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ABSTRACT
Although the binary representation is convenient to computer arithmetic; it is not
natural to humans. So, decimal arithmetic has proved its necessity in some
applications such as business. Accuracy is the main reason to include the decimal
floating point specifications in IEEE 745- 2008. This can be performed either in
software or hardware. However, hardware implementations speed up the operation
with more energy savings. So far, only two processor architectures include
decimal floating point units (z series and power series from IBM). This research
provides the first free and open-source alternative to the above two architectures
with a processor containing decimal floating point as well as the corresponding
tool chain.

Our open-source processor uses a decimal Fused Multiply-Add unit (FMA)
designed by our team as the core of the decimal unit. This processor is based on
the UltraSparc T2 architecture from Oracle/Sun. It provides the basic decimal
operations (Addition, Subtraction, Multiplication, Fused Multiply-Add and Fused
Multiply-Subtract). To implement these changes, we add a new unit called
Decimal Floating Point Unit (DFPU) then adapt the Instruction Fetch Unit (IFU),
the Pick Unit (PKU), the Decoding Unit (DEC), the Floating Point Control Unit
(FPC), and the Floating Point and Graphics Unit (FGU).

The second part of the work is to provide the necessary SW tools to
generate programs for the new architecture. The GCC Compiler is patched to
include several decimal double-precision floating point instructions. Finally, the
op-codes of these instructions are added to the standard SPARC Instruction Set
Architecture (SPARC ISA v9).
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Chapter 1 DECIMAL FLOATING POINT ARITHMETIC
The invention of numbers is one of the great and remarkable achievements of the
human race. The numeration system used by humans has always been subjected to
developments in order to satisfy the needs of a certain society at a certain point in
time. The variation of these needs from a culture to another along with the
evolution of numbering demands led to many different numeration systems across
the ages. The traces of these systems were found and tracked by both linguists and
archaeologists [1].

However, the fundamental step in developing all number systems was to
develop the number sense itself which is the fact that the number is an abstract
idea independent of the counted object. The sense of numbers evolved into three
main stages. The first was to assign different sets of numbers to different types of
objects. The second stage was matching the counted items against other more
available and/or accessible ones. For example, counted items of any type were
matched against a group of pebbles, grain of corns, or simply fingers. There were
many bases for various numeration systems; however, the most common number
systems at this stage were based on ten which is logically justified by the ease of
counting on fingers. This fact is also, most probably, the main reason for the
stability of our nowadays decimal system. Finally, once the sense of numbers is
completely developed, distinct names should be assigned to numbers [1].

The need to record the results of counting led to inventing different ways to
express numbers in a symbolic written format. This step in the numerals evolution
led to two distinct systems, additive and positional. The additive system assigns
distinct symbols to certain numbers. A combination of these symbols with the
possibility of repeating any symbol as much as necessary can represent any
number. This system was used by old Romans and Egyptians. It is easy for
counting and simple for calculations, however, it is very complex with advanced
arithmetic operations. On the other hand, in the positional system, the symbols
representing numbers are positioned in a string with each position indicating a
certain weight for the digit inside it. The Chinese and Babylonians used positional
number systems. However, a main drawback with these systems was that, there
was no symbol for ’zero’ to indicate an empty position. This led to both
complexity and ambiguity in their numbering system [2].
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The decimal numbering system was completely represented by Al-
Khwarizmi in his book “The Keys of Knowledge” [3]. In the ninth century, while
he was working as a scholar in the House of Wisdom in Baghdad, he developed
the science of Algebra based on decimal numeration. The most remarkable
achievement was introducing the digit ’zero’. In his book, he indicates that he
learned this numbering system from Indians. This system, known as the Hindu-
Arabic number system, spread gradually in Europe until it almost completely
replaced the previously widespread Roman system at the 17th century [2].

The rest of this chapter is organized as follows: section 1.1 gives an overview
about the history of the decimal numeration system in computers. Next, section
1.2 explains the increasing importance of decimal floating point arithmetic. The
decimal floating point standard format with its arithmetic operations is discussed
in section1.3. Section 1.4 surveys the recent published hardware implementations
for different decimal floating point operations. Finally, a brief review for
processors that support decimal is presented in section 1.5.

1.1 Decimal Arithmetic in Computers
Since the decimal number system was completely the dominant used numbering
system at the 17th century, the first trials for mechanical computers adopted this
system for calculations. A well-known example for these mechanical computers is
the analytical engine by Charles Babbage [4]. However, the decimal numeration
system was questionable again when the computer industry entered the electronic
era.

The early electronic computers that depended on vacuum tube technology
such as the ENIAC maintained the decimal system for both addressing and
numbers. The main representation used was BCD (Binary Coded Decimal) [5].
The superiority of binary system over decimal was first discussed by Burks,
Goldstine and von Neumann [6]. Despite the longstanding tradition of building
digital machines using decimal numbering system, they argued that a pure binary
system for both addressing and data processing would be more suitable for
machines based on the two-state digital electronic devices such as vacuum tubes.
They stated that binary system will be simpler, more reliable and more efficient
than decimal. According to their reports, the simplicity stems from the fact that the
fundamental unit of memory is naturally adapted to the binary which leads to more
efficient representation and hence more precision. Also, they pointed out to the
prevalence of binary system in elementary arithmetic and, of course, logical
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operations which can be performed much faster than in decimal case. Due to its
simplicity, it implies greater reliability due to the reduced number of components.
Meanwhile, they underestimated the problem of conversion between binary and
decimal, that is more familiar to humans. They argued that this conversion
problem can be solved by the computer itself without considerable delay.

On the other hand, other researchers [7] outlined that, the format
conversions between decimal and binary can contribute significantly to the delay
in many applications that perform few arithmetic operations on huge data
workloads. They concluded that the best solution for such case is to build separate
arithmetic units. One of them is binary for addressing and the other is decimal for
data processing. This debate ended up with two separate lines of computers around
the 6th decade of the 20th century, one of them is dedicated to scientific and
engineering applications which do complex calculations on small amount of input
data and this line uses a fully binary ALU. While the other line is dedicated to the
commercial applications which operate on huge data amounts with simple
operations so it uses decimal ALU for data processing and binary ALU for
addressing [8].

Two main factors led to merging these two lines in a single product
between 1960 and 1970. First, the evolution of the solid-state semiconductor
technology which contributed to the large scale production of computers with
reduced area and cost. Second, the fact that customers are used to run commercial
applications on scientific computers as well as business-oriented computers were
used for some research purposes. These two reasons provided both the ability and
the desire to merge both binary and decimal arithmetic units in one ALU [9].

In the 1970s, huge research efforts were exerted to speed up arithmetic
operations in binary with limited equivalent efforts for decimal [10, 11, 12, 13,
14]. This led to more popularity for binary systems. Therefore, the early personal
computers integrated only binary ALUs with limited decimal operations on the
software layer performed on a binary hardware. A remarkable example is the Intel
x86 microprocessor which provides some instructions for BCD such as DAA
(Decimal Adjustment after Addition) and DAS (Decimal Adjustment after
Subtraction) which adjust the binary result of addition or subtraction as if the
operation was conducted on decimal hardware [15]. On the other side, binary
floating point, which was first proposed in 1914, was supported in the x86 by
specialized chips calledfloating-point accelerators. This was mainly because of its
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complexity and hence the difficulty to integrate it within the microprocessor chip
[16].

The floating point units gained increased popularity, specifically for
scientific applications. This led to many designs with different formats and
rounding behaviors for arithmetic operations. Therefore it was necessary to
standardize a floating-point system so that the same operation can provide the
same result on different designs. Thus, the IEEE 754-1985 standard was issued as
a binary floating-point standard.

In 1987, another standard for radix independent floating-point arithmetic
(IEEE 854-1987) was released [17]. However, it found no echo in the market. This
was, from one hand, due to a shortage in the standard itself which lacked some
features such as an efficient binary encoding for numbers of higher radices;
especially decimal. On the other hand, there was no sufficient demand in the
market for decimal floating point processing, particularly which, a decimal
floating point unit was still relatively complex enough not to be integrated into a
general-purpose microprocessor with the fabrication technologies available at that
time [9].

At the beginning of 2000s, there was growing importance of decimal
arithmetic in commercial and financial applications, along with technological
improvements that allow integration of more complex units. This resulted in a
demand for standard specifications for decimal floating-point arithmetic. Thus, the
new revision of the IEEE standard for floating-point arithmetic (IEEE 754-2008)
includes specifications for decimal floating point arithmetic [18].

In the next section, the importance of decimal floating point that led to its
adoption in the new standard will be explored.

1.2 Importance of Decimal Floating Point Arithmetic
The controversy over binary and decimal numeration systems that was opened in
the 1970s led initially to merging both systems in the same ALU and ended up
with the complete adoption of binary system and depending only on software to
perform decimal calculations. Yet, the same debate was reopened again in the
2000s.

Banking, billing, and other financial applications use decimal extensively.
Such applications should produce final results that are expected by humans and
required by law. Since conversion of some decimal fractions to their binary
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equivalents may result in endless fractions, this implies a loss of accuracy due to
limited storage in case of using pure binary arithmetic. For example, simple
decimal fractions such as 0.1 that might represent a tax amount or a sales discount
yield an infinitely recurring number if converted to a binary representation

(0.0001100110011···). This conversion error accumulates and may lead to

significant losses in the business market. In a large telephone billing application
such an error may end up to $5 million per year [19].

In addition to the accuracy problem, the user of a human oriented
application expects trailing zeros to be preserved in different operations. Without
these trailing zeros the result of operation appears to be vague. For example, if the
specification of a resistor states that it should be of 1.200 kW, this implies that this
measurement is to the nearest 1W. However, if this specification is altered to 1.2
kW, then the precision of the measurement is understood to be to the nearest 100
W. This example shows that it is not only the numerical value of a number that is
significant; however, the full precision of a number should be also taken into
consideration. The binary floating point arithmetic does not follow this rule
because of its normalized nature.

Such applications may rely on either a low level decimal software library or
use dedicated hardware circuits to perform the basic decimal arithmetic
operations. However, as stated in [8], some applications use the decimal
processing in 50% to 90% of their work and that software libraries are much
slower than hardware designs. So, instead of pure software layering on binary
floating-point hardware, one solution is to use decimal fixed point (DXP)
hardware to perform decimal arithmetic. Yet, there are still several reasons to use
direct decimal floating-point (DFP) hardware implementations. First, financial
applications often need to deal with both very large numbers and very small
numbers. Therefore, it is efficient to store these numbers in floating-point formats.
Second, DFP arithmetic provides a straightforward mechanism for performing
decimal rounding, which produces the same results as when rounding is done
using manual calculations. This feature is often needed to satisfy the rounding
requirements of financial applications, such as legal requirements for tax
calculations. Third, DFP arithmetic also supports representations of special values,
such as notanumber (NaN) and infinity (∞), and status flags, such as inexact result
and divide-by-zero. These special values and status flags simplify exception
handling and facilitate error monitoring.
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A benchmarking study [20] estimates that many financial applications
spend over 75% of their execution time in Decimal Floating Point (DFP)
functions. For this class of applications, the speedup for a complete application
(including non-decimal parts) resulting from the use of a fast hardware
implementation versus a pure software implementation ranges from a factor of 5.3
to a factor of 31.2 depending on the specific application running.

Besides the accuracy and the speed up factors, savings in energy are very
important. A research paper [21] estimates that energy savings for the whole
application due to the use of a dedicated hardware instead of a software layer are
of the same order of magnitude as the time savings. It also indicates that the
process normalized Energy Delay Product (EDP) metric, suggested in [21], clearly
shows that a hardware implementation for DFP units gives from two to three
orders of magnitude improvement in EDP as a conservative estimate if compared
with software implementations.

The decimal arithmetic seems to take the same road map of binary. After the
domination of binary ALUs in processors, a common trend now is to include
either separated Decimal (including DFP) ALUs besides their binary equivalents
[22, 23]or to use combined binary and decimal ALUs [24]. This leads to a
question whether the decimal arithmetic will dominate if the performance gap
between the decimal and binary implementations shrinks enough.

1.3 IEEE Decimal Floating-Point Standard
As previously indicated, there was an increasing need to DFP arithmetic. Hence,
there were many efforts to find out the most appropriate DFP formats, operations
and rounding modes that completely define the DFP arithmetic. These efforts
ended up with the IEEE 754-2008 floating-point arithmetic standard. This section
gives a brief overview to this standard [18].

1.3.1 Decimal Formats
The IEEE 754-2008 defines DFP number as: (−1) × (10) × , where: S is the
sign bit, q is the exponent, = ( ··· ) is the significand, where∈ 0,1,2,3,4,5,6,7,8, 9, and p is the precision.

Figure1.1 shows the basic decimal interchange format specified in the IEEE
754-2008 standard. S is the sign bit which indicates either the DFP number is
positive (S = 0) or negative (S = 1) and G is a combination field that contains the
exponent, the most significant digit of the significand, and the encoding
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classification. The rest of the significand is stored in the Trailing Significand
Field, T, using either the Densely Packed Decimal (DPD) encoding or the Binary
Integer Decimal (BID) encoding, where the total number of significand digits
corresponds to the precision, p. The DPD encoding represents every three
consecutive decimal digits in the decimal significand using 10 bits, and the BID
encoding represents the entire decimal significand in binary.

Figure 1.1: DFP interchange format

Table 1.1: Parameters for different decimal interchange formats

Before being encoded in the combination field, the exponent is first encoded
as binary excess code and its bias value depends on the precision used. There are
also minimum and maximum representable exponents for each precision. The
different parameters for different precision values are presented in Table 1.1.

1.3.2 Operations
The standard specifies more than 90 obligatory operations classified into two main
groups according to the kinds of results and exceptions they produce:

 Computational Operations:
These operations operate on either floating-point or integer operands and
produce floating-point results and/or signal floating-point exceptions. This
general category can be also decomposed into three classes of operations.
General-computational operations: produce floating-point or integer
results, round all results and might signal floating-point exceptions. For
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example, all arithmetic operations such as addition, subtraction,
multiplication and so on.
Quiet-computational operations: produce floating-point results and do not
signal floating-point exceptions. It includes operations such as negate,
absolute, copy and others.
Signaling-computational operations: produce no floating-point results and

might signal floating point exceptions; comparisons are signaling
computational operations.

 Non-Computational Operations:
These operations do not produce floating-point results and do not signal
floating-point exceptions. It includes, for example, operations that identify
whether a DFP number is negative/positive, finite/infinite, Zero/Non-zero
and so on.

Operations can be also classified in a different way according to the relationship
between the result format and the operand formats:

 Homogeneous operations: in which the floating point operands and floating
point results have the same format.

 FormatOf operations: which indicates that the format of the result,
independent of the formats of the operands.

Each of the computational operations that return a numeric result specified by
this standard shall be performed as if it first produced an intermediate result
correct to an infinite precision and with unbounded range, and then rounded that
intermediate result, if necessary, to fit in the destination’s format . In some cases,
exceptions are raised to indicate that the result is not the same as expected or
invalid operations. On the other hand, as indicated before, a floating-point number
might have multiple representations in a decimal format. All these operations, if
producing DFP numbers, do not only specify the correct numerical value but they
also determine the correct member of the cohort.

It should be highlighted that, besides the required operations for a standard
compliant implementation, there are other recommended operations for each
supported format. These operations mainly include the elementary functions such
as sinusoidal and exponential functions and so on.
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1.3.3 Rounding
There are five rounding modes defined in the standard, Round ties to even, Round
ties to away, Round toward zero, Round toward positive infinity, and Round
toward negative infinity. Also, there are two well-known rounding modes
supported in the Java BigDecimal class [25]. Table 1.2 summarizes the different
rounding modes with their required action.

1.3.4 Special numbers and Exceptions

1.3.4.1 Special numbers
Operations on DFP numbers may result in either exact or rounded results.
However, the standard also specifies two special DFP numbers, infinity and NaN.

Table 1.2: Parameters for different decimal interchange formats
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1.3.4.2 Normal and Subnormal numbers
A normal number can be defined as a non-zero number in a floating point
representation which is within the balanced range supported by a given floating-
point format. The magnitude of the smallest normal number in a format is given
by , where b is the base (radix) of the format and is the minimum
representable exponent. On the other hand, subnormal numbers fill the underflow
gap around zero in floating point arithmetic. Such that any non-zero number which
is smaller than the smallest normal number is a subnormal number.

1.3.4.3 Infinities
Infinity represents numbers of arbitrarily large magnitudes, larger than the
maximum represented number by the used precision. That is:−∞ < { } < +∞.
In Table 1.3, lists of some arithmetic operations that involve infinities as either
operands or results are presented. In this table, the operand x represents any finite
normal number.

Table 1.3: Examples of some DFP operations that involve infinities
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1.3.4.4 NaNs (Not a Number)
Two different kinds of NaN, signaling and quiet, are supported in the standard.
Signaling NaNs (sNaNs) represent values for uninitialized variables or missing
data samples. Quiet NaNs (qNaNs) result from any invalid operations or
operations that involve qNaNs as operands. When encoded, all NaNs have a sign
bit and a pattern of bits necessary to identify the encoding as a NaN and which
determines its kind (sNaN or qNaN). The remaining bits, which are in the trailing
significand field, encode the payload, which might contain diagnostic information
that either indicates the reason of the NaN or how to handle it. However, the
standard specifies a preferred (canonical) representation of the payload of a NaN.

1.3.5 Exceptions
There are five different exceptions which occur when the result of an operation is
not the expected floating-point number. The default nonstop exception handling
uses a status flag to signal each exception and continues execution, delivering a
default result. The IEEE 754-2008 standard defines these five types of exceptions
as shown in Table 1.4.
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1.4 Standard Compliant Implementations of DFP Operations
As mentioned earlier, support of DFP arithmetic can either be through software
libraries such as the Java BigDecimal library [25], IBM’s decNumber library [26],
and Intel’s Decimal Floating-Point Math library [27], or through hardware
modules. These software libraries are re-mentioned in Chapter 2 with more details.
Many hardware implementations have been introduced in the last decade to
perform different operations defined in the standard. This includes adders,
multipliers, dividers and some elementary functions and others.

Many DFP adder designs have been proposed for the last few years.
Thompson et al. [28] proposed the first published DFP adder compliant with the
standard. A faster implementation with architectural improvements is proposed in
[29]. An extension and enhancement of this work is proposed again in [30].
Further improvements are proposed by Vazquez and Antelo in [31]. Fahmy et al
[21] proposed two other different adder implementations, one for high speed and

Table 1.4: Exceptions' types
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the other for low area. Yehia and Fahmy [32] proposed the first published
redundant DFP adder to allow for a carry-free addition.

There are also many designs for integer decimal multiplication [33, 34].
Erle et al. [35] published the first serial DFP multiplier compliant with the IEEE
754-2008 standard. While Hickmann et al. [36] published the first parallel DFP
multiplier. Raafat et al. [37] presented two proposals to decrease the latency of
parallel decimal multiplication. Also Vazquez, in [38], proposed two high
performance schemes for DFP multipliers, one optimized for area and the other
optimized for delay.

An incomplete decimal FMA floating-point unit is developed and
combined with a known binary FMA algorithm in [24]. This incomplete unit
supports the decimal64 and binary64 formats and claims conformance to the
standard’s specification for rounding and exceptions, but not underflow and
subnormal numbers. However, the first known conforming hardware
implementation for decimal FMA is presented in [39].

Early proposals for DFP dividers are introduced in [40, 41]. However, the
first DFP standard compliant designs can be found in IBM POWER6 [23] and Z10
[23] microprocessors. Also, another compliant DFP divider is proposed by
Vazquez in [42].

Since the IEEE 754-2008 standard has been approved, many designs and
implementations for elementary functions in decimal are introduced. For example,
different proposals for modifying the CORDIC method to work on decimal
without conversion to binary are represented in [43]. The CORDIC algorithm is
also used to implement different transcendental functions [44]. A comprehensive
library of transcendental functions for the new IEEE decimal floating-point
formats is presented in [45]. There is also different proposal for a DFP logarithmic
function in [46] and [47].

1.5 IEEE 754-2008 DFP Support in Microprocessors
As discussed in section 1.2, decimal arithmetic was supported by many processors.
Moreover, the first generations of processors, such as ENIAC, support only
decimal. However, the zSeries DFP facility was introduced in the IBM System z9
platform. The z9 processor implements the facility with a mixture of low-level
software - using vertical microcode, called millicode  and hardware assists using
the fixed point decimal hardware [48]. Because the DFP was not fully defined
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when the z9 processor was developed, there was only basic hardware support for
decimal. Yet, more than 50 DFP instructions are supported in millicode. Millicode
enables implementing complex instructions where hardware support is not
possible, and to add functions after hardware is finalized. This leaves System z9 as
the first machine to support the decimal floating point (DFP) instructions in the
IEEE Standard P754.

The POWER6 is the first processor that implements standard compliant
decimal floating-point architecture in hardware. It supports both the 64-bit and the
128-bit formats. As described in [49, 50], 54 new instructions and a decimal
floating-point unit (DFU) are added to perform basic DFP operations, quantum
adjustments, conversions, and formatting. The POWER6 implementation uses
variable-latency operations to optimize the performance of common cases in DFP
addition and multiplication.

The IBM System z10 microprocessor is a CISC (complex instruction set
computer) microprocessor. It implements a hardwired decimal floating point
arithmetic unit (DFU) which is similar to the DFU of the POWER6 with some
differences [22, 23]. The differences are mainly about the DXP unit architecture
and its interface with DFP unit. However, many of the DFP operations are
implemented in hardware in both POWER6 and System z10, but there are other
operations that are not. For example, the FMA operation which is required for a
standard compliant DFP unit is not implemented in hardware. More details about
these processor architectures and their decimal units are introduced in the next
chapter.

In this chapter, an introduction to the decimal floating-point arithmetic is
presented. The second chapter surveys in some details the software libraries and
the processors that support decimal floating point operations. Chapter 3 discusses
the OpenSPARC T2 core architecture. It goes in deep with each unit describes its
block diagram and operation. In chapter 4, we introduce the extension of the
SPARC instruction set architecture to include decimal floating point instructions;
we also introduce in this chapter our decimal floating point unit and its inclusion
in the OpenSPARC T2 core. Chapter 5 investigates the work done on the software
level by this thesis. It presents the engender of a software tool chain to generate
SPARC assembly files as well as  binary files from C decimal floating point
programs. Finally, Chapter 6 explains the verification environment used for testing
the modified OpenSPARC T2 core. It concludes with results and proposed future
work.
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Chapter 2 DECIMAL PROCESSORS AND LIBRARIES

2.1 Introduction
In this chapter, we survey both the processors that support DFP hardware
instructions and the software libraries that emulate the DFP through software
routines executed by binary floating point processors. Section 2.2 starts with the
IBM processors that support DFP through different algorithms. These processors
are the IBM Z9, POWER6 and IBM Z10. After that, section 2.3 refers to the IBM
decNumber and the Intel Math libraries. Finally, section 2.4 compares between
these different hardware/software implementations.

2.2 Hardware Decimal Floating Point

2.2.1 Decimal Floating point support in Z9
The zSeries DFP facility was introduced in the IBM System z9 platform. System
z9 is the first IBM machine to support the decimal floating point (DFP)
instructions. The z9 processor implements the facility with a mixture of low-level
software, using vertical microcode, called millicode [51], and hardware assists
using the fixed point decimal hardware [48].More than 50 DFP instructions were
added. They are implemented mainly in millicodes, while performing only the
most basic tasks in hardware. The DFP facility shares the floating-point registers
(FPRs) with the binary and the hexadecimal floating-point operands.

Millicode Operation Description
Interface between the MGPRs and the FPRs
EXFDI Extract FPR indirect load an MGR from an FPR
SFDI Set FPR indirect load an FPR from an MGR
Decoding and Encoding (DPD BCD)

Extract exponent Decode the exponent from the DPD biased
binary

EBCDR Extract Coefficient Decode the exponent from the DPD BCD
IXPDR Insert exponent Encode the exponent from the biased binary 

DPD
CBCDR Compress Coefficient Encode the significand from BCD  DPD
Basic Operations
APRR Add decimal register APRR and SPRR are single-cycle instructions,

while MPRR and DPRR are multiple cycles.
The four millicodes use the decimal fixed point
(FXU) that already exists in hardware.

SPRR Subtract decimal register
MPRR Multiply decimal register
DPRR Divide decimal register

Table 2.1: DFP Millicodes
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2.2.1.1 The hardware supprot
Millicode is the lowest-level firmware in the IBM z-series and is used to

implement instructions that can’t be implemented using hardware. It is written in a
subset of the System z assembly language with the millcode-instructions
(milliops). The millicodes use a special register file called Millicode General
Purpose Registers (MGPRs) and the following millicodes are added to support
DFP instructions, Table 2.1.

2.2.1.2 DFP Instruction Execution

Figure 2.1: DFP Instructions Flow Chart
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2.2.1.3 Performance
To increase the performance different algorithms were used according to

different inputs’ cases sources. For example, in the addition/subtraction case: as
the equal exponent operand case is more likely common, it is performed in a
separate fast path which leads to a different latency hardware that depends in the
class of the sources.

2.2.2 Decimal Floating point unit in POWER6 [52]
The POWER6 is the first processor that implements the decimal floating-point
architecture completely in hardware. It supports both the 64-bit and the 128-bit
formats.

2.2.2.1 The Floating Point register file
The register file (FPRs) is shared between the FPU and the DFU:

 Because of the fundamental differences in the requirements met between
these two radices, a program is unlikely to require both binary and decimal
floating-point computations simultaneously.

 This will optimize the area.

 This also will optimize the instruction set as by sharing the FPRs, there is
no need to an additional load and store instructions for decimal. They are
shared with binary.

FPR contains 32 double-word registers (i.e. 16 quad-word registers).

2.2.2.2 The floating-point status and control register (FPSCR)
The floating-point status and control register (FPSCR) is used by both binary and
decimal floating-point units. Only the rounding mode is separated for decimal
floating point. The decimal rounding mode field is 3 bits and allows eight different
rounding modes.

Rounding modes:

 Round to nearest even

 Truncate

 Round toward positive infinity.

 Round toward negative infinity.

 round to nearest ties away from zero,

 round to nearest ties toward zero,

 Round away from zero.
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 Round to prepare for shorter precision.

The FPCR records the class of the result for arithmetic instructions. The
decimal classes are (subnormal – normal – zero – infinity – quiet NaN – Signaling
NaN).

2.2.2.3 Hardware Implementation2.2.2.3.1 The adder
The main component of the POWER6 DFU is a wide 36-digit (or 144-bit)

adder. The cycle time of POWER6 processor is approximately 13 FO4. As a
result, the widest decimal adder which can complete its task in one cycle is a 4-
digit width adder. Actually, the implemented 4D adder shown in Figure 2.2 is a
group of four separate conditional 1D adders that choose between (sum, sum+1,
sum+6, sum+7) depending on the input carry to each digit.

The wide 36-digit adder is designed by replicating this 4D adder group
without carry propagation between the groups, such that the final result will be the
sum or sum+1. To calculate the sum+1, 4-digit incrementers are used in the next
cycle. Consequently, the final adder result is available after two cycles, but we can
start a new instruction execution after only one cycle as it is based on a pipelined
architecture.

The adder supports both double precision and quad precision instructions. It
can be used as a whole one 36-digits adder to perform quad precision addition or

Figure 2.2: DFP unit in POWER6
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Exponents Equal

Expand DPD data to BCD.

Add the coefficients.

If there is a carryout from
the adder, inc- rement the
exponent, shift the coeff-
icient right, and round.

Compress the result to DPD
format.

Aligning to the smaller
exponent

Expand to BCD and in parallel
compare the exponents.

Swap the operands, creating two
operands called big and small.
Shift the operand with the larger
exponent left by the exponent
difference.

Add aligned big to small.

Round, if necessary.

Compress to DPD format.

as two 18-digits adders to perform double precision addition. This selection is
done on the fly by a control signal.2.2.2.3.2 The rotator
A rotator is used to align the operands and shift the result if required. It takes two
cycles to rotate to any of 36-digits.

The addition operation has three paths for different three cases:
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Aligning to the smaller
exponent

Expand to BCD and in parallel
compare the exponents.

Swap the operands, creating two
operands called big and small.
Shift the operand with the larger
exponent left by the exponent
difference.

Add aligned big to small.

Round, if necessary.

Compress to DPD format.

Shifting both operand

Expand to BCD and, in
parallel, compare the
exponents.

Swap the operands.

Shift the operand with the larger
exponent left by the exponent
difference (D).
Reshift the operand with the
larger exponent left by the
number of leading zeros in its
coefficient (Z).
Compute D - Z and shift the
operand with the smaller
exponent right by the result.

Add the now-aligned
coefficient.

Round.

Compress the result to DPD
format.
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Shifting both operand

Expand to BCD and, in
parallel, compare the
exponents.

Swap the operands.

Shift the operand with the larger
exponent left by the exponent
difference (D).
Reshift the operand with the
larger exponent left by the
number of leading zeros in its
coefficient (Z).
Compute D - Z and shift the
operand with the smaller
exponent right by the result.

Add the now-aligned
coefficient.

Round.

Compress the result to DPD
format.

as two 18-digits adders to perform double precision addition. This selection is
done on the fly by a control signal.2.2.2.3.2 The rotator
A rotator is used to align the operands and shift the result if required. It takes two
cycles to rotate to any of 36-digits.

The addition operation has three paths for different three cases:
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These three cases are executed concurrently, and in the event of a conflict,
the faster case is given precedence. The subtraction operation also performs A-B
and B-A in parallel and finally chooses the right answer. An exception for this
parallelism is the double-word subtraction operation as it can’t do the − and− in parallel due to register restrictions, so it does it in series which for sure
takes much delay.2.2.2.3.3 The multiplier
Generating the partial products:

It is implemented in the (dumult) macro. A doubler and quintupler are
hardware implemented and then used to create easy multiples (x1, x2, x5, and x10)
of the multiplicand. The doubler and quintupler are very fast because each digit is
independent of other digits and there is no carry propagation, then all possible
multiples of the multiplicand can be formed by a simple addition or subtraction of
two of the easy multiples. The adder is specially optimized to speed up
multiplication. It can work in two modes:

 For 16-digit multiplication:

The half of adder is used to perform 18-digits addition to create a new
partial product every cycle by summing or subtracting two easy multiples of
the multiplicand. The other half of the adder is split into even and odd cycles,
with even cycles used to create the sum of two paired partial products and odd
cycles used to accumulate paired products with the running sum in the other
half.

 For 34-digit multiplication:

The total 36-digit adder is used to create a new partial product every clock
cycle and to accumulate it with the running sum in another cycle.2.2.2.3.4 Division

The non-restoring division with prescaling algorithm is used to generate the
quotient digits by the following steps each digit [53]:

 Quotient selection based on a partial remainder ( ) (1 cycle)

It is made from a redundant set of {-5 to 5} to reduce the number of divisor.
The quotient digits are adjusted on the fly after they are selected and before
they are put into the final result register. This adjustment is done in parallel

Note: N is the number of digits in the first operand excluding leading zeros

Table 2.3 Execution cycles for different operations
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with the next partial remainder computation and so no additional delay is
added to the critical path.

 Multiplication of the divisor D by the quotient digit. (1 cycle).

Multiplication of the selected quotient by the pre-scaled divisor is done by
selecting the appropriate multiple of the divisor. Divisor multiples x1, x3, and
x4 are pre-computed and stored in the partial product creator, and x2 and x5
are generated on the fly in the BCD doubler and BCD quintupler logic in the
partial product creator block.

 Computation of the next partial remainder , as shown by = −( ). . (2 cycles).

2.2.3 Decimal Floating point support in Z10 [48]

2.2.3.1 Z10 overview
The IBM System z10 microprocessor is a CISC (complex instruction set

computer) microprocessor operates at 4.4 GHz. It implements a hardwired decimal
floating-point arithmetic unit (DFU) which is similar to the DFU of the POWER6
but has some differences [54].

Figure 2.3: z10 Architecture
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The block diagram in Figure 2.3 shows that the z10 processor offers a DFU
that is separate from the binary and hexadecimal floating-point pipelines (FPU)
and also separate from the dual fixed point unit (FXU) pipelines. However, all
floating point operations share the same register file 16 X 64-bit floating-point
register (FPR).

The z10 DFU supports DFP operations using the same main dataflow of the
POWER6 processor in addition to supporting the traditional fixed-point decimal
operations.

2.2.3.2 The z10 DFU and the POWER6 DFU
 Z10 has extra interfaces to the fixed-point unit (FXU) and data cache.

 Z10 has completely new set of controls to support the additional
instructions in the IBM z/Architecture  platform

 The z10 DFU has an additional 13 decimal fixed-point instructions and four
hardware-assist instructions. Both the z10 DFU.

Both the z10 DFU and the POWER6 processor DFU have 54 DFP instructions.
DFP operands have three formats: short (7-digits significand), long (16-digits
significand), and extended (34-digits significand). Arithmetic operations are
performed only on the long and extended formats. The operands are loaded from
memory into the 16 * 64- bit floating-point register (FPR) files, which are also
shared with the binary and hexadecimal floating-point operations [54].
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2.2.3.3 The DFU Hardware Implementation

2.2.3.4 Decimal fixed point support
Decimal fixed-point operations have been in the z/Architecture since its

beginning in 1964 [54]. For fixed-point decimal operations, both source operands
and the target are in memory in packed BCD format. So, using the result of a prior
operation creates an interlock in memory, this is a point needs to be resolved. This
problem does not exist in the DFU as the operands are in registers not in the
memory which makes dependencies easier and faster to handle.

Decimal fixed-point operations have are faster than the decimal floating-point
operations as they have fewer execution sequences: both have the same execution,
except that no expansion, compression, and no rounding cycles are required in the
fixed point operations.

Figure 2.4: DFP modules in z10
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2.2.3.5 Macros
Macro Name Discription
Dumult Multiple creator macro multiplicand (x2) and (x5).
Durot Rotator Shift the significand right or

left.
dulzd_a,
dulzd_b

Leading zero detector For both operands

Duxdif Exponent difference
du10to3 Decoding DPD  BCD
Duaddr The adder Can be two 18-digit adders or

one 36-digit adder
du3x10 Encoding BCD  DPD
Ducvb Decimal  Binary
Ducvd Binary  Decimal
Dulzdw leading zero detector for the result
Ductlm Control of the multiplication and

division
Ductla Control of the addition
Ductlg instruction decode also contains global controls
ductls1,2,3 handling special results also common rounding routine
ductls0 RAS checking and reporting
Duxabcq holds input exponents
Duxaln significand alignment
Dupstbla look-up-table for the division

Table 2.2: z10 DFP macros explanation

2.3 Decimal Floating Point Libraries

2.3.1 IBM DecNumber [26]
The decNumber library implements the General Decimal Arithmetic Specification
in ANSI C. The library supports integer, fixed-point, and floating-point decimal
numbers including infinite, NaN (Not a Number), and subnormal values.

The library consists of several modules (corresponding to classes in an
object-oriented implementation). Each module has a header file (for example,
decNumber.h) which defines its data structure, and a source file of the same name
(e.g., decNumber.c) which implements the operations on that data structure.

The core of the library is the decNumber module. Once a variable is
defined as a decNumber, no further conversions are necessary to carry out
arithmetic. Most functions in the decNumber module take as an argument a
decContext structure, which provides the context for operations (precision,
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rounding mode,  etc.) and also controls the handling of exceptional conditions
(corresponding to the flags and trap enablers in a hardware floating-point
implementation).

The decNumber representation is machine-dependent (for example, it
contains integers which may be big-endian or little-endian), and is optimized for
speed rather than storage efficiency.

2.3.1.1 Storage Formats
Four machine-independent (but optionally endian-dependent) compact storage
formats are provided for interchange. These are:

 decimal32
This is a 32-bit decimal floating-point representation, which provides 7

decimal digits of precision in a compressed format.

 decimal64
This is a 64-bit decimal floating-point representation, which provides 16

decimal digits of precision in a compressed format.

 decimal128
This is a 128-bit decimal floating-point representation, which provides 34

decimal digits of precision in a compressed format.

 decPacked
The decPacked format is the classic packed decimal format implemented

by IBM S/360 and later machines, where each digit is encoded as a 4-bit
binary sequence (BCD) and a number is ended by a 4-bit sign indicator.
The decPacked module accepts variable lengths, allowing for very large
numbers (up to a billion digits), and also allows the specification of a scale.

The module for each format provides conversions to and from the core
decNumber format. The decimal32, decimal64, and decimal128 modules also
provide conversions to and from character string format (using the functions in the
decNumber module).

2.3.1.2 Standards compliance

It is intended that the decNumber implementation complies with:
 The floating-point decimal arithmetic defined in ANSI X3.274-1996.
 All requirements of IEEE 854-1987,  as modified by the current IEEE 754r

revision work,  except that:
1. The values returned after overflow and underflow do not change when

an exception is trapped.
2. The IEEE remainder operator (decNumberRemainderNear) is restricted

to those values where the intermediate integer can be represented in the
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current precision, because the conventional implementation of this
operator would be very long-running for the range of numbers
supported (up to ±101,000,000,000).

All other requirements of IEEE 854 (such as subnormal numbers and –0) are
supported.

2.3.2 Intel Decimal Floating-Point Math Library [27]
The library implements the functions defined for decimal floating-point arithmetic
operations in the IEEE Standard 754-2008 for Floating-Point Arithmetic. It
supports primarily the binary encoding format (BID) for decimal floating-point
values, but the decimal encoding format is supported too in the library, by means
of conversion functions between the two encoding formats.

Release 1.0 Update 1 of the library implements all the operations mandated
by the IEEE Standard 754-2008. Alternate exception handling is not supported
currently in the library. Also it provides several useful functions that are not part
of the IEEE 754-2008 standard like the rounding modes. For operations involving
integer operands or results, the library supports signed and unsigned 8-, 16-, 32-,
and 64-bit integers.

2.4 Performance Analysis and Comparisons

2.4.1 Hardware V.S. Software DFP Instructions
In [55], the effect of using DFP hardware on speedup is investigated. They wrote
software routines for addition, subtraction, multiplication and division, then
simulated it using the SimpleScalar simulator and finally got the cycle count.
Concerning Hardware implementations, some existing designs were studies and
new ones were suggested for the same four operations. The total number of cycles
was estimated. The results are shown in Table 2.3.

The DFP instructions in the z9 processor are implemented using millicodes,
which is something between software and hardware (back to section).
Consequently, Table 2.4 compares between the cycle count of this millicodes [51]
and the software routines simulated in [55].

Instruction Software Hardware Speedup
Add 652 3 217.33
Sub 1060 3 353.33
Mul 4285 33 129.85
Div 3617 63 57.41

Table 2.3: Cycle Count and Speedups for S.W. and H.W. DFP Instruction
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2.4.2 Intel Decimal Library V.S. IBM DecNumber
In [56], authors provide an expanded suite with five benchmarks that

support seven DFP types: three of IBM DecNumber (DecNumber with arbitrary
precision, DPD64 and DPD128), two of Intel Decimal library (BID64 and BID
128) and two of built in GCC types. It gives an average number of cycles for
common DFP operations, Table 2.5 shows the average number of cycles for the
Add, Subtract, Multiply and Divide operations using DPD64, DPD128, BID64 and
BID128.

Operation Software Millcode
Add/Subtract 652 to 1060 100 to 150
Multiply 4285 150 to 200
Divide 3617 350 to 400

Table 2.4: Comparison between Software and Millcodes Execution Cycles

DPD64 DPD128 BID64 BID128
Add 154 233 109 213
Sub 289 580 126 313
Mul 296 453 117 544
Div 627 940 370 1420

Table 2.5: Comparison between Intel library and DecNumber different types

Table 1.3 Cycles for different operations



28

Chapter 3 OPENSPARC T2 CORE ARCHITECTURE

3.1 Chip Multi-Threading

3.1.1 ILP vs. TLP
In the last few decades, most processor architects were targeting desktop
workloads. Their design goal was to run the single-threaded instruction as fast as
possible. Semiconductor technology has advanced exponentially. It delivered
faster transistors operating at multi-GHz frequencies. The number of the available
transistors doubled approximately every two years and moreover the frequency
doubled every four years.

Architects benefited from these abnormal advances. They developed many
complicated techniques to increase the single-thread instruction's speed and
improve the instruction level parallelism (ILP) such as:

 Superscalar microprocessors: Intel Pentium M Processor [57], MIPS
R10000 [58], Sun Microsystems UltraSparc-II [59].

 Out-of-order execution: PowerPC 620 [60].

 Deep pipelining: MIPS R4000-series [61].

 Complicated branch prediction techniques: PowerPC 620 [60].

However, there are many challenges that limit further improvements in overall
performance using these techniques. These challenges are mainly due to two
reasons: the power wall and the memory wall.

 Power wall

Increasing clock frequency needs more cost-effective cooling methods
which put a limit on this increase.

 Memory wall

ILP designs are targeting to decrease the instruction's execution time, but
do nothing with the memory latency. Architects tried to overcome this latency
problem using the out-of-order execution. Although out-of-order technique can
overlap some memory latency with execution, it is limited to shorter memory
latency such as Level1 (L1) cache miss and L2 hit. Larger memory latencies
are hard to be overlapped with execution. Deeper complicated pipelining, even
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if it decreased the single-threaded instruction's execution time, doesn't translate
these decreasing into significant performance improvements.

Due to the aforementioned reasons, architects are searching for new methods
instead of the conventional ILP like chip multiprocessors (CMP) [62],
simultaneous multithreading (SMT) [63] and chip multithreading (CMT) [64].
These new design methods are much more suitable for commercial workloads
which employ a relatively higher degree of threading level parallelism (TLP).

CMP means integrating more than one core processor onto the same chip. For
commercial workloads, the total performance of the amalgamated cores can be
many times that of a single-core processor. Also, those cores share chip resources
such as memory controller and L2 and L3 caches. This increases the resources
utilization.

CMT means supporting simultaneous execution of many hardware threads per
core. It enables the threads to share the core's resources to overlap the long
latencies of the off-chip misses (memory wall) and hence increases the hardware
utilization. It also overcomes the power wall by decreasing the frequency. As the
power consumption-frequency relation is a cubic relation [56], decreasing the
frequency to the half and doubling the number of cores will get the same
performance (assuming commercial loads with TLP) and abase the power
consumption by a factor of four.

3.1.2 CMT Processors' History
The first CMP processor was Stanford Hydra CMP. It is proposed in 1996 and
integrated four MIPS-based processors on a single chip [62], [65].Piranha was a
processor presented by a co-operating team from DEC and Compaq. It is
composed of eight Alpha cores and an L2 cache on the same chip [66].

3.1.2.1 IBM towards CMT processors
In 2001, POWER4 was introduced as a dual-core processor [67], followed

by announcing Power5 as a dual core processor with each core supports 2-way
SMT [68], the L2 and L3 caches are shared between cores in both POWER4 and
POWER5.

The design of the POWER6 microprocessor, announced in 2007, extends
IBM leadership by introducing a high-frequency core design coupled with a cache
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hierarchy and memory subsystem specifically tuned for the ultrahigh-frequency
multithreaded cores [49]. POWER7 was the IBM breakthrough towards CMT
processors. It consists of eight cores. Each core can support 4-way SMT. As in
POWER4,5,6 the L2 and L3 caches were shared [69].

3.1.2.2 Sun towards CMT processors
In 1995 MAJC architecture is defined by Sun as the first industrial

architecture for general purpose CMT processors [70], then Sun announced the
first sun MAJC processor (MAJC-5200). MAJC-5200 was a dual-core processor
with a shared L1 cache [71].

Later in 2003, Sun announced two CMP processors Gemini [72] and
UltraSparc IV [73]. Both were as basic as dual-core processors with no shared
resources at all. After that, UltraSparc IV was developed to include the sharing of
on-chip L2 cache and off-chip L3 cache between the two cores [73].

3.1.2.2.1 OpenSparc T1
OpenSPARC T1 is a single-chip multiprocessor. OpenSPARC T1 contains

eight SPARC physical processor cores. Each SPARC physical processor core has
full hardware support for four virtual processors (or “strands”). These four strands
run simultaneously, with the instructions from each of the four strands executed
round-robin by the single-issue pipeline. When a strand encounters a long-latency
event, such as a cache miss, it is marked unavailable and instructions are not
issued from that strand until the long-latency event is resolved. Round-robin
execution of the remaining available strands continues while the long-latency
event of the first strand is resolved.

Each OpenSPARC T1 physical core has a 16-Kbyte, 4-way associative
instruction cache (32-byte lines), 8-Kbyte, 4-way associative data cache (16- byte
lines), 64-entry fully associative instruction Translation Lookaside Buffer (TLB),
and 64-entry fully associative data TLB that are shared by the four strands. The
eight SPARC physical cores are connected through a crossbar to an on-chip
unified 3-Mbyte, 12-way associative L2 cache (with 64-byte lines).

The L2 cache is banked four ways to provide sufficient bandwidth for the
eight OpenSPARC T1 physical cores. The L2 cache connects to four on-chip
DRAM controllers, which directly interface to DDR2-SDRAM. In addition, an on-
chip J-Bus controller and several on-chip I/O-mapped control registers are
accessible to the SPARC physical cores. Traffic from the J-Bus coherently
interacts with the L2 cache [74].
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3.1.2.2.2 OpenSparc T2

OpenSPARC T2 shown in Figure 3.1 is a single chip multithreaded (CMT)
processor. It contains eight SPARC physical processor cores. Each SPARC
physical processor core has full hardware support for eight processors, two integer
execution pipelines, one floating-point execution pipeline, and one memory
pipeline. The floating-point and memory pipelines are shared by all eight strands.

The eight strands are hard-partitioned into two groups of four, and the four
strands within a group share a single integer pipeline. While all eight strands run
simultaneously, at any given time at most two strands will be active in the physical
core, and those two strands will be issuing either pair of integer pipeline
operations, an integer operation and a floating-point operation, an integer
operation and a memory operation, or a floating-point operation and a memory
operation. Strands are switched on a cycle-by-cycle basis between the available
strands within the hard-partitioned group of four, using a least recently issued
priority scheme.

When a strand encounters a long-latency event, such as a cache miss, it is
marked unavailable and instructions will not be issued from that strand until the

Figure 3.1: OpenSPARC T2 Chip
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long-latency event is resolved. Execution of the remaining available strands will
continue while the long-latency event of the first strand is resolved.

Each OpenSPARC T2 physical core has a 16-Kbyte, 8-way associative
instruction cache (32-byte lines), 8-Kbyte, 4-way associative data cache (16-byte
lines), 64-entry fully associative instruction TLB, and 128-entry fully associative
data TLB that are shared by the eight strands.  The eight OpenSPARC T2 physical
cores are connected through a crossbar to an on-chip unified 4-Mbyte, 16-way
associative L2 cache (64-byte lines).

The L2 cache is banked eight ways to provide sufficient bandwidth for the
eight OpenSPARC T2 physical cores. The L2 cache connects to four on-chip
DRAM Controllers, which directly interface to a pair of fully buffered DIMM
(FBD) channels. In addition, two 1-Gbit/10-Gbit Ethernet MACs and several on-
chip I/O-mapped control registers are accessible to the SPARC physical cores.
[75].

As our work is based on this processor, its architecture will be explained in
details in this chapter.

3.1.2.3 CMT in General-Purpose Processors
This revolution towards CMT processors isn't limited on commercial workloads, it
is extended to general-purpose processor designs as well. Intel has now a bunch of
multicore processors such as its dual-core processors family, quad-core processor
family, core i3 processor family, core i5 processor family and core i7 processor
family. AMD also has families of multicore processors such as AMD Athlon™ X2
Dual-Core Processor Product Data Sheet and the triple-core and quad-core
options in Family 10h AMD Phenom™ Processor.
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3.2 OpenSPARC T2 Core Microarchitecture

Figure 3.2 demonstrates the architecture of one physical core of
OpenSPARC T2 processor. It consists of a Trap Logic Unit (TLU), an Instruction
Fetch Unit (IFU), two EXecution Units (EXU0 and EXU1), a Floating point and
Graphical Unit (FGU), a Load Store Unit (LSU), a Gasket, a Cache Crossbar
(CCX), and a Memory Management Unit (MMU).

3.2.1 Instruction Fetch Unit (IFU)
The IFU provides instructions to the rest of the core. The IFU generates the

Program Counter (PC) and maintains the instruction cache (icache). The IFU
contains three subunits: the fetch unit, pick unit, and decode unit, see Figure 3.3.

3.2.1.1 Fetch Unit
OpenSPARC T2 has an 8-way set associative, 16 KB instruction cache (icache)
with a 32 byte line. Each cycle the fetch unit fetches up to four instructions for one
thread. The fetch unit is shared by all eight threads of OpenSPARC T2 and only

Figure 3.2: OpenSPARC T2 Core Architecture
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one thread is fetched at a time. The fetched instructions are written into instruction
buffers (IBs) which feed the pick logic. Each thread has a dedicated 8 entry IB.

The fetch unit maintains all PC addresses for all threads. It redirects threads
due to branch mispredicts, LSU synchronization, and traps. It handles instruction
cache misses and maintains the Miss Buffer (MB) for all threads. The MB ensures
that the L2 does not receive duplicate icache misses.

3.2.1.2 Pick Unit
The pick unit attempts to find two instructions to execute among eight different
threads. The threads are divided into two different thread groups of four threads
each: TG0 (threads 0-3) and TG1 (threads 4-7). The Least Recently Picked (LRP)
ready thread within each thread group is picked each cycle.

The pick process within a thread group is independent of the pick process
within the other thread group. This independence facilitates a high frequency
implementation. In some cases, hazards arise because of this independence. For
example, each thread group may pick an FGU instruction in the same cycle. Since
OpenSPARC T2 has only one FGU, hardware hazard results. The decode unit
resolves hardware hazards that result from independent picking.

3.2.1.3 Decode Unit
The decode unit decodes one instruction from each thread group (TG0 and TG1)
per cycle. Decode determines the outcome of all instructions that depend on the
CC and FCC bits (conditional branches, conditional moves, etc.). The integer
source operands rs1 and rs2 are read from the IRF during the decode stage. The
integer source for integer stores is also read from the IRF during the decode stage.
The decode unit supplies pre-decodes to the execution units.

Figure 3.3: Instruction Fetch Unit (IFU)
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The decode unit resolves scheduling hazards not detected during the pick stage
between the two thread groups. These scheduling hazards include:

 Both TG0 and TG1 instructions require the LSU AND the FGU unit
(storeFGU- storeFGU hazard)

 Both TG0 and TG1 instructions require the LSU (load-load hazard,
including all loads and integer stores)

 Both TG0 andTG1 instructions require the FGU (FGU-FGU hazard)

 Either TG0 or TG1 is a multiply and a multiply block stall is in effect
(multiply block hazard)

 Either TG0 or TG1 require the FGU unit and a PDIST block is in effect
(PDIST block hazard)

3.2.2 The Execution Unit (EXU)
OpenSPARC T2 has two execution units. One supports Thread Group1 (TG1)

which contains thread0 through 3, and the other supports Thread Group2 (TG2)
which contains thread4 through 7. The Execution Unit performs the following
tasks:

 Executes all integer arithmetic and logical operations except for integer
multiplies and divides.

 Calculates memory and branch addresses.

 Handles all integer source operand bypassing.

Its block diagram is shown in Figure 3.5. It is composed of the following subunits:

 Arithmetic Logic Unit (ALU)

 Shifter (SHFT)

 Operand Bypass (BYP): rs1, rs2, rs3, and rcc bypassing.

 Integer Register File (IRF)

 Register Management Logic (RML)

The integer execution pipeline takes eight stages as shown in Figure 3.4.

Fetch Cache Pick Decode Execute Mem Bypass W
Figure 3.4: Integer Execution Pipeline
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Figure 3.5: Integer Execution Unit (EXU)

3.2.2.1 Differences from T1 execution unit
OpenSPARC T2 adds an additional bypass stage between the memory stage

and the write back stage. There are some integer instructions that are not executed
in the execution unit. They are executed in the floating point unit instead. These
instructions are the integer multiply, integer divide, multiply step (MULSCC), and
population count (POPC). The execution unit reads the operand from the Integer
File Register (IRF). Multiplexers below the two EXUs provide instruction and
integer operand data to the FGU.

Also, to support VIS 2.0, the EXU executes Edge instructions, Array
addressing instructions, and the BMASK instruction. Edge instructions handle
boundary conditions for parallel pixel scan line loops. Array addressing
instructions convert three dimensional (3D) fixed point addresses contained in rs1
to a blocked-byte address and store the result in rd. These instructions specify an
element size of 8 (ARRAY8), 16 (ARRAY16), and 32 bits (ARRAY32). The rs2
operand specifies the power-of-two size of the X and Y dimensions of a 3D image
array. BMASK adds two-integer registers, rs1 and rs2, and stores the result in rd.
The least significant 32 bits of the result are stored in the General Status Register
(GSR.mask) field.
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3.2.3 Load Store Unit (LSU)

3.2.3.1 Block Diagram
The block diagram of the LSU is shown in Figure 3.6. It consists of the following
units:

 DCA and DTAG make up the level 1 data cache.

 Data Translation Lookaside Buffer (DTLB): provides virtual to physical
and real to physical address translation for memory operations.

 Load Miss Queue (LMQ): stores the currently pending load miss for each
thread (each thread can have at most one load miss at a time).

 Store Buffer (STB): contains all outstanding stores.

 Processor to Cache Crossbar (PCX) interface (PCXIF): controls outbound
access to the PCX and ASI controller.

 Cache to Processor Crossbar (CPX) interface (CPXIF): receives CPX
packets (load miss data, store updates, ifill data, and invalidates), stores
them in a FIFO (the CPQ), and sends them to the data cache.

Figure 3.6: Load Store Unit (LSU)
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3.2.3.2 LSU Pipeline

E (Execute): The virtual address and store data are received from the EXU. Most
control signals from decode arrive in this cycle.

M (Memory): The TLB performs address translation. D$tags and data are
accessed here. Tag comparison with the PA is performed at the end of the cycle in
the TLB. FP store data comes in this cycle.

B (Bypass): For loads, way select, data alignment, and sign extension done before
the load result is transmitted to EXU/FGU. The store buffer is checked this cycle
for RAW hazards. For stores, the PA is written into the store buffer and store data
is formatted and ECC generated.

W (Write back): Store data is written into the buffer. Instructions which were not
flushed prior to this point are now committed.

Load data can bypass from the B stage to an instruction in the D (Decode)
stage of the pipeline. This means that a dependent instruction can issue two cycles
after a load.

3.2.3.3 Writing in the Dcache
The Dcache uses the write-through mechanism to write data in the cache. If

a store hits in the L1 cache, it updates the Dcache. If it misses in the L1 cache,
data is stored in the L2 cache directly. To maintain coherency between L1 and L2
caches, a copy of the L1 tags exists in L2 cache, and any updates or invalidations
occur only after receiving an acknowledgment from L2 cache.

3.2.3.4 Reading from the Dcache
If a load hits, the Dcache does not make a request to the L2 cache. If a load

misses, the Dcache makes a request to the L2 cache through PCX. When data is
loaded from L2 cache, it writes in the CPQ FIFO and waits for a hole in the
Dcache pipe and a free writing port on the targeted register file.

The load miss path shares the w2 port of the floating point register file
(FRF) with the divide pipeline. The divide pipeline has higher priority at the w2
port, so if there is a division operation near completion, the FGU signals the LSU

Execute Mem Bypass W
Figure 3.7: LSU Pipeline
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to stall the data return for one cycle. This delay does not happen when the load
data targets the integer register file (IRF) as the load path is the only source for the
write port w2 of IRF.

The data cache is an 8 KB, 4-way set associative cache with 16 B lines. The
data is stored in the DCA array, the tags are stored the DTAG array, the valid bits
are stored the DVA array, and the used bits are stored the LRU array. DCA and
DTA are single ported memories. Each line requires a physical tag of 29 bits (40
bit PA minus 11 bit cache index) plus one parity bit. The dcache is write-through
as described before and it is parity protected with one parity bit for each byte of
data and another parity bit for the entire 29 bit tag.

3.2.4 Cache Crossbar (CCX)
Cache Crossbar (CCX) connects the 8 SPARC cores to the 8 banks of the

L2 cache. An additional port connects the SPARC cores to the IO bridge. A
maximum of 8 load/store requests from the cores and 8 data
returns/acks/invalidations from the L2 can be processed simultaneously. The cache
crossbar is divided into two blocks: the processor-to-cache crossbar (PCX) and the
cache-to-processor crossbar (CPX). Both has N x M bussed mux structure. The
PCX has N=8 (SPARC cores) and M=9 (8 L2 banks + IO). The CPX has N=9 and
M=8, see Figure 3.8.

Figure 3.8: Processor-to-Cache Crossbar (PCX)
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Sources issue requests to the crossbar. The crossbar queues requests and
data to the different targets. Since multiple sources can request access to the same
target, arbitration within the crossbar is required. Priority is given to the oldest
requestor(s) to maintain fairness and ordering. The arbitration requirements of the
PCX and CPX are identical except for the numbers of sources and targets that
must be handled. The CPX must also be able to handle multicast transactions. A
three-cycle arbitration protocol is used. The protocol consists of three steps:
Request, Arbitrate, and Grant. The PCX Timing pipeline is shown in Figure 3.9.

PQ PA PX
SPARC cores issue
requests

SPARC cores send packets to
PCX
Queue the packets
Arbitration for target
Send the grant to the muxes

Transmit grant to SPARC
core
Perform data muxing

Figure 3.9: PCX Timing pipeline

3.2.5 Floating point and Graphics Unit (FGU)

3.2.5.1 Block Diagram

Figure 3.10: Floating Point and Graphics Unit (FGU)
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Block diagram of the FGU is shown in Figure 3.10. The OpenSPARC T2
floating-point and graphics unit (FGU) implements the SPARC V9 floating-point
instruction set, the SPARC V9 integer multiply, divide, and population count
(POPC) instructions, and the VIS 2.0 instruction set. The only exception is that all
quad precision floating point instructions are unimplemented.

3.2.5.2 FGU features
Unlike OpenSPARC T2 which has one FGU shared between all cores,

OpenSPARC T2 Contains one dedicated FGU per core. Each FGU complies with
the IEEE 754 standard. It supports IEEE 754 single-precision (SP) and double-
precision (DP) data formats, but quad precision floating-point operations are
unimplemented. It also supports all IEEE 754 floating-point data types
(normalized, denormalized, NaN, zero, infinity) with the exception that certain
denormalized operands or expected results may generate an unfinished_FPop trap
to software, indicating that the FGU was unable to generate the correct results.

3.2.5.3 Architecture
FGU Includes three execution pipelines (Figure 3.11):

 Floating-point execution pipeline (FPX)

 Graphics execution pipeline (FGX)

 Floating-point divide and square root pipeline (FPD)

Up to one instruction per cycle can be issued to the FGU. Instructions for a
given thread are executed in order. FGU operations are pipelined across threads. A
maximum of two FGU instructions (from different threads) may write back into
the FRF in a given cycle (one FPX/FGX result and one FPD result). FPX, FGX,
and FPD pipelines never stall.

All FGU-executed instructions, except floating-point and integer divides and
floating-point square root are fully pipelined, single pass instructions. It has a
single-cycle throughput and a fixed six-cycle execution latency, independent of
operand values.  Divide and square root are not pipelined but execute in a
dedicated datapath. Floating-point divide and square root have a fixed latency.
Integer divide has a variable latency, dependent on operand values.
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FGU has four related registers:

 The Floating Point Register File (FRF).

 The Floating Point State Register (FSR).

 The General Status Register (GSR).

 The Floating-point Registers State (FPRS)

Figure 3.11: FGU Pipelines
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3.2.5.3.1 Floating Point Register File (FRF)
The floating point register file (FRF) is a 256-entry × 64-bit with two read

and two write ports. Floating-point store instructions share an FRF read port with
the execution pipelines. Write port (W1) is dedicated to FPX and FGX results.
Arbitration is not necessary for the FPX/FGX write port (w1) because of single
instruction issue and fixed execution latency constraints. The other port (W2) is
dedicated to floating-point loads and FPD floating-point results. FPD results
always have highest priority for W2. The FRF supports eight-way multithreading
(eight threads) by dedicating 32 entries for each thread. Each register file entry
also includes 14 bits of ECC for a total of 78 bits per  entry. Correctable ECC
errors (CEs) and uncorrectable ECC errors (UEs) result in a trap if the
corresponding enables are set.

3.2.5.3.2 Floating Point State Register (FSR)
The Floating-Point State register (FSR) fields, illustrated in Figure 3.12,

contain FPU mode and status information. Bits 63–38, 29–28, 21–20 and 12 of
FSR are reserved.

Floating Point Condition Codes

Execution of a floating-point compare instruction (FCMP or FCMPE)
updates one of the fccn fields in the FSR, as selected by the compare instruction,
see Table 3.1.

Content of fccn Relation
0 F[rs1] = F[rs2]
1 F[rs1] < F[rs2]
2 F[rs1] > F[rs2]
3 F[rs1] ? F[rs2] (unordered)

Table 3.1: FP Condition Codes

3.2.5.3.2.1 Rounding Direction (rd)
Bits 31 and 30 select the rounding direction for floating-point results

according to IEEE Standard 754-1985. Table 3.2 shows the encodings. If the

Figure 3.12: FSR bits
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interval mode bit of the General Status register has a value of 1 (GSR.im =1), then
the value of FSR.rd is ignored and floating-point results are instead rounded
according to GSR.irnd.

Rd Round Toward
0 Nearest (even, if tie)
1 0
2 + inf
3 - inf

Table 3.2: Rounding Modes

3.2.5.3.2.2 Non-Standard Floating Point (ns)
When FSR.ns = 1, it causes a SPARC V9 virtual processor to produce

implementation-defined results that may or may not correspond to IEEE Std 754-
1985. For an implementation in which no nonstandard floating-point mode exists,
the ns bit of FSR should always read as 0 and writes to it should be ignored.

3.2.5.3.2.3 FPU Version (ver)
Bits 19 through 17 identify one or more particular implementations of the

FPU architecture. FSR.ver = 7 is reserved to indicate that no hardware floating-
point controller is present. The ver field of FSR is read-only; it cannot be modified
by the LDFSR or LDXFSR instructions.

3.2.5.3.2.4 Floating Point Trap Type (ftt)
FSR.ftt encodes the floating-point trap type that caused the generation of an

fp_exception_other or fp_exception_ieee_754 exception. It is possible for more
than one such condition to occur simultaneously; in such a case, only the highest-
priority condition will be encoded in FSR.ftt, see Table 3.3 for details.

Condition Detected
During FPop

Relative
Priority
(1 =
highest)

Result
FSR.ftt Set
to Value

Exception Generated

Invalid_fp_register 20 6 Fp_exception_other
Unfinished_754_exception 30 2 Fp_exception_other
IEEE_754_exception 40 1 Fp_exception_ieee_754
Reserved ــــ 3, 4, 5, 7 ــــ
(none detected) ــــ 0 ــــ

Table 3.3: FP Trap Types
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3.2.5.3.2.5 FQ not Empty (qne)
Since OpenSPARC T2 does not implement a floating-point queue, FSR.qne

always reads as zero and writes to FSR.qne are ignored.

3.2.5.3.2.6 Trap Enable Mask (tem)
Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-

point exceptions that can be indicated in the current_exception field (cexc). See
Table 3.4 (a), where “nv” fields are related to invalid exception, “of” fields are
related to overflow exception, “uf” fields are related to underflow exception, “dz”
fields are related to division by zero exception, and finally “nx” fields are related
to inexact exception.

Bit 27 26 25 24 23 9 8 7 6 5 4 3 2 1 0
nv
m

Of
m

uf
m

Dz
m

Nx
m

Nv
a

Of
a

Uf
a

dz
a

nx
a

Nv
c

of
c

uf
c

dz
c

nx
c

field Tem Aexc cexc
(a) (b) (c)

Table 3.4: (a) tem (b) aexc (c) cexc

If a floating-point instruction generates one or more exceptions and the tem
bit corresponding to any of the exceptions is 1, then this condition causes an
fp_exception_ieee_754 trap. A tem bit value of 0 prevents the corresponding IEEE
754 exception type from generating a trap.

3.2.5.3.2.7 Current Exception (cexc)
FSR.cexc (FSR {4:0}) indicates whether one or more IEEE 754 floating-

point exceptions were generated by the most recently executed FPop instruction.
The absence of an exception causes the corresponding bit to be cleared (set to 0).
See Table 3.4 (c).

3.2.5.3.2.8 Accrued Exceptions (aexc)
Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as

floating-point exception traps are disabled through the tem field. See Table 3.4 (b).

3.2.5.3.2.9 General Status Register (GSR)
The General Status Register (GSR) is the nineteenth register in the

Ancillary State Registers (ASR). It is implicitly referenced by many Visual
Instruction Set (VIS) instructions. The GSR is illustrated in Figure 3.13 and
described in Table 3.5.
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Mask ـــــ im irnd ــــ scale align
bits 63                             32 31   28 27 26   25 24          8 7         3 2    0

Figure 3.13: GSR bits

3.2.5.3.3 Floating-Point Registers State (FPRS) Register
The Floating-Point Registers State (FPRS) register, shown in Figure 3.14,

contains control information for the floating-point register file.

Fef Du dl
Bits 2 1 0

Figure 3.14: FPRS fields

Table 3.5: GSR Description

Bit Field Description
63:32 Mask This 32-bit field specifies the mask used by the

BSHUFFLE instruction. The field contents are set by the
BMASK instruction.

31:28 ــــ Reserved
27 Im Interval Mode: If GSR.im = 0, rounding is performed

according to FSR.rd;if GSR.im = 1, rounding is performed
according to GSR.irnd.

26:25 Irnd IEEE Std 754-1985 rounding direction to use in Interval
Mode (GSR.im = 1) as follows:

0 Nearest(even; if tie)

1 0
2 + inf
3 -inf

24:8 ــــ Reserved
7:3 Scale 5-bit shift count in the range 0–31, used by the FPACK

instructions for formatting.
2:0 Align Least three significant bits of the address computed by the

last-executed ALIGNADDRESS or
ALIGNADDRESS_LITTLE instruction.
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3.2.5.3.3.1 Enable FPU (fef)
Bit 2, fef, determines whether the FPU is enabled or disables. If it is

disabled, executing a floating-point instruction causes an fp_disabled trap. If this
bit is set (FPRS.fef = 1) but the PSTATE.pef bit is not set (PSTATE.pef = 0), then
executing a floating-point instruction causes an fp_disabled exception; that is, both
FPRS.fef and PSTATE.pef must be set to 1 to enable floating-point operations.

3.2.5.3.3.2 Dirty Upper Registers (du)
Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that

is, F[32]–F[62]. It is set to 1 whenever any of the upper floating-point registers is
modified.

3.2.5.3.3.3 Dirty Lower Registers (dl)
Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, F[0]–

F[31]. It is set to 1 whenever any of the lower floating-point registers is modified.

Both dl and du bits are cleared only by software. If the FPU is disabled, neither dl
nor du is modified.

3.2.5.4 Interfacing with other units

Figure 3.15: FGU Interfaces



48

3.2.5.4.1 Instruction Fetch Unit (IFU)
The IFU provides instruction control information as well as rs1, rs2, and rd
register address information. It can issue up to one instruction per cycle to the
FGU.

The IFU does the following:

 Sends the following flush signals to the FGU:
o Flush execution pipeline stage FX2 (transmitted during FX1/M

stage)
o Flush execution pipeline stage FX3 (transmitted during FX2/B

stage)

 Maintains copies of fcc for each thread.

 Provides a single FMOV valid bit to the FGU indicating whether the
appropriate icc, xcc, fcc, or  ireg condition is true or false.

The FGU does the following:

 Flushes the FPD based on the IFU- and trap logic unit (TLU)-initiated flush
signals. Once an FPD instruction has executed beyond FX3, it cannot be
flushed by an IFU- or TLU-initiated flush.

 Provides appropriate FSR.fcc information to the IFU during FX2 and FX3
(including load FSR). The information includes a valid bit, the fcc data, and
thread ID (TID) and is non-speculative.

 Provides the FPRS.fef bit to the IFU for each TID (used by the IFU to
determine fp_disable).

3.2.5.4.2 Trap logic unit (TLU)
The FGU provides the following trap information to the TLU:

 unfinished_FPop

 fp_exception_ieee_754

 fp_cecc (FRF correctable ECC error)

 fp_uecc (FRF uncorrectable ECC error)

 division_by_zero (integer).

 Exception trap prediction

The FGU receives the following flush signal from the TLU:

 Flush execution pipeline stage FX3 (transmitted during FX2/B stage)
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3.2.5.4.3 Load-store unit (LSU)

 Floating-point load instructions share an FRF write port with FPD floating-
point results, which always have priority for the shared write port. FPD
notifies the IFU and LSU when a divide or square root is near completion
to guarantee that load data does not collide with the FPD result.

 Loads instruction may update the FRF or FSR registers. Loads update them
directly, without accessing any pipeline. The LSU always delivers 32-bit
load data replicated on both the upper (even) and lower (odd) 32-bit halves
of the 64-bit load data bus.

3.2.5.4.4 Execution Units
The EXU does the following:

 Each EXU can generate the two 64-bit source operands needed by the
integer multiply, divide, POPC, SAVE, and RESTORE instructions.

 The EXUs provide the appropriate sign-extended immediate data for rs2;
provide rs1 and rs2 sign extension; and provide zero fill formatting as
required. The IFU provides a destination address (rd), which the FGU
provides to the EXUs upon instruction completion.

 Each EXU provides GSR.mask and GSR.align fields, individual valid bits
for those fields, and the thread ID (TID).

The EXU does the following:

 The FGU provides a single 64-bit result, along with appropriate integer
condition codes (icc and xcc).

 The same result bus provides appropriate 64-bit formatted “gcc”
information to the EXUs upon completion of the VIS FCMP (pixel
compare) instructions. The result information includes a valid bit, TID, and
destination address (rd). FGU clears the valid bit under the following
conditions:

o division_by_zero trap (IDIV only)
o Enabled FRF ECC UE/CE (VIS FCMP only)
o EXU-, IFU-, or TLU-initiated flush
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3.2.6 Trap Logic Unit

3.2.6.1 Functional Description
The Trap Logic Unit (TLU) manages exceptions and trap requests which

are conditions that may cause a thread to take a trap. It also manages traps which
are vectored transfers of control to supervisor software through a trap table [76].
The TLU maintains processor state related to traps as well as the Program Counter
(PC) and Next Program Counter (NPC). If an exception or trap request happens,
the TLU prevents the update of architectural state for the instruction or
instructions after an exception.

3.2.6.2 Block Diagram
The TLU block diagram shown in Figure 3.16 consists of the following units:

 The Flush Logic generates flushes in response to exceptions to create
precise interrupt points (when possible).

 The Trap Stack Array (TSA) maintains trap state for the eight threads for
up to six trap levels per thread.

 The Trap State Machine holds and prioritizes trap requests for the eight
threads in two thread groups.

Figure 3.16: TLU Block Diagram
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3.2.7 Memory Management Unit (MMU)

The Memory Management Unit (MMU) shown in Figure 3.17 reads Translation
Storage Buffers (TSBs) for the Translation Lookaside Buffers (TLBs) for the
instruction and data caches. The MMU receives reload requests for the TLBs and
uses its hardware tablewalk state machine to find valid Translation Table Entries
(TTEs) for the requested access. The TLBs use the TTEs to translate Virtual
Addresses (VAs) and Real Addresses (RAs) into Physical Addresses (PAs). The
TLBs also use the TTEs to validate that a request has the permission to access the
requested address.

The MMU maintains several sets of Alternate Space Identifier (ASI)
registers associated with memory management. Software uses the scratchpad
registers in handling translation misses that the hardware tablewalk cannot satisfy;
the MMU maintains these registers. The MMU maintains translation error

Figure 3.17: MMU Block Diagram
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registers that provide software with the reasons why translation misses occur.
Hardware tablewalk configuration registers control how the hardware tablewalk
state machine accesses the TSBs. Software reads and writes the TLBs through
another set of ASI registers.
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Chapter 4 INCLUDING DFPU IN THE ULTRASPARC T2

4.1 Introduction
So far, only two processor architectures include decimal floating point units (z
series and power series from IBM). This research provides the first free and open-
source alternative to the above two architectures with a processor containing
decimal floating point as well as the corresponding tool chain.

This chapter explains how we extended the SPARC instruction set
architecture and adapted the UltraSparc T2 architecture from Oracle/Sun to
perform DFP operations. Our OpenSPARC T2 version uses a decimal Fused
Multiply-Add unit (FMA) designed by our team as the core of the decimal unit. It
provides the basic decimal operations (Addition, Subtraction, Multiplication,
Fused Multiply-Add (FMA) and Fused Multiply-Subtract (FMS)).

To implement these changes, we add a new unit called Decimal Floating
Point Unit (DFPU) then adapt the following already exist units:

 Gasket Unit (GKT).

 The Pick Unit (PKU).

 The Decoding Unit (DEC).

 The Floating Point Control Units (FPC, FAC).

 The Floating Point and Graphics Unit (FGU).

The chapter is organized as follows. Section 4.2 introduces the new
instructions we added to the SPARC instruction set architecture. Section 4.3
surveys different design alternatives. Section 4.4 explains the architecture, the
operation and the interfaces of the DFPU. Section 4.5 states the modifications
done in the core units.

4.2 Extending SPARC ISA to include DFP Instructions
The SPARC instruction set [76] does not have decimal floating point instructions.
We need to extend the instruction set to include the decimal floating point support.
This is done using the implementation dependent instructions defined in the
SPARC v9 architecture (IMPDEP1, IMPDEP2).
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The SPARC V9 architecture provided two instruction spaces that are entirely
implementation dependent: IMPDEP1 and IMPDEP2 (Table 4.1 and Table 4.2). In
the UltraSPARC Architecture, the IMPDEP1 opcode space is used by the Visual
Instruction Set (VIS) instructions. IMPDEP2 is subdivided into IMPDEP2A and
IMPDEP2B. IMPDEP2A remains implementation dependent. The IMPDEP2B
opcode space is reserved for implementation of the binary floating point multiply-
add/multiply- subtract instructions [77].

Although we implemented and tested only the DFP add, sub and multiply, we
defined eight new decimal floating point instructions for future extension of our
project; four instructions using IMPDEP1 as shown in Table (4.3) and Table (4.4):

 Decimal Floating point Add double (DFADDd)
 Decimal Floating point Subtract double (DFSUBd)
 Decimal Floating point Multiply double (DFMULd)
 Decimal Floating point Division double (DFDIVd)

10 Rd 110110 rs1 opf rs2
31     30 29         25 24            19 18            14 13 5 4                0

Table 4.3: IMPDEP1-based DFP Instructions format

10 Impl-dep Op3 Impl-dep
31 30 29                     25 24                    19 18 0

Table 4.1: IMPDEP Opcode format

Table 4.2: IMPDEP Op3 code

Opcode Op3 Operation
IMPDEP1 110110 Implementation-Dependent Instruction 1
IMPDEP2 110111 Implementation-Dependent Instruction 2

Table 4.4: Opf field of IMPDEP1-based DFP Instructions

Opf (3:0)

O
pf

(8
:4

)=
'0

x0
9'

0 1 2 3 4 5 6 7
DFADDd DFSUBd

Opf (3:0)
8 9 10 11 12 13 14 15

DFMULd DFDIVd
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, and four instructions using IMPDEP2 as shown in Table (4.5) and Table (4.6):

 Decimal Fused Multiply-Add double (DFMADDd)
 Decimal Fused Multiply-Subtract double (DFSUBd)
 Decimal Fused Negative Multiply-Add double (DFNMADDd)
 Decimal Fused Negative Multiply-Subtract double (DFNMSUBd)

The Table 4.6 fields that have op5 equal one or two are the binary floating
point FMA/FMS instructions defined by the UltraSPARC T2 architecture. They
are not implemented in hardware; instead, they are executed by the software layer.

We define and implement only the basic DFP operations. In order to
implement all the operations defined by the standard, we will use the same
hardware core unit with some extensions. This is out the scope of this thesis and
may be considered as a future work.

4.2.1 Fused Multiply-Add operation (FMA)
As the standard states [18], the Fused Multiply-Add operation for the three
operands (A, B, C) ‘FMA(A,B,C)’ computes (A × B) + C as if they were with
unbounded range and precision, with rounding only once to the destination format.
Moreover, no underflow, overflow, or inexact exception can arise due to
multiplication, but only due to addition; and so Fused Multiply-Add differs from a
multiplication operation followed by an addition operation. The preferred

10 Rd 110111 rs1 rs3 Op5 rs2
31     30 29         25 24            19 18            14 13 9 8                5 4                0

Table 4.5: IMPDEP2-based DFP Instructions format

OP5(1:0)

O
P

5(
3:

2)

0 1 2 3
0 FMADDs FMADDd DFMADDd
1 FMSUBs FMSUBd DFMSUBd
2 FNMSUBs FNMSUBd DFNMSUBd
3 FNMADDs FNMADDd DFNMADDd

Table 4.6: Op5 field of IMPDEP2-based DFP Instructions

Table 4.4: Opf field of IMPDEP1-based DFP Instructions

Table 4.6: Op5 field of IMPDEP2-based DFP Instructions
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exponent is ( ( ) + ( ), ( )) where Q(x) means the exponent of
operand x.

This definition of the FMA operation highlights two important restrictions:
the intermediate unbounded result of the multiplication and the single rounding
step after addition. This clearly shows that this operation produces more accurate
result than a multiplication with a result rounded to the required precision then
followed by addition with the final result rounded again. The standard also stresses
that exception decisions are taken based on the final result and not due to the
multiplication step.

4.3 Design alternatives
To include the decimal floating point unit into UltraSPARC T2 core we have two
options. We can either include it as a completely separate block like the binary
floating point and graphical unit (FGU), EXU0 and EXU1 or merge it inside the
FGU.

4.3.1 DFPU as a separate unit
Implementing the decimal floating point unit (DFPU) as a completely new unit has
the advantage of a separate DFP datapath and the pipeline in turns is now able to
issue instructions to both FGU and DFPU. However, this design will be area
consuming and complicate the design due to many reasons:

 Currently the FGU contains the floating-point register file (FRF). The FRF
contains the floating point registers for all eight threads. According to the
standard specifications [18]; the DFPU and FPU should share the floating
point registers. So, a completely separate DFPU will need additional ports
to access FRF or arbitration between FGU and DFPU is required.

 A separate interfacing with the Decode Unit is required. The DEC unit,
described in chapter 3 section 3.2.1.3, completes the instruction decoding
and issues instructions to the floating-point unit. It decodes one instruction
from each thread group (TG0 and TG1) per cycle. It needs to select one of
them to be issued and stall the other for one cycle if issuing both of them
will cause a hazard. This is performed by an arbiter that alternately picks
one thread or the other. With the new DFPU, new alternatives exist and
need to be identified by the arbiter. All combinations between (Integer,
floating, and decimal) are possible except: the two instructions are floating-
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point or the two instructions are decimal floating point. In these cases the
decode block must select one of them to be issued and stall the other.

 The pipeline is now able to issue instructions to both FGU and DFPU, and
the standard states that decimal and binary implementations should have the
same register for flags. Consequently, the trap logic unit (TLU) must be
modified to handle exceptions from both units. Currently, the FGU sends
floating-point exception signals along with a 3-bit Trap ID (TID) to the
TLU if an exception occurred. In addition, a floating-point trap prediction
signal is sent four cycles earlier if a trap is likely to be taken. These signals
are also needed if DFPU is defined as a completely separate block.

Finally, no separate interface with the load-store unit (LSU) is required.
The FRF interacts with the LSU for floating-point loads and stores. The FRF is
common between FGU and DFPU. As a result, no separate interface is
required.

4.3.2 DFPU as a merged pipeline inside FGU
The second option was modifying the FGU itself to handle the decimal floating
point operations; by another words, including our DFPU inside the FGU. This will
get rid of all the aforementioned complex interfaces making the design much
simpler and the area much smaller.

On the other hand, it will complicate the FGU design itself. It also has a
limitation on the two issued instructions running simultaneously. A DFP
instruction and BFP instruction are both considered floating point instructions;
hence, they cannot run on the same cycle. Because program is unlikely to require
both binary and decimal floating-point computations simultaneously [49], this
limitation is not a problem in major cases. Hence; targeting simpler and less-area
design, merging the DFPU inside the FGU as shown in Figure 4.4 is preferred.
The design details are explained throughout the next sections.
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Figure 4.1: FGU including the DFPU pipeline
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Figure 4.1: FGU including the DFPU pipeline
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Figure 4.1: FGU including the DFPU pipeline
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4.4 The Decimal Floating Point Unit (DFPU)

4.4.1 DFPU Architecture
The block diagram of the DFPU is shown in Figure 4.2. It is composed of three
main blocks: the DFP FMA, the Decimal Floating-point Status Register (DFSR)
and a set of buffers.

Figure 4.2: DFPU Architecture

4.4.1.1 The DFP FMA
The DFP FMA is the nuclei of the DFPU. The top level of the FMA architecture is
shown in Figure 4.3. The architecture is composed of three main stages.

 The first stage is the multiplier tree which performs the
multiplication operation. Also in parallel to the multiplier tree, the
addend is prepared for addition. This eliminates the need for further
processing on the multiplication result and hence reduces the critical
path delay.

 The second stage is the leading zero anticipator which is important
to align the operands for the third stage.

 The third stage is the combined add/round unit.
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The default alignment of the addend is such that the fractional point is to the
right of the multiplication result. In parallel with the multiplier, the addend is
aligned by shifting it to the right (case-1) or to the left (cases-2, 3, 4). From a 4p
width, where p is the number of significand digits (16 digits in case of 64-bits
format), it is required to anticipate the leading zeros in only 2p-digits. According
to the exponent difference and the leading zeros of the addend, the appropriate 2p
width is selected. This operation is illustrated in Figure 4.4

A leading zero anticipator anticipates the leading zeros in the addition/
subtraction. Based on the anticipated leading zero count and taking into
consideration the preferred exponent, a final shift amount is determined for the
two operands. The rounding position in the aligned operands is approximately
known (with an error of one digit). Hence, the final result can be calculated using
a combined add/round module instead of successive addition and rounding steps.

It is implemented as either a three-stage pipeline or a six-stage. For the three
stage pipeline shown in Figure 4.5 (a), the design is pipelined in three stages. The
first stage is the multiplier tree. The second stage contains the decimal carry save
adder, the leading zero anticipator and the R/L Shifter. Finally, the combined
add/round and the rounding set-up modules are in the third stage. For the six stage
pipeline shown in Figure 4.5 (b), the partial product generation is placed at the
first stage. Then, the carry save adder tree is placed at the second stage with the
addend preparation. The remaining stages are presented in the figure.
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Figure 4.3: DFP FMA Architecture
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Figure 4.3: DFP FMA Architecture
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Figure 4.3: DFP FMA Architecture
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Figure 4.4: Operands alignment operation
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Figure 4.4: Operands alignment operation
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Figure 4.4: Operands alignment operation
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4.4.1.2 Decimal Floating Point Status Register (DFSR)
IEEE standard requires separate rounding directions for binary and decimal [18].
In addition, it states that the flags are shared between them. DFSR is inside the
DFPU to simplify connections and design. DFSR.round contains the rounding
direction required by the DFP FMA. Seven rounding modes are available. In
addition to the five IEEE 754-2008 decimal rounding modes [18], we implement
two additional rounding modes [25]: round to nearest down and round away from
zero.

The flags are set by the result of the DFP FMA then they are sent to the
FSR to update the current exception field (FSR.cexc) and the accrued exception
field (FSR.aexc) as will be illustrated later in this chapter.

Figure 4.5: (a) Three-stages FMA pipeline                                            (b) Six-stages FMA pipeline
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4.4.1.2.1 DFSR.flags
The IEEE-754 standard specifies the following about the decimal floating

point related flags:

 Inexact Flag
The inexact flag is raised if the result is rounded. It is detected from the
sticky, guard and round digits.

 Invalid Flag
The invalid flag is generated in either of these cases:

o One of the operands is sNaN.
o In case of (0, ±∞, ) (±∞, 0, ); where c is any DFP number

including special numbers (NaNs, infinities). The standard in this
case states that it is optional to raise the invalid flag if the third
operand in qNaN. In our implementation we activate the invalid flag
even if the third operand in qNaN.

o In case of (| |, +∞, −∞) or (| |, −∞, +∞); where c is a
DFP number that is not a NaN.

 Overflow Flag
The overflow is detected after rounding. It is signaled if the final exponent
exceeds the maximum exponent in the standard. If an overflow is detected,
the result is rounded either to infinity or to the largest possible number
according to the rounding mode and the final sign.

 Underflow Flag
If the intermediate result is a non-zero floating point number with
magnitude less than the magnitude of that format’s smallest normal number
(1 × 10 , in case of 64-bit format), an underflow is detected. However,
the underflow flag is not raised unless the result is inexact.

As shown in Table 4.7 the field of bits [0:4] are the DFSR.flags.. Where uf is the
underflow flag, of is the overflow flag, nv is the invalid flag, nx is the inexact flag
and dz is the division by zero flag. As the DFP division is not implemented yet, the
Division by Zero flag is always set to zero.

ufofNvNxDz
01234

Table 4.7: DFSR.flags
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4.4.1.2.2 DFPR.round
The bits [5:7] implement the IEEE decimal rounding modes. Table 4.8 shows
these different modes.

4.4.1.3 The Buffers
FMA and FMS are three source instructions; hence, they require two cycles

to read the source from the FRF which has only two read ports. No FGU executed
instruction may be issued the cycle after FMA or FMS is issued. They are similar
to the instruction Pixel Destination (PDIST) which is already implemented in the
UltraSPARC T2 VIS.

The buffers store the two early sources and the decode operation type till
the third source is ready. The addition, subtraction and multiplication operations
do need only two sources; therefore, buffering their sources will waste a cycle. A
group of multiplexers are used to select either buffered or non-buffered sources
depending on the operation type.

4.4.2 The DFPU operation and Interfaces
The interface between DFPU and other OpenSPARC T2 units is shown in Figure
4.6. The FAD unit, which is part of the FGU, reads the sources and destination
registers addresses, accessing the floating point register file (FRF), gets the
sources data and send it to the DFPU. Simultaneously, the Floating Point Control
unit (FAC) supplies the FPDU by the decimal operation type. So far, we
implement the basic decimal instructions: addition, subtraction, multiplication,
FMA and FMS. Global signals are the scan in and scan out signals used for testing
and the memory built-in self test (MBIST) pins.

Rounding mode
RNE = Round to Nearest ties to Even000

RA  = Round Away from zero001
RP  = Round toward Positive infinity010
RM  = Round toward Minus infinity011
RZ  = Round toward Zero100
RNA = Round to Nearest ties Away from zero
(round-half-up)

101

RNZ = Round to Nearest ties to Zero (round-
half-down)

110

Table 4.8: Implemented rounding modes
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The DFP pipeline works in parallel with the floating point division (FPD),
the floating point add/multiply (FPX) and the graphics (FGX) pipelines (as
illustrated in Figure).

Depending on the operation type, the DFP FMA either waits another cycle
to get the third source data (if the operation is FMA/FMS) or uses the ready data to
perform the operation without waiting the second cycle (if the operation is ADD,
SUB or MUL). The round type is given by the DFSR.rnd field.

Now, the core unit “DFP FMA” is ready to perform the required decimal
operation. The three-stage FMA pipeline requires the three sources to be available
at the first stage of the pipeline. Consequently, the buffering stage explained in
section 4.3.1.3 is needed. On the other hand, the six-stage pipeline has the
advantage of not needing the third source in the first stage. The addend is not
processed at the first stage. Hence, it can read the addend after one cycle of
reading the multiplier and the multiplicand without needing to wait for the addend
in order to start the operation. In other words, the latency of reading the third
operand is hidden by the first stage of the multiplier at the first cycle.

Finally when the result is ready, it is sent to the final stage (FB) in the
main floating point pipeline (FPX), Figure 4.7. The output-format multiplexers
choose between the results of the different pipelines. These multiplexers are
modified to include the DFPU result with FPX, FPD and FGX results.

Figure 4.6: DFPU Interfaces

Figure 4.6: DFPU Interfaces
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Although the pipelines share the write port (w1) of FRF, no arbitration is
required between them. This is because of single instruction issue and fixed
latency constraints which mean that we cannot have a DFP instruction and a BFP
instruction access the write port at the same cycle.

FPDU also updates the flags of the DFSR which in turns are sent to the flag
bits of the FSR register in the next cycle through FPC unit, back to Figure.

4.5 Architecture modifications in UltraSPARC T2 Core

4.5.1 FP Control Units Edits

4.5.1.1 FP Control Unit (FAC)
The Floating Point Control Unit (FAC) receives the opf and op3 fields of the
instruction opcode (which are explained in section 4.2) from the decode unit. By
decoding them, the operation is determined and the selection signals choose the
corresponding operation code to be sent to the DFP unit. The selection logic is
shown in Table 4.9 and the decoder design is shown in Figure 4.7.

Figure 4.7: Output stage multiplexers
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4.5.1.2 Floating point Control Unit (FPC)
FPC unit receives the DFSR.flags field to update the FSR corresponding fields if
the operation contains a DFP instruction. FPDU causes an IEEE-754 exception if a
flag is detected and its corresponding trap enable mask (FSR.TEM) is enabled. In
this case the floating point trap type (ftt) is an IEEE exception and the (FSR.ftt)
field is set to one. If an exception decimal flag raised and the corresponding trap
enable mask (tem) bit is zero, it will prevent the corresponding IEEE 754
exception. Accrued Exceptions field (aexc) in this case will accumulate it till the
tem bit is set to one. The decimal flags are ORed with the corresponding binary
flags and the result is written into the FSR. All this logic is shown in Figure 4.8.

Selection Operation
0X0 FMA
0X1 FMS
10X MUL
110 ADD
111 SUB

Table 4.9: The decimal operation selection bits

Figure 4.8: The Decimal opcode decoder
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4.5.2 Pick Unit
PKU pre-decodes the issued instructions and picks two of them, one from each
thread group. Our design considers the DFP instructions as a part of the FGU
instructions as illustrated in section 4.3. Decimal operation Detection has to be
done here. In addition, all DFP opcodes have to be added to the FGU operations.

The instructions that need two cycles to fetch its data sources are also
detected in the pick stage. These instructions include the Load Floating-Point
Register from Alternate Space in memory LDFA, Store Floating-Point Register to
Alternate Space STFA, Compare and Swap Word from Alternate Space in
memory, CASA. They need two cycles to fetch the indirect-addressed source. The
two-cycle instructions also include the Pixel Component Distance with
Accumulation PDIST instruction which needs three sources instead of two and the
FRF has only two read ports. We add the DFMA, DFMS instructions to these two-
cycle ones as they have (like PDIST) three sources.

Moreover, PKU prevents any two-cycle instruction from going down into
the pipeline if an integer load instruction exists in the decode stage. This is done
because UltraSPARC T2 core does no dependency checking on the second cycle
of a two-cycle instruction.

Figure 4.8: updating FSR logic

Figure 4.9: Updating FSR logic
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4.5.3 Decode Unit
DFPU contributes in the following hazards:

 FGU-FGU Hazard:
A FGU favor bit decides which FGU decodes and which FGU stalls.  DFP
Instructions are simply FGU instructions; No additional action is needed
here!

 DFMA/DFMS Block Hazard
We define this new block hazard to prevent decoding any FGU instruction
from either thread group the cycle after a DFMA decodes. This prevents a
hardware hazard on the read ports of the FRF.

Also decode unit keeps the address of the DFMA/DFMS third source (rs3) if
a DFMA/DFMS block is detected. It passes the rs3 address to the second read port
of the FRF in the next cycle. Moreover, the decode unit decodes the instructions’
opcodes and determines the sources and destination types. We add the DFP
opcodes to the instruction set that uses floating point sources and destination.
Namely, add them to the double precision FP sources and destinations as we
implement the Decimal64 standard specifications.

4.5.4 Gasket
All communications with the L2 cache is through the crossbars (PCX, CPX) via
the gasket. The gasket has a control logic that partially decodes the coming packet
and determines if it has a valid instruction opcode. We define the new decimal
floating point opcodes to be considered valid in order to enable the gasket to
transfer them from memory to the core pipeline.
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Chapter 5 SOFTWARE TOOL CHAIN

5.1 Introduction
The second part of the work is to provide the necessary SW tools to generate
programs for the new architecture. The GNU Compiler Collection (GCC) is
patched to include several decimal double-precision floating point instructions.
GCC development is a part of the GNU Project, aiming to improve the compiler
used in the GNU system including the GNU/Linux variant. The GCC development
effort uses an open development environment and supports many other platforms
in order to foster a world-class optimizing compiler [78]. The op-codes of these
instructions are added to the standard SPARC Instruction Set Architecture
(SPARC ISA v9) [79].

Section 5.2 provides a brief introduction to the GCC structure. As we work
on an Intel machine and targeting a SPARC machine, the Cross Compiling
operation is described and compared with different compiling types in section 5.3.
Section 5.4 explains the installation of the tool chain (GCC, Binutils and other
required libraries). Section 5.5 shows our new version of the GCC which includes
the decimal FP instructions. Finally, section 5.6 shows the results of testing the
new GCC version.

5.2 GCC Structure
Compilers in general have 3 parts, Front End, Intermediate Part and Back End.
The front end is the interface with variety of programming languages (e.g. C++,
Java, FORTRAN ...). Each of those languages has a separate front end to deal with
the features of this specified language. At the end of the front end a generic
representation of the code is generated to be easier to deal with it. The
intermediate part function is to make some optimizations on the generic code. The
back end transforms that generic code into the target assembly language [80].
Most of our work is in the back end as will be explained in section 5.6.
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5.3 Cross Compiler

There are three system names that the build operation knows about: the
machine you are building on (build), the machine that you are building for (host),
and the machine that GCC will produce code for (target). When we configure
GCC, we specify these with `--build=', `--host=', and `--target='. If build, host, and
target are all the same, this is called a native. If build and host are the same but
target is different, this is called a cross. If build, host, and target are all different
this is called a canadian. If host and target are the same, but build is different, you
are using a cross-compiler to build a native for a different system (This is our
case). Some people call this a host-x-host, crossed native, or cross-built native. If
build and target are the same, but host is different, you are using a cross compiler
to build a cross compiler that produces code for the machine you're building on.
This is rare, so there is no common way of describing it. There is a proposal to call
this a crossback [81].

5.4 Building and Installing GCC Cross-Compiler

5.4.1 Installing Prerequisites
GCC requires that various tools and packages be available for use in the build
procedure. We needed to install these tools:

 GNU Multiple Precision library (GMP) [82]. We used GMP-5.0.2.
 Multiple-Precision Floating-point computations with correct Rounding

library (MPFR) [6]. We used MPFR-3.0.1.
 Multi-Precision C library (MPC) [83].  We used MPC-0.8.2.

5.4.2 Building and installing Binutils
These utilities have to be built and installed before the compiler can be built and
installed. These are some utilities that are responsible for assembly, linking and
other binary utilities used to help manipulate the object files produced by the
compiler.

The first step in building and installing the binutils is to download its
complete distribution which includes the source files, configuration files and some
documentation. The latest release of the Gnu binutils can be downloaded from
[84]. In this work we used the binutils version 2.21
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Unpack the downloaded package which will be unpacked to a directory
called binutils-2.21/. Make a new directory called binutils-2.21-build/ and go to
that directory and run the configure script:

../binutils-2.21/configure --target=sparc-elf --prefix=/opt/UltraSparc/ --
verbose --with-cpu=v9 --enable-decimal-float=yes | tee configure.out;

The --target means that we want the binutils to be configured with the
target machine is the sparc-elf, the --prefix option means that when this binutils
be installed to be installed in the directory /opt/UltraSparc, --verbos means not to
suppress warning messages, --with-cpu means that we want to use the sparc
version 9 processor, and at last the 2>&1 | tee configure.out means that I want in
addition to the messages that appear on the screen to redirect the messages also to
a file called configure.out.

This command checks various system and compiler functions and builds an
appropriate Makefile. This script will print out quite a few status messages and
ends with the message "creating Makefile". This indicates that the script has run
successfully and produced a valid Makefile for this particular combination of host
and target.

At this point, a Makefile has been created and it can be run. The binutils for
the Sparc architecture can now be built with the command:

Make

This process can take several minutes and will produce numerous status
messages. When the build is complete, the newly compiled executables can be
installed. This must be done using the super user or root account, since the files
will be installed in a shared directory of the file system where they can be
accessed by other users. The commands to install the binutils are:

make install
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This install command will copy some files into the /opt/UltraSPARC/bin/
directory, these executables are various utilities used by the SPARC GCC
compiler to build and manipulate libraries and object files.

5.4.2.1 Building and Installing GCC
The process for downloading, building and installing the GNU GCC is a very
similar process to the one used to build the Gnu binutils, except of course, that a
different set of distribution files are used.

The first step in building and installing the GNU GCC Compiler is to
download the complete distribution. This is a set of files including source code and
various configuration and documentation files. This can be downloaded from [85],
in this work we used the GCC version 4.6.0

Unpack the downloaded package which will be unpacked to a directory
called gcc-4.6.0/. Make a new directory called gcc-4.6.0-build/ and go to that
directory and run the configure script:

gcc-4.6.0/configure --target=sparc-elf --prefix=/opt/UltraSparc/ --with-gnu-as
--with-gnu-ld --verbose --enable-languages=c,c++ --disable-shared --disable-
nls --enable-decimal-float=yes --with-newlib --with-cpu=v9 2>&1 | tee
configure.out؛

The --with-gnu-as and --with-gnu-ld means to use the GNU assembler and
linker with the GCC. --enable-decimal-float=yes to enable the decimal floating
point feature.

Like the configure command for the binutils, this configure command
checks various system and compiler functions and builds an appropriate Makefile.
This script will print out quite a few status messages and ends with the message
"creating Makefile". This indicates that the script has run successfully and
produced a valid Makefile for this particular combination of host and target.

At this point, a Makefile has been created and it can be run. The GCC for
the Sparc architecture can now be built with the command:

make all-gcc
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This process can take several minutes or even hours depending on the host
machine and the configuration and will produce numerous status messages. When
the build is complete, the newly compiled gcc executable can be installed. Again,
as with the binutils, this must be done using the super user or root account, since
the files will be installed in a shared directory of the file system where they can be
accessed by other users. The command to install the GCC is:

Note that this install command copies a single executable file, gcc, into the
/opt/UltraSPARC/bin/ directory. The previously installed binutils have already
been installed in this directory. As with the binutils, manual pages and other
supplementary material may have been installed by this command.

5.4.2.2 Building and Installing Newlib
Newlib is a collection of C libraries that are important to the GCC compiler. The
process of building and installing the newlib is very similar to that of the binutils
and the GCC. The following are the instructions for building and installing it.

5.4.2.3 Rebuilding and Installing GCC with Newlib
Finally after installing the newlib, we have to rebuild the GCC compiler to include
the new libraries added. the steps for building it is as follows.

make install-gcc

../newlib-1.19.0/configure --target=sparc-elf --prefix=/opt/UltraSparc/ --
enable-decimal-float=yes --with-cpu=v9 2>&1 | tee configure.out;

make -j 3 2>&1 | tee compile.out;

make install 2>&1 | tee compile.out;
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5.5 Editing the GCC Compiler Source Code
Our target is to modify the GCC Compiler to be compliant with our new decimal
floating point ULTRASPARC T2 processor and generate decimal floating point
instructions in the assembly-code when compiling a decimal segment in a C-code.

The main modifications are in the back end of GCC which contains the
target files. The SPARC files on the GCC source code lies in /gcc/configure/sparc
except the opcodes files which lie in the binutils source code. We modified seven
target files. These files are:

 The machine description file (sparc.md)

The ‘.md’ file for a target machine contains a pattern for each instruction that
the target machine supports (or at least each instruction that is worth telling the
compiler about).

 The C header file (sparc.h)
The header file defines numerous macros that convey the information about
the target machine that does not fit into the scheme of the ‘.md’ file.

 The C source file (sparc.c)
The source file defines a variable targetm, which is a structure containing
pointers to functions and data relating to the target machine. ‘machine.c’
should also contain their definitions, if they are not defined elsewhere in
GCC, and other functions called through the macros defined in the header
file.

 The option specification file (sparc.opt)
It is an optional file in the ‘machine’ directory, containing a list of target-
specific options.

cd gcc-build;\
/..gcc-4.6.0/configure --target=sparc-elf --prefix=/opt/UltraSparc/ --with-
gnu-as --with-gnu-ld --verbose --enable-languages=c,c++ --enable-decimal-
float=yes --disable-shared --disable-nls --with-cpu=sparc --with-newlib
2>&1 | tee configure_gcc.out
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 The opcodes file (/binutils/opcodes/sparc-opc.c).
It is the file containing the opcodes of the instructions defined in the
machine description file.

 /binutils/include/opcode/sparc.h
It is the file that contains the definitions for opcode table for the SPARC
target.

 /binutils/gas/config/tc-sparc.c
It is the file that includes the source code for the GCC assembler for the
SPARC target machine.

Following are description for the edits we made in each file to add the decimal
floating point capability for the GCC compiler targeting SPARC processor.

5.5.1 Edits in the machine description (sparc.md)
Three instruction patterns were added for the floating point decimal instructions
(double add, double subtract and double multiply).

Each instruction pattern contains an incomplete RTL expression, with pieces to
be filled in later, operand constraints that restrict how the pieces can be filled in,
and an output pattern or C code to generate the assembler output, all wrapped up
in a define_insn expression. A define_insn is an RTL expression containing four
or five operands [4].

1. An optional name. The presence of a name indicates that this instruction
pattern can perform a certain standard job for the RTL-generation pass of
the compiler. This pass knows certain names and will use the instruction
patterns with those names, if the names are defined in the machine
description. The defined name for the DFP double-precision addition is
“adddd3”, for the subtraction is “subdd3”, for the multiplication is
“muldd3”, for the fused multiply-add is “fmadd4” and for the fused
multiply-sub is “fmsdd4”.

2. The RTL template is a vector of incomplete RTL expressions which show
what the instruction should look like. It is incomplete because it may
contain match_operand, match_operator, and match_dup expressions that
stand for operands of the instruction.

3. A condition. This is a string which contains a C expression that is the final
test to decide whether an instruction body matches this pattern. For a
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named pattern, the condition may not depend on the data in the instruction
being matched, but only the target-machine-type flags. The compiler needs
to test these conditions during initialization in order to learn exactly which
named instructions are available in a particular run. Our defined DFP
instructions need to check two flags "TARGET_FPU &&
TARGET_DFP". And the FMA/FMS operations needs to check an
additional flag “TARGET_DFMA”.

4. The output template: a string that says how to output matching instruction
as assembler code. ‘%’ in this string specifies where to substitute the value
of an operand. For example the output template of the DFADDd instruction
is "dfaddd\t%1, %2, %0" where %1, %2 are the two sources and %0 is
the destination.

5. Optionally, a vector containing the values of attributes for instructions
matching this pattern. For the decimal instructions, the attributes defined
indicate the type of the sources to be “fp” and “double” which mean a
double floating point registers. For the FMA/FMS operations, the attribute
defined is “fpmul” which means that the instruction includes a FP
multiplication.

(define_insn "adddd3"
[(set:DD (match_operand:DD 0 "register_operand" "=e")

(plus:DD (match_operand:DD 1 "register_operand" "e")
(match_operand:DD 2 "register_operand" "e")))]

"TARGET_FPU && TARGET_DFP"
"dfaddd\t%1, %2, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])

(define_insn "subdd3"
[(set (match_operand:DD 0 "register_operand" "=e")

(minus:DD (match_operand:DD 1 "register_operand" "e")
(match_operand:DD 2 "register_operand" "e")))]

"TARGET_FPU && TARGET_DFP"
"dfsubd\t%1, %2, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
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5.5.2 Edits in the header file (sparc.h)
This file contains C macros that define general attributes of the machine. It defines
the default options of the target processor as follows:

We added to this definition the hard decimal floating point option such that
any C code that contains decimal operations will be compiled by default and
without need for additional options:

(define_insn "muldd3"
[(set (match_operand:DD 0 "register_operand" "=e")

(mult:DD (match_operand:DD 1 "register_operand" "e")
(match_operand:DD 2 "register_operand" "e")))]

"TARGET_FPU && TARGET_DFP"
"dfmuld\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])

#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)

#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU +
MASK_DFP)

(define_insn "fmadd4"
[(set (match_operand:DD 0 "register_operand" "=e")

(fma:DD (match_operand:DD 1 "register_operand" "e")
(match_operand:DD 2 "register_operand" "e")
(match_operand:DD 3 "register_operand" "e")))]

"TARGET_DFMA"
"dfmaddd\t%1, %2, %3, %0"

[(set_attr "type" "fpmul")])

(define_insn "fmsdd4"
[(set (match_operand:DD 0 "register_operand" "=e")

(fma:DD (match_operand:DD 1 "register_operand" "e")
(match_operand:DD 2 "register_operand" "e")
(neg:DD (match_operand:DD 3 "register_operand" "e"))))]

"TARGET_DFMA"
"dfmsubd\t%1, %2, %3, %0"

[(set_attr "type" "fpmul")])



80

5.5.3 Edits in the options file (sparc.opt)
This file defines the compilation options that the SPARC target knows about.
These options enable/disable its related masks.

We defined new options for either using our hardware DFP “mhard-dfp”
option or using DFP in software level “msoft-dfp”. The default option is “msoft-
dfp” which calls the DecNumber library to execute decimal instructions in
software layer using the already exists binary hardware.

Lines which are preceded by the semicolon are comments. For the “mhard-
dfp” option: the first line is the option name (mhard-dfp). The third line is the
related mask which is affected by the defined option. And the final line states the
effect of stating this option in the compilation, in our option it will enable the DFP

;Decimal FP
mdfp
Target Report Mask(DFP)
Use hardware DFP
;---------------------------------------------------------------
mhard-dfp
Target RejectNegative Mask(DFP) MaskExists
Enable decimal floating point hardware support
;---------------------------------------------------------------
msoft-dfp
Target RejectNegative InverseMask(DFP)
Disable decimal floating point hardware support
;----------------------------------------------------------------
;----------------------------------------------------------------
;fma
mdfma
Target Report Mask(DFMA)
Generate FMA instructions
;---------------------------------------------------------------------
mhard-dfma
Target RejectNegative Mask(DFMA) MaskExists
Enable decimal floating point FMA hardware support
;---------------------------------------------------------------------
msoft-dfma
Target RejectNegative InverseMask(DFMA)
Disable decimal floating point FMA hardware support
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hardware support. The same explanation applies for the “msoft-dfp”, “mhard-
dfma” and “msoft-dfma” options.

5.5.4 Edits in the C source file (sparc.c)
1. Define a variable that defines whether an FPU option was specified or not.

We does not enable the DFP hardware option by default. Consequently, this
variable is set initially to false. We set it to true when the “mhard-dfp”
option is chosen. The same clarification applies to the dfma option.

2. We need to define a new class that represents the DFP double-precision.
This is done in the enumeration sparc_mode_class.

, add the DD mode to the definition of modes for double-word and smaller
quantities.

and also to the definition of modes for double-float only quantities.

3. In the function  sparc_init_modes which does various machine dependent
initializations.

enum sparc_mode_class {
S_MODE, D_MODE, T_MODE, O_MODE,
SF_MODE, DF_MODE, TF_MODE, OF_MODE,DD_MODE,
CC_MODE, CCFP_MODE };

#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE)|
(1<< DD_MODE))

#define DF_MODES_NO_S ((1 << (int) D_MODE) | (1 << (int) DF_MODE)
|(1<<(int) DD_MODE))

static bool dfp_option_set = false;
static bool dfma_option_set = false;
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4. The user in compilation can disable/enable the hardware binary floating
point unit (FPU), the hardware decimal floating point (DFP) or the
hardware decimal FMA (DFMA). So, we need to look up the case of
disabling FPU and enabling DFP at the same time. An error message
should be shown and the hard DFP is disabled. Furthermore, we need to
look up the case where the DFMA is enabled while DFP is disabled. Also,
an error message should be shown and the hard DFMA is disabled.

if (! TARGET_FPU)
{ if ((target_flags_explicit & MASK_HARD_DFP) &&

TARGET_HARD_DFP)
error ("-mhard-dfp can%'t be used in conjunction with -msoft-

float");
target_flags &= ~MASK_HARD_DFP; }

if (! TARGET_DFP)
{

if ((target_flags_explicit & MASK_DFMA) && TARGET_DFMA)
error ("-mhard-fma can%'t be used in conjunction with -msoft-dfp");

target_flags &= ~MASK_DFMA; }

static void
sparc_init_modes (void)
{

int i;

for (i = 0; i < NUM_MACHINE_MODES; i++)
{

switch (GET_MODE_CLASS (i)) {
/****************************Decimal*************************

case MODE_DECIMAL_FLOAT:
if (GET_MODE_SIZE (i) == 8)

sparc_mode_class[i] = 1 << (int) DD_MODE;
/*  else if (GET_MODE_SIZE (i) == 16)

sparc_mode_class[i] = 1 << (int) TD_MODE;
else if (GET_MODE_SIZE (i) == 32)

sparc_mode_class[i] = 1 << (int) OD_MODE;*/
else

sparc_mode_class[i] = 0;
break;

/***********************************************************/
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5. Implement TARGET_HANDLE_OPTION

6. If -mdfp or -mno-dfp (or -mdfma or –mno-dfma) was explicitly used, don't
override with the processor default.

if (dfp_option_set)
target_flags = (target_flags & ~MASK_DFP) | (target_flags &

MASK_DFP);
if (dfma_option_set)

target_flags = (target_flags & ~MASK_DFMA) | (target_flags &
MASK_DFMA);

switch (mclass)
{
case MODE_FLOAT:
case MODE_DECIMAL_FLOAT:

static bool
sparc_handle_option (size_t code, const char *arg, int value
ATTRIBUTE_UNUSED)
{

switch (code)
{

//Decimal-----------------------------------------------
case OPT_mdfp:
case OPT_mhard_dfp:
case OPT_msoft_dfp:

dfp_option_set = true;
break;

//FMA----------------------------------------------------
case OPT_mdfma:
case OPT_mhard_dfma:
case OPT_msoft_dfma:

dfma_option_set = true;
break;

//--------------------------------------------------------
}
return true;}
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5.5.5 Edits in the opcodes file (sparc-opc.c)
The opcodes is defined in a template structure which has the following fields:

Where name is the instruction name, match has the bits that must be set or
by other words the match component is a mask saying which bits must match a
particular    opcode in order for an instruction to be an instance of that opcode,
lose has the bits that must not be set, the args component is a string containing one
character for each operand of the instruction, architecture is the bitmask of sparc
opcode architecture values. We add the opcodes for five DFP instructions.
Namely:  DFADDd, DFSUBd, DFMULd, DFMADDd and DFMSUBd.

F3F and F4F are defined as following:

{"dfaddd", F3F(2, 0x36, 0x092), F3F(~2, ~0x36, ~0x092), "v,B,H",
F_FLOAT,v6}
/***********************************************************/
{"dfsubd", F3F(2, 0x36, 0x096), F3F(~2, ~0x36, ~0x096), "v,B,H",
F_FLOAT,v6}
/***********************************************************/
{ "dfmuld", F3F(2, 0x36, 0x09a), F3F(~2, ~0x36, ~0x09a), "v,B,H",
F_FLOAT,v6}
/***********************************************************/
{ "dfmaddd",F4F(2, 0x37, 0x3), F4F(~2, ~0x37, ~0x3), "v,B,4,H", F_FLOAT,
v6},/*Decimal FMA */
/***********************************************************/
{"dfmsubd",F4F(2, 0x37, 0x7), F4F(~2, ~0x37, ~0x7), "v,B,4,H", F_FLOAT,
v6},/*Decimal FMS */

typedef struct sparc_opcode
{  const char *name;

unsigned long match
unsigned long lose;
const char *args;
/* This was called "delayed" in versions before the flags.  */
char flags;
short architecture;

} sparc_opcode;

#define F3F(x, y, z) (OP (x) | OP3 (y) | OPF (z))
#define F4F(x, y, z) (OP (x) | OP3 (y) | OP5 (z)) /* Format3 float insns.  */
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OP contains bits [31,30] of the opcode and it is “10” (or “0x2” as written in
the F3F) for arithmetic instructions. OP3 is the field of bits [24:19] of the opcode
and it is “0x36” for DFADDd, DFSUBd and DFMULd and “0x37” for
DFMADDd and DFMSUBd. OPF has the bits [13:5] of IMPDEP1 instructions
(back to Chapter 4 section 4.2 for details). It is “0x092” for DFADDd, “0x096” for
DFMULd and “0x09A” for DFMULd. OP5 is the field of bits [8:5] of FMA/FMS.
It is “0x3” for DFMADDd and “0x7” for DFMSUBd. We have added the
definition of this field in the file binutils/include/opcode/sparc.h.

The meaning of the operands’ arguments used is shown in Table 5.1.

Argument Meaning
V frs1 is a floating point register (double/even).
B frs2 is a floating point register (double/even).
H frsd is a floating point register (double/even).
4 frs3 is a floating point register (double/even).

Table 5.1: Operands' arguments

We edit the file /binutils/gas/config/tc-sparc.c to define the check on the added
argument “4” for the third source of FMA/FMS operations.

#define OP3(x) (((x) & 0x3f) << 19)
#define OP5(x) (((x) & 0xf) << 5)
#define OP(x) ((unsigned) ((x) & 0x3) << 30)
#define OPF(x) (((x) & 0x1ff) << 5)

switch (*args)
{……………………
//added check
case '4':
opcode |= RS3 (mask);
continue;

…………………….
}
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5.6 Testing the modified Cross Compiler
A test code is presented here to demonstrate the final result of the compiler.

We had written a C code that defines variables of the GCC “_Decimal64” built-in
type and performs three different operations on them: addition, subtraction and
multiplication.

We then compiled the above C code without the new capability of
generating hardware DFP instructions. The compiler calls the decimal software
functions: __dpd_adddd3 for addition, __dpd_subdd3 for subtraction and
__dpd_muldd3 for multiplication as illustrated in the following SPARC assembly
file.

#include <stdio.h>
main ()
{

_Decimal64 calculateTotal1,calculateTotal2,calculateTotal3;
_Decimal64 price1,price2,price3;
_Decimal64 taxRate1,taxRate2,taxRate3;

price1=50.5dd;
price2=150.5dd;
price3=250.5dd;
taxRate1=0.45dd;
taxRate1=0.55dd;
taxRate1=0.65dd;

calculateTotal1= price1 + taxRate1;
calculateTotal2= price2 - taxRate2;
calculateTotal3= price3 * taxRate3;

}
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.file "decimal_test.c"

.global __dpd_adddd3

.global __dpd_subdd3

.global __dpd_muldd3

.section ".rodata"

.align 8
.LLC0:

.long 573833216

.long 645

.align 8
.LLC1:

.long 573833216

.long 1669

.align 8
.LLC2:

.long 573833216

.long 2693

.align 8
.LLC3:

.long 573571072

.long 69

.align 8
.LLC4:

.long 573571072

.long 85

.align 8
.LLC5:

.long 573571072

.long 101

.section ".text"

.align 4

.global main

.type main, #function

.proc 04
main:

save %sp, -256, %sp
sethi %hi(.LLC0), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC0), %g1
ldx [%g1], %g1
stx %g1, [%fp+2039]
sethi %hi(.LLC1), %g1
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add %g1, %g4, %g1
add %g1, %lo(.LLC1), %g1
ldx [%g1], %g1
stx %g1, [%fp+2031]
sethi %hi(.LLC2), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC2), %g1
ldx [%g1], %g1
stx %g1, [%fp+2023]
sethi %hi(.LLC3), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC3), %g1
ldx [%g1], %g1
stx %g1, [%fp+2015]
sethi %hi(.LLC4), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC4), %g1
ldx [%g1], %g1
stx %g1, [%fp+2015]
sethi %hi(.LLC5), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC5), %g1
ldx [%g1], %g1
stx %g1, [%fp+2015]
ldd [%fp+2039], %f0
ldd [%fp+2015], %f2
call __dpd_adddd3, 0
nop

mov %o0, %g1
stx %g1, [%fp+2007]
ldd [%fp+2031], %f0
ldd [%fp+1999], %f2
call __dpd_subdd3, 0
nop

mov %o0, %g1
stx %g1, [%fp+1991]
ldd [%fp+2023], %f0
ldd [%fp+1983], %f2
call __dpd_muldd3, 0
nop

mov %o0, %g1
stx %g1, [%fp+1975]
mov %g1, %i0
return %i7+8
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Next, we compiled the same program using the new added option “-mhard-
dfp”. In this case, the GCC chain replaced the software routines with the hardware
instructions: DFADDd for addition, DFSUBd for subtraction and DFMULd for
multiplication.

nop
.size main, .-main
.ident "GCC: (GNU) 4.6.0"

.file "decimal_test.c"

.section ".rodata"

.align 8
.LLC0:

.long 573833216

.long 645

.align 8
.LLC1:

.long 573833216

.long 1669

.align 8
.LLC2:

.long 573833216

.long 2693

.align 8
.LLC3:

.long 573571072

.long 69

.align 8
.LLC4:

.long 573571072

.long 85

.align 8
.LLC5:

.long 573571072

.long 101

.section ".text"

.align 4

.global main

.type main, #function

.proc 04



90

main:
save %sp, -256, %sp
sethi %hi(.LLC0), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC0), %g1
ldx [%g1], %g1
stx %g1, [%fp+2039]
sethi %hi(.LLC1), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC1), %g1
ldx [%g1], %g1
stx %g1, [%fp+2031]
sethi %hi(.LLC2), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC2), %g1
ldx [%g1], %g1
stx %g1, [%fp+2023]
sethi %hi(.LLC3), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC3), %g1
ldx [%g1], %g1
stx %g1, [%fp+2015]
sethi %hi(.LLC4), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC4), %g1
ldx [%g1], %g1
stx %g1, [%fp+2015]
sethi %hi(.LLC5), %g1
add %g1, %g4, %g1
add %g1, %lo(.LLC5), %g1
ldx [%g1], %g1
stx %g1, [%fp+2015]
ldd [%fp+2039], %f10
ldd [%fp+2015], %f8
dfaddd %f10, %f8, %f8
std %f8, [%fp+2007]
ldd [%fp+2031], %f10
ldd [%fp+1999], %f8
dfsubd %f10, %f8, %f8
std %f8, [%fp+1991]
ldd [%fp+2023], %f10
ldd [%fp+1983], %f8
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5.7 Conclusion
We now have a complete GCC tool chain that can generate hardware decimal
floating point Add, Sub, Multiply instructions. Although we have added the DFP
Fused Multiply-Add and Fused Multiply-Sub instruction to the SPARC v9 ISA as
stated in Chapter 4, we could not manage to add this support for the tool chain. We
have made the required changes in the GCC source code. The problem is that the
C standard till now does not support the FMA operation for the decimal floating
point types [81]. It may be continued as a future work when the standard supports
such operation.

dfmuld %f10, %f8, %f8
std %f8, [%fp+1975]
mov %g1, %i0
return %i7+8
nop

.size main, .-main

.ident "GCC: (GNU) 4.6.0"
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Chapter 6 RESULTS AND FUTURE WORK

6.1 Introduction
OpenSPARC T2 comes with an automated verification environment. We adapted
this environment to test our new core with the decimal floating point hardware
capability. Section 6.2 introduces how to prepare the verification environment.
Section 6.3 explains the simulation procedure. Section 6.4 shows the performance
results. Section 6.5 lists the suggested future work. Finally, we conclude the thesis
in section 6.6.

6.2 Preparing the Environment
The script used for the preparation is shown below. It sets some environment
variables used during the simulation, the included path for executable files, the
included directories for libraries and the license path.

The environment variables’ meaning is shown in Table 6.1 and the used
softwares and simulators are shown in Table 6.2.

Variable Meaning
DV_ROOT The top directory of the OpenSPARC T2 environment
MODEL_DIR Directory where we run the simulations
VERA_HOME Directory where Vera is installed
NOVAS_HOME Directory where Debussy is installed
VCS_HOME Directory where VCS Simulator is installed
NCV_HOME Directory where NCV Simulator is installed
SYN_HOME Directory where SYNOPSYS Simulator is installed
CC_BIN Directory where C++ Compiler binaries are installed
LM_LICENSE_FILE EDA tool license files

Table 6.1: Environemnt Variables

Software Usage
VCS simulator simulating the verilog processor files
Design Compiler Synthesis tool
Vera Testbench drivers, monitors, and coverage objects
Perl Scripts for running simulations and regressions
GCC Running C/C++ files and the SPARC assembly tests

Table 6.2: Used Programs and Simulators
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#################################################
###     Setting up the OpenSparc_T2 environment             ###
#################################################

# For LINUX only
# User needs to define these new variables
export PROJECT PROJECT=OpenSparc_N2;
export DV_ROOT DV_ROOT=/home/Original/OpenSPARCT2;
export MODEL_DIR MODEL_DIR=/home/Original/OpenSPARCT2/OpenSparc_Simulation;
export TEMPDIR TEMPDIR=/var/tmp/cache.$USER/Cache;
export TRE_ENTRY TRE_ENTRY=/;
export TRE_SEARCH TRE_SEARCH=$DV_ROOT/tools/env/$PROJECT.iver;
# User needs to define following paths depending on the environment
#-----------------------------------------------------------------------------------------------------------------
# Please define VCS_HOME if using vcs
export VCS_HOME VCS_HOME=/home/Setup/Synopsys/VCS/linux;
#-----------------------------------------------------------------------------------------------------------------
# Please define VERA_HOME if using vera
export VERA_HOME VERA_HOME=/home/Setup/Synopsys/A-2007.12/vera_vA-
2007.12_linux;
#-----------------------------------------------------------------------------------------------------------------
# Please define NCV_HOME if using ncverilog

export NCV_HOME NCV_HOME=/home/Setup/Cadence/IUS;
export CDS_INST_DIR CDS_INST_DIR=$NCV_HOME;
export INSTALL_DIR INSTALL_DIR=$NCV_HOME;
export ARCH ARCH=lnx86;

#-----------------------------------------------------------------------------------------------------------------
-
#Please define NOVAS_HOME only if you have debussy
export NOVAS_HOME NOVAS_HOME=/home/Sources/Novas/Debussy/Debussy-52v15-

basic.tar.gz_FILES;
#-----------------------------------------------------------------------------------------------------------------
-
# Please specify C/C++ compilers

export CC_HOME CC_HOME=/usr;
export CC_BIN CC_BIN=$CC_HOME/bin;

#-----------------------------------------------------------------------------------------------------------------
# Please define SYN_HOME if you are running synopsys design compiler
export SYN_HOME SYN_HOME=/home/Setup/Synopsys/DC_2009.06;

# Synopsys variables from $SYN_HOME
export SYN_LIB SYN_LIB=$SYN_HOME/libraries/syn;
export SYN_BIN SYN_BIN=$SYN_HOME/bin;
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#-------Licence File-------------------------------------------------------------------------------------------
#export LM_LICENSE_FILE LM_LICENSE_FILE=
/home/Setup/Synopsys/10.9.3/admin/license/synopsys.dat:/home/Setup/Cadence/license/licens
e.dat
#:$LM_LICENSE_FILE;
#----------------------------------------------------------------------------------------------------------------
# Set Perl related variables

export PERL_MODULE_BASE PERL_MODULE_BASE=$DV_ROOT/tools/perlmod;
export PERL_PATH PERL_PATH=/usr;
export PERL5_PATH PERL5_PATH=$PERL_PATH/lib;
export PERL_CMD PERL_CMD=$PERL_PATH/bin/perl;

#----------------------------------------------------------------------------------------------------------------
# Set path for binaries and shared objects here...
unset $path
export PATH
PATH=$DV_ROOT/tools/Linux/x86_64:$DV_ROOT/tools/bin:$PERL_PATH/bin:/home/Set
up/Cadence/IUS/tools.lnx86/bin:$ModelSim_HOME/bin:$CC_BIN:$SYN_BIN:$VCS_HOM
E/bin:$VERA_HOME/bin:$PATH;
#----------------------------------------------------------------------------------------------------------------
unset LD_LIBRARY_PATH
export LD_LIBRARY_PATH
LD_LIBRARY_PATH=/lib:/usr/lib:/lib64:/usr/lib64:home/FIN64/lib/gcc/sparc64-
elf/4.6.0/include;
#----------------------------------------------------------------------------------------------------------------
# specifically for NC-Verilog
export LD_LIBRARY_PATH
LD_LIBRARY_PATH=$VERA_HOME/lib:$NCV_HOME/tools.lnx86/lib:$NCV_HOME/to
ols.lnx86/verilog/lib:$NCV_HOME/tools.lnx86/inca/lib:${LD_LIBRARY_PATH};
#----------------------------------------------------------------------------------------------------------------
export LD_LIBRARY_PATH
LD_LIBRARY_PATH=$NOVAS_HOME/share/PLI/nc`configsrch debussy_ncv
/`/LINUX/nc_loadpli1:$DV_ROOT/verif/env/common/pli/monitor/loadpli/linux:$DV_ROOT/
verif/env/common/pli/global_chkr/loadpli/linux:$DV_ROOT/verif/env/common/pli/socket/loa
dpli/linux:$DV_ROOT/verif/env/common/pli/bwutility/loadpli/linux:$DV_ROOT/verif/env/c
ommon/pli/cache/loadpli/linux:$DV_ROOT/verif/model/infineon/loadpli/linux:${LD_LIBRA
RY_PATH};
#----------------------------------------------------------------------------------------------------------------
alias lic='$SYNOPSYS/10.9.3/linux/bin/lmgrd -c
$SYNOPSYS/10.9.3/admin/license/synopsys.dat'
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6.3 Simulation Procedure
After invoking the OpenSPARCT2.bashrc.linux script, the environment is ready
for running simulations. The OpenSPARC T2 Design/Verification package comes
with four test bench environments: cmp1, cmp8, fc1 and fc8. The cmp1
environment consists of: one SPARC CPU core, cache, memory and crossbar. The
cmp1 environment does not have an I/O subsystem. The cmp8 environment
consists of: eight SPARC CPU cores, cache, memory and crossbar. The cmp8
environment does not have an I/O subsystem. The fc1 environment consists of: a
full OpenSPARC T2 chip with one SPARC Core, cache, memory, crossbar and
I/O subsystem. The fc8 environment consists of: a full OpenSPARC T2 chip
including all eight cores, cache, memory, crossbar and I/O subsystem. Each
environment can perform either a mini-regression or a full regression.

To run the simulation, we use the following command:

-sys is a pointer to a specific test bench configuration to be built and run. It
selects one of the four test bench environments: cmp1, cmp8, fc1 and fc8. –group
name identifies a set of diagnostics to run in a regression. We have two groups for
each test bench environment. The choices for -group are: cmp1_mini_T2,
cmp1_all_T2, cmp8_mini_T2, cmp8_all_T2, fc1_mini_T2, and fc1_all_T2,
fc8_mini_T2, and fc8_all_T2. –diaglist is the full path to diaglist file which
identifies the assembly test files for the used group. We defined a new diaglist to
include our assembly test files. This diaglist is shown below.

sims -sys=cmp1 -group=cmp1_mini_T2 -diaglist=
/home/Original/my_diaglist.diag
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When running a simulation, the sims command performs the following steps:
1. Compiles the design into the $MODEL_DIR/cmp1 or $MODEL_DIR/fc8

directory, depending on which environment is being used.

2. Creates a directory for regression called $PWD/DATE_ID, where $PWD is
your current directory, DATE is in YYYY_MM_DD format, and ID is a
serial number starting with 0. For example, for the first regression on
August07, 2007, a directory called $PWD/2007_08_07_0 is created. For
the second regression run on the same day, the last ID is incremented to
become $PWD/2007_08_07_1.

#ifndef SYSNAME
#define SYSNAME cmp1
#define sys(x) cmp1_ ## x
#define CMP
#define CMP1
#define ALL_THREADS 8
#endif

<sys(mini_T2) sys=cmp1>
<runargs -sys=cmp1 -tg_seed=1 >
<runargs -sas -vcs_run_args=+show_delta>

/*------------------------Subtraction testing file ----------------------------------------*/
<dec_sub name=dec_sub.s>

dec_sub               dec_sub.s
</dec_sub>
/*------------------------Addition testing file -------------------------------------------*/
<dec_add name=dec_add.s>

dec_add               dec_add.s
</dec_add>
/*------------------------Multiplication testing file -------------------------------------*/
<dec_mul name=dec_mul.s>

dec_mul               dec_mul.s
</dec_mul>
/*--------------------------------------------------------------------------------------------*/
</runargs>
</runargs>
</sys(mini_T2)>
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3. Creates a master_diaglist.regression_group file under the above directory.
such as master_diaglist.cmp1_mini_T2 for the cmp1_mini_T2 regression
group. This file is created based on diaglists under the
$DV_ROOT/verif/diag directory.

4. Creates a subdirectory with the test name under the regression directory
created in step 2 above.

5. Creates a sim_command file for the test based on the parameters in the
diaglist file for the group.

6. Executes sim_command to run a Verilog simulation for the test. If the -sas
option is specified for the test, it also runs the SPARC Architecture
Simulator (SAS) in parallel with the Verilog simulator. The results of the
Verilog simulation are compared with the SAS results after each
instruction. The sim_command command creates many files in the test
directory. Following are the sample files in the test directory:

The status.log file has a summary of the status, where the first line contains
the name of the test and its status (PASS/FAIL). An example is the
status.log file for the subtraction instruction test.

7. Repeats steps 4 to 6 for each test in the regression group.

6.4 Performance Results
To verify the new architecture, three SPARC assembly files were written. One is
for the addition, the second is for the subtraction and the third is for the
multiplication. Each test file has only one operation on two test vectors from [87].
This is sufficient for measuring the performance and verifying the functionality of
the design for two reasons. First, the instruction cycles do not depend on the
operands’ values. Second, the core unit has been verified using all the test vectors
provided by [87] in [88].

Rundir: dec_sub:dec_sub.s:cmp1_mini_T2:0           PASS

diag.ev diag.s raw_coverage seeds.log
status.log vcs.log.gz diag.exe.gz midas.log
sas.log.gz sims.log symbol.tbl vcs.perf.log
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#include "defines.h"
#include "nmacros.h"
#include "old_boot.s"

.text

.global main

main: /* test begin */

!# Initialize registers ..
!# Float Registers
INIT_TH_FP_REG(%l7, %f2, 0x0EF7E5EFEC54621F) !sub
!setx 0x0EF7E5EFEC54621F, %g4, %g5
!stx %g5, [%l7]
!ldd    [%l7], %f2
INIT_TH_FP_REG(%l7, %f8, 0x0EF4D215E2320010) !Sub

!# Execute The DFP SUB operation
dfsubd %f2, %f8, %f2

EXIT_GOOD /* test finish  */

#include "defines.h"
#include "nmacros.h"
#include "old_boot.s"

.text

.global main

main: /* test begin */

!# Initialize registers .
!# Float Registers
INIT_TH_FP_REG(%l7, %f2, 0x40BB9167BEA0918C) !Add
INIT_TH_FP_REG(%l7, %f8,0xC0BA7B65181FA5F8) !Add

!# Execute some ALU ops ..

!dfaddd %f2, %f8, %f2
EXIT_GOOD /* test finish  */
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The simulation environment boots up the processor and generates a
memory image for the program’s instructions opcodes. The memory image files
shown below verify that the environment has successfully assembled the new DFP
instructions using our modified GCC assembler. The opcodes shown in bold are
for the DFP instructions: 85b09248 for DFADDd, 85b092c8 for DFSUBd,
85b09348 for DFMULd.

#include "defines.h"
#include "nmacros.h"
#include "old_boot.s"

.text

.global main

main: /* test begin */

!# Initialize registers ..
!# Float Registers
INIT_TH_FP_REG(%l7, %f2, 0x00680000318936C4) !Mul
INIT_TH_FP_REG(%l7, %f8,0x21D40000000F53A9) !Mul

!# Execute some ALU ops ..
dfmuld %f2, %f8, %f2

EXIT_GOOD /* test finish  */

@0000000020000000 // Section '.MAIN', segment 'text'

ca75c000c51dc000 09102ee40b2fa824 881121678a11618c 892930208a114004

ca75c000c51dc000 ca75c000cd1dc000 ca75c000d11dc000 09302e9e0b0607e9

881123658a1161f8 892930208a114004 ca75c000d11dc000 ca75c000d91dc000

85b09248033fffff    053c0000821063ff 8410a0e083287020 8410800181c08000

0100000000000000

mailto:@0000000020000000
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Booting up, generating memory images and other system operations
consume large number of cycles. Therefore, to get the exact number of cycles for
the DFP instructions we simulated an empty assembly file that only includes the
boot up and the initializations. From the regression report shown, the booting up
and system initializations take 1762 cycles; hence, the total number of cycles to
perform the DFP test program for any of the three instructions is 10 cycles. These
10 cycles includes the floating point registers initializations.

When comparing these results with the results of the software libraries IBM
decNumber and Intel Decimal library reported in [56], we find that at least we
have a speed-up of more than 10 when perform the DFP operations using
hardware instructions instead of software routines. Table 6.3 illustrates the cycle-
count comparison for each of the implemented instructions. DPD64 is the

@0000000020000000 // Section '.MAIN', segment 'text'

ca75c000c51dc000 09102ee40b2fa824 881121678a11618c 892930208a114004

ca75c000c51dc000 ca75c000cd1dc000 ca75c000d11dc000 09302e9e0b0607e9

881123658a1161f8 892930208a114004 ca75c000d11dc000 ca75c000d91dc000

85b092c8033fffff 053c0000821063ff 8410a0e083287020 8410800181c08000

0100000000000000

@0000000020000000 // Section '.MAIN', segment 'text'

ca75c000c51dc000 09102ee40b2fa824 881121678a11618c 892930208a114004

ca75c000c51dc000 ca75c000c51dc000 ca75c000d11dc000 09302e9e0b0607e9

881123658a1161f8 892930208a114004 ca75c000d11dc000 ca75c000d11dc000

85b09348033fffff 053c0000821063ff 8410a0e083287020 8410800181c08000

0100000000000000

mailto:@0000000020000000
mailto:@0000000020000000


101

decNumber type that represents the Decimal64 precision; BID64 is the Intel type
that represents that same precision.

DPD64 BID64 Our H.W.
Add 154 109 10
Sub 289 126 10
Mul 296 117 10

Table 6.3: Cycle count for the decNumber library, Intel library and the new H.W. instructions

=======================================================
STATUS OF REGRESSION IN OPENSPARC T2

=======================================================

Summary for
/home/Original/OpenSPARCT2/OpenSparc_Simulation/cmp1_vcs_regression_201
2_05_01__LINUX_0
===========================================================

Group:Total |   PASS |    FAIL |              Cycles |        Time |         C/S |
----------------------------------------------------------------------------------------------------

empty.s:      1 |           1 |           0 |             1762.50 |       13.20 |   133.52 |
dec_sub.s:      1 |           1 | 0 |             1772.50 |       12.27 |   144.46 |

dec_mul.s:      1 |           1 |           0 |             1772.50 |       12.11 |    146.37 |
dec_add.s:      1 |           1 |           0 |             1772.50 |       12.61 | 140.56 |

----------------------------------------------------------------------------------------------------
ALL:    4 |    4 |    0 |             7080.00 |       50.19 |141.06 |

===========================================================

Total Diags  :                    4
Total Passed :                    4
Total Unknown:                0
Total Unfini :                     0
Total Fail   :                       0
Total Cycles :               7080.00
Total Time   :                50.19
Average C/S  :               141.06
===========================================================
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In order to measure the effect of the added DFPU on the area of the FGU,
the area profiling for the original OpenSPARC T2 FGU and for the modified one
including the DFPU was obtained using the Synopsys Design Compiler. Table 6.4
illustrates that the area is increased by 17.4% only.

Area ( )
OpenSPARC T2 FGU 151342
Modified FGU including DFPU 177662

Table 6.4: Area profile

6.5 Future Work
Future work may focus in the following issues:

 Extending our implementation to 128-bit standard decimal precision. We
did not implement the Decimal128 instructions as the OpenSPARC T2 does
not support quad precision operations till now.

 Extending the functionality of the floating-point arithmetic unit to include
all the decimal floating point operations in the standard.

 Running test programs on a real UltraSPARC T2 machine and get the
measurements of using software libraries. We did not manage to run a
program linked with the software libraries because of environment’s issues.

6.6 Conclusion
In this thesis we proposed the first open-source processor that includes the decimal
floating point capability. It is a modified version of the OpenSPARC T2 processor
from Sun/Oracle. We implemented the basic instructions (Addition, Subtraction,
Multiplication, Fused Multiply-Add and Fused Multiply-Subtract).

We also extended the SPARC ISA to include the new defined DFP
instructions. Moreover, we engendered a software tool chain to support the new
capability. We edited the GNU GCC compiler to generate the SPARC Assembly
programs and binaries from C programs that define DFP variables.

We tested the new design using the verification environment attached to the
OpenSPARC T2 package. In comparison with the reported results of the software
libraries, we have a speed-up of more than ten times over them.



103

REFERENCES

[1] T. Dantzig, Number, the Language of Science. The Macmillan
Corporation,1930.

[2] P. E. Ceruzzi, A History of Modern Computing. The MIT Press, 2003.

[3] M. ibn Musa Al-Khawarizmi, The Keys of Knowledge. around 830 C.E.

[4] A. G. Bromley, “Charles Babbage’s analytical engine, 1838,” Annals of
the History of Computing, vol. 20, no. 4, pp. 29–45, 1982.

[5] H. H. Goldstine and A. Goldstine, “The electronic numerical integrator
and computer (ENIAC),” Annals of the History of Computing,IEEE, vol.
18, pp. 10 –16, Mar. 1996.

[6] A. W. Burks, H. H. Goldstine, and J. von Neumann, “Preliminary
discussion of the logical design of an electronic computing instrument,”
tech. rep., Institution for Advanced Study, Princeton, 1946

[7] W. Bouchholz, “Fingers or fists ? (the choice of decimal or binary
representation),” Communications of the ACM, vol. 2, pp. 3–11, Dec.1959.

[8] M. F. Cowlishaw, “Decimal floating-point: algorism for
computers,”in the 16th IEEE Symposium on Computer Arithmetic
(ARITH-16), pp. 104 – 111, June 2003.

[9] A. Vazquez, High Performance Decimal Floating Point Units. PhD
thesis, University of Santiago de Compostela, 2009.

[10] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array
multiplication algorithm,” IEEE Transactions on Computers, vol. C-22, pp.
1045 – 1047, Dec. 1973.

[11] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, pp. 349–356, Mar. 1965.



104

[12] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Transactions on
Computers, vol. C-22, pp. 786 –793, Aug. 1973.

[13] R. H. Larson, “High-speed multiply using four input carry-save
adder,” IBM technical Disclosure Bulletin, vol. 16, pp. 2053–2054, Dec.
1973.

[14] L. P. Rubinfield, “A proof of the modified Booth’s algorithm for
multiplication,” IEEE Transactions on Computers, vol. C-24, pp. 1014 –
1015, Oct. 1975.

[15] INTEL, 8080/8085 Floating-Point Arithmetic Library User’s
Manual. Intel Corporation, 1979.

[16] A. Heninger, “Zilog’s Z8070 floating point processor,” Mini Micro
Systems, pp. 16/2/1–7, 1983.

[17] IEEE, ed., 854-1987 (R1994) IEEE Standard for Radix-Independent
Floating-Point Arithmetic. 1987. Revised 1994.

[18] IEEE Task P754, IEEE 754-2008, Standard for Floating-Point
Arithmetic. Aug. 2008.

[19] M. F. Cowlishaw, “The ‘telco’ benchmark.” World-Wide Web
document., 2002. http://www2.hursley.ibm.com/decimal/telco.html.

[20] L. K. Wang, C. Tsen, M. J. Schulte, and D. Jhalani, “Benchmarks
and performance analysis of decimal floating-point applications,” in the
25th IEEE International Conference on Computer Design (ICCD-25), pp.
164 –170, Oct. 2007.

[21] H. A. H. Fahmy, R. Raafat, A. M. Abdel-Majeed, R. Samy, T.
ElDeeb, and Y. Farouk, “Energy and delay improvement via decimal

http://www2.hursley.ibm.com/decimal/telco.html


105

floating point units,” in the 19th IEEE Symposium on Computer Arithmetic
(ARITH-19), pp. 221 –224, June 2009.

[22] C. F. Webb, “IBM z10: The next-generation mainframe
microprocessor,” IEEE Micro, vol. 28, no. 2, pp. 19 –29, 2008.

[23] E. M. Schwarz and S. R. Carlough, “Power6 decimal divide,” in the
18th IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP-18), pp. 128 –133, July 2007.

[24] P. K. Monsson, “Combined binary and decimal floating-point unit,”
Master’s thesis, Technical University of Denemark, 2008.

[25] Sun Microsystems, BigDecimal (Java 2 Platform SE v1.4.0), 2002.
http://java.sun/com/products.

[26] M. Cowlishaw, The decNumber C library, Nov. 2006.
http://download.icu-project.org/ex/files/decNumber/decNumbericu-337.zip.

[27] Intel Corporation, Intel decimal floating-point math library, 2010.
http://software.intel.com/enus/articles/intel-decimal-floatingpoint-math-
library/.

[28] J. Thompson, N. Karra, and M. J. Schulte, “A 64-bit decimal
floating point adder,” in the 3rd IEEE Computer society Annual
Symposium on VLSI (ISVLSI-3), pp. 297 –298, Feb. 2004.

[29] L. K.Wang andM. J. Schulte, “Decimal floating-point adder and
multifunction unit with injection-based rounding,” in the 18th IEEE
Symposium on Computer Arithmetic (ARITH-18), pp. 56 –68, June 2007.

[30] L. K. Wang and M. J. Schulte, “A decimal floating-point adder with
decoded operands and a decimal leading-zero anticipator,” in the 19th IEEE
Symposium on Computer Arithmetic (ARITH-19), pp. 125 –134, June
2009.

http://java.sun/com/products
http://download.icu-project.org/ex/files/decNumber/decNumbericu-
http://software.intel.com/enus/articles/intel-decimal-floatingpoint-math-


106

[31] A. Vazquez and E. Antelo, “Conditional speculative decimal
addition,” in the 7th Conference of Real Numbers Computers (RNC-7), pp.
47 –57, July 2006.

[32] K. Yehia, H. A. H. Fahmy, and M. Hassan, “A redundant decimal
floating-point adder,” in the 44th Asilomar Conference on Signals, Systems
and Computers (Asilomar-44), pp. 1144 –1147, Nov. 2010.

[33] A. Vazquez, E. Antelo, and P. Montuschi, “A new family of
high.performance parallel decimal multipliers,” in the 18th IEEE
Symposium on Computer Arithmetic (ARITH-18), pp. 195 –204,
June2007.

[34] G. Jaberipur and A. Kaivani, “Improving the speed of parallel
decimal multiplication,” IEEE Transactions on Computers, vol. 58, pp.
1539–1552, Nov. 2009.

[35] M. A. Erle, M. J. Schulte, and B. J. Hickmann, “Decimal floating-
point multiplication via carry-save addition,” in the 18th IEEE Symposium
on Computer Arithmetic (ARITH-18), pp. 46 –55, June 2007.

[36] B. Hickmann, A. Krioukov, M. Schulte, and M. Erle, “A parallel
IEEE p754 decimal floating-point multiplier,” in the 25th IEEE
International Conference on Computer Design (ICCD-25), pp. 296 –303,
Oct.2007.

[37] R. Raafat, A. M. Abdel-Majeed, R. Samy, T. ElDeeb, Y. Farouk, M.
Elkhouly, and H. A. H. Fahmy, “A decimal fully parallel and pipelined
floating point multiplier,” in the 42nd Asilomar Conference on Signals,
Systems and Computers (Asilomar-42), pp. 1800 –1804,Oct. 2008.

[38] A. Vazquez, E. Antelo, and P. Montuschi, “Improved design of
high-performance parallel decimal multipliers,” IEEE Transactions on
Computers, vol. 59, pp. 679 –693, May 2010.

[39] R. Samy, H. A. H. Fahmy, R. Raafat, A. Mohamed, T. ElDeeb, and
Y. Farouk, “A decimal floating-point fused-multiply-add unit,” in the 53rd



107

IEEE Midwest Symposium on Circuits and Systems (MWSCAS-53), pp.
529 –532, Aug. 2010.

[40] L. K. Wang and M. J. Schulte, “Decimal floating-point division
using Newton-Raphson iteration,” in the 15th IEEE International
Conference on Application-Specific Systems, Architectures and Processors
(ASAP-15), pp. 84 –95, Sept. 2004.

[41] H. Nikmehr, B. Phillips, and C. C. Lim, “Fast decimal floating-point
division,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, pp. 951 –961, Sept. 2006.

[42] A. Vazquez, E. Antelo, and P. Montuschi, “A radix-10 SRT divider
based on alternative bcd codings,” in the 25th IEEE International
Conference on Computer Design (ICCD-25), pp. 280 –287, Oct. 2007.

[43] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko, and T.
Sumi, “Leading-zero anticipatory logic for high-speed floating point
addition,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1157–1164,
Aug. 1996.

[44] A. Vazquez, J. Villalba, and E. Antelo, “Computation of decimal
transcendental functions using the CORDIC algorithm,” in the 19th IEEE
Symposium on Computer Arithmetic (ARITH-19), pp. 179 –186, June
2009.

[45] J. Harrison, “Decimal transcendentals via binary,” in the 19th IEEE
Symposium on Computer Arithmetic (ARITH-19), pp. 187 –194, June
2009.

[46] D. Chen, Y. Zhang, Y. Choi, M. H. Lee, and S. B. Ko, “A 32-bit
decimal floating-point logarithmic converter,” in the 19th IEEE
Symposium on Computer Arithmetic (ARITH-19), pp. 195 –203, June
2009.



108

[47] R. Tajallipour, D. Teng, S. B. Ko, and K. Wahid, “On the fast
computation of decimal logarithm,” in the 12th International Conference on
Computers and Information Technology (ICCIT-12), pp. 32 –36, Dec.2009.

[48] A. Y. Duale, M. H. Decker, H. .-G. Zipperer, M. Aharoni, and T.
J.Bohizic, “Decimal floating-point in z9: An implementation and testing
perspective,” IBM Journal of Research and Development, vol. 51,pp. 217 –
227, Jan. 2007.

[49] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden, “IBM
POWER6 microarchitecture,” IBM Journal of Research and
Development,vol. 51, pp. 639 –662, Nov. 2007.

[50] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr,
G. Mittal, E. Chan, Y. Chan, D. Plass, S. Chu, H. Le, L. Clark, J. Ripley, S.
Taylor, J. Dilullo, and M. Lanzerotti, “Design of the Power6
microprocessor,” in the 54th IEEE International Conference on Solid-State
Circuits (ISSCC-54), pp. 96 –97, Feb. 2007.

[51] L. C. Heller and M. S. Farrell, ‘‘Millicode in an IBM zSeries
Processor,’’ IBM J. Res. & Dev. 48, No. 3/4, 425–434 (2004)

[52] L. Eisen, J. W. Ward III, H.-W. Tast, N. Ma¨ ding, J. Leenstra, S. M.
Mueller, C. Jacobi, J. Preiss, E. M. Schwarz, and S. R. Carlough, ‘‘IBM
POWER6 Accelerators: VMX and DFU,’’ IBM J. Res. & Dev. 51, No. 6,
663–683 (2007).

[53] E. M. Schwarz and S. Carlough, ‘‘POWER6 Decimal Divide,’’
Proceedings of the IEEE 18th International Conference on Application-
Specific Systems, Architectures and Processors.

[54] C.-L. K. Shum, F. Busaba, S. Dao-Trong, G. Gerwig, C. Jacobi, T.
Koehler, E. Pfeffer, B. R. rasky, J. G. Rell, and A. Tsai “Design and
microarchitecture of the IBM System z10 microprocessor”



109

[55] M. A. Erle, J. M. Linebarger, and M. J. Schulte, “Potential Speedup
Using Decimal Floating-Point Hardware.” Submitted to the 36th Asilomar
Conference on Signals, Systems and Computers, Nov 2002.

[56] M.Anderson, C.Tsen, L.Wang, K.Compton, M.Schulte,
“Performance Analysis of Decimal Floating-Point Libraries and Its Impact
on  Decimal Hardware and Software Solutions,” IEEE Int. Conf on
Computer Design, pp.465-471, 2009.

[57] S. Gochman et al., “Intel Pentium M Processor: Microarchitecture
and Performance”, in Intel Technology Journal, Vol. 7, No. 2, pp.22–36,
2003.

[58] K. Yeager et. al., “R10000 Superscalar Microprocessor,” presented
at Hot Chips VII, Stanford, CA, 1995.

[59] M. Shah, et al, “UltraSPARC T2: A Highly-Threaded, Power-
Efficient, SPARC SOC”, IEEE Asian. Solid-State Circuits Conf, Nov.
2007.

[60] D. Levitan, T. Thomas, and P. Tu. “The PowerPC 620
microprocessor: A high performance superscalar RISC processor.”
COMPCON 95, 1995.

[61] J. Heinrich. MIPS R4000 Microprocessor User’s Manual. MIPS
Technologies Inc., 2nd edition, 1994.

[62] K. Olukotun et al., “The Case for a Single-Chip Multiprocessor,”
Proc. Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, ACM, 1996, pp. 2-11.

[63] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In 22nd Annual
International Symposium on Computer Architecture, pages 392–403, June
1995.



110

[64] L. Spracklen and S. G. Abraham. Chip Multithreading:
Opportunities and Challenges. In Proc. of the IEEE Int’l Symp.on High-
Performance Co mputer Architecture, pages 248–252, 2005.

[65] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and
K. Olukotun. The Stanford Hydra CMP. IEEE Micro, 20(2):71–84, 2000.

[66] L. Barroso et al., “Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing,” Proc. 27th Ann. Int’l Symp. Computer
Architecture (ISCA 00), IEEE CS Press, 2000,pp. 282-293.

[67] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Le, and B. Sinharoy.
“IBM Power4 System  microarchitecture”. IBM Journal of Research and
Development, 46(1):5–26, 2002.

[68] R. Kalla, B. Sinharoy, and J. Tendler , “IBM POWER5 chip: a dual-
core multithreaded processor,” in IEEE Micro, Vol. 24, No. 2, pp.40–47,
2004.

[69] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. “Power7: IBM’s
next-generation server processor”.IEEE Micro, 30:7–15, March 2010

[70] M. Tremblay et al., “The MAJC Architecture: A Synthesis of
Parallelism and Scalability,” IEEE Micro, Vol. 20, No. 6, pp. 12–25,2000.

[71] M. Tremblay, “MAJC-5200: A VLIW Convergent MPSOC,” in
Microprocessor Forum 1999, 1999.

[72] S. Kapil, “UltraSPARC Gemini: Dual CPU Processor,” in Hot Chips
15, http://www.hotchips.org/archive/, 2003.

[73] Q. Jacobson, “UltraSPARC IV Processors,” in Microprocessor
Forum 2003, 2003.

[74] SUN Microsystems, “OpenSPARC T1 Micro Architecture
Specification,” available at http://www.opensparc.net

http://www.hotchips.org/archive/


111

[75] SUN Microsystems, “OpenSPARC T2 Micro Architecture
Specification,” available at http://www.opensparc.net

[76] David L. Weaver and Tom Germond, editors. The SPARC
Architecture Manual. Prentice Hall, 1994. SPARC International, Version 9.

[77] SUN Microsystems, “UltraSPARC Architecture 2007,” available at
http://www.opensparc.net

[78] GCC mission statement, available at
http://gcc.gnu.org/gccmission.html

[79] Oracle, “SPARC Assembly Language Reference Manual,”, Nov.
2010,

[80] Arthur Griffith, “GCC: The complete reference”, Sep. 2002,
McGraw-Hill

[81] Richard. M. Stallman, “GCC Internals”, 2010, available at
http://gcc.gnu.org/onlinedocs/gccint 2007.

[82] GMP library, available at http://gmplib.org/

[83] MPFR library, available at http://www.mpfr.org/.

[84] MPC library, available at http://www.multiprecision.org/.

[85] GCC Binutils, available at http://ftp.gnu.org/gnu/binutils/.

[86] GCC source code, available at
http://mirrors.rcn.net/pub/sourceware/gcc/releases/.

[87] A. A. R. Sayed-Ahmed, H. A. H. Fahmy, and M. Y. Hassan, “Three
engines to solve verification constraints of decimal floating-point

http://www.opensparc.net
http://www.opensparc.net
http://www.opensparc.net
http://gcc.gnu.org/gccmission.html
http://gcc.gnu.org/onlinedocs/gccint
http://gmplib.org/
http://www.mpfr.org/
http://www.multiprecision.org/
http://ftp.gnu.org/gnu/binutils/
http://mirrors.rcn.net/pub/sourceware/gcc/releases/


112

operation,” in the 44th Asilomar Conference on Signals, Systems and
Computers (Asilomar-44), pp. 1153 –1157, Nov. 2010.

[88] A. M. Eltantawy, “Decimal Floating Point Unit based on a Fused
Multiply-Add module”, MSc. Thesis, Cairo University, 2011.



113

دمج وحدة حسابیة للأرقام العشریة ذات النقطة العائمة في معالج مفتوح 
بھالمصدر وتعدیل المترجم الخاص

عدادإ
محمد حسني أمین حسن

رسالة مقدمة الي
جامعة القاھرة، كلیة الھندسة 

كجزء من متطلبات الحصول علي
درجة الماجیستیر في

ھندسة الاتصالات والالكترونیات الكھربیة

كلیة الھندسة ، جامعة القاھرة
الجیزة ، مصر

2012



114

ذات النقطة العائمة في معالج مفتوح دمج وحدة حسابیة للأرقام العشریة 
المصدر وتعدیل المترجم الخاص بھ

إعداد
محمد حسني أمین حسن

رسالة مقدمة الي
جامعة القاھرة، كلیة الھندسة 

كجزء من متطلبات الحصول علي
درجة الماجیستیر في

ھندسة الاتصالات والالكترونیات الكھربیة

تحت إشراف
فھميد حسام علي حسن.م.أ

كلیة الھندسة ، جامعة القاھرة
الجیزة ، مصر

2012


