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Abstract

The evolution of electronics in the previous century has changed the nature of

vehicles dramatically. Nowadays, the control of different systems within a ve-

hicle is carried out using tens of electronic control units (ECUs). These ECUs

are clustered into networks having gateways in-between. Several standards are

used for the communication within these networks and between them. The

most widely used standard is the Controller Area Network (CAN) bus stan-

dard. In general, the design of such networks has been always concerned with

reliability and safety. There was no much attention paid to the security of

such networks. This is because there was no clear evidence if the security

of such networks could be compromised. Practical experiments have demon-

strated practical attacks on different systems inside vehicles. This included the

ECUs controlling engine, brakes, lighting, climate control lighting and body

controller. As a result, it is possible for an adversary to take-over the control

of a vehicle and harm the passengers. This highlights a major risk for all cars;

whether they have already been sold or they are still under development.

There are two types of security vulnerabilities that make these attacks possi-

ble. The first type is due to the inherent weaknesses of the used communication

standards themselves. The second type is due to the deviation from security

standards. The goal of this thesis is to investigate different methods by which

the security of in-vehicle communication networks can be improved. The pro-

posed methods consist of different levels of security enhancements ranging from

prevention, protection and detection. The thesis focuses on achieving protec-

tion of the CAN bus against adversaries. The proposed method is to introduce

message source authentication protocol for the CAN bus. This is achieved

by designing a new lightweight authentication protocol. The protocol is im-

plemented on an automotive grade microcontroller. The main aspect of the

protocol is that it is simple and practical so that it can be adopted directly in

xiii



the automotive industry. The protocol does not need any hardware modifica-

tions and thus can be deployed inside cars that have already been sold.
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Chapter 1

Introduction

1.1 Cars as embedded systems

1.1.1 Evolution of cars

The automotive industry has been affected dramatically by the advances of

electronics during the last century. The introduction of electronics into cars

has made them no more pure mechanical systems. Almost every new car man-

ufactured nowadays contains tens of electronic control units (ECUs) [1]. ECUs

have been introduced initially in cars for the purpose of engine management.

Later on, they have been used for controlling many systems inside cars like

brakes, transmission, airbags, climate control, power windows, infotainment

and telematics. Also, they have been used to add new capabilities to cars like

parking assistance, lane departure warning, blind spot detection ... etc.

Electronic control units themselves are not pure hardware components. In-

stead, they consist of both software and hardware. In most cases, the ECU

consists of a set of electronic circuits that are controlled using a microcontroller

running from tens to hundreds thousands lines of code. As a result, a consider-

able amount of production defects may arise from software. When such defects

are discovered after cars have been sold, the ECUs need not to be physically

replaced in order to fix those defects. Typically, reprogramming the software

of the ECU can solve everything. If the defects are not critical, then car

manufacturers do not need to recall their defected cars in order to fix them.

Instead, software reflashing can be made during regular service that is made

in authorized workshops.
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1.1.2 New threats

Although it sounds good to have the ability to fix defected parts using soft-

ware, it introduces many safety considerations. Consider an attacker who has

physical access to an ECU and could insert malicious code into it. Since all car

networks are linked together through gateways, it is possible for this malicious

code to control several safety-critical parts of the car. This highlights a ma-

jor risk which has been demonstrated in [2]. However, if we assume that the

attacker may have physical access to the car then he may be able to replace

complete ECUs not only replace the software flashed in them. That’s why in-

formation security has not been introduced in the automotive industry except

for specific systems like immobilizers.

During the development of communication networks inside cars, it was al-

ways assumed that the network is a trusted zone. May be this assumption

came from the fact that cars had limited interfaces with the outside world.

The OBD II port (used for diagnostics) was the main external interface be-

tween the car network and the outside world. Recently, cars contain several

wireless interfaces for many purposes. For example, cars now contain tire pres-

sure monitoring systems TPMS, smartphone integration using bluetooth, web

connectivity [3]...etc. Other new interfaces may be deployed for vehicle-to-

vehicle and vehicle-to-infrastructure communications. Thus, cars are no more

closed systems. Accordingly, the car network is no more a trusted zone. As

a result, it is required to secure the internal network of cars from the threats

that may arise from the new interfaces. This security may be needed either at

the interfaces or within the network itself or both.

This situation is similar to the case of personal computers during the spread

of internet usage. Before the internet, the spread of computer viruses was lim-

ited to using infected removable media (floppy discs by that time and compact

discs later on). Computer users already had their own precautions to pro-

tect their computers from those threats. With the emergence of the internet,

personal computer users found themselves susceptible to new types of threats

that may spread on a global level. It took some time for security systems to

become mature and provide and appropriate protection. Unfortunately, the

automotive industry nowadays is facing the same problem again.

2



1.2 Experimental analysis of attacks

All the threats discussed above have always been treated as impractical until

Koscher et al [2] demonstrated how an attacker can control various car func-

tionalities -including safety critical systems- ignoring user input. The analysis

was made in two parts. The first part used direct physical access to the vehi-

cle network through the OBD II port. The second part [4] investigated using

several indirect wireless access. This section summarizes the work done in the

two parts and the obtained results.

1.2.1 Direct access

Direct physical access to the car network was feasible through the OBD II port.

Three test methods were used to realize the attacks:

• Isolating the ECU in the lab and connecting it to benches using harness

• Elevating the car on jacks (Stationary car)

• Doing a road test

Exploring CAN messages

There were many attack methodologies that were used to know details about

the CAN network:

• Packet sniffing. They developed a tool to analyze packets that are being

transmitted on the CAN bus. By observing regular messages that are

being transmitted on the bus after requesting some commands, it was

possible to discover how to control the radio, Instrument Panel Cluster,

as well as many functions of the body controller.

• Fuzzing. By injecting random messages on the CAN bus and observing

the result, it was possible to discover many of DeviceControl 1 functions.

Actually, fuzzing itself can be an effective attack.

• Reverse engineering. For some ECUs, it was possible to dump the code

using ReadMemory service through the CAN bus and then understand the

structure of the code using a third party debugger.
1DeviceControl is a diagnostic service that is used to do some diagnostic tests during the service of the car.

When it is used, it is possible to control devices in the car regardless of the normal behavior imposed by the
current user request

3



Successful attacks

After knowing the structure of CAN messages that are exchanged within the

car network, it was possible to realize the attacks on some car systems.

Radio . It was easy to gain full control of the radio and its display disabling

the user interface. As a result, it was possible to produce arbitrary sounds and

alarms of different volume levels.

Instrument Panel Cluster . It was possible to fully control the display

of the instrument panel cluster, displaying arbitrary messages, changing the

speedometer reading, fuel level and back-lighting.

Body Controller . Using both reverse engineering and fuzzing, it was pos-

sible to know how to control most of the body controller functionalities. It was

possible to lock/unlock the doors, enable/disable power windows, adjust inter-

nal/external lighting levels, open the trunk, turn on/off the horn, enable/dis-

able wipers and continuously shoot the windshield fluid, disable/enable the key

lock solenoid in order to either lock the key in the car or make it possible to

take the key off the car while the engine is still running.

Engine . Using fuzzing for DeviceControl, it was possible to control the

engine in many ways. For example, it was possible to boost the engine RPM

temporarily, disturb engine timing, disable all cylinders simultaneously, dis-

able the engine such that it knocks excessively when restarted, or cannot be

restarted at all, disable the engine completely and adjust the engine’s idle

RPM.

Brakes . Using fuzzing, it was possible to know how to control either indi-

vidual brakes or a set of brakes. It was possible to disable brake while the car

is in motion (mounted on a jack), preventing the driver from stopping the car.

HVAC . It was possible to discover how to control HVAC system. In some

cases, the effect of the used CAN message overrides any user input.

4



Disable communications . It was also possible to disable communica-

tions from/to individual ECUs like Engine Control Module (ECM) and the

Body Control Module (BCM). Disabling communication of ECM resulted in

reporting 0 speed of the car even if it is moving. While, disabling communica-

tion of BCM resulted in freezing the instrument panel cluster.

1.2.2 Indirect access

All the experiments that have been made using direct access assumed that the

adversary already have direct physical access to the OBD II port. This section

describes the experiments [4] that have been done using indirect access means.

Indirect access to OBD II Port

During regular service, OBD II port is accessed either via a dedicated device

or via a computer (through a PassThru device2). In the former case, such

device can be programmed by a computer. In both cases, if an adversary

could gain access to any of the computers (either the one that programs the

device or that is connected directly to the PassThru device), then it is possible

to compromise any car that is under service. Such threat can either target

all cars that are being serviced or affect a specific car being identified by its

Vehicle Identification Number 3.

After doing some analysis, two vulnerabilities were discovered in the PassThru

device. First, if an attacker is connected to the same WiFi network of the

PassThru device, then he can easily connect to the PassThru device and ac-

cordingly control the car that is connected to the device. Second, the attacker

may also insert malicious code into the PassThru device. This way, several

cars may be attacked using the same device. Also, it was possible to use the

PassThru device to spread the malicious code to any other PassThru device in

the same WiFi network.

2The computer is connected to the PassThru device using USB or WiFi
3Since 1981, global automotive manufacturers have utilized a complex numbering system called a Vehicle

Identification Number (VIN) that uniquely describes a vehicle. This number provides a coded description of the
vehicle including: manufacturer, year of production, place of production and vehicle characteristics [5]. For some
cars, the Vehicle Identification Number is located at the bottom of windscreen at the driver side and can be easily
read from outside the vehicle

5



Access through infotainment systems

Car manufactures and suppliers have made many advances in the field of

in-vehicle infotainment in order to provide some useful features to the car

driver as well the passengers. Two examples of the new technologies are Ford

SYNC [6] and BMW iDrive [7]. In general, many infotainment systems in

modern cars provide an interface for connection to user devices like iPod and

iPhone. Moreover, it is now possible using MirrorLink R©(previously known as

TerminalMode [8]) to control the data displayed on the car head unit using

smart-phone. Typically, such infotainment systems are not isolated from the

networks within the car. This is either to display some useful information to the

user or to control some devices using software-based HMI (using touchscreen).

This introduces a possible attack surface from which the internal network of

the car can be accessed.

For the car under test, there was a vulnerability that could reflash the

infotainment by simply inserting a CD of a certain image name. The contents

of the CD would be flashed to the ECU. This vulnerability could be exploited

to inject malicious software into the telematics unit. The second vulnerability

was discovered after doing analysis, debugging and reverse engineering to the

code responsible for parsing the media files. After the analysis, it was possible

to create a WMA file that can be played normally on the player but in the

background sends arbitrary messages on the CAN bus.

Short-Range Wireless Access

In modern cars, there are many newly introduced short-range wireless technolo-

gies used. Those technologies aim at increasing the safety of the cars together

with increasing the comfort of the passengers. However, these channels may

provide a back-door for an adversary to gain control over the car. This is a pos-

sible scenario if the ECU connected to any of these wireless interfaces has some

vulnerabilities. In this case, the adversary may exploit such vulnerabilities to

control the car. Here is a list of the currently deployed wireless technologies:

Remote Keyless Entry (RKE) . RKE systems are used to open the door

locks remotely and deactivate alarm systems.
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Tire Pressure Monitoring Systems . TPMS are used to warn the user

of over/under inflation of tires.

RFID-based immobilizers . Immobilizers are used to authenticate the

original key of the car. Such systems comprise an RFID reader located inside

the car that identifies the RFID tag of the car key and accordingly activate the

immobilizer.

WiFi . It may be also used in some modern cars to provide wireless internet

connectivity for the passengers.

Bluetooth . It is mainly used for hands-free usage of smart-phones while

driving. There are two possible ways to perform an attack using bluetooth;

indirect and direct. For indirect attack, the attacker is assumed to have direct

access to paired device. It was possible to develop a trojan horse on a smart-

phone and use it to send attack payload to the telematics unit. On the other

hand, for direct attack, the attacker is not officially authorized to connect to

the bluetooth interface. This type of attack is made on two steps. First, the

attacker tries to obtain the MAC address of the bluetooth device of the telem-

atics unit. The second step is to brute-force the pin code. Actually, the MAC

address can be obtained by sniffing on the messages exchanged while another

device is paired. It can be also obtained by sniffing on paired device in the

absence of the car.

Long-range wireless communications - Cellular

Modern cars include interfaces for cellular connectivity in order to have voice

and data communication. For critical data, the voice channel is used since high

speed data connections may not be available in some areas. An example of this

case is to call for help after an accident happens. The system was compromised

using a laptop that makes several calls to the car until it authenticates, then

exploit buffer overflow vulnerabilities in the code of the communication stack

to download malicious code from the internet using the 3G data connection.

Since, the voice channel is used for data communication, it was possible to

encode an audio file with the payload of the post-authentication attack and

then dial the car number and play the file resulting in the same effect.
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1.2.3 Triggering the attack

After an adversary could inject the malicious code into the car through any of

its vulnerable interfaces, the attack can then be triggered either immediately or

based on a trigger condition. The trigger condition can depend on the state of

the car; for example its speed, its GPS location...etc. However, with the many

vulnerable wireless interfaces found in cars, it is possible to control the car

remotely and trigger an attack when needed. This allows the synchronization

of attacks between many cars at the same time. Moreover, it is also possible

to exploit data connectivity feature of the car to monitor the car remotely and

manage the attack in a more organized way.

TPMS-based trigger

TPMS was exploited as a trigger method by two ways. In the first way, they

reflashed the telematics unit so that it executes an attack when it receives

an arbitrary reading from TPMS ECU. In the second way, they reflashed the

TPMS ECU so that when it receives specific TPMS packets, it starts to send

predefined messages on the CAN bus. In the latter way, the attack was initiated

by sending the chosen TPMS packets.

FM RDS trigger

This trigger mechanism was realized by reflashing the telematics unit. The

modified code triggers the attack when it receives a particular “Program Service

Name” message [9]. When an attack is triggered, the telematics unit sends

arbitrary CAN messages.

Cellular trigger

The realization of this trigger also was based on reflashing the telematics unit.

The modified code downloads and runs small code from the internet. This code

is an IRC client that connects to an IRC server (using the 3G connection of

the car) and respond to its commands. It was possible to use that IRC server

to control two separate cars.
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1.3 Motivation behind attacks

There could be many reasons for which someone might want to perform any of

the attacks discussed above.

1.3.1 Theft

The main motivation behind attacking cars is to steal them. As mentioned

above, it could be possible for the adversary to unlock the door locks under

certain trigger conditions. Moreover, it is possible to track the location of a

car by sending its GPS location using 3G connection. Hence, a thieve could

locate the victim car and log into it, bypass the immobilizer, start the engine

and take it away. This theft mechanism has been realized in [4].

1.3.2 Surveillance

The microphone used for hands-free calling can be used for recording conversa-

tions that are being held inside the car. Those recordings can be sent either in

real-time or in a later time through a compromised 3G connection. Moreover,

the GPS location information of a car can be also tracked in real-time. As

a result, if a car is compromised, it would be possible to track it and all the

conversations that are being held inside.

1.3.3 Kidnapping

If the adversary can display false traffic information on the head unit, then he

could direct the victim towards an alternative road where he get kidnapped.

It is also possible to play threatening messages on the speakers of the car

together with locking doors and doing any irritating effects like activating the

horn, flashing the internal light...etc.

1.3.4 Terrorist attacks

Since the level of attacks can cover a large number of cars, it would be possible

for terrorists to do disasters by gaining control over a large numbers of a street

in a certain city. For example, the attacker may disable brakes of all controlled

car simultaneously causing major accidents. The attacker may also disable the

wipers during a day with heavy rain or snow, thus causing many accidents.
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1.3.5 Assassination

A famous way of assassination that was used tens of years ago is to disable the

brakes of a car. Unfortunately, this type of attack is still valid if the attacker

can control the brakes of the car. If the steering of the car is done by wire, then

it would be also possible to disable the steering wheel causing severe accidents.

The difference between such attacks and the older ones is that old ways always

left a trace while it is possible to hide traces for modern attacks. This can be

realized if the attack is held by downloading some code in the RAM and then

reset the ECU after the accident to remove any trace.

1.4 Reasons of vulnerabilities

1.4.1 Inherent weaknesses

In [2], it has been highlighted that some of the weaknesses of vehicles security

arise from the widely used CAN bus itself such as:

• Broadcast Nature

Since the bus has a broadcast nature, then any node connected to the bus

can listen to all data exchanged.

• Fragility to DoS

Based on the arbitration scheme of CAN, any node can put the bus in a

dominant state preventing other nodes from sending any messages.

• Absence of authentication

The CAN message itself does not contain any authentication information

about its sender. Thus, it is possible for any attacker who connects to the

bus to send messages using the identity of any trusted node.

Besides the direct weaknesses of CAN bus listed above, there are also access

control weaknesses due to the current used protocols.

• Reflashing: In order to protect an ECU from being reflashed by an unau-

thorized party, a challenge-response protocol is used. By design a service

shop can do such authentication in order to upgrade the software of the

ECU.
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• Testing: For diagnostics, there exists a service that allows the tester in the

workshop to control some vehicle parts directly (skipping the user input).

Such service is protected by a challenge-response pair.

The main drawback in using this protocol, is that for each ECU, this

challenge-response pair is fixed. This is to avoid having the algorithm be-

ing run inside the ECU. With limited length of key/seed pairs, it could be

possible to determine the key in about 7 days!

1.4.2 Weaknesses due to deviation from standards

In addition to the weaknesses mentioned above, there are also some weaknesses

that arise from deviating from security standards and regulations.

• Disabling communications: It is specified that a car shall reject any com-

mand that disables communication as long as the car is moving. However,

this rule is not always respected. Thus an attacker, can disable communi-

cations while the car is moving leading to severe accidents.

• Reflashing while driving: It is also mandated that reflashing the code of

an ECU is not allowed while the car is moving. However, it was possible

to reflash some ECUs while the car was moving.

• Reflashing the telematics unit. It has been found that the telematics unit

of the car under test had a single seed-key pair that is used for all ECUs

deployed in all cars. Moreover, it is also possible to reflash the ECU even

if the wrong key is entered.

• Unrestricted access to keys: In order not to run the challenge-response

protocol in each ECU, manufacturers store the keys inside the ECUs them-

selves. The area in memory where those keys are stored should have re-

stricted access. However, it was possible to read those keys using “memory

read” service.

• Same keys used for both reflashing and DeviceControl: It has been also

discovered that some ECUs use the same key for authenticating both De-

viceControl and reflashing. As a result, when a key is known, the access

to both services is open.
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• Reflashing gateways from low-speed network: Gateways are used to bridge

different CAN networks. Networks are of two types; high speed and low

speed. High speed are considered more trusted than low speed. As a

result, standards specify that a gateway can be reflashed only from the

high speed network. However, it has been discovered that it can be also

reflashed from the low speed network.

With all these vulnerabilities, there is a need for several studies to secure

in-vehicle networks.

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 discusses the work

that has been previously done in securing in-vehicle networks. Then, chapter

3 describes the threat model and identify security requirements. Following

that, we introduce different levels of security and propose a new authentication

protocol for in-vehicle networks. In chapter 4, we provide a comparison between

the proposed protocol and other existing protocols. Later in chapter 5 , we

identify future work towards enhancing the security of in-vehicle networks and

provide a conclusion for the thesis.
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Chapter 2

Related Work

2.1 EVITA Project

To the best of my knowledge, the largest project that aimed at securing in-

vehicle communication networks is the EVITA project [10]. EVITA stands

for E-safety Vehicle Intrusion proTected Applications. The project took place

in the period from July 2008 to December 2011. The project was co-funded

by the European Commission. The objectives of the project were to design,

to verify, and to prototype an architecture for automotive on-board networks

where security-relevant components are protected against tampering and sen-

sitive data are protected against compromise. Thus, the goal of the project

was to provide a basis for the secure deployment of electronic safety aids based

on vehicle-to-vehicle and vehicle-to-infrastructure communications. The target

was to complement other e-safety related projects that focus on protecting the

communication of vehicles with the outside by focusing on on-board network

protection.

This section discusses some of the work done within that project.

The EVITA project has inferred the following set of security requirements

and related functional requirements in order to satisfy the stated security ob-

jectives [11]:

• Integrity/authenticity of e-safety related data: Actions depending on criti-

cal information should be decided based on assurances about integrity and

authenticity in terms of origin, content, and time. Forgery of, tampering

with, or replay of such information should at least be detectable.

• Integrity / authenticity of ECU / firmware installation / configuration:
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Any replacement or addition of an ECU and/or its firmware or configura-

tion to the vehicle shall be authentic in terms of origin, content, and time.

In particular, the upload of new security algorithms, security credentials,

or authorizations should be protected.

• Secure execution environment: Compromises to ECUs should not result in

system wide attacks, primarily with regard to e-safety applications. Suc-

cessful ECU attacks should have limited consequences on separate and/or

more trusted zones of the platform.

• Vehicular access control: Access to vehicular data and functions should

be controlled (e.g. for diagnosis, resources, etc.)

• Trusted on-board platform: The integrity and authenticity of operated

software shall be ensured. An altered platform might be prevented from

running in an untrusted configuration (e.g. via comparison with a trusted

reference) if so required.

• Secure in-vehicle data storage: Applications should be able to use function-

ality in order to ensure access control to as well as the integrity, freshness

and confidentiality of data stored within a vehicle, especially for personal

information and security credentials.

• Confidentiality of certain on-board and external communication: The con-

fidentiality of existing software/firmware as well as updates and security

credentials shall be ensured. Some applications might additionally require

that part of the traffic they receive or send internally or externally should

remain confidential.

• Privacy: A privacy policy shall be enforceable on personal data stored

within a vehicle or contained in messages sent from a vehicle to the out-

side. For example, some applications should limit the ability to link sent

messages.

• Interference of security functionality: The operation of security services

must not negatively affect the availability of bus systems, CPUs, RAM,

or of the radio medium.
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2.1.1 Security Module

In [12], Marko Wolf et al introduced the idea of using a security module for

providing different cryptographic functionalities to vehicles. Both centralized

and distributed approaches are discussed. In the centralized approach, a single

security module is used for providing security to several ECUs within the car.

On the other hand, the distributed approach is based on attaching a security

module to each ECU that needs protection. From implementation point of

view, both software and hardware can be used for realizing such security mod-

ule. In the case of centralized approach, the hardware implementation is more

suitable, while in the case of distributed approach, the software implementation

is more practical.

2.1.2 Key Distribution Protocol for CAN

In [13], a key distribution protocol has been introduced for securing in-vehicle

communications over CAN bus. Due to the embedded constraints, symmetric

key cryptography was used. In each ECU, a hardware security module (HSM)

was attached. The HSM implements some cryptographic primitives as well as

securing the key storage. Moreover, it stores meta-data for the keys (called

user-flags). For example, a key may be tagged for signing at a node while it is

tagged for verifying at another node.

The exchange of shared keys is done through a logical entity called “Key

Master” (KM). Each node, has two keys to communicate with the KM; one

for authentication and the other for transporting generated keys. To estab-

lish a secure communication channel between an ECU and n other ECUs, the

following steps are followed:

1. The ECU generates a pair of keys; one for generation and the other for

verification.

2. The ECU sends the verification key encrypted to the KM.

3. The KM forwards the key encrypted to all other ECUs.

Those generated session keys are made valid for a limited time only. It is

valid for one drive cycle for at most 48 hours.

In order to be able to send messages larger than the standard CAN payload
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of 8 bytes, segmentation of data had to be used. The standard ISO 15765-

2 [14] which is already used for diagnostics employs segmentation. However,

the protocol has been enhanced in order to add security header.

The proposed length of message authentication code (MAC) is only 32-bits.

This is due to the low speed of the bus as well as the high load.

2.1.3 Conclusion

EVITA project has made a considerable progress in securing in-vehicle commu-

nications. To achieve this, the concept of adding a hardware security module

(HSM) was introduced. The main disadvantage of using HSM is that it infers

additional hardware cost to be added to the cost of manufactured vehicles.

2.2 Message Authentication Protocol over CAN

2.2.1 Overview

The problems associated with implementing a backward compatible message

authentication protocol on the CAN bus has been discussed in [15]. The CAN

bus - since its invention in 1986 by Robert Bosch GmbH - had its design being

focused on safety. As a result, it has no built-in ways for inferring security.

This lead to the demonstration of several means of attacks such as controlling

brakes [2]. Authentication protocol requirements listed in [15] are:

• Message authentication

It is required to make sure that the message has been sent from a trusted

node.

• Replay attack resistance

Re-sending a previously sent message should lead to the message being

discarded by all its receivers.

• Group keys

It is possible to use the same key for authenticating a group of messages.

• Backward compatibility

Nodes supporting authentication can co-exist with old nodes not support-

ing authentication.
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The first requirement could be met by attaching a message authentication

code (MAC) to a message. However, due to hard real time constraints on CAN

messages, the used algorithm for generating the code and verifying it need to

be fast. The algorithm proposed in the paper is HMAC [15] requesting the

hash function used to be fast.

The second requirement could be met by inserting a counter value inside

MAC calculations. The strength of this method will depend on the length of

the counter. The larger the length of the counter, the less probable it is used

more than once in a considerable amount of time.

The most challenging requirement is the last one. This is because adding

any extra data to a message will exceed the maximum possible length of a

message (8 bytes). The proposed solution for use was to use an out-of-band

protocol like CAN+ [16]. Using CAN+, additional data bits can be inserted

within the transmission period of each CAN bit. As shown in figure 2.1, CAN+

bits can be inserted in the zone between the “synchronization zone” and the

“sampling zone” without disturbing the normal transmission of CAN bits.

Figure 2.1: CAN bit Timing

As reported by Ziermann et al [16], the number of extra bits to be trans-

mitted depends on the ratio between the frequency of CAN+ bits to regular

CAN bits according to the equation 2.1.

CAN + databits

CANdatabit
=

1MHz

fbus
∗ (16− 1) (2.1)

The length of authentication data that is sent using CAN+ is determined

based on the shortest CAN message i.e. a message of 1 byte of data. Given

the equation above and assuming the same frequency of regular CAN, then the

length of authentication data is 15 bytes (120 bits). Those 120 bits are divided
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into 2 parts:

• 8 Bits: Status Bits

• 112 Bits: Payload

2.2.2 Authentication Protocol

The authentication protocol starts with the establishment of a session key for

each group of messages. The length of this key is 128 bits. This step assumes

that all receiving nodes have a pre-shared key for this group of messages. It is

also assumed that those keys are stored securely within each node. The node

sending the group of messages (in case all messages of the group are sent by the

same node) or one of the senders (in case not all the messages are sent by the

same node) initiates the key establishment process. In this step, the responsible

node sends a counter value together with a random number encoded as CAN+

data as shown in figure 2.2.

Figure 2.2: CANAuth Key Establishment

Each of the receiving nodes, will apply HMAC using the preshared key to

the counter and the random number. The session key is calculated from the

result of this step as in equation 2.2:

Ksi = HMAC(Kpi, ctrAi ‖ ri)mod2128. (2.2)

The purpose of the counter value used here is to prevent replay attacks. In

such attacks, the adversary may try to resend a previously sent key establish-

ment message. To prevent this scenario, each of the receiving nodes stores the

last received counter value in non-volatile memory. The node does not accept
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key establishment unless the received counter value is greater than the last used

value. This puts limitation on the lifetime of the protocol since the counter

value has a limited length. However, with 24-bits of length, this allows one key

establishment per minute for 32 years.

In the second part of key establishment, the initiating node sends a signature

as shown in figure 2.3.

Figure 2.3: CANAuth Key Establishment Signature

where the signature is calculated using equation:

sigAi = HMAC(Ksi, ctrAi ‖ ri)mod2112 (2.3)

By this step, all nodes verify that the initiating node have the same session

key.

In runtime, the authentication of messages goes as follows.

Figure 2.4: CANAuth Runtime authentication

where the signature is calculated using the equation:

sigMi = HMAC(Ksi, ctrMi ‖ msgi)mod280

As shown in the figure 2.4, authentication data consists of counter value

and a signature. The counter value is used to prevent replay attacks. A node

accepts a message, when the received counter value is greater than the last

value. When the counter value is about to saturate, a new session key has to

be established.

The handling of unauthorized messages uses the same error mechanism used

by regular CAN nodes. In a regular CAN bus, any node can send an error frame
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at any time and thus invalidating the message that is being transmitted. For the

management of such errors, each node stores an error counter. When the node

sends an error frame, it increments the counter by 8. When the node receives

an error frame, it increments the counter by 1. However, a node can send an

error frame only when its counter is less than 127. This protects messages

sent on the bus from being invalidated by a faulty node. Upon each successful

message, the counter of each node is decremented by 1. In CANAuth [15],

when a node cannot authenticate a message, it discards the message and sends

an error message. As a result, all other nodes discard the message even if they

have successfully authenticated the message.

2.2.3 Security Analysis

Adversary Model

It is assumed that the adversary has access to the CAN bus and all messages

transmitted on it. Hence, he can easily make a man-in-the-middle attack.

However, it is assumed that the adversary has no access to the pre-shared keys

stored within each node.

Denial of Service attacks

During the key establishment phase, the adversary may alter the message that

is being sent. This results in generating two different sessions keys. Using the

protocol, this can be easily detected using the 2nd message of this phase. Thus,

the nodes will retry to establish a new session key and so on.

2.2.4 Conclusion

The idea of using CAN+ to send authentication data does not affect the com-

munication bandwidth since data is sent out-of-band. This means that it does

not require any modifications to be done to the existing CAN messages sets.

However, it needs to use a modified physical layer. Therefore, it cannot be

used with existing CAN controllers and tranceivers.
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2.3 CAN message encryption using AES and attacking it

using CPA

2.3.1 Overview

In [17], confidentiality has been added to CAN protocol using AES symmetric

encryption. The breaking of this algorithm has been demonstrated using side-

channel analysis.

2.3.2 Encryption

In order not to affect hard real time constraints of automotive systems, it is

decided to encrypt only selected CAN messages. The parts of CAN messages

that need to be encrypted are the ID (11-bits), DLC (4-bits) and the data

(up to 8 bytes). Thus the length of plaintext is 10 bytes. However, the block

size of AES is 128 bits (16 bytes). Hence, padding is added to the 10 bytes

of plaintext before the encryption is done. The result of encryption is also 16

bytes, thus requiring two CAN messages to send it. Hence, two message IDs

are allocated for transmitting these encrypted messages.

2.3.3 Correlation Power Analysis

Correlation Power Analysis (CPA) is based on the relation between the power

consumption and the Hamming weight of the data being processed. Typically,

the difference in power consumption between a set of data and another is too

small. However, using statistics it is possible to differentiate such differences

and compromise the system.

2.4 Multiple MAC Per Receiver

Using symmetric cryptography for multicast authentication has been intro-

duced in [18] and [19]. In those papers, the sender creates multiple MACs for

each message. Each MAC is calculated using a key that is shared between

the sender and one of the receivers. The sender appends all those MACs to

the message being transmitted. Each receiver uses its key to verify part of

the MAC. The papers [18] [19] are concerned with multicast authentication
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for automotive networks including CAN, FlexRay and Time-Triggered Proto-

col. Concerning CAN, it is proposed to use only half of the payload of each

CAN message for carrying data, while using the remaining 4 bytes for carrying

MACs. If each MAC is composed of one byte, then the message can carry 4

MACs corresponding to 4 receivers.

2.5 The TESLA protocol and its variations

TESLA protocol was proposed in [20] as a new protocol for multicast au-

thentication. The main idea behind it is to achieve asymmetric properties by

using delayed disclosure of keys. However, this leads to delayed authentication.

This delayed authentication has two main drawbacks. First, the receiver need

to have storage for some unauthenticated messages till their key is disclosed.

This increases the effect of DoS attack where an attacker may flood the receiver

with many wrong messages. The second point is that this makes TESLA not

suitable for realtime systems. The protocol was published later as RFC [21].

In order to achieve immediate authentication, a modification to TESLA

protocol was proposed in [22]. In the proposal, messages do not need to be

queued at the receiver waiting to be authorized. Instead, they are queued at

the sender putting the hash code of each message in the preceding one. This

solved the problem of DoS attack. Later on, µTESLA [23] was developed in

order to be used in wireless sensor networks. The main aspects of such systems

is the lack of processing capabilities, low memory for storing code, small RAM

and running on battery power devices. TESLA was also modified to be used

for Secure Real-time Transport Protocol (SRTP) as in [24]. Recently, another

modification was made for TESLA introducing TESLA++ [25]. TESLA++

was developed to be used in Vehicular Ad-hoc Networks (VANETs). It modifies

TESLA in a way that makes it resilient to memory-based DoS attacks.

2.6 Conclusion

Several CAN authentication protocols have been proposed before. Some of

them were based on hardware while others were based on software. Using hard-

ware is more efficient either from point of view of security strength. However, it

requires additional cost to be added to each ECU that is being manufactured.
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Using software looks more promising if it can provide the required security

strength. Therefore, it is required to design an efficient CAN authentication

protocol that can be implemented by software.
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Chapter 3

Security Levels and

Authentication Protocol

3.1 Threat Model

In-vehicle networks consist of various ECUs that are interconnected using com-

munication buses. There are many types of communications buses used like

CAN [26], LIN [27], FlexRay [28] and MOST [29]. CAN is the most widely

used type of buses. As discussed earlier, CAN messages do not contain any

source or destination addresses. Also, they do not provide any means of au-

thentication. Hence, any adversary node that succeeds to have access to the

bus can listen to any transmitted message. Moreover, it can inject malicious

messages into the network.

In the following sections, we will discuss a multilevel approach for securing

in-vehicle networks. Then, we propose a new authentication protocol that can

be deployed inside in-vehicle networks. The protocol is designed mainly to be

used inside CAN networks. However, it can be also modified to be used in

other communication bus types.

3.2 Levels of Protection

In order to protect vehicles from various attacks, we recommend three levels

of protection:

• Level 1: Prevent ECUs from being compromised
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• Level 2: Protect the vehicle’s internal network against a compromised

ECU

• Level 3: Detect the compromise of an ECU

3.2.1 Level 1: Prevent ECUs from being compromised

The first level of protection is to protect every ECU inside the vehicle from be-

ing compromised. There are many ways by which an ECU can be compromised.

Here is a list of some of them:

• Flash Bootloader. An ECU can be compromised by replacing the

flashed software by another malicious software using the flash bootloader.

Typically, the flash bootloader is a piece of software that facilitates the

update of the software flashed on an ECU. It is used by car manufacturers

to update the software of ECUs when necessary. Basically, accessing the

bootloader is secured by challenge-response pair. To protect the ECU,

the value of the key used in the authentication algorithm shall be unique

for each ECU. Also, the length of the key used should be large enough in

order to be protected against brute-force attacks. The value of the key

stored in the flash memory of the microcontroller shall be secured against

malicious reading. In order to protect the ECU from brute-force attacks,

if the wrong response is entered for few times, the ECU shall be locked

and cannot enter bootloader mode anymore.

• Flasher. In this case, the adversary has direct physical access to the

ECU. The protection against such attack can be done by censoring the

flash memory during the production. By that way, the bootloader is the

only entity that is granted the access to flash the ECU. It is worth noting

that this type of attack is special because the attacker who can connect a

flasher to the ECU can replace the microcontroller itself or even the whole

ECU rather than replacing the software.

• Exploiting vulnerabilities. When the software of the ECU contains

some vulnerabilities, they can be used by an attacker to insert his mali-

cious code. Several types of vulnerabilities exist. Among these are the

buffer overflow. The way of protection for such attacks is to perform
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static analysis to the software to ensure that the software is free from such

vulnerabilities.

3.2.2 Level 2: Protect the vehicle’s internal network against a com-

promised ECU

In the second level of protection, we assume that at least one ECU was com-

promised by an adversary. The compromised ECU can be one of two cases:

• Case A: An ECU which is part of the vehicle’s internal network is com-

promised (using any of the ways mentioned in Level 1 protection).

• Case B: Any malicious node that is connected to the bus by the adversary.

The goal of protection in this level is to prevent those compromised ECUs

from harming the vehicle’s internal communication network. The compromised

ECU can harm the vehicle’s network by doing any of the following actions:

1. Send a malicious message on behalf of another node.

This type of attack arises from the nature of the CAN bus since it does not

specify methods of source authentication. As a result, the compromised

ECU may send false messages on behalf of other ECUs. This can be

protected by using a source authentication protocol in the communication

in the CAN bus.

2. Send a malicious message that it normally sends.

Unfortunately, this type of attack cannot be protected after the ECU is

already compromised. This is because whatever cryptographic methods

used, the compromised software can still use this secured communication

stack to send messages containing false data.

3. Perform a denial of service attack on the CAN bus. This can be protected

by using something like the bus guardian [30] of the FlexRay protocol.

3.2.3 Level 3: Detect the compromise of an ECU

As a 3rd level of protection, it should be possible to detect the compromise

of any node of the vehicle’s internal network. The process of checking ECUs

can either be done regularly by the vehicle or at least be done during regular

service of the vehicle. The proposed way is to verify the checksum of the flash
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contents of each ECU. This can be the responsibility of a new Security ECU

or the body controller. When the software of any ECU is updated, then the

new checksum must be communicated to the Security ECU.

3.3 Security requirements

Levels 1 and 3 can be viewed as recommendations that can be adopted directly

by vehicles’ manufacturers. However, level 2 needs some research. We will

focus on solving the problems mentioned above in Level 2. In this case, it is

required to protect the vehicle’s internal network from a compromised node.

We will focus on the two cases A & B:

Case A: The threat model of this case is as follows. The CAN bus has

some ECUs connected to it. One of these ECUs was previously compromised

by an adversary.

ECU 1ECU 2ECU 3

ECU 5ECU 6ECU 7

ECU 4

Figure 3.1: Case A: Existing ECU is compromised

Case B: The threat model of this case is as follows. The CAN bus has some

ECUs connected to it. All ECUs are communicating correctly. The adversary

node is attached to the CAN bus at some point of time. According to the CAN

bus specification, the attached node can listen to all exchanged CAN messages.

Also, it has the ability to send any CAN message on behalf of any other node.

For both cases, in order to protect the network against such attacks, message

source authentication is required. However, the CAN bus protocol does not

specify any means of authentication. As a result, it is required to design a

higher level authentication protocol that can be adopted in automotive CAN

networks.

The following requirements are needed when designing the authentication

protocol.
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ECU 1ECU 2ECU 3

ECU 5ECU 6

ECU X

ECU 4

ECU 7

Figure 3.2: Case B: Adversary node connected to the bus

1. The message shall contain an evidence that can be generated only by its

trusted sender.

2. The receiver shall be able to verify that evidence.

3. The receiver shall not be able to re-transmit the message masquerading

the trusted sender.

4. The protocol shall add a small communication overhead. The payload

of any CAN message is already too small (8 bytes by maximum). For

the current networks, those 8 bytes are highly utilized. Thus, the smaller

the overhead used, the easier to deploy the authentication protocol in the

currently designed networks with minimum reformatting of messages.

5. The protocol shall not require either heavy computation or high memory

consumption. This is because the currently produced ECUs use microcon-

trollers with limited resources.

3.3.1 Basics of authentication

Before discussing multicast authentication, we introduce a brief discussion

about unicast authentication. Message source authentication between a sender

and a single receiver can be achieved by adding a message authentication code

(MAC) to each transmitted message. The sender calculates the MAC based

on the message contents and a shared secret. On the other side, the receiver

uses the same shared secret to verify the MAC. This can be achieved using

symmetric cryptography.

When there is more than one receiver - the case of multicast communication

- another way shall be used. The shared secret cannot be shared between more
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than two entities. Therefore, asymmetric cryptography is needed. For each

transmitted message, the sender creates a MAC using its private key. Various

receivers use the sender public key to verify the MAC. However, asymmet-

ric cryptography is not recommended for our domain because it needs high

computational capabilities.

TESLA is one of the most famous authentication protocols for multicast

communications. However, if we try to adopt it in CAN networks we will find

that we will need large communication overhead. This overhead is because

each message shall contain the original data to be transmitted in addition to

the MAC and a key. Also, the delay introduced by TESLA in unacceptable for

in-vehicle networks as real-time systems.

3.4 The Proposed CAN Authentication Protocol

3.4.1 Protocol Overview

In this section, we propose a lightweight authentication protocol to be used in

CAN networks. The protocol is designed to satisfy the requirements described

in previous section.

CAN Frame Format

The CAN message data frame format takes the following form:

The length of the “Data Field” (which carries the actual payload of the

message) varies from 1 byte to a maximum of 8 bytes.

Regarding the “Arbitration Field”, it takes one of two forms as shown in

the figure below:

• Standard Format: The arbitration field consists of 11 bits representing

the message “Identifier” in addition to the RTR (Remote Transmission

Request) bit.

• Extended Format: The arbitration field consists of 29 bits representing

the “Identifier” in addition to SRR (Substitute Remote Request), IDE

(Identifier Extension) and RTR (Remote Transmission Request) bits.
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ROBERT BOSCH GmbH,  Postfach 300240,  D-7000 Stuttgart 30
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Part B - page 43

START OF FRAME (Standard Format as well as Extended Format)
The START OF FRAME (SOF) marks the beginning of DATA FRAMES and REMOTE
FRAMEs. It consists of a single ’dominant’ bit.
A station is only allowed to start transmission when the bus is idle (see ’INTERFRAME
Spacing’). All stations have to synchronize to the leading edge caused by START OF
FRAME (see ’HARD SYNCHRONIZATION’) of the station starting transmission first.

ARBITRATION FIELD
The format of the ARBITRATION FIELD is different for Standard Format and
Extended Format Frames.

- In Standard Format the ARBITRATION FIELD consists of the 11 bit IDENTIFIER
and the RTR-BIT. The IDENTIFIER bits are denoted ID-28 ... ID-18.

- In Extended Format the ARBITRATION FIELD consists of the 29 bit IDENTIFIER,
the SRR-Bit, the IDE-Bit, and the RTR-BIT. The IDENTIFIER bits are denoted ID-28
... ID-0.
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Figure 3.3: CAN Data Frame Format
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In order to distinguish between Standard Format and Extended Format the reserved bit
r1 in previous CAN specifications version 1.0-1.2 now is denoted as IDE Bit.

IDENTIFIER
IDENTIFIER - Standard Format
The IDENTIFIER’s length is 11 bits and corresponds to the Base ID in Extended
Format. These bits are transmitted in the order from ID-28 to ID-18. The least
significant bit is ID-18. The 7 most significant bits (ID-28 - ID-22) must not be all
’recessive’.

IDENTIFIER - Extended Format
In contrast to the Standard Format the Extended Format consists of 29 bits. The
format comprises two sections:

Base ID with 11 bits and the
Extended ID with 18 bits
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Figure 3.4: CAN Standard Arbitration Field
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In order to distinguish between Standard Format and Extended Format the reserved bit
r1 in previous CAN specifications version 1.0-1.2 now is denoted as IDE Bit.

IDENTIFIER
IDENTIFIER - Standard Format
The IDENTIFIER’s length is 11 bits and corresponds to the Base ID in Extended
Format. These bits are transmitted in the order from ID-28 to ID-18. The least
significant bit is ID-18. The 7 most significant bits (ID-28 - ID-22) must not be all
’recessive’.

IDENTIFIER - Extended Format
In contrast to the Standard Format the Extended Format consists of 29 bits. The
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Figure 3.5: CAN Extended Arbitration Field

Main Idea

From our point of view, it is only required to append an authenticator to the

message that can be verified by the receiver. This authenticator can be only

31



selected by the sender and verified by the receiver. As a first step, we assume

that the authenticator can be a “magic number” that can be generated using

a one-way hash function like that employed in TESLA protocol. The sender

selects a random number then applies a transformation function multiple times.

The result is used in reverse order. The last generated value of the chain is

communicated initially through a secure channel to each receiver. Each receiver

can verify the message by applying the transformation function on the current

received value and compare it to the previous value. Keeping in mind that the

payload of a CAN message is only 8 bytes, then we should not add a large

overhead. The proposed length of the magic number is 2 bytes.

m
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m
λ - 1

f(m
λ
)

m
1

m
0

f(m
1
)

m
2

f(m
2
) f(m

λ - 1
)

Generate / Verify
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Figure 3.6: Magic Number Chain

However, since the magic number does not depend on the data that is being

sent, then the protocol could be attacked using the following scenario. An

attacker may listen to the authenticated message and capture the magic number

part and then corrupts the bus to stop the message while being transmitted

and then sends a false message using the same magic number. As a result,

it is not enough to send the magic number alone. The authenticator shall be

function of the data that is being transmitted as well. Therefore, we choose the

authenticator to be the result of XOR operation between the magic number

and the hash of the data. On the other side, the receiver shall calculate the

hash of the data, then XOR it with the received authenticator to obtain the

magic number. Then, it shall verify the magic number.

Modes of Operation

The protocol can be used in one of two modes:

• Extended Mode
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• Standard Mode

In the Extended Mode, the authenticator is sent using the “Extended Identi-

fier” field of the CAN message. Thus, the payload of the original CAN message

is not affected. This requires that extended identifier is enabled in the CAN

controller, but all its bits are masked in order to receive all messages and then

apply authentication in the upper levels. This mode is suitable for messages

having standard identifier only.

In the Standard Mode, 2 bytes of the CAN message payload are used for

sending the authenticator. For CAN messages whose payload is less than or

equal to 6 bytes, this does not add any overhead. However, for larger mes-

sages, re-formating is needed for the messages as 75% of the message is only

usable. This mode is suitable for messages having extended identifier where

the Extended Mode described above cannot be used.

In order to increase the security of the protocol, the payload of the CAN

message including the authenticator shall be encrypted using a symmetric key.

The shared key used in encryption shall be communicated to each receiver.

Note that this encryption increases the security of case B only. This is because

in case A, one of the receivers is compromised and hence knows the encryption

key.

Message losses dues to electromagnetic interference is taken into consider-

ation. There are two types of transmitted messages; periodic messages and

event-driven messages. For periodic messages, the receiver can detect how

many messages are lost and hence can recover easily. However, for event-

driven messages, when the receiver fails to verify the magic number versus the

last received message, it performs some transformation till the magic number

is verified. The maximum number of trials is a configuration parameter for the

protocol.

Since the length of the magic number is small; 16 bits only then we shall

consider brute-force attacks. Therefore, the magic number chain has to be

updated frequently.
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3.4.2 Protocol Details

Assumptions

In a CAN network, there exists multiple nodes which are communicating to-

gether in a broadcast way. In our analysis, we consider a set of n sender nodes

S1, S2, ...Sn that are broadcasting p messages to m receiver nodes R1, R2, ...Rm.

For each pair of sender-receiver, there exists a shared secret that is stored in

both ECUs. It is assumed that it is stored in a protected memory that cannot

be easily read. When an ECU is replaced, it shall be calibrated with other

existing ECUs so as to set communication keys correctly.

Notation

• The symbol ‘|’ is used to concatenate bytes together.

• i: The index of the message to be transmitted, where i ∈ (1, p).

• j: The order of the message to be transmitted, where j ∈ (1,∞).

• Dij: The data to be transmitted by the jth message of index i.

• Mij: The magic number transmitted with the jth message of index i.

• KS: The session key.

• E(x, k): Encryption function that encrypts x using the key k.

• D(x, k): Decryption function that decrypts x using the key k.

• H(x, k): HMAC function applied on a variable x using the key k.

• h(x): Hash function applied on a variable x.

Protocol Parameters

• λ : The size of the magic number chain.

• α: The length of the magic number in bits.

• δ: The maximum number of trials made by the receiver to detect lost

messages.

• τ : The time after which a sender is considered absent.
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The parameter λ depends on two main things. It should be less than 2α in

order not to repeat the magic number. Also, it specifies the memory require-

ments for the sender. The larger the value of λ, the larger memory is used by

the sender to store the chain. If λ takes its maximum possible value 65535,

then 128 kilobytes are needed to store the chain. According to the capabilities

of ECUs used in today’s vehicles, this memory size is hard to achieve.

Handshaking

During various phases of the protocol, many handshaking messages are ex-

changed between senders and receivers. This requires defining new CAN mes-

sages to the network in which the authentication protocol is going to be de-

ployed. All the messages have the same standard CAN identifier (11 bits), but

they differ in the value of the extended identifier (18 bits). For each pair of a

sender and a receiver, five messages are defined:

• Channel Setup Request

• First Response Message

• Consecutive Response Message

• Soft Sync Request

• Hard Sync Request

Thus, the total number of needed CAN message identifiers to be added is

equal to 5× Number of senders × Number of receivers. The format of different

handshaking messages is shown in figures 3.7, 3.8 and 3.9. The horizontal axis

represents the bits while the vertical axis represents the bytes. In figure 3.7,

the first two bytes are not used. The next four bytes contain a nonce. The last

two bytes contain a checksum. In figures 3.8 and 3.9, the first two bytes are

used to carry an authenticator. For all types of messages, the last 2 bytes of

each message are used to contain the checksum of the first 6 bytes. This is to

preserve the integrity of the message.
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Figure 3.7: (Channel Setup) / (Soft Sync) / (Hard Sync) Request Message
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Figure 3.8: First Response Message
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Figure 3.9: Consecutive Response Message

3.4.3 Protocol Phases

The protocol consists of the following phases:

• Initialization

• Channel Setup

• Message Setup

• Data Exchange
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• Chain Refresh

For the protocol to be robust, two additional phases are needed:

• Soft Synchronization

• Hard Synchronization

Initialization

In this phase, each sender creates the “Handshaking Magic Number Chain”,

“Channel Magic Number Chain”, the “Session Key” KS and the “HMAC Key”

KH . Also, it generates the “Magic Number Chain” for each of the messages it

transmits.

Channel Setup

In this phase, the sender distributes “Session Key”, “Channel Initial Magic

Number” and “HMAC Key” to each receiver separately. The sender encrypts

this information using a symmetric key. For each receiver, it uses a separate

key that is pre-shared between the sender and the receiver. This pre-shared

key is programmed in the ECUs during production and shall be updated when

an ECU is replaced. The length of this key is 128 bits.

The “Session Key” that is sent in this phase is the key that will be used

later to encrypt/decrypt any data exchanged with the sender. The length of

this key is chosen be 80 bits. Since this length does not fit in one message, then

it will be sent in three parts. The “Channel Initial Magic Number” is a magic

number to let the receivers authenticate the sender during “Message Setup”

phase. The “HMAC Key” is the key that is used to perform HMAC operation

during other phases. The length of the “HMAC key” is 16 bits.

The following steps are repeated for each receiver:

1. The receiver sends “Channel Setup Request” message to the sender. The

message contains a 32-bit nonce. The message is encrypted using the

pre-shared key between the two nodes.

2. The sender replies by a “First Response” message. The message contains

the hash value of the nonce (truncated to 16 bits). It contains also an

“authenticator” that will be used to authenticate the sender during the

rest of this phase.
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3. The sender sends a “Consecutive Response” message containing the 1st 4

bytes of the “Session Key”. The “magic number” that is sent in this mes-

sage can be authenticated by applying hash function on it and comparing

it to the previously sent “magic number”.

4. The sender repeats the previous step for the 2nd and 3rd parts of the

“Session Key”. For the 3rd part, only two bytes of the payload are used.

5. Finally, the sender sends the “Channel Initial Magic Number” Mc0 and

the “HMAC key” KH .

Note that steps from 1 to 4 are encrypted using the pre-shared key of the 2

ECUs while step 5 is encrypted using the session key KS.

Receiver

Channel Setup Response

Channel Setup Request

Session Key 1

Session Key 2

Channel Initial Magic Number, HMAC Key

Sender

Session Key 3

Figure 3.10: Channel Setup

When the receiver does not receive response from a sender after a certain

timeout period defined by the parameter τ , then the receiver shall consider this

sender absent from the network. Finally, at the end of this phase, each receiver

will have the “Session Key”, the “HMAC Key” and the “Channel Initial Magic

Number”. A sender shall respond to “Channel Setup” only at the start of a new

driving cycle. This is to protect the sender against denial of service attacks.

Strength of the pre-shared key Since the length of the pre-shared key is

128 bits, then it needs 2127 trials on average in order to break the key. The time

needed for a trial is bounded by the minimum of the time needed for initiating

a new driving cycle. Assuming that this value can be as low as 1 second. Then

the time needed to make the 2127 trials is 5.4× 1030 years.
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Strength against replay attacks Replaying a receiver request to the

sender may allow the sender to do the channel setup based on an invalid nonce

value. In this case, the receiver will not accept any of the sent parameters.

Replaying sender responses is not possible because it depends initially on the

value of the nonce and later on, it depends on the values of the magic numbers.

In both cases, the receiver will reject the replayed value.

Strength of the HMAC key The length of the “HMAC Key” is chosen

to obtain HMAC security of 16 bits. According to [31], the security of HMAC

is divided into two parts; the security of the HMAC algorithm and the security

of the HMAC value. The security of the HMAC algorithm is the minimum

of the security of HMAC key and twice the length of the output of the used

hash function. The latter parameter is 32 bits. Therefore, from this point of

view, the length of HMAC key shall be set to 32 bits. On the other hand, the

security of the HMAC value is bounded by the length of the HMAC output

which is 16 bits. Therefore, it is sufficient for the length of the HMAC key to

be 16 bits.

Message Setup

In this phase, the sender sends the initial magic number of each message that

it transmits to all its receivers. This is done in a broadcast way, i.e. it sends

the initial magic number of each message to all receiving nodes; not to each

node separately. This information is sent using the same data message; not

the handshake message. The payload of the data message in this case consists

of the following:

• Magic Number (That can be authenticated using the “Channel Initial

Magic Number” that has been sent during the “Channel Setup” phase).

• Initial magic number for the data message.

Note that the sender cannot use the same magic number to authenticate all

messages that it sends. Therefore, the messages shall be ordered in a way such

that each message uses an order of the magic number. For example, the first

message can be verified by applying the one-way hash function once, while the

second message can be verified by applying the one-way hash function twice

and so on.
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Strength of the session key The size of the session key is 80 bits. Then,

for a brute force attack it needs 279 trials on average in order to determine the

key. However, these trials have to be done during the validity period of the

session key. As mentioned earlier, the session key lasts for a complete driving

cycle - which is assumed - to take 24 hours by maximum. Then, it is required to

do 279 = 6×1023 trials in 24 hours in order to break the session key. This means

that it is required to do 6.9× 1012 trials per microsecond which is impractical

to do with the speed of CAN.

Data Exchange

Once the “Session Key”KS, “HMAC Key”KH and the “Initial Magic Number”

Mi0 of each CAN message are sent to all receivers, the data exchange can begin.

Sender The sender uses the magic number chain in a reverse order.

1. The sender generates the authenticator by XORing the current magic num-

ber Mij with the hash of the current message Dij.

2. The sender appends the authenticator to the current message.

3. The sender encrypts the resultant using the session key KS.

The sent message takes the form:

E(((Mij ⊕ h(Dij))|Dij), Ks)

In “Standard Mode”, the result of encryption in the equation above is sent

in the payload of the CAN message. However in “Extended Mode”, the first 2

bytes are sent using the extended identifier field, while the rest is sent in the

normal payload of the CAN message.

Receivers The receiver verifies the message by the following steps:

1. The receiver decrypts the message using the “Session Key” KS.

2. The receiver extracts the authenticator.

3. The receiver extracts the magic number Mij by XORing the hash of the

data and the authenticator.

4. The receiver verifies the magic number by applying the HMAC function

on it (using the HMAC key KH), truncating the result and comparing it

to the previous magic number.
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Chain Refresh

It is required to refresh each magic number chain used periodically. A separate

chain refresh phase is required. Before the current used chain expires, the

sender uses the current authenticated channel to transmit the new initial magic

number to all receivers.

The steps taken by the sender are as follows:

1. When sending the message number λ − 1, the sender does not send the

regular data message, but sends the new initial magic number of the chain.

This message is authenticated using the last element in the current magic

number chain.

2. All receivers will receive the new initial magic number.

Refreshing the magic number by this way has a drawback that a regular

data message is dropped in order to send the new initial magic number. This

can be acceptable for some messages while it cannot be accepted for others.

For the latter case, an out-of-bound message (using a separate CAN identifier)

shall be used for the purpose of refreshing the chain.

Security of the chain length According to [31], the pre-image strength

of a truncated hash function is equal to the truncated length (16 bits in our

case). In our implementation, we chose λ to take the value of 100 which is

much less than 216.

Soft Synchronization

At any point of time, any of the receivers may lose synchronization and want

to synchronize the values of the magic numbers of all the messages it receives.

In this case, the receiver uses the following sequence with all its senders:

1. The receiver R sends sync request message to the sender S.

2. The sender S replies by the current magic number for each message that

it sends to that receiver (encrypted by the session key)

The authentication of exchanged messages is done in the same way as in

“Channel Setup” phase.
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Figure 3.11: Soft Synchronization

Hard Synchronization

If any of the receivers loses the “Session Key” or the “HMAC Key”, then it

needs to perform hard synchronization. In this case, the following sequence is

used:

1. The receiver R sends a hard synchronization request to the sender S.

2. The sender S replies with the “Session Key” and the “HMAC Key”.

3. The sender sends current magic numbers in the same way as in soft syn-

chronization.

The authentication of exchanged messages is done in the same way as in

“Channel Setup” phase.

3.5 Cryptographic Primitives

As described above, the protocol needs some cryptographic primitives to be

used. There are 3 main primitives required which are:

• Encryption/Decryption

• One-Way Hash Function

• Random number generation
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Figure 3.12: Hard Synchronization

3.5.1 Encryption/Decryption

Encryption/Decryption is used for all exchanged messages. The maximum size

of data to be encrypted is the maximum size of a CAN message in addition

to the size of the extended identifier. Hence, the maximum size of data to be

encrypted is 10 bytes. According to the assumptions above, the session key size

is 10 bytes. Due to the small size of data, symmetric stream cipher is used.

Any stream cipher can be used. It is recommended to use any stream cipher

recommended by eStream project [32]. However, when the used cipher requires

key size larger than 10 bytes, then the protocol has to be modified in either

of two ways. Either to keep the same size of exchanged keys fixed, but add

a predefined part of the key shared between all nodes (same as initial session

key). The other solution is to increase the number of messages exchanged in

the starting phase. For simplicity, we use RC4 to implement the protocol.

Overview of RC4

RC4 is a simple stream cipher with a key length from 1 to 256 bytes [33]. The

key is used to initialize a 256-byte state vector “S”. At any point of time, the
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state vector contains a permutation of all 8-bit numbers from 0 to 255. The

state vector is used to generate the key stream in a systematic manner. The

values of the state vector is continuously permuted to generate the stream.

3.5.2 One-Way Hash Function

One-Way hash function is used to generate the chain of the magic numbers. In

general, any cryptographic hash function shall have three properties [31]:

• Collision resistance: It is computationally infeasible to find two different

inputs to the cryptographic hash function that have the same hash value.

That is, if hash is a cryptographic hash function, it is computationally in-

feasible to find two different inputs x and x′ for which hash(x) = hash(x′).

• Preimage resistance (One Wayness): Given a randomly chosen hash value,

hash value, it is computationally infeasible to find an x so that hash(x) =

hash value.

• Second preimage resistance: It is computationally infeasible to find a sec-

ond input that has the same hash value as any other specified input. That

is, given an input x, it is computationally infeasible to find a second input

x′ that is different from x, such that hash(x) = hash(x′).

The most important property for our application is the “Preimage Resis-

tance” or “One Wayness”. This is to prevent any attacker from generating the

chain in a reverse order and hence send false authentic messages on behalf of

the actual transmitter. The other property to consider is the “Collision Resis-

tance”. Although there is no clear attack that could make use of collision, there

is still a need for collision resistance. This is to make the generated chain hav-

ing unique numbers. If a function has high collision probability (low collision

resistance) it is possible to have the generated chain with repeated numbers as

shown in figure 3.13:

X0 → X1...... X23 → X24 → X25....X45 → X23→ X24....

Figure 3.13: Repeating Magic Number Chain

However, if we use a hash function only (for example SHA-256) the resultant

chain will be always the same for the same initial seed i.e. the chain would be

static. Therefore, if an attacker could generate the chain offline or record the
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values of a previously created chain then he could be able to send messages on

behalf of the actual transmitter. In order to solve this problem, we choose to

use Keyed-Hash Message Authentication Code (HMAC) [34] instead. HMAC

requires the use of a cryptographic hash function in conjunction with a secret

key. The secret key shall be changed every session. As a result, the values of

the magic number chain will vary from a session to another according to the

value of the key.

Selection of hash function

As indicated above, HMAC requires the use of a cryptographic hash function.

There are many available hash functions from which we can select the one to

use for HMAC. The selection criteria depends on two main points:

• The selected hash function shall have high preimage resistance as well as

a considerable collision resistance.

• The selected hash function shall add minimum overhead from point of

view of execution time and memory consumption (both RAM and ROM).

Initially, we will list the available hash functions and then select which one

to use.

• MD5

The first function to consider is MD5 which is defined by RFC 1321 [35].

Its output consists of 128 bits. It is widely mainly used to check data

integrity. However, many successful attacks have been discovered for both

collision resistance (with a complexity of 220.96) [36] and preimage resis-

tance (with a complexity of 2123.4) [37] [38].

• SHA-1 and SHA-2

The Secure Hash Standard (SHS) [39] specifies 5 hash functions that are

approved by the National Institute of Standards and Technology (NIST).

The functions are: SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512.

The output length in bits of them is 160, 224, 256, 384 and 512 respectively.

• SHA-3

In 2007, NIST announced [40] a public competetion to develop a new

hash algorithm. The competition was NIST’s response to advances in the
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cryptanalysis of hash algorithms. The winning algorithm will be named

”SHA-3” for SHA 3. According to [41] NIST received 64 entries by October

31, 2008; and selected 51 candidate algorithms to advance to the first

round on December 10, 2008, and fourteen to advance to the second round

on July 24, 2009. Based on the public feedback and internal reviews of

the second-round candidates, NIST selected five SHA-3 finalists - BLAKE,

Grøstl, JH, Keccak, and Skein to advance to the third (and final) round

of the competition on December 9, 2010, which ended the second round

of the competition. In October 2012, Keccak was announced to be the

winner algorithm.

Table 3.1 summarizes the output size of different available hash functions

together with the strength of each one of them. The values of SHA-2 are

obtained from [31].

Table 3.1: Output size and Strength of Hash Functions

Function Output Size Collision Preimage 2nd Preimage
in bits Resistance Resistance Resistance

Strength Strength Strength
in bits in bits in bits

MD5 128 20.96 123.4 N/A
SHA-1 160 < 80 160 105-160

SHA-224 224 112 224 201-224
SHA-256 256 128 256 201-256
SHA-384 384 192 384 384
SHA-512 512 256 512 394-512

Truncation

Regardless the chosen hash function to be used for HMAC, we need to trun-

cate the output of HMAC into 2 bytes only in order to fit for the chosen magic

number size. According to [31], the result of HMAC shall not be truncated to

less than 8 bits. Since we chose 16-bits, then we conform with this recommen-

dation. Also, [31] states that when truncation is to be done, then the leftmost

bits shall be selected. Therefore, we choose to select the 16 leftmost bits of the

HMAC output.
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Security of HMAC

The security strength of the HMAC algorithm [31] is the minimum of the se-

curity strength of K and the value of 2L (i.e., security strength = min(security

strength of K, 2L)). For example, if the security strength of K is 128 bits, and

SHA-1 is used, then the security strength of the HMAC algorithm is 128 bits.

The HMAC key K shall be generated with a security strength that meets or ex-

ceeds the desired security strength of the HMAC application, and the approved

hash algorithm in the HMAC application shall have a message digest length of

at least half of the desired security strength (in bits) of the HMAC application.

For example, if the desired security strength of the HMAC application is 256

bits, the HMAC key K shall be generated with a security strength of at least

256 bits, and an approved hash function with the message digest length of at

least 256/2 (128) bits shall be used.

Security of HMAC values

The successful verification of a MacTag does not completely guarantee that

the accompanying text is authentic; there is a slight chance that an adversary

with no knowledge of the HMAC key, K, can present a (MacTag, text) pair

that will pass the verification procedure. From the perspective of an adversary

that does not know the HMAC key K (i.e., the adversary is not among the

community of users that share the key), the security strength provided by a

MacTag depends on its length. The length of a MacTag shall be sufficiently

long to prevent false acceptance of forged data. For most applications, a length

of 64 to 96 bits is sufficient. Shorter MacTags may also be acceptable if the rate

of false acceptances does not create a significant impact for the application. For

example, in video/audio stream applications, accepting one bad data package

in 28 data packages may not create a huge impact for the application.

Computation Overhead

In order to select the best hash function from point of view of computational

overhead (processing and memory), two steps are done:

• Checking benchmarks results for different hash functions.

• Experimental results on our target platform.
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For the first part, we used two main sources for benchmark results. The first

one is the eBASH project [42]. eBASH stands for (ECRYPT Benchmarking

of All Submitted Hashes). It is a project in ECRYPT’s VAMPIRE lab to

measure the performance of hash functions but not target embedded platforms.

However, its results give some indication about different hash functions.

The second source is the eXternal Benchmarking eXtension (XBX) [43]. It

is an extension to SUPERCOP 1. It has been successfully used to benchmark

many different hash functions on several different microcontrollers.

3.5.3 Random Number Generation

Random number generation is used to generate the “Session Key”, “HMAC

Key” and the magic number chains. In our implementation, we used “rand”

function of the C library. This function needs a random seed to be used each

time. This seed could be generated using any unused ADC channel of the

microcontroller. However, it is recommended to use a stronger pseudo-random

function rather than “rand”.

3.6 Authentication Protocol Implementation

3.6.1 Hardware Platform

The authentication protocol was implemented on StarterTRAK TRK-MPC5604B

board manufactured by Freescale Semiconductors. The board contains MPC5604B

PowerPC microcontroller. This microcontroller belongs to The Qorivva MPC560xB/C

family of 32-bit microcontrollers. This family is intended for use in automotive

body electronics applications.

The main features of the microcontroller are:

• CPU: e200Z0h

• Max clock frequency: 64 MHz

• Code Flash: 512 KB

• Data Flash: 64 KB

• Number of CAN controllers: 3
1SUPERCOP [44] is a toolkit developed by the ECRYPT VAMPIRE lab for measuring the performance of cryp-

tographic software. SUPERCOP stands for System for Unified Performance Evaluation Related to Cryptographic
Operations and Primitives
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• Number of LIN/UART controllers: 4

The protocol was fully implemented in C-code running at 64 MHz.

Figure 3.14: TRK-MPC5604B Board

3.6.2 Cryptographic Primitives

As described in the previous section, the authentication protocol relies on some

cryptographic primitives. We used an open source library called PolarSSL [45].

It is distributed under the GNU Public License Version 2.0 (GPL v2.0) and

any later version of this License. We used the latest available version; version

1.1.4. The library is written in ANSI C targeting embedded systems.

3.6.3 Software Architecture

Dynamic architecture

The real-time behavior of the software is achieved using a simple rate-monotonic

scheduler. The scheduler triggers the execution of different tasks according to

their statically specified periods. The scheduler is based on a hardware timer

(from the microcontroller) providing a tick every 1 millisecond. The scheduling

is chosen to be non-preemptive; that is when a task is running while another

task becomes ready to run, then the execution of the first task continues first

then the other task is run.
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Static Architecture

Initially, a simple CAN communication stack was implemented. Then, the

protocol layer was added to it. Finally, the software architecture is as shown

in figure 3.15:

CAN Driver

CAN Authentication 
Protocol

Crypto Primitive Library

Crypto Abstraction 
Library

CAN Interface

Microcontroller

Application

CAN

Figure 3.15: Software Architecture

As shown in the figure, the main components are:

• CAN Driver (CanDrv)

The “CAN Driver” is the component which interfaces with CAN peripheral

of the microcontroller. It configures the baudrate of CAN and configures

different message buffers [46]. It provides APIs for setting and getting

data to / from message buffers.

• CAN Interface (CanIf)
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The “CAN Interface” is the component that provide APIs to the upper lay-

ers in order to transmit/receive different CAN messages. It uses “Crypto

Abstraction Library” to encrypt/decrypt messages.

• CAN Authentication Protocol (CanAP)

The “CAN Authentication Protocol” is the main component that imple-

ments the proposed authentication protocol. It uses “Crypto Abstraction

Library” to generate/verify magic number chain.

• Crypto Abstraction Library (CAL)

The “Crypto Abstraction Library” is the component responsible for ab-

stracting the access to different cryptographic functions that are needed by

the authentication protocol. It provides APIs responsible for performing

various cryptographic functions such as encryption, decryption, one-way

hash function transformation.

• Crypto Primitive Library (CPL)

This component implements cryptographic primitive functions like en-

cryption, decryption, hash functions, HMAC ... etc. It is actually, the

PolarSSL library.

3.6.4 Measurements

A serial communication channel running at 38400 bps is used to make debug-

ging easier. The channel utilizes the UART module of the microcontroller and

is connected to a desktop computer from the other side. This channel is used

by the software to print useful information to the desktop computer in order

to trace the flow of software as well as printing measurements data.

The execution time of different functions is measure using a free running

timer. This is done by configuring a timer inside the mircocontroller to run at

frequency of 1 MHz. This provides a time measurement resolution of 1µs. In

order to measure the time of the designated function only excluding the exe-

cution time of any other interrupt, we disable interrupts during the execution

of the function.
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Chapter 4

Analysis and Results

The main concern while designing the protocol was to make it simple, practical

and lightweight so that its adoption inside automotive CAN networks is easy

and with the minimum overhead and cost. In this section, we analyze the

protocol and compare it to other protocols.

The proposed threat model considered two cases; case A and case B. Us-

ing our authentication protocol for case B, if the adversary node tries to send

a message on behalf of its original sender, the receivers will not authenticate

it. The same applies for case A as well. However, the data sent by the com-

promised node of case A is not guaranteed to be correct although it is being

authenticated.

In order to analyze the authentication protocol and compare it to other

protocols, the following factors are taken into consideration:

• Hardware modifications

• Software and response time overhead

• CAN message set modifications

• Security Strength

• Robustness

• Scalability

• Maintainability
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4.1 Hardware modifications

The protocol does not need any hardware modifications to be done inside the

CAN network. It works with traditional CAN transceivers and CAN con-

trollers. This means that no additional hardware cost is needed to deploy it.

From this point of view, the protocol is more practical to be deployed rather

than the protocol proposed in [15] that needed new CAN controller and CAN

transceiver. It is also better than using Hardware Security Module (HSM) de-

fined in EVITA project [10] since the HSM needs additional cost to be added

to each vehicle being manufactured. However, HSM provides stronger security

features since it depends on hardware for implementing cryptographic func-

tions.

The only hardware modifications that may be needed are those needed when

either the additional CPU load or memory consumption is beyond the capacity

of the used ECU.

4.2 Software and Response Time Overhead

The software overhead required for the authentication protocol can be classified

into the following:

• CPU load and memory consumption needed for performing cryptographic

calculations mainly as well as protocol logic.

• Response delay due to the time consumed in adding authentication data

(at the sender side) and verifying it (at the receiver side).

• Initialization delay that is induced from the setup phases of the protocol.

4.2.1 CPU Load Formula

The additional CPU load required for using the authentication protocol in a

CAN node can be calculated as follows:

For each transmitted message, the protocol needs additional CPU load for

encryption, HMAC and hash. Similarly for each received message, the protocol

needs additional CPU load for decryption, HMAC and hash.

Hence, the overhead for each transmitted message i is:
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Overhead Tx|Messagei
= (Encryption Overhead (Oe)+HMAC and hash Overhead(Oh))

Therefore, if the node transmits nTx messages; each is sent with periodicity

Pi, then the total CPU load for all transmitted messages can be expressed as

follows:

CPU Load Tx|Node =
nTx∑
i=1

Oe +Oh
Pi

Since the overhead is constant for all messages, then:

CPU Load Tx|Node = (Oe +Oh)×
nTx∑
i=1

1

Pi

Define the “Tx Load Factor” as:

TxLF |Node =
nTx∑
i=1

1

Pi

As a result, the CPU load for transmitted message by the node is:

CPU Load Tx|Node = (Oe +Oh)× TxLF|Node (4.1)

Similarly, the CPU load required for nRx received messages can be expressed

by the equation:

CPU Load Rx|Node = (Od +Oh)× RxLF|Node (4.2)

where Od is the overhead due to decryption and RxLF is the “Rx Load

Factor” which is defined as:

RxLF |Node =
nRx∑
i=1

1

Pi

According to CAN message sets obtained from [47], we calculate the Tx and

Rx load factors of 3 ECUs based on the periodicity of messages that each of

them transmits/receives. The results is shown in the table below:
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ECU 1 ECU 2 ECU 3

Tx Load Factor 0.071 0.23 0.017

Rx Load Factor 0.491 0.216 0.139

Conclusion

As shown in equations 4.1 and 4.2, the additional CPU load that is required

for the proposed authentication protocol is directly proportional to both the

overhead and the load factor. As defined above, the load factor depends on the

number of transmitted/received CAN messages and their periodicity. To avoid

changes to the transmitted/received messages, the value of the load factor is

assumed to be constant for each node. As a result, the additional CPU load

that is required can be only optimized by optimizing the CPU load needed for

the overhead. This can be done in two ways; optimizing encryption/decryption

and optimizing HMAC.

4.2.2 Encryption/Decryption Results

The execution time of RC4 encryption / decryption of single CAN message

took around 160µs. This is for extended mode; where 10 bytes are encrypted

/ decrypted.

For “Session Key”, each node uses a single session key for all messages that

it transmits while it uses a separate session key for each group of messages

that it receives from a given transmitting node. Therefore, the needed RAM

for this operation is:

RAM Consumption in bytes = 10 + (10× Number of transmitting nodes)

Where “Number of transmitting nodes” is the number of nodes that trans-

mits messages to the node for which we are measuring the needed RAM.

Therefore,

RAM Consumption in bytes = 10×(1+Number of transmitting nodes) (4.3)

The formula above applies for “Extended Mode”. For “Standard Mode”, the

number of encrypted/decrypted bytes is 8 instead of 10. Hence, it is required
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to cache 8 bytes only of the generated stream. Therefore, the formula takes

the form:

RAM Consumption in bytes = 8× (1 + Number of transmitting nodes) (4.4)

Encryption/Decryption Optimization

In general, the execution time of applying a stream cipher consists of two parts:

• Generation of a pseudo-random key stream

• Doing an XOR operation between the generated stream and the stream

to be encrypted/decrypted.

Since the generated stream is the same for every encryption/decryption

operation of the same key, then this byte stream can be cached in order to

optimize the execution time. However, the cost of this optimization technique

is that 10 bytes are needed from RAM in order to cache the generated pseudo-

random stream.

The obtained result for doing XOR operation only took 4 µs.

HMAC and Hash Results

Regarding hashing, the execution time for SHA224 was 146 µs.

For HMAC, the execution time was initially long (before optimization). This

step is needed to be performed at the receiver side for each received CAN

message. According to the acceptance of how many messages that may be

dropped, this time can be needed many times per message.

In order to have a uniform load at the sender side when refreshing the

magic number chains, it is recommended that the sender generates the new

chain while consuming the current chain. In other words, with every message

that the sender transmits, it consumes an element of the current chain and at

the same time, it generates a new element of the new chain.

Using PolarSSL library (without optimization), the execution time in µs of

HMAC using different hash functions varying the key size is as shown in table

4.1.

After HMAC optimization, the execution time in µs for the first run of

HMAC is as shown in table 4.2.
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Table 4.1: Execution time in µs of one HMAC operation of unoptimized
code

hhhhhhhhhhhhhhhhhhHash Function
Key Length

16 bits 32 bits 64 bits 80 bits 128 bits

MD5 150 152 154 155 158
SHA 1 286 288 290 291 294

SHA 224 543 544 546 546 549
SHA 256 543 544 546 547 550

Table 4.2: Execution time in µs of one HMAC operation of optimized code
for first run

hhhhhhhhhhhhhhhhhhHash Function
Key Length

16 bits 32 bits 64 bits 80 bits 128 bits

MD5 144 145 146 147 150
SHA 1 278 280 282 283 286

SHA 224 539 540 542 544 547
SHA 256 540 541 542 544 547

The execution times in µs for subsequent runs of HMAC has reduced times

as shown in table 4.3.

Table 4.3: Execution time in µs of one HMAC operation of optimized code
for subsequent runs

hhhhhhhhhhhhhhhhhhHash Function
Key Length

16 bits 32 bits 64 bits 80 bits 128 bits

MD5 86 86 86 86 87
SHA 1 154 154 154 154 154

SHA 224 285 286 285 285 285
SHA 256 285 285 286 285 285

It is noticed that for the chosen key lengths, the length of the key does not

affect much the execution time of HMAC. This is because for all key lengths

that are below the input block size of the hash function, there is no much dif-

ference in calculations since the key is used directly without hashing. Changing

the key length affects only the calculation of “ipad” and “opad”; which is done

using a simple XOR operation.

58



HMAC Optimization

The initial results indicated that the time consumed for calculating HMAC is

too long. As a result, we needed to optimize the implementation of HMAC.

In order to do that, we first take an overview on the HMAC algorithm itself.

Figure 4.1 describes the steps of the algorithm [34]:

Determine K0Steps 1-3:

K0 ⊕ ipad

H((K0 ⊕ ipad) || text)

K0 ⊕ opad

Step 4:

Step 5:

Step 7:

Step 8:

Step 9:

Step 6:

H((K0 ⊕ opad) || H((K0 ⊕ ipad) || text))

Figure 1: Illustration of the HMAC Construction

(K0 ⊕ opad) || H ((K0 ⊕ ipad) || text)

(K0 ⊕ ipad) || text

5.       TRUNCATION 

A well-known practice with MACs is to truncate their outputs (i.e., the length of the 
MACs used is less than the length of the output of the HMAC function L). Applications 
of this standard may truncate the outputs of the HMAC. When truncation is used, the λ
leftmost bits of the output of the HMAC function shall be used as the MAC. For
information about the choice of λ and the security implications of using truncated outputs
of the HMAC function, see SP 800-107. 

6. IMPLEMENTATION NOTE 

The HMAC algorithm is specified for an arbitrary Approved iterative cryptographic hash 
function, H. In the HMAC algorithm, values of the ipad and the opad depend on the 
block size, B, of the Approved hash function. An HMAC implementation can easily 
replace one Approved iterative hash function, H, with another Approved iterative hash 

5 
  

Figure 4.1: HMAC Algorithm

Define the following:

– K: The key to be used for HMAC.

– B: The input block size of the used hash function.

– L: The length of the output of the used hash function.

– H: The hash function that is used to calculate the HMAC.

– text: The input text to HMAC.

– ipad: The value 0x36 repeated B times.

– opad: The value 0x5C repeated B times.

• Steps 1 to 3: In these steps, the key is preprocessed so as to match the

input block size of the used hash function.
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– If the length of K = B: set K0 = K.

– If the length of K > B: hash K to obtain an L byte string, then

append (B − L) zeros to create a B-byte string K0

– If the length of K < B: append zeros to the end of K to create a

B-byte string K0.

• Step 4: Exclusive-Or K0 with ipad to produce a B-byte string.

• Step 5: Append the stream of data text to the string resulting from step

4.

• Step 6: Apply H to the stream generated in step 5.

• Step 7: Exclusive-Or K0 with opad.

• Step 8: Append the result from step 6 to step 7.

• Step 9: Apply H to the result from step 8.

Measurements showed that the most consuming part is the hash function.

Generally, a single HMAC calculation requires from 2 to 3 hash operations. In

our case, the length of the key is less than the block size of the used hash func-

tions. Therefore, a single HMAC calculation requires only 2 hash operations.

As indicated in [33], the time consumed in HMAC calculation can be opti-

mized by doing the part of hash function on each of ipad and opad only once

per used key.

4.3 CAN Message Sets Modifications

One of the main points to consider when selecting an authentication protocol

for CAN is its effect on the message sets within the CAN network in which the

protocol shall be deployed.

Typically, The message sets are defined by the vehicle manufacturer. For

each manufacturer, there are some similarities in the message sets of each

vehicle designed at the same time. Also, when designing a new vehicle, a part

of the message sets is reused. As a result, to avoid re-designing the message

sets from scratch, any high level protocol shall impose minimum modifications.

For our protocol, the “Extended Mode” uses the “Extended Identifier” field

of the CAN message to transfer authentication data. Hence, it does not require
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any modifications to be done to the CAN message sets. For “Standard Mode”,

two bytes of the CAN message are used to transfer authentication data. There-

fore, there are no required modifications for CAN messages whose payload is

less than or equal to 6 bytes. However, modifications are required for CAN

messages whose payload is greater than 6 bytes. The messages have to be

formatted so that the maximum payload of a message is 6 bytes.

Comparing our protocol to CANAuth, we find that for “Extended Mode”

both protocols are good. However, CANAuth is superior to the “Standard

Mode” of our proposal.

4.4 Security Strength

This section discusses the security strength of the proposed authentication

protocol for different attack scenarios. The attack scenarios span different

phases of the protocol. In our discussion, we recall the two cases of the threat

model that we highlighted in the previous chapter:

• Case A: Existing ECU is compromised

• Case B: Adversary node connected to the bus

4.4.1 Channel Setup Attack

During “Channel Setup” phase, the sender sends both the “Session Key” , the

“Channel Initial Magic Number” and the “HMAC Key” to each of its receivers.

As mentioned earlier, these parameters are encrypted using a pre-shared key

between the sender and each of its receivers. A successful attack can result

in either deducing the pre-shared key itself or at least being able to send false

parameters to a single receiver.

As calculated earlier in chapter 3, a brute-force attack that aims at deducing

the 128-bit pre-shared keys needs 5.4× 1030 years.

The other type of attack is either masquerading the sender or receiver.

Attacker masquerades a receiver

The attacker starts “Channel Setup” by sending channel setup request. This

request can be either a new request or replaying a previously sent request by

the original receiver. Since the request is encrypted using pre-shared key, then
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there is no difference between case A and case B because the pre-shared key is

not known in both cases.

If the attacker replays a previously sent request, then it will have a correct

checksum and verified by the sender. As a result, the sender continues the

“Channel Setup” phase and send all data that is exchanged during this phase.

For case A, the data sent is not useful to the attacker because it already knows

it. For case B, the data is not useful because the attacker does not know either

the pre-shared key or session key.

On the other hand, if the attacker tries to generate a new request, then it

will put a random value for the checksum because it does not know the pre-

shared key. The probability of success of this step is 2−15 because the length

of the checksum is 16 bits. In case of success, the result will be the same as

the replay attack mentioned in the previous paragraph.

The effect of such attack is that it loads the sender and thus performing DoS

attack on it. Therefore, the sender has to limit the number of channel setup

requests that it can handle per unit time and also limit it to the initialization

of the ECU only. In order to allow the original receiver perform the “Channel

Setup’ phase successfully, then it shall not use the same nonce twice. However,

this requires that both the sender and receiver store previously used values of

nonce so as not to repeat them.

Attacker masquerades a sender

The receiver initiates the “Channel Setup” phase normally by sending a channel

setup request including a nonce. For case A and case B, the attacker may

succeed in replying to the receiver with the following probabilities:

• Probability of replying with a correct hash(nonce) = 2−31

• Probability of replying with a correct session key 1 = 2−31

• Probability of replying with a correct session key 2 = 2−31

• Probability of replying with a correct session key 3 = 2−31

• Probability of replying with a correct HMAC key for case A = 2−15

• Probability of replying with a correct HMAC key for case B = 2−31
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The probabilities listed above are calculated based on the fact that each

handshake message shall have a correct checksum (16 bits) and is authenti-

cated using a 16 bits magic number. The probability of sending a correct

“HAMC key” differs in case A than in case B because the data of this step is

encrypted using the session key which is known to the attacker in case A; the

only unknown is the magic number used for authentication.

Thus,

• The probability of successful attack in case A = 4× 2−31 + 2−15.

• The probability of successful attack in case B = 5× 2−31.

The effect of such attack is that the receiver will get wrong values for channel

setup and hence will not continue the following protocol phases successfully.

Therefore, it will request “Hard Synchronization” after that. it is worth noting

that as long as the attacker does not know the pre-shared key, then even if it

succeeds in this phase then it will not be able to continue the following phases

because it does not know the plaintext of the sent data.

4.4.2 Message Setup Attack

In “Message Setup” phase, the sender broadcasts the initial “magic number”

of each message to all of its receivers. The goal of the attack on this phase is

to send wrong values for initial magic numbers to the receivers. As a result, all

messages that are sent by the attacker would be authenticated by the receivers

while all the messages that are sent by the original sender are discarded.

Since the messages exchanged during this phase are encrypted using the

“Session Key” then for an attacker to make a successful attack, he has to know

the value of the “Session Key”. Also, since the messages are authenticated

using the channel initial magic number, then the attacker has to know its

value as well as the HMAC key so that he can try to deduce the channel magic

number chain.

For case A, both the “Session Key” and “HMAC Key” are known to the

attacker. However, generating the magic number chain in a reversed order

needs large memory for storing all possible chains. The memory needed to

store all chains for a given HMAC key is about 128 KB. Since the length of

HMAC key is 16 bits, then the total memory needed to store all chains for all
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HMAC keys is 216 × 128KB which is equal to 8 MB. This value is larger than

available memories for microcontrollers used in the automotive field. Also,

this type of attack needs the compromised ECU to have enough computational

power to search in this amount of data. If the attacker succeeds in this attack,

it will be able to use the wrong magic numbers for sending false data messages

during the “Data Exchange” phase.

For case B, the attacker tries to send random values till it gets authenticated.

The probability of success of this attack is 2−15 because the length of the magic

number used for authentication is 16 bits. Even if the attacker succeeds in

this attack, it will prevent the receiver from doing the correct message setup.

However, it will not be able to use the attack to send wrong authenticated

data.

4.4.3 Data Exchange Attack

In “Data Exchange” phase, the sender broadcasts the messages that it sends to

all receivers. Each message is being authenticated at each receiver by verifying

the encapsulated “magic number”. This phase can be attacked by masquerad-

ing the sender and sending false data messages instead of it.

For case A, the attacker already knows the values of “Session Key” and

“HMAC Key”. As a result, it knows the current value of the magic number.

Therefore, if it can deduce the magic number chain in a reverse order then it

may be able to send false messages that get authenticated by the receivers.

The other method of attack is to send random value for the magic number.

This method can be done in both case A and case B. The probability of such

attack is 2−15.

A successful attack on this phase results in sending wrong data message and

dropping the original one. This is for one message only; the following messages

are not affected.

4.4.4 Chain Refresh Attack

In the “Chain Refresh” phase, the sender broadcasts the new initial magic

number of a certain message to all of its receivers. The goal of the attacker in

this phase is to send a false initial magic number and hence send false data to

the receivers instead of the original data. This attack can be performed in the
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same way as the attacks performed in the “Data Exchange” phase with two

exceptions:

1. The impact of the attack is larger. The attack on “Data Exchange” mes-

sage results in dropping a single data message. However, a successful

attack on this phase give the attacker full control on the data channel and

thus being able to send multiple false messages while all messages sent by

the original sender fails to get authenticated.

2. The attack has to be performed in a specific period of time; the time where

it is expected to send a chain refresh message. This time comes whenever

a magic number chain is consumed.

4.4.5 Soft Synchronization Attack

In “Soft Synchronization” phase, the receiver requests from the sender the

current values of magic numbers of all the messages that it sends. There are

two types of attacks on this phase. The attacker may either masquerade the

sender or the receiver.

Attacker masquerades a receiver

When the attacker masquerades the receiver, it sends false “Soft Synchroniza-

tion” request to the sender. For case A, the attacker will receive the current

values of magic numbers which it may already know. For case B, the attacker

will not be able to decrypt the values of magic numbers. Therefore, the benefit

of this type of attack is to perform DoS attack on the sender; making it busy

serving many soft synchronization requests.

Attacker masquerades a sender

When the attacker masquerades the sender, it tries to reply to soft synchro-

nization request received from a certain receiver.

For case A, the attacker may succeed in replying to the receiver with the

following probabilities:

• Probability of replying with a correct hash(nonce) = 2−31

• Probability of replying with a correct magic number = 2−15
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When such attack succeeds, the attacker will be able to send data instead

of the original sender.

For case B, the attacker may succeed in replying to the receiver with the

following probabilities:

• Probability of replying with a correct hash(nonce) = 2−31

• Probability of replying with a correct magic number = 2−31

When such attack succeeds, the attacker will not be able to send data instead

of the original sender. However, it will prevent the receiver from synchronizing

correctly with the sender.

4.4.6 Hard Synchronization Attack

The analysis of attacks on this phase is the same as the attack on both “Channel

Setup” and “Message Setup”.

4.5 Robustness

This section discusses the robustness of the proposed CAN authentication pro-

tocol in various scenarios.

4.5.1 Message Loss

The environment inside a vehicle is susceptible to high levels of electromagnetic

interference. This concern was always taken into consideration when designing

various automotive communication bus protocols. Similarly, this concern has

to be also considered for any new protocol. The high levels of electromagnetic

interference inside the vehicle environment can cause message losses. For the

case of CAN bus, one or more CAN messages may be lost. ECUs should be

able to recover from this incident.

Our protocol behaves in the case of CAN messages loss as follows. When

a message or more is lost, the receiver cannot verify the magic number using

a single one-way hash function transformation. As specified earlier, the pro-

tocol parameter δ specifies the maximum number of trials that a receiver may

perform in order to verify the received magic number.
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The example shown in figure 4.2 shows a loss of 3 consecutive CAN messages.

The receiver receives the message with magic number mi then 3 messages are

lost and it receives after that the message with magic number mi+4.
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Figure 4.2: Loss of 3 messages

In this case, the receiver response depends on the value of the protocol

parameter δ. There are two cases to consider:

1. δ ≥ Number of lost messages + 1

2. δ < Number of lost messages + 1

If the value of the protocol parameter δ is greater than or equal to 4, then

the receiver will do the following. The receiver applies the one way hash func-

tion to mi+4, compares it to mi, but finds that the 2 numbers are different.

The receiver performs another transformation, but again the resultant value is

not equal to mi. The receiver continues that way till it makes the fourth trans-

formation. The resultant number of this transformation is the same as mi. As

a result, the message is verified and the current magic number is updated with

the value of mi+4.

If the value of the protocol parameter δ is less than 4, then the receiver

will do the following. The receiver applies the one way hash function to mi+4,

compares it to mi, but finds that the 2 numbers are different. The receiver

keeps performing another transformations (according to the value of δ), but all

trials fail. As a result, the receiver confirms that it lost synchronization with

the current value of the magic number and sends a “Soft Synchronization”

request to the sender.

For the first case, if the lost messages are at the end of magic number chain,
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then even when the receiver performs δ transformations, it will not verify the

magic number. In this case, the receiver confirms that it lost synchronization

and it sends “Soft Synchronization” request (The same as in the case of δ < 4).

It is clear that increasing the value of delta increases the protocol strength

towards messages loss. However, this comes on the cost of increasing the CPU

load. The needed CPU load for each trial can be calculated by the CPU load

formula mentioned earlier in this chapter.

4.5.2 ECU Reset

Any ECU may reset suddenly to any reason. In this case, it shall be possible

for the communication to be resumed successfully. Since any ECU has two

roles; transmitter and receiver, then it will behave differently for each role.

As a receiver, after the ECU resets, it will wait for “Channel Setup” requests

to be sent to it. “Channel Setup” requests are expected to be sent to it in

the case of a new driving cycle. However, if the ECU resets during normal

operation of the vehicle, such requests will not be received. After a certain

timeout period when such requests are not received, it will start to send “Hard

Synchronization” requests to each sender that it communicates with. After

the success of the “Hard Synchronization” phase, it will be communicating

normally with others ECUs.

On the other hand - the ECU as a transmitter - will start the normal phases

of the protocol by performing “Initialization”, “Channel Setup” and “Message

Setup” before it starts “Data Exchange”.

4.6 Scalability

In order to discuss the scalability, two parameters are studied:

1. Number of ECUs in the CAN network (N)

2. Number of exchanged messages (M)

We study the effect of changing each of the two studied parameters in each

phase of the protocol.
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4.6.1 Initialization

In the initialization phase, each sender creates the “Session Key”, the “HMAC

Key”, “Handshaking Magic Number Chain”, “Channel Magic Number Chain”

and magic number chains for each message that it sends.

Neither the generation of “Session Key” nor the generation of “HMAC Key”

is affected by increasing N.

The time and memory needed for the generation of “Handshaking Magic

Number Chain” increases linearly with N. However, it is not affected by M.

This is because the sender generates a separate chain for each receiver.

The length of the “Channel Magic Number Chain” increases linearly with

increasing M while it is not affected by increasing N.

The number of generated chains for each message increases linearly by in-

creasing M while it is not affected by increasing N.

4.6.2 Channel Setup

The time consumed in “Channel Setup” phase increases linearly by increasing

N because channel setup is performed for each pair of a sender and receiver.

However, increasing M has no effect on this phase.

4.6.3 Message Setup

The time consumed in “Message Setup” phase increases linearly by increasing

M. However, it is not affected by increasing M.

4.6.4 Data Exchange

The time consumed in the “Data Exchange” phase is not affected by either

increases N or M. From this point of view, the proposed protocol is better

than [18]; where a message authentication code (MAC) is added inside the

payload of the message for each receiver.

4.6.5 Chain Refresh

The time consumed in a single “Chain Refresh” phase is not affected directly

by either increasing N or M. However, the phase itself is performed for each

message and hence increases linearly by increasing M.
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4.6.6 Soft Synchronization

The time consumed in “Soft Synchronization” increases linearly by increasing

M. There is no direct relation between increasing N and the time of each “Soft

Synchronization” phase. However, increasing N increases the probability of

having more than one receiver requesting a “Soft Synchronization” phase at

the same time.

4.6.7 Hard Synchronization

The scalability of “Hard Synchronization” phase is the same as “Soft Synchro-

nization” phase.

4.7 Maintainability

When it is required to replace an ECU that implements the authentication

protocol, the pre-shared keys that are used for the “Channel Setup” phase

have to be updated so that the new ECU communicates correctly with other

existing ECUs. We propose any of the following different ways for updating

the keys:

• Calibrate the values of pre-shared keys in the new ECU with the same

values as of the old ECU. This requires that the values of keys are given

to the owner of the car to store them in a safe place.

• Calibrate the values of pre-shared keys in existing ECUs according to the

values programmed inside the new ECU. Strong security access is needed

so that calibrating existing ECUs is done by a trusted person only.

• Calibrate the values of pre-shared keys in both the new ECU and other ex-

isting ECUs. This requires the same precautions described in the previous

two methods.

• Do self calibration for the new ECU together with other existing ECUs. In

other words, use a key generation scheme like Diffie-Hellman to generate

the new values of pre-shared keys.

Selecting any of the methods described above is beyond the scope of the

thesis. The most important thing is to make sure that this process is done
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in a secure way and at the same time enable vehicle owners to replace ECUs

easily.
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Chapter 5

Conclusion and Future Work

5.1 Future Work

5.1.1 Reduce the time of Session Key distribution

The session key is distributed to each receiver separately. The disadvantage

of this is that it consumes time to send the key to each receiver. Using a

more efficient key distribution protocol is a challenging point. The challenge is

in finding a protocol that does not need much computation so that it can be

implemented in all ECUs connected to the CAN bus.

Using public-key cryptography to exchange keys can be an alternative. How-

ever, it requires that all ECUs be able to do heavy computations. Hence, the

optimum solution can be to use a hybrid scheme; where ECUs with small com-

putational capabilities exchange keys using the method described in this paper

while other ECUs exchange keys using public-key cryptography.

5.1.2 Enhance the maintainability of the protocol

The protocol assumes that each two communicating ECUs have a pre-shared

key for communicating with each other. This introduces a limitation when any

ECU needs to be replaced. As seen in the previous chapter, many solutions

for this problem have been discussed. However, there is still a need to define a

clear solution for this maintainability issue.
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5.1.3 Reduce the execution time of one-way hash function

It is required to optimize the execution time of the used one-way hash function.

This can be achieved either by code optimization or by modifying the algorithm

itself. Both ways should be useful since we truncate the output of the HMAC

function.

5.1.4 Adapting the protocol to other communication standards

Designing an authentication protocol for the CAN bus is limited by the band-

width available for transmitting authentication data. The upper bound for this

bandwidth is 8 bytes assuming no traffic is sent on the bus. Therefore, it is

recommended for in-vehicle networks to migrate to other buses offering larger

bandwidth so that strong authentication is possible.

The first candidate for migration is the FlexRay protocol [28] which is al-

ready deployed in many cars. It offers better opportunity for authentication

since its size can reach up to 254 bytes.

The other strong candidate is One Pair Ethernet [48]. Historically, Ethernet

was not used inside vehicles due to its bad performance in the electromagnetic

environment inside the vehicle. However, with the introduction of One-Pair

Ethernet, it became now possible to use Ethernet with message sizes up to

1500 bytes.

5.2 Conclusion

The exposure of in-vehicle networks to the external world requires securing the

communication inside these networks. However, security adds a cost repre-

sented by extra processing, memory, reformatting of messages and time delay

- both at initialization and in runtime. At the same time, the small payload of

CAN messages puts a limit on the strength of the security that could be added

to the bus.

Some protocols have been proposed before but their adoption was not easy

because they either needed modifications in the physical layer of the CAN [15]

or they added much overhead inside the CAN message [18] that reduced the

size of the useful payload inside the message.

The main goal of the work presented in the thesis is to add lightweight
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authentication to the CAN bus with the minimum impact on the currently

deployed networks. The protocol shows good analysis results and proves that

it is more practical than other published protocols and is low-cost as well.

However, due to the small bandwidth available for exchanging authentication

data, it is recommended to migrate in-vehicle communication networks to a

higher bandwidth ones. FlexRay with a payload up to 254 bytes per frame is

a good alternative from security point of view. Also, One Pair Ethernet - as

an emerging method - looks more promising.
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الملخص

 .لقلد سلاعد تطلور اللكترونيلات خلل القلرن الماضلى فلى تغييلر طبيعلة السليارات بشلكل كلبير ففلى اللوقت
 الحاضر يتم التحكم فى مختلف النظمة داخل السيارة الواحدة علن طريلق العشلرات ملن وحلدات التحكلم
.اللكترونية تلك الوحدات تتصل ببعضها البعض عن طريق شلبكات اتصلال بينهلا بعلض البوابلات و قلد تلم . 
 .اسخدام العديد من النظمة القياسية فى التصال داخلل هلذه الشلبكات و بيلن بعضلها البعلض و يعلد نظلام
 .شبكة المتحكم من أوسع النظمة انتشارا فى وقتنا هذا و بصفة عامة فقد كان تصميم هذه الشبكات دوما ملا
.يهتم بأمور السلمة و العتمادية و لم يكن هناك اهتمام بشأن تأمين هذه الشبكات و يرجع السبب فى ذلللك . 
 .لعلدم وجلود دليلل واضلح عللى امكانيلة تعلرض هلذه الشلبكات للخلتراق و لكلن ملؤخرا تلم إجلراء بعلض
 .التجارب العملية التى أظهرت تأثير بعض الهجمات على مختلف النظمة داخل السيارة و قد شملت تلللك
 التجارب وحدات التحكلم المختصلة بلالتحكم فلى المحلرك و المكابلح و الضلاءة و تكييلف الهلواء و جسلم
 .السيارة و التالى بات من الواضلح أنله بإمكلان الشلخص المخلترق أن يسليطر عللى السليارة و بالتلالى يصليب
ًا حقيقيلاً  لكلل السليارات سلواء المباعلة أو اللتى ملا زاللت قيلد  .الركاب بالضرر و هذا من شأنه يمثل خطلر

.التصميم
 .و قد تم تصنيف الثغرات المنية التى تسلاعد عللى تنفيلذ مثلل هلذه الهجملات إللى نلوعين النلوع الول هلو
 .الثغرات الناتجة عن استخدام أنظمة التصال القياسية أما النوع الثانى فيشللمل الثغللرات الناتجللة عللن علدم
 .اللتزام بمعايير  التأمين  و قد دفعنا هذا إلى أن ندرس فى هذه الرسلالة الطلرق المختلفلة لتلأمين الشلبكات
ًا بالحمايلة ًا ملن المنلع ملرور  .الداخلية للسيارات و تشمل الطرق المطروحلة علدة مسلتويات ملن التلأمين بلدء
.بالضافة إلى الكتشاف و تقوم الرسالة بالتركيز على تأمين شبكة المتحكم من أى اختراق قد تتعرض له و . 
 تعتمد طريقة التأمين المقترحة على استخدام بروتوكول للمصلادقة عللى مصلدر الرسلائل المتداوللة داخلل
.شللبكة المتحكللم و قللد تللم تحقيللق ذلللك عللن طريللق تصللميم بروتوكللول جديللد للمصللادقة و قللد تللم تنفيللذ . 
 .البروتوكول على متحكم دقيق من الفئة المسلتخدمة فلى السليارات و يتسلم اللبروتوكول بلأنه بسليط و يمكلن
 .تطبيقه عملياً مما يسلهل ملن عمليلة اسلتخدامه مباشلرة فلى صلناعة السليارات و ل يتطللب اللبروتوكول أى

.تعديلت فى المكونات المستخدمة و بالتالى يمكن اسخدامه فى السيارات التى تم بيعها بالفعل



 

 

  أحمد حازم جمال يوسف  :دسـمهن

  ١٩٨٣\٠٧\٠٣  :تاريخ الميلاد

  مصرى  :الجنسية

  ٢٠٠٧\١٠\٠١  :تاريخ التسجيل

   \   \     :تاريخ المنح

  الالكترونيات و الاتصالات الكهربية  :القسم

  ماجستير  :الدرجة

    :المشرفون

  حسام على حسن فهمى. د.م.ا  

    

    :الممتحنون

  )جامعة عين شمس–أستاذ بكلية الهندسة( أيمن محمد محمد حسن وهبة .د.أ  

  مجدى سعيد السودانى .د.أ  

  حسام على حسن فهمى .د.م.أ  

    

    :عنوان الرسالة

  طرق تأمين الشبكات الداخلية للسيارات

    

    :الكلمات الدالة

   سيارات، تأمين، مصادقة ، شبكة المتحكم ، حماية

    

    :رسالةملخـص ال

و لم يكن هناك  .كان تصميم الشبكات الداخلية للسيارات دوما ما يهتم بأمور السلامة و الاعتمادية

الشبكات  و قد أظهرت التجارب العملية مؤخرا إمكانية تعرض تلك .اهتمام بشأن تأمين هذه الشبكات

و  .و تقوم الرسالة بالتركيز على تأمين شبكة المتحكم من أى اختراق قد تتعرض له .للاختراق

تعتمد طريقة التأمين المقترحة على استخدام بروتوكول للمصادقة على مصدر الرسائل المتداولة 

  .و قد تحقق ذلك عن طريق تصميم بروتوكول جديد .داخل شبكة المتحكم
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