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 (   ) The distance (metric) between two interval numbers 

  A small real number 

⋂   

 

   
 The finitary set intersection 

  Set variable symbol 

  There exists symbol 

 ( ) Spectral radius of matrix   
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Abstract 

In this thesis, we are interested in solving nonlinear systems of equations with 

inexact data, denoted by perturbed nonlinear systems, using interval arithmetic 

methods. Such perturbed problems appear in many engineering applications to study 

the sensitivity of design parameters to perturbations resulting either during 

manufacturing or during floating-point computations. The main scope of the 

dissertation is to present Newton-like interval methods to solve perturbed nonlinear 

systems by adapting existing methods for solving real-valued nonlinear systems to be 

used in solving perturbed problems. The existence and convergence of a solution to the 

perturbed nonlinear systems are derived and given in the dissertation. 

In achieving this, we give a brief introduction to the interval arithmetic and the 

solution of interval linear systems and real-valued nonlinear problems using interval 

methods. Well-known methods in the literature for solving the nonlinear problems: 

interval Newton (INM), Hansen-Sengupta, and Krawczyk methods are presented. For 

each method a version for solving the perturbed problems is given. A discussion of the 

difficulties encountered and convergence of each method is given. Furthermore, a 

modified version of the INM, denoted by the two-stage INM, is derived. The two-stage 

method has the advantage of reducing the computational time required to find a 

solution. To illustrate the effectiveness of interval methods, we apply it to test problems 

from the literature by introducing perturbations into these problems. We observed that 

the width of the solution depends on the width of the perturbations. The two-stage INM 

is compared with the other interval methods under consideration. Regarding the time 

consumption, it gives an improvement over the other methods. We also compare the 

interval arithmetic solution with that of the Monte Carlo and conclude the superior 

performance of the interval algorithms over Monte Carlo methods with respect to the 

consumed time and the accuracy of the solution set obtained. 
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Chapter 1 : Introduction 

1.1. Motivation 

Many real problems are simulated and modeled using nonlinear systems of 

equations. For example, the sophisticated circuits which are modeled by circuit 

simulators as nonlinear systems with thousands and millions of parameters. Some of 

these parameters are vulnerable to temperature changes, manufacturing tolerances, and 

other effects. Those perturbed parameters should be taken into consideration while 

modeling and simulating the corresponding nonlinear systems. This simulation is 

commonly known as sensitivity analysis.  

There are numerous methods and algorithms used in the sensitivity analysis which 

compute approximations to the solution in floating-point arithmetic [ 62], [ 33], and [ 47] 

like the exhaustive sampling and Monte Carlo methods [ 3]. However, usually it is not 

clear how good these approximations are, or if there exists a unique solution at all. In 

general, it is not possible to answer these questions with mathematical rigor if only 

floating-point approximations are used. 

The use of self-verified methods can lead to more reliable results. Verified 

computing provides an interval result that surely contains the correct result. Like that 

the algorithm also proves the existence and uniqueness of the solution of the problem. 

The algorithm will, in general, succeed in finding an enclosure of the correct solution. 

If the solution is not found, the algorithm will let the user know. One possibility to 

implement verified computing is using interval arithmetic combined with suitable 

algorithms. 

The use of verified computing makes it possible to find the correct result. 

However, finding the verified result often increases the execution time dramatically. 

But in the nonlinear systems with interval parameters, the use of verified computing is 

more suitable as its performance is better. This thesis shows that the execution time of 

some verified algorithms is much smaller than the execution time of algorithms that do 

not use this concept. Moreover, a modified interval Newton algorithm will be presented 

and shown to have better performance than other interval algorithms. 

1.2. Outline of the Thesis 

The thesis is structured, in six chapters, as follows: 

This introductory chapter has formulated the motivation for this thesis. It has also 

provided an overview of the main problem which is under test in this thesis. 

 Chapter 2 provides a bit of perspective on the field of interval arithmetic. It also 

introduces some definitions, notations, and basic facts that will be used through this 
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thesis. Section  2.8 gives a brief description of the commonly used interval computing 

software. 

The first section of  Chapter 3 treats the basics of interval-valued functions. 

Section  3.2 introduces theory and practice regarding the convergence of interval 

sequences. An overview of the interval linear systems is presented in section  3.3. 

Finally, an introductory to the next chapter is presented in section  3.4. 

 Chapter 4 starts with solving univariate nonlinear systems. Section  4.2 gives a 

survey on existing interval methods that are used in solving and bounding the solution 

of nonlinear systems. In section  4.4, we carefully use interval methods to solve 

perturbed nonlinear systems which are defined in section  4.3. We prove the 

convergence of the interval Newton method (INM) for perturbed problems in 

subsection  4.4.1. We introduce a modified version of INM for perturbed nonlinear 

systems in section  4.5. In the end of this chapter, numerical examples are solved to 

show that the verified algorithms, specially the new proposed algorithm, are faster than 

the traditional methods. A comparison between the different interval methods and the 

traditional methods is also discussed. 

In  Chapter 5, more practical examples are solved to illustrate the applicability of 

the algorithms discussed in  Chapter 4. 

Finally, the thesis closes with  Chapter 6, which explicitly delineates the 

contributions of this research and outlines some directions for future research. 
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Chapter 2 : Introduction to Interval Arithmetic 

Interval arithmetic is a method developed by mathematicians since the 1950s and 

1960s to put bounds on rounding errors and measurement errors in mathematical 

computation. Numerical methods based on interval arithmetic are developed that yield 

reliable results in which each value is represented as a range of possibilities. For 

example, instead of estimating the height of someone using standard arithmetic as 2.0 

meters, using interval arithmetic we might be certain that that person is somewhere 

between 1.97 and 2.03 meters. Archimedes was able to bracket   by taking a circle and 

considering inscribed and circumscribed polygons. Increasing the numbers of 

polygonal sides, he obtained both an increasing sequence of lower bounds and a 

decreasing sequence of upper bounds for this irrational number. That is exactly what is 

used in interval arithmetic to represent numbers. The motivation of this chapter is to 

give an insight of the basic definitions and properties of interval numbers which will be 

used throughout the thesis (For more details about the basics of the interval arithmetic, 

the reader may consult [ 44], [ 5], [ 35], [ 38], [ 39], and [ 58]). Moreover, a survey on the 

common and popular interval computation software is presented in section  2.8. 

2.1. Basic Terms and Concepts 

Using the ordered pair ,   - of computer numbers to represent an interval of real 

numbers      , an arithmetic for intervals and interval valued extensions of 

functions is defined and commonly used in computing. In this way, an interval ,   - 

has a dual nature. It is a new kind of number pair, and it represents a set ,   -  

*         +. 

2.1.1. Inf-sup and Mid-rad Representations 

Throughout this dissertation, we will denote intervals and their endpoints by capital 

letters. The left and right endpoints of an interval   will be denoted by   and  , 

respectively. Thus, 

   [   ]  (2.1)   

where      ( )    and      ( )    are called the upper and lower bounds 

of   (also called supremum and infimum respectively). The notation used in  (2.1) to 

represent the interval   is usually called inf-sup representation. There is another 

representation which is used to represent intervals: mid-rad representation. In the mid-

rad representation, we can express the interval   as: 

          (2.2)   

http://en.wikipedia.org/wiki/Rounding_error
http://en.wikipedia.org/wiki/Measurement_error
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_methods
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where   
   ( )     ( )

 
 which represents the mid-point of the interval   and 

     ( )     ( )     ( )      ( ). 

  

This mid-rad representation is useful when we employ an interval to describe a 

quantity in terms of its measured value   and a measurement uncertainty of no more 

than   . However, the mid-rad representation fails to represent some intervals, 

specially the unbounded intervals (the intervals whose infimum equals    or 

supremum equals  ). 

There are special forms of intervals such as the degenerate ones which contain a 

single real number. An interval   is said to be degenerate if     and is defined as 

,   - with the real number  . For instance, we may write such equations as 

   ,   - (2.3)   

On the other hand the interval equality is defined as follows: we said that the two 

intervals   and   are equal if they are defined by the same sets, i.e. their corresponding 

endpoints are equal: 

                     (2.4)   

2.1.2. Intersection, Union, and Interval Hull 

The intersection of two intervals   and   is defined as follows  

     *             +

 [   (   )     (   )]
 (2.5)   

The intersection     is either an interval which is defined by the previous 

equation or empty. The latter case occurs if either     or    . In this case we let   

denote the empty set and write 

        (2.6)   

indicating that   and   have no points in common. In case of the existence of the 

intersection between   and  , the union of   and   is also an interval: 

     *            +

 [   (   )     (   )]
 (2.7)   

In general, it is not necessary that one is able to represent the union of two intervals 

as an interval. However, the interval hull of two intervals, defined by 

     [   (   )     (   )]  (2.8)   

is always an interval and can be used in interval computations. We have 

         (2.9)   

for any two intervals   and  . 
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Example 2.1 If   ,    - and   ,   -, then       and     

,    -. Although     is a disconnected set that cannot be expressed as an 

interval, relation  (2.7) still holds. Information is lost when we replace     

with    , but     is easier to work with, and the lost information is 

sometimes not critical. 

 

Intersection plays a key role in interval analysis. For instance, if we have two 

distinct intervals containing a result of interest, then we can obtain a narrower interval 

,which also contains the result, from the intersection of the initial intervals. 

2.1.3. Width, Absolute Value, and Midpoint of  an Interval Number 

The width of an interval   is defined and denoted by 

  ( )      (2.10)   

Thus the width of a degenerate interval number is zero, that is 

 (,   -)        

The absolute value of an interval  , denoted by | |, is the maximum of the absolute 

values of its endpoints: 

 | |     {| | | |} (2.11)   

Note that | |  | | for every    . 

The midpoint of an interval   is given by 

 
 ( )  

 

 
(   ) (2.12)   

Hence, the midpoint of a degenerate interval number   ,   - is  . We observe 

that any interval   can be expressed in terms of its midpoint and width as follows: 

 
   ( )  [ 

 

 
 ( ) 

 

 
 ( )]   ( )  

 

 
 ( ),    - (2.13)   

As an illustration of the above definitions refer to Figure 2.1 and  Example 2.2. 

 

 

 

Figure 2.1: Width, absolute value, and midpoint of an interval 

𝑥   𝑋 𝑋 𝑚(𝑋) 

𝑤(𝑋) 

|𝑋| 
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Example 2.2 Let   ,   - and   ,    -. The intersection and union of   

and   are the intervals 

    ,   (    )     (   )-  ,   - 

    ,   (    )     (   )-  ,    - 

We have  ( )   ,  ( )   , and | |     (   )     The midpoint of   is 

 ( )   . Using  (2.13), we can write       ,        -. 

 

After defining the width and midpoint of intervals, we can rewrite the mid-rad 

representation  (2.2) of an interval   as follows: 

 
                 ( )       

 ( )

 
 (2.14)   

2.1.4. Order Relations on Intervals 

Interval numbers are sets of real numbers. Thus ordering relations for interval 

numbers extend those of real numbers. For example the ordering relation   can be 

extended and applied to intervals as follows 

              (2.15)   

For instance, the interval ,   -  ,   - is satisfied. This ordering relation for real 

numbers is known to be transitive, i.e. if     and    , then     for any 

           . The transitive property is still valid for intervals 

                  (2.16)   

Recalling the interval definition of the zero  (2.3) and the ordering relation  (2.15), 

an interval   is said to be positive if     or negative if    . That is, we have 

    if     for all    . 

Another ordering is the set inclusion,  , for intervals which is defined by: 

                     (2.17)   

For instance, we have ,   -  ,   -. Both   and   are partial orderings on   , not 

every pair of intervals in    are comparable. For example, if   and   are overlapping 

intervals such as   ,   -       ,   -, then neither   is contained in   nor   is 

contained in  . However,     ,   -, is contained in both   and  . 

2.2. Algebraic Operations for Interval Numbers 

The basic algebraic operations for real numbers can be extended for interval 

numbers. In this subsection, we present some basic arithmetic operations for intervals 

by extending the arithmetic operations for real numbers. For instance, the result of 

adding two intervals is an interval containing the sums of all pairs of numbers, one 

from each of the two initial intervals. By definition then, the sum of two intervals   and 

  is given by the set 
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     *           +  (2.18)   

The difference of two intervals   and   is given by the set 

     *           +  (2.19)   

The product of two intervals   and   is given by 

     *           +  (2.20)   

Finally, the division     is given by the set 

  

 
 {

 

 
        } (2.21)   

provided that    . Since all algebraic operations of interval numbers have the same 

general form, they can be summarized by the following definition 

     *           +  (2.22)   

where   stands for any of the four binary operations introduced above. 

In the following subsections, we present endpoint formulas for the four binary 

operations introduced above. 

2.2.1. Addition on    

Since     means that       and     means that      , we see by 

addition of those inequalities that the numerical sums         must satisfy 

             

Hence, the formula 

     [       ] (2.23)   

can be used to implement  (2.18). 

 

Example 2.3 Let   ,   - and   ,    - as in  Example 2.2. Then     

,  (  )    -  ,    -. This is not the same as     ,    -. 

2.2.2. Subtraction on    

Similar expressions to  (2.23) can be derived for the remaining arithmetic 

operations. For subtraction we add the inequalities       and          to 

get            . It follows that 

     [       ] (2.24)   

Note that       (  ), where    [     ]  *      +. 

 

Example 2.4 If   ,    - and   ,    -, then    ,    - and       

(  )  ,    -. 
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2.2.3. Multiplication on    

The product of two intervals   and   is given by 

    ,         -            {           }  (2.25)   

Since the multiplication on   is continuous, it follows that the multiplication on    is 

continuous and the product    attains its maximum and minimum values.  

 

Example 2.5 Let   ,    - and   ,    -. Then   *         + and    

,         -  ,    -. 

We also can evaluate the product of a scalar and an interval just by multiplying this 

scalar with the interval's infimum and supremum, for instance,      ,    -  

,    -. 

 

The previous formula of interval multiplication requires calculating four real-

number products; however, that is not necessary in all cases. Actually, by testing for the 

signs of the endpoints  ,  ,  , and   , the formula for the endpoints of the interval 

product can be broken into nine special cases. In eight of these cases, only two products 

need to be computed. Hence, this notion may be taken into consideration to improve the 

efficiency of any implementation of the interval product. Table 2.1 illustrates the 

different cases. 

Table 2.1: Endpoint formulas for interval multiplication 

Case         

0 ≤   and 0 ≤    .    .   

  < 0 <   and 0 ≤    .    .   

  ≤ 0 and 0 ≤    .    .   

0 ≤   and   < 0 <    .    .   

  ≤ 0 and   < 0 <   .    .   

0 ≤   and   ≤ 0  .    .   

  < 0 <   and   ≤ 0  .    .   

  ≤ 0 and   ≤ 0  .    .   

  < 0 <   and   < 0 <   min{     } max{     } 

 

 

2.2.4. Division on    

As with real numbers, division can be accomplished via multiplication by the 

reciprocal of the second operand. That is, we can implement equation  (2.21) using 
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   (

 

 
)  (2.26)   

where 

  

 
 {

 

 
    }  [

 

 
 
 

 
]  (2.27)   

assuming    . 

 

Example 2.6 Let   ,    - and   ,   -. Then 
 

 
 0

 

 
 
 

 
1 and 

 

 
   .

 

 
/  

,    - 0
 

 
 
 

 
1. Finally,   2 

 

 
  

 

 
 
 

 
 
 

 
3 and 

 

 
 ,         -  0 

 

 
 
 

 
1. 

 

2.2.4.1. Extended Interval Arithmetic 

According to the extended interval arithmetic [ 26], the definition of interval 

division 

,   - ,   -    ,   -(  ,   -)  

where 

  ,   -  *      ,   -+       (                      )  

can be extended as follows to handle the case where   ,   -: 

1. If      , then   ,   -  ,      ), 

2. If      , then   ,   -    (      -    ,      ), 

3. If      , then   ,   -    (      -, 

and if   ,   -, the ordinary interval arithmetic can be used to implement the division. 

 

Example 2.7 Let   ,     -. Then 
 

 
 (        -    ,      ). 

 

2.3. Interval Vectors and Matrices 

An n-dimensional interval vector, denoted by (          ) where      , 

means an ordered n-tuple of intervals. Through the thesis, interval vectors will be 

denoted by capital letters such as      . A two dimensional example is given for 

illustration. 

 

Example 2.8 A two-dimensional interval vector 

  (     )  .0     1  0     1/ 

can be represented as a rectangle in the     -plane, see Figure 2.2: it is the set of 

all points (     ) such that         , and         . 
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Many of the notions for point intervals mentioned in previous sections can be 

extended to interval vectors with suitable modifications. If   (          ) and 

  (          ) are n-dimensional interval vectors, then: 

If   (          ) is a real vector, then we write 

                             (2.28)   

The intersection of   and   is empty if the intersection of any of their corresponding 

components is empty; i.e.      , if         for some  . Otherwise, we have the 

following interval vector as a result of the intersection 

     (                   )  (2.29)   

We have the set inclusion for interval vectors which is given by: 

                             (2.30)   

We have many ordering relations in interval arithmetic. One of those relations is given 

by (For more details about the interval operators, see [ 6]): 

                             (2.31)   

The width of an interval vector   is the largest of the widths of any of its component 

intervals: 

  ( )     ( (  ))                 (2.32)   

The midpoint of an interval vector   is 

  ( )  ( (  )  (  )    (  ))  (2.33)   

The norm of an interval vector   is 

 ‖ ‖     
 

|  |  (2.34)   

where | | is given by  (2.11). This serves as a generalization of absolute value. 

 

Example 2.9 Consider the two-dimensional interval vector   (,   - ,   -). 

We have  ( )     (       )   ,  ( )  .
   

 
 
   

 
/  (   ) and 

‖ ‖     (   (| | | |)     (| | | |))     (   )   .  

The width, norm, and midpoint of an interval vector in 2D are illustrated in Figure 

2.2. 
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Figure 2.2: Width, norm, and midpoint of an interval vector X = (X1,X2) 

2.4. Algebraic Properties of Interval Arithmetic  

In a previous section, we introduced the definitions of the basic interval arithmetic 

operations. With proper understanding of the notation, the arithmetic operators 

summarized in  (2.22). These definitions lead to a number of familiar looking algebraic 

properties which are presented in the following subsections. 

2.4.1. Inclusion Monotonicity of Interval Arithmetic 

Theorem 2.1 (Inclusion Monotonicity) Let   ,   ,    and    be interval 

numbers such that       and      . Then for the interval operations 

  *   +, we have  

            

Proof of  Theorem 2.1 is presented in [ 6]. 

An important consequence is the following lemma. 

Lemma 2.1 Let   and   be interval numbers with     and    . Then 

for the interval operations   *   +, we have 

        

2.4.2. Commutativity and Associativity 

Like the real-number operations, the interval addition and multiplication are 

commutative and associative. For any three intervals      and  , we have: 

       (                    )

  (   )  (   )   (                    )

     (                          )

 (  )  (  ) (                          )

 

‖𝑋‖ 

𝑋  

𝑋  

𝑚(𝑋) 

𝑋 
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2.4.3. Additive and Multiplicative Identity Elements 

Another common property between intervals and real numbers is the existence of 

additive and multiplicative identity elements. For any interval  , we have: 

,   -      ,   -   (                     )

,   -     ,   -   (                           )
 

The previous equations show that the degenerate intervals 0 and 1 are additive and 

multiplicative identity elements in the system of intervals, respectively. The degenerate 

interval   is also an absorbing element for the interval multiplication operation: 

,   -     ,   -  ,   - 

2.4.4. Nonexistence of Inverse Elements 

Unlike the ordinary arithmetic, additive and multiplicative inverses do not always 

exist for interval numbers. We must be caution that    is not an additive inverse for   

in the system of intervals. That is 

  (  )  [   ]  [     ]  [       ]  ,   - 

But   (  )  ,   -        , i.e.   is a degenrate interval, else 

      ( ),    - (2.35)   

Similarly, 
 

 
 is not a multiplicative inverse for  . In general, 

 

    {
[       ]              

[       ]              

 ,   -

 (2.36)   

But 
 

 
        ( )   . To summarize, there is no additive or multiplicative 

inverses in interval arithmetic except for degenerate intervals. However, the inclusions 

      and       are always satisfied. 

2.4.5. Subdistributivity 

Another difference between the ordinary and interval arithmetic is that the 

distributive law does not always hold for intervals except in some cases provided 

below. The following counterexample proves the latter statement. If   ,   -, 

  ,   -, and   ,      -, then: 

 (     )  ,   - (,   -  ,     -)  ,   - ,    -  ,    - 
whereas  (2.35) gives 

      ,   - ,   -  ,   - ,     -

 ,   -  ,     -  ,    -
 

That is in general  (   )       . However, interval arithmetic has the 

following subdistributive law [ 35]: 

  (   )        (2.37)   
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which can be seen in the previous example. Full distributivity holds in certain special 

cases. The first case occurs when   becomes a real number x, then we have 

  (   )        (2.38)   

The second case occurs when the intervals   and   have the same sign, i.e.    

 , then the interval multiplication can be distributed over the sum of those intervals: 

  (   )        (2.39)   

We observe from the algebraic properties discussed previously two important 

properties peculiar to the classical theory of interval arithmetic: 

Additive and multiplicative inverses do not always exist for interval numbers and 

there is no distributivity between addition and multiplication except for certain special 

cases. Thus, caution must be taken when using interval arithmetic to solve problems of 

uncertainty. 

2.5. Outwardly Rounded Interval Arithmetic 

In order to work effectively in a real-life implementation, intervals must be 

compatible with floating point computing. In practice, outward rounding is 

implemented at every interval operation rather than rounding to nearest which is 

commonly used in floating point computations. In optimal outward rounding, the 

outwardly rounded left endpoint is the closest machine number less than or equal to the 

exact left endpoint, and the outwardly rounded right endpoint is the closest machine 

number greater than or equal to the exact right endpoint. Those rounded endpoints are 

computed by rounding the exact endpoints down (towards negative infinity) and up 

(towards positive infinity), respectively. 

 

Example 2.10  (   )        for   ,       - and   ,         - are for example 

,         - where the same calculation is done with single digit precision, the result 

would normally be ,       - but ,       -  ,         - so this approach would 

contradict the basic principles of interval arithmetic, as a part of the domain of 

 (,       - ,         -) would be lost. Instead, it is the outward rounded solution 

,       - which is used. See Figure 2.3. 
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Figure 2.3: Outer bounds at different level of rounding 

To summarize, by outwardly rounded interval arithmetic, we mean the rounding 

that must be used to be able to implement the interval arithmetic operations correctly. 

This rounding can be achieved by changing the rounding settings of the processor in the 

calculation of the upper limit (up) and lower limit (down). Alternatively, an appropriate 

small interval ,     - can be added, where    and    are small scalars. 

2.6. The Interval Dependency Problem 

The methods of classical numerical analysis cannot be transferred one-to-one into 

interval arithmetic, as dependencies between numerical values in the interval arithmetic 

are usually not taken into account. 

The dependency problem is a major obstacle to the application of interval 

arithmetic. Although interval methods can determine the range of elementary arithmetic 

operations and functions very accurately, this is not always true with more complicated 

functions. If an interval number occurs several times in a calculation using parameters 

and each occurrence is taken independently then this can lead to an unwanted over-

estimation of the resulting intervals. That is obvious in     ,   - instead it results 

in the interval [       ]. 

 

Example 2.11 Let the function   is defined by 

  ( )        (2.40)   

The exact range of the function   over the interval ,    - is ,  
 

 
  -; however, 

using the natural interval extension produces a larger range as follows: 

,    -  ,    -  ,   -  ,    -  ,    - 

This overestimation in range calculations is due to the multiple appearance of the 

variable   in the evaluated function  . The following function illustrates how 

interval arithmetic deals with multiple appearances of a variable in a given function: 

[0.2,0.9] 

[0.1,0.9] 

[0.16,0.88] 
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  (   )       (2.41)   

over     ,    -. On the other hand, there is a better expression of   in which the 

variable   only appears once, namely by rewriting  ( )       as addition and 

squaring in the quadratic ( )  (  
 

 
)  

 

 
 . So the suitable interval calculation is 

(,    -  
 

 
)  

 

 
 0  

 

 
 
 

 
1
 

  
 

 
 ,  

 

 
-    

 

 
   , 

 

 
   - and gives the exact 

interval. Figure 2.4 illustrates the two expressions for the above example: the 

shaded area represents the overestimation due to the dependency problem, whereas 

the red curve represents the exact curve. Figure 2.5 gives a more illustrative insight 

of the dependency problem by plotting  (2.41) rather than  (2.40). 

 

 

 

Figure 2.4: Approximate estimate of the value range 

 

 

 

Figure 2.5: Treating each occurrence of a variable independently 
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In general, it can be shown that the exact range of values can be achieved, if each 

variable appears only once. However, not every function can be rewritten this way. The 

dependency and over-estimation problems can have worse effects rather than covering 

a large range such as preventing meaningful conclusions. 

2.7. The Wrapping Effect 

An additional increase in the range results from the solution of areas that do not 

take the form of an interval vector (a box). For example, the solution set of the linear 

system 

    
    (2.42)   

for   ,    - is precisely the line between the points (    ) and (   ). The best 

solution that the interval methods can deliver is the interval vector (,    - ,    -). Of 

course, the real solution is contained in this vector. This problem is known as 

the wrapping effect. See Figure 2.6, in which the shaded area represents the interval 

solution of the above linear system which includes the solid line that represents the 

exact solution. 

 

 

 

Figure 2.6: Solution set of  (2.42) illustrating the wrapping effect 

2.8. Interval computing software 

In this section, we review a few interval computing software packages. 

-1 

-1 

1 

1 
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2.8.1. INTLIB 

B. Kearfott and et al, published the interval library INTLIB [ 28] in 1994. First, 

INTLIB was written in Fortran 77 and portable to almost all commonly used computer 

platforms. Kearfott later converted it into Fortran 95. 

Subroutines in INTLIB perform rigorous interval arithmetic with directed 

rounding. Subprograms in this library can be categorized into four groups according to 

their functionalities. They are interval arithmetic routines (         ); set operation 

routines (   ); utility routines (direct rounding, and etc.) and routines that bound 

elementary mathematical functions (trigonometric, inverse trigonometric, logarithmic, 

exponential, hyperbolic, and etc.) with rigorous interval arithmetic. 

2.8.2. Interval BLAS 

Basic Linear Algebra Subprograms (BLAS) forms the fundamental tool in 

scientific computing. A group of international scientists from governmental agencies, 

computer industries, and universities formed a working committee to establish a new 

standard for BLAS technology from February 1996 to March, 1999. 

This committee proposed the first interval BLAS standard. The functionalities 

included in the first release were interval vector operations, interval matrix-vector 

operations, interval matrix-matrix operations, set operations involving interval vectors 

and matrices, and utility functions involving interval vectors and matrices. Language 

binding and interface issues for Fortran 77, 95, and C are specified for about 200 

functions and subroutines. 

 

2.8.3. INTLAB 

INTLAB is the Matlab toolbox for reliable computing and self-validating 

algorithms. It contains the following implementations: 

 interval arithmetic for real and complex data including vectors and matrices, 

 interval arithmetic for real and complex sparse matrices,  

 automatic differentiation [ 49];  

o Gradients to solve systems of nonlinear equations,  

o Hessians for global optimization,  

o Taylor series for univariate functions,  

 automatic slopes,  

 rigorous real interval standard functions,  

 rigorous complex interval standard functions,  

 rigorous input/output,  

 accurate summation, dot product and matrix-vector residuals,  

 multiple precision interval arithmetic with error bounds,  
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and more. 

INTLAB is used in many areas, from verification of chaos to population biology, 

from controller design to computer-assisted proofs, from PDEs to Petri Nets. For some 

selected references to INTLAB, see [ 50].  S. Rump [ 55] and Moore [ 35] include many 

examples based on INTLAB. Tiago Montanher wrote INTSOLVER [ 23], an interval 

based solver for Global Optimization based on INTLAB. A large collection of 

verification algorithms written in Matlab/INTLAB is Rohn's VERSOFT [ 61].  

In INTLAB, everything is written in Matlab code to assure best portability. 

Rounding is already integral part of Matlab 5.3 (R11) and later versions under 

Windows. Preassumption to run INTLAB is IEEE 754 arithmetic and the possibility to 

permanently switch the rounding mode. This is true for a large number of PCs, 

workstations and main frames.  

INTLAB extensively uses BLAS routines. This assures fast computing times, 

comparable to pure floating point arithmetic. Interval vector and matrix operations are 

very fast in INTLAB; however, nonlinear computations and loops may slow down the 

system significantly due to interpretation overhead and extensive use of the operator 

concept.  

Consider, for example, the following code for timing of arithmetic operations (pure 

floating point, interval multiplication of two point matrices, point matrix times interval 

matrix and multiplication of two nondegenerate interval matrices):  

 
n=200; A=2*rand(n)-1; intA=midrad(A,1e-12); k=100; 

tic; for i=1:k, A*A;         end, toc/k 

tic; for i=1:k, intval(A)*A; end, toc/k 

tic; for i=1:k, A*intA;      end, toc/k 

tic; for i=1:k, intA*intA;   end, toc/k 

 

The result in seconds on a 2.4 GHz Pentium IV is as follows in Table 2.2 

(computing times for complex matrices are similar), where A is a point matrix and intA 

is the interval representation of A:  

Table 2.2: Real matrix multiplication 

Dimension 
Pure floating 

point 

Verified 

    

Verified 

     ( ) 

Verified 

   ( )     ( ) 

100 0.0013 0.037 0.008 0.0114 

200 0.012 0.025 0.051 0.074 

500 0.18 0.36 0.66 0.92 

 

 

In [ 54] and [ 55], information about background, implementation and timing of 

INTLAB is available. 
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2.8.4. A C++ Class Library for Extended Scientific Computing (C-

XSC) 

The original version of the C++ class library C–XSC (C for eXtended Scientific 

Computing) [ 30] is about twenty years old. But in the last decade the underlying 

programming language C++ has been developed significantly. Since November 1998 

the C++ standard [ 24] is available and more and more compilers support (most of) the 

features of this standard. The new versions C–XSC [ 20] conform to the C++ standard. 

The programming environment C–XSC is a powerful and easy to use programming 

tool, especially for scientific and engineering applications. C–XSC makes the computer 

more powerful arithmetically and significantly simplifies programming in the field of 

scientific computing (especially in the field of interval mathematics). C–XSC is 

implemented as a numerical class library in the programming language C++. 

C–XSC consists of a run time system written in ANSI C and C++ including an 

optimal dot product and many predefined data types for elements of the most 

commonly used vector spaces such as real and complex numbers, vectors, and matrices. 

Operators for elements of these types are predefined and can be called by their usual 

operator symbols. Thus, arithmetic expressions and numerical algorithms are expressed 

in a notation that is very close to the usual mathematical notation. C–XSC allows 

writing verification algorithms in a way which is very near to pseudo-code used in 

scientific publications. All predefined numerical operators are of highest accuracy. That 

is, the computed result differs from the correct result by at most one rounding. 

While the emphasis in computing is traditionally on speed, in C–XSC, the 

emphasis is more on accuracy and reliability of results. The total time for solving a 

problem is the sum of the programming effort, the processing time, and the time for the 

interpretation of results. We contend that C–XSC reduces this sum considerably. 

C++ programmers should be able to use and write programs in C–XSC 

immediately. C–XSC simplifies programming by providing many predefined data types 

and arithmetic operators. Programs are much easier to read, to write, and to debug. 
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Chapter 3 : Interval Linear Algebraic Systems of 

Equations 

 

Most of scientific computations begin with inexact initial data. Interval arithmetic 

is considered an efficient tool to measure uncertainties in any system by defining 

functions on intervals. The interval-valued functions can be very suitable tool to 

express many practical problems. For example, those interval functions can be used to 

represent the electrical circuits which contain many elements whose values cannot be 

exactly determined. The uncertainty in determining the electrical elements’ values 

results from manufacturing problems. Using interval arithmetic, we can perfectly 

represent those elements’ values and tolerances. The motivation of this chapter is to 

give an insight of the basic definitions and properties of interval-valued functions 

which will be used throughout the thesis (For more details about the interval-valued 

functions, the reader may consult [ 48] and [ 35]). In section  3.2, we introduce notions 

and definitions from literature for computing refinements of interval extensions and 

discuss some issues regarding the convergence for finite interval sequences. Finally, 

section  3.3 defines the problem of interval linear systems and introduces the interval 

Gauss-Seidel algorithm as a method to solve these linear systems. 

3.1. Interval Functions Evaluation 

3.1.1. Set Images and United Extension 

In this subsection, we consider a real-valued function   of a single real variable  . 

Some definitions are introduced from [ 35] to define the precise range of values 

generated by  ( ) as   varies through a given interval  . We are interested in finding 

the image of the set   under the mapping  : 

  ( )  * ( )    +  (3.1)   

 (3.2)In general, the concept of the image set for a function    (       ) is 

presented in [ 35] and is introduced here by (3.2): 

  (       )  * (       )              +  (3.2)   

where         are specified intervals. 

The next definition is presented in [ 35] to clarify definitions like the united 

extension and the set images. 

 

Definition 3.1 Let         be a mapping between sets    and   , and 

denote by  (  ) and  (  ) the families of subsets of    and   , 

respectively. The united extension of   is the set-valued mapping    (  )  

 (  ) such that 
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  ( )  * ( )        (  )+  (3.3)   

 

3.1.2. Elementary Functions of Interval Arguments 

The following example shows how it is easy for some functions to compute  (3.1), 

consider 

  ( )  (   )       (3.4)   

If   [   ], it is obvious that the set 

  ( )  *(   )     +  (3.5)   

can be expressed as 

 

 ( )  

{
 
 

 
 0(   )

 
 (   )

 
1        

0(   )
 
 (   )

 
1        

0     2(   )
 
 (   )

 
31        

 (3.6)   

The equation  (3.5) will be used as the definition of (   ) . But, note that this is 

not the same as        . For example, consider an interval   ,   -, the 

definition  (3.6) will results in (,   -   )  ,   -, whereas         ,    -  

 ,    -    ,   -. However, ,   - contains ,   -. The overestimation when we 

compute a bound on the range of (   )  as         is due to the phenomenon 

of interval dependency discussed in section  2.6. Namely, for an unknown number  , 

where    , if we use the expression        , the   in the second term is not only 

known to lie in   but also it must be the same as   in the first term, whereas, in the 

interval expression        , it is assumed that the values in the first and second 

terms vary independently. 

Interval dependency is a major problem when using interval arithmetic. It is a main 

reason that it is not easy to replace floating point computations by intervals in an 

existing algorithm. This dependency may produce unsatisfying results. 

3.1.3. Monotonic Interval Functions 

In this subsection, we introduce some other familiar functions and apply it to 

interval arguments. The logic is straightforward with monotonic functions. Figure 3.1 

illustrates an increasing function ( ) which maps an interval   [   ] into the 

interval 

 ( )  [ ( )  ( )]  
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Figure 3.1: A monotonic (increasing) interval function 

As an example of the monotonic functions, we may consider the exponential 

function 

 ( )     ( )         

As   varies through an interval   [   ],  ( ) takes values from    ( ) to    ( ). 

That is, we can define 

    ( )  [   ( )     ( )]  (3.7)   

Similarly, for the natural logarithm function 

 ( )           

we have 

     [       ]  (3.8)   

The more general exponential function  ( )     with     and     leads us 

to write 

    [     ]                          (3.9)   

All these functions are increasing ones. With decreasing functions, the endpoints 

should be ordered correctly. For example, as   increases from   to  , the values of 

    with     decrease from     to    . Therefore, 

     [       ]  (3.10)   

Regarding the non-monotonic functions, with some restrictions they could be 

monotonic. The function   given by 

 ( )           

is not monotonic, but its restriction    to the set   ,   - is decreasing. Hence, 

      [         ]           ,   -  (3.11)   

𝑋 

𝑓(𝑋) 

𝑥 

𝑦 

𝑦  𝑓(𝑥) 

𝑓(𝑋) 

𝑓(𝑋) 

𝑋 𝑋 
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3.1.4. Interval-Valued Extensions of Real Functions 

In the previous sections, we discussed definitions of some interval-valued 

functions. Those definitions are obtained by computing the range of a real-valued 

function  ( ) as   varied through an interval  . This result was equal to the set image 

 ( ). 

A different process is discussed in this subsection. We introduce some concepts 

from [ 35] to help us in defining more functions by extending a given real-valued 

function   by applying its formula directly to interval arguments. 

First, we use the following definition from [ 35] to illustrate the meaning of the 

interval extension of a real-valued function. 

 

Definition 3.2 We say that   is an interval extension of the real-valued 

function  , if for degenerate interval arguments,   agrees with  : 

  (,   -)   ( )  (3.12)   

 

In what follows, an example is given to clarify the previous definition. Consider 

the real-valued function   given by 

  ( )          (3.13)   

The equation  (3.13) represents a function which differs from the following equation 

  ( )     (3.14)   

which is a formula—not a function. Any function is defined by two things: (1) the 

domain which it acts over, and (2) the mapping rule that specifies how elements of that 

domain are mapped. Whereas, these two things are specified in  (3.13): the set of real 

numbers   represents the domain of  , and the mapping rule is     , the 

equation  (3.14) does not contain a domain so it is just a formula. 

Now, to develop an extension of the function  (3.13), we apply the formula  (3.14), 

that describes this function, to interval arguments. The resulting interval-valued 

function 

  ( )       [   ] (3.15)   

is an extension of the function  (3.13). 

After defining the interval extension of the real-valued function  (3.13). We would 

like to compare  ( ) in  (3.15) with the set image  ( ). We have 

 ( )  0    
 
1 

On the other hand, as   increases through the interval [   ], the values  ( ) given 

by  (3.13) clearly increase from   to  ; by definition then, 

 ( )  0    
 
1 

As it is a simple example, we find that  ( )   ( ): this interval extension of   

yields the desired set image  (3.1). Unfortunately, the situation is not so simple in 

general. 
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3.1.5. The Fundamental Theorem 

We introduce in this subsection the fundamental theorem of interval arithmetic. To 

do that, we first introduce some preliminary definitions. 

3.1.5.1. Subset Property of United Extension 

According to [ 35], the following subset property is applied to the united extensions 

defined in  (3.3): 

      (  )           ( )   ( )  (3.16)   

3.1.5.2. Interval Extensions of Multivariable Functions 

In this subsection, we introduce generalized versions of the previous concepts 

which are suitable to multivariate functions, 

   (       )  

where         are interval variables. 

 

Definition 3.3 By an interval extension of  , we mean an interval-valued 

function   of   interval variables         such that for real arguments 

        we have 

  (       )   (       )  (3.17)   

 

The latter definition is presented in [ 35]. As an example of these interval 

extensions, we may consider any of the interval arithmetic operations; for instance, the 

interval addition. This binary operation could be written as a function of two variables: 

 (     )        *                 +  

It is obvious from the above equation that interval addition is the united extension of 

the function 

 (     )        

which describes ordinary numerical addition. Other interval arithmetic operations are 

defined in a similar manner—recall  (2.22). An obvious conclusion is that the interval 

arithmetic functions are united extensions of the corresponding real arithmetic 

functions. 

3.1.5.3. Inclusion Isotonicity 

Definition 3.4 We say that  (       ) is inclusion isotonic if 

                   (       )   (       )  

 

The previous statement from [ 35] defines the inclusion isotonic functions. Special 

cases of those functions are the united extensions which all have the subset property. 

Then, the operations of interval arithmetic must satisfy 

                          (3.18)   
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because they are united extensions as mentioned before. 

3.1.5.4. The Fundamental Theorem 

The fundamental theorem of interval arithmetic is stated in this subsection. 

 

Theorem 3.1 If   is an inclusion isotonic interval extension of  , then 

 (       )   (       ) 

Proof [ 38] By definition of an interval extension,  (       )   (       ). If 

  is inclusion isotonic, then the value of   is contained in the interval  (       ) 
for every (       ) in (       ).  

3.2. Sequences of Intervals 

This section deals with sequences of intervals and presents definitions and theories 

needed as preparation for the interval algorithms to be presented in Section  3.3 

and  Chapter 4. 

3.2.1. Convergence in Interval Arithmetic 

First, we introduce a definition from [ 35] to illustrate the notion of convergence of 

interval sequences in this subsection. After that some theories are presented to give a 

detailed overview on the convergence of interval sequences. 

 

Definition 3.5 Let *  + be a sequence of intervals. We say that *  + is 

convergent if there exists an interval    such that for every    , there is a 

natural number    ( ) such that  (    
 )    whenever    , where   

is called a metric on    and given by 

 (   )     {|   | |   |}  

As an analogue to real sequences, we can write 

      
   

                       

and refer to    as the limit of *  +. 

3.2.2. Lipschitz Interval Extensions 

Lipschitz condition and functions are defined in many references such as [ 42]. 

Here, we use the definition presented in [ 35]. We begin with the definition of Lipschitz 

functions which is closely related to continuity. 

 

Definition 3.6 An interval extension   is said to be Lipschitz in    if there is a 

constant   such that 
  ( ( ))    ( ) (3.19)   

for every     . 
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The latter definition is not applicable only to the univariate functions but also for 

multivariate ones; i.e.   may be an interval or an interval vector   (       ). 

Using this definition, it is easy to deduce that the width of  ( ) approaches zero 

at least linearly with the width of the interval  . 

 

Lemma 3.1 If   is a natural interval extension of a real rational function and 

 ( ) is defined for     , where   and    are intervals or  -dimensional 

interval vectors, then   is Lipschitz in   . 

 

Proof [ 35] For any real numbers   and   and any intervals    and   , we have the 

following relations: 

  (       )  | | (  )  | | (  ) 

 (    )  |  | (  )  |  | (  ) 

 (    )  |
 

  
|
 

 (  )         

 (3.20)   

Since the natural interval extension has interval values obtained by a fixed finite 

sequence of interval arithmetic operations on real constants and the components of   

(if   is an interval vector) and since      implies that |  |  ‖  ‖ for every 

component of  , it follows that a finite number of applications of  (3.19) will produce a 

constant   such that  ( ( ))    ( ) for all     .  

Not only the interval extensions of rational functions which are Lipschitz, but also 

there are certain interval extensions of irrational functions which are Lipschitz. That is 

stated and proved in the following lemma. 

 

Lemma 3.2 If a real-valued function  ( ) satisfies an ordinary Lipschitz 

condition in   , 

 | ( )   ( )|   |   |              (3.21)   

then the united extension of   is a Lipschitz interval extension in   . 

 

Proof [ 35] The function   is necessarily continuous. The interval (or interval 

vector)    is compact. Thus,  ( ( ))  | (  )   (  )| for some           . 

But |     |   ( ); therefore,  ( ( ))    ( ) for     .   

In what follows some examples of united extensions which are also Lipschitz in 

  : 

1)    0     1; 

2) √  0√  √ 1          ; 

3)     [       ]         ; 

4)      [         ]        ,   -. 
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Lemma 3.3 Let   and   be inclusion isotonic interval extensions with   

Lipschitz in   ,   Lipschitz in   , and  (  )    . Then the composition 

 ( )   ( ( )) is Lipschitz in    and is inclusion isotonic. 

Proof [ 35] The inequality 

 ( ( ))   ( ( ( )))     ( ( ))       ( ) 

shows that   is Lipschitz in   .   

3.2.3. Convergence of Interval Sequences 

Now, we proceed to define the basic concepts of convergence for a finite interval 

sequence. 

 

Definition 3.7 [ 35] An interval sequence *  + is nested if         for all  . 

 

The following lemmas show that nested sequences always converge. 

 

Lemma 3.4 Every nested sequence *  + converges and has the limit    
   . 

Proof [ 35] {  } is a non-decreasing sequence of real numbers, bounded above by 

  , and so has a limit  . Similarly, {  } is non-increasing and bounded below by    

and so has a limit  . Furthermore, since       for all  , we have    . Thus *  + 

converges to   [   ]      
   .   

 

Lemma 3.5 Suppose *  + is such that there is a real number      for all  . 

Define *  + by       and              for        . Then    is nested 

with limit  , and 

                   (3.22)   

Proof [ 35] By induction, the intersection defining      is nonempty so *  + is well 

defined. It is nested by construction. Relation  (3.22) follows from  Lemma 3.4.   

 

Definition 3.8 [ 35] By the finite convergence of a sequence *  +, we mean 

there is a positive integer   such that       for    . Such a sequence 

converges in   steps. 

 

The following example illustrates the above definitions and lemmas. 

 

Example 3.1 Let    ,   -        
  

 
  (         )  generates a 

nested sequence *  +. The rational interval function  ( )    
 

 
 is inclusion 

isotonic. Therefore,     (  )    
,   -

 
 ,        -     ,   -. It 

follows that       (  )     for all   by induction. By  Lemma 3.4, the 

sequence has a limit  . If we compute *  + using interval arithmetic, we will 
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obtain a sequence *  
 + with      

  for all  . More precisely, let   
  be defined 

by   
     ,   -, and 

    
  {  

  
 

 
                 }    

  

For         . It follows from  Lemma 3.5 that   
  is nested and that the limit 

of *  + is contained in the limit      
 . The sequence *  

 + will converge in a 

finite number of steps. For example, with three-digit IA we find 

  
  ,   - 

  
  ,        - 

  
  ,         - 

  
  ,         - 

  
  ,         - 

  
  ,         - 

 

and   
     for all    . Whereas, we have finite convergence in four steps 

using IA, the real sequence             converges to 
 

 
 (after infinite 

number of steps) from any   . 

3.2.4. Stopping Criterion 

In this section, we are interested in studying the stopping criteria for nested 

sequences which we will use later in this thesis. In next chapter, we present numerical 

interval algorithms for solving systems of nonlinear equations. So, we have to define 

the criterion that we will use to check whether the algorithm reaches a suitable solution 

for the problem or not. The stopping criterion mainly depends on the accuracy required 

by the problem and the precision representation of machine numbers.  

For any fixed precision representation of machine numbers using (   ) bits 

        with   fixed, there is a finite set of representable numbers. Hence, there is a 

finite set of intervals with machine number endpoints. 

The following equation represents a stopping criterion for iterative interval 

algorithms that produce nested sequences of intervals with machine number endpoints. 

Since the sequence *  + is a nested sequence, it converges in a finite number of steps 

according to  Lemma 3.4 and  Lemma 3.5. Hence, we can compute the    until 

           (3.23)   

If the intervals    are generated by a procedure of the form 

       (  ) (3.24)   

such that each      depends only on the previous   , then it can be shown that  (3.23) is 

sufficient to guarantee convergence (For more details, the reader should consult section 

6.3 in [ 35]). 

In particular, if  ( ) is a rational expression in   and if    is an interval such that 

 (  )    , it follows that *  + defined by 

       (  )           (3.25)   
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is nested with 

           

and converges to some    with     (  ) and       for all          . 

With interval arithmetic, it may happen that     (  )     but         for 

some  . Then we should compute 

       (  )     (3.26)   

instead of  (3.25) and stop when  (3.23) is satisfied. 

The last possibility is that the interval  (  )     is empty, then there is no      

such that  ( )   . This follows from the inclusion isotonicity of   in [ 35], if 

 ( )    and     , then    ( )   (  ) and so    (  )    ; therefore, if 

 (  )     is empty, there is no such  . 

Whereas the following list summarizes the different possibilities of a sequence’s 

convergence, the next two examples from [ 35] illustrate the above notions: 

 If  (  )      , that sequence does not converge, 

 Else if  (  )       and  (  )    , then this sequence converges to an 

interval   , 

 Else if  (  )       but  (  )    , then we cannot conclude anything. 

 

Example 3.2 Let 

 ( )  
 

 
     

If we take    ,   -, then 

 (  )  
 

 
,   -    [

 

 
  ]  

Since  (  )      , there is no fixed point of   in,   -. If we take    

0  
 

 
1 instead, then 

 (  )  
 

 
[  

 

 
]    [  

  

 
]  

Here  (  )     0  
 

 
1; we cannot conclude anything since  (  )    . 

Finally, with    ,   -, we have  (  )   (,   -)  0  
 

 
1. This time, 

 (  )    , so   has a fixed point   in   . The iterations 

       (  )               (3.27)   

produce, in three-digit IA, 
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   ,     -  ,   -  ,     - 

   ,        -  ,     -  ,        - 

   ,         -  ,        -  ,         - 

   ,         - 

   ,         - 

   ,         - 

   ,         - 

   ,         - 

   ,         - 
                   

 

  has a fixed point in ,         -. 

 

If the process generating the sequence depends explicitly on   as well as on   , 

say, 

      (    )  

then we might have         for some   and yet         even though *  + is 

nested. The following example illustrates this point.  

 

Example 3.3 Let 

      (,   -  )        ,   -  (3.28)   

Here 

   ,   - 

   ,   - 

   ,   - 

   [  
 

 
]  

   [  
 

 
]  

 
     ,     -     

 

 

Hence,  (3.23) is a valid stopping criterion if and only if *  + is nested and 

generated by  (3.27) with  (  ) depending only on   . 

3.3. Interval Linear Algebraic System of Equations (ILASE) 

In this section, we are interested in finding solution of interval linear systems of 

equations. The material presented here helps us in the next section where we study 

solving nonlinear systems using interval arithmetic algorithms. 

An ILASE is defined as follows 

      (3.29)   
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where         is a regular matrix and       is an interval vector. The vector of 

unknowns is denoted by  . The corresponding solution set, known as the united 

solution set, S is defined in [19] by 

   *     (    ) (    ) (    )+  (3.30)   

This is the most popular form of the solution of (3.29). Other forms for the solution set 

of (3.29) are given by Shary [57]. 

The solution set S is generally not an interval vector and is non-convex. Thus, it is 

common to seek the interval vector   which is the minimum possible interval vector 

containing S. It is called the optimal interval solution vector, and it is written in the 

form 

   [   ]

           
 

(       )

     
 

(       )

       *       +

 (3.31)   

 

Definition 3.9   is regular if and only if the corresponding solution set S is 

bounded, provided that   contains at least one regular matrix, see Rohn[52]. 

The regularity of an interval matrix is insured if 

  (  
    )    (3.32)   

where  ( ) is the spectral radius. The more restricted condition for regularity is 

 ‖|  
  |  ‖    (3.33)   

with | | denoting the corresponding matrix with the absolute values of its entries 

taken component-wise. 

 

Initially, methods based on the interval version of the Gaussian elimination 

techniques, i.e. using interval arithmetic, were denoted by IGA and were extensively 

studied by many authors. Those methods were found to yield excellent results for 

narrow interval systems only under some preconditioning of the interval matrix. 

Preconditioning was introduced by Hansen[18] to retard the growth of interval widths. 

The most commonly used method for preconditioning is to multiply by an approximate 

inverse of the central matrix   . However, when the intervals are wide those methods 

were found to yield loose and misleading bounds (because of the accumulation of errors 

and the dependency problem which is the main drawback in interval arithmetic) and the 

solution obtained is quite far from being sharp, see Hansen[ 17] and Ning and 

Kearfott[ 45] for an illustration. 

Several other methods were developed since the pioneering work of Oettli and 

Prager to obtain as sharp bounds as possible for the solution set. Oettli-Prager Theorem 

[ 46] states that: 
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Theorem 3.2 (Oettli-Prager Inequality) Let              . Then 

 ̃   (   )  | ̌ ̃   ̌|     ( )| ̃|     ( )  

Proof[ 46] Put      ̃. Then   ̃            | ̌   ̌|     ( )  

   ( ). Since  ̌   ̌ ̃ and    ( )     ( )| ̃| | ̌ ̃   ̌|     ( )| ̃|     ( ).  

 

Many methods have been introduced in the literature for the solution of an ILASE, 

refer to the text books Deif [ 7], Hansen [ 17] and Neumaier [ 42], and the references 

therein. Other solution methods can be also found in papers of Gay [ 9], Hansen [ 16], 

Jansson [ 25], Rohn [ 52] and Shary [ 57]. 

3.3.1. Interval Gauss–Seidel 

Here, we introduce one of the most commonly used methods in solving interval 

linear systems; namely, Interval Gauss-Seidel. It is the interval version of the classical 

Gauss-Seidel method. It was originally introduced by Hansen et al. in the Hansen–

Sengupta method [ 13]. In the interval version of GS, Kearfott (see [ 29, Chapter 3]) 

uses a preconditioner matrix   which is typically, but not necessarily, chosen to be 

( ( ))
  

, obtaining 

                          (3.34)   

Like the classical GS, the  th row of the preconditioned system  (3.34) is solved to 

obtain a new range for    by substituting the ranges for       , using the most recent 

value of    wherever possible. The following equations represent the iteration 

equations for the interval Gauss–Seidel method: 

   
( )

                

 ̃ 
    

 

    
{   ∑      

   

   

   

 ∑       
 

 

     

}            

  
     ̃ 

      
  

 (3.35)   

where   {    }. A big advantage of the interval version of GS is that it can find more 

than one solution in one initial box, if exist. That may happen if a step of  (3.35) results 

in two boxes rather than one box. In this case, we have more than one solution in the 

initial box and we should consider each box separately. The C++ and Matlab codes of 

the interval GS is introduced in Appendix  A.1. For more development, including use of 

preconditioners other than the inverse midpoint matrix, see [ 29]. 

In the next chapter, we use the interval Gauss-Seidel to solve perturbed linear 

systems as a step in our approach to bound solutions of the perturbed nonlinear 

systems. 

Further discussion of interval methods for solving perturbed linear systems may be 

found in [ 1], [ 14], [ 35], and in various other references. The following example uses the 

interval Gauss-Seidel method to find the solution set of a perturbed linear system. 
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Example 3.4 Let 

 
(
,       - ,         -
,       - ,         -

)   (
,       -

,         -
) (3.36)   

If we take    (,      - ,      -) , then we can use the interval Gauss-

Seidel to bound the solution of this system. A step of GS is done below: 

  ( ( ))   .
   
   

/
  

 .
   
   

/ 

                         

     (
,       - ,        -

,        - ,       -
) 

     (
,       -
,       -

) 

  
(   )

 
 

    
{   ∑      

(   )

   

   

 ∑       
( )

 

     

}            

 ( )  (
,      -
,      -

) 

 ( )  (
,             -
,             -

)  (
,      -
,      -

)  (
,         -
,         -

) 

We may use Oettli-Prager inequality to find a narrower solution set to  (3.36). 

Figure 3.2 shows the solution set obtained from the Oettli-Prager inequality. 

 ̌  .
   
   

/   ̌  .
 

  
/ 

   ( )  .
      
      

/     ( )  .
   
   

/ 

| ̌ ̃   ̌|     ( )| ̃|     ( ) 

|       |     |  |     |  |      

|        |     |  |     |  |      

2nd quad 
                
                
                 
                 

1st quad 
                
                
                 
                 

3rd quad 
                
                
                 
                 

4th quad 
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Figure 3.2: Solution set to  (3.36) 

3.4. Interval nonlinear systems of equations 

In the next chapter, we consider finite systems of nonlinear equations 

   (       )    
 

  (       )   
 (3.37)   

which we may write in vector notation as 

  ( )    (3.38)   

We can consider two cases: (1) the functions    are exactly representable real-

valued functions, or (2) the functions    have coefficients known only to lie in certain 

intervals. We will discuss case (1) first and extend the results to case (2). 

In the next chapter, we will consider three methods that can be used to solve 

interval nonlinear systems of equations. Each method has its own advantages that will 

be covered. 
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Chapter 4 : Perturbed Nonlinear Systems of Equations 

Interval methods that bound the solutions of real-valued nonlinear systems have 

been studied in the literature for decades. Our focus here is on solving nonlinear 

perturbed systems. We present some interval methods such as Interval Newton, 

Krawczyk, and Hansen-Sengupta to solve those perturbed problems. In section  4.5, we 

introduce a modified version of the Interval Newton Method to bound the solutions of 

nonlinear systems with inexact data. 

Interval Newton methods of various types have been published for finding and 

bounding solutions of systems of real-valued nonlinear equations. Hansen and 

Greenberg [ 12] combine various features of these methods into a single algorithm of 

greater efficiency. 

In his 2006 paper, Hansen [ 15] considers various issues in multidimensional 

interval Newton methods and gives an algorithm based on consideration of them. These 

issues include choice of points of expansion, computing and reusing Jacobians, and 

choice of the preconditioner.  

There are other interval algorithms which were introduced to solve nonlinear 

systems such as Krawczyk method. Krawczyk introduced a modification on the interval 

Newton method which avoided solving interval linear systems using Gauss-Seidel by 

not attempting to obtain a sharp solution of the system (see [ 32]). Another algorithm 

was introduced by Hansen and Sengupta in 1981 (see [ 13]) and a parametric form of 

this algorithm to solve the perturbed problems was introduced later in 2008 (see [ 11]). 

There are other papers which consider the area of optimization with perturbed data. 

For example, Dinkel, Tretter, and Wong [ 8] show how interval analysis methods can be 

used to study the optimal solution of perturbed constrained optimization problems. 

In this chapter, we also consider some problems where there might be uncertainty 

about the values of its parameters. For example, those parameters might be measured 

quantities of uncertain accuracy. The function  , which we seek to find its zeros, might 

involve numbers that cannot be exactly expressed in the computer's number system. For 

example, the function might be expressed in terms of transcendental numbers such as  . 

Any such parameters or numbers can be expressed as intervals that contain their 

true values and whose endpoints are machine-representable numbers. The value of a 

function  ( ) involving such intervals is itself an interval for any  . In this research, 

we discuss a slight modification made on interval Newton method to solve those 

perturbed nonlinear systems. 

In this thesis, we study the use of interval Newton operator for finding and 

bounding the zeros of functions whose coefficients are not exactly known. This may 

occur in applications such as the sensitivity analysis of most of the engineering 

problems such as the sensitivity analysis that is performed on electrical circuits. 

The chapter is organized as follows: In section  4.1, the univariate interval Newton 

method is introduced. Interval methods for solving multivariate nonlinear systems of 

equations are given in section  4.2. The perturbed problem formulation and the 
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derivation of the existence and convergence theories are given in section  4.3. In 

section  4.4, we consider the interval algorithms for bounding the solutions of perturbed 

nonlinear systems of equations. In section  4.5, the modified interval (two-stage) 

Newton method is introduced. Numerical examples that illustrate the method are given 

in section  4.6. 

4.1. Univariate Interval Newton’s Method 

In this subsection, the interval Newton’s method for solving a nonlinear equation is 

presented. Our approach is similar to what has been introduced in presenting interval 

Newton method in [ 35]. 

Let   be a real-valued function of a real variable  , and suppose that   is 

continuously differentiable. We search for a solution of the equation 

   ( )      (4.1)   

in a given interval ,   -. Using the mean value theorem, we have 

  ( )   ( )    ( )(   ) (4.2)   

for some   between   and  . If there exists a solution   to  (4.1) in the interval ,   -, 

then it would satisfy 

  ( )    ( )(   )     (4.3)   

for any real number     ,   -. The previous equation becomes 

 
   (,   -)  

 ( (,   -))

  ( )
  (4.4)   

if we take      (,   -) . As   ,   -, we may write the interval form of  (4.4) as 

follows  

 

 ( )    ( )   
 ( ( ))

  ( )
  (4.5)   

where   ,   -,   ( ) is an inclusion monotonic interval extension of   ( ), and 

 ( ) is the interval Newton operator which is an interval that contains the solution   if 

     ( ). Finally, the algorithm uses the following equation 

  (   )    ( )    ( ( ))      (             ) (4.6)   

to update the interval   at each step. The following theorem discusses the existence and 

convergence of the algorithm. 

 

Theorem 4.1 If an interval  ( )
 contains a zero   of  ( ), then so does  ( )

 

for all              , defined by  (4.6). Furthermore, the intervals  ( )
 form a 

nested sequence converging to   if     ( ( ))  
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Proof [ 35] If     ( ( )), then     ( ( )) for all   and  ( ( )) is not 

contained in  ( ( )), unless   . ( ( ))/     . Therefore  ( (   ))  
 

 
 ( ( )). 

Convergence of the sequence follows.   

 

Example 4.1 Suppose we wish to solve  (4.1) with 

   ( )        (4.7)   

  ( )        is an interval extension of   ( )       . Hence, 

 ( )   ( )  
    ( )

    
  

and  (4.6) looks like 

 (   )   ( )  { ( ( ))  
    ( ( ))

    ( ) }. 

Taking  ( )
   ,     -, we obtain 

 ( )  ,                                 - 

 ( )  ,                                 - 

 ( )  ,                                 - 

 ( )  ,                                 - 

 ( )  ,                                 - 

 

Of course,  (4.7) has solution      . Solving it using IA, we see that     lies 

in the interval ,                                 -. 

 

The previous example illustrates the fast convergence of the interval Newton 

method which is asymptotically error squaring. The following lemma from [ 35] states 

the rate of convergence of the method. 

 

Lemma 4.1 Given a real rational function   of a single real variable   with 

rational extensions  ,    of  ,   , respectively, such that   has a simple zero   

in an interval ,     - for which  (,     -) is defined and   (,     -) is 

defined and does not contain zero, there is an interval      ,     - containing 

  and a positive real number   such that 

 
 ( (   ))   . ( ( ))/

 

  (4.8)   

 

For a proof, see [ 38] and for an illustrating example that compares between the 

convergence of the interval and traditional Newton methods, see [ 27]. 

Like the traditional Newton method, the univariate interval Newton method has a 

geometric interpretation. Whereas the traditional method is interpreted as an 

intersection of a single tangent line with the x-axis, the interval method defines the new 

interval  (   ) by the intersection of two tangent lines, with slopes corresponding to 

the lower and upper bounds of   ( ( )).  
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This is illustrated with   ( ( )) equal to the range of    over  ( ) in Figure 4.1 (In 

this figure, the dashed slope represents the lower bound on   ( ( )), and the dotted 

slope represents the upper bound on   ( ( )))  

 

 

 

Figure 4.1: Geometrical interpretation of the univariate interval Newton method 

The software implementation of the interval Newton method are available in 

Appendix  A.2. There is no need to explicitly program the derivative, since the INTLAB 

and C-XSC provide automatic differentiation capabilities which may be used directly. 

4.1.1. Extended Interval Newton’s Method 

Back to the function  (4.7), it has infinite number of solutions which are defined as 

    , where   is an integer number. Here, we try to widen the initial interval to 

include more zeros and see if we can find them all. We may start with a starting interval 

,    - but that would violate the condition     ( ( )) in the proof of  Theorem 4.1. 

This situation can be handled using extended interval arithmetic. 

Using the extended interval arithmetic discussed in subsection  2.2.4.1, we can 

allow the range of   ( ) to contain zero. Hence, the quotient   ( )   ( ) existing in 

the computation of 

 ( )   ( )    ( )   ( ) 

will split into two unbounded intervals. Then, upon intersecting  ( ) with the finite 

interval   in the iteration formula 

 (   )     ( ( ))     ( )  
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we obtain two disjoint finite intervals. For the function  (4.7), by taking  ( )  ,    -, 

we obtain 

 ( ( ))                . ( ( ))/     

and 

  ( ( ))  ,    -  

Hence, 

 ( ( ))   ( ( ))   ( ( ( )))   ( ( ))

   *  ,    -+

 (     -  ,   ) 

 

 

 

 

Figure 4.2: Extended interval Newton step over X
(0)

=[-5,5], function  (4.7) 

Intersecting these two infinite intervals with  ( )    ,    -  we get the union of 

two disjoint finite intervals, 

 ( )  ,     -  ,   -  

This is illustrated in Figure 4.2. 

Now, we can solve the function  (4.7) for each interval individually. Considering 

the interval ,   - as a new initial box, we obtain the Newton operator as two disjoint 

infinite intervals (                    -  ,                   ). 

Intersecting those two intervals with the interval ,   - results in two finite intervals 

,                   - and ,                   -. Again, we should solve (4.7) 

for each interval individually. After convergence for these two intervals, we can go 

back and set  ( )   ,     - to find the other roots in ,    -. In this way, the interval 

Newton method can find all zeros of a function in a given starting interval. In this 

example, the interval Newton method finds the four zeros of (4.7) which lie in the 

interval ,    -.  

The operation of interval division by any interval that contains zero results in the 

interval ,    -. Hence, we use a custom implementation of the interval division to 

find solutions for the previous example. The custom function that performs the division 
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by an interval containing zero is developed in [ 35] using concepts of extended interval 

arithmetic and its implementation can be found in Appendix  A.6. 

The main difference between the interval Newton method and the ordinary Newton 

method is that the interval version deals with sets instead of points which are used in 

the ordinary version. Usage of sets rather than points enables the interval Newton 

method to find all roots of a function in a given starting interval. Whereas the ordinary 

Newton method does not always converge, the convergence of the interval method is 

always guaranteed (for more details the reader may consult [ 40]). 

4.2. Multivariate Nonlinear System of Equations 

In this section, the most commonly used interval algorithms that find and bound 

the solution of nonlinear systems are considered. Each approach has its own 

advantages, and all of them are used in practice. 

4.2.1. Multivariate Interval Newton Method 

We start with the interval Newton method for solving nonlinear systems. The 

interval Newton method for solving nonlinear systems can be developed more closely 

analogously to the univariate case discussed in section  4.1. The following equations 

   ( )      ( )     (     ) (4.9)   

  (     )      ( )  (4.10)   

         ( )  (4.11)   

 

are analogues to  (4.2),  (4.3), and  (4.4), respectively, where   and   lie in the domain of 

  and   is a nonsingular matrix whose  th  row is defined as 

         (  )  (
   
   

(  )   
   
   

(  ))  

with         is some point between   and  . The point matrix   is analogue to   ( ). 

Although it is not necessary for   to be the Jacobian matrix   ( ), it must satisfy the 

equation     ( ), where   ( ) is an element-wise interval extension of the Jacobian 

matrix over some box   that contains both   and  . To obtain the multivariate interval 

Newton operator, we may use the following equation 

  ( )    ( )   (  ( ))
  

 ( ( ))  (4.12)   

which is analogue to  (4.5). But in this case, we need to find inverse of an interval 

matrix which is not an easy operation. Instead of doing such complex operation, the 

multivariate Newton operator is redefined as  

  ( )       (4.13)   

where   bounds the solution set to 
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   ( )    ( )  (4.14)   

The following theorem is a special case of Theorem 5.1.7 found in [ 42]. 

 

Theorem 4.2 Suppose    has continuous partial derivatives over   and   ( ) 

is an element-wise interval extension to the Jacobian matrix of   over  . 

Suppose   is any point in   and suppose  ( ) is defined as in  (4.13), where   

is computed by any method for enclosing the solution set to the linear system 

  ( )    ( ). Then  ( )     ( ) implies that the function   has a unique 

solution in   that is also in  ( ). 

 

The linear system  (4.14) can be solved using any interval method that bounds the 

solutions of linear systems, for example, the interval Gauss–Seidel method, mentioned 

in Section  3.3.1, or the Krawczyk method for solving linear systems (See [ 35] for more 

details about Krawczyk method). Finally, we stated the different possibilities which 

may be encountered during computations: 

1)  ( ( ))     ( ( ))   convergence to the unique solution in  ( )  where 

   ( ( )) denotes the topological interior of the box  ( ). 

2)  ( ( ))   ( )     no solution in  ( ). 

3)  ( ( ))   ( )     no conclusion, but we can restart with      

 ( ( ))   ( ). 

4)  ( ( )) is not defined. In this case, we can bisect  ( ) and process each 

half separately. 

In addition, if we use the interval Gauss–Seidel method or a similar approach, then a 

denominator      could contain zero, and we have a fifth possibility: 

5)  ( ( ))     ( ) is the union of two boxes; we can process each of these 

two boxes separately. 

The following example from [ 35] illustrates the multivariate interval Newton 

method. 

 

Example 4.2 Consider the system of equations 

   (     )    
    

      

  (     )       
    

 (4.15)   

For    we have the Jacobian matrix 

 
  ( )  (

      

     
) (4.16)   

For obtaining the interval extensions   and    of   and    respectively, we take 

the natural interval extensions of the corresponding real functions, simply 

evaluating  (4.15) and  (4.16) in interval arithmetic: 

  ( )    
    

    

  ( )       
  

                ( )  (
      

     
)  
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Solving  (4.15) using   (,       - ,       -)  as an initial box. Then, we 

compute  ( ) and the new box   by solving  (4.13). Subsequently, we have 

 ( )  (
,             -

,             -
) 

This method produces a nested sequence of interval vectors containing the 

solution, and using IA converges in a finite number of steps to an interval vector 

containing a solution of  (4.15) and is given by. 

  (
,             -

,             -
) 

The solution obtained is the smallest box that can be found bounding the 

solution of  (4.15). 

4.2.2. The Krawczyk Method 

In this subsection, we consider another interval method for solving nonlinear 

systems known as: the Krawczyk method [ 32]. 

Suppose that   in  (3.37) is continuously differentiable in an open domain  . 

Suppose that we can compute inclusion isotonic interval extensions    and    for    and 

   respectively, defined on interval vectors    . We have the following 

computational test for the existence of a solution [ 32,  37]. 

 

Theorem 4.3 Let Y be a nonsingular real matrix approximating the inverse of 

the real Jacobian matrix   ( ( )) with elements   ( ( ))      ( )     at              

   ( ). Let y be a real vector contained in the interval vector    .  ( )  

is defined as follows 

  ( )      ( )  *     ( )+(   )  (4.17)   

If the Krawczyk operator denoted by  ( )   , then  (3.37) has a solution in  , 

it is also in  ( ). 

 

An early work containing the proof of this theorem is given in [ 37]. The proof is 

based on a generalization of the Brouwer fixed-point theorem, or a specific instance of 

the Schauder fixed-point theorem [ 56]. Here, we present the proof found in [ 35]. 

 

Proof[ 35] Define  ( )         ( ). Then, since   is a nonsingular matrix, 

 ( )      if and only if   ( )     . Thus, if there exists an       such that  ( )  

 , that is, if there is a fixed point of   in  , then there is a solution to   ( )      in  . 

However, if the Jacobian matrix of   at   is denoted by   ( ), then we have 

  ( )       ( )  

Therefore, the mean value extension of   over   about the point     is simply 

     ( )  *     ( )+(   )   ( )  

Thus,  ( ) must contain the range of   over  , that is,  ( )     ( ). Thus, if 

 ( )     , then  ( )     , the hypotheses of the Schauder fixed-point theorem hold, 

so g has a fixed point in  , so   ( )      has a solution in  .  
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For instance, if we choose      ( ), then  ( ) lies in the interior of   if 

 
‖ ( )     ( )‖  

 ( )

 
  (4.18)   

Thus, for an n-cube X,  (4.18) is sufficient for the existence of a solution to  (3.38) in  . 

The following theorem from [ 35] states that the same condition  (4.18) is also sufficient 

to guarantee convergence of the interval Krawczyk method. 

 

Theorem 4.4 Let   be an n-cube,    ( ), and   a nonsingular real matrix. 

Suppose  (4.18) is satisfied. Put  ( )     ,  ( )      and consider an arbitrary 

real vector  ( ) in  ( ). Then the system  (3.37) has a unique solution in  , and 

the following algorithm converges to the solution [ 36, 37]: 

  (   )     ( )     ( ( )) (           )  (4.19)   

where 

 ( ( ))     ( )     ( )  ( ( ))    *     ( )  ( ( ))+ ( ) 

and 

 ( )     ( ( ))  ( )     ( )     ( ( ))  

and where  ( ) is chosen as 

 ( )

 {
                      , (  ( ( )))-     ‖     ( ( ))‖  ‖   (   )  ( (   ))‖

 (   )           
 

 

The following example illustrates the Krawczyk method. 

 

Example 4.3 Consider the system of equations solved in  Example 4.2. 

Suppose we decide to try   (,       - ,       -) . Then, we have 

 (  ( ))  (
 (,     -)  ( ,       -)
 (,   -)  (,         -)

)  .
      
     

/  

As an approximate inverse of this matrix, we will take 

 
  .

        
         

/  (4.20)   

Putting     (         )     ( ), we find from  (4.1) for the 2-cube  , 

 ( )   (,          - ,         - )   

 

Since ‖ ( )     ( )‖            ( )         , the hypotheses 

for  Theorem 4.4 are satisfied. The iterative method  (4.19) converges to a 

solution of  (4.15) using   given by  (4.20) from  ( )    (,       - ,       -) . 

It produces a nested sequence of interval vectors containing the solution, and 

using IA converges in a finite number of steps to an interval vector containing a 

solution of  (4.15). 

It is shown in [ 34] that the widths of the containing interval vectors converge 

quadratically to zero if   ( )  is a Lipschitz extension of   ( ). The Krawczyk method 
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can be implemented in INTLAB and C-XSC, for more details and the codes see 

Appendix  A.3. 

4.2.3. The Modified Krawczyk Method 

In this subsection, we consider another interval method for solving nonlinear 

systems known as: the Krawczyk method [ 32]. A simple modification of Krawczyk’s 

algorithm for the solution of a system of nonlinear equations is presented in [ 63]. It is 

shown that under the hypotheses imposed in [ 34], [ 36], and [ 37], the modified 

algorithm converges more rapidly than Krawczyk algorithm and with greater 

computational efficiency. 

The modified Krawczyk algorithm is as follows: 

1) Compute  ( )   ( ( )). 

2) Compute  ( )  * (  ( ( )))+  . 

3) Set  ( )   ( ). 

4) Compute  ( )  ‖   ( )  ( ( ))‖. 

5) Set    . 

6) Set       
( )

  ( )   
( )

  ( ). 

7) Compute   
( )

     
( )

  ( ) .    
( )

/  *   ( )  ( ( ))+(    
( )

     
( )

). 

8) Compute   
( )

   
( )

     
( )

. 

9) If   
( )

     
( )

 and    , then stop; else if    , then enlarge  ( ) and go 

to 1). 

10) Set   
( )

   
( )

. 

11) Compute   
( )

  (  
( )

). 

12) If    , then go to 14. 

13) Set       and go to 7. 

14) Set  (   )    
( )

  (   )    
( )

. 

15) Compute  (   )  * (  ( (   )))+  . 

16) Compute  (   )  ‖   (   )  ( (   ))‖. 

17) If  (   )   ( ), then set  (   )   (   )  (   )   (   ), and go to 20. 

18) Set  (   )   ( ). 

19) Compute  (   )  ‖   (   )  ( (   ))‖. 

20) Set       and go to 6. 

4.2.4. Hansen-Sengupta Method 

In this subsection, we introduce a more efficient method than Krawczyk: Hansen-

Sengupta. Hansen-Sengupta method produces, in each iteration, a smaller box than 

what is produced by Krawczyk’s iteration. Hence, unlike Krawczyk method, Hansen-

Sengupta method needs fewer steps for convergence. 
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The presentation given here follows the one given by Neumaier in [ 42] and 

Goldsztejn in [ 10]. Recall the interval Gauss-Seidel method from Section  3.3.1, the 

interval GS operator is defined in this section as follows: First in dimension one, 

  (     )  *   |              +  (4.21)   

And, we have the special case where    , the previous expression is reduced to 

 (     )  2
 

 
3  , - (for the expression in the case    , see [ 42]). Second, the 

multidimensional Gauss-Seidel is defined as follows:  (       )   (   ) where 

 

  
(   )

  (       ∑     
( )

   

 ∑     
( )

   

   )  (4.22)   

The interval vector   in the latter equation does not appear in the definition of the 

interval Gauss-Seidel discussed in Section 3.3.1 because it is considered equal to the 

interval vector  . Then, the Hansen-Sengupta operator [ 13] can be defined as follows 

  ̃   (        ̃    ̃)  (4.23)   

where         and          . The following theorem proves the existence and 

convergence of the Hansen-Sengupta method (see [ 42] and [ 11]). 

 

Theorem 4.5 Let          ,  ̃    and        
 such that:    , 

 ( ̃)    and   2
  

  
( )      |   3. If  (   ) denotes  (4.23) then: 

1)     and  ( )    implies    (   ). 

2) If    (   )     ( ) then   has a unique zero in  (   ). 

 

One can use Lipschitz interval matrices instead of the interval derivatives to release 

the differentiability hypothesis, and can use slope matrices to improve the enclosure; 

however, the uniqueness of solution is lost (the reader may consult [ 42] for details). 

To improve the efficiency of the Hansen-Sengupta operator, a preconditioning 

matrix can be used to solve the nonlinear system. Hence, we will solve the 

preconditioned system    ( )   , where   is a nonsingular real matrix. The 

preconditioning matrix   is always chosen so that     is close to the identity. 

4.3. Perturbed Nonlinear Systems 

Solving parameter-dependent systems of equations is an important part of 

scientific computation. Traditionally, this is done either by continuation methods which 

trace a particular solution curve, as in [ 2] and [ 51], or by linearizing the equations 

around a particular solution and to deduce from this linearization the effect on the 

solution of small changes in one or several parameters. The latter technique has become 

known under the name of sensitivity analysis. Because of the negligence of higher-order 

nonlinearities, traditional sensitivity analysis is valid only for sufficiently small 
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changes. In this chapter, we use interval analysis to find and bound the solution of 

perturbed nonlinear systems. 

While some interval methods that solve the real-valued nonlinear systems, like 

interval Newton, is known to be always convergent, the convergence in solving 

perturbed nonlinear systems is not guaranteed. In the spirit of earlier work by Neumaier 

[ 43], we show here by examples that finding and bounding solutions of perturbed 

problems depends on the parameters width. The numerical examples discussed here 

show that for narrow parameter intervals the verified algorithms give excellent result, 

and unreasonable overestimation need not be feared. But for wider ranges of 

parameters, interval algorithms produce enclosures which are much wider than the true 

range of the solution of the problem considered. 

In this section, we state the definition of the perturbed nonlinear system for which 

we are interested in finding a solution. Let              be a continuously 

differentiable function of n variables and m parameters. Then we write the problem in 

the form of: 

   (               )   
 

  (               )   
 (4.24)   

where   (          )     and   (          )     . In vector notation, we 

define the solution to this problem to be the set   *   (   )   + for    . For a 

given value of  , we expect the function   to have a set of discrete zeros. As   varies 

over  , a given zero, say    becomes an interval, say   . The solution is defined as a 

box and given by the algorithms discussed later. In vector notation, the system  (4.24) is 

written as: 

  (   )     (4.25)   

4.3.1. An Illustrative Example 

In this subsection, an illustrative example is introduced to help readers in 

understanding the main problem which is under test in this thesis. 

Consider the system of equations              

   (   )         
  

  (   )         
  (4.26)   

where    and    are two parameters which are only known to lie in the interval 

,       -. Figure 4.3 illustrates the solution of    . Because of the interval nature of 

the functions, each of    and    is represented as a group of curves, not only one curve. 

The intersection between the two groups of functions represents the solution of the 

above nonlinear system. Using interval arithmetic, this solution is represented as a box 

(2-D interval vector). As shown in Figure 4.3, the over-estimation problem is present, 

when interval algorithms are used in calculating the solution. 

 

  



 

45 
 

 

Figure 4.3: Solution of the illustrative example 

4.4. Interval Methods for Solving Perturbed Nonlinear 

Systems of Equations 

In this section, we consider the interval methods for solving the problem  (4.24) 

defined in section  4.3; namely, perturbed nonlinear systems of equations. 

Let                   be a map that associates with each      

   an interval; given by  

  (   )  0 (   )  (   )1 (4.27)   

where          . Such a map is called a function strip. A zero of  (   ) is the 

set of zeros of  (   ) as   varies over  , i.e.;  

    {    |   (   )} (4.28)   

is satisfied, i.e.;  (   )     (   ). The zero set of  , from which an interval box 

containing this set (which can be empty),    is computed. 

In the following subsections, we use the interval Newton method to solve the 

perturbed nonlinear systems and prove the convergence of the method. A parametric 

version of Hansen-Sengupta, proposed in [ 10], is introduced. Regarding the Krawczyk 

method, there is no modification in it. It is used as it is to solve perturbed problems. 
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4.4.1. Interval Newton Method (INM) for Perturbed Nonlinear 

Systems 

In this subsection, we use the Interval Newton Method (INM) to solve perturbed 

nonlinear systems. We start with an initial box          . Assume  (   ) is a 

continuously differentiable function of   for each    . Recall the interval Newton 

operator  ( ) for real-valued nonlinear systems, see [ 35]; is given by 

 
 ( ( ))   ( ( ))  .  ( ( ))/

  

 . ( ( ))/ (4.29)   

and 

  (   )   ( )   ( ( )) (4.30)   

for  ( )    . No change in the interval Newton algorithm is necessary. It is already 

designed to solve this problem. Rewriting the operator to consider the variations or 

perturbations of the coefficients of the function  ; we have 

 
 ( ( )  )   ( ( ))  .  ( ( )  )/

  

 ( ( )  ) (4.31)   

in terms of the parameters      . In this case, the best that the interval method can 

do is to compute the smallest box containing the solution set  (4.28) or to cover the 

solution set with a number of small boxes. 

To reduce the method’s complexity, the interval linear system  

  ( ( )  )    ( ( ( ))  ) is solved, instead of calculating the inverse of the 

interval matrix   ( ( )  ). Hence, (4.31) becomes 

  (    )   (  )    (4.32)   

In what follows, we derive the existence and convergence of INM for interval-

valued functions  (4.31). 

 

Theorem 4.6 Let   be a finite interval         . If  (   )   , then 

there exists a simple zero of  (   ) in   for each real          

 

Proof  Assume   is a single parameter to simplify exposition. We show that 

 (   ) changes sign in   for each    . 

Let   be a point in   and let     points in  . From the mean value theorem (MVT) 

for each   

  (   )   (   )  (   )  (   )       

where    . Thus: 

  (   )   (   )  (   )  (   )   

for each    . If     (   ); then  (   ) is not finite and  (   )   . But if 

    (   ), this assumes that there is no more than one zero of   in   and if there is a 

zero, it is a simple one; denoted by   . 

Thus there is at least one     such that  (    )   ; and we conclude that 

    (    )     
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This proves the existence. Now, we prove the convergence in case of univariate 

system. 

 

Theorem 4.7 If an interval  ( )
 contains a zero    of  (   ), then so does 

 ( )
 for all             , defined by  (4.34). Furthermore, the intervals  ( )

 

form a nested sequence converging to    if     ( ( )  )  

 

Proof  If     ( ( )  ), then     ( ( )  ) for all   and  ( ( )) is not 

contained in  ( ( )  ), unless     ( ( ( ))  ). Therefore  ( (   ))  
 

 
 ( ( )). Convergence of the sequence follows.   

 

Similarly, we can generalize the previous theorem to prove the convergence of the 

multidimensional systems. To summarize, the parametric Newton iteration is given by: 

1) Choose a starting box   . Put    .  

2) Compute   (    ) and  ( (  )  ). 

3) Solve the interval linear system   (    )    ( (  )  ) using the 

interval Gauss-Seidel method. 

4) Calculate the Newton operator  

  ( ( )  )   ( ( ))    (4.33)   

5) Calculate the intersection between the previous box with the Newton 

operator and take a suitable decision considering the five possibilities that 

may occur and listed below. 

  (   )   ( )   ( ( )  ) (4.34)   

6) Stop when  (   )   ( ) or after a certain number of iterations, else     

and go to 2. 

Different possibilities of choosing the initial box, still hold: 

1)  ( ( )  )     ( ( ))   convergence to the unique solution in  ( ), 

where    ( ( )) represents the topological interior of the box  ( ). 

2)  ( ( )  )   ( )     no solution in  ( ). 

3)  ( ( )  )   ( )     no conclusion, but we can restart with     
( )

 

 ( ( )  )   ( ). 

4)  ( ( )  ) is not defined. In this case, we can bisect  ( ) and process each 

half separately. 

5)  ( ( ))   ( ) is the union of two boxes; we can process each of these two 

boxes separately. 

4.4.2. Hansen-Sengupta Method for Perturbed Nonlinear Systems 

In this subsection, another method that finds the zero set of  (4.27), namely the 

parametric Hansen-Sengupta, is presented. The parametric Hansen-Sengupta operator is 
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expressed by applying its non-parametric version to different inputs. A more general 

parametric Hansen-Sengupta was proposed and used in [ 10]. 

 

Theorem 4.8 Let          ,      ,  ̃    and         such that: 

   ,  (   ̃)    and   2
  

  
(   )      |       3. If    

denotes  (4.22) then: 

    and     and  (   )    implies     . 

If         ( ) then for every    ,  (   ) has a unique zero in   . 

 

Proof[ 11] Fix an arbitrary  ̂    and define         by  ( )   ( ̂  ). 

We are going to apply  Theorem 4.5 to  . First,  ( ̃)   ( ̂  )   . Second, as 
  

  
( )  

  

  
( ̂  ), 

 
{
  

  
( )      |   }  {

  

  
( ̂  )      |   }     (4.35)   

Therefore,  Theorem 4.5 can be applied to   and the domain  , and shows that if    

denotes  (4.22) then 

1)  ( )    (that is  ( ̂  )   ) implies     . 

2)         ( ) implies the existence of a unique zero of   (that is of 

 ( ̂  )) in   . 

This holds for every  ̂    and hence concludes the proof.  

 

To compute the interval vector  , we may use an interval extension of the real-

valued function   satisfying  (   ̃)   . Goldsztejn, in his paper [ 11], uses the mean-

value extension to compute   and the inverse midpoint preconditioning to define the 

parametric Hansen-Sengupta operator, denoted by     (   ): 

  ̃   (        ( ̃  ̃)  (   ) (   ̃)    ̃)  (4.36)   

with   
  

  
(   )   

  

  
(   ̃)   ( ( ))

  
  ̃   ( ) and  ̃   ( ). 

4.5. Two-stage INM for Perturbed Nonlinear Systems 

In this subsection, we develop a simple modification to the interval Newton 

method, denoted by   , for finding a box that contains the zero set defined by  (4.28). 

One of the most useful properties of the two-stage interval Newton operator    is 

that we are provided with a means of detecting when a region does not contain a root of 

 . As this is a common situation, it is important that we can quickly discard any set that 

does not contain any roots. Another important contribution from the properties of    

is the simple verifiable condition that guarantees the existence of a unique root within 

an interval. The following theorem addresses this.  
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Theorem 4.9 Suppose   is a continuous differentiable function on an initial 

interval   , and     ( ( )) for           . Let    be defined by  (4.37), 

then if     ( ) and   ( ( )  ( )  )   ( ),  ( ) contains exactly one zero 

of  . Also 

         
   

 ( ) 

If  ( )    ( ( )  ( )  )   , then  ( )does not contain any zero of  . 

 

Proof Part (1) Since   ( ( )  ) is non-singular, then     (   ) for all   

 ( )     and therefore   is monotonic on  ( ) for every    . In other words, it has 

at most one zero in   for every    . Hence, it is sufficient to find a zero     ( ) 

that includes all zeros corresponding to all values of  . Since   ( ( )  ( )  )  

 ( ), using  Lemma 3.5, so   has exactly one root in  ( ) and           ( ). 

Part (2) Now, suppose    is a zero of   and      , then previous part results 

     (       ). Consequently         (       ) which is a 

contradiction. So the proof is completed.  

The convergence of  (4.37) can be proved similarly like the proof of  Theorem 4.7, if 

the assumptions of the  Theorem 4.9 are hold. 

Using interval analysis tools as well as interval Newton method, we consider the 

following iteration: 

1) Choose a starting box   . Put    .  

2) Compute   ( ( )  )      ( ( ( ))  ). 

3) Solve the interval linear system   ( ( )  )    ( ( ( ))  ) using the 

interval Gauss-Seidel method. 

4) Calculate the Newton operator  ( ( )  )   ( ( ))   . 

5) Calculate a new box    by intersecting the previous box with the Newton 

operator  ( )   ( )   ( ( )  ). 

6) Compute  ( ( ( ))  ). 

7) Solve the interval linear system   ( ( )  )    ( ( ( ))  ) using the 

interval Gauss-Seidel method. 

8) Calculate the modified Newton operator 

   ( ( )  ( )  )   ( ( ))     (4.37)   

9) Calculate the new box  (   ) by intersecting the previous box with the 

Newton operator  (   )   ( )    ( ( )  ( )  ). 

10) Stop when  (   )   ( ) or after a certain number of iterations, else     

and go to 2. 

4.6. Numerical Examples 

To illustrate the effectiveness of the interval methods in solving perturbed 

nonlinear systems, we present in this section four test problems. Those test problems 
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are solved using interval Newton, modified Krawczyk, Hansen-Sengupta, and the two-

stage interval newton algorithm. The software implementations of those algorithms are 

presented in Appendix A. Furthermore, the results of the interval methods are 

compared with the results of traditional methods, which are used to solve the perturbed 

problems such as the Monte-Carlo methods, to illustrate the superior performance of 

the interval-based methods over the statistical methods. 

Numerical experiments were performed on a computer with an Intel Core2 Duo 

T7300 with 2.0GHz. The machine ran under control of a Vista Windows operating 

system. The algorithms and problems were implemented using MATLABR2010a and 

INTLAB [ 22]. 

4.6.1. Univariate Problems 

Consider the univariate equation           

 (   )             where   ,   -  

Starting with an initial box    ,   -, the original interval Newton and the two-

stage interval Newton both find the tightest box in    that contains the solution of this 

perturbed equation    defined by (4.28). The smallest box that is obtained by the two 

methods is ,                                 -. 

4.6.2. Multivariate Problems 

In this subsection, we consider both large and small-sized problems appear in 

literature as real-valued nonlinear systems. Some modifications are done to those 

problems to become perturbed problems and be suitable as test problems for the 

algorithms discussed in sections  4.4 and  4.5. 

4.6.2.1. Rosenbrock 

Consider the system of equations              

   (   )              

  (   )    (         
 )       

   {
,       -            
                         

 (4.38)   

This problem is solved as a real-valued system in [ 53] and is solved here as a 

perturbed problem after adding some parameters to it. Table 4.1 shows the consumed 

time in solving  (4.38) for different number of unknowns/equations using Krawczyk, 

interval Newton, Hansen-Sengupta, two-stage interval Newton, and the Monte-Carlo 

methods, where   represents the number of unknowns/equations. 

Table 4.1: Results of Rosenbrock 

Method 
Time (Sec) 

n=10 n=50 n=100 n=300 



 

51 
 

Modified 

Krawczyk 
3.874190433651686 11.430137954703696 20.871010874134605 59.283599877169245 

Newton 0.234718408849069 1.499954020572510 2.831574072857687 8.587294816804825 

Hansen-

Sengupta 
0.247091801211230 0.966054456063373 1.748448604852800 5.187728255015042 

Two-Stage 

Newton 
0.261349939569895 1.722768273538183 3.379549500137939 10.192865224445292 

Monte 

Carlo 

(Random 

sampling) 

1115.6 2676.0 4734.2 23497.7 

 

 

4.6.2.2. Broyden 

Consider the system of equations              

   (   )   (      )         

  (   )       (      )                      

  (   )       (      )     

   {
,       -            
                         

 
(4.39)  

      

This problem is solved as a real-valued system in [ 4] and is solved here as a 

perturbed problem after adding some parameters to it. Table 4.2 shows the consumed 

time in solving  (4.39) for different number of unknowns/equations using Krawczyk, 

interval Newton, Hansen-Sengupta, two-stage interval Newton, and the Monte-Carlo 

methods, where   represents the number of unknowns/equations. 

 

 

 

Table 4.2: Results of Broyden 

Method 
Time (Sec) 

n=10 n=50 n=100 n=300 

Modified 

Krawczyk 
16.113261287949452 97.107854189382707 159.2457731769157 194.6128437783266 

Newton 4.560893593752053 23.112668892289907 45.754363529774970 51.701028214947257 

Hansen-

Sengupta 
5.045687950762602 65.6875989378752 114.8743304245872 595.5990343499167 

Two-Stage 

Newton 
4.327699074499810 24.844256184233000 45.826137416087548 51.031945849371397 

Monte 

Carlo 

(Random 

sampling) 

1859.2 8108.6 22341.3 185946.9 
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4.6.2.3. Interval Arithmetic Benchmark 1 

We consider one of the benchmark problems proposed in the interval arithmetic 

community found in [ 21], [ 60], and [ 40]. The benchmark is modified by adding some 

interval parameters and becomes: 

                                        
                                        
                                        
                                       
                                       
                                        
                                       
                                       
                                        
                                        

 
(4.40)  

      

where    {
,         -      

          
 

The final results for  (4.40), time consumption, and number of iterations are shown 

below in Table 4.3 given that the initial box for interval methods is 

 ( )  

(

 
 
 
 
 
 
 
 

,       - 

,         - 
,        - 
,         - 
,        - 
,        - 
,        - 
,        - 
 ,        - 
,        - )

 
 
 
 
 
 
 
 

  

and the initial point for the traditional algorithm is 

 ( )  (          ) . 

Table 4.3: Results for Interval Arithmetic Benchmark 1 

Method Results Time (Sec) 
Number of 

iterations 

Krawczyk 

[0.24416289903528,0.27150387840325] 

[0.36074134097093,0.40145295339647] 

[0.27778693567346,0.27970310561291] 

[0.20051855613113,0.20081936860206] 

[0.44523347043033,0.44526944486158] 

[0.14917476207366,0.14919303329010] 

[0.43179927385240,0.43222015171078] 

[0.07323793338412,0.07356761809407] 

[0.34596284355806,0.34597075062816] 

[0.42725472344260,0.42739782515178] 

7.424643076145153 100 
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Hansen-

Sengupta 

[0.24486774189222,0.27141678271063] 

[0.36099566945698,0.40130370443897] 

[0.27795228356957,0.27953774866458] 

[0.20053144814019,0.20080648031009] 

[0.44523987437411,0.44526297527635] 

[0.14917814274224,0.14918969719623] 

[0.43186375578489,0.43215564218231] 

[0.07325206277927,0.07355349277278] 

[0.34596480882303,0.34596884492807] 

[0.42728085835085,0.42737169363288] 

0.875779673114879 8 

Newton 

[0.24486774189222,0.27141678271063] 

[0.36099566945698,0.40130370443897] 

[0.27795228356957,0.27953774866458] 

[0.20053144814019,0.20080648031009] 

[0.44523987437411,0.44526297527635] 

[0.14917814274224,0.14918969719623] 

[0.43186375578489,0.43215564218231] 

[0.07325206277927,0.07355349277278] 

[0.34596480882303,0.34596884492807] 

[0.42728085835085,0.42737169363288] 

0.870657024845336 8 

Two-stage 

Newton 

[0.24486774189222,0.27141678276708]  

[0.36098694204337,0.40130370443960]  

[0.27795227955805,0.27953775287234]  

[0.20053144813923,0.20080648031109]  

[0.44523987432196,0.44526297533103]  

[0.14917814274190,0.14918969719660]  

[0.43186375572169,0.43215564224552]  

[0.07325206277821,0.07355349277387]  

[0.34596480882301,0.34596884492808]  

[0.42728085835066,0.42737169363308]   

0.779798363789230 6 

Monte Carlo 

(Random 

Sampling) 

[0.24554526258497,0.27141651330731] 

[0.36282756226301,0.40130367953891] 

[0.27807982885538,0.27951827118235] 

[0.20054414090180,0.20080642540632] 

[0.44524105581311,0.44526271827972] 

[0.14917846220456,0.14918969204452] 

[0.43187829074617,0.43215534789383] 

[0.07326597380314,0.07355343259930] 

[0.34596478233034,0.34596884361277] 

[0.42728536799113,0.42737157562664] 

144.5009847620298 10000 

 

 

4.6.2.4. Interval Arithmetic Benchmark 2 

This problem is described in [ 21] and is implemented here with slight 

modifications in some coefficients. 
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where 
     
   ,         -        

 

The final results, time consumption, and number of iterations are shown below in Table 

4.4 given that the initial box for interval methods is 

 ( )  

(

 
 
 
 
 

,       -
,       -
,       -
,       -
,       -
,       -

,       -)

 
 
 
 
 

  

and the initial point for the traditional algorithm is 

 ( )  (                     ) . 

Table 4.4: Results for Interval Arithmetic Benchmark 2 

Method Results Time (Sec) 
Number of 

iterations 

Krawczyk 

[0.20748973714159,0.39942395366294] 

[0.00000000000000,0.05149833650428] 

[0.01588928107892,0.08351971318773] 

[0.50000000000000,0.69463030923352] 

[0.00000000000000,0.20000000000001] 

[0.50000000000000,0.70000000000000] 

[2.89999999999999,3.10000000000001] 

5.8993543872196 100 

Hansen-

Sengupta 

[0.32011969813163,0.32562198082145] 

[0.00880867411437,0.00963841296401] 

[0.04387277149462,0.04816141042664] 

[0.61590283640151,0.62044051374013] 

[0.00345963586837,0.00397406603726] 

[0.56715680879645,0.58627398307465] 

[2.96603521787489,2.98969168370741] 

2.0949346215790 22 

Newton 

[0.32011969813163,0.32562198082145] 

[0.00880867411437,0.00963841296401] 

[0.04387277149462,0.04816141042664] 

[0.61590283640151,0.62044051374013] 

[0.00345963586837,0.00397406603726] 

[0.56715680879645,0.58627398307465] 

1.7686881293572 21 
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[2.96603521787488,2.98969168370741] 

Two-stage 

Newton 

[0.32011969813163,0.32562198082145] 

[0.00880867411437,0.00963841296401] 

[0.04387277149462,0.04816141042664] 

[0.61590283640151,0.62044051374013] 

[0.00345963586837,0.00397406603726] 

[0.56715680879645,0.58627398307465] 

[2.96603521787489,2.98969168370741] 

1.7594493154856 17 

Monte Carlo 

(Random 

Sampling) 

[0.32056783572975,0.32505436486501] 

[0.00890875411498,0.00953286539409] 

[0.04405737953297,0.04800753227533] 

[0.61620567847531,0.62021168954790] 

[0.00349906315363,0.00392798375378] 

[0.56800958737446,0.58477447845075] 

[2.96895847942973,2.98535848254923] 

162.55809781690 10
7
 

 

 

 

We conclude from the previous examples that the interval algorithms used for 

solving perturbed nonlinear systems have faster responses than the Monte-Carlo 

methods. The difference in consumed time becomes more obvious when the number of 

interval parameters or the size of the problem itself increases. However, the interval 

algorithms are not always convergent and their convergence depends on the width of 

the interval parameters. In the previous examples, the convergence is lost when 

retesting the problems with wider interval parameters. 

The results show that interval Newton and Hansen-Sengupta algorithms are nearly 

similar in performance and both of them are faster than the modified Krawczyk 

algorithm. Whilst, the new proposed algorithm, the two-stage interval Newton, shows 

the best performance from the execution time preview in most problems that are tested. 

The results generated from the two-stage interval Newton are equal in width with the 

results coming from the interval Newton. 

Another important issue regarding applying the interval methods to find the 

solutions of the nonlinear systems is choosing the initial box. It can happen that little or 

no progress is made in reducing the size of the current box (in the first step or during a 

step of the method). In case of that happens in the first step, i.e. the initial box, we 

should consider the different possibilities mentioned in section  4.4.1. And for the little 

progress during the method, it is common practice to divide the box in half (say) and 

apply the algorithm to each sub-box separately. 
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Chapter 5 : Engineering Applications of Nonlinear 

Systems 

To illustrate the applicability of the interval methods mentioned in  Chapter 4, we 

shall consider more practical examples representing engineering problems in this 

chapter. The problems discussed here are related to many engineering fields such as 

electrical circuits, fluid mechanics, and dynamics of rigid body. 

5.1. Zener Diodes 

This problem models a circuit described in [ 31]. It contains two zener diodes as the 

active elements. The problem is implemented here with slight modifications in some 

coefficients  (5.1) and results are listed in Table 5.1. While Figure 5.1 illustrates the 

large difference in time consumption between the interval methods and the traditional 

methods, Figure 5.2 gives a closer view on the time consumed by each interval method. 

    ( 
    )                                            

   ( 
    )                                             

   ( 
    )                                              

   ( 
    )                                             

 (5.1)   

where    ,         -           and    denotes the diode voltage             . 

Table 5.1: Results of Zener diodes problem 

Method Initial vector Result 

Time (Sec) 

/Number of 

iterations 

Modified 

Krawczyk 

[-0.300000000,-0.100000000] 

[-2.000000000,-1.199999999] 

[0.599999998,1.100000001] 

[0.800000000,1.000000000] 

[-0.19785859125236,-0.14504558212951] 

[-1.86146862397589,-1.44807584435096] 

[0.73239721799372,0.99246500025139] 

[0.83214007241916,0.89546042209975] 

7.3921638783700/

100 

Newton 

[-0.18121217143835,-0.16162919190336] 

[-1.72753898836348,-1.58160264833527] 

[0.82090387675569,0.90354292117435] 

[0.85169368736668,0.87570332414066] 

1.3452033009782/

22 

Hansen-

Sengupta 

[-0.18121217143835,-0.16162919190336] 

[-1.72753898836347,-1.58160264833528] 

[0.82090387675570,0.90354292117434] 

[0.85169368736668,0.87570332414066] 

1.5275387654017/

23 

Two-Stage 

Newton 

[-0.18121217143835,-0.16162919190336] 

[-1.72753898836347,-1.58160264833527] 

[0.82090387675570,0.90354292117434] 

[0.85169368736668,0.87570332414066] 

1.0583995312253/

15 

Exhaustive 

Sampling 
0.2 

0.2 

0.5 

1 

 

[-0.18037954837969,-0.16248175343666] 

[-1.72081196443950,-1.58797608044654] 

[0.82511328733773,0.89897357432029] 

[0.85283843762367,0.87472550116871] 

123.42337308233/

104 

Monte 

Carlo 

(Random 

sampling) 

[-0.17925876105317,-0.16269738302663] 

[-1.71725855591382,-1.59183120151122] 

[0.82694019923042,0.89734239059338] 

[0.85309409210239,0.87354559084360] 

113.86178781102/

104 
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Figure 5.1: Consumed time by interval and traditional methods to solve  (5.1) 

 

 

Figure 5.2: Consumed time by the four interval methods to solve  (5.1) 

0

20

40

60

80

100

120

140

Time (Sec)

0

1

2

3

4

5

6

7

8

Modified Krawczyk Newton Hansen-Sengupta Two-Stage Newton

Time (Sec)



 

58 
 

5.2. Two Tunnel Diodes 

This problem models a circuit described in [ 31] and shown in Figure 5.3. It 

contains two tunnel diodes, a linear resistor, and a voltage source connected in series. 

The problem is implemented here with slight modifications in some coefficients  (5.2) 

and results are listed in Table 5.2. While Figure 5.4 illustrates the large difference in 

time consumption between the interval methods and the traditional methods, Figure 5.5 

gives a closer view on the time consumed by each interval method. 

 

 

 

Figure 5.3: Nonlinear circuit given by  (5.2) 

      (     
       

        )          

  (     
       

        )        
        

          
 (5.2)   

where 
   ,         -      
                  

 

Table 5.2: Results of two tunnel diodes problem 

Method Initial vector Result 

Time (Sec) 

/Number of 

iterations 
Modified 

Krawczyk 

[1.600000000,1.700000000] 

[0.699999998,0.800000001] 

[1.61341211121028,1.70000000000000] 

[0.69999999999998,0.80000000000001] 

3.4030560448325/

100 

Newton 
[1.65588719410402,1.67704108398090] 

[0.72287843197481,0.80000000000001] 

0.2008001715302/

5 

Hansen-

Sengupta 

[1.65588719410403,1.67704108398089] 

[0.72287843197483,0.80000000000001] 

0.2040561021024/

5 

Two-Stage 

Newton 

[1.65528794069157,1.67828214063470] 

[0.72135752089704,0.80000000000001] 

0.0904656876781/

2 

Exhaustive 

Sampling 

0.5 

0.5 

[0.22485309291253,0.23066576172409] 

[0.83553527290137,0.94181003279859] 

122.93846522393/

104 

Monte 

Carlo 

(Random 

sampling) 

[0.22486037203781,0.23062166748250] 

[0.83562453751020,0.94064336366313] 

122.23806936356/

104 

 

𝐷  

𝐷  

e=30v 

𝑟      𝑘Ω 
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Figure 5.4: Consumed time by interval and traditional methods to solve  (5.2) 

 

 

Figure 5.5: Consumed time by the four interval methods to solve  (5.2) 
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5.3. Three Bar Mechanism 

This problem models a mechanical system described in [ 59]. It consists of three 

bars. The problem is implemented here with slight modifications in some 

coefficients  (5.3) and results are listed in Table 5.3. While Figure 5.6 illustrates the 

large difference in time consumption between the interval methods and the traditional 

methods, Figure 5.7 gives a closer view on the time consumed by each interval method. 

  

                             
                             

 (5.3)   

 

where 

   ,         -      
    
     
     
     
   

 

Table 5.3: Results of three bar mechanism problem 

Method Initial vector Result Time (Sec) 
Modified 

Krawczyk 

[0.000000000,0.500000000]  

[0.699999998,1.200000000] 

[0.05121569038858,0.27622684283914]  

[0.86395803618009,0.96334550130593] 

3.0659874369508/

100 

Newton 
[0.15182972272616,0.17549676981885] 

[0.90541837620206,0.91975780675547] 

0.5946115358237/

14 

Hansen-

Sengupta 

[0.15182972272617,0.17549676981885]  

[0.90541837620206,0.91975780675547] 

0.9466079487756/

14 

Two-Stage  

Newton 

[0.15182972272617,0.17549676981885]  

[0.90541837620206,0.91975780675547] 

0.3935273198130/

11 

Exhaustive 

Sampling 

0.5 

0.5 

[0.15219604746192,0.17496974590696] 

[0.90551426416666,0.91949001631011] 

111.60235560665/

104 

Monte 

Carlo 

(Random 

sampling) 

[0.15226451004175,0.17474357691244] 

[0.90553359627386,0.91947264958054] 

108.36872263095/

104 
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Figure 5.6: Consumed time by interval and traditional methods to solve  (5.3) 

 

 

Figure 5.7: Consumed time by the four interval methods to solve  (5.3) 
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5.4. Pipe Pump Problem 

This problem models the flow through a horizontal pipe between two reservoirs 

(for more details see [ 59]). The problem is implemented here with slight modifications 

in some coefficients and results are listed in Table 5.4. While Figure 5.8 illustrates the 

large difference in time consumption between the interval methods and the traditional 

methods, Figure 5.9 gives a closer view on the time consumed by each interval method. 

  

 
       

        
 

   (  (
 

     
      .

  

  
/
   

))
    

              
    

 (5.4)   

 

where 

                                    

                       
   ,         -      

 

Table 5.4: Results of pipe pump problem 

Method Initial vector Result Time (Sec) 
Modified 

Krawczyk 

[1.6000000000,2.0000000000] 

[462.00000000,472.00000000] 

[1.809539777879,1.839061797381] 

[462.007191354313,471.431126330832] 

2.4039322036739/

100 

Newton 
[1.814751391495,1.833856950443] 

[462.322316300895,471.115994188294] 

0.2954694660914/

10 

Hansen-

Sengupta 

[1.814751391495,1.833856950443] 

[462.322316300895,471.115994188294] 

0.3273747082381/

9 

Two-Stage 

Newton 

[1.814751391495,1.833856950443] 

[462.322316300895,471.115994188294] 

0.3076946930406/

8 

Exhaustive 

Sampling 

0.5 

0.5 

[1.81495690432063,1.83377110753643] 

[462.407021312768,471.112145676090] 

164.78153648019/

104 

Monte 

Carlo 

(Random 

sampling) 

[1.81501691348726,1.83375935545884] 

[462.418521303061,471.110779097566] 

162.55809781690/

104 
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Figure 5.8: Consumed time by interval and traditional methods to solve  (5.4) 

 

 

Figure 5.9: Consumed time by the four interval methods to solve  (5.4) 
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5.5. Pipe Flow Problem 

This problem models another pipe flow system (for more details see [ 59]). The 

problem is implemented here with slight modifications in some coefficients and results 

are listed in Table 5.5. While Figure 5.10 illustrates the large difference in time 

consumption between the interval methods and the traditional methods, Figure 5.11 

gives a closer view on the time consumed by each interval method. 

  

 
     

      

(  (
 

      
      .

   

 
/
   

))
    

     
      

     
    

 (5.5)   

 

where 
                                         

   ,         -      
 

Table 5.5: Results of pipe flow problem 

Method Initial vector Result Time (Sec) 
Modified 

Krawczyk 

[0.0000000000,0.2000000001]  

[0.2999999998,0.6000000000] 

[0.01537936747196,0.02081941065837]  

[0.29999999999998,0.60000000000000] 

2.6868514713462/

100 

Newton 
[0.01528432073079,0.02094913035837] 

[0.29999999999998,0.60000000000000] 

0.1516917652942/

4 

Hansen-

Sengupta 

[0.01528432073079,0.02094913035837] 

[0.29999999999998,0.60000000000000] 

0.1318404294401/

4 

Two-Stage 

Newton 

[0.01541234911527,0.02079538396412] 

[0.29999999999998,0.60000000000000] 

0.0741305808420/

2 

Exhaustive 

Sampling 

0.5 

0.5 

[0.01791762262596,0.01829055887115] 

[0.44940042155211,0.45306449489084] 

113.61246736666/

104 

Monte 

Carlo 

(Random 

sampling) 

[0.01792168393879,0.01828832649226] 

[0.44942629983675,0.45305169867925] 

121.77743672729/

104 
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Figure 5.10: Consumed time by interval and traditional methods to solve  (5.5) 

 

 

Figure 5.11: Consumed time by the four interval methods to solve  (5.5) 
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5.6. Manning's Equation 

Manning's equation is used to calculate the discharge on an open channel (for more 

details see [ 59]). The problem is implemented here with slight modifications in some 

coefficients and results are listed in Table 5.6. While Figure 5.12 illustrates the large 

difference in time consumption between the interval methods and the traditional 

methods, Figure 5.13 gives a closer view on the time consumed by each interval 

method. 

  

 

  
  

 

  

 

 

  

 

 

√       

   (         )     

          √         

 (5.6)   

where 
                                           

   ,         -        
 

Table 5.6: Results of the Manning's equation 

Method Initial vector Result Time (Sec) 

Modified 

Krawczyk 

[1.6000000000,1.8000000001] 

[0.8000000000,1.0000000000] 

[3.3999999999,3.6000000001] 

[1.70712502508040,1.76986930627666] 

[0.87114558063228,0.91508047484763] 

[3.43087129905698,3.56324958711348] 

2.5477020124066/

100 

Newton 

[1.72190037835037,1.75511444766128] 

[0.87868357291775,0.90755287172710] 

[3.44776586642814,3.54637825060974] 

0.8015268700352/

20 

Hansen-

Sengupta 

[1.73064581664707,1.74633746743833] 

[0.88293065740411,0.90329260696013] 

[3.48516613115853,3.50895051095151] 

0.6229344092615/

14 

Two-Stage 

Newton 

[1.72190037835037,1.75511444766128] 

[0.87868357291775,0.90755287172710] 

[3.44776586642814,3.54637825060974] 

0.7380743921364/

14 

Exhaustive 

Sampling 
0.2 

0.2 

0.5 

[1.73110543210121,1.74597480821561] 

[0.88335854520642,0.90308985618793] 

[3.48595025732874,3.50826738786179] 

12228.059960973/

106 

Monte 

Carlo 

(Random 

sampling) 

[1.73125896506238,1.74588630494490] 

[0.88343726154489,0.90286648928931] 

[3.48614162061702,3.50813841220765] 

11397.366936300/

106 
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Figure 5.12: Consumed time by interval and traditional methods to solve  (5.6) 

 

 

Figure 5.13: Consumed time by the four interval methods to solve  (5.6)  
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Chapter 6 : Conclusion 

This chapter offers a concluding view to the results obtained throughout this thesis. 

After that, section  6.3 provides a summary of contributions of this thesis and outlines 

several directions for future research. 

6.1. A View to Solving Perturbed Problems Using Interval 

Arithmetic 

Each algorithm has its advantages and disadvantages, some are more accurate and 

some are faster. A comparison among verified computing algorithms (interval Newton, 

Krawczyk, Hansen-Sengupta, and two-stage interval Newton) and ordinary techniques 

(exhaustive sampling and random sampling) was performed by running several 

examples. 

Regarding the ordinary nonlinear systems, the verified algorithms are much slower 

than the algorithms that do not use this concept. However, the results of verified 

algorithms are more accurate. 

But for the perturbed nonlinear systems, which are the main focus in this research, 

the verified algorithms, not only, produce accurate results but also have faster 

responses than other algorithms have. The difference in execution time becomes more 

obvious when the number of interval parameters increases. However, the interval 

algorithms are not always convergent and their convergence depends on the width of 

the interval parameters. 

The results show that interval Newton and Hansen-Sengupta algorithms are nearly 

similar in performance and both of them are faster than the modified Krawczyk 

algorithm. Whilst, the new proposed algorithm-the two-stage interval Newton-shows 

the best performance from the execution time preview in most problems that are tested. 

The results generated from the two-stage interval Newton are equal in width with the 

results coming from the interval Newton. 

The two-stage interval Newton method is proved to be the best choice for 

perturbed complex problems whose derivatives are dense matrices. On the other hand, 

interval Newton and Hansen-Sengupta are considered more suitable to the problems 

whose derivatives tend to be sparse. 

6.2. A Closer View to the Interval Computing Software 

We have implemented the interval Newton and Krawczyk algorithms using both 

INTLAB and C-XSC and reached to some concluding remarks. The execution time of 

verified algorithms varies with respect to the used tool. C-XSC and INTLAB present 

intervals as result. Both give enclosures of the exact result. INTLAB is based on BLAS, 

therefore it presents a good performance comparing with C-XSC. The performance 
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presented by C-XSC is not so optimal because the algorithm uses special variables 

(data type dotprecision), which are simulated in software to achieve high accuracy. The 

results show that C-XSC has reliable results as INTLAB but slower response. The tests 

show that the method used in C-XSC is a good choice, but it should be optimized to 

gain performance. 

6.3. Contributions and Future Work 

This research makes the following contributions: 

 We formally construct the two-stage interval Newton method for solving 

perturbed nonlinear systems and deduce its convergence analysis. 

 Although the notion of solving perturbed nonlinear systems using interval 

arithmetic is already known, a few attempts are done in this field. Among the 

interval methods that are mentioned in this research, only the Hansen-Sengupta 

method was already known to have its parametric version. In this research, we 

use the interval Newton method to solve perturbed nonlinear systems and 

deduce the convergence analysis of the algorithm. 

 Based on the idea that perturbed problems appear in many engineering 

applications, we provide a comparison between the interval methods and the 

methods which are currently used. We present many engineering examples that 

prove the efficiency of using the interval methods to perform the sensitivity 

analysis on perturbed problems. 

The results obtained in this thesis give an insight into some further consequences 

and propose some directions for future research. We have already done some initial 

steps in some of those directions and we shall continue working on some of the 

following: 

 Analog simulation focuses on the linear and non-linear behavior of a circuit 

over a continuous time or frequency interval. The circuit response is obtained 

by iteratively solving Kirchhoff’s Laws for the circuit at time steps selected to 

ensure the solution has converged to a stable value and that numerical 

approximations of integrations are sufficiently accurate. One of the most time-

consuming analyses is the sensitivity analysis in which the simulator calculates 

either the DC operating-point sensitivity or the AC small-signal sensitivity of 

an output variable with respect to all circuit variables, including model 

parameters. It calculates the difference in an output variable (either a node 

voltage or a branch current) by perturbing each parameter of each device 

independently. Since the method is a numerical approximation, the results are 

not verified and obtained after long time. The interval arithmetic if included 

with these simulators will solve the two problems: the unverified results and 

the time-consuming simulations. 

 Currently all electronic simulators solve the nonlinear systems through a 

linearization process which again may result in unverified results. This 

problem may be handled by interval arithmetic as shown in this thesis. This 
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thesis show that solving perturbed nonlinear systems using interval arithmetic 

is not time-consuming and gives verified results. 
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Appendix A: Implementation of Interval Algorithms 

A.1. Interval Gauss-Seidel 

The interval Gauss-Seidel can be implemented easily with C-XSC in the following 

functions: 

 

int Gauss_Seidel_image(ivector& X_kp1, bool& is_empty, bool& 

error_occurred, imatrix& A, ivector& B, ivector& X_k) { 

  

 int n = VecLen(X_k); 

 int Error; 

 rmatrix Y(n,n); 

 MatInv(mid(A),Y,Error); 

 if (Error) 

  return -1; 

 error_occurred = 0; 

 is_empty = 0; 

 int i=1; 

 for (int index=1; index<=n; index++) 

  X_kp1[index] = interval(0,0); 

 interval new_x_i, second_new_x_i; 

 bool there_are_2; 

 interval num, denom; 

 while((!error_occurred) & (!is_empty) & (i<= n)) { 

  rvector Y_row(n); 

  for (int index=1; index<=n; index++) 

   Y_row[index] = Y[i][index]; 

  gauss_seidel_step(new_x_i, second_new_x_i, 

there_are_2, num, denom, i, Y_row, A, B, X_k); 

  if(there_are_2) 

   error_occurred = 1; 

  if (!error_occurred) { 

    is_empty = IsEmpty(new_x_i & X_k[i]); 

    if (!is_empty) 

    X_kp1[i] = (new_x_i & X_k[i]); 

  } 

  i=i+1; 

 } 

 return 0; 

} 
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int gauss_seidel_step(interval& new_X_i, interval& 

second_new_X_i, bool& there_are_2, interval& numerator, 

interval& denominator, int i, rvector& Y_i, imatrix& A, ivector& 

B, ivector& X) { 

 //the result of applying a Gauss--Seidel step with variable i, 

 //preconditioner matriX Y_i, and initial guess X.  The variable 

 //there_are_2 is set to 1 if two semi-infinite intervals are 

returned, 

 //in which case second_new_X_i has the second interval;  

there_are_2 

 //is set to 0 and second_new_X_i is not set if there is only 

 //one interval returned. 

 

   int n = VecLen(X); 

   real supnum; 

   interval tmp1,tmp2; 

   ivector G_i(n); //1xn 

   G_i = Y_i*A; 

   interval C_i; //1x1 

   C_i = interval(0,0); 

   for (int index=1; index<=n; index++) 

  C_i = C_i + Y_i[index]*B[index]; 

   numerator = C_i; 

   new_X_i = X[i]; 

   second_new_X_i = X[i]; 

   if (n > 1) { 

       if (i > 1) 

     for (int index=1; index<i; index++) 

          numerator = numerator - G_i[index]*X[index]; 

       if (i < n) 

     for (int index=i+1; index<=n; index++) 

          numerator = numerator - G_i[index]*X[index]; 

   } 

   denominator = G_i[i]; 

   if (!((Inf(denominator)<=0) & (Sup(denominator)>=0))) { 

       there_are_2 = 0; 

       new_X_i = numerator / denominator; 

   //elseif (~in(0,numerator)) 

   } else if (!((Inf(numerator)<=0) & (Sup(numerator)>=0))) { 

       there_are_2 = 1; 

    supnum = Sup(numerator); 

       if(supnum < 0) { 

           if (Sup(denominator)==0) 

               tmp1 = interval(-Infinity,-Infinity); 

           else 

      tmp1 = interval(supnum,supnum) / 

interval(Sup(denominator),Sup(denominator)); 

           if (Inf(denominator) == 0) 

               tmp2 = interval(Infinity,Infinity); 

           else 

               tmp2 = interval(supnum,supnum) / 

interval(Inf(denominator),Inf(denominator)); 

           new_X_i = interval(-Infinity,Sup(tmp1)); 

           second_new_X_i = interval(Inf(tmp2),Infinity); 

    } else { 

           real infnum = Inf(numerator); 
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           if (Inf(denominator)==0) 

               tmp1 = interval(-Infinity,-Infinity); 

           else 

               tmp1 = interval(infnum,infnum) / 

interval(Inf(denominator),Inf(denominator)); 

           if (Sup(denominator) == 0) 

               tmp2 = interval(Infinity,Infinity); 

           else 

               tmp2 = interval(infnum,infnum) / 

interval(Sup(denominator),Sup(denominator)); 

           new_X_i = interval(-Infinity,Sup(tmp1)); 

           second_new_X_i = interval(Inf(tmp2),Infinity); 

    } 

   } else { 

       there_are_2=0; 

       new_X_i = interval(-Infinity,Infinity); 

   } 

   return 0; 

} 

 

Similarly, the interval Gauss-Seidel can be implemented easily with INTLAB in 

the following functions from [ 35]: 

 

function [X_kp1,is_empty, error_occurred] =... 

    Gauss_Seidel_image(A, B, X_k) 

% X_kp1] = Gauss_Seidel_image(A,B,X_k) returns the image after a 

% sweep of Gauss--Seidel iteration ( that is, (7.8) of the text) 

% for the interval linear system A X = B, beginning with box 

X_k, 

% 1 <= i <= n. 

% This is done using the inverse midpoint preconditioner. 

% Upon return: 

% if error_occurred = 1, then the computation could not proceed. 

% (For example, the midpoint preconditioner may have been 

% singular, or the denominator may have contained zero; the 

% case of more than one box in the image is not handled 

% with this routine.) Otherwise, error_occurred = 0. 

% If error_occurred = 0 but is_empty = 1, this means that 

% an intersection of a coordinate extent was empty.  In this 

% case, there are no solutions to A X = B within X_k. 

% If error_occurred = 0 and is_empty = 0, then the image under 

% the Gauss--Seidel sweep is returned in X_kp1. 

  

% Ralph Baker Kearfott, 2008/06/15 -- for the 

% Moore / Kearfott / Cloud book. 

  

n = length(B); 

Y = inv(mid(A)); 

%Y=inv(mid(A)-rad(A)/2); 

%Y=eye(size(A)) 

  

error_occurred = 0; 

is_empty = 0; 

i=1; 
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X_kp1 = midrad(zeros(n,1),0); 

while(~error_occurred & ~is_empty & i<= n) 

    [new_x_i, second_new_x_i, there_are_2, num, denom] ... 

        = gauss_seidel_step(i, Y(i,:), A, B, X_k); 

    if(there_are_2) 

        error_occurred = 1; 

    end 

    if (~error_occurred) 

%         is_empty = isempty_(intersect(new_x_i,X_k(i))); 

%         if (~is_empty) 

            X_kp1(i) = intersect(new_x_i, X_k(i)); 

%         end 

    end 

    i=i+1; 

end 

  

 

 

function [new_X_i, second_new_X_i, there_are_2,... 

    numerator, denominator]... 

    = gauss_seidel_step(i, Y_i, A, B, X) 

% [new_X_i, second_new_X_i, there_are_2]... 

%  = gauss_seidel_step(i, Y_i, A, B, X) returns 

% the result of applying a Gauss--Seidel step with variable i, 

% preconditioner matriX Y_i, and initial guess X.  The variable 

% there_are_2 is set to 1 if two semi-infinite intervals are 

returned, 

% in which case second_new_X_i has the second interval;  

there_are_2 

% is set to 0 and second_new_X_i is not set if there is only 

% one interval returned. 

  

% Ralph Baker Kearfott, 2008/06/15 -- for the 

% Moore / Kearfott / Cloud book. 

  

   n = size(A,2); 

   G_i = Y_i*A; 

   C_i = Y_i*B; 

   numerator = C_i; 

   new_X_i = X(i); 

   second_new_X_i = X(i); 

   if (n > 1) 

       if (i > 1) 

           numerator = numerator - G_i(1:i-1)*X(1:i-1); 

       end 

       if (i < n) 

          numerator = numerator - G_i(i+1:n)*X(i+1:n); 

       end 

   end 

   denominator = G_i(i); 

   numerator; 

   denominator; 

   if (~in(0,denominator)) 

       there_are_2 = 0; 

       new_X_i = numerator / denominator; 
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   elseif (~in(0,numerator)) 

       there_are_2 = 1; 

       supnum = sup(numerator); 

       if(supnum < 0) 

           if sup(denominator)==0 

               tmp1 = infsup(-Inf,-Inf); 

           else 

               tmp1 = midrad(supnum,0) / 

midrad(sup(denominator),0); 

           end 

           if inf(denominator) == 0 

               tmp2 = infsup(Inf,Inf); 

           else 

               tmp2 = midrad(supnum,0) / 

midrad(inf(denominator),0); 

           end 

           new_X_i = infsup(-Inf,sup(tmp1)); 

           second_new_X_i = infsup(inf(tmp2),inf); 

       else 

           infnum = inf(numerator); 

           if inf(denominator)==0 

               tmp1 = infsup(-Inf,-Inf) 

           else 

               tmp1 = midrad(infnum,0) / 

midrad(inf(denominator),0); 

           end 

           if sup(denominator) == 0 

               tmp2 = infsup(Inf,Inf) 

           else 

               tmp2 = midrad(infnum,0) / 

midrad(sup(denominator),0); 

           end 

           new_X_i = infsup(-Inf,sup(tmp1)); 

           second_new_X_i = infsup(inf(tmp2),Inf); 

       end 

   else 

       there_are_2=0; 

       new_X_i = infsup(-Inf,Inf); 

   end 

end 
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A.2. Interval Newton Method for Perturbed Nonlinear 

Systems 

The interval Newton method for perturbed nonlinear systems can be implemented 

easily with C-XSC in the following function: 

 

int interval_newton_step(imatrix& G, ivector& v, ivector& i, 

double& TimeElapsed, bool& is_empty, bool& Error) { 

 // G.v=i 

 // interval_newton_step does one step of interval Newton 

algorithm 

 // Pass the initial vector v to the function and it will 

return the final result also in v 

 int size = VecLen(v); 

 ivector v1(size); 

 Error = false; 

 

 clock_t launch = clock(); 

 Gauss_Seidel_image(v1, is_empty, Error, G, i, v); 

 clock_t done = clock(); 

  

 TimeElapsed = ((double) (done - launch)) / CLOCKS_PER_SEC;

  

 v = v1; 

 return 0; 

} 

 

Similarly, the interval Newton method for perturbed nonlinear systems can be 

implemented easily with INTLAB in the following function: 

 

function [NX_intersect_X, TimeElapsed, NoIterations, Error] = 

i_newton_mod(X,f,MaxIterations) 

% Interval Newton using Gauss-Seidel 

% roundoff error -- 

%format long; 

NoIterations=0; 

Error = false; 

n = length(X); 

NX_intersect_X = X; 

tic 

while(NoIterations<MaxIterations) 

    NoIterations=NoIterations+1; 

    y = mid(NX_intersect_X); 

    iy = midrad(y,0); 

    fy = feval(f,iy); 

  

    % Now compute F'(X) and the preconditioning matrix Y -- 

    Xg = gradientinit(NX_intersect_X); 

    FXg = feval(f,Xg); 

     

    % Compute the initial V -- 

    V = NX_intersect_X-y; 

    % Now, do the Gauss--Seidel sweep to find V -- 
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    [new_V,is_empty,error_occurred] = Gauss_Seidel_image(FXg.dx, 

-fy, V); 

  

    NX = y+new_V; 

    if(intersect(NX,NX_intersect_X)==NX_intersect_X) 

        break; 

    end 

    NX_intersect_X = intersect(NX,NX_intersect_X); 

%     is_empty = isempty_(NX_intersect_X); 

%     if (is_empty) 

%         break; 

%     end 

    if (any(isnan(NX_intersect_X))) 

        Error = true; 

        break; 

    end;     

end 

TimeElapsed=toc;  
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A.3. Modified Krawczyk Method for Perturbed Nonlinear 

Systems 

The Modified Krawczyk method for perturbed nonlinear systems can be 

implemented easily with C-XSC in the following function (this function also includes 

implementation of some test problems): 

 

double ModKrawczyk(int fDim,int noIntervalVars,int p,int 

problem,double delta){ 

 //nmax : max number of iterations 

 const int nmax = 100; 

 //X  : solution vector at each iteration 

 //Xg : version of X to be used in automatic 

differentiation 

 //fXg: f(Xg) 

 //fx : f(Xg)=f(X) 

 //Jfx: J(Xg)=J(X) 

 //iy : mid(X) 

 //fy : f(iy) 

 //KX : Krawczyk operator at each iteration 

 //Y  : inv(mid(Jfx)) 

 ivector fy(fDim), iy(fDim), fx(fDim), KX(fDim), X(fDim); 

 imatrix Jfx(fDim,fDim); 

 rmatrix Y(fDim,fDim); 

 GTvector Xg(fDim), fXg(fDim); 

 //rvector y; 

 int n; 

 int Error = 0; 

 rvector eps(fDim); 

 for (int i=1;i<=fDim;i++) 

  eps[i] = 0.0001; 

 cout << SetPrecision(23,15) << Scientific; 

 cxsc::real temp1 = 5.0/fDim; 

 cxsc::real temp2 = 5.0*fDim; 

 //The exact solution of each problem (Hansen, Banana, 

Mancino) 

 if (problem==1) 

 { 

  //Result for this problem is not correct 

  temp1 = 

4.0*sqrt(temp1)/7.0*sinh(1.0/3.0*asinh(7.0*sqrt(temp2)/2.0));

 //Hansen 

  //set the initial box 

  for (int i=1; i<=fDim; i++) { 

   X[i] = interval(temp1*(1-

delta),temp1*(1+delta)); 

  } 

 } 

 else if (problem==2) 

 { 

  temp1=1; //Banana 

  //set the initial box 

  for (int i=1; i<=fDim; i++) { 
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   X[i] = interval(temp1*(1-

delta),temp1*(1+delta)); 

  } 

 } 

 else if (problem==3) 

 { 

  //Mancino 

  if (fDim!=4) return -1; 

  //set the initial box 

  X[1] = interval(1-delta,1+delta)*1.896515; 

  X[2] = interval(1-delta,1+delta)*(-0.210191); 

  X[3] = interval(1-delta,1+delta)*0.542070; 

  X[4] = interval(1-delta,1+delta)*(-0.023893); 

 } 

 else 

  return -1; 

 cout << endl << X[1]; 

 cout << endl << X[2]; 

 cout << endl << X[3]; 

 //n : number of iterations 

 n = 0; 

 clock_t launch = clock(); 

 iy = mid(X); 

 Xg = GradVar(X); 

 //Substitute with Xg in the problem 

 if (problem==1) 

  fXg = f3(Xg,fDim,noIntervalVars); 

 else if (problem==2) 

  fXg = banana(Xg,fDim,noIntervalVars); 

 else if (problem==3) 

  fXg = Mancino(Xg,fDim,noIntervalVars); 

 fx = fValue(fXg);  // function value 

 Jfx = JacValue(fXg); // jacobian value 

 //Inversion of the mid of the jacobian 

 MatInv(mid(Jfx),Y,Error); 

  

 /*mat MatTemp(fDim,fDim), MatTempInv(fDim,fDim); 

 for(int i1=0; i1<fDim; i1++)  

  for(int i2=0; i2<fDim; i2++) 

   MatTemp(i1,i2)=_double(mid(Jfx)[i1][i2]); 

 MatTempInv = inv(MatTemp);*/ 

 /*double *islam; 

 islam = (double*)malloc(fDim*fDim*sizeof(double)); 

 matrix_inverse(mid(Jfx),islam,fDim);*/ 

 /*for (int i=0; i<fDim; i++) 

 { for (int j=0; j<fDim; j++) 

  { Y[i][j] =  _real(MatTemp(i,j)); 

   cout << Y[i][j] << " "; 

  } 

  cout << endl; 

 } 

 */ 

 ivector temp; 

 rmatrix eye(fDim,fDim); 

 I(eye,fDim); 

 bool flag = true; 
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 //The main (outer) loop (till convergence or max no. of 

iterations) 

 do { 

  n++; 

  //cout << n << endl; 

  //The inner loop (p times) 

  for(int i=1;i<=p;i++) { 

   iy = mid(X); 

   if (problem==1) 

    fy = f3(iy,fDim,noIntervalVars); 

   else if (problem==2) 

    fy = banana(iy,fDim,noIntervalVars); 

   else if (problem==3) 

    fy = Mancino(iy,fDim,noIntervalVars); 

   if (!Error) { 

    //The main operation (Krawczyk operator) 

    KX = iy - Y*fy + (eye - Y*Jfx)*(X - iy); 

    //Terminate if KX is enclosed in X 

    if ((X & KX) == X) 

    {flag = false; break;} 

    // itersection of X and KX 

    //Update X 

    X = X & KX; 

   } 

   else 

    cout << MatInvErrMsg(Error) << endl; 

  } 

  //Update Xg 

  Xg = GradVar(X); 

  //Update fXg 

  if (problem==1) 

   fXg = f3(Xg,fDim,noIntervalVars); 

  else if (problem==2) 

   fXg = banana(Xg,fDim,noIntervalVars); 

  else if (problem==3) 

   fXg = Mancino(Xg,fDim,noIntervalVars); 

  fx = fValue(fXg);  // function value 

  Jfx = JacValue(fXg); // jacobian value 

  MatInv(mid(Jfx),Y,Error); 

   

  //for(int i1=0; i1<fDim; i1++)  

  // for(int i2=0; i2<fDim; i2++) 

  //  MatTemp(i1,i2)=_double(mid(Jfx)[i1][i2]); 

  //MatTempInv = inv(MatTemp); 

  //for (int i=0; i<fDim; i++) 

  //{ for (int j=0; j<fDim; j++) 

  // { Y[i][j] =  _real(MatTemp(i,j)); 

  ////  cout << Y[i][j] << " "; 

  // } 

  // //cout << endl; 

  //} 

  /*if (diam(X[1]) > eps[1]) 

   cout << "eps"; 

  if (!Error) 

   cout << "!Error"; 

  if (n < nmax) 
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   cout << "nmax"; 

  if (flag) 

   cout << "flag";*/ 

  //matrix_inverse(mid(Jfx),Y,fDim); 

 } while ((diam(X[1]) > eps[1]) && (!Error) && (n < nmax) 

&& flag); 

 clock_t done = clock(); 

 cout << endl << X[1]; 

 cout << endl << X[2]; 

 cout << endl << X[3]; 

 //cout << endl << X[4]; 

 //cout << endl << X[5]; 

 //cout << endl << X[6]; 

 cout << endl << X[fDim]; 

 cout << "\nNumber of iterations : " << n; 

 double diff = ((double) (done - launch)) / CLOCKS_PER_SEC;

  

 return diff; 

} 

 

Similarly, the Krawczyk method for perturbed nonlinear systems can be 

implemented easily with INTLAB as follows: 

 

function [X,TimeElapsed,NoIterations,Error] = 

Krawczyk(X0,f,max_no_iter,no_inner_iter,parameters) 

  

X=X0; 

x=mid(X); 

n=length(X); 

format long, 

Error = false; 

flag=true; 

NoIterations=0; 

tic 

  

Xg = gradientinit(X); 

FXg = feval(f,Xg,parameters); 

A = inv(mid(FXg.dx)); 

r=norm((eye(n,n) - A*FXg.dx),inf); 

  

        ix = midrad(x,0); 

        fx = feval(f,ix,parameters); 

        Y = x - A*fx + (eye(n,n) - A*FXg.dx) * (X - x); 

        Z=intersect(X,Y); 

        if (ISNAN(Z(1,1)) | Z==X) 

            TimeElapsed = -1; 

            return; 

        end; 

         

while(flag & NoIterations<max_no_iter) 

    NoIterations=NoIterations+1; 

    for i=1:no_inner_iter 

        if NoIterations==1 

            ix = midrad(x,0); 
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            fx = feval(f,ix,parameters); 

            Y = x - A*fx + (eye(n,n) - A*FXg.dx) * (X - x); 

            Z=intersect(X,Y); 

            if (any(ISNAN(Z))) 

                Error = true; 

                flag=false; 

                break; 

            end; 

            if(X==Z) 

                flag=false; 

                break; 

            end; 

        end; 

        X=Z; 

        x=mid(X); 

    end 

    Xg = gradientinit(X); 

    FXg = feval(f,Xg,parameters); 

    B = inv(mid(FXg.dx)); 

    s=norm((eye(n,n) - B*FXg.dx),inf); 

    if s<=r 

        A=B; 

        r=s; 

    else 

        r=norm((eye(n,n) - A*FXg.dx),inf); 

    end 

end 

  

TimeElapsed=toc; 
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A.4. Hasnen-Sengupta Method for Perturbed Nonlinear 

Systems 

The Hansen-Sengupta method for perturbed nonlinear systems can be implemented 

easily with INTLAB in the following function: 

 

function 

[X,TimeElapsed,NoIterations,Error]=HansenSengupta(X0,f,max_no_it

er,A) 

X=X0; 

Error = false; 

n=length(X); 

format long, 

% NoIterations=0; 

tic 

for NoIterations=1:max_no_iter 

    mid_x=mid(X); 

    Xg = gradientinit(X); 

    FXg = feval(f,Xg,A); 

    Ag = gradientinit(A); 

    FAg =feval(f,mid_x,Ag); 

    C = inv(mid(FXg.dx)); 

  

    Y = mid_x + Gauss_Seidel_image((C*FXg.dx),(-

C*feval(f,mid_x,mid(A))-C*FAg.dx*(A-mid(A))),X-mid_x); 

     

    Z=intersect(X,Y); 

    if (any(ISNAN(Z))) 

        Error = true; 

        break; 

    end; 

    if(X==Z) 

        break; 

    end; 

    X = Y; 

  

end 

  

TimeElapsed=toc; 
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A.5. Two-Stage Interval Newton Method for Perturbed 

Nonlinear Systems 

The two-stage interval Newton method for perturbed nonlinear systems can be 

implemented easily with INTLAB in the following function: 

 
function [NX_intersect_X, TimeElapsed, NoIterations, Error] = 

two_stage_i_newton(X,f,MaxIterations) 
%Two-stage interval Newton 
%format long; 
NoIterations=0; 
Error = false; 
n = length(X); 
NX_intersect_X = X; 
tic 
while(NoIterations<MaxIterations) 
    NoIterations=NoIterations+1; 
    y = mid(NX_intersect_X); 
    iy = midrad(y,0); 
    fy = feval(f,iy); 

  
    % Now compute F'(X) and the preconditioning matrix Y -- 
    Xg = gradientinit(NX_intersect_X); 
    FXg = feval(f,Xg); 

     
    % Compute the initial V -- 
    V = NX_intersect_X-y; 
    % Now, do the Gauss--Seidel sweep to find V -- 
    [new_V,is_empty,error_occurred] = Gauss_Seidel_image(FXg.dx, -fy, 

V); 

  
    NX = y+new_V; 
    if(intersect(NX,NX_intersect_X)==NX_intersect_X) 
        break; 
    end 
    NX_intersect_X = intersect(NX,NX_intersect_X); 

     
%Stage 2     
    % Compute the initial V -- 
    V = NX_intersect_X-mid(NX_intersect_X); 
    % Now, do the Gauss--Seidel sweep to find V -- 
    [new_V,is_empty,error_occurred] = Gauss_Seidel_image(FXg.dx, -

feval(f,mid(NX_intersect_X)), V); 

  
    S = mid(NX_intersect_X)+new_V; 
    if(intersect(S,NX_intersect_X)==NX_intersect_X) 
        break; 
    end 
    NX_intersect_X = intersect(S,NX_intersect_X); 

     
    if (any(isnan(NX_intersect_X))) 
        Error = true; 
        break; 
    end;     
end 
TimeElapsed=toc; 
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A.6. Division in Extended Arithmetic 

The interval arithmetic in INTLAB does not implement sharp extended arithmetic; 

division     by any interval   that contains zero results in the interval ,    -. This 

is an enclosure of the exact range of the operation but is in general not sharp, since it 

contains many values that are not obtainable as     for     and    . However, we 

may use the following function from [ 35]: 

 
function [Y1,Y2,two] = xreciprocal(X) 

% [Y1,Y2,two] = xreciprocal(X) returns the extended reciprocal 

% of X defined by the three cases. The return value two is set  % to 0 

if only one interval is returned and is set to 1 

% if two intervals are returned. 

% If X does not contain zero, the result of ordinary 

% interval division is returned in Y1, and two is set to 0. 

% In the case inf(X) = sup(X) = 0, avoided in the text, 

% two is set to 1, and two empty intervals are returned. 

% (INTLAB represents an empty interval as infsup(NaN,NaN) ) 

% In cases where there is only one interval, Y2 is set 

% to INTLAB’s representation of the empty interval. 

if (inf(X) > 0) | (sup(X) < 0) % do ordinary interval division 

two=0; 

Y1 = 1/X; 

Y2 = infsup(NaN,NaN); 

elseif (inf(X)==0) & (sup(X) > 0) % Case 1 of the text -- 

two=0; 

lower_bound = infsup(1,1) / infsup(sup(X),sup(X)); 

Y1 = infsup(inf(lower_bound),Inf); 

Y2 = infsup(NaN,NaN); 

elseif (inf(X)<0) & (sup(X) > 0) % Case 2 of the text -- 

two=1; 

upper_bound = infsup(1,1) / infsup(inf(X),inf(X)); 

Y1=infsup(-Inf,sup(upper_bound)); 

lower_bound = infsup(1,1) / infsup(sup(X),sup(X)); 

Y2 = infsup(inf(lower_bound),Inf); 

elseif (inf(X) < 0) & (sup(X) == 0) % Case 3 of the text -- 

two = 0; 

upper_bound = infsup(1,1) / infsup(inf(X),inf(X)); 

Y1=infsup(-Inf,sup(upper_bound)); 

Y2 = infsup(NaN,NaN); 

else % This is the case where X=0, not covered in the text -- 

two =1; 

Y1 = infsup(NaN,NaN); 

Y2 = infsup(NaN,NaN); 

end 

  



 

 أ
 

 ممخصال

التي يُرمز و -التي تحتوي عمى بيانات غير دقيقةييتم بدراسة حمول المعادلات غير الخطية و  ىذا البحث العممي

ىذه المسائل مثل باستخدام طرق تعتمد عمى حساب الفترات. و تظير -بالمعادلات غير الخطية المضطربةليا 

لدراسة مدى حساسية عوامل التصميم لمتغيرات الناتجة إما أثناء  تطبيقات اليندسيةالمضطربة في العديد من ال

عائمة. إن الإطار الأساسي ليذا البحث ىو تقديم طرق باستخدام الفاصمة الالتصنيع أو أثناء أداء الحسابات 

شبيية بطريقة نيوتن لحساب الفترات لحل المعادلات غير الخطية المضطربة عن طريق تعديل الطرق 

المستخدمة حاليا في حل المعادلات غير الخطية التقميدية لتصبح مناسبة لحل المعادلات غير الخطية 

ىذا البحث تحميل تواجد حل لممعادلات غير الخطية المضطربة و التقارب إلى يُقدم و يُستنتج في المضطربة. 

 ىذا الحل.

في سبيل تحقيق ىذه الأىداف يتم تقديم مقدمة مختصرة عن حساب الفترات و حمول المعادلات الخطية التي 

ناك طرق مشيورة تحتوي عمى فترات و كذلك حمول المعادلات غير الخطية التقميدية باستخدام حساب الفترات. ى

سينجوبتا و كراوزيك. و يتم تقديم نسخة -لحل المعادلات غير الخطية يتم تقديميا مثل: نيوتن لمفترات و ىانسن

و كذا يتم تقديم المشاكل المتعمقة بكل طريقة عمى حدى و مناسبة لحل المعادلات المضطربة من كل طريقة. 

ج طريقة معدلة لطريقة نيوتن لمفترات و التي ـثعرف بطريقة نيوتن دراسة تقاربيا. علاوة عمى ذلك فإنو يتم استنتا

و يتم اختبار ذات المرحمتين. و تمتمك الطريقة ذات المرحمتين ميزة تقميل الوقت اللازم لايجاد حل لممعادلات. 

ع مصادر عممية سابقة و لكن مالطرق التي تعتمد عمى حساب الفترات لاثبات كفاءتيا باستخدام مسائل من 

إضافة بعض التغيرات. و لقد لاحظنا أن اتساع حل المعادلات المضطربة يعتمد عمى مدى اتساع ىذه 

الآضطرابات. و قد تمت مقارنة طريقة نيوتن ذات المرحمتين مع باقي الطرق المذكورة سابقاً. و لقد أثبتت 

الطرق التي تعتمد عمى حساب الطريقة تحسن في الوقت المستيمك. و تمت أيضاً مقارنة الحمول الناتجة من 

الفترات مغ تمك الناتجة من طريقة مونت كارلو. و أثبتت المقارنة تفوق الطرق التي تعتمد عمى حساب الفترات 

  من ناحية الوقت المستيمك و الدقة المطموبة لايجاد الحل المنشود.
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