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Abstract

With the continuous shrinking of electronic devices, they become more prone to

faults. For a reliable system, the errors caused by these faults can not be ignored.

Therefore, the presence of fault tolerance techniques in modern processors and

arithmetic circuits is vital for the reliability of these systems. This work represents

an attempt using information redundancy to add fault tolerance capabilities to a

combined IEEE decimal-64/binary-64 floating point adder.

Several techniques have been devised to achieve fault tolerance in current dec-

imal/binary arithmetic circuits using time redundancy, hardware redundancy or

both. Information redundancy in the form of residue codes was also used to

achieve error detection in floating point units. Meanwhile, a lot of research is

being conducted in designing arithmetic circuits which adopt the Residue Num-

ber System RNS instead of the Weighted Number System WNS to make use of

its carry free operations and fault tolerant properties.

In the proposed technique, Residue codes are used for error detection and cor-

rection. Meanwhile, the same checker is used on different parts of the result to

decrease the area overhead of the correction circuit. The technique depends on

calculating the residues of the operands to the arithmetic circuit, performing the

arithmetic operation on the residues as well as the operands and finally calculat-

ing the syndrome. Through the proper choice of the moduli, it can be guaranteed

that each error has a unique syndrome pattern. Therefore, knowing the syndrome

pattern, the corresponding error can be determined and hence the result can be

corrected.

To our knowledge, this is the first implementation of a residue error correction

scheme in decimal and binary arithmetic circuits. The proposed method is able

to correct any 4-digit error in the 4-digit numbers being checked assuming that
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errors occur only in the main adder. The 4-digit checking process is repeated until

all digits of the result of the addition process are checked.

The design has been synthesized using TSMC 65 nm LP technology. The

proposed error correction process can be divided into two main stages based on

whether it depends on the result of the main adder or not. For the 4-digit checker,

the first stage was found to occupy an area of 2396.16 µm2 and has a delay of

1.98 nsec. The second stage was found to occupy an area of 4206.24 µm2 and

has a delay of 5.17 nsec.

The proposed technique has great error detection and correction capabilities

but the large checker area (compared to the original system being checked) and

the long delay introduced by the checker represent a great challenge to efficiently

use information redundancy for error correction. Therefore, it has to be wisely

integrated within the floating point adder in specific and within the processor

as a whole. Moreover, the synthesis results do not support the assumption that

errors occur in the main adder only. Consequently, further work should be done

in order to provide the proposed design with the ability to correct an error whether

it occurred in the main circuit or the checker circuit.
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Chapter 1

Introduction

In the past few decades, the electronics industry has greatly evolved due to the

continuous shrinking of available technologies. Feature size of semiconductor

devices has decreased from 165 nm in 2000 to 22 nm in 2011 [1]. This lead to a

large increase in transistor density from 27.8 to 1701 Mtransistors/cm2 [1] which

was also accompanied by a large increase in power density due to the inconsistent

voltage scaling with the dimension scaling [2]. As a result, scaling has increased

the effect of many phenomena which tend to cause an erroneous operation of

electronic circuits and may eventually cause the circuit to fail [3–5].

In this thesis, fault tolerance in arithmetic circuits is discussed. A scheme us-

ing residue codes is proposed for error detection and correction. The proposed

technique is applied to the Redundant Decimal/Binary Floating Point Adder de-

signed in [6].

In this introductory chapter, some of the basic definitions in the topic of fault

tolerance are explained in section 1.1. In section 1.2, some of the main failure

mechanisms in integrated circuits are discussed with an emphasis on the effect

of scaling on each of these failure mechanisms. The main techniques used to

achieve fault tolerance are explained in section 1.3.
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1.1 Basic Definitions

Reliability A system is said to be reliable if it is able to perform its task

meeting the required specifications. Several metrics have been

developed to evaluate the reliability of a certain system [7, 8]

such as: Mean Time To Failure (MTTF), Mean Time Between

Failures (MTBF), Mean Time To Repair (MTTR), n% Time To

Failure (nTTF) [8] and Failures In Time (FIT) [3, 4].

Fault A fault can be defined as a deviation of a signal from its desired

value. This might be due to external factors as electromagnetic

radiation or it might be caused by a defective component of the

system.

Error A fault, if not detected and dealt with properly, might affect other

data in the system causing the system to produce erroneous re-

sults. An error can be defined as the difference between the com-

puted value and the correct one.

Failure Errors might cause a system to fail. A system fails if it can no

longer carry out its task subject to the required specifications.

The above explanation is based on the Multilevel Model of Reliability explained

in [9]. In this model, a system can be in any of the following states; ideal, defec-

tive, faulty, erroneous, malfunctioning, degraded and failure. The system can be

initially in any of those states and it can go from one state to another depending

on its design as shown in figure 1.1.

1.2 Why Is Fault Tolerance Needed?

As explained earlier, with the continuous shrinking of electronic devices, they

become more prone to faults. Faults in electronic circuits can be categorized into

[10]:
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Figure 1.1: Mutilevel reliability model explained in [9]

Hard

Errors

Also known as permanent errors. They result from component

failure or malfunction. Once a circuit is affected with this type

of error it can not be removed, but it can be treated in a way that

allows the circuit to continue functioning properly.

Soft

Errors

Also known as transient errors and temporary errors. They re-

sult from exposure of electronic circuits to external factors and

sources of interference such as electromagnetic radiation. They

only exist as long as the source of interference exists.

For a reliable system, the presence of these errors and their negative effects on

performance is not acceptable. Therefore, the presence of fault tolerance tech-

niques in modern processors in general and arithmetic circuits in specific is vital

for the reliability of these systems. This thesis is mainly concerned with adding

fault tolerance to arithmetic circuits and particularly to the floating point adder

presented in [6].

1.2.1 Hard Errors

As mentioned earlier, hard errors refer to malfunction of the electronic device

itself. For example, an interconnect which has turned into an open circuit due

to electromigration∗ or a transistor which has suffered from breakdown. Once
∗will be explained later
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the device has suffered form that kind of errors, it can not go back to normal

operation. However, these errors can be treated in a way that allows the whole

system to function properly although some devices might have failed. In [3], a

model called RAMPmodel was presented to study the reliability of microproces-

sors from an architectural perspective. It studies the reliability of the processor as

a whole and not the reliability of single devices taking into consideration the ef-

fects of Electromigration, Time Dependent Dielectric Breakdown (TDDB), Stress

Migration and Thermal Cycling. The RAMP model presented in [3] provides re-

liability measures for a certain technology node under different workloads. This

model was extended in [4] to take into account the effect of scaling. Scaling

affects the previous factors in three ways:

1. Change in temperature

2. Dimension scaling

3. Voltage Scaling

In [3], only the first effect was taken into consideration while in [4] the model

was extended to account for the second and third effects. The base processor

simulated in [4] is a 180 nm out-of-order 8-way superscalar processor and the re-

sults are reported for 16 traces of SPEC2K benchmarks (8 SpecFP and 8 SpecInt).

This was used to study the effect of different workloads on the reliability of the

processor. The effect of the different failure mechanisms on reliability is deter-

mined through studying its effect on MTTF and FIT (the number of failures seen

per 109 device hours).

Electromigration (EM)

Electromigration [3–5, 11] refers to the displacement of the atoms of the metal of

the interconnects due to the interaction between these atoms and the electron flow

in the interconnect. As a result, metal atoms are depleted from some regions of the

interconnect, called voids, resulting in high resistance or open circuit while they

pile up in other regions, called hillocks, engendering the risk of short circuit. EM

is mainly affected by the increase in temperature and the shrinking in interconnect

4



Table 1.1: Summary of the effects of scaling on EM, TDDB, SM and TC based
on the RAMP model [4]. EaEM is the activation energy for electromigration, κ is
Boltzmann’s constant, T is the absolute temperature in kelvin, T0 is the stress free
temperature of the metal, m and EaSM are material dependent, a,b,X ,Y and Z are
fitting parameters,V is the voltage, q is the Coffin-Manson exponent (empirically
determined constant that depends on the material), w and h are the width and
height of the interconnect respectively and∆tox is the reduction in the gate oxide
thickness
Failure
Mechanism

Major temperature
dependence

Voltage
dependence

Feature size
dependence

EM e
EaEM

κT NA wh

TDDB e
X+Y

T +ZT
κT

(
1
V

)(a−bT )
10

∆tox
0.22

SM |T −T0|−m e
EaSM

κT NA NA

TC 1
T q NA NA

dimensions when advancing from one technology node to the other [4]. These

effects are quantitatively mentioned in table 1.1.

It was shown in [4] that the failure rate due to EM increases by an average

of 303% and 447% for SpecFP and SpecInt respectively when migrating from

180 nm technology to 65 nm technology using a voltage of 1 volt. If the voltage

used in the 65 nm technology is 0.9 volt, the increase in failure rates becomes 97%

for SpecFP and 128% for SpecInt. This indirect dependence on voltage comes

from the fact that voltage has a large effect on temperature which in turn affects

electromigration according to table 1.1.

Time Dependent Dielectric Breakdown (TDDB)

Time Dependent Dielectric Breakdown (also known as Gate Oxide Breakdown)

[3, 4, 12] is due to the generation of very strong electric field in the gate oxide.

This is due to the continuous shrinking of the gate oxide thickness while the ap-

plied voltage is not scaled correspondingly. As a result a conductive path may be

formed in the gate oxide allowing for a gate leakage current to flow and affecting

the operation of the device. TDDB is mainly affected by the rise in temperature

and the inconsistent voltage scaling with the shrinking of the gate oxide thick-

ness when advancing from one technology node to the other. The dependence
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of TDDB on each of temperature, voltage and feature size scaling is stated in

table 1.1.

It was shown in [4] that the failure rate due to TDDB increases by an average

of 667% and 812% for SpecFP and SpecInt respectively when migrating from

180 nm technology to 65 nm using a voltage of 1 volt. If the voltage used in the

65 nm technology is 0.9 volt, the increase in the failure rate becomes 106% for

SpecFP and 127% for SpecInt.

Stress Migration (SM)

Stress Migration [3, 4] is the displacement of metal atoms because of thermo-

mechanical stress which results from the difference in the thermal expansion rates

of the different materials in the device. SM is mainly affected by the rise in tem-

perature when advancing from one technology node to the other [4] as mentioned

in table 1.1.

It was shown in [4] that the failure rate due to SM increases by an average of

76% and 106% for SpecFP and SpecInt respectively whenmigrating from 180 nm

technology to 65 nm technology using a voltage of 1 volt. If the voltage used in

the 65 nm technology is 0.9 volt, the increase in the failure rate becomes 43% for

SpecFP and 52% for SpecInt.

Thermal Cycling (TC)

Thermal cycling [3, 4] refers to the permanent damage accumulating in the sys-

tem every thermal cycle. This damage is most profound in the package and die

interface. TC is mainly affected by the increase in temperature when advancing

from one technology node to the other as shown in table 1.1.

It was shown in [4] that the failure rate due to TC increases by an average of

52% and 66% for SpecFP and SpecInt respectively when migrating from 180 nm

technology to 65 nm technology using a voltage of 1 volt. If the voltage used in

the 65 nm technology is 0.9 volt, the increase in the failure rate becomes 32% for

SpecFP and 36% for SpecInt.

6



(a) SpecFP (b) SpecInt

Figure 1.2: Combined failure rates for EM, TDDB, SM and TC under worst case
scenario

Overall Effect

The effect of scaling on each of the above mentioned failure mechanisms is sum-

marized in table 1.1. Figure 1.2 shows the total effect of these mechanisms on

the reliability of the processor∗ being studied under worst case scenario combin-

ing the worst case conditions from all the workloads† considered in the experi-

ments in [4]. Moreover, the average increase in failure rate due to the the above

mentioned mechanisms as the technology advances from 180 nm to 65 nm with

either a 1 volt supply voltage or a 0.9 volt supply voltage is summarized in ta-

ble 1.2. Taking into consideration all of the previous failure mechanisms [4], the

FIT values for the processor studied increased by an average of 274% and 357%

for SpecFP and SpecInt respectively when migrating from 180 nm technology

to 65 nm technology using a voltage of 1 volt. If the voltage used in the 65 nm

technology is 0.9 volt, the increase in the FIT values becomes 70% for SpecFP

and 86% for SpecInt.
∗As mentioned earlier, the base processor simulated in [4] is a 180 nm out-of-order 8-way superscalar processor
†As mentioned earlier, results were reported for 8 SpecFP and 8 SpecInt workloads
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Table 1.2: Summary of the average increase in failure rate due to EM, TDDB,
SM and TC as the technology advances from 180 nm to 65 nmwith either a 1 volt
supply voltage or a 0.9 volt supply voltage for 8 SpecFP and 8 SpecInt workloads

1 volt supply voltage 0.9 volt supply voltage
SpecFP SpecInt SpecFP SpecInt

EM 303% 447% 97% 128%
TDDB 667% 812% 106% 127%
SM 76% 106% 43% 52%
TC 52% 66% 32% 36%
Total Effect 274% 357% 70% 86%

1.2.2 Soft Errors

As mentioned earlier, soft errors are temporary. They exist as long as their causes

exist resulting in a temporary faulty operation of the electronic devices affected

by them. One of the main causes of soft errors is the interaction between ener-

getic particles and the semiconductor devices [13–16]. In [14] three types are

mentioned as examples of these energetic particles. These types can be summa-

rized as:

1. Alpha particles emitted by impurities in the packaging material of the inte-

grated circuits

2. High energy neutrons from cosmic radiation

3. Low energy cosmic neutrons which interact with the isotope boron-10 used

in the insulating layers in the integrated circuit industry.

When a semiconductor device is exposed to such particles, a charge, Qcoll, may

be collected in the device. If this charge exceeds a certain limit, Qcrit , the de-

vice may suffer from faulty operation [15]. These errors can also be a result of

electrical noise and other environmental effects [17]. Probabilistic models for the

occurrence of soft errors have been presented in [16, 17] but they are out of the

scope of this thesis.

Qcoll is proportional to the area and collection efficiency of the semiconductor

device [13]. Therefore, as technology is down-scaled the ability of the device to

collect charges decreases. This decrease is counteracted by a decrease in Qcrit

8



which is proportional to the supply voltage and node capacitance [13]. As a re-

sult, the Soft Error Rate (SER) of a single device is almost unchanged or slightly

decreases as the technology is down-scaled [13]. This almost constant behavior

of the SER along with the great increase in the transistor density form one tech-

nology node to another lead to an increase in the SER of the system as a whole.

The impact of exposure to the before mentioned particles on the system relia-

bility depends on the nature of the circuits being affected whether they are RAM

circuits, sequential or combinational devices [13, 15]. RAMs are prone to soft

errors at any time of operation while latches in a sequential circuit will only af-

fect the reliability of the system if it suffered from a soft error while it is storing

data. Likewise, a combinational circuit would affect the system reliability if its

soft error was captured by its successive latch. The probability of this happening

depends on three factors [13, 15] often referred to as three types of masking:

1. Electrical Masking

Concernedwith the strength of the erroneous signal when it reaches the latch,

whether it is still strong enough to be stored in it or not.

2. Latch-Window Masking

Concerned with the time at which the erroneous signal reaches the latch,

whether it is a suitable time for storage or not.

3. Logical Masking

Concerned with the role played by the erroneous signal in determining the

outcome of the logical operation

Due to these masking mechanisms, the combinational circuits are generally less

affected by soft errors than memory elements [15, 18, 19]. However, these three

masking mechanisms become less effective as the manufacturing technology is

down-scaled [15] and the SER increases.

Figure 1.3 shows the results of an experiment conducted in [15]. In this ex-

periment, the SER was calculated for a chip model based on the Alpha 21264

microprocessor which was designed for 350 nm process with 15.2 Mtransis-

tors on the die. SER was calculated taking the effect of only high energy neu-

trons (Energy>1 MeV) and neglecting the effect of logical masking. Moreover,

9



Figure 1.3: SER per chip for SRAMs, latches and combinational logic as men-
tioned in [15]

the experiment was carried out taking different depths of the processor pipeline

into consideration. Generally, decreasing the pipeline stage delay requires more

latches and less time for the signal to reach its designated latch from the combina-

tional circuit that produced it. As a result, as the pipeline stage delay decreases,

the SER increases as can be seen from figure 1.3. Given the trend shown in the

figure, the SER in the highest performance logic circuits is already surpassing

SER in memories and other logic circuits may surpass memories in the near fu-

ture. Fault tolerance in such circuits in thus now a critical issue and this is the

motivation of this thesis.

The soft error problem of semiconductor devices can be tackled at different

levels [13]. Different technologies, like Silicon on Insulator (SOI), can be used

instead of traditional Bulk Substrate CMOS technologies. Devices fabricated by

the SOI technology have less ability to collect charges than their conventional

CMOS counterparts [13]. Another method is to tune the device parameters [20]

to either increase Qcrit or decrease Qcoll leading to stronger immunity against

neutrons or alpha particle strikes. Acting on a higher level, some facilities can be

10



added to the system on the architecture level to be able to detect the errors and

correct them. The method applied in this thesis applies this last concept in its

attempt to enhance the reliability of the arithmetic circuits under test.

1.3 Methods of Achieving Fault Tolerance

There are many published works in the literature addressing the issue of fault tol-

erance and reliability in electronic circuits in general [17, 20–25] and in arithmetic

circuits in specific∗ [10, 26–37]. Techniques devised to enhance the reliability of

a system can be categorized into the following categories [13]:

1. Process level techniques:

These techniques try to enhance the reliability through using other fabrica-

tion technologies that are less affected by the previously mentioned failure

techniques than the conventionally used CMOS technology.

2. Circuit level techniques:

These techniques try to tune the device parameters in the current technolo-

gies to make them more immune to wearing effects and external factors.

3. Architecture level techniques:

These techniques try to mitigate the effect of the device failures by providing

the system with error detection and correction capabilities. In other words,

these techniques do not prevent the faults form happening, but they provide

the system with the ability to recover so that these faults would not turn into

errors that can endanger the overall system operation.

The main focus of this thesis will be on the techniques that fall under the third

category. Generally speaking, these techniques depend on adding some sort of

redundancy to the system. This redundancy can take any of the following forms:

1. Hardware Redundancy.

2. Time Redundancy.

3. Information Redundancy.

4. A combination of 1, 2 and 3
∗will be discussed in more detail in chapter 2
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1.3.1 Hardware Redundancy

Hardware Redundancy depends on the presence of multiple units that carry out

the same task. The outputs from these units is then compared to detect whether

an error has occurred or not. For error detection purposes, duplicating the units is

sufficient to achieve the required goal whereas error correction requires at least

three redundant units followed by a majority circuit to choose the correct output.

This method has the fastest performance and can overcome both temporary and

permanent faults, but it introduces large area, and consequently cost overhead.

1.3.2 Time Redundancy

Time redundancy depends on performing the required operation many times us-

ing the same hardware. As in hardware redundancy, a two-time redundancy is

sufficient for error detection purposes but at least three-time redundancy is nec-

essary for correction. Clearly, this method almost has no area overhead, but it

introduces a large delay and can only overcome temporary faults.

1.3.3 Information Redundancy

Information redundancy depends on adding additional data in the form of a re-

dundant part added to the code words used. Said differently, a code word will

consist of two parts; a data part and a redundant part. These two parts can be

separated or not as explained in section 1.4.1. Codes which have this property

are called Error-Correcting codes in which any code word, m, is represented by

a certain number of digits larger than the minimum number of digits needed to

represent the data implied in that code. Let dmax be the largest number in the data

set of base-b. Then, the minimum number of digits (k) needed to represent dmax

is

k = dlogb(dmax)e (1.1)

Therefore, ifm is represented in n-digits instead of k-digits where n > k, the code

is said to be redundant. The redundant part is calculated from the data part, there-

fore, if any inconsistency appears between the calculated redundant part and the

actual redundant part in the code word, that means that an error has occurred.
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Error-correcting codes are used for the purposes of error detection and/or correc-

tion and they can be divided into two main categories [10]:

1. Communication Error-Correcting Codes

These codes are used for error detection and correction in communication

systems and memories. They check the integrity of stored data, in case of

memories, and that of received data, in case of communication systems.

This category includes parity codes, Hamming codes, Turbo codes, Reed-

Solomon codes and many others.

2. Arithmetic Error-Correcting Codes

These codes are used for error detection and correction in arithmetic circuits.

They check the integrity of an arithmetic operation to make sure that the

arithmetic circuit is working properly. Due to its importance for this thesis,

this category will be explained in more detail in the following section.

Information codes can be used for various applications other than error-detection

and correction. Not all of them depend on redundancy, in fact some of them try

to remove as much redundant information as possible. Following are some of the

most important applications of information coding.

• Cryptography [38]:

Cryptography aims at providing a secure way of transmitting information

form the transmitter to the receiver. The general idea depends on encrypting

the information called plaintext using a certain key to produce what is known

as ciphertextwhich is the actual transmitted data. The receiver then uses that

key to decrypt the received data and get the original message. The key is

only known to the transmitter and the receiver, therefore even if third parties

overheard the transmission they would not be able to decipher it.

• Data Compression:

The main goal of Data Compression, also known as Source Coding, is to

represent the information in the least possible number of bits. This allows

for a more efficient transmission of data using as few resources as possible.

However, special decoders are required in order to re-expand the compressed

data.
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1.4 Arithmetic Error-Correcting Codes

There are a lot of similarities [10] between arithmetic codes and communication

codes, but the redundant parts of arithmetic codes need to be closed under the

arithmetic operations being checked. In this context closure means that if a cer-

tain arithmetic operation is applied to the redundant parts of two or more code

words, the result should be equal to the outcome of calculating the redundant part

of the result of applying that operation to the data parts of the same code words.

This property is generally not present in communication codes and hence, apply-

ing them to arithmetic circuits requires complex circuits for code prediction and

computation [22]. Assuming CW1 andCW2 are two codewords where,

CW1 = (d1,r1),CW2 = (d2,r2) (1.2)

and � represents any kind of arithmetic operations and Red(di) is the operation

that calculates the redundant part (ri) from the data part (di). Then,CW1 andCW2

are valid arithmetic code words if the following relation holds true.

r1 � r2 = Red(d1 �d2) (1.3)

1.4.1 Types of Arithmetic Codes

Based on the structure of arithmetic codes, they can be classified into the follow-

ing categories:

• Systematic vs Nonsystematic

Systematic

Codes

An n-digit code is said to be systematic if each code word

consists of a set of k-digits representing the data and a set

of (n− k)-digits representing the redundant digits.

Nonsystematic

Codes

In this type of codes the data is not apparent in the code

word. In other words, the data can not be extracted di-

rectly from the code word.
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Table 1.3: Examples of binary arithmetic codes
Binary
Number

(NNN)

Decimal
equivalent 5NNN code (NNN,,,NNNmod4)

code
(9NNN)mod24

code

000 0 000000 (000, 00) 00000
001 1 000101 (001, 01) 01001
010 2 001010 (010, 10) 10010
011 3 001111 (011, 11) 00011
100 4 010100 (100, 00) 01100
101 5 011001 (101, 01) 10101
110 6 011110 (110, 10) 00110
111 7 100011 (111, 11) 01111

Systematic codes can be further divided into:

• Separate vs. Nonseparate

Separate

Codes

In separate codes, the data and redundant parts are treated

independently while performing arithmetic operations.

Nonseparate

Codes

In nonseparate codes, the data and redundant parts are treated

as one operand while performing arithmetic operations.

Many examples for arithmetic codes are mentioned in [10] and following are

three of the most important arithmetic codes.

1. Product Codes, also known as AN codes [35], are an example of nonsys-

tematic arithmetic codes. In an AN code a number, N, is represented by the

product AN, where A is an integer. As an example, 5N code in mentioned as

an example of this class in the third column of table 1.3

2. Residue Codes are an example of systematic separate codes. The redundant

part in this class of codes is the residue of dividing the data part with respect

to a certain modulus, m. This class of codes will be discussed in more detail

in chapters 2 and 3. The fourth column of table 1.3 contains an example for

this class of codes with m = 4.

3. (gggAAANNN)modm codes which were introduced in [39]. These codes are based

on the AN codes but have the properties of being systematic and nonseparate

codes. (9N)mod24 is mentioned as an example for this code class in the last

column in table 1.3
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Table 1.4: IEEE 754-2008 floating point formats

Format base (b)
Number of
significand

digits

Maximum
exponent

Minimum
exponent

binary16 2 11 15 -14
binary32 2 24 127 -126
binary64 2 53 1023 -1022
binary128 2 113 16383 -16382
decimal32 10 7 96 -95
decimal64 10 16 384 -383
decimal128 10 34 6144 -6143

The main focus in this thesis is directed towards fault tolerance using informa-

tion redundancy which is applied in the proposed design in the form of calculating

the residues of the operands and comparing the result of applying the operation

(addition/subtraction/multiplication) to these residues with the residue of the re-

sult. The circuit to which we apply these techniques uses floating point numbers

so we present a brief introduction to those numbers next.

1.5 Floating Point Number Representation

In general, a floating number, N is represented as follows,

N = (−1)s ×bexpN ×MN (1.4)

where, s is the sign of N, expN is its exponent, b is the base of the number system

used and MN is called the significand. Floating point number representation is

very efficient in representing real numbers which suffer from great limitations

when represented as a fixed point number. The most widely used standard in

general purpose floating point arithmetic units is the IEEE 754-2008 standard [40]

or its previous version, the IEEE 754-1985 standard [41]. The IEEE 754-2008

standard defines different formats of different lengths for both the binary and

decimal floating point numbers together with the arithmetic operations performed

on these numbers. The number of significand digits as well as the maximum

16



T

(trailing significand)

E

(biased exponent)
Sign

10 bits (binary16)

23 bits (binary32)

52 bits (binary64)

112 bits (binary128)

5 bits (binary16, bias=15)

8 bits (binary32, bias=127)

11 bits (binary64, bias=1023)

15 bits (binary128, bias=16383)

1 bit

Figure 1.4: Binary floating point format

and minimum exponents of each format are shown in table 1.4. In general, the

exponents are represented in the formats as a biased exponent which is the the

true value of the exponent added to a certain bias that depends on the format.

1.5.1 Binary Floating Point Representation

In the binary format shown in figure 1.4, the significand is always normalized to

have an integer part of ‘1’. This implies that each number has a unique repre-

sentation. Since the integer part is always fixed, there is no need to reserve any

place for it in the format. This implicit integer part is commonly known as hidden

one. Hence, the T field in the binary format only carries the fraction part of the

significand. Therefore, the value of a binary floating point can be calculated as

N = (−1)sign ×2(E−bias)×1.T (1.5)

The standard also defines several special values such as ±∞, NaNs, ±0 and

subnormal numbers. The values for the Sign, E and T fields for each of these

values are shown in table 1.5. A subnormal number is a number smaller than the

minimum number that can be represented in the normalized form for a certain

floating point format. Its value is given as

N = (−1)sign ×2expmin ×0.T (1.6)

where expmin is the minimum exponent for the used format.
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Table 1.5: Special value representation in binary format
Value Sign field E field T field
+0 + all zeros all zeros
-0 - all zeros all zeros
+∞ + all ones all zeros
−∞ - all ones all zeros
Nan +/- all ones non-zero

Subnormal
Numbers

+/-
(according to
number)

all zeros
non-zero

(according to
number)

T

(trailing significand)

G

(combination field)
Sign

20 bits (decimal32)

50 bits (decimal64)

110 bits (decimal128)

11 bits (decimal32, bias=101)

13 bits (decimal64, bias=398)

17 bits (decimal128, bias=6176)

1 bit

Figure 1.5: Decimal floating point format

1.5.2 Decimal Floating Point Representation

Unlike binary floating point numbers, decimal floating point numbers are not

normalized. This means that the same real number might have more than one

floating point representation. For example, a real number of 0.5 can be repre-

sented as 0.5× 100, 5× 10−1, 0.005× 102 and so on. These various equivalent

representations of the same number are known as the floating point number’s

cohort.

As shown in figure 1.5, the decimal floating point format consists of a sign bit,

a combination field (G) and a trailing significand field (T). The combination field

encodes the biased exponent of the floating point number, special values and the

most significant digit of the significand. The trailing significand field encodes

the values for the least significant p−1 digits (assuming that the significand is a

p-digit number). According to the IEEE standard, the significand can be encoded

using two different techniques as follows:
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Table 1.6: Combination field decoding in decimal floating point formats

GGG0 . . .GGG4 Case
11111 NaN
11110 ∞ (sign = 0)

11110 −∞ (sign = 1)

D
ec
im
al

En
co
di
ng

110xx
1110x

d0 = 8+G4

leading biased exponent bits = 2G2+G3

0xxxx
10xxx

d0 = 4G2+2G3+G4

leading biased exponent bits = 2G0+G1

B
in
ar
y

En
co
di
ng

0xxxx
10xxx

biased exponent = G0 . . .Gw+1

Most signi f icant signi f icand bits = Gw+2Gw+3Gw+4

110xx
1110x

biased exponent = G2 . . .Gw+3

Most signi f icant signi f icand bits = 8+Gw+4

• Decimal Encoding:

In this technique each three digits are encoded in ten bits according to the

Densely Packed Format (DPD) [42].

• Binary Encoding:

In this technique the trailing significand field is combined with the desig-

nated bits from the combination field and the result is considered as an un-

signed binary integer.

If the width of the combination field isw+5 (G0G1 . . .Gw+4) and the most signif-

icant significand digit is d0, then the combination field can be decoded according

to table 1.6.

1.6 Floating Point Addition

As mentioned in the beginning of this chapter, the error detection and correction

technique proposed in this thesis was applied to the floating point adder designed

in [6]. Therefore, for the sake of completeness, the binary and decimal floating

point addition processes are discussed in the following section in order to provide

an overall look of the main steps included in such processes.
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Table 1.7: Determining the effective operation
Desired

Operation
Operands
Signs

Effective
Operation

Addition Same Addition
Addition Opposite Subtraction
Subtraction Same Subtraction
Addition Opposite Addition

1.6.1 Binary Floating Point Addition

If two normalized binary floating point numbers were to be added, the resulting

floating point number must also be normalized in order to be compliant with the

IEEE 754 standard. Therefore, it is assumed, at first, that the exponent of the

result will be equal to the larger of the two exponents of the two operands. This

ensures that the number with the larger exponent remains unchanged while that

with the smaller exponent is shifted to the right a number of positions equal to

the exponent difference. Hence, the chances that the result of the addition is nor-

malized increases. Moreover, a rounding process has to be performed according

to the desired rounding mode as specified in the standard. The steps of binary

floating point addition can be summarized as follows [6]:

1. Calculating the exponent difference:

The exponent difference∆exp is calculated and the exponent of the result is

set to the larger exponent of the two operands.

2. Significand alignment:

The number with the smaller exponent is shifted∆exp positions to the right.

3. Addition/Subtraction:

Performing the required arithmetic operation based on the effective opera-

tion which depends on the desired operation and the signs of the operands

according to table 1.7. If the result is negative, then the resulting significand

must be complemented.

4. Normalization:

During addition, a final carry might be generated. This means that the result-
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ing significand is not normalized. Hence, the resulting significand must be

shifted one position to the right and the result exponent must be incremented

by one. A similar problem could happen when performing subtraction, but

in this case the problem is in the generation of leading zeros in the resulting

significand. Therefore, the number of leading zeros has to be detected and

then the significand must be shifted to the left by that number. Eventually,

the result exponent must also be decremented by the number of the leading

zeros.

5. Rounding:

The resulting floating point number is rounded according to the desired round-

ing mode. In order to be able to perform rounding correctly, information

about the bits that were shifted out during the alignment step is used. This

information is kept in the form of three bits named the Round, Guard and

Sticky bits.

6. Final Adjustment:

After the rounding step, the result might need further normalization or it

might even be a special value. Therefore, suitable actions must be taken in

order to handle these situations.

1.6.2 Decimal Floating Point Addition

In general, decimal floating point addition is very similar to its binary counterpart.

The main differences between them can be summarized as follows:

• As discussed in section 1.5.2, the significand and exponent of a decimal

floating point number are implicit in the combination and the trailing signif-

icand fields. Hence, the first step would be to decode these fields in order to

get the biased exponent and the significand of the floating number. More-

over, after performing the desired operation the result has to be encoded into

its floating point representation.

• Due to the fact that decimal floating points are not normalized, the arithmetic

operation being performed has to choose a member of the result’s cohort to

be its final result. The exponent of the chosen member is called the preferred
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exponent. In case of addition/subtraction with exact results, the preferred

exponent is the smaller of the two operands. Meanwhile, if the result of the

addition/subtraction is inexact, the preferred exponent is chosen to be the

least possible exponent.

1.7 Thesis Outline

In this chapter a brief introduction to the subject of fault tolerance (error detection

and/or correction) was presented together with a brief overview of the floating

point number representation and addition. In chapter 2, previous techniques for

adding fault tolerance to arithmetic circuits are discussed together with a brief

overview of the residue number system. The proposed design is discussed in

chapter 3 and the results are discussed in chapter 4. Chapter 5 concludes this the-

sis together with suggestions for future research to improve the proposed design.
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Chapter 2

Background and Related Work

2.1 Previously Developed Fault Tolerant Arithmetic Units

Several techniques can be found in the literature [10, 26–37] that add fault toler-

ance to arithmetic circuits. They differ in the capabilities they offer, whether error

detection only or error detection and correction, and in their approach to the fault

tolerance problem. In general, the ultimate goal of fault tolerance techniques is

to make the system completely reliable at minimum cost overhead. This implies

being able to detect as many errors as possible and correcting them while at the

same time keeping time, area and power overhead to the minimum.

REMOD (REprocessing with MicrO Delays) has been proposed in [30] as a

general scheme for fault detection, diagnosis and reconfiguration in arithmetic

circuits composed of arrays of identical functional units. REMOD applies the

concepts of both time and hardware redundancy. Each unit has a cover unit which

carries out the same function of the original unit on the same set of inputs after

some delay. Then, the outputs of both the original and the cover units are com-

pared to check for errors. The check operation is done by circularly shifting the

inputs such that the inputs are processed by the cover units. An additional shift

operation is needed for diagnosis purposes such that each input is processed three

times by three independent units. The idea of RESO (REcomputation with Shifted

Operands)was first introduced in [31] where it was applied to adders. It was later

applied to multiplier and divider arrays in [32].
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Another scheme called REDWC (REcomputation with Duplication and Com-

parison) was introduced in [28]. It also uses a combination of time and hardware

redundancy to achieve its goal of error detection. In [28], REDWC was applied

to a 32-bit adder which was divided into two 16-bit adders. The addition and

detection process is performed in two iterations. In the first iteration, the least

significant halves of the operands are inputs to both of the 16-bit adders and then

their outputs are checked together. In the second iteration, the most significant

halves of the operands become the inputs and the process is repeated. The idea

of REDWC was further extended to allow for error correction in [33] with the

scheme called HPTR (Hardware Partition in Time Redundancy), [34] with the

scheme called RETWV (REcomputation with Triplication With Voting) and in

[43] as the QTR (Quadruple Time Redundancy) scheme.

Designs for fault tolerant multipliers have been proposed in [27] and [29].

In [27], a self-checking self-diagnosing 32-bit microprocessor multiplier is pro-

posed. It has error detection and correction capabilities with the ability to isolate

the faulty unit. This technique considers the multiplication as a branch instruc-

tion allowing its result to be used while still being checked. If proved to be a

wrong result, the processor pipeline is flushed and error correction mechanism is

initiated. Its algorithm is based on using reconfigurable units recursively to de-

tect the faulty unit and isolate it thus allowing only fault-free units to contribute

to the result.

All of the abovementioned techniques are based on hardware redundancy, time

redundancy or a combination of them. Another class of techniques depended on

information redundancy in the form of arithmetic codes. In [26] and [37] residue

codes were used to achieve error detection in floating point units while in [35]

AN codes were used to do the job. Berger codes were also proposed as a coding

scheme in [36] where the redundant data is the number of ‘0’ bits in the original

data. Moreover, some techniques [44–48] adopted the residue number system,

RNS∗, to be the number system used throughout the whole arithmetic circuit not

just the error detection and correction process. RNS has many properties that are

very useful to arithmetic circuits and leads to very fast arithmetic. Among these
∗explained in more details in section 2.2
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properties are [49] and [50]:

• The capability of performing carry-free addition, borrow-free subtraction

and digit-by-digit multiplication.

• Fault tolerance capabilities can be easily added by introducing redundant

residues resulting in what is known as Redundant Residue Number System,

RRNS

On the other hand, RNS is not easily dealt with when it comes to sign detection,

magnitude comparison, overflow detection, division and other complex arith-

metic operations [49] and [50]. Moreover, since data in not normally stored in

RNS representation, using it adds data conversion overhead which has a great

impact on the overall performance of the system.

2.2 Residue Codes and Arithmetic

As mentioned earlier, a residue code is a systematic separate arithmetic code. It

is formed [37] by appending the residue of the number, with respect to a set of

moduli, to the number itself. Being a separate code, it has an advantage that the

redundant part of the code can be treated independently form the data part. It

also has the advantage that no further decoding is required to obtain the original

data from its redundant representation. Apart from using residues as a coding

scheme, they can be used to fully represent a set of numbers. The system in which

numbers are expressed in the form of their residues with respect to a certain set of

moduli is called the Residue Number System (RNS). Unlike theWeighted Number

System (WNS), such as binary and decimal number systems, in RNS the digits

have no weights and consequently no order which allows for carry-free arithmetic

operations.

The first use of RNS in history can be probably traced back to the puzzle posed

by the Chinese mathematician, Sun Tzu [49, 51]. In his third century book, Suan-

ching, he wrote a verse where he asked a simple yet very important question in

the RNS history. This question was; what is the number that when divided by

three, five and seven has the remainders of two, three and two respectively? The

method developed to reach the answer to this question, which is 23, is explained in
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Sun Tzu’s historic work. This method was later known as theChinese Remainder

Theorem, CRT.

If an RNS has the moduli set (m1,m2, . . . ,mn), then the maximum range of

numbers, M, that can be represented by this RNS is achieved in the case of

m1,m2, . . . ,mn being relatively prime. In this case, M can be calculated as,

M =
n

∏
i=1

mi (2.1)

On the other hand, if the moduli were not relatively prime, then M would be

calculated as,

M = lcm(m1,m2, . . . ,mn) (2.2)

If the RNS is meant to represent unsigned integers, then these integers can take

any value from zero to M − 1. Meanwhile, if it is meant to represent signed

integers, then any of these integers, N, may have any of the following values

[52]:
−M−1

2
≤ X ≤ M−1

2
if M is odd

−M
2

≤ X ≤ M
2
−1 if M is even

A system based on RNS is mainly composed of three levels; WNS to RNS

conversion, RNS operations and finally RNS to WNS conversion. That last level

being the most challenging, it is discussed in more detail in the following section.

2.2.1 RNS to WNS conversion

Several methods have been devised to convert a certain number from the Residue

Number System (RNS) to the Weighted Number System (WNS) [49–51, 53–56].

These methods differ in their complexity, time needed to complete the conver-

sion, etc. A comprehensive study of the different methods used in RNS to WNS

conversion can be found in [49]. It is of crucial importance to find a conversion

technique that is simple and fast enough so as not to degrade the overall perfor-

mance of the system. In the following sections, some of most known conversion

methods are discussed.
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2.2.2 Chinese Remainder Theorem (CRT)

This theorem, along with the theory of residue numbers, was presented in the

19th century by Carl Friedrich Gauss in his celebratedDisquisitiones Arithmetical

[49, 51]. In this theorem, a number represented in the RNS as (r1,r2, . . . ,rn) with

respect to the moduli (m1,m2, . . . ,mn) can be converted to its WNS equivalent,

X , by applying equation 2.3 where ri = Xmodmi , 1≤ i ≤ n.

X =

(
n

∑
i=1

Mi × (M−1
i ri)modmi

)
modM (2.3)

where M = ∏n
i=1 mi and is called the dynamic range of the RNS, Mi = M/mi and

M−1
i is the modular multiplicative inverse∗ of Mi with respect to mi.

Each term of the summation in equation 2.3 is independent of all other terms

meaning that they can be calculated in parallel with each other. On the other

hand, the large modM operation can be rather expensive in terms of area, time

and energy.

There have been lots of efforts to simplify the CRT computation process but

they have been dedicated to certain moduli sets. In [57] four three-moduli based

RNSs are discussed which are (2n,2n +1,2n − 1),(2n,2n+1,2n− 1),(2n,2n −
1,2n−1−1) and (22n +1,2n +1,2n −1).

2.2.3 Mixed Radix Conversion (MRC)

This method depends on expressing numbers as a group of Mixed Radix Digits

(MRD), (a1,a2, . . . ,an) having the weights (1,m1,m1m2, . . . ,m1m2 · · ·mn) respec-

tively. In other words, a number, X , is represented in MRD representation as:

X = a1+a2m1+a3m1m2+ · · ·+anm1m2 · · ·mn (2.4)

If the RNS representation of X is (r1,r2, . . . ,rn), then the MRD, ai,1 ≤ 1 ≤ n

can be expressed in terms of the residues, ri,1≤ i ≤ n as follows:

∗If q is the modular multiplicative inverse of a number, n, with respect to a certain modulus, m, then (nq)modm = 1
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a1 = Xmodm1
= r1 (2.5a)

a2 =

(
X −a1

m1

)
modm2

=
(
(r2−a1)m−1

1 modm2

)
modm2

(2.5b)

a3 =

(
X −a1−a2m1

m1m2

)
modm3

=
(
(r3−a1)(m1m2)

−1modm3
−a2m−1

2 modm3

)
modm3

=
((

(r3−a1)m−1
1 modm3

−a2

)
m−1

2 modm3

)
modm3

(2.5c)

...

an =

((
· · ·
(
(rk −a1)m−1

1 modmn −a2

)
m−1

2 modmn −·· ·

−an−1

)
m−1

n−1modmn

)
modmn

(2.5d)

Unlike the CRT method, this method does not require the large modM for cal-

culating theMRDs. On the other hand, theMRCmethod is sequential where each

MRD depends on the preceding MRDs.

For the Basic MRC, the calculation of the MRDs requires n(n−1)/2 subtractions

and multiplications which are then added in (n− 1) additions. This means that

the complexity of the basic MRC is in the order of O(n2).

Several attempts [50, 53, 54, 56] have been made in order to decrease the com-

plexity of the MRC method. The method proposed in [56] manages to decrease

the complexity of the MRC method from O(n2) to O(n) through simultaneous

use of the different modmi adders found in an RNS adder.

2.2.4 Generalized Matrix Method (MATR)

This is anMRC based method which was proposed in [49, 55] and depends on the

periodicity property of RNS. It was mentioned by a specific example in [53, 54]

and then it was generalized for any RNS number in [55]. In fact, the MATR

method is very similar to the method mentioned in [56] but adopting a different

paradigm in the explanation and derivation of themethod. The equivalent number
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to an RNS number is obtained by jumping backwards in the residue table∗ to the

nearest number having at least one residue equal to zero. The value of the jump

is stored and the process is repeated until all residues are equal to zero. The value

of the number is then calculated as the sum of the values of all the jumps.

By applying this technique, a number, X , can be calculated from its RNS rep-

resentation, (r1,r2, . . . ,rn), with respect to the moduli set (m1,m2, . . . ,mn) as fol-

lows.

X =
n

∑
i=1

pi (2.6)

where pi is the value of the ith jump and is given by:

pi =


r1 if i = 1

(m1m2 · · ·mi−1)

×
(
(m1m2 · · ·mi−1)

−1modmi × t(i−1) j

)
modmi

if i > 1
(2.7)

where the value of t(i−1) j is calculated from the following matrix calculations.

After stepping backwards p1 steps, the RNS number becomes:

X − p1 =



(r1− p1)modm1
= 0

(r2− p1)modm2
= t1

(r3− p1)modm3
= t2

...

(rn − p1)modmn = tn


(2.8)

The second jump, p2 can then be calculated as

p2 = m1

(
m−1

1 modm2
× t1
)
modm2

(2.9)

Being a multiple ofm1 guarantees that after stepping backwards p2 steps, the first

residue (with respect tom1) remains zero. Moreover, equation 2.9 guarantees that

(t1− p2)modm2
= 0 meaning that after the second jump the second residue will

be zero along with the first one.

After jumping backwards p2 positions in the residue table, the RNS number
∗a table listing all the possible numbers together with their corresponding residues with respect to the moduli of the RNS being

studied
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becomes:

X − p1− p2 =



(0− p2)modm1
= 0

(t1− p2)modm2
= 0

(t2− p2)modm3
= t21

...

(tn − p2)modmn = t(n−1)1


(2.10)

This process continues until a position is reached in the residue table where

all the residues are zeros. The equivalent number can then be calculated as the

sum of all the jumps. This method is similar to a great extent to the process of

calculating the MRDs in the previous method but the subtractions for calculating

ti are done in parallel.

For the worst case, pi, for 2≤ i≤ n, need to be computed. Each pi computation

includes:

• (k−1), modmi , subtractions for calculating the values of ti’s

• Two multiplications; one for multiplying ti by mi−1 and the other for multi-

plying the result of the previous multiplication by m−1
i−1modmi .

The above mentioned subtractions can be carried out in parallel in the RNS adder.

Moreover, the only variable in the multiplication processes is ti. Therefore, the

result of the multiplication processes can be precomputed and stored in a look up

table for different values of ti. Finally, the values of pi, for 1 ≤ i ≤ n, are added

together in (k− 1) addition processes. In general, the complexity of the MATR

method is in the order of O(n).

It is worth mentioning that the above mentioned methods are only applicable

on RNSs with relatively prime set of moduli.

2.3 Conclusion

In this chapter, some of the previously developed techniques for adding fault tol-

erance to arithmetic circuits were discussed. Moreover, RNS was briefly intro-

duced with special emphasis on the conversion from RNS to WNS. Three meth-

ods were discussed for the conversion; CRT, MRD and MATR. CRT is a parallel
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process, but it includes a large modM operation which can be rather complicated.

On the other hand, MRC does not include large modM operations, but it is a se-

quential process with O(n2) complexity in its basic form. MATR manages to

improve this complexity to be O(n) while maintaining the simplicity of the mod

operations. Therefore, it was used in the proposed design for RNS to WNS con-

version.
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Chapter 3

Proposed Design

3.1 Objective

The main purpose of the work presented in this thesis is to add fault detection

and correction capabilities to the mixed decimal/binary redundant floating point

adder presented in [6].

3.2 Methodology

As mentioned in section 1.3, in order to achieve fault tolerance for arithmetic cir-

cuits, some sort of redundancy must be added to the circuit. This redundancy can

take the form of hardware redundancy, information redundancy, time redundancy

or any combination of these techniques.

The technique proposed in this thesis depends on information redundancy. It

depends on calculating the residues of the operands to the arithmetic circuit, per-

forming the arithmetic operation on the residues as well as the operands and fi-

nally calculating the syndrome of the result. The syndrome of a certain number

is defined as

S[X ,r1,r2, . . . ,rn] =
(
(X − r1)modm1

,(X − r2)modm2
, . . . ,(X − rn)modmn

)
= (s1,s2, . . . ,sn)

(3.1)

where, X is the number, mi are the moduli chosen for the calculation of the
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residues and ri = (X)modmi . Therefore, in the case being discussed there is one

of four cases, assuming that X is the result of the arithmetic operation and ri are

the independently calculated residues of the result:

Case 1: No Error Occurred

In this case, X as well as ri are calculated correctly. Therefore,

si = (X − ri)modmi

= (X)modmi − (ri)modmi

= 0

(3.2)

Case 2: Error in Main Unit

In this case, Xerr = X + e, but ri = (X)modmi . Therefore,

si = (Xerr − ri)modmi

= (X + e)modmi − (ri)modmi

= (e)modmi

(3.3)

Case 3: Error in Residue Calculation

In this case, one or more of the r j’s might not be correct. Let these

erroneous residues be r jerr = r j + e, j = 1,2, . . . ,n. Therefore,

s j = (X − r jerr)modm j

= (X)modm j − (r j + e)modm j

= (−e)modm j

(3.4)

while all other si = 0, where i 6= j

Case 4: Errors in both Main Unit and Residue Calculation

This case is a combination of cases 3 and 2. Hence, Xerr = X +emain and

the erroneous residues are r jerr = r j + eres, j = 1,2, . . . ,n. Therefore,
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s j = (Xerr − r jerr)modm j

= (X + emain − r j − eres)modm j

= (eeq)modm j

(3.5)

where, eeq = emain − eres while si = (emain)modmi for i 6= j.

Case 5: Error is not Detectable
If the error in any of the cases 2, 3 or 4 is a multiple of m1×m2×·· ·mn,

then si would be zero. Errors in this form are undetectable because there

is no way to differentiate between this case and the first case where no

error occurred.

Through the proper choice of the moduli for which the residues are computed, it

can be guaranteed that each error in the error set of interest has a unique corre-

sponding syndrome pattern. Therefore, knowing the syndrome pattern, the corre-

sponding error can be determined and hence the result can be corrected. This will

be further explained in section 3.2.1. The method described in this thesis covers

cases 1, 2 and 5 while it has not been extended yet to address the other two cases.

3.2.1 Factors Affecting the Choice of the Moduli

The choice of the redundant moduli depends on the following factors [10] which

will be discussed separately in the following sections:

1. Ease of calculation of residues based on these moduli

2. Closure under addition/subtraction and multiplication for these residues

3. Suitable range of detectable and correctable errors

Ease of Calculation of Residues

In order to decrease the overhead introduced by the residue calculation process,

themoduli should be chosen such that this process is as simple as possible. In gen-

eral residues with respect to a certain modulus, m, are calculated as the remainder

of dividing a number by m. Carrying out this operation literally may introduce
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very large overhead form the point of view of area, power and time. Meanwhile,

residues with respect to certain moduli can be calculated via simple arithmetic op-

erationswhich can greatly decrease residue calculation overhead [58, 59]. Moduli

of bn, bn − 1 and bn +1 are examples of such moduli where b is the base of the

number system being used.

Let X be a base-b number of k digits and it is assumed for simplicity that k is

a multiple of n, then it can be expressed as

X =
i=l

∑
i=0

xi(bn)i (3.6)

where 0≤ xi ≤ bn −1 and l = k/n. Then the modulus of X with respect to m = bn

can be calculated as:

(X)modm =

( i=l

∑
i=0

xi(bn)i
)
modm

=
(
xl(bn)l + xl−1(bn)l−1+ · · ·+ x2(bn)2+ x0(bn)0

)
modm

= x0

(3.7)

In other words, residues with respect to bn are simply the least significant n-digits

of the number. Despite its simplicity, the most significant k − n digits do not

contribute to the residue calculation process. This leads to poor error coverage

for the bn moduli set.

On the other hand, the residue of X with respect tom= bn−1 can be calculated

as:

(X)modm =

( i=l

∑
i=0

xi(bn)i
)
modm

=
(
xl(bn)l)modm +

(
xl−1(bn)l−1

)
modm + · · ·+

(
x0(bn)0

)
modm

(3.8)

and since in the case of m = bn −1,

(
(bn)l)modm =

(
(bn)l−1

)
modm = · · ·=

(
bn)modm = 1 (3.9)
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then (
X
)
modm = (xl)modm +(xl−1)modm + · · ·+(x0)modm

=

( i=l

∑
i=0

xi

)
modm

(3.10)

Similar analysis can be done with m = bn +1, but in this case the remainder of

dividing X by m would be calculated as follows

(
X
)
modm =

( i=l

∑
i=0

(−1)ixi

)
modm (3.11)

In these cases (m = bn±1), the residue is calculated by dividing the number into

groups of n digits and adding/subtracting these groups together [26] as shown in

equations 3.10 and 3.11. This process is repeated until the result is smaller than

the modulus. This is due to the fact that the remainder from dividing (bn)i by

bn −1 is 1 and that resulting from dividing (bn)i by bn +1 is either 1 or −1.

Example 1: The result of (163258756)mod999 can be calculated as follows:

(163258756)mod999 = (163+258+756)mod999

= (1177)mod999

= (1+177)mod999

= (178)mod999

= 178

Example 2: The result of (163258756)mod101 can be calculated as follows:

(163258756)mod101 = (1−63+25−87+56)mod101

= (−68)mod101

= 33
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Closure under Addition/Subtraction and Multiplication∗

As explained earlier in section 1.4, closure in this context means that the result of

applying the arithmetic operation (addition, subtraction or multiplication) to the

residues of the operands of the operation is equal to the residue of the result of

applying the same operation to the operands themselves.

In order to be able to use the calculated residues directly to detect and correct

possible errors, the residue system must be closed under addition and multipli-

cation. Otherwise, some form of correction has to be applied in order to be able

to use that residue code in error detection/correction. In other words, if rx and

ry are the residues of two numbers, x and y, with respect to a certain modulus,

m. Then rx +or× ry must be equal to rz in order to be able to use m directly as a

modulus for error detection and correction where rz is the modulus of x+or× y

with respect to m.

Due to the limited resources in arithmetic circuits, they actually perform mod-

ular addition and/or multiplication. For a modular addition to be closed under

addition for a certain residue code, the range of the adder must be divisible by

the modulus of that code [10]. Suppose the modulus of a certain residue code is

m and the range of the adder is mr. Then, if two numbers N1 and N2 were added,

the result would be

Ntot = (N1+N2)modmr (3.12)

with a corresponding residue code of

Ntotmodm = ((N1+N2)modmr)modm (3.13)

On the other hand, the result of addition of the residues of N1 and N2 is

N ′
tot = (N1)modm +(N2)modm

= (N1+N2)modm

(3.14)

For Ntotmodm to be equal to N ′
tot , mr must be divisible† by m. The proof used in

∗Only closure under addition and subtraction are needed for the work presented in this thesis but closure under multiplication is
mentioned for the sake of completeness

†Ref. [10, LEMMA 3.2]: For any N, (Nmodx)mody = Nmody iff y divides x
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[10] can be extended to include closure under multiplication as well as closure

under addition. If the residue code is not closed under addition or multiplication

some form of correction has to be applied. This is demonstrated in the following

examples.

Example 1: In this example the closure under addition property for residue codes

is investigated. Suppose the two decimal numbers, 7425 and 8231

are to be added with a decimal adder of range 4; meaning that the

result of the adder belongs to the set [−104+1,104−1] (for example

if the result of adding the numbers should be 10004, the output from

the adder would be 4). The two residue codes under investigation

have moduli of 101 and 50. The mod-50 system represents the case

where the range of the adder is divisible by themodulus of the residue

code system while the mod-101 system represents the case where the

range of the adder is not divisible by the modulus of the residue code

system and therefore a correction has to be applied. The operands in

these residue systems are represented as

7425mod101 = 52)101 7425mod50 = 25)50

8231mod101 = 50)101 8231mod50 = 31)50

The L)b notation is used to indicate that L is in a mod-b residue num-

ber system. Then,

7425 52 25

+ 8231 + 50 + 31

1 5656 = 5656)104 1 02 = 1)101 56 = 6)50

The closure under addition property for the mod-50 system can be

shown by the fact that 5656mod50 = 6. On the other hand, this is not

the case for the mod-101 system where

5656mod101 6= 1. As stated before, a correction is needed in the lat-

ter case. A possible correction in that case is to take the output carry

into consideration leading to 15656mod101 = 1
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Example 2: In this example the closure under multiplication property for residue

codes is investigated. Suppose the two decimal numbers, 123 and

217 are multiplied with a decimal multiplier of range 4; meaning that

the result of the multiplier belongs to the set [−104+1,104−1] (for

example if the result of multiplying the numbers should be 10004,

the output from the multiplier would be 4). Again, the two residue

codes under investigation have moduli of 101 and 50. The operands

in these residue systems are represented as

123mod101 = 22)101 123mod50 = 23)50

217mod101 = 15)101 217mod50 = 17)50

Then,

123 22 23

× 217 × 15 × 17

2 6691 = 6691)104 3 30 = 27)101 3 91 = 41)50

The closure under multiplication property for the mod-50 system can

be shown by the fact that 6691mod50 = 41. On the other hand, this

is not the case for the mod-101 system where 6691mod101 6= 27. As

stated before, a correction is needed in the latter case. A possible

correction in that case is to take the output carry into consideration

leading to 26691mod101 = 27

Range of Detectable and Correctable Errors

As explained in section 3.2, the actual error is determined from its syndrome pat-

tern. A non-zero syndrome pattern is enough to detect that an error has occurred

but might not always give the correct value of the error (explained shortly). For

error detection purposes, it is not required to be able to calculate the value of

the error from the syndrome pattern. Suppose the set of possible errors is E and

an error, e ∈ E, has occurred. A residue code of modulus m would be able to

detect any error, e, as long as (e)modm 6= 0. If more than one residue code was

used with moduli m1,m2, . . . ,mi, then it would be possible to detect any error,

39



e, as long as (e)modmeq 6= 0, where i is the number of residue codes used and

meq = lcm(m1,m2, . . . ,mi). In other words, an error equal to a multiple of meq

will generate a zero syndrome pattern and hence will not be detected.

On the other hand, error correction requires the ability to calculate the error

from its syndrome pattern. Therefore, each error value must have a unique syn-

drome pattern. For a group of residue codes with moduli m1,m2, . . . ,mi, the num-

ber of unique residue (syndrome) patterns, R is given as:

R= lcm(m1,m2, . . . ,mi) (3.15)

If E is the set of all possible errors, then the difference between any two elements

in E must not be equal to R in order to be able to determine the error and cor-

rect it. In other words, if e1 and e2 are two errors that affect the system where,

e2 = e1+ iR, i = 1,2,3, . . . , then the syndrome pattern corresponding to e1 and

that corresponding to e2 will be identical. Hence, it will not be possible to calcu-

late the value of the error. The elements in E depend on the values each digit is

allowed to take and the number of erroneous digits.

Example: Consider a decimal number system where E is the set of single digit

errors (i.e. e = i×10 j where 1≤ i ≤ 9 and j = 0,1,2, . . . ). Table 3.1,

shows the residues of different errors with respect to m1 = 3,m2 = 5

and m3 = 7. From table 3.1, several observations can be made:

(a) If m1 and m2 were the moduli of the residue code, then the de-

tectable errors Edet ∈ {1,2, . . . ,9,10,20}, while the range of cor-
rectable errors is Ecor ∈ {1,2, . . . ,9,10}. Outside of Edet some er-

rors might occur and generate a zero syndrome pattern and there-

fore go undetected. Similarly, outside of Ecor, some errors might

occur and generate a syndrome pattern that can be decoded into

more than one error value.

(b) If m2 and m3 were the moduli of the residue code, then the de-

tectable errors Edet ∈ {1,2, . . . ,9,10,20, . . . ,60}, while the range
of correctable errors is Ecor ∈ {1,2, . . . ,9,10,20,30}.
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Table 3.1: Example for range of detectable and correctable errors
eee mmm1 = 3 mmm2 = 5 mmm3 = 7 eee mmm1 = 3 mmm2 = 5 mmm3 = 7

1 1 1 1 20 2 0 6
2 2 2 2 30 0 0 2
3 0 3 3 40 1 0 5
4 1 4 4 50 2 0 1
5 2 0 5 60 0 0 4
6 0 1 6 70 1 0 0
7 1 2 0 80 2 0 3
8 2 3 1 90 0 0 6
9 0 4 2 100 1 0 2
10 1 0 3 ... ... ... ...

(c) If m1 and m3 were the moduli of the residue code, then the de-

tectable errors Edet ∈ {1,2, . . . ,9,10,20, . . .}, while the range of
correctable errors is Ecor ∈ {1,2, . . . ,9,10}.

3.3 Fault Tolerance for Mixed Decimal/Binary Redundant

Floating point Adder

In [6] a mixed decimal/binary redundant floating adder was proposed. The previ-

ously discussed fault tolerance technique will be applied to this adder to provide it

with error detection and correction capabilities. As the name suggests, this adder

is designed to deal with either the IEEE decimal-64 or binary-64 formats. It uses

a redundant representation for the decimal/binary numbers in order to make use

of the carry free addition property of the redundant numbers to make the addition

operation faster. This redundancy is obvious in the choice of the digit set to be

{−6,−5, . . . ,6} encoded in two’s complement instead of the conventional digit
set {0,1, . . . ,9}. Hence, a certain number can be represented in more than one
form. Table 3.2 lists all the numbers in the chosen digit set with their equivalent

binary encodings.

Figure 3.1 shows the internal representation of the floating point number used

in [6]. As explained in section 1.5, The IEEE decimal-64 floating point format
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Table 3.2: Redundant digit set representation

Digit Binary
Encoding Digit Binary

Encoding
-6 1010 1 0001
-5 1011 2 0010
-4 1100 3 0011
-3 1101 4 0100
-2 1110 5 0101
-1 1111 6 0110
0 0000

defines the decimal significand to be a 16-digit number with each digit belonging

to the conventional digit set [0,9]. This allows the significand to take a maximum

value of 9999999999999999. In order to be able to represent this number using the

redundant digit set proposed in [6], a 17th digit, Addendum, had to be appended to

the sigificand as shown in figure 3.1(b). On the other hand, the IEEE binary-64

format defines the binary significand to be 52-bit fraction part in addition to a

hidden integer part of one bit (always ‘1’ fro normal numbers) called the hidden

one. This binary number is represented in [6] using octal number representation.

Therefore, two more bits are appended to the left of the hidden one to make a

complete octal digit. Meanwhile, two bits are appended to the right of the frac-

tion part to turn it into 18 complete octal digits. This octal representation can be

further converted into the redundant octal representation by appending an adden-

dum digit to the left of the integer part. The significand representation shown in

figure 3.1(b) accommodates 17 redundant digit in case of a decimal operation and

20 redundant digits (2 for the integer part and 18 for the fraction part) in case of

binary (octal operation).

The block diagram for the whole floating point adder is shown in figure 3.2. As

explained in section 1.6, first, the exponent difference between the two operands

is calculated. This difference determines the amount of shift that should be ap-

plied to the significands of the operands. In case of decimal addition, both operands

might be swapped where the operand with the larger exponent might be shifted

to the left and that with the smaller exponent might be shifted to the right. On
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Binary-64

(b) Mixed binary/decimal significand representation

Figure 3.1: The floating point redundant representation proposed in [6]

the other hand, binary addition requires shifting (if needed) the operand with the

smaller operand only since the significands are normalized. In order to decrease

the area overhead of the shifter block, its design is based on the first operand

(X) having a larger exponent than the second one (Y ). Therefore, if the expo-

nent difference unit indicates otherwise (the swap signal) the two operands have

to be swapped. Special attention should be given to the significand that would

be shifted to the right in order to determine the guard and round digits. For the

binary format, these digits are included in the SLSD and LSD digits shown in

figure 3.1(b). As for the sticky bit and sign generation, it runs simultaneously

in order to decrease the delay of the adder. Afterwards, the aligned significands

are added/subtracted using the Signed-digit Decimal Redundant Adder∗. Then,

several tests have to be carried out on the resulting significand that could affect

the final result. These tests are:

• Leading Zero Detection: In the binary format, the resulting significand

must be checked for leading zeros whose number must be counted. Based

on their count, the significand should be shifted to the left to achieve nor-

malization.

• Negative Significand Detection: If the resulting significand were negative,
∗will be discussed in more detail shortly
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Figure 3.2: Block diagram of the Mixed floating point adder proposed in [6]

it would be represented in the complement form. Therefore, it should be

converted back to its positive counterpart whereas the sign is maintained in

the sign field of the floating point number representation.

• Final Carry Detection: If the resulting significand were larger than the

maximum significand allowed by the the floating point format, a final carry

would be generated. In this case the significand should be shifted to the right

and the exponent should be increased be one. By doing that shift, the final

carry becomes the most significant digit in the significand while the least

significant digit is shifted out and affects the rounding process.

• Shift-left Case Detection: In the decimal format, it might be required to

shift the resulting significand to the left in order to reach an exact represen-

tation of the result or to approach the preferred exponent (smallest possible

exponent).
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Table 3.3: Contribution of the different blocks to the total area of the floating
point adder

Block Area Share
Sticky Generation 12%
Redundant Adder 21%

Exponent Difference 3%
Swapping Unit 8%

Left, Right Shift Amount Evaluation 2%
Left Barrel Shifter 12%
Right Barrel Shifter 14%

Resulting Significand Factorization 16%
Final Block 6%
Rounding 6%

The following step is to normalize the result in case of binary addition and round

it as well. Binary rounding requires special treatment due to the redundant octal

representation of the binary significand. Finally, decimal rounding along with

any remaining corrections are carried out to produce the final result.

The contribution of the different blocks of the floating point adder to the total

area of the adder in shown in table 3.3. According to [6], the Redundant Adder

block is the block with the largest area. Therefore, it is more prone to faults

than other blocks and hence it was chosen to be the subject of the fault tolerance

technique presented in this thesis. The building block for the redundant adder is

a Mixed Octal/Decimal Adder Cell which deals with operands of one digit only.

An Array of these cells can be used to add any two operands of arbitrary length.

3.3.1 Mixed Octal/Decimal Adder Cell

This block accepts as its inputs the two operands of the addition operation (each is

one digit only), the desired operation (whether addition or subtraction), the input

transfer digit from the lower digit addition and the base of the number system

being used (whether decimal or binary). Thus, allowing the same hardware to

be used for either decimal or octal addition operation. It then produces an output

transfer digit that has a value of −1, 0 or 1 and sum that can take any value
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belonging to the set {−6,−4, . . . ,6}.
The main operation of this block can be described simply as follows. It first

adds the two input digits using a conventional 4-bit adder producingwhat is called

the interim sum. This sum is then used to produce the output transfer digit (OTD)

that represents the input transfer digit (ITD) to the next higher two digits being

added. The OTD is calculated according to the following relation.

OT D =


1 interim sum ≥ 6 (3.16a)

−1 interim sum ≤−6 (3.16b)

0 otherwise (3.16c)

The transfer digits are actually represented as two signals called tpos and tneg where

the numerical value of the transfer digits is calculated as,

trans f er digit = tpos − tneg (3.17)

The final result is then calculated according to the following equation where

b = 10 or 8 for decimal and octal systems respectively.

f inal result = interim sum+(IT D f rom lower adder −OT D×b)

= interim sum+ correction digit
(3.18)

The correction digit only depends on the interim sum of the lower digits (in the

form of ITD) and on the interim sum of the current digits (in the form of OTD).

Therefore, noting that the interim sum itself is a function of only the input digits,

it can be proved that any redundant numbers of any length can be added using

a series of this mixed redundant adder without suffering from carry propagation.

In fact, any addition process will be carried out in 2 addition steps; the first is

adding corresponding digits to produce the interim sum and the second is adding

the interim sum to the corresponding correction digit to produce the final sum.

Example: Suppose that the two decimal (b = 10) numbers −4694 and −3155

are added by an array of Mixed Adder Cells with IT D = 1. These

two numbers have redundant representations of 5̄314̄ and 3̄2̄55̄ respec-

tively where x̄ =−x. The result should be the redundant equivalent to
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−4694+(−3155)+1 =−7848. The addition process is performed as

follows∗.
IT D = 1

↙
5̄ 3 1 4̄

+ 3̄ 2̄ 5 5̄

8̄ 1 6 9̄ interim sum
↙ ↙ ↙ ↙

1̄ 0 1 1̄ transfer digit
↘ ↘ ↘ ↘

10 1 1̄1̄ 11 correction digit
1̄ 2 2 5̄ 2 final result

The final result is equivalent to −10050+2202 =−7848 as expected.

3.3.2 Error Set and Chosen Moduli

As stated in section 3.3, the significand of the floating point number in its re-

dundant form is formed of 17 or 20 redundant digits for the decimal and binary

formats respectively. Generally, each digit can have any value in the set [-6,6].

Consequently, a digit can have an error ranging from to -12 to 12. In order to

increase the range of detected and corrected errors without the need of using very

large moduli, the significand is divided into groups of 4 digits. Each group is

checked independently for errors. If it is assumed that an error could occur in

any number of digits, then the possible errors in a 4-digit number can have any

value ranging from −13332† to 13332‡ for the decimal system and from −7020§

to 7020¶ for the binary system.

In order to cover the whole error range and at the same time have easy-to-

calculate residues, moduli set of {999,101} and {511,65} were chosen for the

decimal and octal systems respectively. For the decimal system, the product of the

moduli is 100899 which, according to equation 3.15‖, is the same as the number

of unique patterns formed by the residues with respect to these two moduli. This

number of unique residue patterns covers the whole range of 4-digit errors in a
∗Please recall that the maximum value for the interim sum is 5 and any larger value produces a transfer digit of 1 as indicated in

equation 3.16
†(−12)×103+(−12)×102+(−12)×101+(−12) =−13332
‡12×103+12×102+12×101+12 = 13332
§(−12)×83+(−12)×82+(−12)×81+(−12) =−7020
¶12×83+12×82+12×81+12 = 7020
‖lcm(999,101) = 999×101=100899
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4-digit decimal number. Similar analysis can be done with respect to the octal

system to prove that the chosen moduli set produces enough residue patterns to

cover the whole range of 4-digit errors in a 4-digit decimal number. Therefore, the

chosenmoduli sets satisfy the first and third conditions mentioned in section 3.2.1

but not the second one. Fortunately, the correction needed in order to overcome

this is fairly simple as will be discussed in section 3.4.3.

The division of the significand into groups of four digits also facilitates the

reuse of the same error detection and correction circuit to check for errors in dif-

ferent 4-digit groups. Moreover, this division and modularity in the design makes

it easy to apply it on larger significands (for example in the IEEE decimal-128

and binary-128 formats). On the other hand, the independent treatment of each 4-

digit groupmakes it harder to check for errors in the transfer digits from one group

to another. This can be considered as a communication problem where various

codes such as parity codes, turbo codes and many others have been developed

to check the integrity of data transmission from a transmitter (a certain 4-digit

group) to a receiver (the following group). However, applying these codes to the

proposed design would greatly increase its area and delay overheads. Therefore,

it was assumed that the transmission of the transfer digits from one 4-digit group

to the other is error-free.

3.4 Block Diagram

The general block diagram for the proposed circuit is shown in figure 3.3.

3.4.1 Residue Generators

The first blocks in the checker circuit are the residue generator blocks. Two

residue generators are needed for the proposed design. One is for calculating

the residue with respect to 101 (in case of decimal system) and 65 (in case of bi-

nary system) while the other calculates the residue with respect to 999 (in case of

decimal system) and 511 (in case of binary system). These two residue generators

are explained in detail in the following subsections.
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Figure 3.3: Block diagram of the proposed design

49



Redundant 

Octal/Decimal

Adder

X1X0 

ITD
insignificant
transfer digit

3 digitsR`

R`1 R`00 R`2

Redundant 

Octal/Decimal

Adder

3 digitsR

X3X2  

Residue

Correction

1 0 1

radix

OTD

subtract

insignificant
transfer digit

addSign

Checker

Final Result

MUX

R is -ve No Yes

3 digits

(X)mod101/65

subtract

4 digits

X=X3 X2 X1 X0

Figure 3.4: mod101/65 residue generator block diagram

mod101/65 Residue Generator

This block, shown in figure 3.4, calculates the residue of a 4-digit number with

respect to either 101, in case of working in a decimal number system (base-10

system), or 65 in case of working in a binary/octal number system (base-8 sys-

tem). The number system for the ongoing operation in determined by the radix

signal. If radix = ‘0’, then the current operation is a binary/octal operation and

this block performs mod65 operation. On the other hand, If radix = ‘1’, then the

current operation is a decimal operation and this block performs mod101 opera-

tion.

According to equation 3.11, residues with respect to moduli 102+1 or 82+1

can be calculated by dividing the 4-digit number into two 2-digit numbers and

subtracting the upper two digits from the lower two digits. In the redundant num-

ber system used in [6], a 2-digit decimal number can take any value from −66

to 66. Therefore, subtracting two 2-digit numbers from each other gives a result

that ranges from −122 to 122. Similarly, a 2-digit octal number can take any
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value from∗ −54 to 54 giving a subtraction result that ranges from −108 to 108.

As a result, it might be needed to perform the previous process (calculating the

residue) one more time on the result of the first subtraction.

In this work all residues are assumed to be positive, therefore the output from

this block would be a 3-digit number in the range from 0 to 100 (in case of decimal

number system) or from 0 to 64 (in case of binary/octal number system). If the

calculated residue is less than zero then a correction digit of 101 or 65 should be

added to that calculated residue. It is worth mentioning that 65 is represented as

101 in an octal number system.

Example 1: 4̄5̄65mod101 = (65− (4̄5̄))mod101 (where, x̄ =−x)

= 110mod101

= (10−1)mod101 = 11̄)101

Example 2: 654̄5̄mod101 = (4̄5̄−65)mod101

= (1̄1̄0)mod101

= (1̄0− 1̄)mod101

= 1̄1 (< 0, ∴ add 101)

= 11̄2)101

Two extra inputs are needed by this block. They are the output transfer digit

OT Din and the input transfer digit IT Din. The need for these two inputs will be

explained in section 3.4.3.

The previously proposed architecture for the residue generator can be further

simplified to decrease both its area and delay overhead. The simplified block

diagram for the residue generator is shown in figure 3.5. Themain simplifications

are:

• Combining the first and second subtraction steps:

Suppose the 4-digit number is X = x3x2x1x0, then as mentioned before, the

first subtraction step subtracts the upper two digits (x3x2) from the lower two

digits (x1x0). The subtraction is carried out using two mixed adder cells. the

first one has the operands x0 and x2, input transfer digit IT D0 and generates
∗−54 and 54 are the decimal equivalents to the octal numbers 6̄6̄ and 66 respectively
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Figure 3.5: Simplified mod101/65 residue generator block diagram

one result digit r0 and an output transfer digit OT D0. The second one has the

operands x1 and x3, input transfer digit IT D1 and generates one result digit

r1 and an output transfer digit OT D1 If the result is allowed to occupy four

digits, then the lower two digits would be the subtraction result (r1r0), the

third digit would be OT D1 and the fourth one would be zero. Consequently,

the second subtraction step would effectively be subtracting the OT D1 from

r3r2. Therefore, the two subtraction steps can be combined by setting the

IT D0 to−OT D1 and thus performing both subtraction steps in only one step

and decreases the area overhead of the residue generator by the area of one

subtracter.

In order to show that this modification would also decrease the delay over-

head of the residue generator, it should be recalled from section 3.3.1 that

the OT Ds depend only on its corresponding operands in the form of their in-

terim sum. Moreover, the IT Ds affect the final result through the correction

digit only whereas it does not affect the interim sum. Hence, the combined

subtraction operation would have the following sequence:

1. Each digit is subtracted from its corresponding digit generating two in-

terim sums.
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2. OT D1 can then be deduced from the upper interim sum.

3. IT D0 is set to −OT D1 and the two correction digits are calculated

4. The final result is calculated

Hence, the combined subtraction operation has an equivalent delay to one

level of mixed adder cells compared to an equivalent delay of two levels of

mixed adder cells before combination.

It is worth mentioning that the result after performing the two subtractions is

represented in two digits only. Thus, the OT D is not a part of the final result

from the combined subtraction step. In order to prove this, the different

scenarios of the two subtractions are considered. In general, an OT D of 1

means that the interim sum is between 6 and 12∗ resulting in a final sum

of ranging from −4 to 2 and in case IT D 6= 0, this range becomes from

−4+ IT D to 2+ IT D. Similarly, an OT D of−1means that the interim sum

is between −6 and −12 resulting in a final sum of ranging from 4 to −2

and in case IT D 6= 0, this range becomes from 4+ IT D to −2+ IT D. The

different scenarios for the two subtractions can be summarized as follows

where IT D0 = 0 for both subtraction steps :

1. If OT D1 = 1 and OT D0 = IT D1 = 1, this implies that r1 ∈ {−3, . . . ,3}
and r0 ∈ {−4, . . . ,2}. Therefore, the second subtraction subtracts 1 from
r0 giving a result r80 ∈ {−5, . . . ,1} and an OT D8

0 = 0 while zero is sub-

tracted from r1 with IT D8
1 = 0 leaving r1 unchanged (i.e. r81 = r1) and

OT D8
1 = 0. Thus, the final result is given by r81r

8
0. Similar analysis can

be done for the case where OT D1 = OT D0 =−1.

2. If OT D1 = 0, then the result from the second subtraction is the same as

the result form the first one and represented in two digits.

3. IfOT D1=1 andOT D0=−1, then r1 ∈{−5, . . . ,1} and r0 ∈{4, . . . ,−2}.
After the second subtraction, r80 ∈ {3,−3} andOT D8

0 =0, hence r81 = r1.

Thus, the final result is given by r81r
8
0. Similar analysis can be done for

the case where OT D1 =−1 and OT D0 = 1.
∗For the redundant digit set, the maximum addition result is 6+6=12
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4. IfOT D1 = 1 andOT D0 = 0, then r1 ∈ {−4, . . . ,2} and r0 ∈ {−5, . . . ,5}.
After the second subtraction, r80 ∈ {−4, . . . ,4}∗ and OT D8

0 might be 0

or −1. Hence, r81 ∈ {−5, . . . ,2} and OT D8
1 = 0. Thus, the final re-

sult is given by r81r
8
0. Similar analysis can be done for the case where

OT D1 =−1 and OT D0 = 0.

• Simultaneous calculation of the corrected result:

Instead of waiting for the outcome of the subtraction operations to be gen-

erated and then perform the correction step, the corrected and uncorrected

residues can be calculated simultaneously. The lower two digits of the cor-

rected result are calculated by adding one to the subtraction operation. In the

proposed design, this is achieved by subtracting 1 from x2 before perform-

ing the subtraction. Then based on the sign of the uncorrected result, one of

them is chosen to be the lower two digits of the final residue. The uncor-

rected residue is chosen if the sign is positive while the corrected residue is

chosen if the sign is negative. As mentioned in the previous point, the un-

corrected residue is a 2-digit number. Therefore, the third digit of the final

residue is either 0, if the sign of the uncorrected result were positive, or 1, if

it were negative.

The Number Preparation block in figure 3.5 is responsible for taking the effect of

IT Din andOT Din into consideration by calculating a new value for x0 accordingly.

Moreover, this block calculates the value of x2− 1 to be used in calculating the

corrected residue.

Example 3: The residue calculation of 4̄5̄65 with respect to 101 would be per-

formed as follows:
6 5

- 4̄ 5̄

10 10 interim sum
↙ ↙

IT D0 = OT D1 = 1 1 transfer digit
↘ ↘

9̄ 1̄1̄ correction digit
1 1̄ final result

∗If the interim sum is −6 then the final result becomes 4 with OT D =−1
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Figure 3.6: mod999/511 residue generator block diagram

mod999/511 Residue Generator

This block, shown in figure 3.6, is very similar to the mod101/65 residue generator

block. The difference is that this block calculates the residue of a 4-digit number

with respect to either 999, in case of working in a decimal number system (base-

10 system), or 511 in case of working in a binary/octal number system (base-8

system). According to equation 3.10, residues with respect to moduli 103−1 or

83−1 can be calculated by adding themost significant digit to the least significant

three digits. In the redundant number system used in [6], a 3-digit decimal number

can take any value from −666 to 666 while a single digit number ranges from

−6 to 6. Therefore, adding a 3-digit number to a single digit number gives a

result that ranges from −672 to 672. Similarly for the octal system, the addition

result ranges from∗ −444 to 444. This means that no further residue calculation

is needed. If the calculated residue is less than zero, then a correction number

of 999 or 511 (both represented as 1001̄ in their corresponding system) should

be added to that calculated residue. In order to decrease the delay caused by this

block, the corrected residue is calculated in parallel with the uncorrected one then

one of them is chosen based on the sign of the uncorrected residue.
∗−444 = −438−6 and 444 = 438+6, where −438 and 438 are the decimal equivalents to the octal numbers 6̄6̄6̄ and 666

respectively.
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The final residue is a number ranging from 0 to 998 (in case of decimal num-

ber system) and 510 (in case of binary/octal number system). In order to repre-

sent this number using the redundant number system described in [6], four digits

are needed. The lower three digits are the result from the redundant adders (ei-

ther Runcorr or Rcorr) while the fourth is the output transfer digit (either OT D2 or

OT D8
2+1).

The Number Preparation block is responsible for preparing the operands of

the redundant adders for the uncorrected and corrected branches. The operands

of the two branches are almost the same except for x0 which becomes x0−1 for

the corrected branch. OT Din is taken into consideration through calculating xOT Din

while IT Din is considered as a direct input to the redundant adders.

Example 1: 4565mod999 = (565+4)mod999

= 63̄1̄)999

Example 2: 4̄5̄65mod999 = (5̄65+ 4̄)mod999

= 5̄61 (< 0, ∴ add 1001̄)

= 560)999

3.4.2 Residue Adders

After calculating the residues, they are added/subtracted according to the oper-

ation being performed. Therefore two blocks are needed, one for the moduli of

101/65 while the other is for the moduli of 999/511

mod101/65 Residue Adder Block

This block, shown in figure 3.7, is responsible for adding/subtracting the residues

of two 4-digit numbers with respect to 101 or 65 and then calculating the residue

of the result with respect to 101 or 65. In other words, if X and Y are two 4-digit

numbers, then this block calculates Z101/65 = (X101/65±Y101/65)mod101/65, where

X101/65 = Xmod101/65 and Y101/65 = Ymod101/65. The operation to be performed

is determined by the operation signal where ‘0’ and ‘1’ mean addition and sub-

traction respectively. Both operands of this block are 3-digit numbers ranging
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form 0 to 100/64 for decimal and binary numbers respectively. Therefore, the

result ranges from -100/-64 to 200/128 and hence can be accommodated in three

digits as well. After adding/subtracting the two residues, the residue of the result

is calculated by applying the same technique as in the mod101/65 residue generator

to a 3-digit number instead of a 4-digit one.

mod999/511 Residue Adder Block

This block, shown in figure 3.7, is almost the same as itsmod101/65 counterpart ex-

cept that its operands are 4-digit numbers ranging form 0 to 998/510. Therefore,

the result ranges from -998/-510 to 1996/1020 and hence can be accommodated

in four digits as well. After adding/subtracting the two residues, the residue of

the result is calculated by applying the result to the mod999/511 block.

It is worth mentioning that the residue calculation step after performing the

addition/subtraction process in the previous two blocks is postponed until the

syndrome pattern is generated. As explained in the next section, another residue

calculation step is needed while generating the syndrome pattern. Therefore, both
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residue calculation step can be combined into one calculation step only and hence

removes some unnecessary steps. By applying this simplification, the only dif-

ference between the two residue adders is that one of them is a 3-digit adder while

the other is 4-digit adder.

3.4.3 Syndrome Generators

In general, the syndrome is calculated according to equation 3.1. In the context

of the proposed design, the syndrome calculation becomes,

S[result,Z101/65,Z999/511]

=
(
result −Z101/65)mod101/65,(result −Z999/511)mod999/511

)
= (S101/65,S999/511)

(3.19)

where, result is the result of the addition/subtraction generated by the main adder,

Z101/65 and Z999/511 are the results generated by the residue adders. Two syn-

drome generators were designed, one to calculate S101/65 and the other to calculate

S999/511.
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Syndrome Generator with respect to 101/65

This block, shown in figure 3.9, is responsible for calculating the syndrome of the

actual result with respect to 101 or 65. By applying the conditions discussed in

section 3.2.1, it can be proved that the mod101/65 system is not closed under addi-

tion using the 4-digit redundant adder. Therefore, a correction has to be applied

when generating the syndrome. This correction can be achieved by taking the

output transfer digit, generated by the main adder when adding the two 4-digit

numbers under study, into consideration. Moreover, when adding two general

4-digit parts of the signifcands (general means not the least significant 4 four

digits), the main adder adds these two parts together with the input transfer digit

calculated from the addition of the preceding 4-digit pair. This means that the

input transfer digit must also be taken into consideration when calculating the

syndrome.

In order to determine how the output and input transfer digits affect the syn-

drome calculation, the syndrome is first calculated without taking them into con-

sideration to find out how they affect the value of the calculated syndrome. Suit-

able actions are then taken to counteract these effects in order to get the expected

syndrome which is Emod101/65 (according to equation 3.3). Let OT D be the out-

put transfer digit, IT D be the input transfer digit, X = x3x2x1x0 and Y = y3y2y1y0

be the two 4-digit numbers to be added, Z = z3z2z1z0 be the result of the addition

process and Z8 = z83z
8
2z

8
3z

8
0 be the result of addition ignoring IT D. Then, the main

adder performs the following calculation

x3x2x1x0

+ y3y2y1y0

OT D8 z83z
8
2z

8
3z

8
0

+ IT D

OT D z3z2z1z0

On the other hand, the operation performed by the corresponding residue adder

will be Xmod101/65+Ymod101/65 = (OT D8×b4+Z8)mod101/65. If the syndrome

was calculated without taking IT D and OT D into consideration, it would take the
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following form.

S= (Z + error−OT D8×b4modβ8 −Z8modβ8)modβ8

= (error+Z8+ IT D− (OT D8×b4)modβ8 −Z8modβ8)modβ8

= (error+ IT D− (OT D8×b4modβ8))modβ8

= (error)modβ8 + IT D−OT D8

(3.20)

where b = 10 and β8 = 101 for decimal number system and b = 8 and β8 = 65 for

octal number system. Using the property of no carry propagation in the redundant

adder in [6], OT D8 can be replaced by OT D. Therefore the syndrome expression

becomes,

S= (error)modβ8 + IT D−OT D (3.21)

This means that IT D must be subtracted from the syndrome and OT D must be

added to it in order to be able to use the syndrome to calculate and correct the error.

The OT D correction is simply a way of dealing with a 5-digit number using only

4-digit residue and syndrome generators. Therefore, two of such correction might

be needed. One is to deal with theOT D from the main adder while the other is for

the OT D generated from the subtraction operation during syndrome generation.

In this design, the needed corrections are distributed among the subtraction and

residue generation operation of the syndrome generation block. This is the reason

of having the IT Din andOT Din as inputs to the residue generator block. These two

inputs are only used in this case, otherwise they are zero. As explained in section

3.4.1, these two inputs are accounted for prior to residue calculation. For the sake

of optimization, the residue generation step can be postponed and combined with

another one in the syndrome decoder block.

Example: Let 4324 and 4521 be the two decimal numbers to be addedwith IT D=

0, then the correct result should be 1̄2̄45 with OT D = 1. If there has

been an error of 1̄ leading to an incorrect result of 1̄2̄44with OT D = 1,

then syndrome calculation would be as follows:

The residues of the operands can be calculated to be:

4324mod101 = 12̄2)101 4521mod101 = 12̄3̄)101
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Then the result of the residue adder would be:

12̄2)101+12̄3̄101 = 14̄2̄)101

and the syndrome will be calculated as:

S= (1̄2̄44−14̄2̄+1)mod101

= (1̄2̄2̄6+1)mod101

= (1̄2̄1̄3̄)mod101

= (1̄3̄− 1̄2̄)mod101

= (1̄)mod101

= 1̄)101

∴ (error)mod101 = 1̄)101

Syndrome Generator with respect to 999/511

This block, shown in figure 3.10, is responsible for calculating the syndrome of

the result with respect to 999 or 511. It can also be proved that the mod999/511
system is not closed under addition using the 4-digit redundant adder. Therefore,

some corrections have to be applied when calculating the syndrome. These cor-

rections can be determined by following the same method as in equation 3.20 but

in this case β8 = 999 and 511 for decimal and octal number systems respectively.

S= (error)modβ8 + IT D−OT D×b (3.22)

This means that IT Dmust be subtracted from the syndrome and b×OT Dmust

be added to it in order to be able to use the syndrome to calculate and correct the

error. Similar to the previous syndrome generator, twoOT D corrections might be

needed and the correction are distributed among the subtraction ans residue gen-

eration steps. As mentioned in section 3.4.1, the mod999/511 block needs only one

stage of adders before the range correction stage. This adder adds the three Least

Significant digits, LS = ls2ls1ls0, to theMost Significant digit, MS = ms2ms1ms0.

The input transfer digit of this adder is set to−IT D. The two digits, ms2 and ms1

are normally zero, but in order to perform the required corrections in syndrome
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Figure 3.10: mod999/511 syndrome generator block

calculation, ms1 depends on OT D as explained in equation 3.23.

ms1 =


1 if OT D = 1

−1 if OT D =−1

0 otherwise

(3.23)

Example: Let 5324 and 4521 be the two decimal numbers to be addedwith IT D=

1, then the correct result should be 02̄46 with OT D = 1. If there has

been an error of 1̄1̄ leading to an incorrect result of 02̄45̄withOT D=1,

then syndrome calculation would be as follows:

The residues of the operands can be calculated to be:

5324mod999 = 331̄)999 4521mod999 = 525)999

Then the result of the residue adder would be:

331̄)999+525)999 = 12̄54)999

and the syndrome before correction will be calculated as:

S8 = (02̄45̄−12̄54)mod999

= 1̄02̄1)999

∴ LS = 02̄1, and MS = 011̄ (OT D = 1)
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S= (LS+MS− IT D)mod999

= (02̄1+011̄−1)mod999

= 1̄1̄)999

∴ (error)mod999 = 1̄1̄)101

3.4.4 Syndrome Decoder

This block, shown in figure 3.11, is responsible for decoding the syndrome pattern

calculated by the Syndrome Generator blocks into the actual error. The calcu-

lated error is then used to obtain the correct result in the Result Correction block.

Several methods for residue conversion are explained in section 2.2.1. For this

design, the MATR method described in [55] is used. This method offers reduc-

tion in needed arithmetic operations to perform the conversion compared to other

methods as the Chinese Remainder Theorem (CRT) and theMixed Radix Conver-

sion (MRC). Therefore, using the MATR method improves this design from the

point of view of complexity, area and speed.

For a residue number system based on two moduli, m1 and m2, the equivalent

number, X , to the residue pair, (r1,r2), can be calculated as:

X = p1+m1× ((m1)
−1modm2

× t1)modm2
(3.24)

where, p1 = r1, t1 = (r2− p1)modm2
and (m1)

−1modm2
is the modular multiplica-

tive inverse∗ of m1 with respect to m2.

For the decimal correction system being investigated, m1 can be either 999 or

101 and the same for m2 leading to the following two cases:

Case 1: If m1 = 999 and m2 = 101, then equation 3.24 becomes,

t1 = (r2− p1)mod101 (3.25)

X = p1+999× (55× t1)mod101 (3.26)
∗If q is the modular multiplicative inverse of a certain number, n, with respect to a certain modulus, m, then (nq)modm = 1
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Case 2: If m1 = 101 and m2 = 999, then equation 3.24 becomes,

t1 = (r2− p1)mod999 (3.27)

X = p1+101× (455× t1)mod999 (3.28)

Similarly, For the octal correction system the two cases become:

Case 1: If m1 = 511 and m2 = 65, then equation 3.24 becomes,

t1 = (r2− p1)mod65 (3.29)

X = p1+511× (36× t1)mod65 (3.30)

Case 2: If m1 = 65 and m2 = 511, then equation 3.24 becomes,

t1 = (r2− p1)mod511 (3.31)

X = p1+65× (228× t1)mod511 (3.32)

For the design presented in this thesis, the first case was the one implemented for

each correction system.

The second term, p2, of the addition operation in equations 3.24 is calculated

using a Look Up Table (LUT). This LUT is addressed with t1 and returns the value

of p2. Two LUTs are needed; one for the decimal system and the other for the

octal system. The size of the LUT depends on t1 (which determines the number

of entries in the LUT) and the number of digits in p2. The latter is the same for

all cases where the maximum value of p2 is 99900 and 100899 for the first and

second cases of the decimal system respectively and 32704 and 33150 for the first

and second cases of the octal system respectively. All of these numbers (99900,

100899, 32704 and 33150) are represented by six digits in the redundant number

system used in [6]. Therefore t1 becomes the dominant factor in favoring one

case over the other. The smaller the number of values that t1 can take, the smaller

the size of the LUTs. The range of t1 is determined by the moduli of the residue

systems. Hence, the first case for both correction systems needs a smaller LUT

than the second case. The expected sizes for the LUTs for the decimal and octal
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Figure 3.11: Syndrome decoder block

Table 3.4: Expected Sizes for the LUT for the decimal correction system

m1 m2
Number of t1

values
Size of p2 (in

bits) Size of LUT

999 101 101 24 2424 bits = 303 Bytes
101 999 999 24 23976 bits = 2997 Bytes

correction systems are shown in tables 3.4 and 3.5 respectively. The actual size

will be larger than the expected ones due to the redundancy in the used number

system.

The error calculated by the above mentioned method will be always positive.

In order to account for the negative values of the error, a correction has to be

made if the calculated error is larger than the maximum allowed positive value.

This correction is made by subtracting either 101× 999 or 65× 511 from the

calculated error for the decimal and octal systems respectively. This correction

step is performed in parallel to the normal path in order to decrease the overall

delay.
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Table 3.5: Expected Sizes for the LUT for the octal correction system

m1 m2
Number of t1

values
Size of p2 (in

bits) Size of LUT

511 65 101 24 2424 bits = 303 Bytes
65 511 999 24 23976 bits = 2997 Bytes

Example: For the decimal correction system, if the syndrome pattern to be de-

coded is (62̄2,11̄2̄)where the first number is the syndromewith respect

to 999 and the second one is with respect to 101. Then the process of

syndrome decoding will be as follows:

p1 = 62̄2

t1 = (11̄2̄−62̄2)mod101 = 11

p2 = 1001̄× (55×11)mod101 = 1001̄00 (from LUT)

error8 = p1+ p2 = 62̄2+1001̄00 = 1005̄2̄2> 50449

∴ error = error8+1011̄01̄ = 1̄62̄3

check: 1̄62̄3mod999 = 62̄2, 1̄62̄3mod999 = 11̄2̄

3.4.5 Result Correction

In this final step, the error values form the different 4-digit groups are added

together taking the weight of each error into consideration. The total error is

then applied as one operand to the main adder with the second operand being the

original erroneous result and the operation is set to subtraction.

It is worth mentioning that for this design specifically, the syndrome decoder

can be used to obtain the result directly and not the error that occurred. This is

achieved by setting the inputs of the syndrome decoder to be the be the outputs

from the modular adders∗ instead of the syndrome pattern. The output of the

modular adders are the residues of the result with respect to their corresponding

moduli. Therefore, the syndrome decoder would be able to decode these residues

into the actual result. This modification would work in this specific design be-

cause the range of possible results is already covered in the range of the allowable
∗It is assumed here that the modular adders include both the addition/subtraction and the result residue calculation steps.
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errors. Therefore, any value of the result has its unique residue pattern. On the

contrary, if the error range did not cover the result range, not all values of the

result would have their corresponding residue pattern. This could be the case if

another error model was assumed,for example a single digit error model, instead

of the all-digit error model assumed in this thesis. However, since the proposed

design does not check whether the ITD to a certain 4-digit group is correct or not,

the error might propagate from one group to another. Fortunately, this propaga-

tion does not go beyond the next group since the transfer digits depend only on

their corresponding groups and not on all previous groups (no carry propagation).

Hence, if a certain block in erroneous, both of its and its next group results should

be corrected. The result of the next group would be erroneous if its ITD (OTD

from the preceding block) is erroneous.

3.4.6 Conclusion

In this chapter, the main methodology for using residue codes in error detection

and correction was discussed together with the main factors affecting the choice

of the moduli for these codes. A mixed decimal/binary floating point adder [6]

was then explained. This adder represents the main unit to which the proposed

technique is applied. The different building blocks of the proposed design were

then explained where two methods were proposed for the result correction.
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Chapter 4

Results and Comparisons

4.1 Results

4.1.1 Functional Verification

This design was implemented using VHDL and simulated using the free ghdl
simulator. The complete test vectors space for the proposed 4-digit unit consists

of:

• 28561 possibilities∗ for each of the two operands and the result.

• 16 different combination for the input and output transfer digits, since each

transfer digit is represented in two bits.

• Two possible operations, whether addition or subtraction.

• Two possible number systems, whether binary or decimal.

Consequently, the workspace consists of 285613×16×2×2 = 1.491×1015 test

vectors. The average simulation time on a system using Intelr CoreTM 2 Duo

2.13 GHz processor and 4 GB RAM is 3.3 msec/test vector. The time needed to

test the design on all possible test vectors would then be 156021 years. Therefore

only a subset of 17006112 out of the 1.491× 1015 test vectors were tested. This

subset was randomly chosen and the 4-digit checker passed all of its test vectors

successfully. The test vectors were generated via a c++ program that mimics

the desired behavior of the checker circuit. The chosen subset included both the
∗Each of the two operands and the result is a 4-digit number and each digit can take any value from the 13 possible values from

−6 to 6. Therefore, each number can have one of 13×13×13×13 = 28561 possible values
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Figure 4.1: Area profiling of the proposed 4-digit error checker

binary and decimal systems for both addition and subtraction operations with

different values for the input and output transfer digits.

4.1.2 Synthesis Results

The design has been synthesized using SynopsysDesignCompiler and the TSMC65 nm

LP technology. The proposed error correction process can be divided into two

main stages. The first stage runs in parallel with the main adder and includes

the residue generation and modular addition steps. On the other hand, the sec-

ond stage depends on the results from the main adder and hence can not start

its operation until these results are generated. This stage includes the syndrome

generation and syndrome decoding steps. As a result the constraints on the syn-

thesis of both stages are different. The first stage synthesis should be optimized

to occupy minimum area as long as its delay is less than or equal to that of the

main adder. Conversely, the second stage should be optimized to have minimum

delay in order to obtain the corrected result as soon as possible. By applying the

before mentioned constraints to the 4-digit checker, the first stage was found to

occupy an area of 2396.16 µm2 and has a delay of 1.98 nsec. The second stage

was found to occupy an area of 4206.24 µm2 and has a delay of 5.17 nsec.

The original floating point adder was also synthesized and found to occupy

an area of 16481 µm2 and introduce a delay of 6.96 nsec. The large checker area

(compared to the original system being checked) and the long delay introduced by

the checker represent a great challenge to efficiently use information redundancy

69



Group 5 Group 3 Group 2Group 4 Group 1

1st Stage1st Stage

Error

Detection

Error

Detection

Error

Detection

Error

Detection

Error

Detection

Error

Correction

Error

Correction

Error

Correction

Error

Correction

Error

Correction

Final Result

Stall 5 Stall 4 Stall 3 Stall 2 Stall 1

MUXMUX

Figure 4.2: Overall error checker

for error correction. The following subsection attempts to tackle this challenge.

4.1.3 The Big Picture

In order to use the proposed error correction technique with minimum overhead

to the overall performance of the processor, it has to be wisely integrated within

the floating point adder in specific and within the processor as a whole. As men-

tioned before, the residue generation and modular addition steps are carried out

in parallel with the main adder. After taking the Guard, Round and Sticky digits

into account, the significand adder becomes a 19-digit adder. This means that the

proposed 4-digit error checker has to be repeated five times (in order to keep the

delay to its minimum possible value).

A deeper look in the synthesis results reveals that the first stage blocks can

be reused for different digit groups since their delay is smaller than that of the

main adder. Put differently, the 4-digit first stage blocks take almost 2 nsec to

complete its job, therefore the same blocks can be reused on another group of

four digits. Thus, the number of needed first stage blocks can be reduced from

five to only two. On the other hand, five of the second stage blocks are used

in parallel in order to minimize the overall delay. This delay can be taken off

the normal operation path by allowing the processor to complete its operation

based on the obtained results from the main adder until the checker finishes its
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operation. In fact, the checker determines whether an error has occurred or not

after the syndrome generation step which takes 2 nsec out of the total 5.17 nsec of

the second stage. Therefore, after themain adder finishes by 2 nsec the occurrence

of an error can be detected and the processor operation is stalled. Otherwise,

the processor continues its operation normally.The overhead for the overall error

checker, shown in figure 4.2 is therefore expected to be 25823.25 µm2.

4.2 Comparisons

For the sake of comparison the proposed technique is compared to the error de-

tection proposed in [26]. Table 4.1 shows the main differences between the two

techniques. Although the proposed method in [26] is much smaller than our pro-

Table 4.1: Proposed technique evaluation
Point of Comparison Res 9-3 [26] Proposed Technique

Area Overhead

5841 µm2

(≈ 29.7% of the FPU
area in POWER7

processor)

25823.52 µm2

(≈ 62% of the FP adder
in [6])

Error Detection and
Correction Capabilities Detection Only Detection and

Correction

Error Coverage
88% (for a totally

random error pattern in
a 64-bit number)

Almost 100% (for
multiple digit error in
the Mixed Adder case

study)

posed design, it does not provide the floating point unit with the ability to correct

errors. Moreover, it is not able to detect all possible errors.

4.3 Conclusion

In this chapter, the results of the functional verification and synthesis of the the

proposed design were discussed. Synthesis results revealed the need to integrate

the operation of the fault tolerant adder with the operation of the processor in order

to minimize the overhead caused by the error checker. The proposed design was

then compared to the error detection technique proposed in [26].
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

To our knowledge, this is the first implementation of a residue error correction

scheme in decimal and binary arithmetic circuits. The proposed method is able

to correct any 4-digit error in the 4-digit numbers being checked assuming that

errors occur only in the main adder. The 4-digit checking process is repeated until

all digits of the result of the addition process are checked.

This work represents an attempt using information redundancy to add fault

tolerance capabilities to a combined IEEE decimal-64/binary-64 floating point

adder. Several techniques have been devised to achieve fault tolerance in current

decimal/binary arithmetic circuits using time redundancy, hardware redundancy

or both. Information redundancy in the form of residue codes was also used to

achieve error detection in floating point units. Meanwhile, a lot of research is

being conducted in designing arithmetic circuits which adopt the ResidueNumber

System RNS instead of the Weighted Number System WNS to make use of its

carry free operations and fault tolerant properties.

In the proposed technique, Residue codes are used for error detection and cor-

rection. Meanwhile, the same checker is used on different parts of the result to

decrease the area overhead of the correction circuit. The technique depends on

calculating the residues of the operands to the arithmetic circuit, performing the

arithmetic operation on the residues as well as the operands and finally calculat-

ing the syndrome. Through the proper choice of the moduli, it can be guaranteed
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that each error has a unique syndrome pattern. Therefore, knowing the syndrome

pattern, the corresponding error can be determined and hence the result can be

corrected.

According to the synthesis results in section 4.1.2, the area of the checker

did not turn out to be small enough, compared to the area of the main adder, to

justify the assumption that error occur only in the main adder. In other words,

the area of the synthesized checker circuit obtained in chapter 4 does not imply

that the probability of an error occurring in it will be neglected compared to the

probability of an error occurring in the main adder circuit. Therefore, further

work should be done in order to provide the proposed design with the ability to

correct an error whether it occurred in the main circuit or the checker circuit.

5.2 Future Work

In this section, some ideas are suggested in order to improve the performance of

the error correcting circuit.

• This work should be further improved by finding the optimum residue codes

that produce maximum error coverage with minimum area and delay over-

heads.

• The proposed design should be improved to a allow for error detection and

correction whether the error occurred in the main adder or in the checker

circuits.

• More research should be done to provide error models for the arithmetic

circuits and suggest which errors are more likely to happen, whether single

digit, double digit, etc.

• Some work should also be addressed towards formulating mathematical re-

lation that relates the range of detectable and correctable different kinds of

errors (single-digit, double-digit, etc.) to the set of moduli used.

• Another important enhancement is to extend the proposed technique to in-

clude all blocks of the floating point adder and not just the significand addi-

tion.
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البحث ملخص

للأخطاء عرضة أكثر الدوائر هذه تصبح الإلكترونیة، الدوائر مكونات أبعاد فى المستمر للإنكماش نظراً

تجاهلها. یمكن لا الأخطاء هذه فإن علیها، الإعتماد یمكن أنظمة إلى الوصول یمكن حتى التشغیل. أثناء

ضرورة الحدیثة الحسابیة والدوائر المعالجات فى الأخطاء هذه مع للتعامل طرق وجود فإن السبب لهذا

وكذلك الزائدة المعلومات لإستخدام محاولة هو البحث هذا الأنظمة. هذه مثل على الإعتماد یمكن حتى ملحة

للأعداد ثنائیة/عشریة جمع دائرة إلى الأخطاء وتصحیح إكتشاف على القدرة لإضافة الوقت فى التكرار

الكسریة.

الحالیة الثنائیة/العشریة الحسابیة الدوائر فى التشغیل أخطاء على للتغلب طرق عدة تطویر تم لقد

المعلومات إستخدام تم كما الطریقتین. بین المزج أو نفسها الدوائر فى التكرار أو الوقت فى التكرار بإستخدام

بالإضافة هذا الكسریة. الأعداد دوائر فى الأخطاء وتصحیح لإكتشاف القسمة باقى أكواد صورة فى الزائدة

القسمة ببواقى الأرقام تمثیل على تعتمد حسابیة دوائر لتصمیم تجرى التى الأبحاث من الكثیر هناك أن إلى

سرعة من الأول التمثیل به یتمتع مما للإستفادة معروفة أوزان لها بأرقام المألوفة بالطریقة تمثیلهم من بدلاً

الأخطاء. تحمل على وقدرته والطرح الجمع عملیات

إلى بالإضافة وتصحیحها، الأخطاء لإكتشاف القسمة باقى أكواد إستعمال تم المقترح، التصمیم فى

المقترحة. للدائرة الكلیة المساحة لتقلیل النتیجة من أجزاء عدة على الخطأ تصحیح دائرة من جزء إستخدام

الجمع/الطرح إجراء ثم المجموعة/المطروحة الأرقام قسمة بواقى حساب على تعتمد المقترحة الطریقة

المناسب الإختیار خلال من بالمتلازمة. یعرف ما حساب وأخیراً القسمة بواقى على وكذلك الأرقام على

بالتالي، معینة. متلازمة تناظره النتیجة فى ممكن خطأ كل أن ضمان یمكن علیها القسمة یتم التى للمعاملات

تصحیحه. وبالتالي الخطأ حساب یمكن المتلازمة بمعرفة

الحسابیة الدوائر فى القسمة بواقى بإستخدام التصحیح لطریقة تنفیذ أول هو هذا فإن علمنا، حد على

أربع من مكون عدد أى فى خطأ أى تصحیح على القدرة لها المقترحة الطریقة الثنائیة/العشریة. للأرقام

صحة من التأكد یتم حتى العملیة هذه تكرار یتم الرئیسیة. الدائرة فى فقط تحدث الأخطاء أن بفرض أرقام

الحسابیة. العملیة لناتج المكونة ألأرقام كل

لتصحیح المقترحة العملیة .TSMC 65 nm LP تكنولوجیا بإستخدام المقترح التصمیم بناء تم لقد

بالنسبة الرئیسیة. الجمع دائرة من النتیجة لمعرفة إحتیاجها على بناءً مرحلتین على تقسیمها یمكن الأخطاء

وتستهلك 2396.16 μm2 الأولى المرحلة مساحة فإن أرقام أربعة من المكون العدد تفحص التى للدائرة



.5.17 nsec وتستهلك 4206.24 μm2 فمساحتها الثانیة المرحلة أما .1.98 nsec

لدائرة الكبیرة المساحة ولكن الأخطاء وتصحیح إكتشاف على كبیرة قدرات لها المقترحة الطریقة إن

تحدى یمثلان عملها لإستكمال تستغرقها التى الطویلة والفترة الرئیسیة) بالدائرة (مقارنة الخطأ تصحیح

بحكمة دمجها یتم أن یجب السبب لهذا الأخطاء. لتصحیح فعال بشكل الزائدة المعلومات إستخدام أمام كبیر

التى الدائرة بناء نتائج أن إلى بالإضافة هذا عام. بشكل ككل المعالج ومع خاص بشكل الرئیسیة الدائرة مع

الدائرة تطویر یجب بالتالى الرئیسیة. الدائرة فى فقط تحدث الأخطاء بأن الفرض تؤكد لا علیها الحصول تم

التصحیح. دائرة فى أو الرئیسیة الدائرة فى حدثت سواء الأخطاء تصحیح من تتمكن حتى
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