss3,ss4,ss5,ss6,cc1,cc2,cc3,cc4,cc5,cc
6,ppp26,sss1,sss2,sss3,sss4,ccc1,ccc2,ccc3,cc
c4,px26);

L4_m u4
(sss1,sss2,sss3,sss4,ccc1,ccc2,ccc3,ccc4,px26,
sv1,sv2,sv4,cv1,cv2,cv4,pv26);

L5_m u5
(sv1,sv2,sv4,cv1,cv2,cv4,pv26,sx1,sx4,cx1,cx2
,cx4,pxx26);

L6_m u6
(sx1,sx4,cx1,cx2,cx4,pxx26,sy1,cy1,sy4,cy4,py
26);

L7_m u7
(sy1,cy1,sy4,cy4,py26,su1,cu1,su4,pu26);

L8_m u8 (su1,cu1,su4,pu26,sn1,cn1,pn26);

L9_m u9 (sn1,cn1,pn26,s,c);

endmodule

module L1_m
(pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,
pp10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,
pp18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,
pp26,
s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c3,c4,c5,c6,c7,c8,
p24,p25,p26);

input [106:0]
pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,p
p10,pp11,pp12,pp13,pp14,pp15,pp16,pp17,p

p18,pp19,pp20,pp21,pp22,pp23,pp24,pp25,p
p26;

output [106:0]
s1,s2,s3,s4,s5,s6,s7,s8,c1,c2,c3,c4,c5,c6,c7,c8,
p24,p25,p26;

csaa u1 (pp0,pp1,pp2,s1,c1);

csaa u2 (pp3,pp4,pp5,s2,c2);

csaa u3 (pp6,pp7,pp8,s3,c3);

csaa u4 (pp9,pp10,pp11,s4,c4);

csaa u5 (pp12,pp13,pp14,s5,c5);

csaa u6 (pp15,pp16,pp17,s6,c6);

csaa u7 (pp18,pp19,pp20,s7,c7);

csaa u8 (pp21,pp22,pp23,s8,c8);

assign p24=pp24;

assign p25=pp25;

assign p26=pp26;

endmodule

module L2_m
(ss1,ss2,ss3,ss4,ss5,ss6,ss7,ss8,cc1,cc2,cc3,cc
4,cc5,cc6,cc7,cc8,pp24,pp25,pp26,s1,s2,s3,s4
,s5,s6,c1,c2,c3,c4,c5,c6,p26);

input [106:0]
ss1,ss2,ss3,ss4,ss5,ss6,ss7,ss8,cc1,cc2,cc3,cc4
,cc5,cc6,cc7,cc8,pp24,pp25,pp26;

output [106:0]
s1,s2,s3,s4,s5,s6,c1,c2,c3,c4,c5,c6,p26;

csaa u1 (ss1,ss2,{cc1[105:0],1'b0},s1,c1);

csaa u2
({cc2[105:0],1'b0},ss3,{cc3[105:0],1'b0},s2,c2)
;

csaa u3 (ss4,{cc4[105:0],1'b0},ss5,s3,c3);

80

csaa u4
({cc5[105:0],1'b0},{cc6[105:0],1'b0},ss6,s4,c4)
;

csaa u5 (ss7,{cc7[105:0],1'b0},ss8,s5,c5);

csaa u6 (pp24,{cc8[105:0],1'b0},pp25,s6,c6);

assign p26=pp26;

endmodule

module L3_m
(ss1,ss2,ss3,ss4,ss5,ss6,cc1,cc2,cc3,cc4,cc5,cc
6,pp26, s1,s2,s3,s4,c1,c2,c3,c4,p26);

input [106:0]
ss1,ss2,ss3,ss4,ss5,ss6,cc1,cc2,cc3,cc4,cc5,cc6
,pp26;

output [106:0] s1,s2,s3,s4,c1,c2,c3,c4,p26;

csaa u1 (ss1,ss2,{cc1[105:0],1'b0},s1,c1);

csaa u2
({cc2[105:0],1'b0},{cc3[105:0],1'b0},ss3,s2,c2)
;

csaa u4 (ss4,ss5,{cc4[105:0],1'b0},s3,c3);

csaa u3
({cc6[105:0],1'b0},ss6,{cc5[105:0],1'b0},s4,c4)
;

assign p26=pp26;

endmodule

module L4_m (
ss1,ss2,ss3,ss4,cc1,cc2,cc3,cc4,pp26,
s1,s2,s4,c1,c2,c4,p26);

input [106:0]
ss1,ss2,ss3,ss4,cc1,cc2,cc3,cc4,pp26;

output [106:0] s1,s2,s4,c1,c2,c4,p26;

 csaa u1 (ss1,ss2,{cc1[105:0],1'b0},s1,c1);

csaa u2
(ss3,{cc2[105:0],1'b0},{cc3[105:0],1'b0},s2,c2)
;

assign s4=ss4;

assign c4=cc4;

assign p26=pp26;

endmodule

module L5_m (ss1,ss2,ss4,cc1,cc2,cc4,pp26,

 s1,s4,c1,c2,c4,p26);

input [106:0] ss1,ss2,ss4,cc1,cc2,cc4,pp26;

output [106:0] s1,s4,c1,c2,c4,p26;

csaa u1 (ss1,ss2,{cc1[105:0],1'b0},s1,c1);

assign c2=cc2;

assign s4=ss4;

assign c4=cc4;

assign p26=pp26;

endmodule

module L6_m (ss1,ss4,cc1,cc2,cc4,pp26,

 s1,c1,s4,c4,p26);

input [106:0] ss1,ss4,cc1,cc2,cc4,pp26;

output [106:0] s1,c1,s4,c4,p26;

csaa u1
({cc1[105:0],1'b0},ss1,{cc2[105:0],1'b0},s1,c1)
;

assign s4=ss4;

assign c4=cc4;

assign p26=pp26;

endmodule

module L7_m (ss1,cc1,ss4,cc4,pp26,

 s1,c1,c4,p26);

input [106:0] ss1,cc1,ss4,cc4,pp26;

81

output [106:0] s1,c1,c4,p26;

csaa u1 ({cc1[105:0],1'b0},ss1,ss4,s1,c1);

assign c4=cc4;

assign p26=pp26;

endmodule

module L8_m (ss1,cc1,cc4,pp26,

 s1,c1,p26);

input [106:0] ss1,cc1,cc4,pp26;

output [106:0] s1,c1,p26;

csaa u1
({cc1[105:0],1'b0},ss1,{cc4[105:0],1'b0},s1,c1)
;

assign p26=pp26;

endmodule

module L9_m (ss1,cc1,pp26,s,c);

input [106:0] ss1,cc1,pp26;

output [107:0] s,c;

wire [106:0] s1,c1;

csaa u1 ({cc1[105:0],1'b0},ss1,pp26,s1,c1);

assign s={s1[106],s1};

assign c={c1,1'b0};

endmodule

Bit invert

module bit_invert (A,Ainv,sub);

input [0:52] A;

input sub;

output [0:160] Ainv;

assign Ainv=sub?
{~A,108'hfffffffffffffffffffffffffff}:{A,108'b0};

endmodule

Alignment Shifter & Sticky bit st1 calculation

module align_shifter
(A,sh_amount,sub,As,st1);

input [0:160] A;

input sub;

input [0:7] sh_amount;

output [0:160] As;

output st1; //sticky bit

wire [0:160] A1,A2,A3,A4,A5,A6,A7;

wire
st_1,st_2,st_3,st_4,st_5,st_6,st_7,st_8,t1,t2,t
3,t4,t5,t6,t7,t8;

align_sh1 u1 (A,sh_amount[0],sub,A1,st_1);
//sh1=shift_amount[0]--> msb

align_sh2 u2 (A1,sh_amount[1],sub,A2,st_2);

align_sh3 u3 (A2,sh_amount[2],sub,A3,st_3);

align_sh4 u4 (A3,sh_amount[3],sub,A4,st_4);

align_sh5 u5 (A4,sh_amount[4],sub,A5,st_5);

align_sh6 u6 (A5,sh_amount[5],sub,A6,st_6);

align_sh7 u7 (A6,sh_amount[6],sub,A7,st_7);

align_sh8 u8 (A7,sh_amount[7],sub,As,st_8);
//sh8=shift_amount[7] -->lsb

assign t1=sh_amount[0]&st_1;

assign t2=sh_amount[1]&st_2;

assign t3=sh_amount[2]&st_3;

assign t4=sh_amount[3]&st_4;

assign t5=sh_amount[4]&st_5;

assign t6=sh_amount[5]&st_6;

82

assign t7=sh_amount[6]&st_7;

assign t8=sh_amount[7]&st_8;

assign st1=t1|t2|t3|t4|t5|t6|t7|t8;

endmodule

module align_sh1 (a,sh1,sub,b,st_1);

input [0:160] a;

input sh1,sub; //shift by 128 to right

output [0:160] b;

output st_1;

wire [0:160] g;

assign
g=sub?{128'hffffffffffffffffffffffffffffffff,a[0:32]
}:{128'b0,a[0:32]};

assign b=sh1? g:a;

assign st_1=sub?
~(!(~a[33:160])):~(!a[33:160]); //if sub=0
check if all bits=0,if sub=1 check if all bits =1

endmodule

module align_sh2 (a,sh2,sub,b,st_2);

input [0:160] a;

input sh2,sub; //shift by 64 to right

output [0:160] b;

output st_2;

wire [0:160] g;

assign g=sub?
{64'hffffffffffffffff,a[0:96]}:{64'b0,a[0:96]};

assign b=sh2? g:a;

assign st_2=sub?
~(!(~a[97:160])):~(!a[97:160]);

endmodule

module align_sh3 (a,sh3,sub,b,st_3);

input [0:160] a;

input sh3,sub; //shift by 32 to right

output [0:160] b;

output st_3;

wire [0:160] g;

assign g=sub?
{32'hffffffff,a[0:128]}:{32'b0,a[0:128]};

assign b=sh3?g:a;

assign st_3=sub?
~(!(~a[129:160])):~(!a[129:160]);

endmodule

module align_sh4 (a,sh4,sub,b,st_4);

input [0:160] a;

input sh4,sub; //shift by 16 to right

output [0:160] b;

output st_4;

wire [0:160] g;

assign g=sub?
{16'hffff,a[0:144]}:{16'b0,a[0:144]};

assign b=sh4? g:a;

assign st_4=sub?
~(!(~a[145:160])):~(!a[145:160]);

endmodule

module align_sh5 (a,sh5,sub,b,st_5);

input [0:160] a;

input sh5,sub; //shift by 8 to right

output [0:160] b;

output st_5;

83

wire [0:160] g;

assign g=sub? {8'hff,a[0:152]}:{8'b0,a[0:152]};

assign b=sh5? g:a;

assign st_5=sub?
~(!(~a[153:160])):~(!a[153:160]);

endmodule

module align_sh6 (a,sh6,sub,b,st_6);

input [0:160] a;

input sh6,sub; //shift by 4 to right

output [0:160] b;

output st_6;

wire [0:160] g;

assign g=sub? {4'hf,a[0:156]}:{4'b0,a[0:156]};

assign b=sh6? g:a;

assign st_6=sub?
~(!(~a[157:160])):~(!a[157:160]);

endmodule

module align_sh7 (a,sh7,sub,b,st_7);

input [0:160] a;

input sh7,sub; //shift by 2 to right

output [0:160] b;

output st_7;

wire [0:160] g;

assign g=sub?
{2'b11,a[0:158]}:{2'b0,a[0:158]};

assign b=sh7?g:a;

assign
st_7=sub?~(!(~a[159:160])):~(!a[159:160]);

endmodule

module align_sh8 (a,sh8,sub,b,st_8);

input [0:160] a;

input sh8,sub; //shift by 1 to right

output [0:160] b;

output st_8;

wire [0:160] g;

assign g=sub?{1'b1,a[0:159]}:{1'b0,a[0:159]};

assign b=sh8? g:a;

assign st_8=sub? ~a[160]:a[160];

endmodule

LZA

module lza (a,b,f);

input [0:107] a,b;

output [0:107] f;

wire [0:107] t,g,z,g1,z1,t1,x;

assign t=a^b;

assign g=a&b;

assign z=~a&~b;

assign g1={g[1:107],1'b0};

assign z1={z[1:107],1'b0};

assign t1={1'b0,t[0:106]};

assign
x=(t1&((g&~z1)|(z&~g1)))|(~t1&((z&~z1)|(g&
~g1)));

assign f[0]=~t[0]&t[1];

assign f[1:107]=x[1:107];

endmodule

Multiplixer

84

module mux0 (a,b,s,c);

input [161:0] a,b;

input s;

output [161:0] c;

assign c=s? b:a;

Shift amount

module encode_norm
(f,S1,S2,S3,S4,S5,S6,S7);

input [0:107] f;

output S1,S2,S3,S4,S5,S6,S7;

S1 U1(f,S1);

S2 u2 (f,S1,S2);

S3 u3 (f,S1,S2,S3);

S4 u4 (f,S1,S2,S3,S4);

S5 u5 (f,S1,S2,S3,S4,S5);

S6 u6 (f,S1,S2,S3,S4,S5,S6);

S7 u7 (f,S1,S2,S3,S4,S5,S6,S7);

Endmodule

module S1 (A,S1);

input [0:107] A;

output S1;

assign S1=!A[0:63];

endmodule

module S2 (A,S1,S2);

input [0:107] A;

input S1;

output S2;

wire x1,x2;

assign x1=!A[0:31];

assign x2=!A[64:95];

assign S2=S1?X2:X1;

endmodule

module S3 (A,S1,S2,S3);

input [0:107] A;

input S1,S2;

output S3;

wire x1,x2,x3,x4;

wire f1,f2;

assign x1=!A[0:15];

assign x2=!A[64:79];

assign x3=!A[32:47];

assign x4=!A[96:107];

mux0 u1 (x1,x2,S1,f1);

mux0 u2 (x3,x4,S1,f2);

mux0 u3 (f1,f2,S2,S3);

endmodule

module S4 (A,S1,S2,S3,S4);

input [0:107] A;

input S1,S2,S3;

output S4;

wire x1,x2,x3,x4,x5,x6,x7;

wire f1,f2,f3,f4,f5;

assign x1=!A[0:7];

assign x2=!A[64:71];

assign x3=!A[32:39];

assign x4=!A[96:103];

85

assign x5=!A[16:23];

assign x6=!A[80:87];

assign x7=!A[48:55];

mux0 u1 (x1,x2,S1,f1);

mux0 u2 (x3,x4,S1,f2);

mux0 u3 (x5,x6,S1,f3);

mux0 u4 (f1,f2,S2,f4);

mux0 u5 (f3,x7,S2,f5);

mux0 u6 (f4,f5,S3,S4);

endmodule

module S5 (A,S1,S2,S3,S4,S5);

input [0:107] A;

input S1,S2,S3,S4;

output S5;

wire
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x1
4;

wire f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12;

assign x1=!A[0:3];

assign x2=!A[64:67];

assign x3=!A[32:35];

assign x4=!A[96:99];

assign x5=!A[16:19];

assign x6=!A[80:83];

assign x7=!A[48:51];

assign x8=!A[8:11];

assign x9=!A[72:75];

assign x10=!A[40:43];

assign x11=!A[104:107];

assign x12=!A[24:27];

assign x13=!A[88:91];

assign x14=!A[56:59];

mux0 u1 (x1,x2,S1,f1);

mux0 u2 (x3,x4,S1,f2);

mux0 u3 (x5,x6,S1,f3);

mux0 u4 (x8,x9,S1,f4);

mux0 u5 (x10,x11,S1,f5);

mux0 u6 (x12,x13,S1,f6);

mux0 u7 (f1,f2,S2,f7);

mux0 u8 (f3,x7,S2,f8);

mux0 u9 (f4,f5,S2,f9);

mux0 u10 (f6,x14,S2,f10);

mux0 u11(f7,f8,S3,f11);

mux0 u12 (f9,f10,S3,f12);

mux0 u13 (f11,f12,S4,S5);

endmodule

module S6 (A,S1,S2,S3,S4,S5,S6);

input [0:107] A;

input S1,S2,S3,S4,S5;

output S6;

wire
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x1
4,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24,x
25,x26,x27;

wire f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11;

wire k1,k2,k3,k4,k5,k6,k7,k8;

wire m1,m2,m3,m4;

86

wire n1,n2;

assign x1=!A[0:1];

assign x2=!A[64:65];

assign x3=!A[32:33];

assign x4=!A[96:97];

assign x5=!A[16:17];

assign x6=!A[80:81];

assign x7=!A[48:49];

assign x8=!A[8:9];

assign x9=!A[72:73];

assign x10=!A[40:41];

assign x11=!A[104:105];

assign x12=!A[24:25];

assign x13=!A[88:89];

assign x14=!A[56:57];

assign x15=!A[4:5];

assign x16=!A[68:69];

assign x17=!A[36:37];

assign x18=!A[100:101];

assign x19=!A[20:21];

assign x20=!A[84:85];

assign x21=!A[52:53];

assign x22=!A[12:13];

assign x23=!A[76:77];

assign x24=!A[44:45];

assign x25=!A[28:29];

assign x26=!A[92:93];

assign x27=!A[60:61];

mux0 u1 (x1,x2,S1,f1);

mux0 u2 (x3,x4,S1,f2);

mux0 u3 (x5,x6,S1,f3);

mux0 u4 (x8,x9,S1,f4);

mux0 u5 (x10,x11,S1,f5);

mux0 u6 (x12,x13,S1,f6);

mux0 u7 (x15,x16,S1,f7);

mux0 u8 (x17,x18,S1,f8);

mux0 u9 (x19,x20,S1,f9);

mux0 u10 (x22,x23,S1,f10);

mux0 u11 (x25,x26,S1,f11);

mux0 u12 (f1,f2,S2,k1);

mux0 u13 (f3,x7,S2,k2);

mux0 u14 (f4,f5,S2,k3);

mux0 u15 (f6,x14,S2,k4);

mux0 u16(f7,f8,S2,k5);

mux0 u17 (f9,x21,S2,k6);

mux0 u18 (f10,x24,S2,k7);

mux0 u19 (f11,x27,S2,k8);

mux0 u20 (k1,k2,S3,m1);

mux0 u21 (k3,k4,S3,m2);

mux0 u22 (k5,k6,S3,m3);

mux0 u23 (k7,k8,S3,m4);

mux0 u24 (m1,m2,S4,n1);

mux0 u25 (m3,m4,S4,n2);

mux0 u26 (n1,n2,S5,S6);

endmodule

module S7 (f,S1,S2,S3,S4,S5,S6,S7);

87

input [0:107] f;

input S1,S2,S3,S4,S5,S6;

output S7;

wire [0:107] A;

wire
f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f1
5,f16,f17,f18,f19,f20,f21,f22;

wire
k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k
14,k15,k16;

wire m1,m2,m3,m4,m5,m6,m7,m8;

wire n1,n2,n3,n4;

wire g1,g2;

assign A=~f;

mux0 u1 (A[0],A[64],S1,f1);

mux0 u2 (A[32],A[96],S1,f2);

mux0 u3 (A[16],A[80],S1,f3);

mux0 u4 (A[8],A[72],S1,f4);

mux0 u5 (A[40],A[104],S1,f5);

mux0 u6 (A[24],A[88],S1,f6);

mux0 u7 (A[4],A[68],S1,f7);

mux0 u8 (A[36],A[100],S1,f8);

mux0 u9 (A[20],A[84],S1,f9);

mux0 u10 (A[12],A[76],S1,f10);

mux0 u11 (A[28],A[92],S1,f11);

mux0 u12 (A[2],A[66],S1,f12);

mux0 u13 (A[34],A[98],S1,f13);

mux0 u14 (A[18],A[82],S1,f14);

mux0 u15 (A[10],A[74],S1,f15);

mux0 u16 (A[42],A[106],S1,f16);

mux0 u17 (A[26],A[90],S1,f17);

mux0 u18 (A[6],A[70],S1,f18);

mux0 u19 (A[38],A[102],S1,f19);

mux0 u20 (A[22],A[86],S1,f20);

mux0 u21 (A[14],A[78],S1,f21);

mux0 u23 (A[30],A[94],S1,f22);

mux0 u24 (f1,f2,S2,k1);

mux0 u25 (f3,A[48],S2,k2);

mux0 u26 (f4,f5,S2,k3);

mux0 u27 (f6,A[56],S2,k4);

mux0 u28(f7,f8,S2,k5);

mux0 u29 (f9,A[52],S2,k6);

mux0 u30 (f10,A[44],S2,k7);

mux0 u31 (f11,A[60],S2,k8);

mux0 u32 (f12,f13,S2,k9);

mux0 u33 (f14,A[50],S2,k10);

mux0 u34 (f15,f16,S2,k11);

mux0 u35 (f17,A[58],S2,k12);

mux0 u36 (f18,f19,S2,k13);

mux0 u37 (f20,A[54],S2,k14);

mux0 u38 (f21,A[46],S2,k15);

mux0 u39 (f22,A[62],S2,k16);

mux0 u40 (k1,k2,S3,m1);

mux0 u41 (k3,k4,S3,m2);

mux0 u42 (k5,k6,S3,m3);

mux0 u43 (k7,k8,S3,m4);

mux0 u44 (k9,k10,S3,m5);

88

mux0 u45 (k11,k12,S3,m6);

mux0 u46 (k13,k14,S3,m7);

mux0 u47 (k15,k16,S3,m8);

mux0 u48 (m1,m2,S4,n1);

mux0 u49 (m3,m4,S4,n2);

mux0 u50 (m5,m6,S4,n3);

mux0 u51 (m7,m8,S4,n4);

mux0 u52 (n1,n2,S5,g1);

mux0 u53 (n3,n4,S5,g2);

mux0 u54 (g1,g2,S6,S7);

endmodule

Round decision

module Round_decision (RI,RN,S,Rd,Rd1);

input RI,RN,S;

output Rd,Rd1;

assign Rd=RI|RN;

assign Rd1=RI&S;

endmodule

LSB correction

module LSB_correct
(RN,N,Sn,Sun,Rn,Run,LSB,Lc);

input RN,Sn,Sun,Rn,Run,LSB,N;

output Lc;

wire x1,x2,x3,x4;

assign x1=Rn&~Sn; //tie case for normalized
Rn=Ro

assign x2=Run&~Sun; //tie case for unnor.
Run=Rn

assign x3=N?x1:x2;

assign x4=x3&RN;

assign Lc=LSB&~x4;

endmodule

	first
	thesis2
	thesis1
	first pages
	Acknowledgment
	ABSTRACT
	Abstract………………………………………..………………………………..……..…ii Contents……………………………...………..……………………………..…..………iii
	0TUBIBLIOGRAPHY………………………………………..………………………U0T……..72
	0TAPPENDIX……………………………………..……………………………………….76
	UList of FiguresU
	UList of Tables

	thesis
	: Introduction
	Motivation and Contribution
	Outline

	: Standard Floating Point Representations and Fused Multiply-Add Algorithm
	Fraction representation
	Fixed point representation
	Floating point representation

	IEEE floating point representation
	Basic formats
	Rounding modes
	Exceptions

	Standard floating point fused multiply-add Algorithm
	Basic Algorithm
	Basic implementation

	Conclusion

	: Previous Work on the Floating-Point Fused Multiply Add Architecture
	Basic architecture IBM RS/6000
	A fused multiply add unit with reduced latency
	Basic floating point Fused Multiply-Add components
	The multiplier
	Partial Product Generation
	Partial product reduction

	The alignment shifter
	3:2 CSA
	Carry propagate adder (CPA) and leading zero anticipator (LZA)
	The normalization
	The rounding

	Conclusion

	: Implementation of Fused Multiply Add Unit
	Proposed Fused Multiply Add
	Design details of blocks used in proposed FMA
	Leading zero anticipator (LZA) and Normalization shifter
	Sign detection module
	Add/Round module
	Select decision and bits selection
	Sticky bit calculation and round decision
	LSB correction

	Anticipated part of the adder

	Conclusion

	: Simulation Verification and Results
	Simulation verification
	Simulation Results
	Conclusion

	: Conclusion
	Future Work

	BIBLIOGRAPHY

	Appendix
	APPENDIX
	Sign Processing
	module sign_processing (Sa,Sb,Sc,o,comp,Sw,eff_o);
	input Sa,Sb,Sc,o,comp; //o:sign of operation if add o='0',if sub o='1'
	output Sw;
	output eff_o; //eff_o is effective operation
	wire Sbc; //sign of bxc
	assign Sbc=Sb^Sc;
	assign eff_o=o^Sa^Sbc;
	assign Sw=(comp&Sa)|(~comp&(Sbc^o));
	endmodule
	module
	Multiplier

