

I

ASIC DESIGN OF THE OPENSPARC T1 PROCESSOR

CORE

By

Mohamed Mahmoud Mohamed Farag

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2013

II

ASIC DESIGN OF THE OPENSPARC T1 PROCESSOR

CORE

By

Mohamed Mahmoud Mohamed Farag

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

Prof. Dr. Serag El-Din Habib

 Dr. Hossam A. H. Fahmy

Professor of Electronics

Electronics and Communications

Department

Faculty of Engineering, Cairo University

 Associate Professor

Electronics and Communications

Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2013

III

ASIC DESIGN OF THE OPENSPARC T1 PROCESSOR

CORE

By

Mohamed Mahmoud Mohamed Farag

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Approved by the

Examining Committee

Prof. Dr. El Sayed Mostafa Saad, External Examiner

Prof. Dr. Ibrahim Mohamed Qamar, Internal Examiner

Prof. Dr. Serag El-Din Habib, Thesis Main Advisor

Dr. Hossam A. H. Fahmy, Thesis Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2013

IV

Engineer’s Name: Mohamed Mahmoud Mohamed Farag

Date of Birth: 29/12/1985

Nationality: Egyptian

E-mail: eng.mohamedfarag@gmail.com

Phone: 01068823040

Address: 7 Ramzy Farag Street – Al Haram

Registration Date: …./…./……..

Awarding Date: 6 / 1 / 2013

Degree: Master of Science

Department: ELECTRONICS AND COMMUNICATIONS

ENGINEERING

Supervisors:

 Prof. Dr. Serag El-Din Habib

Dr. Hossam A. H. Fahmy

Examiners:

 Prof. El Sayed Mostafa Saad (External examiner)

 Prof. Ibrahim Mohamed Qamar (Internal examiner)

 Porf. Serag El-Din Habib (Thesis main advisor)

Porf. Hossam A. H. Fahmy (Thesis advisor)

Title of Thesis:

ASIC Design Of The OpenSPARC T1 Processor

Key Words:

ASIC; SPARC; Layout; Processor; Design

Summary:

The objective of this thesis is to carry out an ASIC design of the OpenSPARC T1

processor core using the 130nm CMOS technology. Starting from the open-source RTL

description of the OpenSPARC T1 processor core, several modifications like memory

mapping, reducing the processor threads and suppressing the test pins were made in

order to reduce the processor size to fit into a 4x4 mm
2
 die. The correct functionality of

the modified RTL description of this processor was verified against over 500 test

scripts given by SUN Inc. Next, to convert the design from the RTL form to its gate

level equivalent the design was synthesized. Subsequently, the design was physically

implemented using the Place and Route flow, including the normal steps like

floorplanning, placement, optimization, clock tree synthesis (CTS) and routing. Finally,

the design was verified by a series of verification and performance evaluation tests to

guarantee its functionality and performance. The designed processor core supports two

threads and runs at a 100MHz clock frequency. It occupies an area of 16 mm
2
,

including pads.

Insert photo here

Acknowledgments

First I thank ALLAH (God) for being to my side during all the time I spent

working on this thesis, HE blessed me with the strength and guidance that I needed

to complete it.

I would like to give my sincere appreciation to my parents for always giving

me the moral support that I needed to continue working on this thesis and always

praying for me.

I would like to give a very special thank you to my wife who stood to my side

and withstood a lot of burden during my work on this project.

I would like to thank my manager at work ”Ahmed Gharieb” for his endless

support and understanding. I would like also to thank my Mentor Graphics family.

Special thanks to ”Mohamed Ali” my previous manager for being there for me

whenever I needed him.

I would like to thank my suppervisors ”Dr. Serag” and ”Dr. Hossam” for their

support, guidance and understanding that they gave me throughtout my research.

Finally I acknowledge MOSIS for providing the PDK of the IBM 130nm CMOS

process under the MEP account number 4960.

Contents

Acknowledgments V

Table of contents VI

List of figures XII

List of tables XV

List of symbols and abbreviations XVI

Abstract XXV

1 Introduction 1

1.1 SPARC architecture 1

1.1.1 SPARC V8 vs V9 2

1.1.2 SPARC-V9 Processor 4

VII

1.1.3 SPARC-V9 Instructions 4

1.1.4 SPARC-V9 Traps 6

1.1.5 SPARC-V9 Data Formats 7

1.1.6 SPARC-V9 Registers 8

1.1.7 SPARC-V9 Memory Models 8

1.1.8 SPARC-V9 Operation 11

1.2 Thesis Objective . 12

1.3 Thesis Map . 13

2 OpenSparc T1 15

2.1 OpenSPARC T1 architecture 16

2.1.1 SPARC Core 19

2.1.2 Floating-Point Unit 22

2.1.3 CPU-Cache Crossbar 22

2.1.4 L2-Cache . 24

2.1.5 DRAM Controller 25

2.1.6 I/O Bridge . 26

2.1.7 J-Bus Interface 26

2.1.8 Serial System Interface 27

2.1.9 Electronic Fuse 27

2.2 OpenSPARC T1 core 28

2.2.1 Instruction fetch unit (IFU) 30

VIII

2.2.2 Execution unit (EXU) 32

2.2.3 Load store unit (LSU) 34

2.2.4 Trap logic unit (TLU) 36

2.2.5 Stream processing unit (SPU) 38

2.2.6 Memory management unit (MMU) 39

2.2.7 Floating-point frontend unit (FFU) 41

2.3 OpenSPARC T1 design history 43

2.3.1 Xilinx FPGA design 1 [6] 43

2.3.2 Xilinx FPGA design 2 [6] 44

2.3.3 UltraSparc T1 (Niagara) release [6] 44

2.3.4 Commercial processors based on the UltraSparc

architecture [1] 46

2.4 Proposed Design . 48

3 OpenSPARC T1 core Implementation 51

3.1 RTL preparation and functional verification 51

3.2 Synthesis . 61

3.3 Design Floorplanning 63

3.4 Design Placement . 68

3.5 CTS . 71

3.6 Routing . 73

3.7 Post Layout Verification 74

IX

4 Results 76

4.1 Timing results . 77

4.2 Physical results . 87

4.3 Design comparison . 93

4.3.1 Processor size 94

4.3.2 Processor speed 96

5 Conclusion 98

5.1 Future work . 100

5.1.1 Tighten the design constraints 101

5.1.2 Custom implement the IRF memory module . . 101

5.1.3 Optimize clock network 101

5.1.4 Use smaller technology node 103

A Digital design ASIC Flow 104

A.1 RTL preparation . 105

A.2 RTL functionality Verification 109

A.3 Logic Synthesis . 112

A.4 Gate Level functionality Verification 115

A.5 Floorplaning . 116

A.6 Placement . 131

A.7 Clock Tree Synthesis 136

X

A.8 Routing . 142

A.9 Post layout verification 145

References 148

XI

List of Figures

1.1 Memory Models from Least Restrictive (RMO) to Most

Restrictive (TSO) [2] 10

2.1 OpenSPARC T1 Processor Block Diagram [5] 18

2.2 SPARC Core Pipeline [5] 21

2.3 CCX Block Diagram [5] 24

2.4 SPARC Core Block Diagram [5] 28

2.5 Execution Unit Diagram [5] 33

2.6 LSU Pipeline Graph [5] 35

2.7 TLU Role With Respect to All Other Backlogs in a

SPARC Core [5] . 37

2.8 MMU and TLBs Relationship [5] 40

2.9 Top-Level FFU Block Diagram [5] 42

2.10 Sun UltraSPARC T1 (Niagara 8 Core) [6] 46

XII

3.1 Processor blocks rough estimation [5] 64

3.2 Design Power Grid . 65

3.3 Macro placement . 67

3.4 Empty spaces used up by Macros 68

3.5 Macro Power Connection 69

3.6 Top blocks placement 70

4.1 Setup slack distribution 79

4.2 Hold slack distribution 80

4.3 Worst setup timing path. 82

4.4 Worst hold timing path. 83

4.5 Area percentage distribution. 87

4.6 Die area distribution. 88

4.7 Cell density histogram. 89

4.8 UltraSPARC T1 processor core [8] 95

5.1 IRF block area highlighted. 102

A.1 Digital ASIC Design Flow 105

A.2 Simulation VS Formal Verification [17] 111

A.3 Synthesis Stage . 114

A.4 Floorplan of the design [21] 122

A.5 Pad driven VS Core driven [22] 124

XIII

A.6 Power grid of the design [21] 128

A.7 Example of macro placement [21] 130

A.8 Global router G-cells [21] 136

A.9 Tools used in design flow 147

XIV

List of Tables

3.1 Reduction in the processor core 58

4.1 Setup and hold timing path groups 78

4.2 Worst 10 setup paths. 81

4.3 Worst 10 hold paths. 81

4.4 CTS Properties. 84

4.5 Level Tree Histogram 85

4.6 Rise and Fall CTS latency. 86

4.7 Design routing statistics. 90

4.8 Clock routing statistics. 91

4.9 Power analysis. 92

4.10 Design comparison table 93

XV

XVI

List of symbols and

abbreviations

ALU Arithmetic and Logic Unit

ASI Address Space Identifier register

ASIC Application-Specific Integrated Circuit

ASRs Ancillary State Registers

CAM Content Addressable Memory

CANRESTORE Restorable Windows Register

CANSAVE Savable Windows Register

CCR Condition Codes Register

CCX CPUcache Crossbar

XVII

CLEANWIN Clean Windows Register

CSR Control Status Registers

CTIs Control-Transfer Instructions

CTL Control Block

CTS Clock Tree Synthesis

CWP Current Window Pointer register

D-cache Data Cache

DCD Data Cache Data Array

DDR Double Data Rate

DEF Design Exchange Format

DFM Design For Manufacturability

DIMM Dual In-Line Memory Modules

DMA Direct Memory Access

DP Data-Path

DRAM Dynamic Random Access Memory

XVIII

DRC Design Rule Checks

e-Fuse Electronic Fuse

ECC Error Correction Code

ECL Execution Control Logic

ESD Electrostatic Discharge

EXU Execution Unit

F registers Floating-point working registers

FFU Floating-Point Frontend Unit

FPGA Field-Programmable Gate Array

FPop Floating Point operate

Fpop Floating-Point Operation

FPRS Floating-Point Registers State Register

FPU Foating-Point Unit

FQ Floating-Point Deferred-Trap Queue

FRF Floating-Point Register File

XIX

FSR Floating-Point State Register

G-cells Global Cells

GSR Graphics State Register

HFNS High Fanout Net Synthesis

I-cache Instruction Cache

ICD Instruction Cache Data

IDCT Instruction and Data Cache Tag

IDIV Integer Divider

IFU Instruction Fetch Unit

IMUL Integer Multiplier

IOB I/O Bridge

IRF Integer Register File

ITLB Instruction Translation Lookaside Buffer

IU Integer Unit

JBI J-Bus Interface

XX

JBI JBUS Interface

LEF Library Exchange Format

LIB Synopsys Liberty Format

LRU Least Recently Used

LSU Load/Store Unit

LVS Layout Versus Schematic

MA Modular Arithmetic

MMU Memory Management Unit

NIR Next Instruction Register

nPC Next Program Counter register

opcodes Operation Codes

OTHERWIN Other Windows Register

P&R Place and Route

PC Program Counter register

PCX Processor Cache-Crossbar

XXI

PIC Performance Instrumentation Counters

PIL Processor Interrupt Level register

PIO Programmed Input/Output

PLI Programmable Logic Interface

PSO Partial Store Order

PSTATE Processor State register

PTF Pinnacle Timing Formate

R registers Integer working registers

RAM Randomly Addressable Memory

RF Register File

RISC Reduced Instruction Set Computing

RMO Relaxed Memory Order

RSA Ron Rivest, Adi Shamir and Leonard Adleman

SDC Synopsys Design Constraints

SDF Standard Delay Format

XXII

SHFT Shifter

SPARC Scalable Processor ARChitecture

SPARC-V9 SPARC Version 9

SPU Stream Processing Unit

SSI Serial System Interface

STA Static Timing Analysis

TBA Trap Base Address register

TICK Hardware Clock-Tick Counter Register

TIR Thread Instruction Register

TL Trap Level register

TLB Translation Lookaside Buffer

TLU Trap Logic Unit

TNPC Trap Next Program Counter register

TNS Total Negative Slack

TPC Trap Program Counter register

XXIII

TSB Translation Storage Buffers

TSO Total Store Order

TSTATE Trap State Register

TT Trap Type register

V-bit Valid Bit

VCS Verilog Compiler and Simulator

VER Version Register

VIS Visual Instruction Set

Vth Threshold Voltage

WNS Worst Negative Slack

WSTATE Window State Register

Y Y register

XXIV

XXV

Abstract

OpenSPARC T1 is the first open-source, multi-threaded and multi-

cored processor developed by SUN micro-systems. The objective of

this thesis is to carry out an ASIC design of the core of this processor

using the 130nm CMOS technology.

Starting from the open-source RTL description of the OpenSPARC

T1 processor core, several modifications like memory mapping, reduc-

ing the processor threads and suppressing the test pins were made in

order to reduce the processor size to fit it into a 4 x 4 mm2 die area as

required by the technology supplier. The correct functionality of the

modified RTL description of this processor was verified against over

500 test scripts given by SUN Inc.

Next, to convert the design from the RTL form to its gate level

equivalent the design was synthesized. Subsequently, the design was

physically implemented using the Place and Route flow, including the

normal steps like floorplanning, placement, optimization, clock tree

synthesis (CTS) and routing. Finally, the design was verified by a

series of verification and performance evaluation tests to guarantee its

functionality and performance.

XXVI

The designed processor core supports two threads and runs at a

100MHz clock frequency. It occupies an area of 16 mm2, including

pads. The performance metrics of the designed core are next compared

to relevant results in the published literature.

XXVII

Chapter 1

Introduction

This chapter introduces the basic knowledge and brief background of

topics related to this thesis. It also describes the objective behind this

thesis and a map for this documentation in order to make it easier to

navigate through different topics covered by this documentation.

1.1 SPARC architecture

SPARC stands for a Scalable Processor ARChitecture [1]. SPARC

is a microprocessor specification created by the SPARC Architecture

Committee of SPARC International. SPARC is not a chip; it is an ar-

chitectural specification that can be implemented as a microprocessor

1

by anyone having a license from SPARC International. SPARC has

been implemented in processors used in a range of computers from

laptops to supercomputers. SPARC is based on the RISC (Reduced

Instruction Set Computing) I and II designs engineered at the Univer-

sity of California at Berkeley. In this thesis work we will be focusing

only on version 9 (SPARC-V9), as this is the version implemented by

the OpenSPARC T1 design.

1.1.1 SPARC V8 vs V9

SPARC-V9 does not replace the SPARC-V8 architecture; it is compli-

mentary to it. SPARC-V9 was architectured to be a higher-performance

peer to SPARC-V8. Application software for the 32-bit SPARC-V8 ar-

chitecture can execute, unchanged, on SPARC-V9 systems, no special

compatibility mode is needed. The SPARC-V9 architecture differs

from the SPARC-V8 in six main areas: the trap model, data formats,

the registers, alternate address space access, the instruction set, and

the memory model.

Trap Model: SPARC-V9 architecture supports four or more lev-

els of traps compared to one level supported by the SPARC-V8 archi-

tecture.

2

Data Formats: Data formats for extended (64-bit) integers have

been added to the SPARC-V9 architecture. Also Little-Endian Sup-

port has been added to the existing Big-Endian.

Registers: A lot of register changes have been made, some reg-

isters were totaly removed, some were added, contents of some have

been changed and some were widened from 32 to 64 bits. For complete

list of register changes please refer to [2].

Alternate Space Access: In SPARC-V8 architecture, access to

all alternate address spaces is privileged. In SPARC-V9 architecture,

load and store alternate instructions to one-half of the alternate spaces

can now be used in user code (nonprivileged).

Instruction Set: Instructions for the SPARC-V9 architecture

now process 64 bit values. Some new instructions were added to pro-

vide support for 64-bit operations and/or addressing, support the new

trap model, support implementation of higher-performance systems,

and support memory synchronization. Other instructions have been

changed or deleted. For complete list of instructions changes please

refer to [2].

Memory Model: SPARC-V9 architecture introduces a new mem-

3

ory model called Relaxed Memory Order (RMO). This model allows

the CPU hardware to schedule memory accesses such as loads and

stores in nearly any order, as long as the program computes the cor-

rect answer. Leading to much faster memory operations and better

performance.

1.1.2 SPARC-V9 Processor

A SPARC-V9 processor logically consists of an integer unit (IU) and

a floating-point unit (FPU). This organization allows the concurrency

between integer and floating-point instruction execution. The integer

unit contains the general-purpose registers and controls the overall

operation of the processor. The IU executes the integer arithmetic in-

structions and computes memory addresses for loads and stores. It also

maintains the program counters and controls instruction execution for

the FPU. FPU is a processing unit that contains the floating-point

registers and performs floating-point operations.

1.1.3 SPARC-V9 Instructions

SPARC-V9 instructions fall into the following basic categories:

• Memory access

4

• Integer operate

• Control transfer

• State register access

• Floating-point operate

• Conditional move

• Register window management

Memory access instructions are the instructions related to the

memory load and store operations of the processor. Integer operate

instructions are the arithmetic/logical/shift instructions performed by

the processor which perform arithmetic, tagged arithmetic, logical,

and shift operations. Control-transfer instructions (CTIs) include

PC-relative branches and calls, register-indirect jumps, and condi-

tional traps. State Register Access are instructions that controls

the reading and writing of contents to the state registers. Floating-

point operate (FPop) instructions perform all floating-point calcu-

lations; they are register-to-register instructions that operate on the

floating-point registers. Conditional move instructions condition-

ally copy a value from a source register to a destination register, de-

pending on an integer or floating-point condition code or upon the

5

contents of an integer register. Register Window Management

instructions are used to manage the register windows. Instructions

are encoded in four major 32-bit formats and several minor formats.

1.1.4 SPARC-V9 Traps

Trap is the action taken by the processor when it changes the instruc-

tion flow in response to the presence of an exception (ex: an inter-

rupt). A trap behaves like an unexpected procedure call. It causes

the hardware to

1. Save certain processor state (program counters, trap typeetc)

on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE.

3. Begin executing trap handler code in the trap vector.

Normally the processor behaves as the following, before executing

each instruction, it determines if there are any pending exceptions

or interrupt requests. If there are pending exceptions or interrupt

requests, the processor selects the highest-priority exception or inter-

rupt request and causes a trap. which means that an exception is a

6

condition that makes it impossible for the processor to continue ex-

ecuting the current instruction stream without software intervention.

After the trap handler finishes, it uses either a DONE or RETRY

instruction to return.

1.1.5 SPARC-V9 Data Formats

The SPARC-V9 architecture recognizes these fundamental data types:

• Signed Integer: 8, 16, 32, and 64 bits

• Unsigned Integer: 8, 16, 32, and 64 bits

• Floating Point: 32, 64, and 128 bits

The widths of the data types are:

• Byte: 8 bits

• Halfword: 16 bits

• Word: 32 bits

• Extended Word: 64 bits

• Tagged Word: 32 bits (30-bit value plus 2-bit tag)

7

• Doubleword: 64 bits

• Quadword: 128 bits

1.1.6 SPARC-V9 Registers

A SPARC-V9 processor includes two types of registers: general-purpose,

or working data registers, and control/status registers. As the name

indicates the general purpose registers are registers used to store data

during the normal operation of the processor, it is divided into integer

and floating point registers. The control/status registers are special

purpose registers that defines a certain state of the processor or to

control certain operations carried out by the processor.

1.1.7 SPARC-V9 Memory Models

The SPARC-V9 memory models define the way the memory oper-

ates. The instruction set criteria require that loads and stores seem to

be performed in the order in which they appear in the dynamic control

flow of the program. The actual order in which they are processed by

the memory may be different. The purpose of the memory models is

to specify what constraints, if any, are placed on the order of memory

operations.

8

The memory models are similar for both uniprocessor and shared-

memory multiprocessors. Formal memory models are needed in order

to precisely define the interactions between multiple processors and in-

put/output devices in a shared-memory configuration. Programming

shared-memory multiprocessors requires a deep understanding of the

operative memory model and the ability to specify memory opera-

tions at a low level in order to construct programs that can safely and

reliably coordinate their activities.

The SPARC-V9 architecture is a model that specifies the behavior

observable by software on SPARC-V9 systems. Therefore, access to

memory can be implemented in any manner, as long as the behavior

observed by software conforms to that of the models.

The SPARC-V9 architecture defines three different memory mod-

els: Total Store Order (TSO), Partial Store Order (PSO), and

Relaxed Memory Order (RMO).

Figure 1.1 shows the relationship of the various SPARC-V9 mem-

ory models, from the least restrictive to the most restrictive. Programs

written assuming one model will function correctly on any included

model.

9

Figure 1.1: Memory Models from Least Restrictive (RMO) to Most

Restrictive (TSO) [2]

SPARC-V9 provides multiple memory models so that:

• Implementations can schedule memory operations for high per-

formance.

• Programmers can create synchronization primitives using shared

memory.

There is no preferred memory model for SPARC-V9. Programs

written for Relaxed Memory Order will work in Partial Store Order

and Total Store Order. Programs written for Partial Store Order will

work in Total Store Order. Programs written for a weak model, for

10

example RMO, may execute more quickly, since the model contains

more scheduling opportunities, but may also require extra instruc-

tions to ensure synchronization. Multiprocessor programs written for

a stronger model will have unpredictable behavior if run in a weaker

model.

1.1.8 SPARC-V9 Operation

The instruction at the memory location specified by the program

counter is fetched and then executed. Instruction execution may

change program-visible processor and/or memory state. As a side-

effect of its execution, new values are assigned to the program counter

(PC) and the next program counter (nPC).

An instruction may generate an exception if it encounters some

condition that makes it impossible to complete normal execution. Such

an exception may generate a precise trap. Other events may also

cause traps: an exception caused by a previous instruction (a deferred

trap), an interrupt or asynchronous error (a disrupting trap), or a

reset request (a reset trap). If a trap occurs, control is transfered to a

trap table.

If a trap does not occur and the instruction is not a control transfer,

11

the next program counter (nPC) is copied into the PC and the nPC

is incremented. If the instruction is a control-transfer instruction, the

next program counter (nPC) is copied into the PC and the target

address is written to nPC.

1.2 Thesis Objective

ASIC design has become the main focus for any person or company

seeking to develop an electronic product that can perform effectively

and incorporates a lot of functionality and options. Due to the huge

competition in this field and huge customer demands the technology in

this field is developing at a fast pace towards smaller, faster and more

complex devices which is making it harder for a newcomer to coupe

up with this field without learning and understanding the basics first.

The objective of this thesis is to carry out an ASIC design of the

OpenSPARC T1 processor core using the 130nm CMOS technology.

The best way to achieve this objective is to define a good starting

point for the flow and then proceed downstream the flow exploring

each step at a time till a defined endpoint is reached. In the case of

this thesis work a well tested real design (OpenSPARC T1 processor

core) in its RTL form was chosen as the starting point and the target

12

was to process this design to produce an output that can be fabricated

using a real technology process, passing through all necessary design

steps needed to reach this output.

1.3 Thesis Map

This thesis documentation is divided into five chapters and an Ap-

pendix. Chapter1 is an introductory chapter that covers some back-

ground knowledge that is needed throughout this documentation also

it covers the thesis objective and this thesis map. Chapter 2 describes

the OpenSPARC T1 design architecture which is the design this thesis

work is based on, also it mentions the available resources that were

used. Chapter 2 also surveys previous real physical designs of the pro-

cessor and states the differences between them and the design achieved

by this thesis work in section 2.4 of the chapter.

Appendix A gives some background on each step of the ASIC de-

sign flow in general not depending on a specific design. Chapter 3

describes how I applied the flow described in appendix A on my de-

sign. Chapter 4 gathers all the achieved results from applying the flow

on my design and makes some analysis on them. Also chapter 4 con-

tains a comparison between my results to other real designs results.

13

Chapter 5 concludes the work achieved by this thesis and mention

some future work.

14

Chapter 2

OpenSparc T1

Sun Microsystems began shipping the UltraSPARC T1 chip multi-

threaded (CMT) processor in December 2005. Sun surprised the

industry by announcing that it would not only ship the processor

but also open-source the RTL design of this processor. By March

2006, UltraSPARC T1 had been open-sourced in a distribution called

OpenSPARC T1 [3]. In this chapter we will explore in more details the

components and architecture of this processor and then will focus on

its core as this is the main component this thesis work circles around.

15

2.1 OpenSPARC T1 architecture

The OpenSPARC T1 processor is a highly integrated processor that

implements the 64-bit SPARC V9 architecture. The OpenSPARC

T1 processor contains eight SPARC processor cores, which each have

full hardware support for four threads. Each SPARC core has an

instruction cache, a data cache, and a fully associative instruction

and data translation lookaside buffers (TLB). The eight SPARC cores

are connected through a crossbar to an on-chip unified level 2 cache

(L2-cache).

The four on-chip dynamic random access memory (DRAM) con-

trollers directly interface to the double data rate-synchronous DRAM

(DDR2 SDRAM). Additionally, there is an on-chip J-Bus controller

that provides an interconnect between the OpenSPARC T1 processor

and the I/O subsystem.

The features of the OpenSPARC T1 processor include [4]:

• 8 SPARC V9 CPU cores, with 4 threads per core, for a total of

32 threads

• 132 Gbytes/sec crossbar interconnect for on-chip communication

16

• 16 Kbytes of primary (Level 1) instruction cache per CPU core

• 8 Kbytes of primary (Level 1) data cache per CPU core

• 3 Mbytes of secondary (Level 2) cache - 4 way banked, 12 way

associative shared by all CPU cores

• 4 DDR-II DRAM controllers - 144-bit interface per channel, 25

GBytes/sec peak total bandwidth

• IEEE 754 compliant floating-point unit (FPU), shared by all

CPU cores

External interfaces:

• J-Bus interface (JBI) for I/O - 2.56 Gbytes/sec peak bandwidth,

128-bit multiplexed address/data bus

• Serial system interface (SSI) for boot PROM

Figure 2.1 shows a block diagram of the OpenSPARC T1 processor

illustrating the various interfaces and integrated components of the

chip.

17

Figure 2.1: OpenSPARC T1 Processor Block Diagram [5]

OpenSPARC T1 includes the following components:

1. 8 SPARC Cores

2. Floating-Point Unit

18

3. CPU-Cache Crossbar

4. L2-Cache

5. DRAM Controller

6. I/O Bridge

7. J-Bus Interface

8. Serial System Interface

9. Electronic Fuse

In the following sections briefly describe each component.

2.1.1 SPARC Core

Each SPARC core has hardware support for four threads. This support

consists of a full register file (with eight register windows) per thread,

with most of the address space identifiers (ASI), ancillary state reg-

isters (ASR), and privileged registers replicated per thread. The four

threads share the instruction, the data caches, and the TLBs. Each in-

struction cache is 16 Kbytes with a 32-byte line size. The data caches

are write through, 8 Kbytes, and have a 16-byte line size. The TLBs

19

include an autodemap feature which enables the multiple threads to

update the TLB without locking. [5]

Each SPARC core has single issue, six stage pipeline. These six

stages are:

1. Fetch

2. Thread Selection

3. Decode

4. Execute

5. Memory

6. Write Back

20

Figure 2.2: SPARC Core Pipeline [5]

Each SPARC core has the following units:

1. Instruction fetch unit (IFU) includes the following pipeline stages

- fetch, thread selection, and decode. The IFU also includes an

instruction cache complex.

2. Execution unit (EXU) includes the execute stage of the pipeline.

21

3. Load/store unit (LSU) includes memory and writeback stages,

and a data cache complex.

4. Trap logic unit (TLU) includes trap logic and trap program coun-

ters.

5. Stream processing unit (SPU) is used for modular arithmetic

functions for crypto.

6. Memory management unit (MMU).

7. Floating-point frontend unit (FFU) interfaces to the FPU.

2.1.2 Floating-Point Unit

A single floating-point unit (FPU) is shared by all eight SPARC cores.

The shared floating-point unit is sufficient for most commercial appli-

cations in which typically less than 1% of the instructions are floating-

point operations [5].

2.1.3 CPU-Cache Crossbar

The eight SPARC cores, the four L2-cache banks, the I/O Bridge, and

the FPU all interface with the crossbar.

22

FIGURE 2.3 displays the crossbar block diagram. The CPUcache

crossbar (CCX) features include:

• Each requester queues up to two packets per destination.

• Three stage pipeline - request, arbitrate, and transmit.

• Centralized arbitration with oldest requester getting priority.

• Core-to-cache bus optimized for address plus double word store.

• Cache-to-core bus optimized for 16-byte line fill. 32-byte Is line

fill delivered in two back-to-back clocks.

23

Figure 2.3: CCX Block Diagram [5]

2.1.4 L2-Cache

The L2-cache is banked four ways, with the bank selection based on the

physical address bits 7:6. The cache is 3-Mbyte, 12-way set-associative

with pseudo-least recently used (LRU) replacement (the replacement

24

is based on a used bit scheme). The line size is 64 bytes. Unloaded

access time is 23 cycles for an L1 data cache miss and 22 cycles for an

L1 instruction cache miss.

L2-cache has a 64-byte line size, with 64 bytes interleaved between

banks. Pipeline latency in the L2-cache is 8 clocks for a load, 9 clocks

for an I-miss, with the critical chunk returned first. 16 outstanding

misses per bank are supported for a 64 total misses. Coherence is

maintained by shadowing the L1 tags in an L2-cache directory struc-

ture (the L2-cache is a point of global visibility). DMA from the I/O is

serialized with respect to the traffic from the cores in the L2-cache. [5]

2.1.5 DRAM Controller

The OpenSPARC T1 processor DRAM controller is banked four ways,

with each L2 bank interacting with one DRAM controller bank. Each

DRAM controller bank must have identical dual in-line memory mod-

ules (DIMM) installed and enabled. The OpenSPARC T1 processor

uses DDR2 DIMMs and can support one or two ranks of stacked or

unstacked DIMMs. Each DRAM bank/port is two-DIMMs wide (128-

bit + 16-bit ECC). All installed DIMMs must be identical, and the

same number of DIMMs (ranks) must be installed on each DRAM con-

25

troller port. The DRAM controller frequency is an exact ratio of the

core frequency, where the core frequency must be at least three times

the DRAM controller frequency. The double data rate (DDR) data

buses transfer data at twice the frequency of the DRAM controller fre-

quency. The OpenSPARC T1 processor can support memory sizes of

up to 128 Gbytes with a 25 Gbytes/sec peak bandwidth limit. Memory

access is scheduled across 8 reads plus 8 writes.

2.1.6 I/O Bridge

The I/O bridge (IOB) performs an address decode on I/O-addressable

transactions and directs them to the appropriate internal block or to

the appropriate external interface (J-Bus or the serial system inter-

face). Additionally, the IOB maintains the register status for external

interrupts.

2.1.7 J-Bus Interface

The J-Bus interface (JBI) is the interconnect between the OpenSPARC

T1 processor and the I/O subsystem. The J-Bus is a 200 MHz, 128-bit

wide, multiplexed address or data bus, used mainly for direct mem-

ory access (DMA) traffic, plus the programmable input/output (PIO)

traffic used to control it. The J-Bus interface is the functional block

26

that interfaces to the J-Bus, receiving and responding to DMA re-

quests, routing them to the appropriate L2 banks, and also issuing

PIO transactions on behalf of the processor threads and forwarding

responses back.

2.1.8 Serial System Interface

The OpenSPARC T1 processor has a 50 Mbyte/sec serial system inter-

face (SSI) that connects to an external application-specific integrated

circuit (ASIC), which in turn interfaces to the boot read-only mem-

ory (ROM). In addition, the SSI supports PIO accesses across the

SSI, thus supporting optional control status registers (CSR) or other

interfaces within the ASIC.

2.1.9 Electronic Fuse

The electronic fuse (e-Fuse) block contains configuration information

that is electronically burned-in as part of manufacturing, including

part serial number and core available information.

27

Figure 2.4: SPARC Core Block Diagram [5]

2.2 OpenSPARC T1 core

FIGURE 2.4 presents a high-level block diagram of a SPARC core.

OpenSPARC T1 processor is considered to be one of few real-life com-

mercial complex designs that has been open sourced, which means

that the design has been thoroughly tested and verified by the design-

ers, which also means that the test suites and design scripts that have

28

been used are to some extent available for reference and reuse. Taking

these points into consideration and adding to them the availability of

good documentation and guides explains why this design was chosen

for this thesis work.

In this section we will discuss in more details the internal architec-

ture of the openSPARC T1 core.

The SPARC core is divided into 7 main blocks which are:

1. Instruction fetch unit (IFU).

2. Execution unit (EXU).

3. Load/store unit (LSU).

4. Trap logic unit (TLU).

5. Stream processing unit (SPU).

6. Memory management unit (MMU).

7. Floating-point frontend unit (FFU).

29

2.2.1 Instruction fetch unit (IFU)

The instruction fetch unit (IFU) is responsible for maintaining the

program counters (PC) of different threads and fetching the corre-

sponding instructions. The IFU also manages the level 1 I-cache and

the instruction translation lookaside buffer (ITLB), as well as manag-

ing and scheduling the four threads in the SPARC core. The SPARC

core pipeline is located in the IFU, which controls instruction issue

and instruction flow in the pipeline. The IFU decodes the instructions

flowing through the pipeline, schedules interrupts, and it implements

the idle/resume states of the pipeline. The IFU also logs the errors

and manages the error registers.

There are six stages in a SPARC core pipeline:

• Fetch - F-stage

• Thread selection - S-stage

• Decode - D-stage

• Execute - E-stage

• Memory - M-stage

• Writeback - W-stage

30

The I-cache access and the ITLB access take place in fetch stage. A

selected thread (hardware strand) will be picked in the thread selection

stage. The instruction decoding and register file access occur in the

decode stage. The branch evaluation takes place in the execution

stage. The access to memory and the actual writeback will be done in

the memory and writeback stages. FIGURE 2.2 illustrates the SPARC

core pipeline and support structures.

The thread selection policy is as follows : switch between the avail-

able threads every cycle giving priority to the least recently executed

thread. The threads may become unavailable due to the long latency

operations like loads, branch, MUL, and DIV, as well as to the pipeline

stalls like cache misses, traps, and resource conflicts. The loads are

speculated as cache hits, and the thread is switched-in with lower pri-

ority.

Instruction cache complex has a 16-Kbyte data, 4-way, 32-byte

line size with a single ported instruction tag. It also has dual ported

(1R/1W) valid bit array to hold cache line state of valid/invalid. There

is a fully associative instruction TLB with 64 entries. The buffer sup-

ports the following page sizes: 8 Kbytes, 64 Kbytes, 4 Mbytes, and 256

Mbytes. The TLB uses a pseudo least recently used (LRU) algorithm

31

for replacement. Two instructions are fetched each cycle, though only

one instruction is issued per clock, which reduces the instruction cache

activity and allows for an opportunistic line fill. The integer register

file (IRF) of the SPARC core has 5 Kbytes with 3 read/2 write/1

transport ports. There are 640 64-bit registers with error correction

code (ECC). Only 32 registers from the current window are visible to

the thread [5]. The processor core supports eight register windows per

thread.

2.2.2 Execution unit (EXU)

The execution unit (EXU) contains these four subunits - arithmetic

and logic unit (ALU), shifter (SHFT), integer multiplier (IMUL), and

integer divider (IDIV).

FIGURE 2.5 presents a top level diagram of the execution unit.

The arithmetic and logic unit (ALU) executes arithemetic and logic

operations such as - ADD, SUB, AND, NAND, OR, NOR, XOR,

XNOR, and NOT. The ALU is also reused for branch address and vir-

tual address calculation. MUL is the integer multiplier unit (IMUL),

and DIV is the integer divider unit (IDIV). IMUL includes the accu-

mulate function for modular arithmetic. The latency of IMUL is 5

cycles, and the throughput is 1-half per cycle. IDIV contains a simple

32

Figure 2.5: Execution Unit Diagram [5]

non-restoring divider, and it supports one outstanding divide opera-

tion per core. When either IMUL or IDIV is occupied, a thread issuing

a MUL or DIV instruction will be rolled back and switched out.

The shifter block (SHFT) implements the 0 - 63-bit shift [5].

The execution control logic (ECL) block generates the necessary

select signals that control the multiplexors, keeps track of the thread

33

and reads the operands of each instruction, and implements the bypass

logic. The ECL also generates the write-enables for the integer register

file (IRF). The bypass logic block does the operand bypass from the E

(Execute), M (Memory), and W (Writeback) stages to the D (Decode)

stage. Results of long latency operations such as load, mul, and div,

are forwarded from the W (Writeback) stage to the D (Decode) stage.

2.2.3 Load store unit (LSU)

The load store unit (LSU) processes memory-referencing operation-

codes (opcodes) such as various types of loads, various types of stores

...etc. The threaded architecture of the LSU can process four loads,

four stores, one fetch, one FP operation, one stream operation, one

interrupt, and one forward packet. Therefore, thirteen sources supply

data to the LSU. The LSU implements the ordering for memory ref-

erences, whether locally or not. The LSU also enforces the ordering

for all the outbound and inbound packets.

There are four stages in the LSU pipeline. FIGURE 2.6 shows the

different stages of the LSU pipeline.

The cache access set-up and the translation lookaside buffer (TLB)

access set-up are done during the pipeline’s E-stage (execution). The

34

Figure 2.6: LSU Pipeline Graph [5]

cache/tag/TLB read operations are done in the M-stage (memory ac-

cess). The W-stage (writeback) supports the look-up of the store

buffer, the detection of traps, and the execution of the data bypass.

The W2-stage (writeback-2) is for generating PCX requests and write-

backs to the cache.

The LSU includes an 8-Kbyte D-cache, which is a part of the level

1 cache shared by four threads. The 8-Kbyte level 1 (L1) D-cache is

4-way set-associative, and the line size is 16 bytes. The D-cache has

a single read and write port (1 RW) for the data and tag array. The

valid bit (V-bit) array is dual ported with one read port and one write

port (1R/1W). The valid bit array holds the cache line state of valid

or invalid [5].

35

2.2.4 Trap logic unit (TLU)

The trap logic unit (TLU) has support for six trap levels. Traps

cause pipeline flush and thread switch until trap program counter (PC)

becomes available. The TLU also has support for up to 64 pending

interrupts per thread. The TLU is in a logically central position to

collect all of the traps and interrupts and forward them. Fig. 2.7

illustrates the TLU role with respect to all other backlogs in a SPARC

core.

36

Figure 2.7: TLU Role With Respect to All Other Backlogs in a SPARC

Core [5]

The following list highlights the functionality of the TLU:

• Collects traps from all units in the SPARC core.

• Detects some types of traps internal to the TLU.

• Resolves the trap priority and generates the trap vector.

37

• Sends flush-pipe to other SPARC units using a set of non-LSU

traps.

• Maintains processors state registers.

• Manages the trap stack.

• Restores the processor state from the trap stack on done or retry

instructions.

• Implements an inter-thread interrupt delivery.

• Receives and processes all types of interrupts.

• Maintains tick, all tick-compares, and the SOFT-INT related

registers.

• Generates timer interrupts and software interrupts (interrupt-

level-n type).

• Maintains performance instrumentation counters (PIC).

2.2.5 Stream processing unit (SPU)

The SPARC core is equipped with a stream processing unit (SPU) sup-

porting the asymmetric cryptography operations (public-key RSA) for

38

up to a 2048-bit key size. The SPU shares the integer multiplier with

the execution unit (EXU) for the modular arithmetic (MA) opera-

tions. While the SPU facility is shared among all threads of a SPARC

core, only one thread can use the SPU at a time. The SPU operation

is set up by storing a thread to a control register and then returning to

normal processing. The SPU will initiate streaming load or streaming

store operations to the level 2 cache (L2) and compute operations to

the integer multiplier. Once the operation is launched, it can operate

in parallel with SPARC core instruction execution. The completion of

the operation is detected by polling (synchronous way) or by interrupt

(asynchronous way). [5]

2.2.6 Memory management unit (MMU)

The memory management unit (MMU) maintains the contents of the

instruction translation lookaside buffer (ITLB) and the data transla-

tion lookaside buffer (DTLB). The ITLB resides in instruction fetch

unit (IFU), and the DTLB resides in load and store unit (LSU). Fig.

2.8 shows the relationship among the MMU and the TLBs.

39

Figure 2.8: MMU and TLBs Relationship [5]

The MMU interacts with TLBs to maintain the content of TLBs.

The system software manages the content of MMU by way of three

kinds of operations - reads, writes, and demap. All TLB entries are

shared among the threads, and the consistency among the TLB en-

tries is maintained through auto-demap. The MMU is responsible

for generating the pointers to the software translation storage buffers

40

(TSB), and it also maintains the fault status for the various traps.

The translation lookaside buffer (TLB) consists of content addressable

memory (CAM) and randomly addressable memory (RAM). CAM has

one compare port and one read-write port (1C1RW), and RAM has

one read-write port (1RW). [5]

2.2.7 Floating-point frontend unit (FFU)

The floating-point frontend unit (FFU) decodes floating-point instruc-

tions and it also includes the floating-point register file (FRF). The

FFU also maintains the floating-point state register (FSR) and the

graphics state register (GSR). Some of the floating-point instructions

like move, absolute value, and negate are implemented in the FFU,

while the others are implemented in the FPU.

The FFU is composed of four blocks - the floating-point register

file (FFU-FRF), the control block (FFU-CTL), the data-path block

(FFU-DP), and the VIS execution block (FFU-VIS). Fig. 2.9 shows a

block diagram of the FFU illustrating these four subblocks.

41

Figure 2.9: Top-Level FFU Block Diagram [5]

The following steps are taken when the FFU detects a floating-

point operation (Fpop):

• The thread switches out.

• The Fpop is further decoded and the FRF is read.

• Fpops with operands are packetized and shipped over the cross-

bar to the FPU.

42

• The computation is done in the FPU and the results are returned

by way of the crossbar.

• Writeback completed to the FRF and the thread restarts.

2.3 OpenSPARC T1 design history

There have been several designs by researchers to physically implement

the OpenSparc T1 processor [5]. Below we briefly desribe three of

these designs. The first two target Xilinx FPGAs, while the third is

the famous ASIC design: The Niagra UltraSPARC T1 processor.

2.3.1 Xilinx FPGA design 1 [6]

In 2006 Sun and Xilinx began OpenSPARC collaboration. They started

with a single threaded version of the OpenSPARC T1 core and was

able to download it to the Xilinx XC4VFX6 FPGA. Below is a brief

specification list of this design.

• Processor configuration: Single thread, No modular arithmetic

(MA) (i.e. No SPU), reduced TLB

• Size: 40K Virtex-2/4 LUTs, 30K Virtex-5 LUTs

43

• FPGA type: Xilinx XC4VFX6

• Performance: Meets 20ns cycle time (50MHz)

2.3.2 Xilinx FPGA design 2 [6]

SUN and Xilinx continued collaboration and was able to download a 4

threaded version of the OpenSPARC T1 core to the Xilinx XC5VLX110T

FPGA. Below is a brief specification list of this design.

• Processor configuration: Four threads, No modular arithmetic

(MA) (i.e. No SPU), 16-entry TLB

• Size: 69K Virtex-2/4 LUTs, 51K Virtex-5 LUTs

• Block RAMs used: v4: 127, v5: 115

• FPGA type: Xilinx XC5VLX110T

• Performance: Runs at 10 MHz

2.3.3 UltraSparc T1 (Niagara) release [6]

In 14 November 2005, Sun Microsystems released a full ASIC imple-

mentation of the OpenSPARC T1 opensource RTL design. This pro-

44

cessor was called the UltraSPARC T1 and was codenamed ”Niagara”.

Below is a short specification list of this processor:

• Processor frequency: 1 - 1.4 GHZ

• Processor cores: 8

• Fabrication Process: 90nm

• Die Size: 340 mm sqr

• processor L1 cache size: 16 Kbytes

• processor L2 cache size: 3072 Kbytes

• processor power: 72 Watt

45

Figure 2.10: Sun UltraSPARC T1 (Niagara 8 Core) [6]

2.3.4 Commercial processors based on the Ultra-

Sparc architecture [1]

The below table shows a comparison between diffrent commercial pro-

cessors based on the UltraSparc architecture.

46

Name

(codename)

Frequency

(MHz)

Arch.

version

Year Total

threads

Process

(µm)

Transistors

(millions)

Die

size

(mm²)

IO

Pins

Power

(W)

Voltage

(V)

L1

Dcache

(KiB)

L1

Icache

(KiB)

L2

Cache

(KiB)

L3

Cache

(KiB)

UltraSPARC (Spitf

ire)
143–167 V9 1995 1×1=1 0.47 3.8 315 521 30 3.3 16 16

512-

1024
none

UltraSPARC

(Hornet)
200 V9 1998 1×1=1 0.42 5.2 265 521 -- 3.3 16 16

512-

1024
none

UltraSPARC

IIs (Blackbird)
250–400 V9 1997 1×1=1 0.35 5.4 149 521 25 2.5 16 16

1024 or

4096
none

UltraSPARC IIs

(Sapphire-Black)
360–480 V9 1999 1×1=1 0.25 5.4 126 521 21 1.9 16 16

1024–

8192
none

UltraSPARC

IIi (Sabre)
270–360 V9 1997 1×1=1 0.35 5.4 156 587 21 1.9 16 16

256–

2048
none

UltraSPARC IIi

(Sapphire-Red)
333–480 V9 1998 1×1=1 0.25 5.4 -- 587 21 1.9 16 16 2048 none

UltraSPARC

IIe (Hummingbird)
400–500 V9 1999 1×1=1 0.18 Al -- -- 370 13 1.5-1.7 16 16 256 none

UltraSPARC IIi

(IIe+) (Phantom)
550–650 V9 2000 1×1=1 0.18 Cu -- -- 370 17.6 1.7 16 16 512 none

UltraSPARC

III (Cheetah)
600

V9 /

JPS1
2001 1×1=1 0.18 Al 29 330 1368 53 1.6 64 32 8192 none

UltraSPARC

IIIi (Jalapeño)

1064–

1593

V9 /

JPS1
2003 1×1=1 0.13 87.5 206 959 52 1.3 64 32 1024 none

UltraSPARC

IV (Jaguar)

1050–

1350

V9 /

JPS1
2004 1×2=2 0.13 66 356 1368 108 1.35 64 32 16384 none

UltraSPARC

IV+ (Panther)

1500–

2100

V9 /

JPS1
2005 1×2=2 0.09 295 336 1368 90 1.1 64 64 2048 32768

UltraSPARC

T1 (Niagara)

1000–

1400

V9 / UA

2005
2005 4×8=32 0.09 300 340 1933 72 1.3 8 16 3072 none

UltraSPARC

T2 (Niagara 2)

1000–

1600

V9 / UA

2007
2007 8×8=64 0.065 503 342 1831 95 1.1–1.5 8 16 4096 none

2.4 Proposed Design

This section describes in more details a proposed implementation of

the OpenSPARC T1 processor core. There is an incomplete implemen-

tation of the OpenSPARC T1 processor core that stops at the synthesis

stage. This implementation was made by Professor Jose Renau from

University of California at Santa Cruz [7]. His implementation was to

take the OpenSPARC T1 RTL blocks as input and synthesizes them

to gates using Synopsys Design Compiler. Using TSMC 65 nm tech-

nology available to Universities from Synopsys, the design can be run

at 950 MHz with no caches.

Work on this thesis project started targeting a complete ASIC

design of the OpenSPARC T1 processor core. The first design issue

appeared was to find a complete ASIC technology library that can

be used to implement the processor. The only complete (Includes

memory generators and standard cells GDS description) ASIC library

that was available to work with at the time work started on this thesis

was the IBM 130 nm CMOS technology. The PDK (process design

kit) for this technology was available through MOSIS MEP account

4960.

48

The second issue appeared was that in order to produce a design

that can be fabricated under this educational program offered by Mo-

sis, the design dimensions should not exceed 4 mm X 4mm. Taking

into consideration the core size and the technology used for fabrica-

tion it was nearly impossible to produce an ASIC that can function

properly under these conditions. To make sure that this is true, di-

rect scaling of the area of one core of the published UltarSPARC T1

processor [8] at 90 nm technology to a 130nm technology shows that

it needs an area of 23 mm2 and that does not include the PADs. So

a decision was made to make some functionality sacrifices in order to

reduce the size of the core.

The functionality modifications that were made can be summarized

in the following points:

• Changing the number of threads from four to two. This change

will not affect the operation of the core, it will only reduce its per-

formance and reduces the size of the netlist by up to 20%. The

external interfaces of the chip are not affected by this change.

• Reducing the TLB size. This reduction reduces the size of the

design. This reduction will not affect the core functionality but it

will reduce the TLB hit rates, which will reduce the performance.

49

• Removing the Stream Processing Unit (SPU). This removal re-

duces the size of the design. The SPU is used to accelerate

cryptographic functions. It contains a modular arithmetic unit.

All modular arithmetic operations will not be supported after

this removal.

These modifications are suggested by reference [9] and are imple-

mented by the first Xilinx FPGA example in the previous section.

More details on these modifications can be found in chapters 3 of this

thesis documentation and in reference [9].

Moving on with the design many other challenges surfaced and were

handled, until a complete ASIC component was produced, Appendix

A describes in more details the design flow that was used to reach this

final stage.

50

Chapter 3

OpenSPARC T1 core

Implementation

In this chapter we will describe in more details the attempt to im-

plement the OpenSPARC T1 core following the flow described in ap-

pendix A.

3.1 RTL preparation and functional ver-

ification

The OpenSPARC T1 design RTL code is available from Sun Microsys-

tems under a GPLv2 license for public use. It is provided in a suite

51

that also includes its verification environment and simulation tests

that test its functionality and performance. So first this verification

environment was setted up and the available tests were ran to make

sure that the design was functioning properly as intended.

The provided verification environment of OpenSPARC T1 proces-

sor is based on Cadence VCS verification tool. All tests run correctly

on this environment. Additionally, this environment was modified to

run on Mentor Graphics Questa, which was more readily available to

me.

After verifying the RTL code, preparations for the ASIC flow

started, I started by replacing the memory modules from the design by

memory blocks from the memory generator of the ASIC vendor. The

OpenSPARC T1 core contains 11 memory modules which are [10]:

1. Instruction Cache Data (ICD).

2. Data Cache Data Array (DCD).

3. Instruction and Data Cache Tag (IDCT).

4. Floating-Point Register File (FRF).

5. Integer Register File (IRF).

52

6. Translation Lookaside Buffer (TLB).

7. Store Buffer CAM.

8. Register File 16 x 32 (RF16x32).

9. Register File 16 x 160 (RF16x160).

10. Register File 32 x 80 (Rf32x80).

11. Register File 32 x 152 (RF32x152).

Two main difficulties appeared during this conversion process:

1. Each of these memory modules are built up using registers, the

coding style that was used by these blocks are written in a way

that made replacing the registers with memory blocks a hard

task without recoding the full memory block. For example the

already existing memory interface logic was designed to be com-

patible with the memory in its register form where groups of

those registers were handled separately at different clock edges.

This was mainly done to ease the coding of such memory blocks.

It has no impact on performance. A lot of modifications and

sometimes a complete rebuild were made to the interface logic

of these memory blocks to retain the same functionality and

performance. (Example: ICD and DCD blocks)

53

2. Due to the restrictions on the size of the memory blocks that

can be generated by the memory generator, some adjustments

were made (ex: partitioning or grouping) to the memory block

to achieve a block size that can be generated by the generator.

The supplied design kit that is available from the technology provider

contains four types of memory generators which are single port SRAM,

double port SRAM, single port register file, and double port register

file. Each one of these generators is used to generate a certain type

of memory depending on its functionality. The following is the list of

memories used for each memory type:

1. Single-Port SRAM: ICD, DCD.

2. Dual Port SRAM: FRF, IDCT.

3. Two-Port Register File: RF16x32, RF16x160, Rf32x80, RF32x152

The memory conversion process was as follows:

1. Understand the current implementation, functionality and tim-

ing of the memory module.

2. Generate a memory block of the same size and type of the ex-

isting memory module.

54

3. If there is a size restriction by the generator on the memory

block, then the memory is divided into symmetrical smaller

memory blocks.

4. Try to replace the register implementation with the generated

memory block without modifying the interface logic as much as

possible.

5. If needed the interface logic can be modified or completely re-

placed to preserve the functionality of the memory module using

the generated memory block.

I was successfully able to replace 8 of the 11 modules by mem-

ory blocks from the generator; the remaining 3 blocks could not be

replaced due to the following reasons:

1. The Store Buffer CAM memory module contains a CAM (con-

tent addressable memory), which need a special memory gener-

ator that is not supplied by the ASIC vendor.

2. The Integer Register File (IRF) structure requires the access of

different register files in the same clock cycle which cannot be im-

plemented using a memory block without adding huge overhead

which will make the use of memory blocks of no benefit.

55

3. The Translation Lookaside Buffer (TLB) is a fully associative

memory, it consists of content addressable memory (CAM) which

cannot be replaced by a memory block.

These three memory modules were left in their original register-

based structural description provided by Sun Microsystems [5] without

any modification.

To make sure that the core function was not altered during these

modifications, each of the modified memory blocks was tested sepa-

rately using the verifications suite. After that all the modifications

were imported to the design, and then the full RTL design was tested

to make sure that everything is working as intended.

Another modification that was made to the design at this stage

was the addition of Pads. The design contains 330 signal I/O pins,

each of these signal pins needs their own signal Pads. In addition to

that, the design needs power Pads. Given the size of the chip and the

size of these signal Pads, It was impossible to fit those Pads in the chip

area. Some pins in the design were hard wired to constant values. For

example the CPU ID pins that give an ID for the CPU core when this

core is used in the full OpenSPARC implementation that has 8 cores.

These pins are of no use if the core is used separately, so it is OK to

56

hardwire it. Another example of pins that were hard wired are the

SCAN pins, doing so removed the functionality of hardware testing

from the processor, this will not affect any main functionality of the

processor but will disable hardware testing of the processor after the

processor is fabricated. This is a sacrifice that needed to be made to

enable the processor to fit in the 4x4 mm2 chip area.

As mentioned before the technology I am using to implement the

processor core is the IBM 130 nm supplied from Mosis under an edu-

cational license. To fabricate any chip at Mosis using this technology

under this educational license there is a limitation on the size of the

chip core area to be less than or equal to 4x4 mm2. Driven by this

constraint I had to limit my design size to 4x4 mm2, this should in-

clude all design components (i.e. pads, cells, wiring etc). My first

trials to fit the full processor core without any size reduction failed,

this is the reason behind the size reduction modifications described in

the previous section.

Several modifications were made to the design in order to reduce

its size; as suggested in [9]:

1. Changing the number of threads from four to two.

57

2. TLB size reduction from 64 entries to 8 entries.

3. Removing the Stream Processing Unit (SPU).

Table 3.1 shows the reduction in size for each of the above points.

Table 3.1: Reduction in the processor core

As mentioned before these modifications are essential to reduce the

size of the design to be able to fit it in the design core. These mod-

ifications will reduce the performance of the design but will preserve

most of its functionality. A hardware thread is a collection of proces-

sor resources where a group of these resources is unique to a certain

thread and the other group is shared among other threads. These

resources are used to execute threaded program code simultaneously.

58

The processor core has multiple numbers of threads; each thread re-

sources include its registers, a portion of I-fetch data-path, store buffer,

and miss buffer. The shared resources of multiple threads include the

pipeline registers and data-path, caches, translation lookaside buffers

(TLB), and execution unit of the SPARC Core pipeline.

The number of threads was reduced from four to two by removing

the extra resources needed by the extra threads, for example the in-

struction fetch unit (IFU) is responsible for maintaining the program

counters (PC) of different threads, as well as managing and schedul-

ing all the threads in a SPARC core. The IFU includes instruction

buffer which includes two instruction registers per thread, the thread

instruction register (TIR) and the next instruction register (NIR). The

IFU also includes the integer register file (IRF), each thread requires

128 registers for the eight windows (with 16 registers per window),

and four sets of global registers with eight global registers per set.

There are 160 registers per thread. Removing the extra resources of

the extra threads I was able to reduce the number of threads from four

to two. The following is a list of the design main blocks that needed

modifications in the same way:

1. Instruction Fetch Unit (IFU).

59

2. Load Store Unit (LSU).

3. Floating-Point Frontend Unit (FFU).

4. Execution Unit (EXU).

5. Trap Logic Unit (TLU).

The code of the SPARC core contains switches that guided me

to the portion of the code that needed to be modified in each of the

above design blocks. The modification to the design blocks had to be

made all at once before any verification tests could be run to test the

functionality of the modified blocks.

Another modification that was made to reduce the size of the core

was to reduce the TLB size. There are two TLBs used in the processor

core, the instruction TLB (ITLB) resides in instruction fetch unit

(IFU), and the data TLB (DTLB) resides in load and store unit (LSU).

In this modification both the instruction TLB size and data TLB size

were reduced from 64 entries to 8 entries. The reduction of the TLB

size will not affect the functionality of the processor but will reduce

the TLB hit rates, which will in fact reduce the performance.

The Stream Processing Unit (SPU) of the core was also removed

60

in order to reduce the core size; The SPU is used to accelerate cryp-

tographic functions of the core. SPU contains a modular arithmetic

unit. Removing it will remove this functionality from the processor

core. This sacrifies is made in order to reduce the core area.

After applying these modifications to the design, the design was

verified using the supplied verification suite. At the beginning there

were several failures in the verification tests. After investigating these

failures, I found that some of these failures were due to coding mistakes

which were fixed and these tests passed. The rest of failures were in

the tests that were intended to work on four threads, but due to my

modifications they were failing, I manually checked all of the failing

tests and verified that these failures were of the same reason. These

failures were waived away as they were expected to happen.

3.2 Synthesis

To synthesis the design, the Design Compiler [11] tool from synopsis

was used. The Design Compiler is considered the best synthesis tool

in the market in the time of writing this thesis documentation. The

synthesis process was done in two main stages because the size of

the design is big and the resources (computer machines) that were

61

available to me to do the job were not powerful enough to handle the

full design at once.

The first stage of the synthesis process was to synthesize each of

the small design blocks separately. This was done using an automated

script [12] that is supplied by the processor design kit. This script

automatically loops on all the design blocks and synthesizes them using

a generic synthesis script that is parameterized by a set of variables

stored in the run directory of each of these design blocks. The outcome

of this stage is a design database for each of the design blocks. Some

of the design blocks were not included in the automated script due to

their different nature. Examples of these blocks include the memory

modules, which were synthesized separately using separate synthesis

scripts.

The objective of the second stage of the synthesis process is to

generate the top level synthesized netlist. This was done by writing

a synthesis script that loads the synthesized memory blocks and then

marks them as don’t modify blocks. This marking forces the synthesis

engine treat those design blocks as fixed design components and will

not change them. Then, the top-level netlist is loaded, and the design

is synthesized completely. The outcome of this stage is a synthesized

62

netlist that describes the design completely.

3.3 Design Floorplanning

I am using Olympus SOC [13] from Mentor Graphics for the P&R

flow. I started the floorplan stage by importing the required design

files LEF, LIB, Verilog, PTF and SDC. Then, I made a Zero RC

optimization run to make sure that there are no constraints issues.

Then, I defined the chip area to be 4X4 mm, after that I defined the

pads area and the core area. To arrange the pads location, first I had to

estimate roughly where the design blocks will be placed depending on

their relation to each other so as to guarantee the minimum wire length

between the pad and the design elements. Fig. 3.1 shows a rough

estimation of the blocks location found in the processor documentation

as a guideline.

To order the design pads a location constraint file had to be written

to guide the tool as to where to place the pads. This file contains

information like on which side should the pad be placed and what is

the order of the pads placement on each side. After that, the tool is

instructed to place the pads using this constraint file. After placement

the pads are marked as fixed location so they are not moved later in

63

Figure 3.1: Processor blocks rough estimation [5]

the design.

The core area is defined as the remaining chip area after the pad

placement. Usually there is a small gap that is left between the core

area and the pads. This gap is needed to insure easy route access to

the pad pins. Due to the tight area constraint this gap was ignored

to use its space for cell placement. This will increase the risk that

the pad pins get blocked. So caution during placement stage must be

taken to avoid this.

64

The next step now is to define the power grid. Power rings and

stripes were implemented using Metal 5 and Metal 6 of the technology,

after that power rails on Metal 1 were implemented, then the rails,

rings and stripes were connected together to form the power grid.

This grid was then connected manually to the supply pads placed on

the top and bottom sides of the chip.

Figure 3.2 shows the power grid design.

Figure 3.2: Design Power Grid

Macro cells (memory blocks) were then placed. To find the best

location of where to place the Macro cells I used the following tech-

nique. First, the tool automatically guess the initial location of each

block. The tool uses information from the design hierarchy and tim-

65

ing calculations to determine these location. After that knowing the

relation between each of these blocks I manually modified its location

to give better connectivity to the rest of the design, In order to get

the best use of the available area, I pushed the memory blocks near to

the top and bottom chip edges to occupy locations where the standard

cells will not be placed (no standard cell rows). Macro cells are then

marked as fixed and connected to the power grid manually.

Figure 3.3 shows the Macro placement of the design.

66

Figure 3.3: Macro placement

Figure 3.4 shows the empty space used up by macros.

67

Figure 3.4: Empty spaces used up by Macros

Figure 3.5 shows an example of the power connection of the macros.

3.4 Design Placement

As a preparation step for placement, High Fan Out Net Synthesis

(HFNS) must be run first. In HFNS all high fan-out nets except clock

nets are buffered to reduce the fan-out of each of them, the tool has

a threshold value for the number of fan-outs above which this net is

considered a high fan-out net. This value is set to 128 in our design,

which is the default value set by the tool. This value can be changed by

the user. If after HFNS there is still timing issues due to nets driving

68

Figure 3.5: Macro Power Connection

large number of cells, the optimizer can easily fix them. There were

112 high fan-out nets in my design, the tool synthesized and buffered

those nets.

The design has no regions or partitions, the design will be totally

placed by the tool in the same run guided by the hierarchal information

that lies in the design netlist. Placement is done in two main steps,

global placement and detailed placement. In global placement the

design standard cells will be roughly placed in the core area, after

that the detail placer will legalize the locations of these cells so as not

to create DRC violations.

69

Figure 3.6 shows the cell placement of the top design blocks.

Figure 3.6: Top blocks placement

From the above picture you can notice that the tool has placed

the cells in a different distribution than specified in Fig. A.4. This is

expected as the distribution of the pads and Macro cells are different

from the one assumed by Fig. A.4. Figure A.4 is just a guide and is

not a real implementation. Also you can notice the size difference in

70

the block sizes and again this is because the blocks implementation

is different from the ones assumed in Fig. A.4. Changing any de-

sign environment like pads, Macro cells or block implementation will

definitely change the placer behavior while placing the design.

3.5 CTS

As mentioned in appendix A the CTS stage is divided into three steps.

In the first step we do a pre-CTS optimization on the design. The first

optimization run in the pre-CTS step is to optimize the max transition

and max capacitance violations, after that global optimization and

local optimization is run, the designer must note that the run time

of the pre-CTS stage is big as the design has not been optimized

before. The designer must keep an eye on the optimization process

while running and make sure that timing is converging. If timing is

not converging then the designer must stop the optimization process

and inspect the design manually for problems that could obstruct the

optimization process. Examples of these issues are:

1. Optimization buffers are set to don’t use in the library, or no

enough buffer driver strength varieties for the optimizer to choose

from.

71

2. No enough space or high utilization of cells in a certain area of

the design where the optimizer needs to place buffers.

3. Non realistic constraints or over tightened constrains.

After the pre-CTS optimization, the design is ready now for the

CTS process. In our design we have only one clock domain, therefore

the full CTS tree will be built in one compilation run. The CTS

engine uses buffers with equivalent rise and fall propagation delays,

so the designer must make sure to enable the use of these buffers and

define them to the CTS engine. The designer must also specify some

CTS specs if needed for the CTS engine to follow, like for example

maximum fan-out, maximum transition, or maximum capacitance.

After the tool builds the clock tree, the clock is finally routed using

all available metal layers to guarantee short connections and lowest

delays. The clock network is then marked as fixed so that its elements

and routing will not be altered in the remaining flow stages to keep

its timing constant.

Now realistic timing information of the clock network is available so

a post-CTS optimization flow is needed to fix hold violations and any

remaining setup violations. In some cases due to bad definition of some

72

constraints a conflict could occur on a path where it is violating both

setup and hold. In this case this path is not fixable using optimization

and the designer must fix the timing constraint manually. This kind

of conflict could lead to long run time of the post-CTS optimization

engine because it is trying to fix a non fixable timing path.

3.6 Routing

Routing was done using all 6 metal layers; the routing stage was done

in 2 steps, track routing and final routing. Before starting the routing

process the existing global routes were optimized to reduce both tim-

ing and congestion, this was done by launching several global routing

optimization runs on the design.

Next, track routing was used to replace the global routes with

real metal layers, which was then optimized using final route. Several

iterations of final routing were needed to fix all DRC errors. The

final router used tricks like off-grid routing, and non-preferred metal

direction routing to fix hard to fix DRC errors.

73

3.7 Post Layout Verification

In post layout verification the design must be verified to make sure

that it is functionally operating and must be checked physically to

make sure that it meets all fabrication rules. The design was tested

functionally by two methods; first it was tested using formal verifica-

tion, where the final netlist of the design was loaded into the formal

verification tool and compared to the netlist that was used to initially

implement the design. Theoretically they should match because the

only change that was made to the netlist was the addition of optimiza-

tion buffers which will not affect the functionality in anyway, and that

was proved from the verification results.

To verify the design using simulation, it was a tricky job, as the

supplied test suite has its own monitors that monitors the design sig-

nals to check if the applied test passed or not. And since the design

has undergone a lot of structural modification these monitors could

no longer find the signals to monitor. To overcome this issue a mod-

ification to the testing environment was made. First a new monitor

was added to the original testing environment, the function of this

monitor is to dump the signal values of the processor core external

pins on every clock cycle, either for input or output. Then this new

74

test environment was run on the original available tests to dump the

values of the signals for each test.

After that a new testing environment was build, the objective of

this testing environment is to apply the input values dumped from

the monitor to the input pins of the processor, and then compare the

output of the processor output pins with the dumped outputs of the

monitor. Theoretically if the two design match then the output of the

final processor must match the output of the original processor, and

this was proven by the simulation results. During this simulation test

SDF file was loaded to account for design delays.

To physically check the design, the design was tested for DRC

and LVS violations. DRC was checked by loading the DRC rule file

provided by the FAB into the DRC checking tool and then the tool was

run to make sure that the design passes all rules. Some violation were

found, these violations were fixed using an iteration of final routing.

LVS was checked by extracting the netlist of the design using the

extraction tool and then comparing the extracted netlist to the original

design netlist, no violations were found after LVS checking.

75

Chapter 4

Results

In this chapter we will review all the design results that were achieved

from running the design flow. The results are divided into two main

groups physical results and timing results. In the physical results

section we will display results related to the physical implementation

of the design like area, wiring ...etc. In the timing result section we

will review the design timing data like slack, delays ...etc. We will also

analyze some of these results and explain their reasons.

76

4.1 Timing results

The design timing was tested using static timing analysis (STA). In

STA you define the design constraints and then test the design and

see if it passes them. These constraints are the same constraints used

to build up the design. The design was constrained to run on 100

MHz clock. This frequency was chosen based on several trial runs

that were made with higher frequencies but failed to complete the

flow cleanly. These runs were made by tightening the timing con-

straints and increasing the clock frequency. Then the full ASIC flow

is applied on the design. Then timing is checked through STA. The

100 MHz frequency is not the exact maximum speed the design can

reach but it is a rough estimate. Tables 4.1 shows the setup and hold

path groups timing report of the design.

Path groups are groups of timing endpoints that have a common

property. This is a technique used by the tool in order to categorize

timing endpoints into several groups for better readability to ease the

process of analyzing the results. From the tables above we can see

some specified groups; the main ones are in2reg, reg2reg and reg2out.

In2reg path group is the group of endpoints that start from an input

pin and ends at a register, reg2reg is the group of endpoints that

77

Table 4.1: Setup and hold timing path groups

starts at a register and ends at another register. Likewise reg2out is

the group of endpoints that start at a register and ends at an output

port.

WNS and TNS columns of the above table specify the worst and

total negative slack. Slack is the difference between the required delay

time calculated from the defined constraint and the actual delay time

extracted from the design. A negative slack number means that the

design is violating by the value of this number. WNS is the slack of the

worst violating path. TNS is the sum of all the negative slacks in the

78

path group. From the tables above the WNS and TNS are not zero

but small values, this is considered acceptable design closure state,

the remaining violations can be manually fixed before the design is

shipped for fabrication. Figures 4.1 and 4.2 show the setup and hold

slack distributions of the design.

Figure 4.1: Setup slack distribution

79

Figure 4.2: Hold slack distribution

The slack distribution figures show the relation between the num-

ber of endpoints (y-axis) and the slack (x-axis). You can notice from

the figures that the median of the graph lies in the positive side with a

small margin, which indicated that the design is passing the specified

design constraints. This also shows that the design is just passing the

applied timing constraints and cannot be improved more to achieve

better performance.

80

Table 4.2 shows the worst 10 setup timing path and table 4.3 shows

the worst 10 hold timing path.

Table 4.2: Worst 10 setup paths.

Table 4.3: Worst 10 hold paths.

81

Figure 4.3 shows setup worst timing path and figure 4.4 shows hold

worst timing path.

Figure 4.3: Worst setup timing path.

82

Figure 4.4: Worst hold timing path.

The above timing reports show the worst 10 design timing path

and the worst path in details for setup and the equivalent for hold,

from the setup reports you can notice that most of the worst paths

lay inside the IRF module. This shows that the IRF block is a critical

block. To improve the performance of the design paths like these must

83

be enhanced, this is discussed in more details in chapter 6.

Clock network timing is another factor that affects timing closure

of the design, it is important to build a proper clock network in order

to get the maximum frequency for the clock. Below we will review

some timing results related to the clock. Table 4.4 shows the CTS

report table of the design.

Table 4.4: CTS Properties.

From the above table we can see that the clock tree is built mostly

84

using inverters. This is mostly done in order to reduce the clock tree

pulse width degradation issue that occurs on long clock paths. Table

4.5 shows the clock tree level histogram. This histogram shows the

distribution of the clock leaf pins on the clock tree levels. We notice

that the max tree levels is 23 but actually as shown from the below

histogram most of the leafs lay on level 12 and 13 of the clock network.

Table 4.5: Level Tree Histogram

The above histogram shows that the clock tree has 23 levels, but

truly most of the clock network is between 13 or 12 levels deep. This

85

shows that there are some outlier clock network. If these outliers

are handled then the clock network could be reduced and therefore

the clock latency could decrease giving a possibility of performance

enhancement, as discussed in chapter 6.

Table 4.6: Rise and Fall CTS latency.

Table 4.6 shows the CTS latency report of the design. For proper

operation of the design the clock signal must reach all clock sinks at

the same time. Clock latency is the delay of the clock signal from its

source pin to its destination pin. Clock latency would ideally be the

same for all clock destination pins. If a big difference occurs between

the latencies the design might not function properly. The difference

86

in the latencies is called clock skew.

4.2 Physical results

In this section we will review the physical results of implementing the

processor.

Figure 4.5: Area percentage distribution.

The design consists of about 285 K cells. Figure 4.5 shows area

percentage distribution for each of the design main blocks, from this

figure we can see that the EXU, LSU and the IFU are the three major

design blocks.

87

Figure 4.6: Die area distribution.

Figure 4.6 shows the die area distribution of the design. This figure

shows that the utilization of the design in the specified die area is 86%,

the remaining 14% percent is left to reduce the routing congestion.

Because if the design was 100% utilized, the cells would be placed

side to side with each other, and will make reaching the cell pins

without violating DRCs a very hard task . After the design is routed

the remaining free design space can be filled with spare cells. Spare

cells are replacement cells that are only connected to the design if the

designer wants to make a last minute small change in the design after

the design has been shipped for fabrication but still the metal mask

has not been fabricated yet.

88

Figure 4.7: Cell density histogram.

Figure 4.7 shows placement cell density histogram. Cell density

histogram shows the utilization distribution of standard cells in ev-

ery placement bins. The design area is divided into small placement

squares called placement bins. For good distribution of the standard

cell over the die area the designer tries to use all available design bins.

As shown from the above graph, most bins are 75% to 85% utilized

which indicates that the placer has done a good job. Note that there

are some bins that has 0% utilization, those are mostly bins that lie

under the memory blocks, as these areas cannot be occupied by stan-

89

dard cells as they already contain the memory blocks.

Table 4.7: Design routing statistics.

Table 4.7 shows design routing statistics. From this table you can

notice that the design routing was done mostly using metals from layer

2 to 6, this is expected as M1 is mostly consumed in power rails and

internal connections of the standard cells. You could also notice that

the design has 70% double VIAs, which is a good indicator that the

design is DFM (Design For Manufacturability) friendly, which means

that the metal layers bonds are strengthened using double VIAs to

withstand fabrication issues. This means that the design yield will

increase. Yield is the percent of working chips to total number of

90

chips on a single wafer.

Table 4.8: Clock routing statistics.

Table 4.8 shows design clock routing statistics. You can notice that

most of the routing is done on metal 2 and 3, this is expected as the

clock network was routed separately in the beginning where all metal

layers were available for routing. The router chose to route on lower

metal layers to reduce the jogs on several metal layers and by that

reduces the VIA count which will reduce the load on the wires and

therefore reduces the resistance and increase the clock signal speed.

91

Table 4.9: Power analysis.

Tables 4.9 shows the power analysis of the full design. This is

based on switching activity with average static probability of 50% and

average toggle rate of 10%. From the numbers you can see that most

of the dissipation occurs in the clock network, memory blocks and I/O

pads. Leakage power dissipation is leading in the I/O pads, Internal

92

power (dynamic power dissipated within the memory boundary) and

dynamic power dissipation is leading in the clock network.

4.3 Design comparison

In this section I will compare my design to the previously listed FPGA

designs [6], the UltraSparc T1 (Niagara) release [14] and the FPGA

design made by M. Merzban [15]. Table 4.10 shows this comparison.

Table 4.10: Design comparison table

93

4.3.1 Processor size

It is hard to compare the design size of the implemented design to

the FPGA designs, as it is hard to estimate the size of the LUTs of

the FPGAs. So the implemented design is compared to the Ultra-

Sparc T1 (Niagara) release. Taking into consideration the difference

in technology between my design and the UltraSparc T1 (Niagara) de-

sign, scaling of my design size is needed in order to have a reasonable

comparison.

Figure 4.8 shows the layout of the UltraSPARC T1 processor core.

From the processor information that is available, the processor core

size is 11 mm2 [6]. My implemented design is 9 mm2 on a 130 nm

technology, direct scaling this to 90 nm technology yields to , ((90

x 90) / (130 x130)) x 9 = 4.31 mm2, this shows that my design is

smaller in size. However, my implementation has undergone some size

reduction which is not the case in the UltraSPARC T1 core. From

table 3.1 you can see that there was a 42.27% design size reduction,

adding this to my design size we get 4.31 /(1 - 0.4227) = 7.46 mm2.

This shows that my design is competitive with the area of UltraSparc

T1 (Niagara) release. It must be noted that the smaller design size

was gained by relaxing the timing constraints this made it easier for

94

Figure 4.8: UltraSPARC T1 processor core [8]

the tool placer and router to achieve this area target. As mentioned

before that this area restriction is imposed by the fabrication facility

in order to fabricate the design under educational terms. If this area

constraint is relaxed the designer may be able to achieve higher design

performance.

95

4.3.2 Processor speed

Comparing the implemented design to the FPGA designs we can see

that the implemented design is faster, which is expected as ASIC is

used compared to FPGA. The UltraSPARC T1 processor runs on 1

GHz clock, compared to the 100 MHz of the implemented design. This

huge difference in the performance is due to the following reasons:

1. The UltraSPARC T1 uses 90 nm technology which is faster than

the 130 nm I am using.

2. The maximum frequency of the artisan standard cell library used

with this design is limited to 1GHz.

3. The UltraSPARC T1 has custom design for the memories, and

the input and output drivers for the chip I/Os [16], which means

that all the memory blocks and I/Os are optimized for high

performance, compared to regular standard cells and memory

generators that was used in the implemented design.

4. Size Limitation by the factory on my design to be 4x4 mm, which

is not the case in the UltraSparc T1.

5. The use of PLLs on chip to generate the clock [4], will boost the

clock frequency of UltraSPARC T1, compared to external clock

96

source that is used.

6. 9 Layers of metal interconnects are used by the UltraSPARC T1

compared to the 6 layers used in my design. Which will allow

more routing resources for the UltraSPARC T1 which will reduce

congestion.

97

Chapter 5

Conclusion

In this thesis a complete ASIC design of the reduced OpenSPARC T1

processor core was implemented. This multi-threaded core conforms to

the SPARC V9 ISA and is characterized by the following specifications:

1. The design was implemented using IBM 130 nm CMOS technol-

ogy.

2. It has the area of 9 mm2.

3. Consists of two threads.

4. Operates on 100 MHz frequency.

5. Consumes 0.2696 Watt of power.

98

6. Instruction cache size is 16 Kbytes.

7. Data cache size is 8 Kbytes.

In order to design this process core the following 9 main steps was

executed:

1. RTL preparation: This included steps like core area reduction,

memory mapping and PADs insertion.

2. RTL functional verification: Verifyng the core functionality after

the modifications that were done in the previous step.

3. Synthesis: Changing the design from behavioral description to

physical implementation.

4. Gate level verification: Verifyng that the conversion in the syn-

thesis step did not introduce errors.

5. Floorplaning: Planning the layout of the design. This includes

steps like Macro placement and power grid planning.

6. Placement: Placing the standard cells of the design in appropri-

ate locations. This step also includes design pre-optimization.

7. CTS: Builds the clock network of the design. This step also

contains clock routing.

99

8. Routing: Connects the design pins together. This stop also in-

cludes post layout optimization.

9. Post layout verification: Verify that the previous physical imple-

mentation and optimization steps did not introduce errors.

It is not necessary in order to implement any design to follow the

same exact steps that was discussed in this thesis documentation. The

designer has the total freedom to change, add or remove any step of

the flow depending on his design nature and specs and the way he sees

it is appropriate to implement his design. The 9 main steps of the flow

discussed in this thesis documentation are the most commonly used

to implement any design.

5.1 Future work

There are several ideas of improvements that can be made on the

design to enhance its performance and increase its speed. Below we

will discuss some of these ideas.

100

5.1.1 Tighten the design constraints

The first and simplest way to improve the design performance is to

tighten the design constraints. This approach is not expected to make

huge improvements on the design. Because as in Figure 4.1 there is

only small room for improvement.

5.1.2 Custom implement the IRF memory mod-

ule

The IRF module in the SPARC core is considered the biggest module

in the design, it accounts for about 50% of the design area as shown

in Figure 5.1.

From the most critical timing path report in Figure 4.3 we can

see that the path goes through the IRF block, and as mentioned in

chapter 4 this block was not implemented using memory blocks. So if

this block was custom implemented to reduce its area and increase its

speed then the performance of the design will increase.

5.1.3 Optimize clock network

From table 4.5 there exists some outlier clock networks that are up

to 23 level deep. If these outliers could be optimized like for example

101

Figure 5.1: IRF block area highlighted.

the clock elements moved closer to the clock source, then the num-

ber of clock levels will decrease leading to a reduction in the clock

latency which will increase the performance of the clock network and

accordingly the performance of the design will increase.

102

5.1.4 Use smaller technology node

At the time this thesis started the only complete design kit (Includes

Memory Generators) that was available was the IBM 130 nm technol-

ogy node. Using a smaller technology node will for sure reduce the

design area and increase the design speed, this is because the cells,

pads and interconnect delays will become smaller. Using a smaller

technology node has its own disadvantages, like for example crosstalk

effect will increase and static power dissipation will also increase, new

techniques to overcome these problems can be investigated.

103

Appendix A

Digital design ASIC Flow

Every design process has to go through a set of design steps to reach

the required outcome. This set of steps may differ from design to

design depending on the environment and the architecture of that

design. But there are always some main design steps that the design

cannot be accomplished until they are done. Also these steps depend

on each other so they must be done in a certain order. In this chapter

we will introduce the basics of the digital design ASIC flow (steps).

In this chapter we will introduce the main design steps in addition

to most of the additional design steps that came to my attention while

researching for this thesis work. The design flow described below may

104

differ from one design to another or even from one designer to another

depending on what each designer thinks is the best for that particular

design. Figure A.1 shows the main design flow for the digital ASIC

design.

Figure A.1: Digital ASIC Design Flow

A.1 RTL preparation

RTL preparation stage is where we get familiar to the design in its RTL

form. To make it easier to handle very large designs, usually the design

is divided into several blocks, and each block is divided into several

105

sub blocks depending on the design size and complexity, where several

groups of engineers work on each block separately and then combine

these blocks in one top level design. In case of very large designs, a

separate group of engineers work only on this top level (usually called

chip assembly).

Verilog / VHDL formats are mainly used to represent the design

files at this stage. Those files define the functionality intended by the

design. If the functionality has already been verified for each of those

files, no changes are made to them, except in the existence of mem-

ory structures. There are different methods to implement memory

structures; the simplest is the use of registers but the commonly used

are memory blocks. Using registers is not efficient for many reasons

especially for large memory sizes. Some of these reasons are:

1. Area: Using registers to represent large memory blocks is not

efficient as a register contains a large number of transistors com-

pared to a memory cell of a memory block.

2. Power: A register consumes a lot of power compared to a mem-

ory cell of a memory block.

3. P&R: Placement and routing of millions of memory registers are

106

very difficult compared to the placement and routing of a single

memory block.

Memory blocks are considered as black boxes in the design. Each

ASIC technology vendor has his own way of supplying the informa-

tion needed by the designers to implement those memory blocks. In

most cases it comes in the form of memory generators (A computer

program), where the designer enters the specification of the memory

block to the generator, and the generator generates the required design

files. One of these files contains the Verilog / VHDL implementation

of the memory block. The designer then has to instantiate the mem-

ory block as an instance in his design, and connects its interface pins

to the rest of his design.

There are limitations on the sizes of memory blocks that the gener-

ator can generate; this reflects the restriction of the memory sizes the

ASIC vendor can supply. There are also different types of memories

that the designer can choose from to suite his design needs, examples

are single port SRAMs, double port register files ...etc. Usually the

technology vendor supplies a specification document with each mem-

ory generator to describe in details the functionality, architecture and

size limitation of memory blocks that can be generated using this gen-

107

erator. The designer then uses this document as a guide to generate

the required memory blocks.

After the designer has replaced all the memory structures in his

design with memory blocks the designer has to connect the interface

pins of his design to pads. This step is only done on the top level

design, if the designer was working on a block that is instantiated in

the top level then this step is not required as the top design will be

connected to pads by the top level design engineer.

Pads are gateways that will interface the chip level external pins

to the design internal pins. There are two main types of pads, power

pads and general purpose input/output pads. As the name indicates

power pads are used to supply the internal ASIC core with power from

external sources and the general purpose pads are used to connect

internal input /output signal pins to external signal sources. Usually

the ASIC technology vendor provides the designer a document that

describes the functionality and specs of each pad available in the design

kit.

Pads can be connected to the design either automatically or man-

ually. The automatic connection is done by the synthesis tool where

108

the designer specifies to the tool the available pads and the tool auto-

matically chooses the best pad and makes the connection to the pins

automatically. The manual connection is done by the designer where

he instantiates the top level design in a new top level module and then

instantiate the pads that will be used from the library and then makes

the connection between the design pins and pad pins manually.

After completing the pads insertion in the design the design is now

ready for the next implementation step.

A.2 RTL functionality Verification

After modifying the design (If needed) in the RTL preparation stage,

we need to make sure that the design functionality has not been al-

tered. There are two main methods to do that, either to use simulation

or formal verification or both. In simulation the design is tested by

applying some test patterns to the inputs of the design, and then the

outputs of the design are compared to a golden set of expected out-

puts. Usually the design runs through a battery of tests, where each

test is designed to test a certain part or functionality of the design by

applying the appropriate input patterns to the inputs of the design

and then comparing the outputs with the expected values.

109

Formal verification is mainly used to compare a design in different

stages, where we have a golden design file which we are sure it is

functionally correct and we have a modified version of that design and

we need to make sure that it is functionally equivalent. During formal

verification each of the designs is reduced to a certain set of equations

(properties), and then these equations are compared together to make

sure they are equivalent.

The main difference between simulation based verification and for-

mal verification is that the simulation requires input vectors and for-

mal verification does not. Another difference is that formal verification

is more complete, in the sense that it does not miss any point in the

input space, a problem from which simulation based verification suf-

fers. However, this strength of formal verification sometimes leads to

the misconception that once a design is verified formally, the design is

100% free of bugs.

Simulating a vector can be viewed as verifying a point in the input

space. With this view, simulation based verification can be seen as ver-

ification through input space sampling. Unless all points are sampled,

there exists a possibility that an error escapes verification. As opposed

to working at the point level, formal verification works at the property

110

level. Given a property, formal verification exhaustively searches all

possible input and state conditions for failures. If viewed from the

perspective of output, simulation-based verification checks one output

point at a time; formal verification checks a group of output points

at a time (a group of output points make up a property). Figure A.2

illustrates this comparative view of simulation-based verification and

formal verification.

Figure A.2: Simulation VS Formal Verification [17]

With this perspective, the formal verification methodology differs

from the simulation-based methodology by verifying groups of points

in the design space instead of points. Therefore, to verify completely

that a design meets its specifications using formal methods, it must be

further proved that the set of properties formally verified collectively

111

constitutes the specifications.

Usually at this stage of the flow there is no reference design that

can be used by the formal verification tool to compare with, there-

fore it is more often that simulation is used to verify the design. It

is also common that the design is verified with the same simulation

environment used by the designers who wrote the RTL code to verify

it, making only minor changes to it if needed.

For the designer to be able to verify his complete design in case of

the existence of memory blocks (mentioned in the previous section),

he must use the behavioral description of these blocks written in RTL

form (verilog or VHDL). This description is supplied to the designer

in the form of .v or .vhd files by the memory generator that was used

to generate those blocks.

A.3 Logic Synthesis

Logic synthesis is the process of converting the design from its behav-

ioral form (RTL code) to its physical form (Gate level netlist) [18].

In this process the synthesis tool maps each functionality from the

design to its equivalent physical structure using the technology files

112

supplied by the ASIC vendor. These physical structures are composed

of one or more standard cells from the ASIC library. Standard cells are

the basic building blocks that are supplied by the ASIC vendor that

the designer uses to implement any functionality in his design. The

mapping process that is done by the synthesis tool is an automatic

one; the designer only guides the synthesis tool to do the mapping

as desired. This guidance comes in the form of constraints that the

designer specifies for the tool to obey, for example the designer can

set some standard cells as don’t use by the tool.

Synthesizing a design is an iterative process and begins with defin-

ing timing constraints for each block of the design. These timing

constraints define the relationship of each signal with respect to the

clock input for a particular block. In addition to the constraints, a file

defining the synthesis environment is also needed. The environment

file specifies the technology cell libraries and other relevant informa-

tion that synthesis tool uses during synthesis.

Figure A.3 describes the synthesis process.

113

Figure A.3: Synthesis Stage

Usually the synthesis tool does a first iteration of initial fast map-

ping of the full design then it ’does other several iterations trying to

optimize the outcome targeting different objectives like area, timing,

power ..etc. These objectives are defined in the form of tool commands

and constraints then the tool is instructed using its commands to op-

timize the output for these different objectives using these constraints.

114

Memory blocks (mentioned in the RTL preparation stage) are

treated as black boxes and are not synthesized; only their timing infor-

mation is taken into consideration during timing optimization in the

synthesis process. This timing information is supplied to the synthesis

tool in separate files (.lib or .db) which are supplied by the memory

generator.

The outcome from this synthesis process is a gate level netlist of the

full design and a constraint file that defines the timing constraints of

the full design that is needed for the design to function correctly. The

synthesis process is very memory and processing power consuming;

therefore the design is usually synthesized each block separately and

then is collected together in one top level gate netlist.

A.4 Gate Level functionality Verification

After synthesizing the design we must make sure that its functionality

has not been altered during the synthesis process, this is done in this

stage of the flow. The gate level netlist generated by the synthesis

process is compared to the golden design in its RTL form using the

formal verification tool as discussed in section 3.2. Simulation is not

commonly used at this stage as the design structure has undergone a

115

lot of changes in the synthesis process. For example a lot of internal

signals and connections have been modified during the synthesis pro-

cess which will cause the simulation test bench fail if it was monitoring

any of those signals.

Although the synthesis process is automated and the designer do

not interfere much in it, the bad coding style used by the designer

could cause the tool to misinterpret the RTL code, causing mismatch

between what the designer wants and what the synthesis tool under-

stood. For example synthesis tools infer combinational or latching

logic from an always block with a sensitivity list that does not contain

the Verilog keywords posedge or negedge. For more examples please

refer to [19].

A.5 Floorplaning

This stage marks the start of the Place and Route flow [20], where the

design will physically be implemented in the form of a layout that can

be fabricated. In this stage we start by collecting and loading all the

design files that we generated from the previous stages or technology

related files. Below is a list with brief description of each file needed

at this stage:

116

1. LEF (Library Exchange Eormat) files: LEF files are technology

specific files contain the definition of the technology metal layers,

DRCs governing those metal layers and metal abstract of each

standard cell in the library. Also if there are memory blocks in

the design, each of these memories will have its own LEF file

which can be obtained from the memory generator as discussed

earlier.

2. LIB (Synopsys Liberty Format) files: LIB files, which are also

technology specific files, contain timing information of each of

the standard cells in the library at different corners. Also similar

to LEF files, each memory block has its own LIB files at different

corners.

3. Verilog/VHDL netlist: This is the output file from the synthesis

stage. It defines all design elements and the connection between

them.

4. SDC (Synopsys Design Constraints) files: These files are also

outputs from the synthesis stage. SDC files define the timing

constrains the design must obey to function correctly.

5. Interconnect specification file: This file is a technology specific

file, but may have different formats depending on the P&R

117

(Place and Route) tool used. Also some P&R tool vendors sup-

ply conversion scripts to convert a well known interconnect spec-

ification file to its own format. This file contains specifications

and parameters for each metal layer so the tool can use this in-

formation and calculate the resistance and capacitance of each

interconnect.

6. DEF (Design Exchange Format) files (optional): DEF files can

define any physical structures. It can be used for example to

define a floorplan that might have been made by a third party

tool, or can be used to specify a partition that went through the

P&R flow separately. It is optional because it is not needed if

the designer will start the design from scratch.

Each of the above files is usually loaded in the above sequence,

but the designer should make sure before loading those files that he

has already defined the modes and corners of the design. A design

mode specifies the mode of operation of the design, for example we

might have a normal operation mode (usually called Functional) and

a test mode (usually called Bist). When the mode is enabled the tool

understands that the designer wants to do all his timing analysis when

the design is functioning in a certain way, this is done by enabling

certain switches in the design by setting ones or zeros on some design

118

inputs, this is done in the SDC file that is loaded. Inside the SDC

file there is a command called set case analysis that does the job of

applying ones or zeros to certain design pins/ports. That is why it is

necessary while loading the SDC file we must specify which mode is

this constraint for.

Design corners specify the operating conditions (ex. Temperature,

Voltage ...etc) that the design will operate on. Usually there are two

main corners (Best and Worst), but as the technology node drops in

size this number multiplies. For each corner we have separate LIB files

that specifies the timing calculations in that corner, that is why the

designer should make sure that while loading the LIB files he specifies

which corner is those files for. Not all P&R tools can handle all corners

and modes in one working session, so in this case the designer should

test his timing values in each combination of modes and corners to

make sure that his design is timing clean in all design cases.

At this stage the designer can test his design timing constraints

using an approach called Zero RC Timing, this is done to make sure

that the design constraints are valid and logical. In this approach all

the interconnect delays are set to zero, and timing is calculated using

only cell delays. For the constraints to be valid the design must pass

119

this test without any violations because if there is any violation it will

only get worse when interconnect delays are added later in the flow.

Some optimization may be needed at this stage to solve some small

timing violations, for example if a cell driving strength is smaller than

required the optimizer can replace those cells with ones which have a

higher driving strength. Now the design is ready for floorplaning.

Floorplanning is the initial planning of the chip layout, in this

stage the designer specifies roughly where each part of his design will

be located on the chip die. The designer will also decide how he will

implement the design depending on the design size and the strategy

that he will follow, for example if the design is small he could simply

flatten all the design hierarchies and let the P&R tool automatically

places all the design elements in one area and then connect them by

routing. If the design is large he could choose to divide it into smaller

partitions and he could either work on those partition separately as

separate designs (blocks) and then import them in the top level or he

could work on them all at once in the same context of the top level, in

this case the tool will deal with each partition as separate design but

will work on them at the same time.

120

Whichever flow the designer chooses to build his design he must

first start by specifying the dimensions (area) of the chip. The designer

can directly specify the X and Y dimensions, or he can specify the

dimensions as a utilization factor and an aspect ratio. In the latter case

the tool calculates the estimate area by summing up the area of each

element in the design and then expands this area until these elements

occupy the utilization factor the designer specified. The aspect ratio

defines the ratio of the length to the width of the design. The area

of the chip could be either core driven or pad driven. In case of core

driven design, the core cells controls the size of the chip, and this is

usually the case for big designs. For small designs, the pads inner

circumference is what controls the chip size.

Figure A.4 shows an example of a design floorplan.

Pads are circuits that translate the signal levels used in the ASIC

core to the signal levels used outside the ASIC. Additionally, the pads

circuits clamp signals to the power and ground rails to limit the voltage

at the external connection to the ASIC pads. This clamping reduces

signal overshoot and prevents damage from Electrostatic Discharge

(ESD). In most cases the technology provider provides different type

of pads to satisfy each of the design requirement. In case of core

121

Figure A.4: Floorplan of the design [21]

driven designs, pads are thick and short so that it occupies more lateral

dimension. In case of pad driven designs, pads are thin and tall to

occupy more perpendicular dimension to reduce the design size as

much as possible. The designer places his choice of pads in the area

surrounding the die, pad placement is usually done automatically by

the P&R tool, but it must be constrained to guarantee the ordering

and the location of each pad. For example any pad can be placed on

122

any of the four sides of the chip top, bottom, right or left. The designer

must intelligently choose the correct location in order to reduce the

connection length between the pad and the design components that

will be placed latter in the design. Some P&R tools does an initial

pad location estimation derived by the design information it has, but

this is only a rough estimation and the designer who has a deeper

understanding of the design should adjust this initial estimation to

a more intelligent one. Also the designer must take care of ordering

the pads correctly to ensure that related pads are placed close to each

other, for example if the design has a bus on its interface, the designer

must make sure that he orders his bus pads correctly to ensure good

distribution and symmetry of the components that will be placed latter

on in the design flow.

Figure A.5 shows an example for pad driven and core driven de-

signs.

After defining the chip area the designer then starts defining par-

titions or regions in the core area if needed. This definition is done

manually using the P&R tool GUI or commands. Partition defines

a group of design elements grouped together. As mentioned before,

partitions are made to enable separate parts of the design to be imple-

123

Figure A.5: Pad driven VS Core driven [22]

mented separately as small sub designs. Regions define certain areas in

the chip where you can place certain design elements close together,

unlike partitions regions are only visible to the placer engine of the

P&R tool. The region boundaries could be either hard or soft, in case

of soft boundaries the P&R tool placer engine can either place region

elements outside of the region boundaries or place top level elements

124

inside the region boundaries, and this could be controlled by certain

switches in the tool. In case of hard boundaries the tool only places

the region elements inside the region boundaries and keeps everything

else out. This hard boundaries approach is mostly used in case the

design uses multiple voltage supplies. In this case, these regions act as

voltage islands where each of those islands can be powered by separate

voltage supplies. If an element of an island is placed outside the island

boundaries it will not function properly or might not function at all.

After creating the design regions and partitions the designer then

creates the design rows, rows are hypothetical locations that specify

where the design standard cells will be located, and they are used to

guide the design placer to only place cells on these rows. Rows are

separated by equal spaces depending on the cell height. In general

each technology library has a fixed standard cell height. In some cases

the technology library might also contain cells of other heights but

these heights are usually multiples of the normal height, this is done

to enable these cells to be placed on the same rows as the normal cells

expect that they will occupy more than one row.

The next step is to build the power grid. We start by defining the

power rings. Power rings are metal wires that surrounds the chip and

125

are used to supply power, the metal wires used to build those rings

are usually the thick metals of the technology (ex: Metal 7 and 8, in

a 8 layer technology), this is done to reduce the power dissipation,

guarantee good connectivity and keeps the thin lower metal layers for

signal routing to reduce the routing area needed. Two metal layers

are used because usually each metal layer has one preferred direction

that most of its routes are routed in that direction. In critical cases

where DRC violation cannot be resolved, the tool might try to use the

non preferred direction to resolve the violation. In simplest case we

have at least two power rings one for power (VDD) and the other for

ground (GND), for multi-voltage designs we might have more. Power

rings are then connected directly to power pads to supply the rings

with power.

After connecting the power rings, the designer then creates power

stripes, power stripes are vertical metal wires that are placed over the

core area and are connected to the power rings. Power stripes are used

to distribute the power from the rings to the rest of the design area.

Each of the power supplies has its own stripes; also power stripes

are created on thick metal layers similar to the power rings. After

creating the stripes the designer creates power rails, power rails are

horizontal metal wires that are used to supply power to the standard

126

cells. The connection between the power rails and the standard cells

is done through abutment, where standard cells has its power pins at

the top and bottom of the cell, and power rails are placed at the top

and bottom of each cell row, so when those cells are placed on the

rows they automatically get connected to the power grid. Power rails

are connected to both the ring and the stripes to ensure even power

distribution along the rail length.

The power grid gets its power from power pads, the connection

of power pads and the power ring is done manually or automatically

depending on the implementation tool. Signal pads need also to be

supplied with power; this is done through abutment of the pads to each

other forming their own power ring, where each pad has its supply pins

in the same location across the pad width, which guarantees that when

those pads are put together they form a ring. If empty spaces exists

between adjacent pads in case of core driven designs, this space is

filled by special type of pads called pad fillers, the main purpose of

those fillers is to complete the pads ring structure. Similarly at the

four corners of the chip there exists a special type of cells called corner

cells that does the same functionality of connecting the ring structure.

Figure A.6 shows an example of a floorplan power grid.

127

Figure A.6: Power grid of the design [21]

The floorplan is ready now to receive the design components; the

first components that should be placed in the floorplan are macro

blocks. Macro blocks could be either memory blocks or any physi-

cal block that is not a normal standard cell. Macro blocks could be

either placed automatically or manually. If macro blocks are placed

automatically, the tool tries to roughly estimate the location that will

reduce the connection length and reduce the congestion of the de-

sign. If macro blocks are placed manually, the designer should try to

128

achieve the same goals. The best practice in most cases is to let the

tool roughly estimates the initial locations of the blocks and then the

designer with his deeper view of the design adjusts these locations.

The designer must make sure that the placed blocks does not block

its pins and its orientation are correct to guarantee that routing could

reach the block pins in the preferred metal direction. Also the designer

must make sure not to leave narrow channels between blocks, as this

will cause a lot of problems if standard cells got placed in them. An

example of these problems is the congestion of routing wires at the

entrance point to this channels. The macro blocks are then marked as

fixed location so that it is not moved later in the flow.

Figure A.7 shows an example of macro placement in a design.

If any standard cell rows existed under the location where the

macro blocks are placed, these rows must be removed using the tool

row cutter or in another approach the locations where macros exists

are covered by hard placement blockages, this is done to ensure that

standard cell are not mistakenly placed in these locations causing DRC

(design rule checks) errors.

129

Figure A.7: Example of macro placement [21]

After placing the macro blocks they need to be separately con-

nected to the power grid. Macro blocks can have its own power ring

that is internally connected to the internal macro structure. In this

case the designer must make sure that this ring is connected to his

power grid. Alternatively, the macro block has large supply ports and

also the designer must make sure to connect these ports correctly to

130

his power grid. These connections could either be done automatically

or manually depending on the implementation tool capabilities.

A.6 Placement

In this stage all the remaining physical cells of the design get placed

on rows that were created in the floorplaning stage. But before the de-

signer starts placing the standard cells a preparation stage is needed.

This preparation step is called high fan out net synthesis (HFNS). In

this step the tool tries to reduce as much as possible the high fan out

nets. High fan out nets are nets that has a large number of sinks

connected to one driver. This leads to huge delays at this driver out-

put due to the large capacitive load that those sinks imply. The tool

divides those sinks into small groups each derived by a newly instan-

tiated buffer and connects the input of those buffers to the original

driver. The tool can repeat this process on the newly instantiated

buffers to reduce the fan out, this will build stages of buffer drivers.

This process of HFNS is done before placement as it introduces a lot of

buffers that needs to be placed near its sinks, and it also solves several

timing issues and can eliminate critical paths not critical any more.

The only exclusion to the HFNS process is the clock tree, although the

131

clock network drives a huge number of load but this will be handled

in the CTS (clock tree synthesis) stage, for the time being the clock

network will be considered as ideal net, i. e., a net that has zero in-

terconnect delays. Another example of ideal nets is the reset network;

this also could be considered as a clock network and be handled in the

CTS stage. Now the design is ready to be placed.

Placement is done in two main steps Global Placement and Local

Placement. In global placement the tool does its calculations and

roughly places the standard cells. The global placement process could

be either driven by timing or congestion or both. If timing goal was

only specified the tool tries to place the cells in a way that reduces

the timing delays on timing constraint paths in order to reduce the

overall timing violations. If congestion goal was specified the tool

tries to place cells in a way that reduces the overall design routing

congestion. If both goals are specified the tool tries to compromise

its placement in a way that satisfies both goals as much as possible.

In global placement the cells are scattered all over the core area, the

global placer does not take care of any DRC violations, so it is normal

that you could find cells placed over each other or cells not placed on

the rows correctly.

132

In global placement stage the tool follows the guide lines of regions

and partitions specified by the designer in the floorplan stage. The

global placer engine uses the information of the design hierarchy (if

available) to place related standard cells close to each other to reduce

both timing and congestion as much as possible. Usually the global

placement process is done in iterations, the quality of the placement

improves proportionally with the increase of this number of iterations

because the engine uses some information from the previous iteration

to enhance the current one. The designer must take care that the in-

crease of the number of iterations will lead to the increase of placement

runtime.

After the tool initially placed the design in the global placement

stage, the tool must now complete the placement process by using de-

tailed placement. In the detailed placement the tool starts to legalize

the location of each standard cell to make sure that it does not violate

any DRC rule and does not overlap with another cell. The detailed

placement process can either be timing driven or congestion driven or

both, for example: in timing driven objective if two cells are overlap-

ping the detailed placement engine will calculate the timing delay of

each path that contains each of the standard cells, and then the engine

will make a decision to move the cell that will best benefit the over-

133

all timing. In congestion driven detailed placement the engine tries

to introduce gaps between standard cells in order to increase routing

resources as much as possible.

After the tool finishes placing the design the designer must invoke

the tool’s placement checker in order to check for placement violation

that the detailed placer might have missed. An example of these

violations is the placement of cells on rows not powered by the power

grid due to floorplan mistakes, or in case of multi-voltage designs the

placer could mistakenly place cells of different power domain in wrong

power domain regions. Also the designer could invoke the DRC checker

engine to make sure that there are no DRC violations between the

placed cells and the existing power grid routing.

For the tool to roughly estimate the interconnect delays during

the timing calculations that it does in the placement stage, the tool

routes the design using the global routing engine. In global routing

process the engine divides the core area into small cells called global

cells (G-cells), then it connects the center of those cells with each

other using available routing resources (metal layers) depending on

the standard cells that is located in each global cell. For example: If

two standard cells are connected together logically and each of them

134

is located in separate global cells physically then the global router will

connect the centers of these two cells together. But if the standard

cells were located in the same global cell then the global router will not

connect them. Global routes are only estimate routes that help the

tool roughly calculates the interconnect delays. Global routing engine

should be fast because at this early stage of the design there is a lot of

cell movements and there by a lot of routing modification. The quality

of global routing depends on how well those routes will correlate to the

final routing of the design. The quality of global routing can increase

by reducing the size of the G-cells but this will lead to the increase of

run time.

Figure A.8 shows an example of G-cells of the global router.

135

Figure A.8: Global router G-cells [21]

A.7 Clock Tree Synthesis

Clock tree synthesis (or CTS) stage is divided into three main stages,

which are pre-CTS optimization stage, CTS stage and post-CTS op-

timization stage. Pre-CTS optimization stage is the first stage of op-

timizing the design. Usually optimization is done in two main steps

136

global optimization and local optimization. In global optimization

the optimization engine tries to locate and solve bottle neck timing

violations across the design. Bottle neck timing violations are tim-

ing paths that are violating timing constraints requirement due to a

common timing path between all these paths, if this common timing

path is fixed all the violating timing paths that includes this timing

path are fixed. For example if a driver is driving ten endpoints and this

driver has a driving strength of one, then all the ten endpoints (timing

paths) are violating timing constraints due to the big delay introduced

on those ten paths by the driver due to its small driving strength. So

if the optimizer replaced this driver with a driver of greater driving

strength, this introduced big delay will disappear, which will make

those ten endpoints meet the timing constraints requirement and will

no longer be violating.

In detailed optimization, the optimizer handles each violating tim-

ing path separately and tries to fix it. The run time of the detailed

optimization step is directly proportional with the number of violat-

ing paths; therefore it is always advised to run the global optimization

step first to solve as much as possible bottle neck violations before

running the detailed optimization. Usually you could specify different

objectives for the optimizer to work on; examples of these objectives

137

are maximum transition, maximum capacitance, setup and hold vi-

olations [23]. Where the optimizer tries to work on each of these

objectives separately or at the same time to reduce these violations

as much as possible. It is also a good practice to start the first opti-

mization runs using maximum transition and maximum capacitance

objectives only, this is because a lot of timing violations are due to

either capacitance or transition violations because when the timing

engine tries to calculate timing delays it uses transition and capaci-

tance to figure out the value of the delays from the timing tables of

the library, if the values of either the transition or capacitance are

out of the range of the timing tables the tool extrapolates in order to

calculate the timing delay, usually the delay calculated depending on

this extrapolation process is not accurate causing timing violations.

The designer can run the optimization step several times as long

as the timing is converging. If timing stopped converging and there

still exists timing violations then the designer should try to look at

this violations manually. The problem could be due to a real issue

in the design preventing it from being fixed or due to tight timing

constraint. Either way the designer should investigate more and try

to solve the problem. In pre CTS optimization stage the designer ’does

not optimize the design for hold violations as the clock tree has not

138

been built yet and the delays on the clock paths are not calculated

accurately. After each optimization run the designer go through an

incremental placement and routing run to fix the location and correct

the connections of newly introduced or modified design elements. This

is done to ensure that the timing information calculated by the timing

engine is accurate.

After completing the pre-CTS optimization stage the designer can

now build his clock tree network. The main objective of the CTS

stage is to reduce as much as possible the latency between the clock

sources and clock sinks and to eliminate as much as possible clock skew

between clock sinks. Clock skew is the difference in the arrival time

between two sequentially-adjacent registers. This difference must be

as small as possible to insure that the clock reaches all its sinks at the

same time. We begin defining the clock tree by specifying its specs

like defining the maximum transition of the clock signal, maximum

capacitance, maximum fanout, maximum latency, maximum skew. We

also introduce some extra constraints like defining clock uncertainty

which is the uncertainty of the clock edge to encounter for any clock

disturbance from the clock source.

During the CTS stage a special buffers (inverters) are used to build

139

the clock network. This buffers are characterized by having equal rise

and fall propagation delays, this is important to be able to balance the

clock network accurately. These buffers are not used in the normal

timing optimization as usually these buffers has a bigger size than

normal buffers. The equal rise and fall times of these buffers are

needed so as to minimize the clock pulse narrowing issue, where the

clock pulse width gets smaller every time it passes through a buffer,

also to overcome this problem CTS engines can use inverters instead

of buffers.

Every CTS engine has its own algorithms to build the clock net-

work, but there are common strategies that can be used to guide the

tool to build a better network. For example the designer can manually

divide the network into levels, where he could balance the endpoints

in each level separately. This balance can be done by setting a special

tool property on the endpoints that is not included in this level so

that the tool ignores them and do not try to balance them with the

rest of the endpoints. After balancing a certain level the designer then

instruct the tool to set this level as fixed so as not to modify it, and

then the designer can move to the next level and repeats the same

process. Another approach that can be used in some tools is what

is called skew groups, where the designer collects all the endpoints

140

that need to be balanced together in groups, and then the designer

instructs the tool to balance the elements of these groups together in

one run.

After completing the CTS stage the design must go through incre-

mental placement and routing to fix the locations and connections of

all the newly inserted buffers and inverters. At this stage the clock

network is no longer ideal and the delays on the clock network can be

calculated accurately. It is also a common practice to route the clock

network completely at this stage. To achieve that the clock is routed

using real metal connections. This is done to ensure two points, first

that the clock routing is done before routing the rest of the design

so that it is not interrupted by any other routes and the connections

are short and straight as much as possible to reduce the intercon-

nect delays on these routes. The second point is that the use of these

real metal connections will ensure accurate delay calculations on these

connections which is critical at this point.

Now that the clock network is in place a final optimization stage

is needed to optimize the timing violations that were introduced due

to the modifications that occurred in the CTS stage. The post CTS

optimization stage takes care of that, it also fixes hold violations that

141

was ignored in the pre CTS stage as the clock network is now in place

and delays can now be accurately calculated.

A.8 Routing

This is the final main stage of the P&R flow. In this stage all the

design pins are hooked up using real metal connections. Usually rout-

ing process is done in two steps, in the first step the routing engine

connects the design pins together using metal connections, in this step

the routing engine tries as much as possible to connect all design pins

without violating DRCs. The engine follows the route guides of the

global router as much as possible but if it got stuck it can violate

DRCs in order to make the connection. The outcome of this stage is

a fully connected design but not a DRC free one.

The second step of routing is the final routing, where the routing

engine tries to fix all the DRC violations that occurred in the previous

routing step. In final routing the routing engine can use different

techniques to solve DRC errors, example of those techniques are off-

grid routing, non-preferred direction routing, wire tapering ...etc. The

main objective of final routing is to reach a DRC free connected design.

Several iterations of final route could be applied to the design as long

142

as the number of DRC violations is decreasing. If the number of

violations did not reach zero and are not decreasing with final route

iterations the designer must manually look at these violations. There

might be a design issue (for example a routing blockage) that might

be preventing the tool from fixing the DRC error.

Before the designer goes into fixing all the DRC errors, he must

check first that timing has not changed due to the routing stage and

there are no timing violations. If there exists timing violations then

the designer must go through a post route timing optimization stage

to fix those errors first. The post route optimization stage differs from

the normal optimization stage as it uses techniques that help to fix

timing without disturbing the current state of the design. Examples of

these techniques are white space optimization, where the tool adds the

extra optimization buffers in white spaces existing between the already

placed cells. Another technique is footprint optimization where the

optimizer size up the existing standard cells using cells of exactly the

same size.

After fixing all timing violations and all DRC errors the designer

must also check LVS (Layout Versus Schematic) errors. In LVS the

tool extracts all the design connections and constructs a netlist of

143

the design using this extraction, then it compares this netlist with

the original design netlist to make sure that all the connections in

the design is made accurately. Now the design is almost ready for

fabrication, some final steps are needed, examples of these steps are

filler cells insertion and metal fill insertion. In filler cell insertion the

free remaining spaces in the core area are filled with special cells called

filler cells. These cells are needed to guarantee the continuity of N-

well and implant (VDD and GND) layers on the standard cell rows.

Metal filling is needed to ensure good distribution of metal density all

over the die area. In metal filling process the tool adds metal pieces

to areas where there is no metal. The tool must make sure not to

violate any DRCs. These metal pieces are connected to the ground

supply. Metal filling can introduce extra capacitance to the design.

The designer should recheck his timing figures after metal fill.

There are some tricks the designer can use to improve the quality

of his design, like replacing single cut VIAs with double cut VIAs;

also the designer could use techniques like wire spreading to reduce

the effects of crosstalk. He could even shield his clock network using

grounded metal layers to reduce the effect of coupling. Also he could

increase the width of metals used in clock routing in order to reduce

the total resistance on these nets to speed up the clock network. All

144

these tricks need to be accounted for in earlier design stages so as not

to disturb the final routing of the design.

Now the design is ready to be shipped to the factory. The de-

sign is exported in a binary format called GDS. Also the design final

netlist is exported for the final stage of post layout verification. Some

other files are also needed for verification like interconnects capaci-

tance and resistance extraction called Standard Parasitic Exchange

Format (SPEF). Also interconnect delays are calculated and exported

in a format called SDF (Standard Delay Format).

A.9 Post layout verification

This is the final stage of design checking before the design is shipped to

the factory for fabrication. The design goes through two types of ver-

ification at this stage, functional verification and physical verification.

In functional verification as mentioned before the design is functionally

verified either by simulation or formal verification or both. As this is

the final stage of building the design and no more editing to the design

is allowed after the design is shipped to the factory, it is essential that

the design is tested by all means of verification available. Therefore at

this stage the design is verified by simulation and formal verification.

145

Also to take timing into consideration during simulation the designer

loads the real interconnect delays into the simulation tool so that the

tool can account for the effect of these delays during the verification

process. Usually this delays comes in a format called Standard Delay

Format (SDF), this file is generated by the P&R flow.

The physical verification process includes DRC checking, LVS check-

ing and any other checking that is implied by the factory. Usually the

fabrication factory requires the design to pass certain checking before

it is shipped for fabrication. The designer must make sure that his

design passes those tests. Although the design has undergone some of

this checking at the end of the P&R flow it is always a good practice to

repeat this test using different tools or using a more specialized tool.

This re-check is done to make sure that no errors has been missed out

due to any tool calibration mistake.

After completing both type of checking the designer can now ship

his design for fabrication. Usually the designer ships his design to the

factory and then the factory start processing it and gives the designer

the possibility to make some final modifications to certain metal layers

before a final cutoff date after which no modifications are allowed to

any design layer.

146

To conclude, this chapter covered a complete digital ASIC design

flow, and as mentioned before that this is not a fixed flow. Every

designer can modify the flow to suite his design and his needs. In

this chapter we tried to cover the main design flow stages in a level

of detail that tries to compromise between simplicity and knowledge.

Figure A.9 shows the tools used in each design step.

Figure A.9: Tools used in design flow

147

References

[1] Wikipedia, “SPARC”, (http://en.wikipedia.org/wiki/SPARC), Accessed [26-

8-2012].

[2] David L. Weaver and Tom Germond, “The SPARC Architecture Manual”,

PTR Prentice Hall, Version 9. 1994.

[3] Sun Microsystems, “OpenSPARC”, (http://www.opensparc.net/about.html),

Accessed [28-8-2012].

[4] Sun Microsystems, “OpenSPARC T1 Processor Datasheet”, Sun Microsys-

tems, Inc, March 2006.

[5] Sun Microsystems, “OpenSPARC T1 Microarchitecture Specification”, Sun

Microsystems, Inc, April 2008.

[6] Durgam Vahia, “OpenSPARC T1 on Xilinx FPGAs”, RAMP Retreat

(http://ramp.eecs.berkeley.edu), Summer 2007. Accessed [26-8-2012].

[7] Shrenik Mehta, “Open Hardware Innovate with OpenSPARC”, CANDE

Workshop, September 2006.

148

[8] Durgam Vahia, Thomas Thatcher, and Paul Hartke, “OpenSPARC T1 on Xil-

inx FPGAs”, RAMP Retreat (http://ramp.eecs.berkeley.edu), January 2008.

Accessed [26-8-2012].

[9] David L. Weaver, “OpenSPARC Internals : OpenSPARC T1/T2 CMT

Throughput Computing”, Sun Microsystems, Inc, October 2008.

[10] Sun Microsystems, “OpenSPARC T1 Processor Megacell Specification”, Sun

Microsystems, Inc, March 2006.

[11] Synopsys, “Design Compiler Guide”, Synopsys, Inc, December 2010.

[12] Sun Microsystems, “OpenSPARC T1 Processor Design and Verification

Guide”, Sun Microsystems, Inc, 2009.

[13] Mentor Graphics, “Olympus-SoC Manual”, Mentor Graphics Corporation,

May 2010.

[14] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun, “Niagara,

a 32-way Multithreaded Sparc Processor”, IEEE Micro, MarchApril 2005.

[15] Mohamed Hamdy Merzban, “Development of a Dual-core 64-bit MultiPro-

cessor Based on the OpenSPARC Design”, Faculty of Engineering, Cairo

University, February 2011.

[16] Ana Sonia Leon and Denis Sheahan, “The U1traSPARC Ti: A Power-Efficient

High-Throughput 32-Thread SPARC Processor”, Solid-State Circuits Confer-

ence, 2006. ASSCC 2006. IEEE Asian, Nov 2006.

149

[17] William K. Lam, “Hardware Design Verification: Simulation and Formal

Method-Based Approaches”, Prentice Hall, August 2005.

[18] Himanshu Bhatnagar, “Advanced ASIC Chip Synthesis Using Synopsys De-

sign Compiler Physical Compiler and PrimeTime”, Springer, December 2001.

[19] Don Mills, “RTL Coding Styles That Yield Simulation and Synthesis Mis-

matches”, Clifford E. Cummings Sunburst Design, Inc, August 1999.

[20] Patrick Lee, “Introduction to Place and Route Design in VLSIs”, Lulu.com,

December 2006.

[21] Khosrow Golshan, “Physical Design Essentials”, Springer, May 2007.

[22] Michael John and Sebastian Smith, “Application Specific Integrated Cir-

cuits”, Addison-Wesley Professional, June 1997.

[23] J. Bhasker and Rakesh Chadha, “Static Timing Analysis for Nanometer De-

signs”, Springer, April 2009.

150

 أ

 ممخصال

 و النوياتمتعدد ،مفتوح المصدر لشغ م أول "SUN"الذي تم تطويره بواسطة شركة "OpenSPARC T1"يعد
 -معدن - دأكسي"ستخدام تكنولوجيا ال بتصميم دائرة متكاممة لنواة ىذا المشغ إلىىذا البحث وييدف . مساراتال

 .نانو متر 031 "شبو موصل المتتامة
 لشغ لنواة الم المصدر المفتوح لكترونيالإ فيوصتال قمت بإدخال عدة تعديلات عمىة في البداي

"OpenSPARC T1" ،أجل من إلغاء وصلات الإختبار و لشغ الم مساراتتقميل و تحويل الذاكرة :ومنيا
 تم. صنيعالت منشأة قبل من مطموب ىو كمامم 4x4 مساحتيا شريحةل لكي يتناسب مع شغ الم حجم تقميل

 إختبار مقدم 511أكثر من بواسطةل المعدل ليذا المشغ لكترونيالإلمتوصيف يوظيفال سلامة الأداء من التحقق
 ."SUN"من شركة

 "البوابات" إلى مستوى "ل السجلاتنق"لكتروني عند مستوى الإتوصيف القمت بتوليف التصميم لتحويمو من ثم
المواضع و "تنفيذ الرقمي الممقبة ب ال تمجموعة خطوابإستخدام التصميم فعميا تنفيذ تم بعد ذلك. المعادل

توليف "، "التحسين"، "تحديد المواضع"، "تخطيط الأرضية" مثل العادية الخطوات ذلك في بما، "المسارات
 تقييم و الوظيفية ختباراتالإ من سمسمة طريق عن التصميم من التحقق تم وأخيرا،. "التوصيل"و "تفريعات المنظ م

 .والأداء ةلياعفال لضمان الأداء
مزدوج المسارات ويعمل عمى تردد OpenSPARC T1 لشغ إستطعت من خلال ىذا البحث تصميم نواة م

 .وساداتمتضمنة ال 2مم 06ميجا ىرتز و تبمغ مساحتة 011

 ب

 محمد محمود محمد فرج :دسـمهن
 0295\02\22 :تاريخ الميلاد

 مصري :الجنسية
\....\.... :تاريخ التسجيل

 2103 \ 0 \ 6 :تاريخ المنح
 الكيربية تصالاتوالا لكترونياتلإا :القسم
 ماجستير :الدرجة

 :المشرفون
 حبيب السيد سراج الدين. د.أ
 حسام عمي حسن فيمي. د.م.أ

 :الممتحنون
 (الممتحن الخارجي) السيد مصطفى سعد د.أ
 (الممتحن الداخمي) إبراىيم محمد قمر د.أ
 (المشرف الرئيسي) حبيب السيد سراج الديند.أ
 (مشرف)حسام عمي حسن فيمي . د.م.أ

 :الرسالةعنوان
 OpenSPARC T1 لتصميم دائرة متكاممة لنواة المشغ

 :الكممات الدالة
 ، تصميم لشغ م ، تخطيط، SPARC ، دائرة متكاممة

 :رسالةممخـص ال

 النوياتمتعدد ،شغ ل مفتوح المصدرأول م "SUN"الذي تم تطويره بواسطة شركة "OpenSPARC T1"يعد
 - دأكسي "شغ ل باستخدام تكنولوجيا ىذا البحث إلى تصميم دائرة متكاممة لنواة ىذا الم وييدف. مساراتالو

 فيوصتال في البداية قمت بإدخال عدة تعديلات عمى .نانو متر 031 " شبو موصل المتتامة -معدن
 مساراتتحويل الذاكرة و تقميل : ، ومنيا "OpenSPARC T1" لنواة المشغ ل المصدر المفتوح لكترونيالإ

 تم .مم 4x4 تيامساح شريحة شغ ل لكي يتناسب معالم حجم تقميل أجل منالمشغ ل و إلغاء وصلات الإختبار
إختبار 511شغ ل بواسطة أكثر من المعدل ليذا الم لكترونيالإي لمتوصيف وظيفسلامة الأداء ال من التحقق

نقل "لكتروني عند مستوى الإتوصيف ال ثم قمت بتوليف التصميم لتحويمو من ."SUN"مقدم من شركة
خطوات التنفيذ بإستخدام مجموعة التصميم فعميا تنفيذ تمبعد ذلك . المعادل" البوابات"إلى مستوى "السجلات

تحديد "، "تخطيط الأرضية" مثل العادية الخطوات ذلك في بما، "المواضع و المسارات"الرقمي الممقبة ب
 طريق عن التصميم من التحقق تم وأخيرا،. "التوصيل"و " توليف تفريعات المنظ م"، " التحسين"، " المواضع

إستطعت من خلال ىذا البحث تصميم .والأداء ةليافعال لضمان الأداء تقييم و الوظيفية ختباراتالإ من سمسمة
 .الوساداتمتضمنة 2مم 06 ةىرتز و تبمغ مساحتميجا 011ل مزدوج المسارات ويعمل عمى تردد شغ نواة م

ضعصورتكهنا

 ت

OpenSPARC T1لتصميمدائرةمتكاملةلنواةالمشغ

اعداد

محمدمحمودمحمدفرج

القاهرةجامعة-الهندسةكليةإلىمقدمةرسالة

الماجستيردرجةعلىالحصولمتطلباتمنكجزء

في

الكهربيةتصالاتوالالكترونياتالإ

:يعتمدمنلجنةالممتحنين

الممتحنالخارجي السيدمصطفىسعد:الاستاذالدكتور

خليادالممتحنالإبراهيممحمدقمر:ورالاستاذالدكت

المشرفالرئيسى حبيبالسيدسراجالدين:الاستاذالدكتور

مشرف حسامعليحسنفهمي:الاستاذالدكتور

القاهــرةجامعــة-الهندســةكليــة

العربيــةمصـرجمهوريـة-الجيـزة

1023

 ث

OpenSPARC T1لتصميمدائرةمتكاملةلنواةالمشغ

اعداد

محمدمحمودمحمدفرج

القاهرةجامعة-الهندسةكليةإلىمقدمةرسالة

الماجستيردرجةعلىالحصولمتطلباتمنكجزء

في

الكهربيةوالاتصالاتلكترونياتالإ

تحتاشراف

حسامعليحسنفهمي.د.م.أ

حبيبالسيدسراجالديند.أ

والاتصالاتلكترونياتالإقسم

 الكهربية

 القاهرةجامعة،الهندسةكلية

والاتصالاتلكترونياتالإقسم

 الكهربية

 القاهرةجامعة،الهندسةكلية

القاهــرةجامعــة-الهندســةكليــة

العربيــةمصـرجمهوريـة-الجيـزة

1023

 ج

OpenSPARC T1لتصميمدائرةمتكاملةلنواةالمشغ

اعداد

محمدمحمودمحمدفرج

القاهرةجامعة-الهندسةكليةإلىمقدمةرسالة

الماجستيردرجةعلىالحصولمتطلباتمنكجزء

في

الكهربيةوالاتصالاتلكترونياتالإ

القاهــرةجامعــة-الهندســةكليــة

العربيــةمصـرجمهوريـة-الجيـزة

1023

	Acknowledgments
	Table of contents
	List of figures
	List of tables
	List of symbols and abbreviations
	Abstract
	1 Introduction
	1.1 SPARC architecture
	1.1.1 SPARC V8 vs V9
	1.1.2 SPARC-V9 Processor
	1.1.3 SPARC-V9 Instructions
	1.1.4 SPARC-V9 Traps
	1.1.5 SPARC-V9 Data Formats
	1.1.6 SPARC-V9 Registers
	1.1.7 SPARC-V9 Memory Models
	1.1.8 SPARC-V9 Operation

	1.2 Thesis Objective
	1.3 Thesis Map

	2 OpenSparc T1
	2.1 OpenSPARC T1 architecture
	2.1.1 SPARC Core
	2.1.2 Floating-Point Unit
	2.1.3 CPU-Cache Crossbar
	2.1.4 L2-Cache
	2.1.5 DRAM Controller
	2.1.6 I/O Bridge
	2.1.7 J-Bus Interface
	2.1.8 Serial System Interface
	2.1.9 Electronic Fuse

	2.2 OpenSPARC T1 core
	2.2.1 Instruction fetch unit (IFU)
	2.2.2 Execution unit (EXU)
	2.2.3 Load store unit (LSU)
	2.2.4 Trap logic unit (TLU)
	2.2.5 Stream processing unit (SPU)
	2.2.6 Memory management unit (MMU)
	2.2.7 Floating-point frontend unit (FFU)

	2.3 OpenSPARC T1 design history
	2.3.1 Xilinx FPGA design 1rampretreat
	2.3.2 Xilinx FPGA design 2rampretreat
	2.3.3 UltraSparc T1 (Niagara) releaserampretreat
	2.3.4 Commercial processors based on the UltraSparc architecturewikisparc

	2.4 Proposed Design

	3 OpenSPARC T1 core Implementation
	3.1 RTL preparation and functional verification
	3.2 Synthesis
	3.3 Design Floorplanning
	3.4 Design Placement
	3.5 CTS
	3.6 Routing
	3.7 Post Layout Verification

	4 Results
	4.1 Timing results
	4.2 Physical results
	4.3 Design comparison
	4.3.1 Processor size
	4.3.2 Processor speed

	5 Conclusion
	5.1 Future work
	5.1.1 Tighten the design constraints
	5.1.2 Custom implement the IRF memory module
	5.1.3 Optimize clock network
	5.1.4 Use smaller technology node

	A Digital design ASIC Flow
	A.1 RTL preparation
	A.2 RTL functionality Verification
	A.3 Logic Synthesis
	A.4 Gate Level functionality Verification
	A.5 Floorplaning
	A.6 Placement
	A.7 Clock Tree Synthesis
	A.8 Routing
	A.9 Post layout verification

	References

