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Abstract
This thesis presents an efficient architecture to implement a turbo decoder using a

scalable low energy application specific instruction-set processor (ASIP). The parallelism
on the ASIP architecture is proposed to achieve the high-throughput demand for turbo
decoder which is one of the most important requirements of the Fourth Generation (4G)
wireless communication systems. The parallel architecture is achieved by using multiple
soft-in/soft-out (SISO) decoders. A scalable Interfacing between the parallel SISOs are
also proposed. Three implementations of the turbo decoder have been proposed. We
show the effects on the throughput, the area, and the hardware utilizations of the differ-
ent turbo decoder schemes. The parallel architecture leads to conflicts during memories
accesses. A complete memory conflict analysis for different interleaver patterns has been
performed and shows the effect of using different decoding configurations on the memory
conflicts for different standards. Such a conflict adds latency and reduces the throughput
significantly. A simple controller is designed to manage the conflicts on the fly. The pro-
posed design is synthesized in 180 nm technology and achieves throughput of 171 Mbps,
power of 236.9 mW using 16 parallel SISOs running at 100 MHz.
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Chapter 1

Introduction

1.1 Introduction
In wireless communication systems, the channel coding block is an important tool for
improving communications reliability. The discovery of turbo codes [1] was probably
the most significant breakthrough in the field of channel coding since the introduction of
trellis codes. Over the past few years, many communication standards such as Digital
Video Broadcast - Return Channel Satellite (DVB-RCS) [2], HSPA+ [3], 3GPP-LTE [4],
WiMAX [5] and 3GPP2-CDMA2000 [6] have adopted Turbo codes due to their near
Shannon-capacity performance.

Lately, a need for one configurable engine to be used with these different standards
emerged. This engine should include one reconfigurable Turbo decoder for the different
Turbo codes used in these standards. The Turbo decoder is one of the most difficult
blocks in any communication chain which requires high throughput, adequate area, and
low power. The efficient implementation of Turbo decoders is essential to improve the
overall system performance.

The future wireless devices which will be made from additional and high specifica-
tions than the current standards involved, need to be compatible with the same platforms
which exist in the markets. There is no direct answer to the question of which is the most
efficient platform. Many platforms are proposed and the cost of the design to meet the
required performance varies. The general purpose processor (GPP) fulfills the complete
flexibility at the expense of the power and the throughput requirements. The through-
put of GPP is very low because the instructions and the architectures are not designed
for wireless system domains. In addition, low power consumption is an important goal
that should be achieved in wireless devices. The digital signal processor (DSP), which
is the current heart of software defined radio (SDR), also is convenient for transferring
from one standard to another. However, the power consumption is the restriction for such
platforms as well.

On the other hand, the application specific instruction-set processors (ASIP) emerged
as one of the most important platforms. The ASIP strikes a balance between general pur-
pose platforms and dedicated platforms by targeting specific applications. The purpose
of developing ASIP architecture is reducing the time between changing from one appli-
cation to another with adequate resources. Time to market is a key motive behind using
ASIP architectures. The ASIP architecture collects some flexibility and dedicated blocks
to achieve the high demand requirements for the current and next generation applications.
applications. The instruction of the ASIP is fully optimized for the target applications.
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The authors in [7] show a comparison between four different platforms. These plat-
forms can be categorized as a DSP, SDR processor, application-specific processor (ASP)
and ASIP. The K-best LSD algorithm is implemented on the four programmable plat-
forms taking into account the current trend in the wireless communication research. The
ASIP implementation achieves the best results amongst these implementations.

Turbo decoding is based on an iterative algorithm. A sequential implementation will
not be suitable to achieve a high throughput. There are two methods to speed up the
decoding process:

• Using a parallel decoder architecture by dividing the whole data block length into
a number of windows to allow parallel access. This method works for all types of
Turbo codes such as: binary and double-binary Turbo codes [8] [9].

• Applying one-level look-ahead recursion [10] [11] which leads to doubling the
throughput and may lead to a unified decoding architecture that is suitable to sup-
port multiple standards. Applying this method can reduce the trellis cycles by 50%
for single binary Turbo codes.

Both approaches lead to contention on memory due to parallel access, resulting in
memory conflicts. An example of these conflicts is shown in Figure 1.1 where four
processing elements (PE) are writing simultaneously with interleaved addresses which
lead to contentions on memory bank 2.

PE

1

PE

2

PE

3

PE

4

Bank

1

Bank

2

Bank

3

Bank

4

Figure 1.1 Contention on memory bank 2, three simultaneous writing attempts
from processing elements (PE) 1, 3 and 4 to memory bank 2.

Another source of memory conflicts is the interleavers contained in Turbo codes. The
interleaver patterns affect the memory conflicts. There are two types of interleavers, un-
constrained interleavers and constrained interleavers. The constrained interleavers are
called maximum contention free (MCF) [12] which mean no conflicts occur due to par-
allel accesses. There are few standards that include contention-free interleavers such as
WiMAX and 3GPP-LTE.

1.2 Prior Work
Over the past few years, several research groups tried to propose ASIP architectures.
Specifically, the parallel Turbo decoder designs and its effects on the memory conflicts
have received much attention.
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1.2.1 Parallel Memory Access
In [13] and [14], the authors propose a unified parallel radix-4 Turbo decoder architec-
ture to support WiMAX and 3GPP-LTE standards in order to benefit from the maximum
contention free properties for these standards. However, these works are limited by inter-
leavers properties and can not support the other remaining standards.

In [15], the authors propose a memory mapping algorithm avoiding any contention by
cascading three different layers of permutations. The proposed method does not optimize
neither the cost of the architecture nor the throughput due to the latency resulting from
executing the algorithm. In [16] the avoidance of conflicting access is done through
building a network of General-Interleaved-Bottleneck-Breaker nodes (GIBB) based on a
random graph generation algorithm. These nodes are not efficient to be a backbone of
the network because they require complex routing and many resources.

In [17] buffering of the conflicting data until processed by the targeted memory was
proposed to avoid memory contentions. However, the way to determine the size of the
buffers was not efficient. The size was obtained at design time by profiling the RTL-
model. In addition, the scheme supported only one standard, which is not suitable for
multi-standard configurations.

In [18] the authors propose buffer architecture based on analysis of memory conflicts.
This work reduces the area and offers higher operating frequencies by selecting the size
of the buffers based on a standard case instead of the worst case. The stalling mechanism
has been produced to treat the worst-case situations adding variable delay dependent on
the block length. These features make the scheme not suitable for constrained real time
systems.

A good analysis of memory conflicts for multi-standards Turbo decoders is provided
in [19]. However, the memory conflicts for the unified parallel radix-4 Turbo decoder
and some standards such 3GPP2-CDMA2000 have not been analyzed. The analysis of
memory conflicts for a unified parallel radix-4 Turbo decoder is provided in [10]. A
higher number of extra cycles have been added to avoid the contentions on memories per
half-iteration for HSPA+ standard. Furthermore bigger FIFO sizes have been used.

1.2.2 Unified and ASIP Turbo Decoder Works
The authors in [20] proposed a unified architecture for supporting the Turbo codes of
WiMAX and UMTS. The parallel decoding is used for Turbo codes of WiMAX which
requires higher throughput than Turbo codes of UMTS. In this design, the Turbo decoder
of UMTS is designed without parallel architecture due to a lower throughput requirement.
This leads to a low efficiency in the usage of the hardware resources. For UMTS case,
the design uses full hardware resources by reducing the clock frequency.In addition, the
design can handle the collisions which happen due to the parallel access for UMTS case
and without complicated mechanisms.

The authors in [21] show a pipelined ASIP processor which supports two types of
Turbo codes. The throughput of the design is 34Mbps and 17Mbps at five iterations
for duo-binary and binary Turbo codes respectively. Such design is not suitable for 4G
wireless communication standards as it can not satisfy the throughput requirement.

A multi-processor platform based on a reconfigurable ASIP processor for the appli-
cation domain of channel decoding is presented in [22]. The flexibility of that design is
very poor as the duo-binary Turbo codes are not implemented. The duo-binary Turbo
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codes emerged in many standards such as WiMAX, DVB-RCS and DVB-RCT.
The proposed ASIP-based multiprocessor architecture in [23] is based on the shuffled

decoding technique. The shuffled decoding technique allows two MAP decoders concur-
rently working and passing the extrinsic LLRs. The presented ASIP can process the
duo-binary schemes twice faster than the single binary schemes. This leads to significant
degradation in the hardware utilization in case of the single binary schemes.

A Turbo Decoder implementation on a multi-processor platform based on sub-block
parallelization is proposed in [24]. The authors proposed two configurations to handle
the topology to connect the multi-processors. Both configurations take large number
of cycles for producing the LLRs which lead to large degradation on the throughput.
The proposed work achieves a throughput of 22.64 Mb/s by using 16 parallel processors
with 5 iterations. The proposed processor is not designed using ASIP technique. Such
configurations are not suitable for high throughput requirements.

The authors in [25] presented a programmable SIMD-based (Single Instruction Mul-
tiple Data) DSP architecture for SDR that includes a set of architectural features to accel-
erate Turbo decoder computations. The proposed SIMD processor supports the parallel
computations. However the proposed design is more flexible as it targets software designs
at the expense of the dedicated blocks. This SW approach is not sufficient to achieve the
throughput and the power requirements for wireless devices.

In this thesis, ASIP architecture for a scalable and reconfigurable multi-standard
Turbo decoder is proposed. In our architecture, we avoid using complex techniques to
handle the high-throughput demand and propose different implementations to achieve
good hardware resources by building a unified architecture which is supporting different
classes of Turbo codes. Our design offers a good compromise between the flexibility of
the design which is required for transferring from one scheme to another and the demands
of wireless communication devices such as power consumption and throughput. In addi-
tion, our work presents an analysis of the memory conflicts for a unified multi-standard
Turbo decoder and provides efficient techniques to satisfy their requirements.

1.3 Design Flow
The typical RTL design approach, as shown in Figure 1.2, consists of three main steps:

• System simulation to ensure correct functionality, which is done using high level
languages like MATLAB, C++ Ě

• Hardware design to implement the system towards the ASIC, which is done using
Hardware description languages like VHDL, Verilog Ě

• Physical design to convert the obtained HDL into real chip.

The result comparisons are performed after each step to ensure the correctness of the
design.

In the next chapters, the system simulations had been performed for the double-binary
convolutional turbo Coding used in WiMAX IEEE 802.16e standard and single binary
convolutional turbo Coding used in 3GPP-LTE. The influence of the turbo interleaver
block sizes, number of iterations, code rates, sliding window MAX Log MAP, and quan-
tization of the internal signals have all been studied. An enhancement, by applying the
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Max log MAP to the decoder, to reduce the performance gap against log MAP decoder,
has also been studied in detail.

In addition, the hardware design had been proposed in details. The reconfigurable
turbo decoder processor architecture and different implementation schemes had been
considered.

Algorithm 

description
Floating point 

model
Fixed point

 model

RTL Design

RTL Area/Timing

Optimization

Micro-architecture

Definition

System simulation

Hardware Design

Place and Route

Hardware 

ASIC/FPGA

RTL Synthesis

Physical Design

Results 

comparison

Figure 1.2 Design flow approach from the top level desgin to ASIC/FPGA de-
sign
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Chapter 2

Turbo Codes

2.1 Introduction
There are two types of Turbo codes which are used in wireless communication systems:
single binary and duo-binary Turbo codes. The single binary Turbo codes encode one
bit at a time which is called radix-2 and is used in many standards such as 3GPP-LTE,
HSPA+, and 3GPP2-CDMA2000. On the other side, the duo-binary Turbo codes encode
two bits at a time which is called radix-4 and is used in WiMAX and DVB-RCS standards.

The details of the double-binary convolutional Turbo coding used in WiMAX IEEE
802.16e standard and single binary convolutional Turbo Coding used in 3GPP-LTE are
presented. The decoding algorithms also are proposed for both types single and duo-
binary Turbo codes.

2.2 WiMAX convolution Turbo code

2.2.1 Duo-binary Turbo Encoding
A typical duo-binary convolutional Turbo encoder consists of two identical Recursive
Systematic Convolutional (RSC) encoders with parallel concatenation separated by an
interleaver. A RSC encoder has typically R= 2/4 coding rate. Parallel concatenation
means two RSC encoders encoding at the same time. Figure 2.1 shows the block diagram
of the Turbo encoder that is used by WiMAX with rate R= 2/6. The inputs, A and B, are
first coded in their natural order in encoder ENC1, retrieving parity bits Y1 and W1. Then
the input is interleaved and encoded again in the equivalent encoder ENC2, retrieving
parity bits Y2 and W2. The outputs from the two encoders are almost uncorrelated due
to the interleaver.

2.2.2 WiMAX encoder
CTC encoder, including its constituent encoder, is depicted in Figure 2.2. It uses a double
binary CRSC (Circular Recursive Systematic Convolutional) code. The bits of the data
to be encoded are alternatively fed to A and B, starting with the MSB of the first byte
being fed to A, followed by the next bit being fed to B. The encoder is fed blocks of k
bits or N couples (k=2N bits), where k is a multiple of 8 and N is a multiple of 4.
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Figure 2.1 Block diagram of Duo-binary CTC encoder
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Figure 2.2 WiMAX CTC encoder

2.2.3 Internal interleaver
The CTC interleaver specified in IEEE802.16e consists of two permutation steps, one is
a permutation on the level of each symbol individually, and the second is on the level of
the sequence of all symbols. The two-step interleaver shall be performed by:

Step 1. Switch alternate couples
For j = 0 to N−1
I f ( jmod2 == 0) let(B,A) = (A,B)

Step 2. Pi( j)
The function Pi( j) provides the interleaved address i of the considered couple j.
For j = 0 to N−1
Switch jmod4
Case 0: i = (P0. j+1)mod N
Case 1: i = (P0. j+1+N/2+P1)mod N
Case 2: i = (P0. j+1+P2)mod N
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Case 3: i = (P0. j+1+N/2+P3)mod N

Where P0, P1, P2 and P3 are coding parameters that are specific for each block size,
N, and are provided in the standards. The address j is interleaved to address i. Table 2.3
provides the combinations of the default parameters to be used

N P0 P1 P2 P3
24 5 0 0 0
48 13 24 0 24
96 7 48 24 72

120 13 60 0 60
192 11 96 48 144
216 13 108 0 108
240 13 120 60 180
480 13 240 120 360
960 17 1200 600 1800

Table 2.1 Wimax Turbo code permutation parameters

2.2.4 Circular state encoding
The tail biting scheme used in IEEE802.16e Turbo encoder is circular coding, this scheme
guarantees that the initial state is the same as final state. The sequence of determination
of circulation states Sc1, Sc2 is:

• Initializing the encoder with state 0. Encode the sequence in the natural order for
the determination of Sc1 and in the interleaved order for determination of Sc2. In
both cases the final state of the encoder is S0N−1

• According to the length N of the sequence, determining Sc1 or Sc2 as given in Table
2.2

S0N−1
Nmod7 0 1 2 3 4 5 6 7

1 0 6 4 2 7 1 3 5
2 0 3 7 4 5 6 2 1
3 0 5 3 6 2 7 1 4
4 0 4 1 5 6 2 7 3
5 0 2 5 7 1 3 4 6
6 0 7 6 1 3 4 5 2

Table 2.2 Circulation state lookup table (SC)
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2.2.5 Rates and puncturing block
The next step after encoding is to generate subpackets with various coding rates depend-
ing on channel conditions, the rate 1/3 CTC encoded codeword goes through interleaving
block then puncturing is performed to generate subpackets. Sub-block interleaving is
performed to get a robustness against burst errors and to rearrange the data so that punc-
turing of the data can be performed in a simple way. The output from the encoder is
arranged in sub-blocks (A, B, Y1, Y2, W1 and W2) and each block is interleaved with
a special sub-block interleaver as shown in Figure 2.3. An equation 2.1 states the inter-

Subblock 
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A subblock 

Subblock 

Interleaver

B subblock 

Subblock 

Interleaver

Y1 subblock 

Subblock 

Interleaver

Y2 subblock 

Subblock 

Interleaver

W1 subblock 

Subblock 

Interleaver

W2 subblock 

Figure 2.3 Sub-block interleaving and grouping

leaver function used for the sub-block interleaving. Tk represents the output addresses;
m and J are interleaver parameters that are provided in a look up table and depend on
the block size, N. If the result from the function is larger than the block size, the output
address is disregarded and the variable k is increased and a new address is calculated.
BRO is the m-bit bit reverse order.

Tk = 2m(K mod J)+BROm(bK/Jc) (2.1)

The output from the interleavers is combined serially after the sub-block interleaving.
The systematic bits are grouped consecutively, and then the parity bits are grouped alter-
nating one bit from Y1 and then one bit from Y2 et cetera. The puncturing is performed
by selecting a number of consecutive bits according to Equation 2.2. The puncturing
function depends on the block size, the number of available sub channels, NSCH, and the
modulation order NCPC. Send Bits i=0,. . . ,L

L = 48∗NSCH ∗NCPC (2.2)

2.3 3GPP-LTE convolution Turbo code

2.3.1 Single binary Turbo Encoding
A typical single binary Turbo encoder consists of two identical Recursive Systematic
Convolutional (RSC) encoders with parallel concatenation separated by a random inter-
leaver. An RSC encoder has typically 1/2 coding rate. Figure 2.4 shows a Turbo encoder
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with 1/3 coding rate. The input bits block C is first encoded by encoder 1. Since the
encoder is systematic, the first output c is equal to the input bit c. The second output is
the first parity bit z encoded by encoder 1. Encoder 2 receives interleaved input bit and
outputs the second parity bit z’. The main purpose of the interleaver before encoder 2 is
to avoid burst error and increase the minimum distance of Turbo codes.

ENC 1

ENC 2

Interleaver

Z’

ZC

x

Figure 2.4 Block diagram of single binary CTC encoder

2.3.2 LTE encoder
LTE Turbo encoder employs a Parallel Concatenated Convolutional Code with two con-
stituent encoders and one internal interleaver. The coding rate is 1/3. Figure 2.5 shows
the structure of the Turbo encoder. The transfer function of the 8-state constituent code
for the encoder is

G(D) =

[
1,

g1(D)

g0(D)

]
, (2.3)

where
g1(D) = 1+D2 +D3, and g0(D) = 1+D+D3. (2.4)

The initial value for the shift registers of the 8-state constituent encoders shall be all
zeros when starting to encode the input bits. The output from the Turbo encoder is d(0)

k =

xk, d(1)
k = zk, d(2)

k = z
′
k for k = 0,1,2, . . . ,k−1. K is the code block size from 40 to 6144

bits.

2.3.3 Trellis termination
Trellis termination is performed by taking the tail bits from the shift register feedback af-
ter all information bits are encoded. Tail bits are padded after the encoding of information
bits. The first three tail bits shall be used to terminate the first constituent encoder (upper
switch of Figure 2.5 in lower position) while the second constituent encoder is disabled.
The last three tail bits shall be used to terminate the second constituent encoder (lower
switch of Figure 2.5 in lower position) while the first constituent encoder is disabled. The
output bits after trellis termination should be xk,zk,xk+1,zk+1,xk+2,zk+2,x′k,z

′
k,x
′
k+1,z

′
k+1,x

′
k+2,z

′
k+2
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2.3.4 Internal interleaver
The bits input to the Turbo code internal interleaver are denoted by c0,c1, . . . ,ck−1, where
K is the number of input bits. The bits output from the Turbo code internal interleaver
are denoted by c′0,c

′
1, . . . ,c

′
k−1. The relationship between the input and output bits is as

follows:
c′i = cΠ(i), i = 0,1, . . . ,K−1 (2.5)

where the relationship between the output index i and the input index Π(i) satisfies the
following quadratic form:

Π(i) = ( f1.i+ f2.i2)mod K (2.6)

The parameters f1 and f2 depend on the block size K and are summarized in Table 2.3.

K f1 f2
40 3 10
120 103 90
200 13 50
400 151 40
640 39 80

1024 31 64

Table 2.3 LTE Turbo code internal interleaver parameters
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Chapter 3

Turbo Decoder Algorithms

The Turbo decoding process is an iterative process consisting of two Soft In Soft Out
(SISO) Maximum Aposterior Probability (MAP) decoders, as shown in Figure 3.1. Each
MAP decoder receives the soft values from the transmitter through the communication
channel. The input to the decoder is kept constant, the decoding is performed several
times, and only extrinsic information (sub-results) is passed between the iterations. Each
decoder calculates the Log Likely-hood Ratios (LLRs) which are the sum of two com-
ponents: the intrinsic LLRs coming from the communication channel and the extrinsic
LLRs added by the decoder itself. After each half-iteration, the decoders exchange their
extrinsic information. The decoding algorithm requires several iterations to estimate the
transmitted data. After the predetermined number of iterations, typically 4-8 depending
on demands for BER (bit error rate) and FER (frame error rate), a final decision is made
by using the extrinsic information from the two SISO decoders and the systematic soft
bits from the demodulator.

MAP  

Decoder 1

MAP 

Decoder 2

Interleaver Deinterleaver

Channel 

inputs 1

Channel 

inputs 2

Ext. LLR 1

Ext. LLR 2

Figure 3.1 General architecture for Turbo decoding: the inter-
leaved/deinterleaved extrinsic information are passed between the two
decoders

3.1 SISO Decoding
BCJR is an optimal algorithm for estimating a-posteriori-probabilities of states and state
transitions. Berrou [1] modified the algorithm to estimate the probability of each in-
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formation bit (for binary codes, pair of information bits for duo binary codes). The
modification of the algorithm is often referred to as the MAP (maximum a posteriori)
algorithm. It is suitable for iterative turbo decoding because it is a SISO. An important
property is that the soft output data can be used in the next iteration to calculate more ac-
curate values. All calculations in the MAP algorithm are performed in the log domain to
avoid numerical problems and unnecessary multiplications; the algorithm is then called
the log-MAP algorithm. The MAP algorithm requires many multiplications and divi-
sions. All calculations in the MAP algorithm are performed in the log domain to avoid
numerical problems and unnecessary multiplications; the algorithm is then called the
log-MAP algorithm. Nevertheless the log-MAP algorithm is complex and requires ex-
tensive hardware resources. Many simplified versions of MAP algorithm were proposed
to be suitable for hardware implementation such as linear-log-MAP, constant-log-MAP
and Max-log-MAP [26]. The performance degradation due to simplification in MAP
algorithm can be compensated by using an enhancement Max-Log-MAP where a scaling
factor scales the extrinsic LLRs.

3.2 Log-MAP
In the decoding process, the goal is to calculate an accurate a-posteriori-probability for
the received block that can be used to make a hard decision by guessing on the largest
APP for each information bit (for binary codes, pair of information bits for duo binary
codes) when all iterations are complete. Equation 3.1 represents the APP that can be
calculated iteratively by calculating the metrics in Equations 3.2, 3.3 and 3.4.

lnP(uk|y) = ln(∑exp(αk−1(s)+ γk(s,s′)+βk(s′)) (3.1)

αk(s) = ln(∑
alls′

(αk−1(s′)+ γk(s,s′)) (3.2)

βk−1(s) = ln(∑
alls

(βk(s)+ γk(s,s′)) (3.3)

γk = ∑(−1)b0.A+(−1)b1.B+(−1)b2 +(−1)b3 .W + lnP(uk) (3.4)

The values of b ∈ {0,1} depends on the encoding polynomial and can be pre-calculated
for all state transitions, respectively. The extrinsic information from the last stage is
denoted lnP(uk) and y = {A,B,Y,W} represents the noisy soft input values, where s is
the current state and s′ is the the transition state. The parameters α , β and γ are explained
in detail later.
Extrinsic information for the next stage is calculated according to Equation 3.5.

Pext(uk|y) = lnP(uk|y)− (−1)b0 .A− (−1)b1.B− lnP(uk) (3.5)

The high complexity equations above can be implemented by using a rearranged version
of the function,Equation 3.6, and using look up tables for the correction term. A better
implemented correction term gives better error correction capability. Constant-log-MAP
and linear-log-MAP are two implementation of the SISO algorithm with different correc-
tion terms.

ln(ex1 + · · ·+ exn) = max(x1, . . . ,xn)+ f (x1, . . . ,xn) (3.6)
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3.3 Max-log-MAP
Max-log-MAP is a simplification of the log-MAP algorithm that makes the estimation
stated in Equation 3.7; i.e. disregard the correction term.

ln(ex1 + · · ·+ exn)≈ max(x1, . . . ,xn) (3.7)

Lower complexity usually brings some disadvantages and that is the case here: the error
correcting capability is degraded for this algorithm. This improvement in robustness is
explained by Berrou et al in [27].

In this thesis, the max-log-MAP decoding algorithm [28] will be used. As it has low
computational complexity, it is widely used for SISO decoding in the turbo decoder. The
max-log-MAP algorithm includes one forward and one backward recursion through the
received soft input data and a number of different metrics are calculated, these will be
explained in detail.

As mentioned earlier, there are two types for Turbo codes: single binary and duo-
binary Turbo codes. The single binary Turbo codes decode one bit at time which called
radix-2. On the other side, the duo-binary Turbo codes decode two bits at time which
called radix-4. The extrinsic LLR is calculated from three metrics: forward states, back-
ward states and branch metrics.

3.3.1 Branch State Metric
The Turbo codes can be defined using a trellis where at every time k there exist the same
number of possible states. Define γ

( j)
k (sk−1,sk) as the branch metrics between the state

sk at time k and state sk−1 at time k− 1 and j represents the different combinations of
the systematic bits, where j ∈ [0,1] for radix-2 scheme and j ∈ [00,10,01,11] for radix-
4 scheme. The metric γ

( j)
k (sk−1,sk) represents the probability that a transition between

these two states occurred. The branch metric γ
( j)
k (sk−1,sk) can be calculated from

γ
( j)
k (sk−1,sk) =

m

∑
j=1

xk, jyk, j +Λ
( j)
apr,k (3.8)

where the branch metric depends on the received soft inputs yk, j , the extrinsic informa-

tion received from previous decoding iteration and re-named apriori information Λ
( j)
apr,k

and the possible transmitted bits xk, j ∈ {0,1} .

3.3.2 Forward State Metric
The forward state metric, αk(s) (alpha), represents the possibilities for the encoder to
be in a specific state at the time instance k when considering all data received up to the
moment k . This metric is calculated in a forward recursion through the trellis as shown
in Figure 3.2. Equation 3.9 is the function used for the calculation of the forward state
metric.

αk(s) = max
(s′, j)

(αk−1(s′)+ γk, j(yk,s,s′)) (3.9)

where the state considered is denoted s and the possible states that can result in a
transition to this state s are denoted s

′
. The state metric calculation in radix-2 is based
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Figure 3.2 Calculation of one forward state metric, alpha, (a) for Duo-binary
codes and (b) for single binary codes

on the maximum between two branches while it is the maximum between four branches
in case of radix-4.

Figure 3.2 is an example of how the alpha calculation is performed. The value at
time instance k for state 4 is calculated by taking the largest value from the alpha values
in four states 0, 1, 6 and 7 at k-1 for duo-binary case while in the single binary case
by taking the largest value from the alpha values in two states 1and 5. Each of the old
alpha values are added with the corresponding gamma value from s to s

′
. In duo-binary

case, the upper arrow represents a transition caused by input j = 102 (the red line) so
the gamma value includes APP information retrieved from the last iteration for a 102
-transition. The gamma value will also include a comparison of the soft bits with the
output that the encoder would generate in a transition from state 0 with input j = 102.

3.3.3 Backward State Metric
The backward state vector , βk(s) (beta), represents the probability for the different states
when considering all the data after the time instance k . The calculation of βk(s) is done in
a similar manner as αk(s) except that βk(s) is calculated backwards through the received
soft input data as shown in Figure 3.3. The equation 3.10 states how the beta values are
calculated.

βk(s) = max
(s′, j)

(βk−1(s′)+ γk, j(yk,s,s′)) (3.10)
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Figure 3.3 Calculation of one backward state metric, beta, (a) for Duo-binary
codes and (b) for single binary codes

3.3.4 Extrinsic LLR
Based on the branch metrics, forward and backward metrics, the decoder calculates the
branch LLRs as

Tk( j) = max
s→s′:( j)

(αk(s)+βk+1(s′)+ γk−1(y,s,s′)) (3.11)

Where Tk( j) represents Likelihood of the branch that corresponds to transition from state
s to state s′ for original input sequence (z) . Figure 3.4 above represents all j = 002
transitions and calculation of the LLR for duo-binary scheme, the other combination of j
are done in a similar manner. LLR is the maximum sum of an alpha value, a beta value
and the transitions of the parity bits.

The MAP decoder estimates the probability of each information bit for binary codes.
The extrinsic LLR of received bit is Λ

(1)
ext and Λ

(0)
ext for one and zero respectively. Also the

probability of each information symbol, pair of bits, for duo binary codes. The probability
of received symbol are Λ

(00)
ext ,Λ

(01)
ext ,Λ

(10)
ext and Λ

(11)
ext for 00, 01, 10 and 11 respectively.

A big advantage of max-log-MAP compared to log-MAP is that only the relative
values of the metrics are interesting, not their actual values. The reduction of the number
of exchanged estimated informations by each decoder is done by reference to Tk(0) for
single binary and Tk(00) for duo-binary. So the number of exchanged informations is one
for single binary and three for duo-binary as

Lk( j) = Tk(z)−Tk(0) (3.12)

and we get that Lk(0) always equals to zero. The extrinsic LLR Λ
( j)
ext,k is calculated using

the following equation:
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Figure 3.4 Calculation of LLR

Λ
( j)
ext,k = Lk( j)−Λ

( j)
apr,k− yk, j (3.13)

After calculation of branch LLRs, three extrinsic LLRs Λ
(11)
ext,k, Λ

(10)
ext,k, Λ

(01)
ext,k should be

bypassed to the other component decoder.
The final decision of decoded bits for duo-binary Turbo codes scheme is performed

according to the sign of the output LLRs obtained from Equation 3.14.

Lk(A) = max(Tk(10),Tk(11))−max(Tk(01),Tk(00))
Lk(B) = max(Tk(01),Tk(11))−max(Tk(10),Tk(00)) (3.14)

After Calculation of both Lk(A), Lk(B), we are able to estimate both original information
bits Â, B̂. This should be done at the last decoding iteration.

The final decision of decoded bits for single binary Turbo codes scheme is performed
according to the sign of the output LLRs, Lk(1), obtained from Equation 3.12.

3.4 Unified Radix-4 decoding algorithm
For single binary turbo codes, the trellis cycles can be reduced 50% by applying the one-
level look-ahead recursion [29] [30] as illustrated in Fig. 3.5. Radix-4 α recursion is then
given by:

αk(sk) = max
sk−1
{max

sk−2
{αk−2(sk−2)+ γk−1(sk−2,sk−1)}+ γk(sk−1,sk)}

= max
sk−2,sk−1

{αk−2(sk−2)+ γk(sk−2,sk)}
(3.15)

where γk(sk−2,sk) is the new branch meteric for the two-bit symbol{Ak−1,Ak} connecting
state sk−2 and sk: Similarly, Radix-4 β recursion is computed as:

βk(sk) = max
sk+2,sk+1

{βk+2(sk+2)+ γk(sk,sk+2)} (3.16)
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Since Radix-4 algorithm is based on the symbol level, and the calculation of the LLRs
are done in a similar manner as in section 3.3.4 for duo-binary scheme.

Although the duo-binary Turbo codes is more complex than single binary, many de-
signs are implemented based on the conversion from radix-2 to radix-4 to increase the
hardware utilization and to form an unified architecture to support both classes of Turbo
codes. Such conversion is suitable for low-throughput non-parallel architectures. In ad-
dition, such conversion has many drawbacks when targeting the parallel architecture as
we will discuss this point in the next chapters.
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Figure 3.5 Conversion from radix-2 to radix-4 single binary turbo codes of LTE
(HSPA+) trellis

3.5 Enhancement Max Log MAP
We can improve the decoder performance by multiplying the Extrinsic Log Likelihood
Ratio (LLRs) by a scale factor [31] as shown in Figure 3.6.This method leads to reduce
the performance gap against log MAP decoder.

3.6 Decoder Design Strategies
There are two used schemes for the decoding process design. The first scheme, sequential
scheme, takes 2K cycles for the information block length K. The MAP decoder calculates
the forward states and stores them to be used in the second K cycles. In the second K
cycles, the MAP decoder calculates the backward states and generates one extrinsic LLR
per clock cycle as shown in Figure 3.7. The second scheme, butterfly scheme, takes K
cycles. In the first K/2 cycles, the MAP decoder calculates the forward states from the
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first state up to the K/2 state and the backward states from the last state K back to the
state K/2 simultaneously and stores them. In the second K/2 cycles, each clock cycle
the MAP decoder calculates one forward state and one backward state and generates two
extrinsic LLRs per clock cycle. So K LLRs are written to the memory within K/2 clock
cycles.

The sequential scheme requires one state metric and one LLR calculation unit. It
saves much area as it uses one state metric unit and reduces the number of LLRs which
are written simultaneously to the memory. The conflict cycles in case of using parallel
processing is reduced. Beginning the calculation with either the backward or with the
forward state metrics is allowed. While the butterfly scheme uses two state metric and
two LLR calculation units. The butterfly scheme generates two LLRs which increase the
memory conflict and increase latency specially in case of parallel decoding [32].

3.7 Sliding Window Max-Log-MAP
The MAP decoder needs to wait for all the receiving block before starting the decoding
process and requires a memory to save the states values. As the block size increases, the
latency of the decoding process increases and the storage requirement is larger.

To avoid large storage requirement and achieve the latency constraints, the Sliding
Window (SW) Max-Log-MAP approximation was proposed [33]. In SW Max-Log-MAP,
the information block length K is divided into a number of windows, each window has the
size W . This division reduces the storage to a constant value W where only one working
window state metrics are stored instead of storing all state metrics. After the completion
of reception of the first window, the forward states are calculated and are stored into
the state memory to be used in the next calculations. Then, it is ready to calculate the
backward states and extrinsic LLRs of symbols of the first window. The forward states
of second window are calculated simultaneously as shown in Figure 3.8. The choice of
the window size plays a role for decoding performance. Targeting large windows leads
to performance close to the ideal case, Max-Log-MAP performance, at the expense of
increasing in the storage requirements for the state memory and vice versa. Reasonable
value for the window size should be adopted.

At the end of each sub-block, backward states are being calculated. A problem raises
that no pre-estimation of values of state probabilities at the end of the window to initialize
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backward states. A possible solution is to assume equiprobable states at this time slot.
This has its impact on degrading the system performance.

In order to overcome the effect of performance degradation, some proposed tech-
niques use a guard window to have a rough estimation of initial value of backward state
metrics. The guard window begins tracing back not from the end of the current window,
but from a further time slot in the next window, this depends on the guard window size.
As window size and guard window size increases, we have a better performance. The
process of SW MAX Log MAP using a guard window is shown in Figure 3.9

0 W W+g 2W 2W+g 3W 3W+g 4W 4W+g

 

5W

1-Forward

1-Backward

2-Forward

2-Backward

3-Forward

3-Backward
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5-Forward
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Figure 3.9 Sliding Window operation using a guard window technique

3.8 Parallel Sliding Window First Scheme
As mentioned earlier, parallel decoding is used to increase the throughput. The current
wireless communication systems require high-throughput. The parallel decoding [8] [9]
is used to increase the throughput. Parallel decoding can be employed by dividing the
whole information block into p sub-blocks, each is processed independently by a dedi-
cated SISO decoder [34]. Each sub-block is again divided into several windows of length
W . Each window operation takes 2W cycles. In the first W cycles, each SISO decoder
calculates backward states and stores them to be used in the second W cycles. In the sec-
ond W cycles, the SISO decoders simultaneously calculate forward states and generate
extrinsic LLRs. At the same time in which the forward calculations are executed, the
backward calculations of the next window are processed. At the last W cycles, the for-
ward states and extrinsic LLRs of the remaining windows are calculated. However there
is an overlap between forward and backward states generations, only W LLRs are written
to the memory within W clock cycles for each SISO. A timing sequence description of
the Parallel SW Max-Log-MAP algorithm is provided in Figure 3.10.

Another problem is raised which is similar to SW Max-Log-MAP, due to handling
the received block as independent windows, we need to have a pre-estimation for state
probabilities at the end of the window to initialize the backward states and at the begin-
ning of the window to initialize the forward states. The pre-estimation is required for
both the forward and backward metrics which leads to large degradation in the decoding
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performance, counter to the SW Max-Log-MAP which requires a pre-estimation in one
direction. The assumption of equal probabilities for all the states at these time slots leads
to large degradation in the system performance.

Two different techniques were proposed in the literature instead of using the equal
probability pre-estimation. In the first technique, the windows are overlapping by an in-
terval called the guard window. The forward states are not calculated from the beginning
of the window, they are calculated from an earlier time slot in the previous window lo-
cated at a distance equivalent to the guard window. The same concept is used to calculate
backward states, they are calculated from a further time slot in the next window. The
guard window and window sizes play an important role to determine the system perfor-
mance.

The second technique is called the next iteration initialization (NII). The NII does
not need to perform dummy calculations for initializing the state metrics. In the NII,
the values of the states border of the windows are stored into the memory to be used as
estimation in the next iteration. However there is no information at the beginning of the
decoding process, so the borders of the states of the windows are assumed equiprobable
states at the first iteration for the two MAP decoders. The advantage of NII technique is
that it does not waste clock cycles in the estimation of the states border, and also saves
power dissipation during such dummy calculations. The NII has almost same perfor-
mance as the previous technique. Two border memories, one for each MAP decoder, are
required to store the states border. Small window sizes lead to an increase in the size of
the border state memories and vice versa.
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3.9 Parallel Sliding Window Second Scheme
The parallel decoding in second scheme can also be employed by dividing the whole
information block into p sub-blocks similarly to the previous case. In this scheme, each
window operation takes W cycles. In the first W/2 cycles, each SISO decoder calculates
forward and backward states and stores them to be used in the second W/2 cycles. In the
second W/2 cycles, each SISO decoder generates two extrinsic LLRs per clock cycle,
which means that W LLRs are written to the memory within W/2 clock cycles as shown
in Fig. 3.11.

This scheme takes less time than the previous parallel decoding. However large la-
tency is added to the decoding time due to the increase of the number of LLR data which
will be written to the memory simultaneously. Such large latency will degrade on the
throughput significantly. To overcome such degradation, many methods are proposed to
handle and to improve throughput than the original case. These methods will be discussed
in the next chapters.
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Figure 3.11 Timing sequences for Parallel SISOs Butterfly Scheme

3.10 Trellis Termination
Starting and ending from known states at the encoder results in better performance at the
decoders. There are two trellis termination mechanisms used in the current standards.
In the first mechanism, the encoder starts from the zero state and tail bitting is used to
ensure that we end at the zero state. In the second mechanism, the encoder makes sure it
starts and ends in the same state. This does not need tail bitting and does not affect the
throughput of small block sizes.
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Chapter 4

Simulations of WiMAX and 3GPP-LTE
Turbo Codes

The simulations of double-binary convolutional Turbo coding which is used in WiMAX
IEEE 802.16e standard and single binary convolutional Turbo Coding which is used in
3GPP-LTE [35] are presented, showing that influence of the Turbo interleaver block sizes,
number of iterations, code rates, sliding window MAX Log MAP, quantization of the
internal signals. In addition, applying the enhancement Max log MAP on the decoder to
reduce the performance gap against log MAP decoder.

The simulations are done in AWGN and the fading channel model that proposed for
IEEE802.16m standard for urban macrocell [36].

4.1 Enhancement MAX Log MAP
Figures 4.1 and 4.2 show that a 0.2 dB improvement is possible for a scaling factor of
0.75 compared to a scaling factor of 1 for both LTE and WiMAX with 4 iterations, OPSK
scheme, rate 1/3, and in AWGN.

4.2 Effect of number of iterations
As illustrated earlier, Turbo decoding algorithms are based on iterative decoding. In this
case, increasing the number of iterations provides an improvement in the original data
estimation. Figures 4.3 and 4.4 illustrate the performance analysis of MAX Log MAP
algorithm for LTE in AWGN and WiMAX in AWGN and the WiMAX channel model.

4.3 Effect of Turbo interleaver block sizes
Simulation results indicate that Turbo codes performance varies according to the inter-
leaver block size. It is shown that the increase of CTC interleaver size enhances the BER
performance for the same SNR. Figures 4.5 and 4.6 illustrate the performance of MAX
Log MAP algorithm for WiMAX with interleaver block sizes of 24, 96, 192, 240, 480
and 960 couples respectively, and for LTE with interleaver block sizes of 40, 120, 200,
400, 480,640 and 1024 bits respectively. Simulation is performed for 4 turbo decoder
iterations and coding rate of 1/3 in AWGN.
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Figure 4.1 Enhancement MAX Log MAP on WiMAX with N=240 couples, 4
iter and R=1/3

4.4 Effect of Turbo Modulation Schemes
Figures 4.7, 4.8 show the performance of MAX Log MAP algorithm for WiMAX with
QPSK and 16-QAM in AWGN and WiMAX channel model,and for LTE with QPSK,
16-QAM and 64-QAM in AWGN. Simulation is performed for 4 turbo decoder iterations
and coding rate 1/3.

4.5 Effect of Symbol selection (Puncturing)
Symbol selection is performed to reduce number of coded bits per information sym-
bol. Simulation results indicate that puncturing affects the BER performance of Turbo
codes. In 802.16 CTC encoder, variable code rates of 1/2, 2/3, 3/4, and 5/6 are defined.
It is shown that the increase in the code rate results in a degradation of Turbo codes
performance. The process of puncturing should be adaptive according to the channel
conditions. Figures 4.9, 4.10 show comparison between various Coding rates in AWGN
and WiMAX channel model.Simulation is performed for 4 turbo decoder iterations and
N=240 couples. The effect of puncturing in the single binary codes is shown in Figure
4.11.

4.6 Effect of the Rayleigh selective fading channel on LTE
The effect of the Rayleigh selective fading channel on LTE turbo codes is shown in Fig-
ure 4.12. The performance of the decoding iterations is improved when the channel is
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Figure 4.2 Enhancement MAX Log MAP on LTE with k=120 bits, 4 iter and
R=1/3

selective and not correlated as the exchanged information from one MAP decoder to the
other is informative.

If there is a way to measure the correlation of the channel, it may be used to change
the number of iterations in order to reduce the power consumption. As the correlation
of the channel is increased, the number of iteration is reduced which helps to reduce the
power consumption which will not degrade the performance.

4.7 Sliding Window MAX Log Map approximations
In this section, the effect of Sliding window MAX Log MAP approximation is illustrated.
The BER performance is tested for different window sizes (Ws) and guard window sizes
(Wg). The simulation results are shown in Figures 4.13, 4.14. It is obvious that the system
performance is exposed to some degradation with the change of the guard window size
(Wg). The simulation results indicate that for the same window sizes (Ws) and guard
window sizes (Wg) and increasing the block sizes lead to degradation in performance as
shown in Figure 4.15.

4.7.1 Parallel Sliding Window Effects Using Guard Window and bor-
der states techniques

The guard window technique used to initialize the borders of the windows has degrada-
tion effects on the BER performance for parallel SW Max log MAP than the sequential
SW Max log MAP. The parallel access of SW Max log MAP initializes the borders of
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both forward and backward states while the sequential SW Max log MAP initializes the
backward states only.

For parallel access, the border memory technique has better performance than the
guard window technique as shown in Figures 4.16 and 4.17

4.8 Fixed point analysis
In this section, fixed point simulation results are presented showing the optimal number
of quantization bits for both input signals and internal signals. The notation < int,q >
is used to describe the fixed-point representation, where int represents the bit-width of
integer part and q represents the bit-width of the fractional part.

In Figures 4.18(a), 4.18(b), and 4.18(c) quantizations of input signals are indicated, it
is shown that 2 bits for integer part and 2 bits for fraction part have a good performance,
it approaches the performance of the floating point model.

In Figures 4.19(a), 4.19(b), and 4.19(c) quantizations of Extrinsic LLRs signals are
indicated, it is shown that 5 bits for integer part and 1 bit for fraction part have a good
performance, it approaches the performance of the floating point model.
Simulation parameters are done with rate 1/3, AWGN channel, Block size N=240 cou-
ples, Window size (Ws)=32, guard window (Wg)=4 and with 4 iterations.
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Chapter 5

Memory Conflict Analysis

The parallel sliding window decoding leads to contention on memory due to parallel
access, which causes latency and reduces the throughput. The conversion from radix-2
single binary turbo codes to radix-4 single binary turbo codes adds more conflicts as the
time to write the whole data block is reduced by half.

5.1 Maximum Contention Free Interleavers
There are two types of interleavers, unconstrained interleavers and constrained inter-
leavers. The constrained interleavers are maximum contention free (MCF) [12] which
mean no conflicts happen due to parallel accesses as shown in Figure 5.1. But the MCF
interleavers require that K =M∗P∗W where K is the block length, W is the window size,
P is the number of parallel windows and M is an integer as shown in Figure 5.2. Hence,
the Window size W and the number of parallel windows P must be variables based on the
block length K.

There are few standards that include contention-free interleavers such as WiMAX
and 3GPP-LTE. Conversely, in parallel radix-4 scheme, 3GPP-LTE and WiMAX are not
MCF, which means that they will face conflicts during parallel access. However, by using
the even-odd memory scheme those conflicts can be avoided.

1 18 11 4 21 14 7 0 17 10 3 20 13 6 23 16 9 2 19 12 5 22 15 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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Figure 5.1 An example for no collisions for WiMAX interleaver when M=1
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Figure 5.2 An example for collisions happen for WiMAX interleaver when
M=0.96

5.2 Effect of Window Size on Memory Contentions
Buffering of the conflicting data until processed by the targeted memory, was proposed
to avoid memory contentions. Computer simulations are done on Matlab to determine
the buffer sizes for different interleaver patterns that are used in different standards.

Selecting the window size is an important step for reducing the size of the buffer
structure as shown in Figure 5.3 and 5.4. However this leads to complexity in calculating
the offset and bank number for memory addressing which require dividers. The area
of the dividers is very large, and long time is needed for calculations. To avoid those
drawbacks, the window size should be power of 2.

The second decoder cannot start its decoding process until the first decoder finishes
writing the all values to memory. This latency is varying from standard to standard and
depends on block sizes as shown in Figure 5.5. This feature makes the scheme not suit-
able for constrained real time systems.

5.3 The Second Scheme of Parallel Decoding Analysis

5.3.1 Decreasing the Number of Conflicts
According to the timing sequence of the parallel decoding algorithm 3.9, where each
SISO decoder generates two extrinsic LLRs per clock cycle. As shown in Figure 5.6,
delay buffers can be used to store one of the two LLRs which are generated by each
SISO to reduce the memory conflicts and area. However, additional latency is produced
because the decoder cannot start its process until the other decoder finishes all its writing
operations. Although delay buffers are added the total buffer size is reduced since the
total line buffers are reduced which have bigger width than the added delay buffers. Many
comparisons have been done to select the efficient hardware and system requirements.

In this analysis, we assume that the memory runs at double the clock frequency of the
system. The double speed of the memory clock has many benefits:

• Reduces the number of conflicts which decreases the number of buffers required to
store the conflict data.
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Figure 5.3 Maximum buffer sizes for 3GPP2 CDMA2K interleaver for different
window sizes with 8 parallel windows
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Figure 5.5 Maximum latency for 3GPP2 CDMA2K interleaver for different
window sizes with 8 parallel windows
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• Avoids variable latency. Variable latency is unsuitable for real time communica-
tions systems, through fast writing of the stored data.

• Reduces latency in case of adding delay buffer when two decoders exchange the
information between them.

The use of two clocks in the design, one for the system and another for the memory, adds
to the design complexity.

5.3.2 Handling of the Conflicts
As the LLR values arrive to the memory bank simultaneously, the data alignment block
collects these values to prevent contentions by storing them into a buffer structure. Each
LLR writes into a separate 2-dimensional array entering the intended row corresponding
to the target bank as shown in Figure 5.7.

LLR

1

 To 

Bank 

1

Controller 

FIFO

 Controls

Selection 

Controls
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Signals

Line Buffers

To 

Bank 

2

To 

Bank 

P

LLR

2

LLR

p

Figure 5.7 The data alignment block receives LLR values and stores them until
processed by the targeted memory bank

There are two levels of buffers. The first level is the delayed buffer explained earlier.
The second level is the line buffer located in the data alignment block. The line buffers
store LLRs and the interleaved/deinterleaved addresses, while the delayed buffers store
LLRs only. The sizes of the line buffers are determined by simulating the different stan-
dards and selecting the biggest sizes to resolve the collisions. The reduction in area due
to the minimization of line buffers overcomes the increase in area due to the addition of
delayed buffers. Hence, the total buffer size is reduced. Many comparisons have been
done to select the efficient hardware and system requirements.

The controller selects an LLR from the stored values to be written to the target mem-
ory bank. To reduce the complexity, the control unit is divided into a number of parallel
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units, p. Each unit consists of two selectors and two row enablers connected as shown
in Figure 5.8. The “selector from low” takes the request, status signal, number 1 as the
highest priority, and request number n, representing the number of concurrent LLRs, as
the lowest priority. The “selector from high” takes the request number n as the high-
est priority, and request number 1 as the lowest priority. The “row enabler 1” is active
when one or more requests are asserted. The “row enabler 2” is active when two or more
requests are asserted.

Selector

From low

Selector
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High

Row 

Enabler

1

Row 

Enabler

2

Status 

Signals

Selection access 1

Selection access 2

R1

Rp

Bank 1 

Controller 

Bank p 

Controller 

Figure 5.8 The controller of the data alignment block with divided into p small
controllers

In this design, the used memories are dual port memories, which allow two concurrent
memory accesses per clock cycle. Many requests may arrive simultaneously to access one
of the memory banks. To determine which one or two requests will be served, a simple
mechanism is applied separately for each memory bank. The upper selector scans from
low to high, and selects the minimum active request index. The lower selector scans from
high to low, and selects the maximum active request index. Then the two selected indices
are enabled to be written to the memory bank. The outputs of the row enabler represent
read enables of buffers and the outputs of the selectors represent control selections for
the multiplexers for each bank.

5.3.3 Simulations Results for Memory Conflict
Table 5.1 summarizes the turbo codes used in different standards. Each standard has its
own parameters such as the used code types, the possible block lengths and maximum
throughput requirement. The permutation law in WiMAX, DVB-RCS and DVB-RCT
is the same. Similarly, it is the same in CDMA2000 and DVB-SH. The implemented
data alignment block is synthesized on Altera Stratix-III EP3SC150 FPGA with the im-

42



Table 5.1 main parameters in different standards

standard codes block sizes number of throughput
block sizes (Mbps)

3GPP-LTE btc 40...6144 188 100
WiMAX dbtc 24...2400 17 70
DVB-SH btc 1146 & 12282 2 50
HSPA+ btc 40...5114 1269 43.2

DVB-RCS dbtc 24...864 12 31
DVB-RCT dbtc 24...864 12 31

CDMA2000 btc 378...20736 12 2

plementation parameters shown in Table 5.2. We obtain the results indicated in Table
5.3.

From those results, the Addition of delay buffers reduces the FIFO storage sizes,
simplifies the routing between the line buffers and the multiplexer network and increases
the memory frequency. However, a fixed W/4 latency cycles are added per half iteration,
so the throughput Rb is:

Rb =
K ∗ fclk

2∗ i∗ (
⌈ K

F∗P∗W
⌉
∗min(W, K

F )+min(W
4 ,

K
4 ))

(5.1)

where fclk is system clock, i is the number of iterations, F is a factor equal to 1 for radix-2
and 2 for radix-4.

In contrast, the design without delayed buffer has one clock cycle latency per half
iteration, but at the expense of lower memory clock frequency, so the throughput Rb is:

Rb =
K ∗ fclk

2∗ i∗ (
⌈ K

F∗P∗W
⌉
∗min(W, K

F )+1)
(5.2)

According to (5.1) and (5.2), the throughput for LTE standard is given in Table 5.4,
with fclk = memory frequency/2, W=64 symbols, P=8, i=4, F=2. The total buffers and
cycle conflicts for different standards are given in Tables 5.5, 8.1. The analysis of these
results indicate that the HSPA+ (using radix-4 scheme) has the biggest buffer structure
between all standards. Compared to [10], our designs reduce the latency, area and conflict
cycles as shown in Table 5.7.

Table 5.2 Implementation parameters

P 8 address width 15 bits
W 128 bits delayed buffer width 6 bits

LLR Width 6 bits line buffer width 18 bits

5.4 Memory Conflict Handling of The First Scheme
Memory conflict handling of the first scheme is similar to the second scheme. The data
alignment block collects the arrived LLR values to prevent contentions by storing them
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Table 5.3 Comparison between two designs for data alignment block

parameter without delayed with delayed
buffer buffer

Number of line buffers 610 228
Number of delayed buffers 0 256

Total FIFO size (bits) 10980 5640
Number of logic cells 2064 856

Max. memory frequency(MHz) 231.48 294.9
Latency per half-iteration 1 16

(clock cycles)

Table 5.4 Throughput comparison between two designs for LTE standard

Block length(bits) without delayed buffer with delayed buffer
40(min length) 27.5571Mbps 29.49Mbps

6144(max length) 231.48Mbps 283.104Mbps

Table 5.5 Memory analysis for radix-2 implementations (all block sizes for each
standard)

standard cycle conflicts total buffers (bits)
with buffers no buffers with buffers no buffers

CDMA2K 4018 9743 4422 4590
CCSDS 778 3183 2706 3006

Table 5.6 Memory analysis for radix-4 implementations (all block sizes for each
standard)

standard cycle conflicts total buffers (bits)
with buffers no buffers with buffers no buffers

3GPP-LTE 5669 38561 3090 7056
HSPA+ 211803 495457 5640 10980
WiMAX 176 2390 3072 4716

Table 5.7 Comparison of memory conflict for HSPA+ (Radix-4 scheme) with 2
parallel SISOs

parameter without delayed with delayed [10]
buffer buffer

Extra Fifo Cycles 1 16 65
Conflicting Cycles(K=5114) 813 273 1037

Total Fifo Size 48 94 367
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into a buffer structure. The design of the data alignment block is identical for the second
scheme as shown in Figure 5.7. As the first scheme allows each SISO to write one LLR
per clock cycle, there is no need to use double clock frequency for the memory. The same
clock for memory and the system simplifies the design. As a result, the controller inside
the data alignment block is changed to select one of the stored data in the line buffers for
each bank as shown in Figure 5.9.

Selector

From low

Row 

Enabler

1

Status 

Signals

Selection access 

R1

Rp

Bank 1 

Controller 

Bank p 

Controller 

Figure 5.9 The controller of the data alignment block with divided into p small
controllers

In this scheme, the used memories are single port memories to simplify the design
and to reduce the power and the area of the design. So one memory access per clock
cycle will be allowable for each bank. The first scheme is our timing sequence which is
used in the proposed ASIP processor.
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Chapter 6

ASIP Architecture

6.1 ASIP Architecture
ASIP architecture combines configurable and dedicated units through targeting certain
applications. The increase of the proportion of the configurable units in the design results
in more flexibility but, at the same time, it has a bad impact on the decoding throughput.
So, the choice of the suitable architecture for the ASIP plays a significant role to meet the
implementation requirements for different turbo decoder types.

The parallelism in turbo process is required to achieve the high throughput demand.
There are two approaches to achieve the parallelism on the ASIP architecture. The first
approach is to build an ASIP processor including multiple SISOs and each SISO pro-
cesses independent Windows. The interfacing between multi-SISOs is controlled by the
instructions of the processor. Such mechanism is fully optimized for turbo decoder ar-
chitecture and avoids the waste cycles during exchanging the data [20]. The second
approach is multiple ASIPs and the interfacing between them is done through communi-
cation routers to send and to receive the required data in packets format which is called
network on chips (NOC) [22] [24]. The second approach produces complex interfaces
and adds additional latency for the decoding time.

A pipelined processor is designed to reduce the critical path to produce high through-
put. The architecture consists of nine stages: fetch, decode and execution stages as shown
in Figure 6.1. The execution stages include seven stages: addresses generation, branch
metric calculations, state metric calculations, three stages for LLR calculations and write
back stage.

6.2 State Metric Unit
The state metric units occupy most of the design area which is around two-thirds of
the hardware resources. Both forward and backward state metric values are required
for calculating the LLR values. The implementation of the forward and backward state
metric units is identical. To meet the throughput requirement two units are implemented,
one for forward metric and the other for the backward metric, to work simultaneously.
The add compare select, ACS, is the basic calculation unit for the state metric units. The
feedback in the state metric unit, due to recursion, imposes certain critical path which
has a big influence on the throughput. The critical path of the state metric unit, in this
case represents the dominant critical path, determines how to design the pipelined stages
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by putting registers to keep up the same length of such critical path or lesser for other
blocks.

There are different ways to implement the state metric unit. Such ways are based on
radix-4 calculation, radix-2 calculation or compromised way between radix-4 and radix-
2. In all cases, the designed unit should be able to perform all possible calculations.
Figure 6.2 shows three different architectures to build a unified block of state metric
to support single and duo-binary types. For each ACS unit, the value of α(x)/β (x) is
chosen by one of the inputs αy/βy as x takes one of values 1, 2, 3 and 4 while y takes
the values from 0 to 7. These choices depend on the encoder architecture which means
that it’s changed from one standard to other. Each selection needs 3 bits to select one
of eight possible values and there are four inputs for each ACS unit. So there is 12
bits configuration word for each ACS. The total configuration word for one state metric
unit is 48 bits. These configuration words are loaded in the configuration register in the
beginning of the decoding process.

The following section presents these configurations and their different impacts on the
throughput, hardware utilization and area.

6.2.1 First Configuration
The first configuration is more convenient for radix-4 calculations than radix-2 as this
scheme can perform the ACS between four branches in a single clock cycle. The cal-
culation of state metric in radix-2 form has poor utilization as it uses almost half of the
hardware resources. In order to increase the utilization of the hardware resources in radix-
2 single binary schemes, the trellis can be compressed in time to be similar with radix-4
as proposed in section 3.4.

Such conversion has many drawbacks on the whole design. One of these drawbacks
is the interleaver design. The interleaver of radix-2 single binary is based on bit level ad-
dresses which means K bit LLR values require K addresses. This conversion compresses
the trellis in time, as mentioned earlier, producing K interleaved addresses in only K/2
clock cycles in case of radix-4 single binary. This leads to more contentions on the mem-
ory as the time to write the whole LLR values is reduced by half. This problem is not
raised for radix-4 duo binary case because the interleaver design is based on symbol ad-
dresses which means K/2 symbol LLR values, which is equivalent to k bit LLR values,
requires K/2 addresses.

Additionally, the conversion of 3GPP2-CDMA2000 complicates the implementation
of branch metric unit. Specifically, in the decoding rate 1/5, which is used in 3GPP2-
CDMA2000 standard, the radix-2 scheme calculates 8 different branch metrics while
64 different branch metrics are calculated in case of radix-4 single binary. This result
in a large computational requirement and an increase in the number of memory access
which requires more than one port memory leading to poor utilization. So, it is not
a suitable choice for the configuration that supports both radix-2 and radix-4 and with
good utilization.

In addition, in parallel radix-4 scheme, 3GPP-LTE and WiMAX are not MCF, which
means that they will face conflicts during parallel access. However, it is important to
note that the parallel generated addresses are even-odd patterns as shown in Figure 6.3.
By dividing each memory bank into two sub-banks even and odd access banks, those
conflicts can be avoided.

The Turbo decoder in the LTE (single binary) has the highest throughput. So our
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Figure 6.2 State Metric Unit

target is to speed the decoding process for single binary to achieve this requirement.

6.2.2 Second Configuration
The second configuration is based on radix-2 calculations as this scheme performs the
ACS between two branches in a single clock cycle. An iterative manner is used for radix-
4 calculations which produce the state metric values every two clock cycles. This scheme
is suitable for all turbo code standards with good utilization for hardware resources. The
avoidance of the trellis compression technique leads to less conflict, less area and less
complexity in the interleaver design. The same throughput is achieved for single binary
and duo-binary schemes.

The calculation of the state metrics for radix-4 duo-binary, ACS between four branches,
takes two cycles. In the first cycle, the result of the ACS of two branches is stored in a
temporary register. At the second clock cycle, the ACS of the other two branches is cal-
culated, and then the output of state metric is the maximum value between the updated
value and the stored value in a temporary register. The critical path for radix-2 includes
two additions, one max operation and a multiplexer gate delay. On the other side, the
critical path for radix-4 includes two additions, two max operations and a multiplexer
gate delay.

6.2.3 Third Configuration
The third configuration is based on radix-2 calculations similar to the second configura-
tion. In the same way, an iterative manner is used for radix-4 calculations but produce the
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Figure 6.3 parallel access with interleaed addresses with K=40, p=4, w=10 (a)
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state metric values every three clock cycles instead of two clock cycles. This configura-
tion is suitable for single binary calculations rather than duo-binary as it targets to speed
up the radix-2 calculations by reducing its critical path at the expense of radix-4 calcula-
tions. As a result, the throughput of single binary is higher than duo-binary schemes. The
increase in decoding time for duo-binary, due to taking three clock cycles for the state
metric calculations, overcomes the reduction in critical path of state metric unit.

The calculation of the state metrics for radix-4 duo-binary takes three cycles. In
the first cycle, the result of the ACS of two branches is stored in one of two temporary
registers. In the second clock cycle, the ACS of the other two branches is calculated and
stored in the other temporary register. In the third clock cycle, the output of state metric
is the maximum value between the updated values in the temporary registers. The critical
path for both radix-2 and radix-4 calculations are two additions, one max operation and
a multiplexer gate delay.

According to the state metric implementation, the other units, the branch metric and
LLR units, adapt their resources to enhance the hardware utilization. Each stage takes a
fixed amount of time, so the state metric stage receives the branch metrics and sends its
output to LLR stage every three cycles in case of radix-4 scheme. The implementation
of the LLR and branch metric stages should have less area than the second configuration
but the third configuration takes more clock cycle than second configuration in radix-4
calculations. However the area of the LLR and branch metric stages is identical to the
second configuration due to the restrictions of radix-2 calculations. As a result, the branch
metric and LLR calculation units exploit the hardware resources every two out of three
cycles for producing their output and only the state metric units exploit all cycles. So the
utilization of duo-binary scheme is poor.

One of the most important features for the third configuration is that there is no added
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latency cycles between the two decoders because of the conflicts on memory banks as
shown in Figure 6.4. However, there are some instructions should be executed to ini-
tialize the operation of each MAP decoder when transferring from one MAP decoder to
the other. Hence, there is no benefit from zero latency cycles. The zero latency cycles
are suitable for dedicated architectures where the two MAP decoders are consecutively
working without initialization.

Figures in 6.4, 6.5, and 6.6 show the effects of the parallel architecture of the three
configurations on added latency between two decoders, memory buffers, and the proba-
bilities of simultaneous accesses on memory banks. In addition, the different configura-
tions are synthesized on Altera stratix-III FPGA and the results are given in Table 6.1.
The table results are in case of one SISO implementation and the parallel SISOs effects
are not included.

From those results, the first configuration has the highest throughput with adequate
area in case one SISO implementation for both turbo code types. So, the first configura-
tion is the best choice for the one SISO implementation. However, large latency is added
for first configuration in case of the parallel architecture, as shown in Figure 6.4, because
of the extra clock cycles required to resolve the memory conflicts. A large degradation of
the throughput and large buffers are the result in case of using more than one SISO. As a
result, such configuration should be avoided in the parallel architecture scheme.

Additionally, the third configuration has the least conflicts, the smallest area and the
least number of buffers among the different configurations. In addition, the third config-
uration has the highest throughput per area in case of single binary scheme. However,
the third configuration has the least throughput among the different configurations for
duo-binary scheme.

The second configuration has an acceptable latency between the two decoders, and
also not much buffers are needed to resolve the memory conflicts. The second configura-
tion gives almost the same high throughput for both turbo code types with adequate area.
The second configuration is the suitable choice amongst these configurations for parallel
architecture design.

Table 6.1 Comparison of Three Configuration for one SISO

First Second Third
Comparison Config. Config. Config.

Max. clock frequency 125.27MHz 125.27MHz 140.88MHz
Throughput for Radix-2

LTE @6144 bit 30.8Mbps 15.5Mbps 17.4Mbps
Throughput for Radix-4
WiMAX @2400 symbol 30.1Mbps 15.2Mbps 10.17Mbps

State Metric unit 1844 LC 1035 LC 946 LC
LLR calculation unit 1948 LC 918 LC 918 LC
Branch Metric Unit 126 LC 160 LC 160 LC

One SISO unit 5888 LC 3308 LC 3130 LC

The initialization of the forward and backward states border is chosen by

• all zeros, equal probabilities for all the states, which happens at the first iteration
for each MAP decoder
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• border values which happens at the iterations followed by the first one

• starting from the state zero S0 or

• with the updated values for recursive operation which happens within the window
calculations.

Where the starting from the state zero S0 means giving the highest value to S0 and
the lowest values to the other states.

6.3 Memory Access
To enable the processor to work in a faster manner, dedicated memories are needed to
store and retrieve the manipulated data. In addition, dedicated calculation units for gen-
erating the required addresses and control signals are also needed. All these dedicated
units are controlled by the instructions of the program.

Each MAP decoder for the single binary scheme has one received systematic symbol
and one received parity symbol. On the other hand, each MAP decoder for duo-binary
scheme has two received systematic symbols and two received parity symbols. The de-
sign of memory should be implemented to adapt with two types of turbo codes. The ar-
chitecture of proposed memory consists of two sub-memories. These two sub-memories
operate as two separate units in case of duo-binary and one unit in case of single binary.

There is another potential problem for the memory design: each branch metric unit
may read two different values from each memory. To avoid the usage of dual port memo-
ries, the memory is divided into a number of memory banks and the size of each memory
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bank is W as shown in the Figure 6.7(a). According to the decoding process, the first read
value from top to down of a certain bank goes to forward branch metric unit as shown
in the Figure 6.7(b). While the second read from down to top of the next bank goes to
backward branch metric unit. So the offset part of the address that accesses the forward
bank is inverted to access the backward bank.

In addition, the LLR memory works in two modes Duo-binary and single binary
modes. For single binary mode only one LLR value (LLR1) is stored while for duo-binary
there are three LLR values (LLRA, LLRB and LLRC) to be stored. The maximum length
of memory for single binary is around 6,500 while for duo-binary is 2400. To maximize
the utilization of this block, the memory of LLRA and LLRB units as one block in single
binary mode where LLRA memory is used for LLR1 even addresses and LLRB memory
is used for LLR1 odd addresses. The memories of LLRA and LLRB units work as two
sub blocks in duo-binary mode. The memory of LLRC values isn’t used in single binary
mode.

There are two memories to store the interleaver/deinterleaved addresses. These mem-
ories provide the addresses to the data alignment block to store the LLR data. Many
works has used a loadable interleaver mechanism such as in [21]. All these memo-
ries are work in sequential manner, so each memory has its address counter to point to
the current location. The enable signals of these addresses counters are come from the
instructions of the processor.

6.4 Branch Metric Unit
The number of branch metrics changes from one standard to another according to the
type of turbo codes and the coding rate. Most of the current standards have eight states.
Each state in the trellis diagram has four possible branches for duo-binary scheme, where
the possible combinations belong to 00, 10, 01 and 11, so there are thirty-two possible
branches. However the number of calculations of the branch metric is reduced by half,
as there are sixteen different values and the others are the same. In the same manner,
each state in the single binary scheme has two possible branches, where the possible
combinations belong to 0 and 1, so there are sixteen possible branches. However the
number of calculations of the branch metrics is reduced to be four branch metrics for
LTE standard and eight branch metrics for UMTS.

The proposed branch metric unit is configured to generate sixteen, eight and four
branch metrics as shown in Figure 6.8. The output of the branch metric unit goes to the
state metric and LLR units. As explained earlier, the calculation of the state metrics and
LLR values take two clock cycles for duo-binary and one clock cycle for single binary
schemes. The proposed branch metric unit produces eight branch metrics every one clock
cycle. The branch metric calculations of the WiMAX standard take two phases. In the
first phase, the branch metric unit produces the first eight branch metrics which belong
to the pair of inputs 00 and 01. In the second phase, the branch metric unit produces
the other eight branch metrics which belong to the pair of inputs 10 and 11. The branch
metric calculations are done in one clock cycle in case of LTE scheme. For UMTS
calculations, the upper four branch metrics are identical to the lower branch metrics which
simplify the design of the state metric.
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6.5 LLR Calculation Unit
The turbo decoder algorithm estimates the final decision of the received data based on
the LLR values at the end of the pre-determined iterations. The calculation of the LLR
values requires branch metrics as well as forward and backward state metrics. According
to the proposed decoding process, the backward state metrics of a window are calculated
in advance of the forward state calculations which results in the production of the LLR
values to be delayed within the first W cycles. Then, the LLRs values are concurrently
produced from the SISOs units and are transmitted to the LLRs memories.

The LLR calculation unit is divided into three pipelined stages in order to enhance
the allowable maximum frequency as shown in Figure6.9. These stages are two 2-stage
LLR calculation units and another stage is added for duo-binary calculation as shown in
Figure 6.1. Each 2-stage LLR calculation unit produces one LLR value.

As mentioned earlier, the duo-binary scheme requires producing four LLR values
which represent the probability of the received symbol to be one of 00, 10, 01 or 11. The
LLR calculations of the duo-binary scheme take two phases. At the first phase, the LLR
values of Λ

(00)
int and Λ

(01)
int are calculated and the difference between them, Λ

(01)
ext , is sent

to the memory. In addition, the Λ
(00)
int is stored to be used in the next clock cycle. At

the second phase, the LLR values of Λ
(10)
int and Λ

(11)
int are calculated and subtracted from

the Λ
(00)
int to produce Λ

(10)
ext and Λ

(11)
ext respectively. On the other hand, the single binary

scheme requires one phase for producing two LLR values, Λ
(0)
int and Λ

(1)
int , which represent

the probability of the received bit to be either 0 or 1. The difference between Λ
(1)
int and

Λ
(0)
int is calculated, Λ

(1)
ext , and is sent to the memory.
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6.6 Instructions
The proposed parallel SISO processor is based on a single instruction multiple data,
SIMD, instructions. The SIMD instruction performs several operations in different pipelined
stages all at once. The designed instructions include two classes: control and operative
instructions. The number of instructions is not required to be large as we are targeting
certain applications not general programs.

The control instructions include zero overhead loop (ZOL),goto, LOOPNE, call and
return instructions. The call instruction allows building one subroutine for two MAP
decoders. There are three zero overhead loop (ZOL) instructions. The ZOL instruction is
implemented to save the wasted cycles for initializing the loop counter register, and for
avoiding the load and move instructions during the branching loop. The ZOL instructions
allow the nested loop operations. The nested loop instructions are convenient to perform
the iterations of the decoding process. The decoding process is composed of a certain
group of instructions which are repeated numbers of times such as:

• The calling of the subroutine of the MAP decoder is repeated according to the
number of iteration.

• Inside the subroutine of the MAP decoder, the window operations are repeated.

All ZOL instructions are relative jump. Our processor targets real time applications, so
the predication mechanisms for jump instructions are not suitable technique. The no op-
eration instruction Nop is used after each ZOL instruction so the ZOL instruction implies
two clock cycles for the execution. There is two-level stack to hold the PC during calling
the subroutine and retrieving it when the return instruction is executed. The LOOPNE,
loop if not empty, instruction checks if there is any LLR data stored in the buffers of the
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data alignment block or not. If there is any LLR values will loop until all data is written
to the memory. The call and return instructions take three cycles because of the pipeline
operations. These cycles are one for execution and two for Nop instructions. These two
Nop instructions are due to the fetching and the decoding of the next instructions.

Additionally, the operative instructions include parallel SISO operations (ParSISO),
Move, store channel values to the memory StrData, Decode, load configuration and ini-
tialization instructions. Of course the initialization instruction is required before calling
the main subroutine to set up the execution of each MAP decoder. The ParSISO in-
struction controls the execution of the different operations in multi-SISO units. Decoded
instruction generates the Decoded output of the received data values. Figure 6.10 shows
pseudo code description of Turbo decoding algorithm.

6.7 Interfacing Between SISOs
As mentioned earlier, the parallel processing is proposed to meet the high-throughput re-
quirement. The proposed mechanism to handle the parallel processing is by dividing the
incoming data block into several windows and each window is processed independently
using one SISO unit. Each window operates in the forward and in the backward directions
to calculate the recursion states. The NII technique is used to initialize the border values
of states to avoid the degradation in the decoding performance. The border values of a
certain window are calculated from the predecessor SISO for the forward states and from
the successor SISO for the backward states. The interfacing between the adjacent SISOs
is implemented to handle transferring the border values between the SISOs as shown in
the Figure 6.11. The transferring of the border values between the SISOs happens at the
last clock cycle after processing each window. The calculations of the border values are
not used in the same iteration as all SISOs concurrently start which prompts to store them
into the border memories. Starting from the second iteration, the border values are read
from the border memories at the beginning of the window operations. The generation of
the reading and writing addresses of the border memories all are done through PraSISO
instruction. The circular trellis termination imposes that the first forward/backward state
values to be the same as the last forward/backward state values. The SISO, in which the
last state values happen, are varying and this variation depends on the block size K. So all
the forward states of different SISOs direct to the first SISO to choose the proper values.
By the same way, the first backward state values direct to all backward states of different
SISOs.
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Load_Configuration(Gamma)

Load_Configuration(Alpha)

Load_Configuration(Beta)

Initialize(Set_First_Iteration, Set_First_MAP)  

CALL  Parallel_MAP_Algorithm 

Initialize(Clear_First_Iteration, 
Set_Second_Decoder)

CALL  Parallel_MAP_Algorithm

ZOL(Iteration_Number-1)

{

Initialize(Set_First_MAP)  

CALL  Parallel_MAP_Algorithm 

Initialize(Set_Second_MAP)

CALL  Parallel_MAP_Algorithm

}

Decode()       

Parallel_MAP_Algorithm:

Initialize(Beta)

ZOL(NT1) {ParSISO(Backward)}

ParSISO(Borders_Interfacing)

ZOL(NT2)

{

Initialize(Alpha,Beta)

ZOL(W) {ParSISO(Backward,Forward,LLR)}

ParSISO(Borders_Interfacing)

}

Initialize(Alpha)

ZOL(W) {ParSISO(Alpha,LLR)}

ParSISO( Borders_Interfacing)

LOOPNE()

Return

-Generate Addresses (data, state, 
border) Memories
-Calculate Backward Gamma 
values
-Calculate and store Beta Metrics 

-Generate Addresses (data, 
border, state) Memories
-Calculate Backward and 
Forward Gamma values
- Read the stored beta values 
- Calculate Alpha Metrics
-Calculate and store Beta 
Metrics 
-Calculate LLRs

-Generate Addresses (data, 
border, state) Memories
-Calculate Forward Gamma 
values
- Read the stored beta values 
- Calculate Alpha Metrics 
-Calculate LLRs

Wait until write all data to the LLR 

memory

Generate the decoded output

The values of NT1 and NT2 depend on the block length 

Figure 6.10 Pseudo code description of Turbo decoding algorithm for single
binary scheme
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Chapter 7

Inside The CPU

The architecture of the processor is divided into two main units: the data path unit (DP)
and the control unit (CU) as shown in Figure 7.1. The control unit controls all parts of
the DP unit, as its purpose is delivering the control signals according to the executed
instruction each cycle to DP unit. While the purpose of the DP unit is manipulating the
data and executing any required operation according to the control signals from CU unit.
In addition, the DP unit provides the control unit with the status of some registers to
enable the processor to take the decision according to executed conditional instructions.
As an example, the DP unit indicates if there is an overflow resulting from a previous
operation or not.

Control 

Unit

Data path 

Unit

Control 

Signals

Status 

Signals

Figure 7.1 General block diagram architecture for the processor

The main task of the processor is the execution of the programs. The programs are
stored in the program memory. According to the written program, the processor achieves
the target task through certain instructions. In order to enable the processor to execute
the instructions faster, there are some dedicated registers inside the control unit. The
two main dedicated registers are instruction register IR and program counter PC. The PC
register points to the next executed instruction. While the fetched instruction is loaded to
IR register.

The ASIP processor executes the stored instructions in the program memory. The
process of the execution of the instruction is divided into three phases: fetch, decode
and execute phases. The first phase is to bring the instruction from the program memory
which is pointed by the PC register. The fetched instruction is written to the IR register
in the second phase. While the third phase is the execution of the instruction according to
the operation code. The operation code (op-code) is a part of the instruction formatting
beside the operands, if the instruction requires operands. The op-code tells the control
unit which operation, such as addition or store to memory operation, is requested by the
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instruction. The op-code of each instruction has unique patterns. These phases may be
executed sequentially as shown in Figure 7.2 which is known as fetch-decode-execute
cycles.

S0

S1

S2 S3 S4 S5 S6

T0

T1

T2

IR0 IR1 IR4IR3IR2

Fetch

State

Decode

State

Execute

States

Figure 7.2 State diagram of non-pipelined processor

The processor goes between three times phases T0 , T1 and T2. T0 indicates that the
processor is in the fetch state. The decode and the execute states correspond to T1 and
T2 respectively. These signals are generated from a counter which is called a sequence
counter SC as shown in Figure 7.3 . The SC is incremented every clock cycle by one
until it reaches the end of the execution phase. As the SC reaches the end of the execution
phase, SC goes to zero value to go to the fetch state again. The SC is an input to a binary
decoder to generate the Tn signals as n is a general number.

In order to distinguish which instruction will be executed, the op-code in the IR is an
input to a binary decoder to generate the qn signals. Only one of the qn signals is active
at any one time, corresponding to the op-code value of the executed instruction.
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Figure 7.3 Block Diagram for generating the Tn and qn signals

The pipelined process is used to reduce the latency time between the executed instruc-
tions which affects the overall throughput improvement. The order of the fetch-decode-
execute mechanism is changed. The fetch of the first instruction happens at T0 phase.
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While at T1 phase, decoding of the fetched instruction, the first instruction, and fetching
of the next instruction, the second instruction, happen. At T2 phase, the execution of the
first instruction, decoding the second instruction and fetching a new instruction happen.
The processor remains in T2 phase for most of the time which indicates a fully loaded
pipeline process (normal operation) as shown in Figure7.4. The processor may return to
T0 only when executing the branch instructions. The processor should flush the pipeline
when executing any branch instructions to prevent an incorrect memory address from
being loaded.

Cycle

1 2 3 4 5 6

Inst_1 F1 D1 E1    

Inst_2 F2 D2 E2   

Inst_3  F3 D3 E3  

Inst_4   F4 D4 E4

fully Loaded pipelined  

(normal operation) 

Figure 7.4 The process of the execution of the pipelined instructions

7.1 Micro-instructions
This section describes how the instruction works in details. How the control signal is
generated for different type of instructions is also presented. The following notation is
used to describe the transfer of the data and control signals among different operations

Condition : Trans f er statements
As the true condition is satisfied, the transfer statements occur otherwise there is no

change. The op-code of the Instructions is given in Table 7.1

7.1.1 NOP Instruction
The NOP Stands for no operation instruction. the purpose of NOP instruction is inserted
after some of the loop and branches instructions. The formatting of the NOP instruction
is shown in Figure 7.5. The NOP instruction description is given in Table 7.2

ReservedOp-code

Figure 7.5 The formatting of the Return instruction
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Instruction Op-Code the active q
NOP 0000 q0
Call 0110 q6
Ret 0111 q7

ZOL1 0001 q1
ZOL2 0011 q3
ZOL3 1001 q9

LOOPNE 1010 q10
Goto 1011 q11

ParSISO 0101 q5
Initialize 0100 q4

Mov 1000 q8
StrData 0010 q2
Decode 1100 q12
Config 1101 q13

Table 7.1 The op-code of the Instructions

NOP No Operation
syntax: NOP

Operands: None
Description: no operation

Table 7.2 The NOP Instruction Description

7.1.2 Call Instruction
The formatting of the call instruction is shown in Figure 7.6. The call instruction descrip-
tion is given in Table 7.3.

ReservedOp-code Offset

06

Figure 7.6 The formatting of the call instruction

CALL Call Subroutine
syntax: Call offset

Operands: −64≤ o f f set ≤ 63
operation: q6T2 : PC← PC+o f f set ,

Stackmemory← PC , SC← 0
Description: saving the current PC and updating the PC with the new address

Table 7.3 The Call Instruction description

The call instruction is relatively branching instruction and is performed by adding the
offset to the current PC to go to the subroutine. The current PC is stored into the stack
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register in order to have the ability to return back to the current position after reaching to
the end of the subroutine. The calling instruction has the op-code of 0110, this means the
q6 will be active when executing the call instruction.

The clearing of the SC is required to flush the pipelined as the PC is changed and
need to fill the pipeline from the branching address. As the execution only occurs at T2
phase, there are two cycles passing from T0 and T1 to reach to T2. The execution of the
call instruction effectively takes three cycles.

7.1.3 Ret Instruction
The forrmating of the return instruction is shown in Figure 7.7. The ret instruction de-
scription is given in Table 7.4.

ReservedOp-code

Figure 7.7 The formatting of the Return instruction

Return Return from Subroutine
syntax: Ret

Operands: None
operation: q7T2 : PC← Stackmemory ,

SC← 0
Description: Returning the stored PC from the stack

Table 7.4 The Return Instruction description

The Ret instruction retrieves the stored PC from the stack. Updating the PC with the
new value instead of the sequential increments which leads to flush the pipeline. In order
to flush the pipeline, clearing SC is fulfilled during the execution phase. As mentioned
earlier, the instruction that includes clearing the SC takes three cycles.

7.1.4 Goto Instruction
The formatting of the Goto instruction is shown in Figure 7.8. The Goto instruction
description is given in Table 7.5.

ReservedOp-code Offset

06

Figure 7.8 The formatting of the Goto instruction

The Goto instruction updates the PC with the new value instead of the sequential
increments which leads to flushing the pipeline. In order to flush the pipeline, clearing
SC is fulfilled during the execution phase. As mentioned earlier, the instruction that
includes clearing the SC takes three cycles.
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Goto unconditional relative jump
syntax: Goto offset

Operands: −64≤ o f f set ≤ 63
operation: q11T2 : PC← PC+o f f set ,

SC← 0
Description: jump to the new address with updating the PC

Table 7.5 The Goto Instruction description

7.1.5 ZOL Instruction
ZOL instruction executes a set of instructions for a number of times as shown in Figure
7.9. The ZOL takes two operands NTR and NRI where NTR stands for the number of
times repeated while NRI stands for the number of repeated instructions. The formatting
of the ZOL instruction is shown in Figure 7.10. The ZOL instruction description is given
in Table 7.6.

ZOL (NTR,NRI) {

Inst_1

Inst_2

.

.

Inst_x

}

Repeat 

NTR times
Figure 7.9 The description of how the ZOL instruction works

ReservedOp-code NRI

03

NTR

418

Figure 7.10 The formatting of the ZOL instruction

The purpose of using ZOL instruction is to save the wasted cycles in initializations,
increment and moving cycles during the execution of the loop. In order to fulfill this
task, avoiding wasted cycles, a number of dedicated registers is used as shown in Figure
7.11. The dedicated registers for ZOL instruction are SPC register, EPC register, NT
register and ZOLFlag. There are two registers one to point to the first instruction in
the loop which is SPC and the other to point to the last instruction in the loop which
is EPC. The initialization of SPC with the current value of PC and the initialization of
EPC with the resulted value of adding PC with NRI are done at the execution phase of
ZOL instruction. Besides, the initializations of NT register by loading NTR value to
it and loading ZOLFlag with one. The ZOLFlag indicates that the process of the ZOL
instruction is running during execution of the other instructions inside the loop. A sample
code using ZOL instruction with its timing sequence is given in Figure 7.12.

There are no wasted cycles during the execution of ZOL loop as updating the PC with
the proper values. When the value of the PC reaches EPC, this leads the CU to decrement

66



Inst_1

Inst_2

Inst_3

Inst_x

SPC

EPC

PC

=

NT counter

D
ec

re
m

en
t 

si
gn

al

EPC+1

+

NRI

NTR

=1

1 0 .

.

.

=

0

ZOL_flag

C
le

ar
 

si
gn

al

PC

1

Figure 7.11 The block diagram of the ZOL instruction control parts including
dedicated registers in details

the NT counter and update the PC either with SPC when NT is greater than one or with
EPC+1 when NT is equals to one. As NT counter reaches to the Zero value this means
the ZOL is finished and as a result ZOLFlag should be reset to zero.

All control statements of the ZOL instruction do not depend on any q except at the
execution phase. This design includes three ZOL instructions: ZOL1, ZOL2 and ZOL3.
Each ZOL instruction has its dedicated registers and its control parts. The nested looping
is allowed. There is one restriction for using nested loop, using ZOL instruction within
the loop of other ZOL, that the end of outer loop must be different of the inner loop.

In addition, the number of repeated time of the loop (NRT) depends on the value of
NRI. In case of the NRI equals zero, the loop will be executed NTR+1 time. While in
case of the NRI not equal to zero, the loop will be executed NTR time. For example:
ZOL1 8, 1
this loop instruction contains two instructions and will be repeated eight times
ZOL1 8, 0
this loop instruction contains one instruction and will be repeated nine times

7.1.6 LOOPNE Instruction
The formatting of the LOOPNE instruction is shown in Figure 7.13. The LOOPNE in-
struction executes a group of instructions as long as the EmptyFIFO signal is not equal
to one as shown in Figure 7.14. The EmptyFIFO signal indicates the FIFO registers in
the data alignment block is empty or not. As the Turbo decoder algorithm contains Two
MAP decoders and each decoder exchange the information between them. Each MAP
decoder cannot start its process if there is any data in FIFO registers. The LOOPNE takes
one operand NRI. The LOOPNE instruction description is given in Table 7.7.
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ZOL Zero Overhead Loop
syntax: ZOL NTR, NRI

Operands: 0≤ NT R≤ 32767, 0≤ NRI ≤ 15
operation: q1T2 : SPC← PC , EPC← PC+NRI, NT ← NT R , ZOLFlag← 1

(NRI == 0)q1T2 : PC← PC
(NRI 6= 0)q1T2 : PC← PC+1

(ZOLFlag == 1)(PC == EPC)T2 : PC← SPC, NT ← NT −1
(ZOLFlag == 1)(PC 6= EPC)T2 : PC← PC+1

(ZOLFlag == 1)(NT 6= 0)(PC == EPC)T2 :PC← SPC, NT ← NT −1
(ZOLFlag == 1)(NT 6= 0)(PC 6= EPC)T2 :PC← PC+1

(ZOLFlag == 1)(NT == 1)(PC == EPC)T2 :PC← EPC+1

(ZOLFlag == 1)(NT == 0)(PC == EPC)T2 :PC← PC+1 ,
ZOLFlag← 0

Description: Conditional loop as group of instructions is executed number of times

Table 7.6 The ZOL Instruction description

LOOPNE LOOP Not Empty
syntax: LOOPNE NRI

Operands: 0≤ NRI ≤ 15
operation: q10T2 : SPC4← PC , EPC4← PC+NRI, LNEFlag← 1

(NRI == 0)q10T2 : PC← PC
(NRI 6= 0)q10T2 : PC← PC+1

(LNEFlag == 1)(EmptyFIFO 6= 1)(PC == EPC4)T2 : PC← SPC4
(LNEFlag == 1)(EmptyFIFO 6= 1)(PC 6= EPC4)T2 : PC← PC+1

(LNEFlag == 1)(EmptyFIFO == 1)T2 : PC← PC+1 , LNEFlag← 0
Description: Conditional LOOP as the EmptyFIFO signal is not eual to one

execute the body of the loop

Table 7.7 The LOOPNE Instruction description

Similar mechanism for ZOL happens with LOOPNE instruction. In order to avoid
the wasted cycles due to pipeline process, a number of dedicated registers is used such as
SPC4, EPC4 and LNEFlag. The function of SPC4 is to point to the first instruction of the
body of the loop while EPC4 points to the last instruction inside the loop. The initializa-
tion of SPC4 with the current value of PC and the initialization of EPC4 with the value of
adding PC with NRI are done at the execution phase of LOOPNE instruction. Besides,
the initialization of LNEFlag with one happens at the execution phase of LOOPNE in-
struction. The LNEFlag indicates that the process of the LOOPNE instruction is running
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Figure 7.12 A sample code using ZOL instruction is given in (a), the timing
sequence of the executions of that sample is given in (b)

ReservedOp-code NRI

03

Figure 7.13 The formatting of the LOOPNE instruction

during execution of the other instructions inside the loop. The loop will be executed as
long as the EmptyFIFO value is not equal to one. As the EmptyFIFO value becomes one
this means the LOOPNE is finished and as a result LNEFlag should be reset to zero.

7.1.7 ParSISO Instruction
The formatting of the ParSISO instruction is shown in Figure 7.15. The ParSISO instruc-
tion description is given in Table 7.8.

ParSISO Parallel SISO
syntax: ParSISO BorderCntr, LLRCntr, FrSISOActive, ForwardCntr,

BkSISOActive, BackwardCntr, PMode, AddGen
operation: all transfers and control statements of that instruction happen at (q5T2)

Description: The ParSISO instruction controls the execution of the different operations
in multi-SISO units

Table 7.8 The ParSISO Instruction description

The detailed description for the operands of the ParSISO instruction is:
BorderCntr: this field is responsible for generating the enable signals to transfer the stored
border values from border memories to state metrics units.
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LOOPNE (NRI) {

Inst_1

Inst_2

.

.

Inst_x

}

Repeat 

as long as

(EmptyFIFO ==0)

Figure 7.14 The description of how the LOOPNE instruction works

OP-code

AddGenPMode

0346

BackwardCntr

713

BSISOActive

1413+n

n= Log_2(Number of SISOs)

ForwardControl

FSISOActive

14+n18+n

19+n18+2n

LLRCntr

19+2n20+2n21+2n30+2n

BorderCntr

Figure 7.15 The formatting of the ParSISO instruction

LLRCntr: this field is responsible for generating the enable signals for LLR units.
FrSISOActive: Determine the number of active units that work in forward direction.
ForwardCntr: this field is responsible for generating the enable signals for forward units
such as forward branch and state metrics.
BkSISOActive: Determine the number of active units that work in backward direction.
BackwardCntr: this field is responsible for generating the enable signals for backward
units such as backward branch and state metrics.
PMode: Determine the phases of the operation as the Duo-binary type works in two
different phases while the single binary works in single phase operation.
AddGen : Responsible for the read operation from channel memories and the read/write
address generation for the State Metric memory.

The parallel SISOs are used to fulfill the high throughput demand for 4G Wireless
standards. These SISO work together and according to the parallel window algorithm,
each SISO contains address generation, branch metric, state metric and LLR units. These
SISO work in the forward and backward directions. However, the number of SISOs work
in the forward and backward direction is not the same number. The SimDecoder unit
is used to control in the number of active units for each SISO. The block diagram of
SimDecoder unit is shown in Figure 7.16.

The operation of the SimDecoder is similar to the binary decoder where the control
inputs are the enable signal and Ind signal as shown in Figure 7.17 . When both the enable
and Ind signals are ’1’, only one output signal of the SimDecoder is set corresponding to
the value of the input and the other output signals are zeros. While in case of the enable
signal equals to ’1’ and Ind signal equals to ’0’, group of output signal are set to ones
from the index zero till the index corresponding to the input value. In addition to the
output signals equal to all zeros when the enable signal equals to ’0’.

A number of SimDecoder units is used to control the parallel SISOs operations. There
are SimDecoder units for forward/backward branch metric, forward/backward state met-
ric, initialization for the state metric and LLR units. The control signals for these units are
worked with ParSISO instruction. The input of SimDecoder units that control these units
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which work in the forward direction in each SISO is the FrSISOActive field. While the
input of SimDecoder units that control in the units which work in the backward direction
in each SISO is the BkSISOActive field. The control signals of the SimDecoder units, the
enable signals and the Ind signals, that work in forward and backward directions are taken
from the ForwardCntr and BackwardCntr fields of the ParSISO instruction respectively.

Sim Decoder

(n*2^n)

input

enableInd

Output

Figure 7.16 The block diagram of SimDecoder unit
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1

1
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Sim_Decoder

(3*2^3)

enableInd

0

0

1

0

0

0

0

0

11

2

(a)

(b)

Figure 7.17 An example showing the two different modes for SimDecoder unit

7.1.8 Initialize Instruction
The formatting of the Initialize instruction is shown in Figure 7.18. The Initialize instruc-
tion description is given in Table 7.9 .

The detailed description for the operands of the Initialize instruction is:
AddInit4: for clearing the address register of the border memory.
StRAB: to interleave the systematic input to obtain the interleaved version of the system-
atic input.
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OP-code

AddInit1DecodeInit

0123

addInit2

45

Reserved

910

SelMAP

11

iter1

141519

AddInit4

16

Reserved

17

StRABReserved

18

AddInit3

1213

Figure 7.18 The formatting of the Initialize instruction

Initialize Initialization
syntax: Initialize AddInit4, StRAB , iter1 ,AddInit3 ,

SelMAP, addInit2, DecodeInit , AddInit1
operation: all transfers and control statements of that instruction happen at (q4T2)

Description: The Initialize instruction initializes the registers and units of
the different blocks in multi-SISO units

Table 7.9 The Initialize Instruction description

iter1: this bit should be set in the first half iteration operation. According to the decoding
process, the LLR values from previous iteration should be used as this first half iteration.
There is no initial values for the LLRs. After setting this bit the LLR values will be equal
to zeros.
AddInit3: for clearing the address register of the LLR memory.
SelMAP: responsible for choosing one of two MAP decoders to execute the decoding
process on it. Our design builds one MAP decoder and selects between two types of the
input which are interleaved and deinterleaved inputs.
addInit2: select the input to beta address memory register to be either increase from zero
to all ones or decrease from all ones to zeros.
DecodeInit: determine the mode of operation either in single binary or duo0bunary modes
as to be used by other instruction.
AddInit1: select the input to channel data address memory register to be either increase
from zero to all ones or decrease from all ones to zeros.

7.1.9 Mov Instruction
The formatting of the Mov instruction is shown in Figure 7.19. The Mov instruction
description is given in Table 7.10 .

ReservedOp-code AddVal

012

Figure 7.19 The formatting of the Move instruction
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Mov Move
syntax: Move AddVal

Operands: 0≤ AddVal ≤ 8191
operation: q8T2 : AddReg← AddVal

Description: to load address register of the channel data memory with AddVal

Table 7.10 The Mov Instruction description

ReservedOp-code EnDec

07

Figure 7.20 The formatting of the StrData instruction

7.1.10 StrData Instruction
The formatting of the StrData instruction is shown in Figure 7.20. The StrData instruction
description is given in Table 7.11 .

The EnDecoderRx/Int is the write enable signal for the channel data memory x/Int,
where x refers to one of the channel memory data such as A, B, Y, W, AInt, BInt, YInt and
WInt. In each execution of that instruction, there is an increment process for the channel
memory address register. The channel memory address register should be initialized to
zero before using that instruction to point to the first memory location.

StrData store channel Data
syntax: StrData EnDec

Operands: 0≤ EnDec≤ 255
operation: q2T2EnDec[0] : EnDecoderRA← 1

q2T2EnDec[1] : EnDecoderRB← 1
q2T2EnDec[2] : EnDecoderRY ← 1
q2T2EnDec[3] : EnDecoderRW ← 1

q2T2EnDec[4] : EnDecoderRAInt← 1
q2T2EnDec[5] : EnDecoderRBInt← 1
q2T2EnDec[6] : EnDecoderRY Int← 1
q2T2EnDec[7] : EnDecoderRWInt← 1

Description: to store channel values to channel mamories

Table 7.11 The StrData Instruction description

7.1.11 Decode Instruction
The formatting of the Decode instruction is shown in Figure 7.21. The Decode instruction
description is given in Table 7.12 .

When the DecodePhase signal becomes one, this indicates the valid output decoded is
generated. The calculation of the decoded output is different for both types of the Turbo
codes as discussed earlier. This instruction generates the decoded output depends on the
initialize value of DecodeInit in the Initialize instruction.
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ReservedOp-code

Figure 7.21 The formatting of the Decode instruction

Decode Decode
syntax: Decode

Operands: None
operation: q12T2 : DecodePhase← 1

Description: to generate the Decoded output of the recieved data values

Table 7.12 The Decode Instruction description

7.1.12 Config Instruction
The formatting of the Config instruction is shown in Figure 7.22. The Config instruction
description is given in Table 7.13 .

ReservedOp-code ConfigVal

047

ConfigM

4851

Figure 7.22 The formatting of the Config instruction

Config Decode
syntax: Decode ConfigM, ConfigVal

operation: All transfers happen at : q13T2
Description: To configure the branch metric, state metric and LLR unit

with configuration words

Table 7.13 The Config Instruction description

The configuration words depend on the encoder architecture so it’s constant through
the decoding process. The ConfigM field determines to what unit the ConfigVal field
goes.
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Chapter 8

Results and Future Works

In this chapter the results of our design and the comparisons with other works are pre-
sented. In addition, the future works and conclusion are also presented.

Our design is fully scalable and all the width of input, output and internal signals are
parameterized. In this design, our estimated power and area are without including the
memory blocks, while the memory peripherals such as address decoders, multiplexers,
and any gates related to the memory design are taken into account.

8.1 Varying of the Window Sizes & the Parallel SISOs
Table 8.1 shows the results of the power, area and the throughput due to varying the
window size. Choosing large window size leads to bad impact on the throughput as shown
in Figure 8.1. However, increasing the window size enhances the decoding performance.

In addition, the increase of the window size leads to large buffer requirement to handle
the memory conflicts as shown in Figure 8.2.

Table 8.1 Effect of Window Size on Power, area and throughput for p=16 & p=1
SISO

P=16 with address =15 bits P=1 with address =13 bits
Power Area Rb Power Area Rb

W (mW ) (mm2) (Mbps) (mW ) (mm2) (Mbps)
32 298.4 8.681 184.6 31.8 1.0 12.42
64 236.9 7.467 171.43 22.8 0.71 12.35
128 211.7 6.749 150 18.4 0.56 12.23
256 198.8 6.462 100 16.2 0.49 11.98
512 191.2 6.246 75 15 0.45 11.52

8.2 Comparisons
The proposed implementation parameters and the memory sizes are shown in Tables 8.2
and 8.3 respectively. There are many works for Turbo decoders in different technolo-
gies. Thanks to Equation (8.1), we are able to make the comparisons between different
technologies and different parameters.
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(8.1)

Where RPDP stands for relative power delay product, Pr is the power, the technology
Tech is in nm , the frequency Freq is in MHz , the voltage V is in Volt. and τ is the time
for decoding block length with K bits for one iteration. The subscript index “2” refers to
our work and “1” refers to the other work. The throughput Rb is calculated from Equation
(8.2) and then τ is calculated from Equation (8.3) :

Rb =
K ∗ fclk

2∗ i∗ (
⌈ K

F∗P∗W
⌉
+1)∗W

(8.2)

where fclk is system clock, i is the number of iterations, F is a factor equal to 1 for radix-2
and 2 for radix-4.

τ =
K

Rb∗ i
(8.3)

Table 8.4 shows different works and compares the matric RPDP for each work. When
the RPDP has a smaller value this means it has better energy efficency. Hence only the
designes of [37], [38], [39], and [40] are competiting with our proposal.

The parallel SISO decoder in [37] has the smallest RPDP amongst the different de-
signs. The proposed design in [37] supports very small packet sizes compared to the
other works which leads to have very small power and area results. However, such work
cannot support large block sizes which are required in the current and future standards.

The work in [39] supports only the WiMAX standard and can process the small packet
sizes up to only 480 bits.
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Table 8.2 Turbo Decoder Parameters

Decoding algorithm Max-log-MAP
Quantization of channel values 4 bit

Quantization of LLRs 6 bit
Quantization of State Metric 8 bit

Window Size 64
Maximum Block Length 6144

number of iteration 4
running Clock Frequency 100 MHz

Maximum Clock Frequency 150 MHz
Technology TSMC 180 nm CMOS technology

voltage 1.8 v
Number of Parallel SISOs 16

Power 236.9 mW
Area 7.467 mm2

Number of Gates 4.278K

Table 8.3 Memory Sizes

Memory Dimension Amount type
Interleaver (6144*13) 2 single port

Channel values (6144*4) 6 single port
LLR (6144*6) 6 single port

Border (W*8*8) 4*P single port
State Metric (64*8*8) 1*P simple dual port

Program Memory (512*(50+ 2log2P )) 1 single port

The authors in [37] [41] introduced interleavers that allow contention-free property in
the hybrid parallelism. Such interleavers are none-standard compliant and are not suitable
for wireless communications standards that include none-collision-free interleavers. In
addition, these designs include dedicated architectures for certain decoders.

Most works that are dedicated for a certain scheme, are none-standard compliant and
have smaller RPDP compared to reconfigurable architectures such as in [38] [42] .

The ASIP design in [53] runs for the turbo decoder of the LTE standard. This de-
sign gives the highest RPDP value amongst different designs and produces 140Mbps
throughput at only one iteration. One iteration is not enough for producing good decod-
ing performance.

Compared to previous systems, our design meets the design requirements such as the
high-through and low energy demands.

8.3 Future Works
One of the main future works is to build parallel interleaver address generators which
will reduce the amount of the memories that used to store the interleaved addresses in the
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Table 8.4 Comparison with existing Turbo decoder architectures

Ref. gates Area Pr Energy Pkt Tech. Volt. iter. Freq. Rb RPDP
Number ( mm2 ) ( mW ) ( nJ/bit/iter ) Size ( nm ) ( V ) ( MHz ) ( Mbps )

[41] 2.67 M 17.81 275 0.22 4096 130 1.32 8 80 160 1.8473
[11] 410 K 14.5 1450 10 5114 180 1.8 6 145 24 16.7297
[37] 409 K 7.16 - 2.19 384 180 1.8 4.43 160 71.7 0.2476
[42] - 10 2464 1.4 2048 130 1.2 5 352 352 1.6552
[13] 800 K 10.7 - 0.61 6144 130 1.2 8 250 187.5 3.0463
[43] 64.2 K 2.24 - 0.63 4800 130 1.2 8 200 24.3 3.0725
[44] 44.1 K 1.2 - 0.7 5114 130 1.2 6 246 18.6 2.9571
[45] 34.4 K 8.897 - 6.98 5114 250 2.5 6 100 5.48 4.5190
[46] - - 35 - 5114 180 1.8 10 50 2 8.4316
[47] 324 K 9 306 - 5114 180 1.8 10 93 2 39.6336
[48] 44.1 K 1.2 61.5 - 5114 130 1.2 5.5 246 10.8 4.3737
[49] 553 K 1.2 61.5 - 6144 130 1.2 5.5 302 390.6 1.5181
[9] - 2.1 219 0.21 6144 90 1 8 275 129 2.728
[8] - 2.1 300 - 6144 65 1.1 6.5 300 150 5.9761

[34] - 16 650 - 5114 180 1.8 6 166 60 2.6203
[50] - 3.8 - - 5114 130 - 6 500 308 -
[38] - 13.1 573 0.126 5120 130 1.2 6 256 758 0.512
[51] - 0.4 230 0.315 6144 45 LV 6 333 100 (14.42/( LV 2 ))
[25] - - 800 - 5114 180 1.8 5 400 2.08 46.329
[52] - 1.46 452 - 6144 40 1.1 6.5 400 350 10.3937
[53] - 10.37 570 - 6144 65 1.2 1 320 140 63.5399
[54] - 8.7 330 2.36 5000 180 1.8 5 285 27.6 1.9763
[55] 602 K 2.1 219 0.21 6144 90 1 8 275 130 2.8723
[56] 14.4 K 6.38 762 - 128 K 90 - - - 131.28 -
[39] 635 K 7.16 197.3 0.43 480 130 1.2 4 100 115.4 0.4169
[40] - 5 265 - 5120 90 LV 5 200 930 (0.8605/( LV 2 ))
[57] - 9.61 1356 0.12 4096 90 0.9 8 175 1400 2.135
[58] 70 K 0.7 650 0.7 6144 65 1.2 6 250 152 14.2369
[59] - 0.62 76.8 - 6144 65 LV 5 400 18.6 (14.8357/( LV 2 ))
[21] - - 100 - 6144 65 1.1 5 400 17 17.48

Proposed 4.278 K 7.467 236.9 0.3452 6144 180 1.8 4 100 171.43 1

79



current design.
Other reconfigurable blocks should be added to support more channel codes such as

LDPC codes. As the LDPC codes and Turbo codes are shared with the need of a large
number of the memory blocks and some of the calculation units.

8.4 Conclusion
In this thesis, an efficient architecture is proposed to implement a scalable low-power
configurable processor capable of supporting a multi-standard turbo decoder. Our ASIP
offers high flexibility while maintaining the hardware requirements such as the power
consumption, area and the throughput. A good technique is used to decrease the effects
of contentions on the memory access besides the reduction of the hardware overheads.

Three configurations of the state metric unit are proposed. We made a comparison
between these configurations. Each configuration has its features according the target
architecture. The conflicts due to parallel decoding have bad effects on the design. We
showed the effects on the throughput, the area, and the hardware utilizations of the dif-
ferent schemes.

The effects of the design parameters on the performance are included such as the
window sizes and the number of parallel SISOs.
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2400 (2009).

[8] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE Turbo Code
Decoder,” In Design, Automation and Test in Europe Conf. and Exhibition (DATE),
pp. 1420–1425 (2010).

[9] C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, “A 188-size 2.1mm2 Reconfigurable
Turbo Decoder Chip with Parallel Architecture for 3GPP LTE System,” In Symp.
VLSI circuits dig. tech. papers, Kyoto, Japan, pp. 288–289 (2009).

[10] R. Asghar and D. Liu, “Towards Radix-4, Parallel Interleaver Design to Sup-
port High-Throughput Turbo Decoding for Re-Configurability,” In 33rd IEEE
SARNOFF Symposium - 2010,Princeton, NJ, USA,

[11] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s Radix-4
LogMAP Turbo Decoder for 3GPP-HSDPA Mobile Wireless,” In IEEE Int. Solid-
State Circuits Conf., pp. 150Ű–151 (2003).
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ملخص ال
 

قابمة لمتطبيق باستخدام معالج متخصص القدم هذه الرسالة تصميم لتنفيذ فك الاكواد التوربينية ت
منخفض الطاقة متضمنا تصميم لعدد من الوحدات التى تعمل عمى التوازى داخل المعالج 

 لنظم الاتصالات  (4G)لتناسب السرعات العالية  التى تعد من احد اهم المتطمبات الجيل الرابع 
-Soft لفك الاكواد من نوع  ىتم تنفيذ هذه الوحدات التى تعمل عمى التوازلقد . اللاسمكية

In/Soft-Out (SISO) . كما تم ربط هذه الوحدات بطريقة قابمة لمتحجيم لتناسب المتطمبات
كما تم عرض و مقارنة . ولقد تم عرض لثلاثة تصميمات لتنفيذ فك الاكواد التوربينية.  المختمفة

 .    نتائج لهذه التصميمات من حيت الانتاجية ، المساحة، وكفاءة الوحدات المستخدمة

لذلك تم عمل . الوحدات التى تعمل عمى التوازى تؤدى الى نزاعات خلال التعامل مع الذاكرة
 عمى التصميم  Interleaversتحميل وعرض اثار هذه النزاعات لكافة انماط المبدلات المختمفة 

. مثل هذه النزاعات لها تاثير عمى الانتاجية و كفاءة التصميم بشكل مؤثر. المعالج لنظم متعددة
.   تم تصميم وحدة تحكم بسيطة لادارة النزاعات عمى الذاكرة لحظيا

 ، وبطاقة 170Mbps يعطى انتاجية  180nm technologyعمى  التصميم المقترح
236.9mW  16 باستخدام SISOs 100 التى تعمل عمى سرعةMhz. 
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