

SOLVING MULTIDIMENSIONAL NONLINEAR

PERTURBED PROBLEMS USING INTERVAL

ARITHMETIC

By

Islam Refaat Kamel Taha

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Engineering Mathematics

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

June - 2013

SOLVING MULTIDIMENSIONAL NONLINEAR

PERTURBED PROBLEMS USING INTERVAL

ARITHMETIC

By

Islam Refaat Kamel Taha

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Engineering Mathematics

Under the Supervision of

Assoc. Prof. Dr. Maha A. Hassanein

 Assoc. Prof. Dr. Hossam A. H.

Fahmy

Associate Professor

Engineering Mathematics and Physics

Department

Faculty of Engineering, Cairo University

 Associate Professor

Electronics and Communications

Engineering Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

June - 2013

SOLVING MULTIDIMENSIONAL NONLINEAR

PERTURBED PROBLEMS USING INTERVAL

ARITHMETIC

By

Islam Refaat Kamel Taha

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Engineering Mathematics

Approved by the

Examining Committee

Prof. Dr. First S. Name, External Examiner

Prof. Dr. Second E. Name, Internal Examiner

Assoc. Prof. Dr. Maha A. Hassanein, Thesis Main Advisor

Assoc. Prof. Dr. Hossam A. H. Fahmy, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

June – 2013

Engineer’s Name: Islam Refaat Kamel Taha

Date of Birth: 1/2/1988

Nationality: Egyptian

E-mail: i.r.kamel@ieee.org

Phone: (+2)01004067053

Address: El-Sheikh Zayed, Giza

Registration Date: …./…./……..

Awarding Date: …./…./……..

Degree: Master of Science

Department: Engineering Mathematics and Physics

Supervisors:

 Assoc. Prof. Maha A. Hassanein

Assoc. Prof. Hossam A. H. Fahmy

Examiners:

 Prof. ………………… (External examiner)

 Prof. ………………… (Internal examiner)

 Assoc. Porf. Maha A. Hassanein (Thesis main

advisor)

Assoc. Porf. Hossam A. H. Fahmy (Member)

Title of Thesis:

Solving multidimensional nonlinear perturbed problems using interval arithmetic

Key Words:

Interval Arithmetic; Perturbed Problems; Nonlinear Systems; Interval Newton Method

Summary:

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

Insert photo here

mailto:i.r.kamel@ieee.org

i

Acknowledgments

I would like to express my deepest appreciation to all those who provided me the

possibility to complete this thesis. A special gratitude I give to my supervisor Assoc.

Prof. Dr. Maha Amin Hassanein, who showed a lot of interest in guiding my work. She

gave me a lot of support and encouragement to complete this thesis.

Furthermore I would also like to acknowledge with much appreciation my

supervisor Assoc. Prof. Dr. Hossam A. H. Fahmy for encouraging my interests in

interval arithmetic and for his fruitful discussions and valuable suggestions.

Finally, my greatest debt is to my family who has always been supportive and

encouraging.

ii

Table of Contents

ACKNOWLEDGMENTS ... I

TABLE OF CONTENTS .. II

LIST OF TABLES .. V

LIST OF FIGURES ...VI

NOMENCLATURE ... VII

ABSTRACT ..IX

CHAPTER 1 : INTRODUCTION .. 10

1.1. MOTIVATION ... 10

1.2. OUTLINE OF THE THESIS .. 10

CHAPTER 2 : INTRODUCTION TO INTERVAL ARITHMETIC 12

2.1. BASIC TERMS AND CONCEPTS ... 12

2.1.1. Inf-sup and Mid-rad Representations ... 12

2.1.2. Intersection, Union, and Interval Hull .. 13

2.1.3. Width, Absolute Value, and Midpoint of an Interval Number 14

2.1.4. Order Relations on Intervals .. 15

2.2. ALGEBRAIC OPERATIONS FOR INTERVAL NUMBERS .. 15

2.2.1. Addition on ... 16

2.2.2. Subtraction on ... 16

2.2.3. Multiplication on .. 17

2.2.4. Division on ... 17

2.3. INTERVAL VECTORS AND MATRICES ... 18

2.4. ALGEBRAIC PROPERTIES OF INTERVAL ARITHMETIC ... 20

2.4.1. Inclusion Monotonicity of Interval Arithmetic .. 20

2.4.2. Commutativity and Associativity ... 20

2.4.3. Additive and Multiplicative Identity Elements .. 21

2.4.4. Nonexistence of Inverse Elements ... 21

2.4.5. Subdistributivity ... 21

2.5. OUTWARDLY ROUNDED INTERVAL ARITHMETIC ... 22

2.6. THE INTERVAL DEPENDENCY PROBLEM .. 23

2.7. THE WRAPPING EFFECT ... 25

2.8. INTERVAL COMPUTING SOFTWARE ... 25

2.8.1. INTLIB ... 26

2.8.2. Interval BLAS .. 26

2.8.3. INTLAB ... 26

2.8.4. A C++ Class Library for Extended Scientific Computing (C-XSC) 28

CHAPTER 3 : INTERVAL LINEAR ALGEBRAIC SYSTEMS OF EQUATIONS

 .. 29

iii

3.1. INTERVAL FUNCTIONS EVALUATION ... 29

3.1.1. Set Images and United Extension... 29

3.1.2. Elementary Functions of Interval Arguments .. 30

3.1.3. Monotonic Interval Functions .. 30

3.1.4. Interval-Valued Extensions of Real Functions ... 32

3.1.5. The Fundamental Theorem .. 33

3.2. SEQUENCES OF INTERVALS .. 34

3.2.1. Convergence in Interval Arithmetic ... 34

3.2.2. Lipschitz Interval Extensions ... 34

3.2.3. Convergence of Interval Sequences ... 36

3.2.4. Stopping Criterion .. 37

3.3. INTERVAL LINEAR ALGEBRAIC SYSTEM OF EQUATIONS (ILASE) 39

3.3.1. Interval Gauss–Seidel ... 41

3.4. INTERVAL NONLINEAR SYSTEMS OF EQUATIONS .. 43

CHAPTER 4 : PERTURBED NONLINEAR SYSTEMS OF EQUATIONS 44

4.1. UNIVARIATE INTERVAL NEWTON’S METHOD .. 45

4.1.1. Extended Interval Newton’s Method ... 47

4.2. MULTIVARIATE NONLINEAR SYSTEM OF EQUATIONS .. 49

4.2.1. Multivariate Interval Newton Method.. 49

4.2.2. The Krawczyk Method ... 51

4.2.3. The Modified Krawczyk Method ... 53

4.2.4. Hansen-Sengupta Method .. 53

4.3. PERTURBED NONLINEAR SYSTEMS .. 54

4.3.1. An Illustrative Example ... 55

4.4. INTERVAL METHODS FOR SOLVING PERTURBED NONLINEAR SYSTEMS OF

EQUATIONS .. 56

4.4.1. Interval Newton Method (INM) for Perturbed Nonlinear Systems 57

4.4.2. Hansen-Sengupta Method for Perturbed Nonlinear Systems 58

4.5. TWO-STAGE INM FOR PERTURBED NONLINEAR SYSTEMS 59

4.6. NUMERICAL EXAMPLES ... 60

4.6.1. Univariate Problems ... 61

4.6.2. Multivariate Problems .. 61

CHAPTER 5 : ENGINEERING APPLICATIONS OF NONLINEAR SYSTEMS

 .. 67

5.1. ZENER DIODES ... 67

5.2. TWO TUNNEL DIODES .. 69

5.3. THREE BAR MECHANISM ... 71

5.4. PIPE PUMP PROBLEM ... 73

5.5. PIPE FLOW PROBLEM ... 75

5.6. MANNING'S EQUATION .. 77

CHAPTER 6 : CONCLUSION ... 79

6.1. A VIEW TO SOLVING PERTURBED PROBLEMS USING INTERVAL ARITHMETIC 79

6.2. A CLOSER VIEW TO THE INTERVAL COMPUTING SOFTWARE 79

iv

6.3. CONTRIBUTIONS AND FUTURE WORK .. 80

REFERENCES ... 82

APPENDIX A: IMPLEMENTATION OF INTERVAL ALGORITHMS 86

A.1. INTERVAL GAUSS-SEIDEL .. 86

A.2. INTERVAL NEWTON METHOD FOR PERTURBED NONLINEAR SYSTEMS 91

A.3. MODIFIED KRAWCZYK METHOD FOR PERTURBED NONLINEAR SYSTEMS 93

A.4. HASNEN-SENGUPTA METHOD FOR PERTURBED NONLINEAR SYSTEMS 98

A.5. TWO-STAGE INTERVAL NEWTON METHOD FOR PERTURBED NONLINEAR SYSTEMS

 99

A.6. DIVISION IN EXTENDED ARITHMETIC .. 100

v

List of Tables

Table 2.1: Endpoint formulas for interval multiplication ... 17

Table 2.2: Real matrix multiplication ... 27
Table 4.1: Results of Rosenbrock ... 61
Table 4.2: Results of Broyden .. 62
Table 4.3: Results for Interval Arithmetic Benchmark 1 ... 63
Table 4.4: Results for Interval Arithmetic Benchmark 2 ... 65

Table 5.1: Results of Zener diodes problem ... 67
Table 5.2: Results of two tunnel diodes problem ... 69

Table 5.3: Results of three bar mechanism problem .. 71

Table 5.4: Results of pipe pump problem .. 73
Table 5.5: Results of pipe flow problem .. 75
Table 5.6: Results of the Manning's equation .. 77

vi

List of Figures

Figure 2.1: Width, absolute value, and midpoint of an interval 14

Figure 2.2: Width, norm, and midpoint of an interval vector X = (X1,X2) 20
Figure 2.3: Outer bounds at different level of rounding ... 23
Figure 2.4: Approximate estimate of the value range .. 24
Figure 2.5: Treating each occurrence of a variable independently 24
Figure 2.6: Solution set of (2.42) illustrating the wrapping effect 25

Figure 3.1: A monotonic (increasing) interval function ... 31
Figure 3.2: Solution set to (3.36) .. 43

Figure 4.1: Geometrical interpretation of the univariate interval Newton method 47

Figure 4.2: Extended interval Newton step over X
(0)

=[-5,5], function (4.7) 48
Figure 4.3: Solution of the illustrative example ... 56
Figure 5.1: Consumed time by interval and traditional methods to solve (5.1) 68
Figure 5.2: Consumed time by the four interval methods to solve (5.1) 68
Figure 5.3: Nonlinear circuit given by (5.2) ... 69

Figure 5.4: Consumed time by interval and traditional methods to solve (5.2) 70

Figure 5.5: Consumed time by the four interval methods to solve (5.2) 70
Figure 5.6: Consumed time by interval and traditional methods to solve (5.3) 72

Figure 5.7: Consumed time by the four interval methods to solve (5.3) 72
Figure 5.8: Consumed time by interval and traditional methods to solve (5.4) 74
Figure 5.9: Consumed time by the four interval methods to solve (5.4) 74

Figure 5.10: Consumed time by interval and traditional methods to solve (5.5) 76

Figure 5.11: Consumed time by the four interval methods to solve (5.5) 76
Figure 5.12: Consumed time by interval and traditional methods to solve (5.6) 78
Figure 5.13: Consumed time by the four interval methods to solve (5.6) 78

vii

Nomenclature

 Real constant symbols (with or without subscripts)

 Real variable symbols (with or without subscripts)

 The set of real numbers

 Interval variable symbols (with or without subscripts)

 The set of real interval numbers

 The infimum of an interval number

 The supremum of an interval number

 () () The mid-point of an interval number

 () () The radius of an interval number

 () The width of an interval number

 The set intersection operator

 The set union operator

 The interval hull operator

 The empty set

| | Greatest absolute value of an interval number

 Ordering relations

 The set inclusion relation

 * + A binary algebraic operator

‖ ‖ Maximum norm for interval vectors and matrices

 Real-valued function

⋃* ()+

 The finitary set union

 The set of real interval vectors

 The set of real interval matrices

 Interval-valued function (the interval extension of)

 The interval extension of

 () The mean value extension of on

* + Sequence of intervals

 Natural number

 () The distance (metric) between two interval numbers

 A small real number

⋂

 The finitary set intersection

 Set variable symbol

 There exists symbol

 () Spectral radius of matrix

 ̃ A real number in an interval

 ̌ Midpoint of interval vector or matrix

viii

 () The interval extension of ()

 Zero of a real-valued function

 Zero set of an interval function

 () Interval Newton operator

 () The interior of an interval

 () Krawczyk operator

 () Interval Gauss-Seidel operator in one-dimension

 () Multidimensional interval Gauss-Seidel operator

 Jacobian or approximate Jacobian of

 Domain of

 () Parametric Hansen-Sengupta operator

 () Parametric Interval Newton operator

 () Parametric Krawczyk operator

 ()
Parametric modified interval Newton operator (parametric two-

stage interval Newton operator)

ix

Abstract

In this thesis, we are interested in solving nonlinear systems of equations with

inexact data, denoted by perturbed nonlinear systems, using interval arithmetic

methods. Such perturbed problems appear in many engineering applications to study

the sensitivity of design parameters to perturbations resulting either during

manufacturing or during floating-point computations. The main scope of the

dissertation is to present Newton-like interval methods to solve perturbed nonlinear

systems by adapting existing methods for solving real-valued nonlinear systems to be

used in solving perturbed problems. The existence and convergence of a solution to the

perturbed nonlinear systems are derived and given in the dissertation.

In achieving this, we give a brief introduction to the interval arithmetic and the

solution of interval linear systems and real-valued nonlinear problems using interval

methods. Well-known methods in the literature for solving the nonlinear problems:

interval Newton (INM), Hansen-Sengupta, and Krawczyk methods are presented. For

each method a version for solving the perturbed problems is given. A discussion of the

difficulties encountered and convergence of each method is given. Furthermore, a

modified version of the INM, denoted by the two-stage INM, is derived. The two-stage

method has the advantage of reducing the computational time required to find a

solution. To illustrate the effectiveness of interval methods, we apply it to test problems

from the literature by introducing perturbations into these problems. We observed that

the width of the solution depends on the width of the perturbations. The two-stage INM

is compared with the other interval methods under consideration. Regarding the time

consumption, it gives an improvement over the other methods. We also compare the

interval arithmetic solution with that of the Monte Carlo and conclude the superior

performance of the interval algorithms over Monte Carlo methods with respect to the

consumed time and the accuracy of the solution set obtained.

01

Chapter 1 : Introduction

1.1. Motivation

Many real problems are simulated and modeled using nonlinear systems of

equations. For example, the sophisticated circuits which are modeled by circuit

simulators as nonlinear systems with thousands and millions of parameters. Some of

these parameters are vulnerable to temperature changes, manufacturing tolerances, and

other effects. Those perturbed parameters should be taken into consideration while

modeling and simulating the corresponding nonlinear systems. This simulation is

commonly known as sensitivity analysis.

There are numerous methods and algorithms used in the sensitivity analysis which

compute approximations to the solution in floating-point arithmetic [62], [33], and [47]

like the exhaustive sampling and Monte Carlo methods [3]. However, usually it is not

clear how good these approximations are, or if there exists a unique solution at all. In

general, it is not possible to answer these questions with mathematical rigor if only

floating-point approximations are used.

The use of self-verified methods can lead to more reliable results. Verified

computing provides an interval result that surely contains the correct result. Like that

the algorithm also proves the existence and uniqueness of the solution of the problem.

The algorithm will, in general, succeed in finding an enclosure of the correct solution.

If the solution is not found, the algorithm will let the user know. One possibility to

implement verified computing is using interval arithmetic combined with suitable

algorithms.

The use of verified computing makes it possible to find the correct result.

However, finding the verified result often increases the execution time dramatically.

But in the nonlinear systems with interval parameters, the use of verified computing is

more suitable as its performance is better. This thesis shows that the execution time of

some verified algorithms is much smaller than the execution time of algorithms that do

not use this concept. Moreover, a modified interval Newton algorithm will be presented

and shown to have better performance than other interval algorithms.

1.2. Outline of the Thesis

The thesis is structured, in six chapters, as follows:

This introductory chapter has formulated the motivation for this thesis. It has also

provided an overview of the main problem which is under test in this thesis.

 Chapter 2 provides a bit of perspective on the field of interval arithmetic. It also

introduces some definitions, notations, and basic facts that will be used through this

00

thesis. Section 2.8 gives a brief description of the commonly used interval computing

software.

The first section of Chapter 3 treats the basics of interval-valued functions.

Section 3.2 introduces theory and practice regarding the convergence of interval

sequences. An overview of the interval linear systems is presented in section 3.3.

Finally, an introductory to the next chapter is presented in section 3.4.

 Chapter 4 starts with solving univariate nonlinear systems. Section 4.2 gives a

survey on existing interval methods that are used in solving and bounding the solution

of nonlinear systems. In section 4.4, we carefully use interval methods to solve

perturbed nonlinear systems which are defined in section 4.3. We prove the

convergence of the interval Newton method (INM) for perturbed problems in

subsection 4.4.1. We introduce a modified version of INM for perturbed nonlinear

systems in section 4.5. In the end of this chapter, numerical examples are solved to

show that the verified algorithms, specially the new proposed algorithm, are faster than

the traditional methods. A comparison between the different interval methods and the

traditional methods is also discussed.

In Chapter 5, more practical examples are solved to illustrate the applicability of

the algorithms discussed in Chapter 4.

Finally, the thesis closes with Chapter 6, which explicitly delineates the

contributions of this research and outlines some directions for future research.

01

Chapter 2 : Introduction to Interval Arithmetic

Interval arithmetic is a method developed by mathematicians since the 1950s and

1960s to put bounds on rounding errors and measurement errors in mathematical

computation. Numerical methods based on interval arithmetic are developed that yield

reliable results in which each value is represented as a range of possibilities. For

example, instead of estimating the height of someone using standard arithmetic as 2.0

meters, using interval arithmetic we might be certain that that person is somewhere

between 1.97 and 2.03 meters. Archimedes was able to bracket by taking a circle and

considering inscribed and circumscribed polygons. Increasing the numbers of

polygonal sides, he obtained both an increasing sequence of lower bounds and a

decreasing sequence of upper bounds for this irrational number. That is exactly what is

used in interval arithmetic to represent numbers. The motivation of this chapter is to

give an insight of the basic definitions and properties of interval numbers which will be

used throughout the thesis (For more details about the basics of the interval arithmetic,

the reader may consult [44], [5], [35], [38], [39], and [58]). Moreover, a survey on the

common and popular interval computation software is presented in section 2.8.

2.1. Basic Terms and Concepts

Using the ordered pair , - of computer numbers to represent an interval of real

numbers , an arithmetic for intervals and interval valued extensions of

functions is defined and commonly used in computing. In this way, an interval , -

has a dual nature. It is a new kind of number pair, and it represents a set , -

* +.

2.1.1. Inf-sup and Mid-rad Representations

Throughout this dissertation, we will denote intervals and their endpoints by capital

letters. The left and right endpoints of an interval will be denoted by and ,

respectively. Thus,

 [] (2.1)

where () and () are called the upper and lower bounds

of (also called supremum and infimum respectively). The notation used in (2.1) to

represent the interval is usually called inf-sup representation. There is another

representation which is used to represent intervals: mid-rad representation. In the mid-

rad representation, we can express the interval as:

 (2.2)

http://en.wikipedia.org/wiki/Rounding_error
http://en.wikipedia.org/wiki/Measurement_error
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_methods

02

where
 () ()

 which represents the mid-point of the interval and

 () () () ().

This mid-rad representation is useful when we employ an interval to describe a

quantity in terms of its measured value and a measurement uncertainty of no more

than . However, the mid-rad representation fails to represent some intervals,

specially the unbounded intervals (the intervals whose infimum equals or

supremum equals).

There are special forms of intervals such as the degenerate ones which contain a

single real number. An interval is said to be degenerate if and is defined as

, - with the real number . For instance, we may write such equations as

 , - (2.3)

On the other hand the interval equality is defined as follows: we said that the two

intervals and are equal if they are defined by the same sets, i.e. their corresponding

endpoints are equal:

 (2.4)

2.1.2. Intersection, Union, and Interval Hull

The intersection of two intervals and is defined as follows

 * +

 [() ()]
 (2.5)

The intersection is either an interval which is defined by the previous

equation or empty. The latter case occurs if either or . In this case we let

denote the empty set and write

 (2.6)

indicating that and have no points in common. In case of the existence of the

intersection between and , the union of and is also an interval:

 * +

 [() ()]
 (2.7)

In general, it is not necessary that one is able to represent the union of two intervals

as an interval. However, the interval hull of two intervals, defined by

 [() ()] (2.8)

is always an interval and can be used in interval computations. We have

 (2.9)

for any two intervals and .

03

Example 2.1 If , - and , -, then and

, -. Although is a disconnected set that cannot be expressed as an

interval, relation (2.7) still holds. Information is lost when we replace

with , but is easier to work with, and the lost information is

sometimes not critical.

Intersection plays a key role in interval analysis. For instance, if we have two

distinct intervals containing a result of interest, then we can obtain a narrower interval

,which also contains the result, from the intersection of the initial intervals.

2.1.3. Width, Absolute Value, and Midpoint of an Interval Number

The width of an interval is defined and denoted by

 () (2.10)

Thus the width of a degenerate interval number is zero, that is

 (, -)

The absolute value of an interval , denoted by | |, is the maximum of the absolute

values of its endpoints:

 | | {| | | |} (2.11)

Note that | | | | for every .

The midpoint of an interval is given by

 ()

() (2.12)

Hence, the midpoint of a degenerate interval number , - is . We observe

that any interval can be expressed in terms of its midpoint and width as follows:

 () [

 ()

 ()] ()

 (), - (2.13)

As an illustration of the above definitions refer to Figure 2.1 and Example 2.2.

Figure 2.1: Width, absolute value, and midpoint of an interval

𝑥 𝑋 𝑋 𝑚(𝑋)

𝑤(𝑋)

|𝑋|

04

Example 2.2 Let , - and , -. The intersection and union of

and are the intervals

 , () ()- , -

 , () ()- , -

We have () , () , and | | () The midpoint of is

 () . Using (2.13), we can write , -.

After defining the width and midpoint of intervals, we can rewrite the mid-rad

representation (2.2) of an interval as follows:

 ()

 ()

 (2.14)

2.1.4. Order Relations on Intervals

Interval numbers are sets of real numbers. Thus ordering relations for interval

numbers extend those of real numbers. For example the ordering relation can be

extended and applied to intervals as follows

 (2.15)

For instance, the interval , - , - is satisfied. This ordering relation for real

numbers is known to be transitive, i.e. if and , then for any

 . The transitive property is still valid for intervals

 (2.16)

Recalling the interval definition of the zero (2.3) and the ordering relation (2.15),

an interval is said to be positive if or negative if . That is, we have

 if for all .

Another ordering is the set inclusion, , for intervals which is defined by:

 (2.17)

For instance, we have , - , -. Both and are partial orderings on , not

every pair of intervals in are comparable. For example, if and are overlapping

intervals such as , - , -, then neither is contained in nor is

contained in . However, , -, is contained in both and .

2.2. Algebraic Operations for Interval Numbers

The basic algebraic operations for real numbers can be extended for interval

numbers. In this subsection, we present some basic arithmetic operations for intervals

by extending the arithmetic operations for real numbers. For instance, the result of

adding two intervals is an interval containing the sums of all pairs of numbers, one

from each of the two initial intervals. By definition then, the sum of two intervals and

 is given by the set

05

 * + (2.18)

The difference of two intervals and is given by the set

 * + (2.19)

The product of two intervals and is given by

 * + (2.20)

Finally, the division is given by the set

 {

 } (2.21)

provided that . Since all algebraic operations of interval numbers have the same

general form, they can be summarized by the following definition

 * + (2.22)

where stands for any of the four binary operations introduced above.

In the following subsections, we present endpoint formulas for the four binary

operations introduced above.

2.2.1. Addition on

Since means that and means that , we see by

addition of those inequalities that the numerical sums must satisfy

Hence, the formula

 [] (2.23)

can be used to implement (2.18).

Example 2.3 Let , - and , - as in Example 2.2. Then

, () - , -. This is not the same as , -.

2.2.2. Subtraction on

Similar expressions to (2.23) can be derived for the remaining arithmetic

operations. For subtraction we add the inequalities and to

get . It follows that

 [] (2.24)

Note that (), where [] * +.

Example 2.4 If , - and , -, then , - and

() , -.

06

2.2.3. Multiplication on

The product of two intervals and is given by

 , - { } (2.25)

Since the multiplication on is continuous, it follows that the multiplication on is

continuous and the product attains its maximum and minimum values.

Example 2.5 Let , - and , -. Then * + and

, - , -.

We also can evaluate the product of a scalar and an interval just by multiplying this

scalar with the interval's infimum and supremum, for instance, , -

, -.

The previous formula of interval multiplication requires calculating four real-

number products; however, that is not necessary in all cases. Actually, by testing for the

signs of the endpoints , , , and , the formula for the endpoints of the interval

product can be broken into nine special cases. In eight of these cases, only two products

need to be computed. Hence, this notion may be taken into consideration to improve the

efficiency of any implementation of the interval product. Table 2.1 illustrates the

different cases.

Table 2.1: Endpoint formulas for interval multiplication

Case

0 ≤ and 0 ≤ . .

 < 0 < and 0 ≤ . .

 ≤ 0 and 0 ≤ . .

0 ≤ and < 0 < . .

 ≤ 0 and < 0 < . .

0 ≤ and ≤ 0 . .

 < 0 < and ≤ 0 . .

 ≤ 0 and ≤ 0 . .

 < 0 < and < 0 < min{ } max{ }

2.2.4. Division on

As with real numbers, division can be accomplished via multiplication by the

reciprocal of the second operand. That is, we can implement equation (2.21) using

07

 (

) (2.26)

where

 {

 } [

] (2.27)

assuming .

Example 2.6 Let , - and , -. Then

 0

1 and

 .

/

, - 0

1. Finally, 2

3 and

 , - 0

1.

2.2.4.1. Extended Interval Arithmetic

According to the extended interval arithmetic [26], the definition of interval

division

, - , - , -(, -)

where

 , - * , -+ ()

can be extended as follows to handle the case where , -:

1. If , then , - ,),

2. If , then , - (- ,),

3. If , then , - (-,

and if , -, the ordinary interval arithmetic can be used to implement the division.

Example 2.7 Let , -. Then

 (- ,).

2.3. Interval Vectors and Matrices

An n-dimensional interval vector, denoted by () where ,

means an ordered n-tuple of intervals. Through the thesis, interval vectors will be

denoted by capital letters such as . A two dimensional example is given for

illustration.

Example 2.8 A two-dimensional interval vector

 () .0 1 0 1/

can be represented as a rectangle in the -plane, see Figure 2.2: it is the set of

all points () such that , and .

08

Many of the notions for point intervals mentioned in previous sections can be

extended to interval vectors with suitable modifications. If () and

 () are n-dimensional interval vectors, then:

If () is a real vector, then we write

 (2.28)

The intersection of and is empty if the intersection of any of their corresponding

components is empty; i.e. , if for some . Otherwise, we have the

following interval vector as a result of the intersection

 () (2.29)

We have the set inclusion for interval vectors which is given by:

 (2.30)

We have many ordering relations in interval arithmetic. One of those relations is given

by (For more details about the interval operators, see [6]):

 (2.31)

The width of an interval vector is the largest of the widths of any of its component

intervals:

 () (()) (2.32)

The midpoint of an interval vector is

 () (() () ()) (2.33)

The norm of an interval vector is

 ‖ ‖

| | (2.34)

where | | is given by (2.11). This serves as a generalization of absolute value.

Example 2.9 Consider the two-dimensional interval vector (, - , -).

We have () () , () .

/ () and

‖ ‖ ((| | | |) (| | | |)) () .

The width, norm, and midpoint of an interval vector in 2D are illustrated in Figure

2.2.

11

Figure 2.2: Width, norm, and midpoint of an interval vector X = (X1,X2)

2.4. Algebraic Properties of Interval Arithmetic

In a previous section, we introduced the definitions of the basic interval arithmetic

operations. With proper understanding of the notation, the arithmetic operators

summarized in (2.22). These definitions lead to a number of familiar looking algebraic

properties which are presented in the following subsections.

2.4.1. Inclusion Monotonicity of Interval Arithmetic

Theorem 2.1 (Inclusion Monotonicity) Let , , and be interval

numbers such that and . Then for the interval operations

 * +, we have

Proof of Theorem 2.1 is presented in [6].

An important consequence is the following lemma.

Lemma 2.1 Let and be interval numbers with and . Then

for the interval operations * +, we have

2.4.2. Commutativity and Associativity

Like the real-number operations, the interval addition and multiplication are

commutative and associative. For any three intervals and , we have:

 ()

 () () ()

 ()

 () () ()

‖𝑋‖

𝑋

𝑋

𝑚(𝑋)

𝑋

10

2.4.3. Additive and Multiplicative Identity Elements

Another common property between intervals and real numbers is the existence of

additive and multiplicative identity elements. For any interval , we have:

, - , - ()

, - , - ()

The previous equations show that the degenerate intervals 0 and 1 are additive and

multiplicative identity elements in the system of intervals, respectively. The degenerate

interval is also an absorbing element for the interval multiplication operation:

, - , - , -

2.4.4. Nonexistence of Inverse Elements

Unlike the ordinary arithmetic, additive and multiplicative inverses do not always

exist for interval numbers. We must be caution that is not an additive inverse for

in the system of intervals. That is

 () [] [] [] , -

But () , - , i.e. is a degenrate interval, else

 (), - (2.35)

Similarly,

 is not a multiplicative inverse for . In general,

 {
[]

[]

 , -

 (2.36)

But

 () . To summarize, there is no additive or multiplicative

inverses in interval arithmetic except for degenerate intervals. However, the inclusions

 and are always satisfied.

2.4.5. Subdistributivity

Another difference between the ordinary and interval arithmetic is that the

distributive law does not always hold for intervals except in some cases provided

below. The following counterexample proves the latter statement. If , -,

 , -, and , -, then:

 () , - (, - , -) , - , - , -
whereas (2.35) gives

 , - , - , - , -

 , - , - , -

That is in general () . However, interval arithmetic has the

following subdistributive law [35]:

 () (2.37)

11

which can be seen in the previous example. Full distributivity holds in certain special

cases. The first case occurs when becomes a real number x, then we have

 () (2.38)

The second case occurs when the intervals and have the same sign, i.e.

 , then the interval multiplication can be distributed over the sum of those intervals:

 () (2.39)

We observe from the algebraic properties discussed previously two important

properties peculiar to the classical theory of interval arithmetic:

Additive and multiplicative inverses do not always exist for interval numbers and

there is no distributivity between addition and multiplication except for certain special

cases. Thus, caution must be taken when using interval arithmetic to solve problems of

uncertainty.

2.5. Outwardly Rounded Interval Arithmetic

In order to work effectively in a real-life implementation, intervals must be

compatible with floating point computing. In practice, outward rounding is

implemented at every interval operation rather than rounding to nearest which is

commonly used in floating point computations. In optimal outward rounding, the

outwardly rounded left endpoint is the closest machine number less than or equal to the

exact left endpoint, and the outwardly rounded right endpoint is the closest machine

number greater than or equal to the exact right endpoint. Those rounded endpoints are

computed by rounding the exact endpoints down (towards negative infinity) and up

(towards positive infinity), respectively.

Example 2.10 () for , - and , - are for example

, - where the same calculation is done with single digit precision, the result

would normally be , - but , - , - so this approach would

contradict the basic principles of interval arithmetic, as a part of the domain of

 (, - , -) would be lost. Instead, it is the outward rounded solution

, - which is used. See Figure 2.3.

12

Figure 2.3: Outer bounds at different level of rounding

To summarize, by outwardly rounded interval arithmetic, we mean the rounding

that must be used to be able to implement the interval arithmetic operations correctly.

This rounding can be achieved by changing the rounding settings of the processor in the

calculation of the upper limit (up) and lower limit (down). Alternatively, an appropriate

small interval , - can be added, where and are small scalars.

2.6. The Interval Dependency Problem

The methods of classical numerical analysis cannot be transferred one-to-one into

interval arithmetic, as dependencies between numerical values in the interval arithmetic

are usually not taken into account.

The dependency problem is a major obstacle to the application of interval

arithmetic. Although interval methods can determine the range of elementary arithmetic

operations and functions very accurately, this is not always true with more complicated

functions. If an interval number occurs several times in a calculation using parameters

and each occurrence is taken independently then this can lead to an unwanted over-

estimation of the resulting intervals. That is obvious in , - instead it results

in the interval [].

Example 2.11 Let the function is defined by

 () (2.40)

The exact range of the function over the interval , - is ,

 -; however,

using the natural interval extension produces a larger range as follows:

, - , - , - , - , -

This overestimation in range calculations is due to the multiple appearance of the

variable in the evaluated function . The following function illustrates how

interval arithmetic deals with multiple appearances of a variable in a given function:

[0.2,0.9]

[0.1,0.9]

[0.16,0.88]

13

 () (2.41)

over , -. On the other hand, there is a better expression of in which the

variable only appears once, namely by rewriting () as addition and

squaring in the quadratic () (

)

 . So the suitable interval calculation is

(, -

)

 0

1

 ,

-

 ,

 - and gives the exact

interval. Figure 2.4 illustrates the two expressions for the above example: the

shaded area represents the overestimation due to the dependency problem, whereas

the red curve represents the exact curve. Figure 2.5 gives a more illustrative insight

of the dependency problem by plotting (2.41) rather than (2.40).

Figure 2.4: Approximate estimate of the value range

Figure 2.5: Treating each occurrence of a variable independently

14

In general, it can be shown that the exact range of values can be achieved, if each

variable appears only once. However, not every function can be rewritten this way. The

dependency and over-estimation problems can have worse effects rather than covering

a large range such as preventing meaningful conclusions.

2.7. The Wrapping Effect

An additional increase in the range results from the solution of areas that do not

take the form of an interval vector (a box). For example, the solution set of the linear

system

 (2.42)

for , - is precisely the line between the points () and (). The best

solution that the interval methods can deliver is the interval vector (, - , -). Of

course, the real solution is contained in this vector. This problem is known as

the wrapping effect. See Figure 2.6, in which the shaded area represents the interval

solution of the above linear system which includes the solid line that represents the

exact solution.

Figure 2.6: Solution set of (2.42) illustrating the wrapping effect

2.8. Interval computing software

In this section, we review a few interval computing software packages.

-1

-1

1

1

15

2.8.1. INTLIB

B. Kearfott and et al, published the interval library INTLIB [28] in 1994. First,

INTLIB was written in Fortran 77 and portable to almost all commonly used computer

platforms. Kearfott later converted it into Fortran 95.

Subroutines in INTLIB perform rigorous interval arithmetic with directed

rounding. Subprograms in this library can be categorized into four groups according to

their functionalities. They are interval arithmetic routines (); set operation

routines (); utility routines (direct rounding, and etc.) and routines that bound

elementary mathematical functions (trigonometric, inverse trigonometric, logarithmic,

exponential, hyperbolic, and etc.) with rigorous interval arithmetic.

2.8.2. Interval BLAS

Basic Linear Algebra Subprograms (BLAS) forms the fundamental tool in

scientific computing. A group of international scientists from governmental agencies,

computer industries, and universities formed a working committee to establish a new

standard for BLAS technology from February 1996 to March, 1999.

This committee proposed the first interval BLAS standard. The functionalities

included in the first release were interval vector operations, interval matrix-vector

operations, interval matrix-matrix operations, set operations involving interval vectors

and matrices, and utility functions involving interval vectors and matrices. Language

binding and interface issues for Fortran 77, 95, and C are specified for about 200

functions and subroutines.

2.8.3. INTLAB

INTLAB is the Matlab toolbox for reliable computing and self-validating

algorithms. It contains the following implementations:

 interval arithmetic for real and complex data including vectors and matrices,

 interval arithmetic for real and complex sparse matrices,

 automatic differentiation [49];

o Gradients to solve systems of nonlinear equations,

o Hessians for global optimization,

o Taylor series for univariate functions,

 automatic slopes,

 rigorous real interval standard functions,

 rigorous complex interval standard functions,

 rigorous input/output,

 accurate summation, dot product and matrix-vector residuals,

 multiple precision interval arithmetic with error bounds,

16

and more.

INTLAB is used in many areas, from verification of chaos to population biology,

from controller design to computer-assisted proofs, from PDEs to Petri Nets. For some

selected references to INTLAB, see [50]. S. Rump [55] and Moore [35] include many

examples based on INTLAB. Tiago Montanher wrote INTSOLVER [23], an interval

based solver for Global Optimization based on INTLAB. A large collection of

verification algorithms written in Matlab/INTLAB is Rohn's VERSOFT [61].

In INTLAB, everything is written in Matlab code to assure best portability.

Rounding is already integral part of Matlab 5.3 (R11) and later versions under

Windows. Preassumption to run INTLAB is IEEE 754 arithmetic and the possibility to

permanently switch the rounding mode. This is true for a large number of PCs,

workstations and main frames.

INTLAB extensively uses BLAS routines. This assures fast computing times,

comparable to pure floating point arithmetic. Interval vector and matrix operations are

very fast in INTLAB; however, nonlinear computations and loops may slow down the

system significantly due to interpretation overhead and extensive use of the operator

concept.

Consider, for example, the following code for timing of arithmetic operations (pure

floating point, interval multiplication of two point matrices, point matrix times interval

matrix and multiplication of two nondegenerate interval matrices):

n=200; A=2*rand(n)-1; intA=midrad(A,1e-12); k=100;

tic; for i=1:k, A*A; end, toc/k

tic; for i=1:k, intval(A)*A; end, toc/k

tic; for i=1:k, A*intA; end, toc/k

tic; for i=1:k, intA*intA; end, toc/k

The result in seconds on a 2.4 GHz Pentium IV is as follows in Table 2.2

(computing times for complex matrices are similar), where A is a point matrix and intA

is the interval representation of A:

Table 2.2: Real matrix multiplication

Dimension
Pure floating

point

Verified

Verified

 ()

Verified

 () ()

100 0.0013 0.037 0.008 0.0114

200 0.012 0.025 0.051 0.074

500 0.18 0.36 0.66 0.92

In [54] and [55], information about background, implementation and timing of

INTLAB is available.

17

2.8.4. A C++ Class Library for Extended Scientific Computing (C-

XSC)

The original version of the C++ class library C–XSC (C for eXtended Scientific

Computing) [30] is about twenty years old. But in the last decade the underlying

programming language C++ has been developed significantly. Since November 1998

the C++ standard [24] is available and more and more compilers support (most of) the

features of this standard. The new versions C–XSC [20] conform to the C++ standard.

The programming environment C–XSC is a powerful and easy to use programming

tool, especially for scientific and engineering applications. C–XSC makes the computer

more powerful arithmetically and significantly simplifies programming in the field of

scientific computing (especially in the field of interval mathematics). C–XSC is

implemented as a numerical class library in the programming language C++.

C–XSC consists of a run time system written in ANSI C and C++ including an

optimal dot product and many predefined data types for elements of the most

commonly used vector spaces such as real and complex numbers, vectors, and matrices.

Operators for elements of these types are predefined and can be called by their usual

operator symbols. Thus, arithmetic expressions and numerical algorithms are expressed

in a notation that is very close to the usual mathematical notation. C–XSC allows

writing verification algorithms in a way which is very near to pseudo-code used in

scientific publications. All predefined numerical operators are of highest accuracy. That

is, the computed result differs from the correct result by at most one rounding.

While the emphasis in computing is traditionally on speed, in C–XSC, the

emphasis is more on accuracy and reliability of results. The total time for solving a

problem is the sum of the programming effort, the processing time, and the time for the

interpretation of results. We contend that C–XSC reduces this sum considerably.

C++ programmers should be able to use and write programs in C–XSC

immediately. C–XSC simplifies programming by providing many predefined data types

and arithmetic operators. Programs are much easier to read, to write, and to debug.

18

Chapter 3 : Interval Linear Algebraic Systems of

Equations

Most of scientific computations begin with inexact initial data. Interval arithmetic

is considered an efficient tool to measure uncertainties in any system by defining

functions on intervals. The interval-valued functions can be very suitable tool to

express many practical problems. For example, those interval functions can be used to

represent the electrical circuits which contain many elements whose values cannot be

exactly determined. The uncertainty in determining the electrical elements’ values

results from manufacturing problems. Using interval arithmetic, we can perfectly

represent those elements’ values and tolerances. The motivation of this chapter is to

give an insight of the basic definitions and properties of interval-valued functions

which will be used throughout the thesis (For more details about the interval-valued

functions, the reader may consult [48] and [35]). In section 3.2, we introduce notions

and definitions from literature for computing refinements of interval extensions and

discuss some issues regarding the convergence for finite interval sequences. Finally,

section 3.3 defines the problem of interval linear systems and introduces the interval

Gauss-Seidel algorithm as a method to solve these linear systems.

3.1. Interval Functions Evaluation

3.1.1. Set Images and United Extension

In this subsection, we consider a real-valued function of a single real variable .

Some definitions are introduced from [35] to define the precise range of values

generated by () as varies through a given interval . We are interested in finding

the image of the set under the mapping :

 () * () + (3.1)

 (3.2)In general, the concept of the image set for a function () is

presented in [35] and is introduced here by (3.2):

 () * () + (3.2)

where are specified intervals.

The next definition is presented in [35] to clarify definitions like the united

extension and the set images.

Definition 3.1 Let be a mapping between sets and , and

denote by () and () the families of subsets of and ,

respectively. The united extension of is the set-valued mapping ()

 () such that

21

 () * () ()+ (3.3)

3.1.2. Elementary Functions of Interval Arguments

The following example shows how it is easy for some functions to compute (3.1),

consider

 () () (3.4)

If [], it is obvious that the set

 () *() + (3.5)

can be expressed as

 ()

{

 0()

 ()

1

0()

 ()

1

0 2()

 ()

31

 (3.6)

The equation (3.5) will be used as the definition of () . But, note that this is

not the same as . For example, consider an interval , -, the

definition (3.6) will results in (, -) , -, whereas , -

 , - , -. However, , - contains , -. The overestimation when we

compute a bound on the range of () as is due to the phenomenon

of interval dependency discussed in section 2.6. Namely, for an unknown number ,

where , if we use the expression , the in the second term is not only

known to lie in but also it must be the same as in the first term, whereas, in the

interval expression , it is assumed that the values in the first and second

terms vary independently.

Interval dependency is a major problem when using interval arithmetic. It is a main

reason that it is not easy to replace floating point computations by intervals in an

existing algorithm. This dependency may produce unsatisfying results.

3.1.3. Monotonic Interval Functions

In this subsection, we introduce some other familiar functions and apply it to

interval arguments. The logic is straightforward with monotonic functions. Figure 3.1

illustrates an increasing function () which maps an interval [] into the

interval

 () [() ()]

20

Figure 3.1: A monotonic (increasing) interval function

As an example of the monotonic functions, we may consider the exponential

function

 () ()

As varies through an interval [], () takes values from () to ().

That is, we can define

 () [() ()] (3.7)

Similarly, for the natural logarithm function

 ()

we have

 [] (3.8)

The more general exponential function () with and leads us

to write

 [] (3.9)

All these functions are increasing ones. With decreasing functions, the endpoints

should be ordered correctly. For example, as increases from to , the values of

 with decrease from to . Therefore,

 [] (3.10)

Regarding the non-monotonic functions, with some restrictions they could be

monotonic. The function given by

 ()

is not monotonic, but its restriction to the set , - is decreasing. Hence,

 [] , - (3.11)

𝑋

𝑓(𝑋)

𝑥

𝑦

𝑦 𝑓(𝑥)

𝑓(𝑋)

𝑓(𝑋)

𝑋 𝑋

21

3.1.4. Interval-Valued Extensions of Real Functions

In the previous sections, we discussed definitions of some interval-valued

functions. Those definitions are obtained by computing the range of a real-valued

function () as varied through an interval . This result was equal to the set image

 ().

A different process is discussed in this subsection. We introduce some concepts

from [35] to help us in defining more functions by extending a given real-valued

function by applying its formula directly to interval arguments.

First, we use the following definition from [35] to illustrate the meaning of the

interval extension of a real-valued function.

Definition 3.2 We say that is an interval extension of the real-valued

function , if for degenerate interval arguments, agrees with :

 (, -) () (3.12)

In what follows, an example is given to clarify the previous definition. Consider

the real-valued function given by

 () (3.13)

The equation (3.13) represents a function which differs from the following equation

 () (3.14)

which is a formula—not a function. Any function is defined by two things: (1) the

domain which it acts over, and (2) the mapping rule that specifies how elements of that

domain are mapped. Whereas, these two things are specified in (3.13): the set of real

numbers represents the domain of , and the mapping rule is , the

equation (3.14) does not contain a domain so it is just a formula.

Now, to develop an extension of the function (3.13), we apply the formula (3.14),

that describes this function, to interval arguments. The resulting interval-valued

function

 () [] (3.15)

is an extension of the function (3.13).

After defining the interval extension of the real-valued function (3.13). We would

like to compare () in (3.15) with the set image (). We have

 () 0

1

On the other hand, as increases through the interval [], the values () given

by (3.13) clearly increase from to ; by definition then,

 () 0

1

As it is a simple example, we find that () (): this interval extension of

yields the desired set image (3.1). Unfortunately, the situation is not so simple in

general.

22

3.1.5. The Fundamental Theorem

We introduce in this subsection the fundamental theorem of interval arithmetic. To

do that, we first introduce some preliminary definitions.

3.1.5.1. Subset Property of United Extension

According to [35], the following subset property is applied to the united extensions

defined in (3.3):

 () () () (3.16)

3.1.5.2. Interval Extensions of Multivariable Functions

In this subsection, we introduce generalized versions of the previous concepts

which are suitable to multivariate functions,

 ()

where are interval variables.

Definition 3.3 By an interval extension of , we mean an interval-valued

function of interval variables such that for real arguments

 we have

 () () (3.17)

The latter definition is presented in [35]. As an example of these interval

extensions, we may consider any of the interval arithmetic operations; for instance, the

interval addition. This binary operation could be written as a function of two variables:

 () * +

It is obvious from the above equation that interval addition is the united extension of

the function

 ()

which describes ordinary numerical addition. Other interval arithmetic operations are

defined in a similar manner—recall (2.22). An obvious conclusion is that the interval

arithmetic functions are united extensions of the corresponding real arithmetic

functions.

3.1.5.3. Inclusion Isotonicity

Definition 3.4 We say that () is inclusion isotonic if

 () ()

The previous statement from [35] defines the inclusion isotonic functions. Special

cases of those functions are the united extensions which all have the subset property.

Then, the operations of interval arithmetic must satisfy

 (3.18)

23

because they are united extensions as mentioned before.

3.1.5.4. The Fundamental Theorem

The fundamental theorem of interval arithmetic is stated in this subsection.

Theorem 3.1 If is an inclusion isotonic interval extension of , then

 () ()

Proof [38] By definition of an interval extension, () (). If

 is inclusion isotonic, then the value of is contained in the interval ()
for every () in ().

3.2. Sequences of Intervals

This section deals with sequences of intervals and presents definitions and theories

needed as preparation for the interval algorithms to be presented in Section 3.3

and Chapter 4.

3.2.1. Convergence in Interval Arithmetic

First, we introduce a definition from [35] to illustrate the notion of convergence of

interval sequences in this subsection. After that some theories are presented to give a

detailed overview on the convergence of interval sequences.

Definition 3.5 Let * + be a sequence of intervals. We say that * + is

convergent if there exists an interval such that for every , there is a

natural number () such that (
) whenever , where

is called a metric on and given by

 () {| | | |}

As an analogue to real sequences, we can write

and refer to as the limit of * +.

3.2.2. Lipschitz Interval Extensions

Lipschitz condition and functions are defined in many references such as [42].

Here, we use the definition presented in [35]. We begin with the definition of Lipschitz

functions which is closely related to continuity.

Definition 3.6 An interval extension is said to be Lipschitz in if there is a

constant such that
 (()) () (3.19)

for every .

24

The latter definition is not applicable only to the univariate functions but also for

multivariate ones; i.e. may be an interval or an interval vector ().

Using this definition, it is easy to deduce that the width of () approaches zero

at least linearly with the width of the interval .

Lemma 3.1 If is a natural interval extension of a real rational function and

 () is defined for , where and are intervals or -dimensional

interval vectors, then is Lipschitz in .

Proof [35] For any real numbers and and any intervals and , we have the

following relations:

 () | | () | | ()

 () | | () | | ()

 () |

|

 ()

 (3.20)

Since the natural interval extension has interval values obtained by a fixed finite

sequence of interval arithmetic operations on real constants and the components of

(if is an interval vector) and since implies that | | ‖ ‖ for every

component of , it follows that a finite number of applications of (3.19) will produce a

constant such that (()) () for all .

Not only the interval extensions of rational functions which are Lipschitz, but also

there are certain interval extensions of irrational functions which are Lipschitz. That is

stated and proved in the following lemma.

Lemma 3.2 If a real-valued function () satisfies an ordinary Lipschitz

condition in ,

 | () ()| | | (3.21)

then the united extension of is a Lipschitz interval extension in .

Proof [35] The function is necessarily continuous. The interval (or interval

vector) is compact. Thus, (()) | () ()| for some .

But | | (); therefore, (()) () for .

In what follows some examples of united extensions which are also Lipschitz in

 :

1) 0 1;

2) √ 0√ √ 1 ;

3) [] ;

4) [] , -.

25

Lemma 3.3 Let and be inclusion isotonic interval extensions with

Lipschitz in , Lipschitz in , and () . Then the composition

 () (()) is Lipschitz in and is inclusion isotonic.

Proof [35] The inequality

 (()) ((())) (()) ()

shows that is Lipschitz in .

3.2.3. Convergence of Interval Sequences

Now, we proceed to define the basic concepts of convergence for a finite interval

sequence.

Definition 3.7 [35] An interval sequence * + is nested if for all .

The following lemmas show that nested sequences always converge.

Lemma 3.4 Every nested sequence * + converges and has the limit
 .

Proof [35] { } is a non-decreasing sequence of real numbers, bounded above by

 , and so has a limit . Similarly, { } is non-increasing and bounded below by

and so has a limit . Furthermore, since for all , we have . Thus * +

converges to []
 .

Lemma 3.5 Suppose * + is such that there is a real number for all .

Define * + by and for . Then is nested

with limit , and

 (3.22)

Proof [35] By induction, the intersection defining is nonempty so * + is well

defined. It is nested by construction. Relation (3.22) follows from Lemma 3.4.

Definition 3.8 [35] By the finite convergence of a sequence * +, we mean

there is a positive integer such that for . Such a sequence

converges in steps.

The following example illustrates the above definitions and lemmas.

Example 3.1 Let , -

 () generates a

nested sequence * +. The rational interval function ()

 is inclusion

isotonic. Therefore, ()
, -

 , - , -. It

follows that () for all by induction. By Lemma 3.4, the

sequence has a limit . If we compute * + using interval arithmetic, we will

26

obtain a sequence *
 + with

 for all . More precisely, let
 be defined

by
 , -, and

 {

 }

For . It follows from Lemma 3.5 that
 is nested and that the limit

of * + is contained in the limit
 . The sequence *

 + will converge in a

finite number of steps. For example, with three-digit IA we find

 , -

 , -

 , -

 , -

 , -

 , -

and
 for all . Whereas, we have finite convergence in four steps

using IA, the real sequence converges to

 (after infinite

number of steps) from any .

3.2.4. Stopping Criterion

In this section, we are interested in studying the stopping criteria for nested

sequences which we will use later in this thesis. In next chapter, we present numerical

interval algorithms for solving systems of nonlinear equations. So, we have to define

the criterion that we will use to check whether the algorithm reaches a suitable solution

for the problem or not. The stopping criterion mainly depends on the accuracy required

by the problem and the precision representation of machine numbers.

For any fixed precision representation of machine numbers using () bits

 with fixed, there is a finite set of representable numbers. Hence, there is a

finite set of intervals with machine number endpoints.

The following equation represents a stopping criterion for iterative interval

algorithms that produce nested sequences of intervals with machine number endpoints.

Since the sequence * + is a nested sequence, it converges in a finite number of steps

according to Lemma 3.4 and Lemma 3.5. Hence, we can compute the until

 (3.23)

If the intervals are generated by a procedure of the form

 () (3.24)

such that each depends only on the previous , then it can be shown that (3.23) is

sufficient to guarantee convergence (For more details, the reader should consult section

6.3 in [35]).

In particular, if () is a rational expression in and if is an interval such that

 () , it follows that * + defined by

 () (3.25)

27

is nested with

and converges to some with () and for all .

With interval arithmetic, it may happen that () but for

some . Then we should compute

 () (3.26)

instead of (3.25) and stop when (3.23) is satisfied.

The last possibility is that the interval () is empty, then there is no

such that () . This follows from the inclusion isotonicity of in [35], if

 () and , then () () and so () ; therefore, if

 () is empty, there is no such .

Whereas the following list summarizes the different possibilities of a sequence’s

convergence, the next two examples from [35] illustrate the above notions:

 If () , that sequence does not converge,

 Else if () and () , then this sequence converges to an

interval ,

 Else if () but () , then we cannot conclude anything.

Example 3.2 Let

 ()

If we take , -, then

 ()

, - [

]

Since () , there is no fixed point of in, -. If we take

0

1 instead, then

 ()

[

] [

]

Here () 0

1; we cannot conclude anything since () .

Finally, with , -, we have () (, -) 0

1. This time,

 () , so has a fixed point in . The iterations

 () (3.27)

produce, in three-digit IA,

28

 , - , - , -

 , - , - , -

 , - , - , -

 , -

 , -

 , -

 , -

 , -

 , -

 has a fixed point in , -.

If the process generating the sequence depends explicitly on as well as on ,

say,

 ()

then we might have for some and yet even though * + is

nested. The following example illustrates this point.

Example 3.3 Let

 (, -) , - (3.28)

Here

 , -

 , -

 , -

 [

]

 [

]

 , -

Hence, (3.23) is a valid stopping criterion if and only if * + is nested and

generated by (3.27) with () depending only on .

3.3. Interval Linear Algebraic System of Equations (ILASE)

In this section, we are interested in finding solution of interval linear systems of

equations. The material presented here helps us in the next section where we study

solving nonlinear systems using interval arithmetic algorithms.

An ILASE is defined as follows

 (3.29)

31

where is a regular matrix and is an interval vector. The vector of

unknowns is denoted by . The corresponding solution set, known as the united

solution set, S is defined in [19] by

 * () () ()+ (3.30)

This is the most popular form of the solution of (3.29). Other forms for the solution set

of (3.29) are given by Shary [57].

The solution set S is generally not an interval vector and is non-convex. Thus, it is

common to seek the interval vector which is the minimum possible interval vector

containing S. It is called the optimal interval solution vector, and it is written in the

form

 []

()

()

 * +

 (3.31)

Definition 3.9 is regular if and only if the corresponding solution set S is

bounded, provided that contains at least one regular matrix, see Rohn[52].

The regularity of an interval matrix is insured if

 (
) (3.32)

where () is the spectral radius. The more restricted condition for regularity is

 ‖|
 | ‖ (3.33)

with | | denoting the corresponding matrix with the absolute values of its entries

taken component-wise.

Initially, methods based on the interval version of the Gaussian elimination

techniques, i.e. using interval arithmetic, were denoted by IGA and were extensively

studied by many authors. Those methods were found to yield excellent results for

narrow interval systems only under some preconditioning of the interval matrix.

Preconditioning was introduced by Hansen[18] to retard the growth of interval widths.

The most commonly used method for preconditioning is to multiply by an approximate

inverse of the central matrix . However, when the intervals are wide those methods

were found to yield loose and misleading bounds (because of the accumulation of errors

and the dependency problem which is the main drawback in interval arithmetic) and the

solution obtained is quite far from being sharp, see Hansen[17] and Ning and

Kearfott[45] for an illustration.

Several other methods were developed since the pioneering work of Oettli and

Prager to obtain as sharp bounds as possible for the solution set. Oettli-Prager Theorem

[46] states that:

30

Theorem 3.2 (Oettli-Prager Inequality) Let . Then

 ̃ () | ̌ ̃ ̌| ()| ̃| ()

Proof[46] Put ̃. Then ̃ | ̌ ̌| ()

 (). Since ̌ ̌ ̃ and () ()| ̃| | ̌ ̃ ̌| ()| ̃| ().

Many methods have been introduced in the literature for the solution of an ILASE,

refer to the text books Deif [7], Hansen [17] and Neumaier [42], and the references

therein. Other solution methods can be also found in papers of Gay [9], Hansen [16],

Jansson [25], Rohn [52] and Shary [57].

3.3.1. Interval Gauss–Seidel

Here, we introduce one of the most commonly used methods in solving interval

linear systems; namely, Interval Gauss-Seidel. It is the interval version of the classical

Gauss-Seidel method. It was originally introduced by Hansen et al. in the Hansen–

Sengupta method [13]. In the interval version of GS, Kearfott (see [29, Chapter 3])

uses a preconditioner matrix which is typically, but not necessarily, chosen to be

(())

, obtaining

 (3.34)

Like the classical GS, the th row of the preconditioned system (3.34) is solved to

obtain a new range for by substituting the ranges for , using the most recent

value of wherever possible. The following equations represent the iteration

equations for the interval Gauss–Seidel method:

()

 ̃

{ ∑

 ∑

}

 ̃

 (3.35)

where { }. A big advantage of the interval version of GS is that it can find more

than one solution in one initial box, if exist. That may happen if a step of (3.35) results

in two boxes rather than one box. In this case, we have more than one solution in the

initial box and we should consider each box separately. The C++ and Matlab codes of

the interval GS is introduced in Appendix A.1. For more development, including use of

preconditioners other than the inverse midpoint matrix, see [29].

In the next chapter, we use the interval Gauss-Seidel to solve perturbed linear

systems as a step in our approach to bound solutions of the perturbed nonlinear

systems.

Further discussion of interval methods for solving perturbed linear systems may be

found in [1], [14], [35], and in various other references. The following example uses the

interval Gauss-Seidel method to find the solution set of a perturbed linear system.

31

Example 3.4 Let

(
, - , -
, - , -

) (
, -

, -
) (3.36)

If we take (, - , -) , then we can use the interval Gauss-

Seidel to bound the solution of this system. A step of GS is done below:

 (()) .

/

 .

/

 (
, - , -

, - , -
)

 (
, -
, -

)

()

{ ∑

()

 ∑
()

}

 () (
, -
, -

)

 () (
, -
, -

) (
, -
, -

) (
, -
, -

)

We may use Oettli-Prager inequality to find a narrower solution set to (3.36).

Figure 3.2 shows the solution set obtained from the Oettli-Prager inequality.

 ̌ .

/ ̌ .

/

 () .

/ () .

/

| ̌ ̃ ̌| ()| ̃| ()

| | | | | |

| | | | | |

2nd quad

1st quad

3rd quad

4th quad

32

Figure 3.2: Solution set to (3.36)

3.4. Interval nonlinear systems of equations

In the next chapter, we consider finite systems of nonlinear equations

 ()

 ()
 (3.37)

which we may write in vector notation as

 () (3.38)

We can consider two cases: (1) the functions are exactly representable real-

valued functions, or (2) the functions have coefficients known only to lie in certain

intervals. We will discuss case (1) first and extend the results to case (2).

In the next chapter, we will consider three methods that can be used to solve

interval nonlinear systems of equations. Each method has its own advantages that will

be covered.

33

Chapter 4 : Perturbed Nonlinear Systems of Equations

Interval methods that bound the solutions of real-valued nonlinear systems have

been studied in the literature for decades. Our focus here is on solving nonlinear

perturbed systems. We present some interval methods such as Interval Newton,

Krawczyk, and Hansen-Sengupta to solve those perturbed problems. In section 4.5, we

introduce a modified version of the Interval Newton Method to bound the solutions of

nonlinear systems with inexact data.

Interval Newton methods of various types have been published for finding and

bounding solutions of systems of real-valued nonlinear equations. Hansen and

Greenberg [12] combine various features of these methods into a single algorithm of

greater efficiency.

In his 2006 paper, Hansen [15] considers various issues in multidimensional

interval Newton methods and gives an algorithm based on consideration of them. These

issues include choice of points of expansion, computing and reusing Jacobians, and

choice of the preconditioner.

There are other interval algorithms which were introduced to solve nonlinear

systems such as Krawczyk method. Krawczyk introduced a modification on the interval

Newton method which avoided solving interval linear systems using Gauss-Seidel by

not attempting to obtain a sharp solution of the system (see [32]). Another algorithm

was introduced by Hansen and Sengupta in 1981 (see [13]) and a parametric form of

this algorithm to solve the perturbed problems was introduced later in 2008 (see [11]).

There are other papers which consider the area of optimization with perturbed data.

For example, Dinkel, Tretter, and Wong [8] show how interval analysis methods can be

used to study the optimal solution of perturbed constrained optimization problems.

In this chapter, we also consider some problems where there might be uncertainty

about the values of its parameters. For example, those parameters might be measured

quantities of uncertain accuracy. The function , which we seek to find its zeros, might

involve numbers that cannot be exactly expressed in the computer's number system. For

example, the function might be expressed in terms of transcendental numbers such as .

Any such parameters or numbers can be expressed as intervals that contain their

true values and whose endpoints are machine-representable numbers. The value of a

function () involving such intervals is itself an interval for any . In this research,

we discuss a slight modification made on interval Newton method to solve those

perturbed nonlinear systems.

In this thesis, we study the use of interval Newton operator for finding and

bounding the zeros of functions whose coefficients are not exactly known. This may

occur in applications such as the sensitivity analysis of most of the engineering

problems such as the sensitivity analysis that is performed on electrical circuits.

The chapter is organized as follows: In section 4.1, the univariate interval Newton

method is introduced. Interval methods for solving multivariate nonlinear systems of

equations are given in section 4.2. The perturbed problem formulation and the

34

derivation of the existence and convergence theories are given in section 4.3. In

section 4.4, we consider the interval algorithms for bounding the solutions of perturbed

nonlinear systems of equations. In section 4.5, the modified interval (two-stage)

Newton method is introduced. Numerical examples that illustrate the method are given

in section 4.6.

4.1. Univariate Interval Newton’s Method

In this subsection, the interval Newton’s method for solving a nonlinear equation is

presented. Our approach is similar to what has been introduced in presenting interval

Newton method in [35].

Let be a real-valued function of a real variable , and suppose that is

continuously differentiable. We search for a solution of the equation

 () (4.1)

in a given interval , -. Using the mean value theorem, we have

 () () ()() (4.2)

for some between and . If there exists a solution to (4.1) in the interval , -,

then it would satisfy

 () ()() (4.3)

for any real number , -. The previous equation becomes

 (, -)

 ((, -))

 ()
 (4.4)

if we take (, -) . As , -, we may write the interval form of (4.4) as

follows

 () ()
 (())

 ()
 (4.5)

where , -, () is an inclusion monotonic interval extension of (), and

 () is the interval Newton operator which is an interval that contains the solution if

 (). Finally, the algorithm uses the following equation

 () () (()) () (4.6)

to update the interval at each step. The following theorem discusses the existence and

convergence of the algorithm.

Theorem 4.1 If an interval ()
 contains a zero of (), then so does ()

for all , defined by (4.6). Furthermore, the intervals ()
 form a

nested sequence converging to if (())

35

Proof [35] If (()), then (()) for all and (()) is not

contained in (()), unless . (())/ . Therefore (())

 (()).

Convergence of the sequence follows.

Example 4.1 Suppose we wish to solve (4.1) with

 () (4.7)

 () is an interval extension of () . Hence,

 () ()
 ()

and (4.6) looks like

 () () { (())
 (())

 () }.

Taking ()
 , -, we obtain

 () , -

 () , -

 () , -

 () , -

 () , -

Of course, (4.7) has solution . Solving it using IA, we see that lies

in the interval , -.

The previous example illustrates the fast convergence of the interval Newton

method which is asymptotically error squaring. The following lemma from [35] states

the rate of convergence of the method.

Lemma 4.1 Given a real rational function of a single real variable with

rational extensions , of , , respectively, such that has a simple zero

in an interval , - for which (, -) is defined and (, -) is

defined and does not contain zero, there is an interval , - containing

 and a positive real number such that

 (()) . (())/

 (4.8)

For a proof, see [38] and for an illustrating example that compares between the

convergence of the interval and traditional Newton methods, see [27].

Like the traditional Newton method, the univariate interval Newton method has a

geometric interpretation. Whereas the traditional method is interpreted as an

intersection of a single tangent line with the x-axis, the interval method defines the new

interval () by the intersection of two tangent lines, with slopes corresponding to

the lower and upper bounds of (()).

36

This is illustrated with (()) equal to the range of over () in Figure 4.1 (In

this figure, the dashed slope represents the lower bound on (()), and the dotted

slope represents the upper bound on (()))

Figure 4.1: Geometrical interpretation of the univariate interval Newton method

The software implementation of the interval Newton method are available in

Appendix A.2. There is no need to explicitly program the derivative, since the INTLAB

and C-XSC provide automatic differentiation capabilities which may be used directly.

4.1.1. Extended Interval Newton’s Method

Back to the function (4.7), it has infinite number of solutions which are defined as

 , where is an integer number. Here, we try to widen the initial interval to

include more zeros and see if we can find them all. We may start with a starting interval

, - but that would violate the condition (()) in the proof of Theorem 4.1.

This situation can be handled using extended interval arithmetic.

Using the extended interval arithmetic discussed in subsection 2.2.4.1, we can

allow the range of () to contain zero. Hence, the quotient () () existing in

the computation of

 () () () ()

will split into two unbounded intervals. Then, upon intersecting () with the finite

interval in the iteration formula

 () (()) ()

37

we obtain two disjoint finite intervals. For the function (4.7), by taking () , -,

we obtain

 (()) . (())/

and

 (()) , -

Hence,

 (()) (()) ((())) (())

 * , -+

 (- ,)

Figure 4.2: Extended interval Newton step over X
(0)

=[-5,5], function (4.7)

Intersecting these two infinite intervals with () , - we get the union of

two disjoint finite intervals,

 () , - , -

This is illustrated in Figure 4.2.

Now, we can solve the function (4.7) for each interval individually. Considering

the interval , - as a new initial box, we obtain the Newton operator as two disjoint

infinite intervals (- ,).

Intersecting those two intervals with the interval , - results in two finite intervals

, - and , -. Again, we should solve (4.7)

for each interval individually. After convergence for these two intervals, we can go

back and set () , - to find the other roots in , -. In this way, the interval

Newton method can find all zeros of a function in a given starting interval. In this

example, the interval Newton method finds the four zeros of (4.7) which lie in the

interval , -.

The operation of interval division by any interval that contains zero results in the

interval , -. Hence, we use a custom implementation of the interval division to

find solutions for the previous example. The custom function that performs the division

38

by an interval containing zero is developed in [35] using concepts of extended interval

arithmetic and its implementation can be found in Appendix A.6.

The main difference between the interval Newton method and the ordinary Newton

method is that the interval version deals with sets instead of points which are used in

the ordinary version. Usage of sets rather than points enables the interval Newton

method to find all roots of a function in a given starting interval. Whereas the ordinary

Newton method does not always converge, the convergence of the interval method is

always guaranteed (for more details the reader may consult [40]).

4.2. Multivariate Nonlinear System of Equations

In this section, the most commonly used interval algorithms that find and bound

the solution of nonlinear systems are considered. Each approach has its own

advantages, and all of them are used in practice.

4.2.1. Multivariate Interval Newton Method

We start with the interval Newton method for solving nonlinear systems. The

interval Newton method for solving nonlinear systems can be developed more closely

analogously to the univariate case discussed in section 4.1. The following equations

 () () () (4.9)

 () () (4.10)

 () (4.11)

are analogues to (4.2), (4.3), and (4.4), respectively, where and lie in the domain of

 and is a nonsingular matrix whose th row is defined as

 () (

()

())

with is some point between and . The point matrix is analogue to ().

Although it is not necessary for to be the Jacobian matrix (), it must satisfy the

equation (), where () is an element-wise interval extension of the Jacobian

matrix over some box that contains both and . To obtain the multivariate interval

Newton operator, we may use the following equation

 () () (())

 (()) (4.12)

which is analogue to (4.5). But in this case, we need to find inverse of an interval

matrix which is not an easy operation. Instead of doing such complex operation, the

multivariate Newton operator is redefined as

 () (4.13)

where bounds the solution set to

41

 () () (4.14)

The following theorem is a special case of Theorem 5.1.7 found in [42].

Theorem 4.2 Suppose has continuous partial derivatives over and ()

is an element-wise interval extension to the Jacobian matrix of over .

Suppose is any point in and suppose () is defined as in (4.13), where

is computed by any method for enclosing the solution set to the linear system

 () (). Then () () implies that the function has a unique

solution in that is also in ().

The linear system (4.14) can be solved using any interval method that bounds the

solutions of linear systems, for example, the interval Gauss–Seidel method, mentioned

in Section 3.3.1, or the Krawczyk method for solving linear systems (See [35] for more

details about Krawczyk method). Finally, we stated the different possibilities which

may be encountered during computations:

1) (()) (()) convergence to the unique solution in () where

 (()) denotes the topological interior of the box ().

2) (()) () no solution in ().

3) (()) () no conclusion, but we can restart with

 (()) ().

4) (()) is not defined. In this case, we can bisect () and process each

half separately.

In addition, if we use the interval Gauss–Seidel method or a similar approach, then a

denominator could contain zero, and we have a fifth possibility:

5) (()) () is the union of two boxes; we can process each of these

two boxes separately.

The following example from [35] illustrates the multivariate interval Newton

method.

Example 4.2 Consider the system of equations

 ()

 ()

 (4.15)

For we have the Jacobian matrix

 () (

) (4.16)

For obtaining the interval extensions and of and respectively, we take

the natural interval extensions of the corresponding real functions, simply

evaluating (4.15) and (4.16) in interval arithmetic:

 ()

 ()

 () (

)

40

Solving (4.15) using (, - , -) as an initial box. Then, we

compute () and the new box by solving (4.13). Subsequently, we have

 () (
, -

, -
)

This method produces a nested sequence of interval vectors containing the

solution, and using IA converges in a finite number of steps to an interval vector

containing a solution of (4.15) and is given by.

 (
, -

, -
)

The solution obtained is the smallest box that can be found bounding the

solution of (4.15).

4.2.2. The Krawczyk Method

In this subsection, we consider another interval method for solving nonlinear

systems known as: the Krawczyk method [32].

Suppose that in (3.37) is continuously differentiable in an open domain .

Suppose that we can compute inclusion isotonic interval extensions and for and

 respectively, defined on interval vectors . We have the following

computational test for the existence of a solution [32, 37].

Theorem 4.3 Let Y be a nonsingular real matrix approximating the inverse of

the real Jacobian matrix (()) with elements (()) () at

 (). Let y be a real vector contained in the interval vector . ()

is defined as follows

 () () * ()+() (4.17)

If the Krawczyk operator denoted by () , then (3.37) has a solution in ,

it is also in ().

An early work containing the proof of this theorem is given in [37]. The proof is

based on a generalization of the Brouwer fixed-point theorem, or a specific instance of

the Schauder fixed-point theorem [56]. Here, we present the proof found in [35].

Proof[35] Define () (). Then, since is a nonsingular matrix,

 () if and only if () . Thus, if there exists an such that ()

 , that is, if there is a fixed point of in , then there is a solution to () in .

However, if the Jacobian matrix of at is denoted by (), then we have

 () ()

Therefore, the mean value extension of over about the point is simply

 () * ()+() ()

Thus, () must contain the range of over , that is, () (). Thus, if

 () , then () , the hypotheses of the Schauder fixed-point theorem hold,

so g has a fixed point in , so () has a solution in .

41

For instance, if we choose (), then () lies in the interior of if

‖ () ()‖

 ()

 (4.18)

Thus, for an n-cube X, (4.18) is sufficient for the existence of a solution to (3.38) in .

The following theorem from [35] states that the same condition (4.18) is also sufficient

to guarantee convergence of the interval Krawczyk method.

Theorem 4.4 Let be an n-cube, (), and a nonsingular real matrix.

Suppose (4.18) is satisfied. Put () , () and consider an arbitrary

real vector () in (). Then the system (3.37) has a unique solution in , and

the following algorithm converges to the solution [36, 37]:

 () () (()) () (4.19)

where

 (()) () () (()) * () (())+ ()

and

 () (()) () () (())

and where () is chosen as

 ()

 {
 , ((()))- ‖ (())‖ ‖ () (())‖

 ()

The following example illustrates the Krawczyk method.

Example 4.3 Consider the system of equations solved in Example 4.2.

Suppose we decide to try (, - , -) . Then, we have

 (()) (
 (, -) (, -)
 (, -) (, -)

) .

/

As an approximate inverse of this matrix, we will take

 .

/ (4.20)

Putting () (), we find from (4.1) for the 2-cube ,

 () (, - , -)

Since ‖ () ()‖ () , the hypotheses

for Theorem 4.4 are satisfied. The iterative method (4.19) converges to a

solution of (4.15) using given by (4.20) from () (, - , -) .

It produces a nested sequence of interval vectors containing the solution, and

using IA converges in a finite number of steps to an interval vector containing a

solution of (4.15).

It is shown in [34] that the widths of the containing interval vectors converge

quadratically to zero if () is a Lipschitz extension of (). The Krawczyk method

42

can be implemented in INTLAB and C-XSC, for more details and the codes see

Appendix A.3.

4.2.3. The Modified Krawczyk Method

In this subsection, we consider another interval method for solving nonlinear

systems known as: the Krawczyk method [32]. A simple modification of Krawczyk’s

algorithm for the solution of a system of nonlinear equations is presented in [63]. It is

shown that under the hypotheses imposed in [34], [36], and [37], the modified

algorithm converges more rapidly than Krawczyk algorithm and with greater

computational efficiency.

The modified Krawczyk algorithm is as follows:

1) Compute () (()).

2) Compute () * ((()))+ .

3) Set () ().

4) Compute () ‖ () (())‖.

5) Set .

6) Set
()

 ()
()

 ().

7) Compute
()

()

 () .
()

/ * () (())+(
()

()

).

8) Compute
()

()

()

.

9) If
()

()

 and , then stop; else if , then enlarge () and go

to 1).

10) Set
()

()

.

11) Compute
()

 (
()

).

12) If , then go to 14.

13) Set and go to 7.

14) Set ()
()

 ()
()

.

15) Compute () * ((()))+ .

16) Compute () ‖ () (())‖.

17) If () (), then set () () () (), and go to 20.

18) Set () ().

19) Compute () ‖ () (())‖.

20) Set and go to 6.

4.2.4. Hansen-Sengupta Method

In this subsection, we introduce a more efficient method than Krawczyk: Hansen-

Sengupta. Hansen-Sengupta method produces, in each iteration, a smaller box than

what is produced by Krawczyk’s iteration. Hence, unlike Krawczyk method, Hansen-

Sengupta method needs fewer steps for convergence.

43

The presentation given here follows the one given by Neumaier in [42] and

Goldsztejn in [10]. Recall the interval Gauss-Seidel method from Section 3.3.1, the

interval GS operator is defined in this section as follows: First in dimension one,

 () * | + (4.21)

And, we have the special case where , the previous expression is reduced to

 () 2

3 , - (for the expression in the case , see [42]). Second, the

multidimensional Gauss-Seidel is defined as follows: () () where

()

 (∑
()

 ∑
()

) (4.22)

The interval vector in the latter equation does not appear in the definition of the

interval Gauss-Seidel discussed in Section 3.3.1 because it is considered equal to the

interval vector . Then, the Hansen-Sengupta operator [13] can be defined as follows

 ̃ (̃ ̃) (4.23)

where and . The following theorem proves the existence and

convergence of the Hansen-Sengupta method (see [42] and [11]).

Theorem 4.5 Let , ̃ and
 such that: ,

 (̃) and 2

() | 3. If () denotes (4.23) then:

1) and () implies ().

2) If () () then has a unique zero in ().

One can use Lipschitz interval matrices instead of the interval derivatives to release

the differentiability hypothesis, and can use slope matrices to improve the enclosure;

however, the uniqueness of solution is lost (the reader may consult [42] for details).

To improve the efficiency of the Hansen-Sengupta operator, a preconditioning

matrix can be used to solve the nonlinear system. Hence, we will solve the

preconditioned system () , where is a nonsingular real matrix. The

preconditioning matrix is always chosen so that is close to the identity.

4.3. Perturbed Nonlinear Systems

Solving parameter-dependent systems of equations is an important part of

scientific computation. Traditionally, this is done either by continuation methods which

trace a particular solution curve, as in [2] and [51], or by linearizing the equations

around a particular solution and to deduce from this linearization the effect on the

solution of small changes in one or several parameters. The latter technique has become

known under the name of sensitivity analysis. Because of the negligence of higher-order

nonlinearities, traditional sensitivity analysis is valid only for sufficiently small

44

changes. In this chapter, we use interval analysis to find and bound the solution of

perturbed nonlinear systems.

While some interval methods that solve the real-valued nonlinear systems, like

interval Newton, is known to be always convergent, the convergence in solving

perturbed nonlinear systems is not guaranteed. In the spirit of earlier work by Neumaier

[43], we show here by examples that finding and bounding solutions of perturbed

problems depends on the parameters width. The numerical examples discussed here

show that for narrow parameter intervals the verified algorithms give excellent result,

and unreasonable overestimation need not be feared. But for wider ranges of

parameters, interval algorithms produce enclosures which are much wider than the true

range of the solution of the problem considered.

In this section, we state the definition of the perturbed nonlinear system for which

we are interested in finding a solution. Let be a continuously

differentiable function of n variables and m parameters. Then we write the problem in

the form of:

 ()

 ()
 (4.24)

where () and () . In vector notation, we

define the solution to this problem to be the set * () + for . For a

given value of , we expect the function to have a set of discrete zeros. As varies

over , a given zero, say becomes an interval, say . The solution is defined as a

box and given by the algorithms discussed later. In vector notation, the system (4.24) is

written as:

 () (4.25)

4.3.1. An Illustrative Example

In this subsection, an illustrative example is introduced to help readers in

understanding the main problem which is under test in this thesis.

Consider the system of equations

 ()

 ()
 (4.26)

where and are two parameters which are only known to lie in the interval

, -. Figure 4.3 illustrates the solution of . Because of the interval nature of

the functions, each of and is represented as a group of curves, not only one curve.

The intersection between the two groups of functions represents the solution of the

above nonlinear system. Using interval arithmetic, this solution is represented as a box

(2-D interval vector). As shown in Figure 4.3, the over-estimation problem is present,

when interval algorithms are used in calculating the solution.

45

Figure 4.3: Solution of the illustrative example

4.4. Interval Methods for Solving Perturbed Nonlinear

Systems of Equations

In this section, we consider the interval methods for solving the problem (4.24)

defined in section 4.3; namely, perturbed nonlinear systems of equations.

Let be a map that associates with each

 an interval; given by

 () 0 () ()1 (4.27)

where . Such a map is called a function strip. A zero of () is the

set of zeros of () as varies over , i.e.;

 { | ()} (4.28)

is satisfied, i.e.; () (). The zero set of , from which an interval box

containing this set (which can be empty), is computed.

In the following subsections, we use the interval Newton method to solve the

perturbed nonlinear systems and prove the convergence of the method. A parametric

version of Hansen-Sengupta, proposed in [10], is introduced. Regarding the Krawczyk

method, there is no modification in it. It is used as it is to solve perturbed problems.

46

4.4.1. Interval Newton Method (INM) for Perturbed Nonlinear

Systems

In this subsection, we use the Interval Newton Method (INM) to solve perturbed

nonlinear systems. We start with an initial box . Assume () is a

continuously differentiable function of for each . Recall the interval Newton

operator () for real-valued nonlinear systems, see [35]; is given by

 (()) (()) . (())/

 . (())/ (4.29)

and

 () () (()) (4.30)

for () . No change in the interval Newton algorithm is necessary. It is already

designed to solve this problem. Rewriting the operator to consider the variations or

perturbations of the coefficients of the function ; we have

 (()) (()) . (())/

 (()) (4.31)

in terms of the parameters . In this case, the best that the interval method can

do is to compute the smallest box containing the solution set (4.28) or to cover the

solution set with a number of small boxes.

To reduce the method’s complexity, the interval linear system

 (()) ((())) is solved, instead of calculating the inverse of the

interval matrix (()). Hence, (4.31) becomes

 () () (4.32)

In what follows, we derive the existence and convergence of INM for interval-

valued functions (4.31).

Theorem 4.6 Let be a finite interval . If () , then

there exists a simple zero of () in for each real

Proof Assume is a single parameter to simplify exposition. We show that

 () changes sign in for each .

Let be a point in and let points in . From the mean value theorem (MVT)

for each

 () () () ()

where . Thus:

 () () () ()

for each . If (); then () is not finite and () . But if

 (), this assumes that there is no more than one zero of in and if there is a

zero, it is a simple one; denoted by .

Thus there is at least one such that () ; and we conclude that

 ()

47

This proves the existence. Now, we prove the convergence in case of univariate

system.

Theorem 4.7 If an interval ()
 contains a zero of (), then so does

 ()
 for all , defined by (4.34). Furthermore, the intervals ()

form a nested sequence converging to if (())

Proof If (()), then (()) for all and (()) is not

contained in (()), unless ((())). Therefore (())

 (()). Convergence of the sequence follows.

Similarly, we can generalize the previous theorem to prove the convergence of the

multidimensional systems. To summarize, the parametric Newton iteration is given by:

1) Choose a starting box . Put .

2) Compute () and (()).

3) Solve the interval linear system () (()) using the

interval Gauss-Seidel method.

4) Calculate the Newton operator

 (()) (()) (4.33)

5) Calculate the intersection between the previous box with the Newton

operator and take a suitable decision considering the five possibilities that

may occur and listed below.

 () () (()) (4.34)

6) Stop when () () or after a certain number of iterations, else

and go to 2.

Different possibilities of choosing the initial box, still hold:

1) (()) (()) convergence to the unique solution in (),

where (()) represents the topological interior of the box ().

2) (()) () no solution in ().

3) (()) () no conclusion, but we can restart with
()

 (()) ().

4) (()) is not defined. In this case, we can bisect () and process each

half separately.

5) (()) () is the union of two boxes; we can process each of these two

boxes separately.

4.4.2. Hansen-Sengupta Method for Perturbed Nonlinear Systems

In this subsection, another method that finds the zero set of (4.27), namely the

parametric Hansen-Sengupta, is presented. The parametric Hansen-Sengupta operator is

48

expressed by applying its non-parametric version to different inputs. A more general

parametric Hansen-Sengupta was proposed and used in [10].

Theorem 4.8 Let , , ̃ and such that:

 , (̃) and 2

() | 3. If

denotes (4.22) then:

 and and () implies .

If () then for every , () has a unique zero in .

Proof[11] Fix an arbitrary ̂ and define by () (̂).

We are going to apply Theorem 4.5 to . First, (̃) (̂) . Second, as

()

(̂),

{

() | } {

(̂) | } (4.35)

Therefore, Theorem 4.5 can be applied to and the domain , and shows that if

denotes (4.22) then

1) () (that is (̂)) implies .

2) () implies the existence of a unique zero of (that is of

 (̂)) in .

This holds for every ̂ and hence concludes the proof.

To compute the interval vector , we may use an interval extension of the real-

valued function satisfying (̃) . Goldsztejn, in his paper [11], uses the mean-

value extension to compute and the inverse midpoint preconditioning to define the

parametric Hansen-Sengupta operator, denoted by ():

 ̃ ((̃ ̃) () (̃) ̃) (4.36)

with

()

(̃) (())

 ̃ () and ̃ ().

4.5. Two-stage INM for Perturbed Nonlinear Systems

In this subsection, we develop a simple modification to the interval Newton

method, denoted by , for finding a box that contains the zero set defined by (4.28).

One of the most useful properties of the two-stage interval Newton operator is

that we are provided with a means of detecting when a region does not contain a root of

 . As this is a common situation, it is important that we can quickly discard any set that

does not contain any roots. Another important contribution from the properties of

is the simple verifiable condition that guarantees the existence of a unique root within

an interval. The following theorem addresses this.

51

Theorem 4.9 Suppose is a continuous differentiable function on an initial

interval , and (()) for . Let be defined by (4.37),

then if () and (() ()) (), () contains exactly one zero

of . Also

 ()

If () (() ()) , then ()does not contain any zero of .

Proof Part (1) Since (()) is non-singular, then () for all

 () and therefore is monotonic on () for every . In other words, it has

at most one zero in for every . Hence, it is sufficient to find a zero ()

that includes all zeros corresponding to all values of . Since (() ())

 (), using Lemma 3.5, so has exactly one root in () and ().

Part (2) Now, suppose is a zero of and , then previous part results

 (). Consequently () which is a

contradiction. So the proof is completed.

The convergence of (4.37) can be proved similarly like the proof of Theorem 4.7, if

the assumptions of the Theorem 4.9 are hold.

Using interval analysis tools as well as interval Newton method, we consider the

following iteration:

1) Choose a starting box . Put .

2) Compute (()) ((())).

3) Solve the interval linear system (()) ((())) using the

interval Gauss-Seidel method.

4) Calculate the Newton operator (()) (()) .

5) Calculate a new box by intersecting the previous box with the Newton

operator () () (()).

6) Compute ((())).

7) Solve the interval linear system (()) ((())) using the

interval Gauss-Seidel method.

8) Calculate the modified Newton operator

 (() ()) (()) (4.37)

9) Calculate the new box () by intersecting the previous box with the

Newton operator () () (() ()).

10) Stop when () () or after a certain number of iterations, else

and go to 2.

4.6. Numerical Examples

To illustrate the effectiveness of the interval methods in solving perturbed

nonlinear systems, we present in this section four test problems. Those test problems

50

are solved using interval Newton, modified Krawczyk, Hansen-Sengupta, and the two-

stage interval newton algorithm. The software implementations of those algorithms are

presented in Appendix A. Furthermore, the results of the interval methods are

compared with the results of traditional methods, which are used to solve the perturbed

problems such as the Monte-Carlo methods, to illustrate the superior performance of

the interval-based methods over the statistical methods.

Numerical experiments were performed on a computer with an Intel Core2 Duo

T7300 with 2.0GHz. The machine ran under control of a Vista Windows operating

system. The algorithms and problems were implemented using MATLABR2010a and

INTLAB [22].

4.6.1. Univariate Problems

Consider the univariate equation

 () where , -

Starting with an initial box , -, the original interval Newton and the two-

stage interval Newton both find the tightest box in that contains the solution of this

perturbed equation defined by (4.28). The smallest box that is obtained by the two

methods is , -.

4.6.2. Multivariate Problems

In this subsection, we consider both large and small-sized problems appear in

literature as real-valued nonlinear systems. Some modifications are done to those

problems to become perturbed problems and be suitable as test problems for the

algorithms discussed in sections 4.4 and 4.5.

4.6.2.1. Rosenbrock

Consider the system of equations

 ()

 () (
)

 {
, -

 (4.38)

This problem is solved as a real-valued system in [53] and is solved here as a

perturbed problem after adding some parameters to it. Table 4.1 shows the consumed

time in solving (4.38) for different number of unknowns/equations using Krawczyk,

interval Newton, Hansen-Sengupta, two-stage interval Newton, and the Monte-Carlo

methods, where represents the number of unknowns/equations.

Table 4.1: Results of Rosenbrock

Method
Time (Sec)

n=10 n=50 n=100 n=300

51

Modified

Krawczyk
3.874190433651686 11.430137954703696 20.871010874134605 59.283599877169245

Newton 0.234718408849069 1.499954020572510 2.831574072857687 8.587294816804825

Hansen-

Sengupta
0.247091801211230 0.966054456063373 1.748448604852800 5.187728255015042

Two-Stage

Newton
0.261349939569895 1.722768273538183 3.379549500137939 10.192865224445292

Monte

Carlo

(Random

sampling)

1115.6 2676.0 4734.2 23497.7

4.6.2.2. Broyden

Consider the system of equations

 () ()

 () ()

 () ()

 {
, -

(4.39)

This problem is solved as a real-valued system in [4] and is solved here as a

perturbed problem after adding some parameters to it. Table 4.2 shows the consumed

time in solving (4.39) for different number of unknowns/equations using Krawczyk,

interval Newton, Hansen-Sengupta, two-stage interval Newton, and the Monte-Carlo

methods, where represents the number of unknowns/equations.

Table 4.2: Results of Broyden

Method
Time (Sec)

n=10 n=50 n=100 n=300

Modified

Krawczyk
16.113261287949452 97.107854189382707 159.2457731769157 194.6128437783266

Newton 4.560893593752053 23.112668892289907 45.754363529774970 51.701028214947257

Hansen-

Sengupta
5.045687950762602 65.6875989378752 114.8743304245872 595.5990343499167

Two-Stage

Newton
4.327699074499810 24.844256184233000 45.826137416087548 51.031945849371397

Monte

Carlo

(Random

sampling)

1859.2 8108.6 22341.3 185946.9

52

4.6.2.3. Interval Arithmetic Benchmark 1

We consider one of the benchmark problems proposed in the interval arithmetic

community found in [21], [60], and [40]. The benchmark is modified by adding some

interval parameters and becomes:

(4.40)

where {
, -

The final results for (4.40), time consumption, and number of iterations are shown

below in Table 4.3 given that the initial box for interval methods is

 ()

(

, -

, -
, -
, -
, -
, -
, -
, -
 , -
, -)

and the initial point for the traditional algorithm is

 () () .

Table 4.3: Results for Interval Arithmetic Benchmark 1

Method Results Time (Sec)
Number of

iterations

Krawczyk

[0.24416289903528,0.27150387840325]

[0.36074134097093,0.40145295339647]

[0.27778693567346,0.27970310561291]

[0.20051855613113,0.20081936860206]

[0.44523347043033,0.44526944486158]

[0.14917476207366,0.14919303329010]

[0.43179927385240,0.43222015171078]

[0.07323793338412,0.07356761809407]

[0.34596284355806,0.34597075062816]

[0.42725472344260,0.42739782515178]

7.424643076145153 100

53

Hansen-

Sengupta

[0.24486774189222,0.27141678271063]

[0.36099566945698,0.40130370443897]

[0.27795228356957,0.27953774866458]

[0.20053144814019,0.20080648031009]

[0.44523987437411,0.44526297527635]

[0.14917814274224,0.14918969719623]

[0.43186375578489,0.43215564218231]

[0.07325206277927,0.07355349277278]

[0.34596480882303,0.34596884492807]

[0.42728085835085,0.42737169363288]

0.875779673114879 8

Newton

[0.24486774189222,0.27141678271063]

[0.36099566945698,0.40130370443897]

[0.27795228356957,0.27953774866458]

[0.20053144814019,0.20080648031009]

[0.44523987437411,0.44526297527635]

[0.14917814274224,0.14918969719623]

[0.43186375578489,0.43215564218231]

[0.07325206277927,0.07355349277278]

[0.34596480882303,0.34596884492807]

[0.42728085835085,0.42737169363288]

0.870657024845336 8

Two-stage

Newton

[0.24486774189222,0.27141678276708]

[0.36098694204337,0.40130370443960]

[0.27795227955805,0.27953775287234]

[0.20053144813923,0.20080648031109]

[0.44523987432196,0.44526297533103]

[0.14917814274190,0.14918969719660]

[0.43186375572169,0.43215564224552]

[0.07325206277821,0.07355349277387]

[0.34596480882301,0.34596884492808]

[0.42728085835066,0.42737169363308]

0.779798363789230 6

Monte Carlo

(Random

Sampling)

[0.24554526258497,0.27141651330731]

[0.36282756226301,0.40130367953891]

[0.27807982885538,0.27951827118235]

[0.20054414090180,0.20080642540632]

[0.44524105581311,0.44526271827972]

[0.14917846220456,0.14918969204452]

[0.43187829074617,0.43215534789383]

[0.07326597380314,0.07355343259930]

[0.34596478233034,0.34596884361277]

[0.42728536799113,0.42737157562664]

144.5009847620298 10000

4.6.2.4. Interval Arithmetic Benchmark 2

This problem is described in [21] and is implemented here with slight

modifications in some coefficients.

54

where

 , -

The final results, time consumption, and number of iterations are shown below in Table

4.4 given that the initial box for interval methods is

 ()

(

, -
, -
, -
, -
, -
, -

, -)

and the initial point for the traditional algorithm is

 () () .

Table 4.4: Results for Interval Arithmetic Benchmark 2

Method Results Time (Sec)
Number of

iterations

Krawczyk

[0.20748973714159,0.39942395366294]

[0.00000000000000,0.05149833650428]

[0.01588928107892,0.08351971318773]

[0.50000000000000,0.69463030923352]

[0.00000000000000,0.20000000000001]

[0.50000000000000,0.70000000000000]

[2.89999999999999,3.10000000000001]

5.8993543872196 100

Hansen-

Sengupta

[0.32011969813163,0.32562198082145]

[0.00880867411437,0.00963841296401]

[0.04387277149462,0.04816141042664]

[0.61590283640151,0.62044051374013]

[0.00345963586837,0.00397406603726]

[0.56715680879645,0.58627398307465]

[2.96603521787489,2.98969168370741]

2.0949346215790 22

Newton

[0.32011969813163,0.32562198082145]

[0.00880867411437,0.00963841296401]

[0.04387277149462,0.04816141042664]

[0.61590283640151,0.62044051374013]

[0.00345963586837,0.00397406603726]

[0.56715680879645,0.58627398307465]

1.7686881293572 21

55

[2.96603521787488,2.98969168370741]

Two-stage

Newton

[0.32011969813163,0.32562198082145]

[0.00880867411437,0.00963841296401]

[0.04387277149462,0.04816141042664]

[0.61590283640151,0.62044051374013]

[0.00345963586837,0.00397406603726]

[0.56715680879645,0.58627398307465]

[2.96603521787489,2.98969168370741]

1.7594493154856 17

Monte Carlo

(Random

Sampling)

[0.32056783572975,0.32505436486501]

[0.00890875411498,0.00953286539409]

[0.04405737953297,0.04800753227533]

[0.61620567847531,0.62021168954790]

[0.00349906315363,0.00392798375378]

[0.56800958737446,0.58477447845075]

[2.96895847942973,2.98535848254923]

162.55809781690 10
7

We conclude from the previous examples that the interval algorithms used for

solving perturbed nonlinear systems have faster responses than the Monte-Carlo

methods. The difference in consumed time becomes more obvious when the number of

interval parameters or the size of the problem itself increases. However, the interval

algorithms are not always convergent and their convergence depends on the width of

the interval parameters. In the previous examples, the convergence is lost when

retesting the problems with wider interval parameters.

The results show that interval Newton and Hansen-Sengupta algorithms are nearly

similar in performance and both of them are faster than the modified Krawczyk

algorithm. Whilst, the new proposed algorithm, the two-stage interval Newton, shows

the best performance from the execution time preview in most problems that are tested.

The results generated from the two-stage interval Newton are equal in width with the

results coming from the interval Newton.

Another important issue regarding applying the interval methods to find the

solutions of the nonlinear systems is choosing the initial box. It can happen that little or

no progress is made in reducing the size of the current box (in the first step or during a

step of the method). In case of that happens in the first step, i.e. the initial box, we

should consider the different possibilities mentioned in section 4.4.1. And for the little

progress during the method, it is common practice to divide the box in half (say) and

apply the algorithm to each sub-box separately.

56

Chapter 5 : Engineering Applications of Nonlinear

Systems

To illustrate the applicability of the interval methods mentioned in Chapter 4, we

shall consider more practical examples representing engineering problems in this

chapter. The problems discussed here are related to many engineering fields such as

electrical circuits, fluid mechanics, and dynamics of rigid body.

5.1. Zener Diodes

This problem models a circuit described in [31]. It contains two zener diodes as the

active elements. The problem is implemented here with slight modifications in some

coefficients (5.1) and results are listed in Table 5.1. While Figure 5.1 illustrates the

large difference in time consumption between the interval methods and the traditional

methods, Figure 5.2 gives a closer view on the time consumed by each interval method.

 (
)

 (
)

 (
)

 (
)

 (5.1)

where , - and denotes the diode voltage .

Table 5.1: Results of Zener diodes problem

Method Initial vector Result

Time (Sec)

/Number of

iterations

Modified

Krawczyk

[-0.300000000,-0.100000000]

[-2.000000000,-1.199999999]

[0.599999998,1.100000001]

[0.800000000,1.000000000]

[-0.19785859125236,-0.14504558212951]

[-1.86146862397589,-1.44807584435096]

[0.73239721799372,0.99246500025139]

[0.83214007241916,0.89546042209975]

7.3921638783700/

100

Newton

[-0.18121217143835,-0.16162919190336]

[-1.72753898836348,-1.58160264833527]

[0.82090387675569,0.90354292117435]

[0.85169368736668,0.87570332414066]

1.3452033009782/

22

Hansen-

Sengupta

[-0.18121217143835,-0.16162919190336]

[-1.72753898836347,-1.58160264833528]

[0.82090387675570,0.90354292117434]

[0.85169368736668,0.87570332414066]

1.5275387654017/

23

Two-Stage

Newton

[-0.18121217143835,-0.16162919190336]

[-1.72753898836347,-1.58160264833527]

[0.82090387675570,0.90354292117434]

[0.85169368736668,0.87570332414066]

1.0583995312253/

15

Exhaustive

Sampling
0.2

0.2

0.5

1

[-0.18037954837969,-0.16248175343666]

[-1.72081196443950,-1.58797608044654]

[0.82511328733773,0.89897357432029]

[0.85283843762367,0.87472550116871]

123.42337308233/

104

Monte

Carlo

(Random

sampling)

[-0.17925876105317,-0.16269738302663]

[-1.71725855591382,-1.59183120151122]

[0.82694019923042,0.89734239059338]

[0.85309409210239,0.87354559084360]

113.86178781102/

104

57

Figure 5.1: Consumed time by interval and traditional methods to solve (5.1)

Figure 5.2: Consumed time by the four interval methods to solve (5.1)

0

20

40

60

80

100

120

140

Time (Sec)

0

1

2

3

4

5

6

7

8

Modified Krawczyk Newton Hansen-Sengupta Two-Stage Newton

Time (Sec)

58

5.2. Two Tunnel Diodes

This problem models a circuit described in [31] and shown in Figure 5.3. It

contains two tunnel diodes, a linear resistor, and a voltage source connected in series.

The problem is implemented here with slight modifications in some coefficients (5.2)

and results are listed in Table 5.2. While Figure 5.4 illustrates the large difference in

time consumption between the interval methods and the traditional methods, Figure 5.5

gives a closer view on the time consumed by each interval method.

Figure 5.3: Nonlinear circuit given by (5.2)

 (

)

 (

)

 (5.2)

where
 , -

Table 5.2: Results of two tunnel diodes problem

Method Initial vector Result

Time (Sec)

/Number of

iterations
Modified

Krawczyk

[1.600000000,1.700000000]

[0.699999998,0.800000001]

[1.61341211121028,1.70000000000000]

[0.69999999999998,0.80000000000001]

3.4030560448325/

100

Newton
[1.65588719410402,1.67704108398090]

[0.72287843197481,0.80000000000001]

0.2008001715302/

5

Hansen-

Sengupta

[1.65588719410403,1.67704108398089]

[0.72287843197483,0.80000000000001]

0.2040561021024/

5

Two-Stage

Newton

[1.65528794069157,1.67828214063470]

[0.72135752089704,0.80000000000001]

0.0904656876781/

2

Exhaustive

Sampling

0.5

0.5

[0.22485309291253,0.23066576172409]

[0.83553527290137,0.94181003279859]

122.93846522393/

104

Monte

Carlo

(Random

sampling)

[0.22486037203781,0.23062166748250]

[0.83562453751020,0.94064336366313]

122.23806936356/

104

𝐷

𝐷

e=30v

𝑟 𝑘Ω

61

Figure 5.4: Consumed time by interval and traditional methods to solve (5.2)

Figure 5.5: Consumed time by the four interval methods to solve (5.2)

0

20

40

60

80

100

120

140

Time (Sec)

0

0.5

1

1.5

2

2.5

3

3.5

4

Modified Krawczyk Newton Hansen-Sengupta Two-Stage Newton

Time (Sec)

60

5.3. Three Bar Mechanism

This problem models a mechanical system described in [59]. It consists of three

bars. The problem is implemented here with slight modifications in some

coefficients (5.3) and results are listed in Table 5.3. While Figure 5.6 illustrates the

large difference in time consumption between the interval methods and the traditional

methods, Figure 5.7 gives a closer view on the time consumed by each interval method.

 (5.3)

where

 , -

Table 5.3: Results of three bar mechanism problem

Method Initial vector Result Time (Sec)
Modified

Krawczyk

[0.000000000,0.500000000]

[0.699999998,1.200000000]

[0.05121569038858,0.27622684283914]

[0.86395803618009,0.96334550130593]

3.0659874369508/

100

Newton
[0.15182972272616,0.17549676981885]

[0.90541837620206,0.91975780675547]

0.5946115358237/

14

Hansen-

Sengupta

[0.15182972272617,0.17549676981885]

[0.90541837620206,0.91975780675547]

0.9466079487756/

14

Two-Stage

Newton

[0.15182972272617,0.17549676981885]

[0.90541837620206,0.91975780675547]

0.3935273198130/

11

Exhaustive

Sampling

0.5

0.5

[0.15219604746192,0.17496974590696]

[0.90551426416666,0.91949001631011]

111.60235560665/

104

Monte

Carlo

(Random

sampling)

[0.15226451004175,0.17474357691244]

[0.90553359627386,0.91947264958054]

108.36872263095/

104

61

Figure 5.6: Consumed time by interval and traditional methods to solve (5.3)

Figure 5.7: Consumed time by the four interval methods to solve (5.3)

0

20

40

60

80

100

120

Time (Sec)

0

0.5

1

1.5

2

2.5

3

3.5

Modified Krawczyk Newton Hansen-Sengupta Two-Stage Newton

Time (Sec)

62

5.4. Pipe Pump Problem

This problem models the flow through a horizontal pipe between two reservoirs

(for more details see [59]). The problem is implemented here with slight modifications

in some coefficients and results are listed in Table 5.4. While Figure 5.8 illustrates the

large difference in time consumption between the interval methods and the traditional

methods, Figure 5.9 gives a closer view on the time consumed by each interval method.

 ((

 .

/

))

 (5.4)

where

 , -

Table 5.4: Results of pipe pump problem

Method Initial vector Result Time (Sec)
Modified

Krawczyk

[1.6000000000,2.0000000000]

[462.00000000,472.00000000]

[1.809539777879,1.839061797381]

[462.007191354313,471.431126330832]

2.4039322036739/

100

Newton
[1.814751391495,1.833856950443]

[462.322316300895,471.115994188294]

0.2954694660914/

10

Hansen-

Sengupta

[1.814751391495,1.833856950443]

[462.322316300895,471.115994188294]

0.3273747082381/

9

Two-Stage

Newton

[1.814751391495,1.833856950443]

[462.322316300895,471.115994188294]

0.3076946930406/

8

Exhaustive

Sampling

0.5

0.5

[1.81495690432063,1.83377110753643]

[462.407021312768,471.112145676090]

164.78153648019/

104

Monte

Carlo

(Random

sampling)

[1.81501691348726,1.83375935545884]

[462.418521303061,471.110779097566]

162.55809781690/

104

63

Figure 5.8: Consumed time by interval and traditional methods to solve (5.4)

Figure 5.9: Consumed time by the four interval methods to solve (5.4)

0

20

40

60

80

100

120

140

160

180

Time (Sec)

0

0.5

1

1.5

2

2.5

3

Modified Krawczyk Newton Hansen-Sengupta Two-Stage Newton

Time (Sec)

64

5.5. Pipe Flow Problem

This problem models another pipe flow system (for more details see [59]). The

problem is implemented here with slight modifications in some coefficients and results

are listed in Table 5.5. While Figure 5.10 illustrates the large difference in time

consumption between the interval methods and the traditional methods, Figure 5.11

gives a closer view on the time consumed by each interval method.

((

 .

/

))

 (5.5)

where

 , -

Table 5.5: Results of pipe flow problem

Method Initial vector Result Time (Sec)
Modified

Krawczyk

[0.0000000000,0.2000000001]

[0.2999999998,0.6000000000]

[0.01537936747196,0.02081941065837]

[0.29999999999998,0.60000000000000]

2.6868514713462/

100

Newton
[0.01528432073079,0.02094913035837]

[0.29999999999998,0.60000000000000]

0.1516917652942/

4

Hansen-

Sengupta

[0.01528432073079,0.02094913035837]

[0.29999999999998,0.60000000000000]

0.1318404294401/

4

Two-Stage

Newton

[0.01541234911527,0.02079538396412]

[0.29999999999998,0.60000000000000]

0.0741305808420/

2

Exhaustive

Sampling

0.5

0.5

[0.01791762262596,0.01829055887115]

[0.44940042155211,0.45306449489084]

113.61246736666/

104

Monte

Carlo

(Random

sampling)

[0.01792168393879,0.01828832649226]

[0.44942629983675,0.45305169867925]

121.77743672729/

104

65

Figure 5.10: Consumed time by interval and traditional methods to solve (5.5)

Figure 5.11: Consumed time by the four interval methods to solve (5.5)

0

20

40

60

80

100

120

140

Time (Sec)

0

0.5

1

1.5

2

2.5

3

Modified Krawczyk Newton Hansen-Sengupta Two-Stage Newton

Time (Sec)

66

5.6. Manning's Equation

Manning's equation is used to calculate the discharge on an open channel (for more

details see [59]). The problem is implemented here with slight modifications in some

coefficients and results are listed in Table 5.6. While Figure 5.12 illustrates the large

difference in time consumption between the interval methods and the traditional

methods, Figure 5.13 gives a closer view on the time consumed by each interval

method.

√

 ()

 √

 (5.6)

where

 , -

Table 5.6: Results of the Manning's equation

Method Initial vector Result Time (Sec)

Modified

Krawczyk

[1.6000000000,1.8000000001]

[0.8000000000,1.0000000000]

[3.3999999999,3.6000000001]

[1.70712502508040,1.76986930627666]

[0.87114558063228,0.91508047484763]

[3.43087129905698,3.56324958711348]

2.5477020124066/

100

Newton

[1.72190037835037,1.75511444766128]

[0.87868357291775,0.90755287172710]

[3.44776586642814,3.54637825060974]

0.8015268700352/

20

Hansen-

Sengupta

[1.73064581664707,1.74633746743833]

[0.88293065740411,0.90329260696013]

[3.48516613115853,3.50895051095151]

0.6229344092615/

14

Two-Stage

Newton

[1.72190037835037,1.75511444766128]

[0.87868357291775,0.90755287172710]

[3.44776586642814,3.54637825060974]

0.7380743921364/

14

Exhaustive

Sampling
0.2

0.2

0.5

[1.73110543210121,1.74597480821561]

[0.88335854520642,0.90308985618793]

[3.48595025732874,3.50826738786179]

12228.059960973/

106

Monte

Carlo

(Random

sampling)

[1.73125896506238,1.74588630494490]

[0.88343726154489,0.90286648928931]

[3.48614162061702,3.50813841220765]

11397.366936300/

106

67

Figure 5.12: Consumed time by interval and traditional methods to solve (5.6)

Figure 5.13: Consumed time by the four interval methods to solve (5.6)

0

2000

4000

6000

8000

10000

12000

14000

Time (Sec)

0

0.5

1

1.5

2

2.5

3

Modified Krawczyk Newton Hansen-Sengupta Two-Stage Newton

Time (Sec)

68

Chapter 6 : Conclusion

This chapter offers a concluding view to the results obtained throughout this thesis.

After that, section 6.3 provides a summary of contributions of this thesis and outlines

several directions for future research.

6.1. A View to Solving Perturbed Problems Using Interval

Arithmetic

Each algorithm has its advantages and disadvantages, some are more accurate and

some are faster. A comparison among verified computing algorithms (interval Newton,

Krawczyk, Hansen-Sengupta, and two-stage interval Newton) and ordinary techniques

(exhaustive sampling and random sampling) was performed by running several

examples.

Regarding the ordinary nonlinear systems, the verified algorithms are much slower

than the algorithms that do not use this concept. However, the results of verified

algorithms are more accurate.

But for the perturbed nonlinear systems, which are the main focus in this research,

the verified algorithms, not only, produce accurate results but also have faster

responses than other algorithms have. The difference in execution time becomes more

obvious when the number of interval parameters increases. However, the interval

algorithms are not always convergent and their convergence depends on the width of

the interval parameters.

The results show that interval Newton and Hansen-Sengupta algorithms are nearly

similar in performance and both of them are faster than the modified Krawczyk

algorithm. Whilst, the new proposed algorithm-the two-stage interval Newton-shows

the best performance from the execution time preview in most problems that are tested.

The results generated from the two-stage interval Newton are equal in width with the

results coming from the interval Newton.

The two-stage interval Newton method is proved to be the best choice for

perturbed complex problems whose derivatives are dense matrices. On the other hand,

interval Newton and Hansen-Sengupta are considered more suitable to the problems

whose derivatives tend to be sparse.

6.2. A Closer View to the Interval Computing Software

We have implemented the interval Newton and Krawczyk algorithms using both

INTLAB and C-XSC and reached to some concluding remarks. The execution time of

verified algorithms varies with respect to the used tool. C-XSC and INTLAB present

intervals as result. Both give enclosures of the exact result. INTLAB is based on BLAS,

therefore it presents a good performance comparing with C-XSC. The performance

71

presented by C-XSC is not so optimal because the algorithm uses special variables

(data type dotprecision), which are simulated in software to achieve high accuracy. The

results show that C-XSC has reliable results as INTLAB but slower response. The tests

show that the method used in C-XSC is a good choice, but it should be optimized to

gain performance.

6.3. Contributions and Future Work

This research makes the following contributions:

 We formally construct the two-stage interval Newton method for solving

perturbed nonlinear systems and deduce its convergence analysis.

 Although the notion of solving perturbed nonlinear systems using interval

arithmetic is already known, a few attempts are done in this field. Among the

interval methods that are mentioned in this research, only the Hansen-Sengupta

method was already known to have its parametric version. In this research, we

use the interval Newton method to solve perturbed nonlinear systems and

deduce the convergence analysis of the algorithm.

 Based on the idea that perturbed problems appear in many engineering

applications, we provide a comparison between the interval methods and the

methods which are currently used. We present many engineering examples that

prove the efficiency of using the interval methods to perform the sensitivity

analysis on perturbed problems.

The results obtained in this thesis give an insight into some further consequences

and propose some directions for future research. We have already done some initial

steps in some of those directions and we shall continue working on some of the

following:

 Analog simulation focuses on the linear and non-linear behavior of a circuit

over a continuous time or frequency interval. The circuit response is obtained

by iteratively solving Kirchhoff’s Laws for the circuit at time steps selected to

ensure the solution has converged to a stable value and that numerical

approximations of integrations are sufficiently accurate. One of the most time-

consuming analyses is the sensitivity analysis in which the simulator calculates

either the DC operating-point sensitivity or the AC small-signal sensitivity of

an output variable with respect to all circuit variables, including model

parameters. It calculates the difference in an output variable (either a node

voltage or a branch current) by perturbing each parameter of each device

independently. Since the method is a numerical approximation, the results are

not verified and obtained after long time. The interval arithmetic if included

with these simulators will solve the two problems: the unverified results and

the time-consuming simulations.

 Currently all electronic simulators solve the nonlinear systems through a

linearization process which again may result in unverified results. This

problem may be handled by interval arithmetic as shown in this thesis. This

70

thesis show that solving perturbed nonlinear systems using interval arithmetic

is not time-consuming and gives verified results.

71

References

1. Alefeld G., and Herzberger J., Introduction to Interval Computations, Academic

Press, New York, 1983.

2. Allgower E. L., and Schmidt P. H., An Algorithm for Piecewise-Linear

Approximation of an Implicitly Defined Manifold, SIAM J. Numer. Anal., 1985.

3. Brown G. W., Monte Carlo Methods, In E. F. Beckenbach, editor, Modern

Mathematics for the Engineer. McGraw-Hill, New York, 1956.

4. Broyden C. G., The convergence of a class of double-rank minimization algorithms,

Journal of the Institute of Mathematics and Its Applications 6: 76–90, 1970.

5. Corliss G. F., Tutorial on Validated Scientific Computing Using Interval Analysis,

Second Scandinavian Workshop on Interval Methods and Their Applications, 2005.

6. Dawood H., Theories of Interval Arithmetic: Mathematical Foundations and

Applications, LAP, 2011.

7. Deif A. S., Sensitivity Analysis in Linear Systems, Springer Verlag, Berlin, 1986.

8. Dinkel J., Tretter M., and Wong D., Interval Newton Methods and Perturbed

Problems, Applied Mathematics and Computation, 28:211-222, 1988.

9. Gay D. M., Solving Interval Linear Equations, SIAM J. Numer. Anal., vol. 19, pp.

858-870, 1982.

10. Goldsztejn A., A Branch and Prune Algorithm for the Approximation of Non-Linear

AESolution Sets, in Proc. of ACM SAC 2006, pp. 1650–1654.

11. Goldsztejn A., Sensitivity Analysis Using a Fixed Point Interval Iteration, hal-

00339377, version 1, 17 Nov 2008.

12. Hansen E., and Greenberg R., An Interval Newton Method, Applied Mathematics

and Computation, 12:89-98, 1983.

13. Hansen E., and Sengupta S., Bounding Solutions of Systems of Equations Using

Interval Analysis, BIT 21, pp. 203-211, 1981.

14. Hansen E., and Walster G. W., Global Optimization Using Interval Analysis,

Marcel Dekker, New York, 2003.

15. Hansen E., A Multidimensional Interval Newton Method, Reliable Computing,

12:253–272, 2006.

16. Hansen E., Bounding the Solution of Interval Linear Equations, SIAM J. Numer.

Anal., vol. 29, pp. 1493-1503, 1992.

17. Hansen E., Global Optimization Using Interval Analysis, Marcel Decker, NY, 1992.

18. Hansen E., On The Solution of Linear Algebraic Equations with Interval

Coefficients, Linear Algebra Appl., vol. 2, pp. 153-165, 1969.

19. Hassanein M. A., Inverse Problems for Interval Matrices,Ph.D. Thesis, Math.

Physics Department., Fac. Eng., Cairo Univ., 1999.

72

20. Hofschuster W., Kramer W., Wedner S., and Wiethoff A., C-XSC 2.0: A C++ Class

Library for Extended Scientific Computing, University of Wuppertal, 2001, pp. 1-

24.

21. Hong H., and Stahl V., Safe Starting Regions by Fixed Points and Tightening,

Computing, vol. 53, no. 3/4, pp. 323–335, Sep. 1994.

22. INTLAB. INTerval LABoratory, http://www.ti3.tu-harburg.de/rump/intlab/.

23. INTSOLVER,http://www.mathworks.ch/matlabcentral/fileexchange/authors/38793.

24. ISO/IEC 14882: Standard for the C++ Programming Language, 1998.

25. Jansson C., Calculation of Exact Bounds for The Solution Set of Linear Interval

Systems, Linear Algebra Appl. , 251, pp. 321-340, 1997.

26. Kahan W. M., A More Complete Interval Arithmetic: Lecture Notes for an

Engineering Summer Course in Numerical Analysis at the University of Michigan,

Technical report, University of Michigan, 1968.

27. Kearfott R. B., and Walster G.W., On Stopping Criteria in Verified Nonlinear

Systems or Optimization Algorithms, ACM Trans. Math. Software, 26(3):373–389,

Sept. 2000.

28. Kearfott R. B., Dawande M., Du K., and Hu C., Algorithm 787: INTLIB: a portable

Fortran-77 interval standard function library, ACM, Tran. On Math. Software,

Vol. 20, No. 4, pp. 447-459, 1994.

29. Kearfott R. B., Rigorous Global Search: Continuous Problems. Nonconvex

Optimization and Its Applications 13, Kluwer Academic Publishers, Dordrecht, The

Netherlands, 1996.

30. Klatte R., Kulisch U., Lawo C., Rauch M., and Wiethoff A., C-XSC - A C++ Class

Library for Scientific Computing, Springer Verlag, Berlin, 1993.

31. Kolev L. V., Interval Methods for Circuit Analysis, World Scientific Publishing Co.

Pte. Ltd., 1993.

32. Krawczyk R., Newton-Algorithmen zur Bestimmung von Nullstellen mit

Fehlerschranken, Interner Bericht des Inst. für Informatik 68/6, Universität

Karlsruhe, 1968. Computing, 4:187–201, 1969.

33. Miller I., and Freund J. E., Probability and Statistics for Engineers, Prentice-Hall,

Englewood Cliffs, 1977.

34. Moore R. E., and Jones S. Z., Safe Starting Regions for Iterative Methods, SIAM J.

Numer. Anal., 14, pp. 1051-1065, 1977.

35. Moore R. E., Kearfott R. B., and Cloud M. J., Introduction to Interval Analysis,

SIAM, Philadelphia (2009).

36. Moore R. E., A Computational Test for Convergence of Iterative Methods for

Nonlinear Systems, SIAM J. Numer. Anal., 15, pp. 1194-1196, 1978.

37. Moore R. E., A Test for Existence of Solutions to Nonlinear Systems, SIAM J.

Numer. Anal., 14(4):611–615, 1977.

38. Moore R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.

39. Moore R. E., Interval Arithmetic and Automatic Error Analysis in Digital

Computing, Ph.D. Thesis, Stanford University, 1962.

73

40. Moore R. E., Methods and Applications of Interval Analysis, SIAM, Stud. Appl.

Math. 2, Philadelphia, 1979.

41. Moore R. E., The Resolution of Close Minima, Comput. Math. Appl., 25:57–58,

1993.

42. Neumaier A., Interval Methods for Systems of Equations, Encyclopedia Math Appl.,

Cambridge U.P., 1990.

43. Neumaier A., Rigorous Sensitivity Analysis for Parameter-Dependent Systems of

Equations, Journal of Mathematical Analysis and Applications, 144, pp. 16–25,

1989.

44. Neumaier A., Taylor Forms–Use and Limits, http://www.mat.univie.ac.at/~neum ,

2002.

45. Ning S., and Kearfott R. B., A Comparison of Some Methods for Solving Linear

Interval Equations, SIAM J. Numer. Anal., vol. 34, pp. 1289-1305, 1997.

46. Oettli W., and Prager W., Compatibility of Approximate Solution of Linear

Equations with Given Error Bounds for Coefficients and Right Hand Side, Numer.

Math. , vol. 6, pp. 405-409, 1964.

47. Papoulis A., Probability & Statistics, Prentice-Hall, Englewood Cliffs, 1990.

48. Peter H., a Lower bound for Range Enclosures in Interval Arithmetic, Theoretical

Computer Science, 279: 83-95, 1998.

49. Rall L. B., Automatic Differentiation: Techniques and Applications, Lecture Notes

in Computer Science 120. Springer-Verlag, Berlin, 1981.

50. References to INTLAB, http://www.ti3.tu-harburg.de/rump/intlab/INTLABref.pdf.

51. Rheinboldt W. C., Numerical Analysis of Parametrized Nonlinear Equations,

Wiley, New York, 1986.

52. Rohn J., Systems of Linear Interval Equations, Linear Algebra Appl., vol. 126, pp.

39-78, 1989.

53. Rosenbrock H. H., An automatic method for finding the greatest or least value of a

function, The Computer Journal 3: 175–184, 1960.

54. Rump S. M., Fast and Parallel Interval Arithmetic, BIT Numer. Math., 39(3), pp.

534–554, Sep. 1999.

55. Rump S. M., Rigorous and Portable Standard Functions, BIT Numer. Math., 41(3),

pp. 540–562, 2001.

56. Schauder J., Der Fixpunktsatz in Funktionalräumen, Studia Math. 2, 171–180,

1930.

57. Shary S. P., On Optimal Solution of Interval Linear Equations, SIAM J. Numer.

Anal., vol. 32, pp. 610-630, 1995.

58. Shayer S., Interval Arithmetic with Some Applications for Digital Computers,

Technical Report Number LMSD5- 13-65-12, Lockheed General Research

Program, 1965.

59. Urroz G. E., Applications of Nonlinear Equations With SCILAB,

infoclearinghouse.com, 2001.

http://www.mat.univie.ac.at/~neum

74

60. Van Hentenryck P., McAllester D., and Kapur D., Solving Polynomial Systems

Using a Branch and Prune Approach, SIAM J. Numer. Anal., vol. 34, no. 2, pp.

797–827, Apr. 1997.

61. VERSOFT, http://uivtx.cs.cas.cz/~rohn/matlab/.

62. Wang Q., and Stengel R. F., Probabilistic Control of Nonlinear Uncertain Systems.

63. Wolfe M. A., AmodificationofKrawczyk’salgorithm, SIAM J. Numer. Anal.,17(3)

pp. 376-379, 1980.

75

Appendix A: Implementation of Interval Algorithms

A.1. Interval Gauss-Seidel

The interval Gauss-Seidel can be implemented easily with C-XSC in the following

functions:

int Gauss_Seidel_image(ivector& X_kp1, bool& is_empty, bool&

error_occurred, imatrix& A, ivector& B, ivector& X_k) {

 int n = VecLen(X_k);

 int Error;

 rmatrix Y(n,n);

 MatInv(mid(A),Y,Error);

 if (Error)

 return -1;

 error_occurred = 0;

 is_empty = 0;

 int i=1;

 for (int index=1; index<=n; index++)

 X_kp1[index] = interval(0,0);

 interval new_x_i, second_new_x_i;

 bool there_are_2;

 interval num, denom;

 while((!error_occurred) & (!is_empty) & (i<= n)) {

 rvector Y_row(n);

 for (int index=1; index<=n; index++)

 Y_row[index] = Y[i][index];

 gauss_seidel_step(new_x_i, second_new_x_i,

there_are_2, num, denom, i, Y_row, A, B, X_k);

 if(there_are_2)

 error_occurred = 1;

 if (!error_occurred) {

 is_empty = IsEmpty(new_x_i & X_k[i]);

 if (!is_empty)

 X_kp1[i] = (new_x_i & X_k[i]);

 }

 i=i+1;

 }

 return 0;

}

76

int gauss_seidel_step(interval& new_X_i, interval&

second_new_X_i, bool& there_are_2, interval& numerator,

interval& denominator, int i, rvector& Y_i, imatrix& A, ivector&

B, ivector& X) {

 //the result of applying a Gauss--Seidel step with variable i,

 //preconditioner matriX Y_i, and initial guess X. The variable

 //there_are_2 is set to 1 if two semi-infinite intervals are

returned,

 //in which case second_new_X_i has the second interval;

there_are_2

 //is set to 0 and second_new_X_i is not set if there is only

 //one interval returned.

 int n = VecLen(X);

 real supnum;

 interval tmp1,tmp2;

 ivector G_i(n); //1xn

 G_i = Y_i*A;

 interval C_i; //1x1

 C_i = interval(0,0);

 for (int index=1; index<=n; index++)

 C_i = C_i + Y_i[index]*B[index];

 numerator = C_i;

 new_X_i = X[i];

 second_new_X_i = X[i];

 if (n > 1) {

 if (i > 1)

 for (int index=1; index<i; index++)

 numerator = numerator - G_i[index]*X[index];

 if (i < n)

 for (int index=i+1; index<=n; index++)

 numerator = numerator - G_i[index]*X[index];

 }

 denominator = G_i[i];

 if (!((Inf(denominator)<=0) & (Sup(denominator)>=0))) {

 there_are_2 = 0;

 new_X_i = numerator / denominator;

 //elseif (~in(0,numerator))

 } else if (!((Inf(numerator)<=0) & (Sup(numerator)>=0))) {

 there_are_2 = 1;

 supnum = Sup(numerator);

 if(supnum < 0) {

 if (Sup(denominator)==0)

 tmp1 = interval(-Infinity,-Infinity);

 else

 tmp1 = interval(supnum,supnum) /

interval(Sup(denominator),Sup(denominator));

 if (Inf(denominator) == 0)

 tmp2 = interval(Infinity,Infinity);

 else

 tmp2 = interval(supnum,supnum) /

interval(Inf(denominator),Inf(denominator));

 new_X_i = interval(-Infinity,Sup(tmp1));

 second_new_X_i = interval(Inf(tmp2),Infinity);

 } else {

 real infnum = Inf(numerator);

77

 if (Inf(denominator)==0)

 tmp1 = interval(-Infinity,-Infinity);

 else

 tmp1 = interval(infnum,infnum) /

interval(Inf(denominator),Inf(denominator));

 if (Sup(denominator) == 0)

 tmp2 = interval(Infinity,Infinity);

 else

 tmp2 = interval(infnum,infnum) /

interval(Sup(denominator),Sup(denominator));

 new_X_i = interval(-Infinity,Sup(tmp1));

 second_new_X_i = interval(Inf(tmp2),Infinity);

 }

 } else {

 there_are_2=0;

 new_X_i = interval(-Infinity,Infinity);

 }

 return 0;

}

Similarly, the interval Gauss-Seidel can be implemented easily with INTLAB in

the following functions from [35]:

function [X_kp1,is_empty, error_occurred] =...

 Gauss_Seidel_image(A, B, X_k)

% X_kp1] = Gauss_Seidel_image(A,B,X_k) returns the image after a

% sweep of Gauss--Seidel iteration (that is, (7.8) of the text)

% for the interval linear system A X = B, beginning with box

X_k,

% 1 <= i <= n.

% This is done using the inverse midpoint preconditioner.

% Upon return:

% if error_occurred = 1, then the computation could not proceed.

% (For example, the midpoint preconditioner may have been

% singular, or the denominator may have contained zero; the

% case of more than one box in the image is not handled

% with this routine.) Otherwise, error_occurred = 0.

% If error_occurred = 0 but is_empty = 1, this means that

% an intersection of a coordinate extent was empty. In this

% case, there are no solutions to A X = B within X_k.

% If error_occurred = 0 and is_empty = 0, then the image under

% the Gauss--Seidel sweep is returned in X_kp1.

% Ralph Baker Kearfott, 2008/06/15 -- for the

% Moore / Kearfott / Cloud book.

n = length(B);

Y = inv(mid(A));

%Y=inv(mid(A)-rad(A)/2);

%Y=eye(size(A))

error_occurred = 0;

is_empty = 0;

i=1;

78

X_kp1 = midrad(zeros(n,1),0);

while(~error_occurred & ~is_empty & i<= n)

 [new_x_i, second_new_x_i, there_are_2, num, denom] ...

 = gauss_seidel_step(i, Y(i,:), A, B, X_k);

 if(there_are_2)

 error_occurred = 1;

 end

 if (~error_occurred)

% is_empty = isempty_(intersect(new_x_i,X_k(i)));

% if (~is_empty)

 X_kp1(i) = intersect(new_x_i, X_k(i));

% end

 end

 i=i+1;

end

function [new_X_i, second_new_X_i, there_are_2,...

 numerator, denominator]...

 = gauss_seidel_step(i, Y_i, A, B, X)

% [new_X_i, second_new_X_i, there_are_2]...

% = gauss_seidel_step(i, Y_i, A, B, X) returns

% the result of applying a Gauss--Seidel step with variable i,

% preconditioner matriX Y_i, and initial guess X. The variable

% there_are_2 is set to 1 if two semi-infinite intervals are

returned,

% in which case second_new_X_i has the second interval;

there_are_2

% is set to 0 and second_new_X_i is not set if there is only

% one interval returned.

% Ralph Baker Kearfott, 2008/06/15 -- for the

% Moore / Kearfott / Cloud book.

 n = size(A,2);

 G_i = Y_i*A;

 C_i = Y_i*B;

 numerator = C_i;

 new_X_i = X(i);

 second_new_X_i = X(i);

 if (n > 1)

 if (i > 1)

 numerator = numerator - G_i(1:i-1)*X(1:i-1);

 end

 if (i < n)

 numerator = numerator - G_i(i+1:n)*X(i+1:n);

 end

 end

 denominator = G_i(i);

 numerator;

 denominator;

 if (~in(0,denominator))

 there_are_2 = 0;

 new_X_i = numerator / denominator;

81

 elseif (~in(0,numerator))

 there_are_2 = 1;

 supnum = sup(numerator);

 if(supnum < 0)

 if sup(denominator)==0

 tmp1 = infsup(-Inf,-Inf);

 else

 tmp1 = midrad(supnum,0) /

midrad(sup(denominator),0);

 end

 if inf(denominator) == 0

 tmp2 = infsup(Inf,Inf);

 else

 tmp2 = midrad(supnum,0) /

midrad(inf(denominator),0);

 end

 new_X_i = infsup(-Inf,sup(tmp1));

 second_new_X_i = infsup(inf(tmp2),inf);

 else

 infnum = inf(numerator);

 if inf(denominator)==0

 tmp1 = infsup(-Inf,-Inf)

 else

 tmp1 = midrad(infnum,0) /

midrad(inf(denominator),0);

 end

 if sup(denominator) == 0

 tmp2 = infsup(Inf,Inf)

 else

 tmp2 = midrad(infnum,0) /

midrad(sup(denominator),0);

 end

 new_X_i = infsup(-Inf,sup(tmp1));

 second_new_X_i = infsup(inf(tmp2),Inf);

 end

 else

 there_are_2=0;

 new_X_i = infsup(-Inf,Inf);

 end

end

80

A.2. Interval Newton Method for Perturbed Nonlinear

Systems

The interval Newton method for perturbed nonlinear systems can be implemented

easily with C-XSC in the following function:

int interval_newton_step(imatrix& G, ivector& v, ivector& i,

double& TimeElapsed, bool& is_empty, bool& Error) {

 // G.v=i

 // interval_newton_step does one step of interval Newton

algorithm

 // Pass the initial vector v to the function and it will

return the final result also in v

 int size = VecLen(v);

 ivector v1(size);

 Error = false;

 clock_t launch = clock();

 Gauss_Seidel_image(v1, is_empty, Error, G, i, v);

 clock_t done = clock();

 TimeElapsed = ((double) (done - launch)) / CLOCKS_PER_SEC;

 v = v1;

 return 0;

}

Similarly, the interval Newton method for perturbed nonlinear systems can be

implemented easily with INTLAB in the following function:

function [NX_intersect_X, TimeElapsed, NoIterations, Error] =

i_newton_mod(X,f,MaxIterations)

% Interval Newton using Gauss-Seidel

% roundoff error --

%format long;

NoIterations=0;

Error = false;

n = length(X);

NX_intersect_X = X;

tic

while(NoIterations<MaxIterations)

 NoIterations=NoIterations+1;

 y = mid(NX_intersect_X);

 iy = midrad(y,0);

 fy = feval(f,iy);

 % Now compute F'(X) and the preconditioning matrix Y --

 Xg = gradientinit(NX_intersect_X);

 FXg = feval(f,Xg);

 % Compute the initial V --

 V = NX_intersect_X-y;

 % Now, do the Gauss--Seidel sweep to find V --

81

 [new_V,is_empty,error_occurred] = Gauss_Seidel_image(FXg.dx,

-fy, V);

 NX = y+new_V;

 if(intersect(NX,NX_intersect_X)==NX_intersect_X)

 break;

 end

 NX_intersect_X = intersect(NX,NX_intersect_X);

% is_empty = isempty_(NX_intersect_X);

% if (is_empty)

% break;

% end

 if (any(isnan(NX_intersect_X)))

 Error = true;

 break;

 end;

end

TimeElapsed=toc;

82

A.3. Modified Krawczyk Method for Perturbed Nonlinear

Systems

The Modified Krawczyk method for perturbed nonlinear systems can be

implemented easily with C-XSC in the following function (this function also includes

implementation of some test problems):

double ModKrawczyk(int fDim,int noIntervalVars,int p,int

problem,double delta){

 //nmax : max number of iterations

 const int nmax = 100;

 //X : solution vector at each iteration

 //Xg : version of X to be used in automatic

differentiation

 //fXg: f(Xg)

 //fx : f(Xg)=f(X)

 //Jfx: J(Xg)=J(X)

 //iy : mid(X)

 //fy : f(iy)

 //KX : Krawczyk operator at each iteration

 //Y : inv(mid(Jfx))

 ivector fy(fDim), iy(fDim), fx(fDim), KX(fDim), X(fDim);

 imatrix Jfx(fDim,fDim);

 rmatrix Y(fDim,fDim);

 GTvector Xg(fDim), fXg(fDim);

 //rvector y;

 int n;

 int Error = 0;

 rvector eps(fDim);

 for (int i=1;i<=fDim;i++)

 eps[i] = 0.0001;

 cout << SetPrecision(23,15) << Scientific;

 cxsc::real temp1 = 5.0/fDim;

 cxsc::real temp2 = 5.0*fDim;

 //The exact solution of each problem (Hansen, Banana,

Mancino)

 if (problem==1)

 {

 //Result for this problem is not correct

 temp1 =

4.0*sqrt(temp1)/7.0*sinh(1.0/3.0*asinh(7.0*sqrt(temp2)/2.0));

 //Hansen

 //set the initial box

 for (int i=1; i<=fDim; i++) {

 X[i] = interval(temp1*(1-

delta),temp1*(1+delta));

 }

 }

 else if (problem==2)

 {

 temp1=1; //Banana

 //set the initial box

 for (int i=1; i<=fDim; i++) {

83

 X[i] = interval(temp1*(1-

delta),temp1*(1+delta));

 }

 }

 else if (problem==3)

 {

 //Mancino

 if (fDim!=4) return -1;

 //set the initial box

 X[1] = interval(1-delta,1+delta)*1.896515;

 X[2] = interval(1-delta,1+delta)*(-0.210191);

 X[3] = interval(1-delta,1+delta)*0.542070;

 X[4] = interval(1-delta,1+delta)*(-0.023893);

 }

 else

 return -1;

 cout << endl << X[1];

 cout << endl << X[2];

 cout << endl << X[3];

 //n : number of iterations

 n = 0;

 clock_t launch = clock();

 iy = mid(X);

 Xg = GradVar(X);

 //Substitute with Xg in the problem

 if (problem==1)

 fXg = f3(Xg,fDim,noIntervalVars);

 else if (problem==2)

 fXg = banana(Xg,fDim,noIntervalVars);

 else if (problem==3)

 fXg = Mancino(Xg,fDim,noIntervalVars);

 fx = fValue(fXg); // function value

 Jfx = JacValue(fXg); // jacobian value

 //Inversion of the mid of the jacobian

 MatInv(mid(Jfx),Y,Error);

 /*mat MatTemp(fDim,fDim), MatTempInv(fDim,fDim);

 for(int i1=0; i1<fDim; i1++)

 for(int i2=0; i2<fDim; i2++)

 MatTemp(i1,i2)=_double(mid(Jfx)[i1][i2]);

 MatTempInv = inv(MatTemp);*/

 /*double *islam;

 islam = (double*)malloc(fDim*fDim*sizeof(double));

 matrix_inverse(mid(Jfx),islam,fDim);*/

 /*for (int i=0; i<fDim; i++)

 { for (int j=0; j<fDim; j++)

 { Y[i][j] = _real(MatTemp(i,j));

 cout << Y[i][j] << " ";

 }

 cout << endl;

 }

 */

 ivector temp;

 rmatrix eye(fDim,fDim);

 I(eye,fDim);

 bool flag = true;

84

 //The main (outer) loop (till convergence or max no. of

iterations)

 do {

 n++;

 //cout << n << endl;

 //The inner loop (p times)

 for(int i=1;i<=p;i++) {

 iy = mid(X);

 if (problem==1)

 fy = f3(iy,fDim,noIntervalVars);

 else if (problem==2)

 fy = banana(iy,fDim,noIntervalVars);

 else if (problem==3)

 fy = Mancino(iy,fDim,noIntervalVars);

 if (!Error) {

 //The main operation (Krawczyk operator)

 KX = iy - Y*fy + (eye - Y*Jfx)*(X - iy);

 //Terminate if KX is enclosed in X

 if ((X & KX) == X)

 {flag = false; break;}

 // itersection of X and KX

 //Update X

 X = X & KX;

 }

 else

 cout << MatInvErrMsg(Error) << endl;

 }

 //Update Xg

 Xg = GradVar(X);

 //Update fXg

 if (problem==1)

 fXg = f3(Xg,fDim,noIntervalVars);

 else if (problem==2)

 fXg = banana(Xg,fDim,noIntervalVars);

 else if (problem==3)

 fXg = Mancino(Xg,fDim,noIntervalVars);

 fx = fValue(fXg); // function value

 Jfx = JacValue(fXg); // jacobian value

 MatInv(mid(Jfx),Y,Error);

 //for(int i1=0; i1<fDim; i1++)

 // for(int i2=0; i2<fDim; i2++)

 // MatTemp(i1,i2)=_double(mid(Jfx)[i1][i2]);

 //MatTempInv = inv(MatTemp);

 //for (int i=0; i<fDim; i++)

 //{ for (int j=0; j<fDim; j++)

 // { Y[i][j] = _real(MatTemp(i,j));

 //// cout << Y[i][j] << " ";

 // }

 // //cout << endl;

 //}

 /*if (diam(X[1]) > eps[1])

 cout << "eps";

 if (!Error)

 cout << "!Error";

 if (n < nmax)

85

 cout << "nmax";

 if (flag)

 cout << "flag";*/

 //matrix_inverse(mid(Jfx),Y,fDim);

 } while ((diam(X[1]) > eps[1]) && (!Error) && (n < nmax)

&& flag);

 clock_t done = clock();

 cout << endl << X[1];

 cout << endl << X[2];

 cout << endl << X[3];

 //cout << endl << X[4];

 //cout << endl << X[5];

 //cout << endl << X[6];

 cout << endl << X[fDim];

 cout << "\nNumber of iterations : " << n;

 double diff = ((double) (done - launch)) / CLOCKS_PER_SEC;

 return diff;

}

Similarly, the Krawczyk method for perturbed nonlinear systems can be

implemented easily with INTLAB as follows:

function [X,TimeElapsed,NoIterations,Error] =

Krawczyk(X0,f,max_no_iter,no_inner_iter,parameters)

X=X0;

x=mid(X);

n=length(X);

format long,

Error = false;

flag=true;

NoIterations=0;

tic

Xg = gradientinit(X);

FXg = feval(f,Xg,parameters);

A = inv(mid(FXg.dx));

r=norm((eye(n,n) - A*FXg.dx),inf);

 ix = midrad(x,0);

 fx = feval(f,ix,parameters);

 Y = x - A*fx + (eye(n,n) - A*FXg.dx) * (X - x);

 Z=intersect(X,Y);

 if (ISNAN(Z(1,1)) | Z==X)

 TimeElapsed = -1;

 return;

 end;

while(flag & NoIterations<max_no_iter)

 NoIterations=NoIterations+1;

 for i=1:no_inner_iter

 if NoIterations==1

 ix = midrad(x,0);

86

 fx = feval(f,ix,parameters);

 Y = x - A*fx + (eye(n,n) - A*FXg.dx) * (X - x);

 Z=intersect(X,Y);

 if (any(ISNAN(Z)))

 Error = true;

 flag=false;

 break;

 end;

 if(X==Z)

 flag=false;

 break;

 end;

 end;

 X=Z;

 x=mid(X);

 end

 Xg = gradientinit(X);

 FXg = feval(f,Xg,parameters);

 B = inv(mid(FXg.dx));

 s=norm((eye(n,n) - B*FXg.dx),inf);

 if s<=r

 A=B;

 r=s;

 else

 r=norm((eye(n,n) - A*FXg.dx),inf);

 end

end

TimeElapsed=toc;

87

A.4. Hasnen-Sengupta Method for Perturbed Nonlinear

Systems

The Hansen-Sengupta method for perturbed nonlinear systems can be implemented

easily with INTLAB in the following function:

function

[X,TimeElapsed,NoIterations,Error]=HansenSengupta(X0,f,max_no_it

er,A)

X=X0;

Error = false;

n=length(X);

format long,

% NoIterations=0;

tic

for NoIterations=1:max_no_iter

 mid_x=mid(X);

 Xg = gradientinit(X);

 FXg = feval(f,Xg,A);

 Ag = gradientinit(A);

 FAg =feval(f,mid_x,Ag);

 C = inv(mid(FXg.dx));

 Y = mid_x + Gauss_Seidel_image((C*FXg.dx),(-

C*feval(f,mid_x,mid(A))-C*FAg.dx*(A-mid(A))),X-mid_x);

 Z=intersect(X,Y);

 if (any(ISNAN(Z)))

 Error = true;

 break;

 end;

 if(X==Z)

 break;

 end;

 X = Y;

end

TimeElapsed=toc;

88

A.5. Two-Stage Interval Newton Method for Perturbed

Nonlinear Systems

The two-stage interval Newton method for perturbed nonlinear systems can be

implemented easily with INTLAB in the following function:

function [NX_intersect_X, TimeElapsed, NoIterations, Error] =

two_stage_i_newton(X,f,MaxIterations)
%Two-stage interval Newton
%format long;
NoIterations=0;
Error = false;
n = length(X);
NX_intersect_X = X;
tic
while(NoIterations<MaxIterations)
 NoIterations=NoIterations+1;
 y = mid(NX_intersect_X);
 iy = midrad(y,0);
 fy = feval(f,iy);

 % Now compute F'(X) and the preconditioning matrix Y --
 Xg = gradientinit(NX_intersect_X);
 FXg = feval(f,Xg);

 % Compute the initial V --
 V = NX_intersect_X-y;
 % Now, do the Gauss--Seidel sweep to find V --
 [new_V,is_empty,error_occurred] = Gauss_Seidel_image(FXg.dx, -fy,

V);

 NX = y+new_V;
 if(intersect(NX,NX_intersect_X)==NX_intersect_X)
 break;
 end
 NX_intersect_X = intersect(NX,NX_intersect_X);

%Stage 2
 % Compute the initial V --
 V = NX_intersect_X-mid(NX_intersect_X);
 % Now, do the Gauss--Seidel sweep to find V --
 [new_V,is_empty,error_occurred] = Gauss_Seidel_image(FXg.dx, -

feval(f,mid(NX_intersect_X)), V);

 S = mid(NX_intersect_X)+new_V;
 if(intersect(S,NX_intersect_X)==NX_intersect_X)
 break;
 end
 NX_intersect_X = intersect(S,NX_intersect_X);

 if (any(isnan(NX_intersect_X)))
 Error = true;
 break;
 end;
end
TimeElapsed=toc;

011

A.6. Division in Extended Arithmetic

The interval arithmetic in INTLAB does not implement sharp extended arithmetic;

division by any interval that contains zero results in the interval , -. This

is an enclosure of the exact range of the operation but is in general not sharp, since it

contains many values that are not obtainable as for and . However, we

may use the following function from [35]:

function [Y1,Y2,two] = xreciprocal(X)

% [Y1,Y2,two] = xreciprocal(X) returns the extended reciprocal

% of X defined by the three cases. The return value two is set % to 0

if only one interval is returned and is set to 1

% if two intervals are returned.

% If X does not contain zero, the result of ordinary

% interval division is returned in Y1, and two is set to 0.

% In the case inf(X) = sup(X) = 0, avoided in the text,

% two is set to 1, and two empty intervals are returned.

% (INTLAB represents an empty interval as infsup(NaN,NaN))

% In cases where there is only one interval, Y2 is set

% to INTLAB’s representation of the empty interval.

if (inf(X) > 0) | (sup(X) < 0) % do ordinary interval division

two=0;

Y1 = 1/X;

Y2 = infsup(NaN,NaN);

elseif (inf(X)==0) & (sup(X) > 0) % Case 1 of the text --

two=0;

lower_bound = infsup(1,1) / infsup(sup(X),sup(X));

Y1 = infsup(inf(lower_bound),Inf);

Y2 = infsup(NaN,NaN);

elseif (inf(X)<0) & (sup(X) > 0) % Case 2 of the text --

two=1;

upper_bound = infsup(1,1) / infsup(inf(X),inf(X));

Y1=infsup(-Inf,sup(upper_bound));

lower_bound = infsup(1,1) / infsup(sup(X),sup(X));

Y2 = infsup(inf(lower_bound),Inf);

elseif (inf(X) < 0) & (sup(X) == 0) % Case 3 of the text --

two = 0;

upper_bound = infsup(1,1) / infsup(inf(X),inf(X));

Y1=infsup(-Inf,sup(upper_bound));

Y2 = infsup(NaN,NaN);

else % This is the case where X=0, not covered in the text --

two =1;

Y1 = infsup(NaN,NaN);

Y2 = infsup(NaN,NaN);

end

 أ

 ممخصال

التي يُرمز و -التي تحتوي عمى بيانات غير دقيقةييتم بدراسة حمول المعادلات غير الخطية و ىذا البحث العممي

ىذه المسائل مثل باستخدام طرق تعتمد عمى حساب الفترات. و تظير -بالمعادلات غير الخطية المضطربةليا

لدراسة مدى حساسية عوامل التصميم لمتغيرات الناتجة إما أثناء تطبيقات اليندسيةالمضطربة في العديد من ال

عائمة. إن الإطار الأساسي ليذا البحث ىو تقديم طرق باستخدام الفاصمة الالتصنيع أو أثناء أداء الحسابات

شبيية بطريقة نيوتن لحساب الفترات لحل المعادلات غير الخطية المضطربة عن طريق تعديل الطرق

المستخدمة حاليا في حل المعادلات غير الخطية التقميدية لتصبح مناسبة لحل المعادلات غير الخطية

ىذا البحث تحميل تواجد حل لممعادلات غير الخطية المضطربة و التقارب إلى يُقدم و يُستنتج في المضطربة.

 ىذا الحل.

في سبيل تحقيق ىذه الأىداف يتم تقديم مقدمة مختصرة عن حساب الفترات و حمول المعادلات الخطية التي

ناك طرق مشيورة تحتوي عمى فترات و كذلك حمول المعادلات غير الخطية التقميدية باستخدام حساب الفترات. ى

سينجوبتا و كراوزيك. و يتم تقديم نسخة -لحل المعادلات غير الخطية يتم تقديميا مثل: نيوتن لمفترات و ىانسن

و كذا يتم تقديم المشاكل المتعمقة بكل طريقة عمى حدى و مناسبة لحل المعادلات المضطربة من كل طريقة.

ج طريقة معدلة لطريقة نيوتن لمفترات و التي ـثعرف بطريقة نيوتن دراسة تقاربيا. علاوة عمى ذلك فإنو يتم استنتا

و يتم اختبار ذات المرحمتين. و تمتمك الطريقة ذات المرحمتين ميزة تقميل الوقت اللازم لايجاد حل لممعادلات.

ع مصادر عممية سابقة و لكن مالطرق التي تعتمد عمى حساب الفترات لاثبات كفاءتيا باستخدام مسائل من

إضافة بعض التغيرات. و لقد لاحظنا أن اتساع حل المعادلات المضطربة يعتمد عمى مدى اتساع ىذه

الآضطرابات. و قد تمت مقارنة طريقة نيوتن ذات المرحمتين مع باقي الطرق المذكورة سابقاً. و لقد أثبتت

الطرق التي تعتمد عمى حساب الطريقة تحسن في الوقت المستيمك. و تمت أيضاً مقارنة الحمول الناتجة من

الفترات مغ تمك الناتجة من طريقة مونت كارلو. و أثبتت المقارنة تفوق الطرق التي تعتمد عمى حساب الفترات

 من ناحية الوقت المستيمك و الدقة المطموبة لايجاد الحل المنشود.

 إسلام رفعت كامل طو :دسـمهن
 1811\2\1 تاريخ الميلاد:

 صريم الجنسية:
\....\.... تاريخ التسجيل:

\....\.... تاريخ المنح:
 الرياضيات و الفيزيقا اليندسية القسم:
 ماجستير الدرجة:

 المشرفون:
 ميا أمين حسنيند. م.ا.
 حسام عمي حسن فيميد. م.ا.

 الممتحنون:
)الممتحن الخارجي(أ.د.
)الممتحن الداخمي(أ.د
)المشرف الرئيسي(ميا أمين حسنيند. م.ا.
)عضو(حسام عمي حسن فيميد. ا.م.

 عنوان الرسالة:
 حل المعادلات المضطربة غير الخطية متعددة الأبعاد باستخدام حساب الفترات

 الكممات الدالة:
 طريقة نيوتن لمفترات، لأنظمة غير الخطيةا، المسائل المضطربة، حساب الفترات

 :رسالةممخـص ال

..
..

..

..
..

..

..

 ضعصورتكهنا

لاتالمضطربةغيرالخطيةمتعددةالأبعادباستخدامحسابالفتراتعادحلالم

اعداد

إسلامرفعتكاملطه

القاهرةجامعة-الهندسةكليةإلىمقدمةرسالة

الماجستيردرجةعلىالحصولمتطلباتمنكجزء

في

الرياضياتالهندسية

:يعتمدمنلجنةالممتحنين

الممتحنالخارجيالاستاذالدكتور:

خليادالممتحنالالاستاذالدكتور:

المشرفالرئيسىمهاأمينحسنينالدكتور:مساعدالالاستاذ

عضوحسامعليحسنفهميالدكتور:مساعدالالاستاذ

القاهــرةمعــةجا-الهندســةكليــة

العربيــةمصـرجمهوريـة-الجيـزة

 3102–يونيو

حلالمعادلاتالمضطربةغيرالخطيةمتعددةالأبعادباستخدامحسابالفترات

اعداد

إسلامرفعتكاملطه

القاهرةجامعة-الهندسةكليةإلىمقدمةرسالة

تيرالماجسدرجةعلىالحصولمتطلباتمنكجزء

في

الرياضياتالهندسية

تحتاشراف

 مساعدالدكتورالالاستاذ مساعدالدكتورالالاستاذ

حسامعليحسنفهمي

قسمالالكترونياتوالاتصالاتالهندسية

 جامعةالقاهرة–كليةالهندسة

مهاأمينحسنين

قسمالرياضياتوالفيزيقاالهندسية

 جامعةالقاهرة–كليةالهندسة

القاهــرةجامعــة-الهندســةكليــة

العربيــةمصـرجمهوريـة-الجيـزة

 3102–يونيو

حلالمعادلاتالمضطربةغيرالخطيةمتعددةالأبعادباستخدامحسابالفترات

اعداد

إسلامرفعتكاملطه

القاهرةجامعة-الهندسةكليةإلىمقدمةرسالة

الماجستيردرجةعلىالحصولمتطلباتمنكجزء

في

الرياضياتالهندسية

القاهــرةجامعــة-الهندســةكليــة

العربيــةمصـرجمهوريـة-الجيـزة

3102–يونيو

