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Definitions

• Biased exponent: The sum of the exponent and a constant (bias) are chosen to
make the biased exponent’s range nonnegative.

• Binary floating-point number: A floating-point number with radix two.

• Cohort: In a given format, the set of floating-point representations with the same
numerical value.

• Decimal floating-point number: A floating-point number with radix ten.

• Declet: An encoding of three decimal digits into ten bits using the densely packed
decimal encoding scheme. Of the 1024 possible declets, 1000 canonical declets
are produced by computational operations, while 24 noncanonical declets are not
produced by computational operations, but are accepted in operands.

• Exception: An event that occurs when an operation has no outcome suitable for
every reasonable application.

• Exponent: The component of a binary floating-point number that normally signifies
the integer power to which the radix two is raised in determining the value of the
represented number. Occasionally the exponent is called the signed or unbiased
exponent.

• Floating-point number: A bit-string encoding characterized by three components:
a sign, a signed exponent, and a significand. All floating-point numbers, including
zeros and infinities, are signed.

• Format: A set of representations of numerical values and symbols, perhaps accom-
panied by an encoding.

• NaN: Not a Number, a symbolic entity encoded in floating-point format. There are
two types of NaNs , quiet and signaling. quiet NaNs propagate through almost every
arithmetic operations without signaling exceptions, while signaling NaNs signal the
invalid operation exception whenever they appear as operands.
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• Normal number: For a particular format, a finite non-zero floating-point number
with magnitude greater than or equal to a minimum bemin value, where b is the
radix. Normal numbers can use the full precision available in a format. In IEEE Std
754-2008, zero is neither normal nor subnormal.

• Precision: The maximum number p of significant digits that can be represented in
a format, or the number of digits to that a result is rounded.

• Signal: When an operation has no outcome suitable for every reasonable applica-
tion, that operation might signal one or more exceptions by invoking the default
or user specified alternate handling. Note that exception and signal are defined in
diverse ways in different programming environments.

• Significand: A component of an unencoded binary or decimal floating-point num-
ber containing its significant digits. The significand may be thought of as an integer,
a fraction, or some other fixed-point form, by choosing an appropriate bias. The
component of a binary floating-point number that consists of an explicit or implicit
leading bit to the left of its implied binary point and a fraction field to the right.

• Subnormal number: In a particular format, a non-zero floating-point number with
magnitude less than the magnitude of that formats smallest normal number. A
subnormal number does not use the full precision available to normal numbers of
the same format.

• Trailing significand field: A component of an encoded binary or decimal floating-
point format containing all the significand digits except the leading digit. In these
formats, the biased exponent or combination field encodes or implies the leading
significand digit.

• Quiet operation: Any of the operations specified by IEEE Std 754-2008 that never
generate an exception.
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Chapter 1: Introduction
1.1 Background
Although most people use decimal arithmetic when performing manual calculations, com-
puters typically only support binary arithmetic in hardware. This is primarily due to there
being only two logic values, zero and one, that are represented in modern computers.

While it is possible to use these two logic values to represent decimal numbers, doing
so is wasteful in terms of storage space and is also less efficient. For example, in binary,
four bits can represent sixteen values; while in binary coded decimal (BCD), four bits
only represent ten values. Since most computer systems do not provide hardware support
for decimal arithmetic, numbers are typically input in decimal, converted from decimal
to binary, processed using binary arithmetic, and then converted back to decimal for output.

In spite of the current dominance of hardware support for binary arithmetic, there are
several motivations that encourage the provision of support for decimal arithmetic. First,
applications that deal with financial and other real-world data often have errors introduced,
since many common decimal numbers cannot be represented exactly in binary. For exam-
ple, the decimal number 0.1 is a repeating fraction when represented in binary. Second,
people typically think about computations in decimal, even when using computers that
operate only on binary representations, and therefore may experience what is perceived as
incorrect behavior when processing decimal values. Third, converting between binary and
decimal floating-point numbers is computationally intensive and may take thousands of
cycles on modern processors.[40]

Because of the growth interest in the decimal computations, IEEE extended the previ-
ous standard (IEEE Std 754-1985) [2] , and added decimal arithmetics and formats in the
current version (IEEE Std 754-2008) [4] of IEEE Standard for Floating-Point Arithmetic
(IEEE 754).

Decimal Floating-Point (DFP) computations are critical for many financial and com-
mercial applications. With trends towards globalization, many laws and standards require
decimal calculations. For example, the European Union requires currency conversion to
and from the Euro to be calculated to six decimal places. One study estimates that a large
telephone billing system can accumulate errors of up to 5 million US Dollar per year, if
using binary floating-point arithmetic, rather than decimal. Both hardware and software
solutions for DFP arithmetic are being developed to remedy these problems [48].

Also, another important question is why do we need to replace the existing software
conversion from decimal to BCD than back to decimal into hardware. An interesting study
[21] shows that application can realize performance improvements ranging from about
10% (for applications whose respective DFP routines consumes10% of the execution time)
to nearly 1000% (for applications whose respective DFP routines consumes 90% of the
execution time).
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Due to the rapid growth in financial, commercial, and Internet-based applications,
there is an increasing desire to allow computers to operate on both binary and decimal
floating-point numbers. Consequently, specifications for decimal floating- point arithmetic
were added to the IEEE-754 Standard for Floating-Point Arithmetic which was published
in 1985. In this thesis, we present the design and implementation of a decimal floating-
point adder/subtractor that is compliant with the current version (IEEE Std 754-2008)
[4] of IEEE Standard for Floating-Point Arithmetic (IEEE 754). The adder supports
operations on 64-bit (16- digit) and 128-bit (34-digit) decimal floating-point operands. We
provide two different architectures for the adder/subtractor. Synthesis results indicating
the area usage and the clock frequency with Stratix XI Altera FPGA will be introduced in
chapter 4.

1.2 Problem description
Most computers support binary floating point arithmetic, the main advantage of the current
decimal floating point is the accuracy. The most challenging issues are the performance
and the area of the decimal floating point units. Binary floating-point numbers can only
approximate common decimal numbers. The value 0.1, for example, would need an
infinitely recurring binary fraction. In contrast, a decimal number system can represent
0.1 exactly, as one tenth (that is, 10−1). Consequently, binary floating-point cannot be
used for financial calculations or indeed for any calculations where the results achieved
are required to match those which might be calculated by hand. Table1.1 demonstrates
dividing the number nine repeatedly divided by ten.

Table 1.1: Dividing the number nine repeatedly by ten
Binary Decimal
0.9 0.9
0.089999996 0.09
0.0090 0.009
9.0E-4 0.0009
9.0E-5 0.0000
9.0E-6 0.000009
9.0000003E-7 9E-7
9.0E-8 9E-8
9.0E-9 9E-9
8.9999996E-10 9E-10

Here, the right hand column shows the results delivered by decimal floating-point
arithmetic (such as the BigDecimal class for Java [33] or the decNumber C package [18]),
and the left hand column shows the results obtained by using the Java float data type. The
results from using the double data type are similar to the latter (with more repeated 9s or
0s).

For these reasons, most commercial data are held in a decimal form. Calculations
on decimal data are carried out using decimal arithmetic, almost invariably operating on
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numbers held as an integer and a scaling power of ten. The IBM z900 computer range was
the only widely-used computer architecture with built-in decimal arithmetic instructions.
However, those early instructions work with decimal integers only, which then require
manually applied scaling. This is error- prone, difficult to use, and hard to maintain, and
requires unnecessarily large precisions when both large and small values are used in a
calculation. Both problems (the artifacts of binary floating-point, and the limitations of
decimal fixed-point) can be solved by using a decimal floating-point arithmetic. This is
now available in both hardware and software. and is standardized in the IEEE Standard
for Floating-Point Arithmetic (IEEE 754). But the other problem in decimal floating point
units is the complexity comparing to the binary floating point units, this complexity can be
translated to larger area and lower performance, in our proposed design, we implemented
new design of the decimal floating point adder which has some better results for the area
and performance than the published work [43] related to hardware implementation of
decimal floating point adder.

1.3 The Decimal Floating Point Formats
IEEE Std 754-2008 [4] standardizes the encodings of binary and decimal floating point
data, albeit with two different alternative encodings.

For decimal floating point data, two different encodings are defined:

• Binary Integer Decimal (BID) encodes the significand as a large binary integer
between 0 and (10p−1) where P is the coefficient size or the number of the decimal
digits. The value of Decimal Floating Point number is :

(−1)S × 10E−bias ×C , where S is the sign bit, E is a biased exponent, bias is a
constant value that makes E non-negative. C = (dp−1dp−2 . . .d0) is the significand
where d ∈ 0;1;2;3;4;5;6;7;8;9, and p is the precision.

This is expected to be more convenient for software implementations using a binary
ALU.

• Densely Packed Decimal (DPD) encodes decimal digits more directly. This is
expected to be more convenient for hardware implementations. [52]

The general decimal floating point format [4] is shown in figure 1.1, this general format
includes BID and DPD:

where S is the sign, G-field is a combination field that contains the exponent, the most
significant digit of the significand, and the encoding classification, T hold most of the
operand significand (Trailing significand field) and it is decoded to P−1 BCD digits, t
is the number of bits in the significand field and J is the number of declets(Each declet
contains three digits) in the significand fields.
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Figure 1.1: Decimal Floating-Point Interchange Format

Binary integer decimal encoding is shown with another divisions for more clarification
in figure 1.2 and 1.3:

Figure 1.2: Binary Integer Decimal Encoding - 64 bits

Figure 1.3: Binary Integer Decimal encoding - 128 bits

An example, the Decimal64 significand can be up to (1016−1) = 9 999 999 999 999 999
= 23 86F2 6FC0 FFFF (in Hex 54bits) = 10 0011 1000 0100 1111 0010 0110 1111 1100
0000 1111 1111 1111 1111 (in binary 54 bits) while the encoding can represent larger
significands, they are illegal (non-canonical) and the standard requires implementations to
treat them as 0, if encountered on input. The most significant four bits of the significand
has maximum value of “1000”.

The exponent ranges were chosen so that the most significant two bits for the stored
exponent E has value of “10”. The stored exponent values are biased by bias – which is
398 – to make sure that all available values are positive (unsigned numbers).

For decimal64, Largest possible value is 9.999 999 999 999 999×10384 , it can be
written as 9 999 999 999 999 999×10369 to write integer significand number. The max
exponent which can be stored is 369. The stored biased exponent equals 369 + 398 =

767(integer) = 2FF(Hex) , the most significant two bits for the maximum stored biased
exponent value are “10”, so the most significant two bits has possible values of (“00”, “01”
and “10”).
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For decimal128, Largest possible value is 9.999 999 999 999 999 999 999 999 999 999 999×
106 144 , it can be written as 9 999 999 999 999 999 999 999 999 999 999 999×106 111 to
write integer significand number. the max exponent which can be stored is 6 111. The
stored biased exponent equals 6 111 + 6 176 = 12 287(integer) = 2FFF(Hex) , the most
significant two bits for the maximum stored biased exponent value are “10”, so the most
significant two bits has possible values of (“00”, “01” and “10”).

The encoding varies depending on whether the most significant 4 bits of the significand
are in the range 0 to 7 - decimal (0000 to 0111 - binary ), or higher (1000 or 1001 - binary).

If the two bits after the sign are “00”,“01‘” or “10”, then the exponent field (from G0
to G9) consists of the 10 bits following the sign bit (the two mentioned bits plus eight bits
of “the partial exponent” ) and the significand is the remaining 53 bits, with an implicit
leading 0 bit, shown here in Figure 1.4:

Figure 1.4: Binary Integer Decimal Encoding format for the most significant digit from 0 –
7, 64bits

This includes subnormal numbers where the most significant digit is 0.

If the 4 bits after the sign bit are “1100”, “1101”, or “1110”, then the 10-bit exponent
field (biased exponent) is shifted 2 bits to the right (after both the sign bit and the “11”
bits thereafter) so it will be from G2 to G11, and the represented significand (partial
significand) is in the remaining 51 bits. In this case there is an implicit (that is not stored)
leading 3-bit sequence “100” in the true significand:

The “11” 2–bit sequence after the sign bit indicates that there is an implicit “100” 3-bit
prefix to the trailing significand.

Densely Packed Decimal fields are shown in figure 1.6 and 1.7.

The most significant two bits of the exponent are limited to the range of 0 – 2, and the
most significant 4 bits of the significand are limited to the range of 0 – 9.
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Figure 1.5: Binary Integer Decimal Encoding format for the most significant digit from 8 –
9, 64 bits

Figure 1.6: Densely Packed Decimal encoding, 64 bits

Figure 1.7: Densely Packed Decimal encoding, 128 bits

Figure 1.8: DPD64 Encoding format for the most significant digit from 0 – 7

Figure 1.9: DPD64 Encoding format for the most significant digit from 8 – 9
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1.3.1 Numerical examples on Binary Integer Decimal Encoding
1.3.1.1 Example 1

If we have 1.23×10−2 float number, we need to write it as the form of (−1)S ×10E−bias×C.
The most significant 4 bits for C are “0000” which is between decimal 0 – 7 so the first
BID encoding format will be used.

N = 1.23×10−2

N = (−1)0×123×10−4

S = 0 The S igni f icand = 0 000 000 000 000 123 (decimal)
= 00 0000 0000 007B(Hexadecimal−54bits)

Exponent = −4 = E−398 Trailing S igni f icand
= 000 000 000 000 123 (in BCD )

E = 394(decimal) = 1 8A(Hexadecimal) The most significant 4 bits = 0000

0 01 1000 1010 000 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0111 1011
BID Encoding format = 3140 0000 0000 007B (Hexadecimal)

1.3.1.2 Example 2

If we have −9.830 000 000 000 001 ×1020 float number, we need to write it as the form
of (−1)S ×10E−bias×C.

The most significant 4 bits for the significand are “1000” which is between decimal 8 –
9 so the second BID encoding format will be used.

N = −9.830000000000001×1020

N = (−1)1×9 830 000 000 000 001×105

S = 1 TheS igni f icand = 9 830 000 000 000 001(decimal)
= 22 EC55 3A24 6001(Hexadecimal−−−54bits)

Exponent = 5 = E−398 Trailing S igni f icand = 830 000 000 000 001 (in BCD)
E = 403(decimal)1 93(Hexadecimal) The most significant 4 bits = 1000

1 11 01 1001 0011 0 10 1110 1100 0101 0101 0011 1010 0010 0100 0110 0000 0000 0001
BID Encoding format = ECA2 EC55 3A24 6001 (Hexadecimal)

1.3.1.3 Example 3

If we have −0.005× 10105 float number, we need to write it as the form of (−1)S ×
10E−bias×C.

The most significant 4 bits for the significand are “0000” which is between decimal 0 –
7 so the first BID encoding format will be used.

N = −0.005×10105

N = (−1)1×5×10102
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S = 1 TheS igni f icand = 0 000 000 000 000 005 (decimal)
= 00 0000 0000 0005(Hexadecimal−−−54bits)

Exponent = 102 = E−398 Trailing Significand = 000 000 000 000 005 (in BCD)
E = 500(decimal) = 1 F4(Hexadecimal) The most significant 4 bits = 0000

1 01 1111 0100 000 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101
BID Encoding format = BE80 0000 0000 0005 (Hexadecimal)

1.3.1.4 Example 4

In this example we have −0.0050×10105 float number. −0.0050×10105 has trailing zero
which can not be ignored, this number is not the same of −0.005×10105 in example 3
so we need a different representation for this number. we need to write it as the form of
(−1)S ×10E−bias×C.

The most significant 4 bits for the significand are “0000” which is between decimal 0 –
7 so the first BID encoding format will be used.

N = −0.0050×10105

N = (−1)1×50×10101

S = 1 TheS igni f icand = 0 000 000 000 000 050 (decimal)
= 00 0000 0000 0032(Hexadecimal−−−54bits)

Exponent = 101 = E−398 TrailingS igni f icand
= 000 000 000 000 050 (in BCD)

E = 499(decimal) = 1 F3(Hexadecimal) The most significant 4 bits = 0000

1 01 1111 0011 000 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0010
BID Encoding format = BE60 0000 0000 0032 (Hexadecimal)

1.3.1.5 Example 5

In this example, we have 9999999999999999×10250 float number, we need to write it as
the form of (−1)S ×10E−bias×C.

C has the maximum possible decimal number in BID64 encoding, The most significant
4 bits in this case are “1000” which is between decimal 8 – 9 so the second BID encoding
format will be used.

N = 9999999999999999×10250

N = (−1)0×9999999999999999×10250

S = 0 The Significand = 9999999999999999 (decimal)
= 23 86 f 2 6 f c0 FFFF (Hexadecimal - 54 bits)

Exponent = 250 = E−398 Trailing Significand = 999999999999999 (in BCD)
E = 648(decimal) = 2 88(Hexadecimal) The most significant 4 bits = 1000

0 11 10 1000 1000 0 11 1000 0110 1111 0010 0110 1111 1100 0000 1111 1111 1111 1111
BID Encoding format = 7443 86F2 6FC0 FFFF (Hexadecimal)
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1.3.1.6 Example 6

If we have −0.000000000000000000000001 float number, we need to write it as the
form of (−1)S ×10E−bias×C. This number has more than 16 precision digits so BID128
encoding format will represent it.

The most significant 4 bits for the significand are “0000” which is between decimal 0 –
7 so the second BID encoding format will be used.

N = −0.000000000000000000000001
N = (−1)1×1×10−24

S = 1 The S igni f icand =

0000000000000000000000000000000001 (decimal)
= 0 0000 0000 0000 0000 0000 0000 0001
(Hex. 114 bits)

Exponent = −24 = E−6167 Trailing S igni f icand =

000000000000000000000000000000001
(in BCD)

E = 6143(decimal) = 17FF(Hexadecimal) The most significant 4 bits = 0000

1 01 0111 1111 1111 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001

BID Encoding format = AFFE 0000 0000 0000 0000 0000 0000 0001 (Hexadecimal)

1.3.2 Numerical examples on Densely Packed Decimal Encoding
In this section, we put the same float numbers we mentioned in BID numerical examples
in the previous subsection 1.3.1 :

1.3.2.1 Example 7

If we have 1.23×10−2 float number, we need to write it as the form of (−1)S ×10E−bias×C.
The the most significant digit for the significand is “0000” which is between decimal 0

– 7 so the first DPD encoding format as shown in figure 1.8 will be used.

N = 1.23×10−2

N = (−1)0×123×10−4

S = 0 C = 0 000 000 000 000 123 (decimal)
Exponent = −4 = E−398 Trailing Significand = 000 000 000 000 123 (decimal)
E = 394 (decimal) The most significant digit = 0000
= 1 8A(Hexadecimal)

0 01 000 1000 1010 0000000000 0000000000 0000000000 0000000000 0010100011
DPD Encoding format = 3140 0000 0000 007B (Hexadecimal)
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1.3.2.2 Example 8

If we have −9.830 000 000 000 001 ×1020 float number, we need to write it as the form
of (−1)S ×10E−bias×C.

The most significant digit for the significand is “1001” which is between decimal 8 –
9 so the second DPD encoding format as shown in figure 1.9 will be used.

N = −9.830 000 000 000 001 ×1020

N = (−1)1×9 830 000 000 000 001×105

S = 1 C = 9 830 000 000 000 001 (decimal)
Exponent = 5 = E−398 Trailing Significand = 830 000 000 000 001 (decimal)
E = 403 (decimal) The most significant digit = 1001
= 1 93(Hexadecimal)

1 11011 1001 0011 0000111100 0000000000 0000000000 0000000000 0000000001
DPD Encoding format = EE4C 3C00 0000 0001 (Hexadecimal)

1.3.2.3 Example 9

If we have −0.005× 10105 float number, we need to write it as the form of (−1)S ×
10E−bias×C.

The most digit for the significand is “0000” which is between decimal 0 – 7 so the first
DPD encoding format will be used.

N = −0.005×10105

N = (−1)1×5×10102

S = 1 C = 0 000 000 000 000 005 (decimal)
Exponent = 102 = E−398 Trailing Significand = 000 000 000 000 005 (decimal)
E = 500 (decimal) The most significant digit = 0000
= 1 F4 (Hexadecimal)

1 01000 1111 0100 0000000000 0000000000 0000000000 0000000000 0000000101
DPD Encoding format = A3D0 0000 0000 0005 (Hexadecimal)

1.3.2.4 Example 10

Here is the same number −0.0050 × 10105 float number in example 9 with different
representation.

This number has a trailing zero digit, that should be preserved. This is to keep the
significance value. The exponent should be “1F3” (in Hex). The most digit for the sig-
nificand is “0000” which is between decimal 0 – 7 so the first DPD encoding format as
shown in figure 1.8 will be used.

N = −0.0050×10105

N = (−1)1×50×10101

S = 1 C = 0 000 000 000 000 050 (decimal)
Exponent = 101 = E−398 Trailing Significand = 000 000 000 000 050 (decimal)
E = 499 (decimal) The most significant digit = 0000
= 1 F3 (Hexadecimal)
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1 01000 1111 0011 0000000000 0000000000 0000000000 0000000000 0001010000
DPD Encoding format = A3CC 0000 0000 0050 (Hexadecimal)

1.3.2.5 Example 11

In this example, we have 9 999 999 999 999 999×10250 float number, we need to write
it as the form of (−1)S ×10E−bias×C. C has the maximum possible decimal number in
BID64 encoding .

The most digit in this case is “1000” which is between decimal 8 – 9 so the second
DPD encoding format as shown in figure 1.9 will be used.

N = 9 999 999 999 999 999×10250

N = (−1)0×9 999 999 999 999 999×10250

S = 0 C = 9 999 999 999 999 999 (decimal)
Exponent = 250 = E−398 Trailing Significand = 999 999 999 999 999 (decimal)
E = 648 (decimal) The most significant digit = 1001
= 2 88 (Hexadecimal)

0 11101 1000 1000 0011111111 0011111111 0011111111 0011111111 0011111111
DPD Encoding format = 7620 FF3F CFF3 FCFF(Hexadecimal)

1.3.2.6 Example 12

If we have −0.000000000000000000000001 float number, we need to write it as the
form of (−1)S ×10E−bias×C. This number has more than 16 precision digits so BID128
encoding format will represent it.

The most significant digit for the significand is “0000” which is between decimal 0 – 7
so the first DPD128 encoding format will be used.

N = −0.000000000000000000000001
N = (−1)1×1×10−24

S = 1 C = 0000000000000000000000000000000001 (decimal)
Exponent = −24 = E−6167 Trailing Significand =

000000000000000000000000000000001 (decimal)
E = 6143 (decimal) The most significant digit = 0000
= 17 FF (Hexadecimal)

1 01 000 0111 1111 1111 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000001

BID Encoding format = A1FF C000 0000 0000 0000 0000 0000 0001 (Hexadecimal)

1.4 Related Work

1.4.1 The Decimal Floating Point Adders
The decimal-encoded formats and arithmetic described in the new standard now have
many implementations in hardware and software including:
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• Fujitsus decimal Densely Packed Decimal and NUMBER support instructions in
the SPARC64 X processor announced at Hot Chips 24, August 2012. [5]

• SilMinds Decimal Floating Point Arithmetic hardware IP Cores Family. Two
hardware implementations are introduced for decimal floating point adder that is
compliant with the IEEE 754-2008 Standard; one for High-Speed applications and
the other for Low Power/Area ones. [22]

• The paper: Decimal floating-point support on the IBM System z10 processor
by Eric Schwarz, John Kapernick, and Mike Cowlishaw [50] describes decimal
floating-point hardware in, and supporting software for, the new IBM System z10
mainframe.

• The hardware decimal floating-point unit in the IBM Power6 processor, the firmware
(with assists) in the IBM System z9 (mainframe) processor, and the hardware
decimal floating-point unit in the IBM System z10 mainframe which is the first
mainframe with hardware support for the DFP format in the IEEE 754-2008 floating-
point standard. [38]

• Benchmark suite of financial Decimal Floating-Point (DFP) applications. The

benchmark suite includes a banking benchmark, a Euro conversion benchmark, a
risk management benchmark, a tax preparation benchmark, and a telephone billing
benchmark. The benchmark suite is being made publicly available. [48]

• IBM XL C/C++ for AIX, Linux and z/OS, DB2 for z/OS, Linux, UNIX, and
Windows, and Enterprise PL/I for z/OS; IBM is also adding support to many other
software products including z/VM V5.2, System i/OS, the dbx debugger, and Debug
Tool Version 8.1.

• SAP Net Weaver 7.1, which includes the new DECFLOAT data dtype in ABAP,
with support for hardware decimal floating-point on Power6.

• GCC 4.2 was released in July 2007; this is the first GCC release with support for
the proposed ISO C extensions for decimal floating point. [3]

1.4.2 Converters
The Binary to/from BCD converters are important components in our proposed design,
these converters are used in the BID to/from BCD converters. In this section, prior art for
the other algorithms are presented.

1.4.2.1 Binary to BCD Conversion

We have not encountered any hardware implementation for Binary to BCD conversion for
large number of binary bits (more than 50 bits).
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1.4.2.1.1 Algorithms for large binary numbers but not efficient: Couleurs algo-
rithm [14] is the first binary to BCD and BCD to binary conversion algorithm. It is known
as BIDEC algorithm. This conversion algorithm requires two operations per binary bit.
Benedek [8] used Couleur’s algorithm to extend the conversion for large binary numbers.
He developed a geometrical expansion scheme using static decoders. The other work in [8]
is merging groups of decoders with identical I/O pattern to reduce hardware complexity.
He considered that this structure is valid till 30 binary input bits.

The algorithm description There are more than one method to convert from bi-
nary to BCD form. BIDEC method [14] is one of these methods which is classified
as a static conversion. In this design we present a static binary to BCD conversion for
large number of binary bits, we designed binary to BCD converters for 54 or 114 binary bit.

The static binary/BCD conversion technique [8] consists of looking at the three most
significant bits of the binary number. If the value of the three bits is greater than/or equal
to five, add binary three to the number and shift the result one bit to the left. If the three
bits value is less than five, shift to the left without adding three. Take the next bit from the
right and repeat the operation until reaching the least significant bit which will be carried
over without decoding.

We can either use a combinational logic to implement this function or we can use a
look-up table elements that will be cascaded to implement this function. The content of
the look-up table is shown in Table 1.2.

Figure 1.10: E4 Block Entity
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x1 x2 x3 x4 y1 y2 y3 y4
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

Table 1.2: Look-Up Table Content for E4

Hex Tens Units E
Start 1110

Shift 1 1 110
Shift 2 11 10
Shift 3 111 0
Add 3 1010 0
Shift 4 1 0100
BCD 1 4

Figure 1.11 shows the interconnection of these basic (E4) building blocks to form a 11
binary bits to BCD decoder tree. The number of decoder elements increases rapidly with
the bits to be converted. Number of stages follows this function:

Number o f E4 decoding tree stages = Number o f Input bits −3

An example of shift and add-3 algorithm is shown above, The binary number “1110”
can be converted to its value in BCD “14” through these steps:

1. Check the 4 bits number in the Hundreds, Tens, and Units. If they are greater or
equal to 5, then add 3 to it.

2. Shift the binary number left one bit.

3. Repeat from the top. (if you are converting a 8 bit binary number, you do it 8 times
as the number of bits equals 8; if 12 bit then 12 times.

An example of binary to BCD conversion using E4 decoding tree is shown in figure
1.12. The 11 binary input bits are 10011110101, the corresponding decimal (BCD) number
is 1269. Using table 1.2, we can get this BCD number.
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Developing the E6 level of Interconnect In [8], they developed a higher level de-
coder by merging three units of Figure 1.11 into one (dotted line), the new decoding unit
of (E6) has six input/six outputs. The truth table for this unit is shown in Table 1.3, the
three least significant output bits have only 5 out of 8 combinations from 0 to 4, these
three bits will be connected to the three most significant input bits of another decoding
unit. The three least input bits have all possible values (8 numbers) so the total number of
words stored will be 5 x 8 = 40 words.

Figure 1.11: 11 Binary bits to BCD decoding tree with E4 decoders, the dotted outlines
represent E6 decoders

The advantage of this map is that the decoding tree can be extended to any number of
bits by topological similarity and can determine the number of decoder units required for
a given number of binary bits.
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Figure 1.12: 11 Binary bits to BCD decoding tree with E4 decoders numerical example
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Line number Input Code (Octal) Output Code (octal)
0 00 00
1 01 01
2 02 02
3 03 03
4 04 04
5 05 10
6 06 11
7 07 12
8 10 13
9 11 14
10 12 20
11 13 21
12 14 22
13 15 23
14 16 24
15 17 30
16 20 31
17 21 32
18 22 33
19 23 34
20 24 40
21 25 41
22 26 42
23 27 43
24 30 44
25 31 50
26 32 51
27 33 52
28 34 53
29 35 54
30 36 60
31 37 61
32 40 62
33 41 63
34 42 64
35 43 70
36 44 71
37 45 72
38 46 73
39 47 74

Table 1.3: LookUp Table Content for E6
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Figure 1.13: Interconnection for E6 static decoders (binary/BCD)
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1.4.2.1.2 Algorithms for small binary numbers:

Designs use Couleur’s algorithm for small binary numbers: In [41] and [42], the
inventor presented different hardware circuits using Couleurs algorithm [14]. In [31], there
is an iterative sequential hardware of Couleurs algorithm [14]. Using shift registers and
full adders we can get the BCD output vector.

One-step conversion algorithm [34] is another binary to BCD and BCD to binary
conversion algorithm. They developed the counting sequence of BIDEC [14] dynamic
design to be one-step method instead of two steps in BIDEC dynamic algorithm (Shift and
Modify) [14]. For very large number of binary numbers it will consume more iterations
(more time) to output the correct conversion data.

A similar way to Couleur’s algorithm is presented in [45], the inventor presented a
method of converting binary to BCD by shifting and adding the binary number for a
certain times. This process is equivalent to multiplying by (2n−1 + 1).

Three-Four split algorithm and Four-Three split algorithm: Some binary to
BCD converters for seven binary bits were described in [7], [27], [28], [46], [9] and
[30]. These specific converters are important as they are used to convert the binary partial
products resulting from multiplication of two BCD digits to BCD.

The basic cell in [9], [7], [27], [28] and [46] multiplies two BCD digits and outputs the
result in seven binary bits. These seven binary bits should be corrected to BCD. Different
hardware implementations are proposed for this function. There are constraints for these
designs. The binary input size is seven and the output value can not be larger than 81 (in
decimal).

The algorithm in [9] converts the seven binary bits to two BCD digits, the steps of this
algorithm are:

1. Split the seven binary bits into two groups: the three most significant bits - the four
least significant bits.

2. The lower significant group can directly represent a BCD digit if it doesn’t exceed
(1001)2 or 910, if it exceeds (1001)2, adding (0110)2 is needed to correct the BCD
digits

3. The most three bits have a contribution toward the lower significant digit and the
higher significant digit. This contribution is computed to get the two decimal digits
as shown in Table 1.4. For example, consider that the most three bits are 011, we can
get the decimal value of these bits by adding four zero bits at right so the decimal
value of 0110000 is 48, then the contribution to the most significant digit is 4 or
“0100” in binary, the contribution to the least significant digit is 8 or “1000” in binary.
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Most
three bits

Contribution
to the most
significant
digit

Contribution
to the least
significant
digit

Decimal
value

000 0000 0000 00
001 0001 0110 16
010 0011 0010 32
011 0100 1000 48
100 0110 0100 64
101 1000 0000 80

Table 1.4: The contribution of the most three binary bits to the two BCD digits

4. A correction is needed to correct the added BCD digits from the previous two steps
to form the final two BCD digits.

The authors of [7] continued the work in [9], they have two main contributions:

1. They developed a more efficient architecture to compute the contribution of the two
parts in the binary input bits to form the final BCD result.

2. They investigated a different way of splitting the seven binary bits. The new two
groups are: Four most significant bits - three least significant bits.

There are two proposed implementations for binary to BCD converter for seven binary
bits in [7], one for three-four split algorithm which achieves 15%, 42% improvement over
the proposed architecture in [9] and [27] in term of the speed.

Comparing to the implementation of [9], the three-four split algorithm implementation
achieves 23% and 17% saving in area and power respectively. The saving in area and
power when compared with the architecture of [27] are 39% and 38% respectively.

Converting binary fractions to BCD: Other conversion algorithms are mentioned
in [37], [26] and [1]. These algorithms are methods of converting binary and binary
fractions to BCD using iterative multiplication/division in [37],[26] and [1].

In [37], the authors proposed a sequential algorithm to convert binary fractions to
BCD. The basic idea is to multiply by 1010 in each iteration to get the BCD digits.

Consider the binary fraction is expressed as the following equation:

f1 =
d1
10 +

d2
10 +

d3
10 + ...
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If we multiply the binary fraction number f1 by 10 in each iteration, we will get a
new BCD digit after the sign, the multiplication is done easily by adding the results of
multiplying the fraction ( f1) by 2 and 8. This can be done in binary by shifting left one
location and three locations. The next step is to add those shifted bits then get the BCD
digit for the current iteration. Repeat the previous two steps (Shift and add) to get another
BCD digit. Finally we stop when we get the needed number of decimal digits.

Figure 1.14: The sequential Binary to BCD converter - 1 Digit per cycle

Figure 1.15: An example of the algorithm [37]

These methods [37] and [26] are not efficient for large number of binary bits as more
we have binary bits as more we take time for more iterations.
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Another fractional binary to BCD conversion was presented by R. Fowler [24]. He
converted a 24 binary fraction bits into a ten-place decimal using intricate circuitry.

Sequential algorithm using successive multiplication/division operations: An-
other iterative method [19] for conversion of a binary number to decimal system utilizing
division of the binary number by 2 with storage in memory of the reminder, a sequence
of operation on the quotient to effect division by 5 so as to obtain at each sequence a
number associated with the quotient of successive division by 10 of the number to be
converted. The inventor used an adding devices and trigger devices in order to determine
the reminders and the partial quotient of successive division by ten.

Another method in [11] divides the N-bit number into 12 bits parts and converts each
part into BCD. The method then multiplies at least one BCD number by a variable in
response to the number of multiplications to determine the resulting decimal value.

Binary to BCD conversion using bit weights: In [29], [35] and [53], the inventors
proposed a method of serial binary input to serial BCD output conversion. The basic idea
is using BCD bit weights (1, 2, 4, 8, 10, 20, 40, 80, 100, 200 ...). Summing circuits are
used to subtract these weights from the binary number through multiple iterations, at the
last iteration we can get the serial BCD number corresponding to the binary input number.

Iterative arrays for radix conversion: Nicoud [32] presents a conversion algo-
rithms from radix “p” numbers to the radix “q” numbers. Four different algorithms for
integer and four algorithms for fractions are presented. In our case we can convert from
radix 2 to radix 10 and the opposite using these algorithms [32].

For conversion for integers, the authors proposed algorithm that can be implemented
as two-dimensional iterative network as shown in figure 1.17, the equation of these cells
can be simplified as:

a+q + b+ = bp + a (1.1)

Where a+ and a are p-digits and b+ and b are q-digits, in our case, p is 2 and q is
10. p-digits ∈ = 0, 1 while q-digits ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The basic cell of the
two-dimensional iterative network in [32] is shown in figure 1.16.

Figure 1.18 shows three examples for binary to decimal conversion algorithm in [32],
the right example shows the hardware implementation to convert ”10010110”, the first
column from the right takes the binary input. ”1001” is the most four bits which can be
forwarded to the above cell in the first column, according to equation 1.1, the outputs (a+,
b+) of this cell will be 1, 9 consecutively. By the same way, we can get the output results
of all cells as shown in the example. Finally the BCD digits are 1, 5, 0 which represent
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Figure 1.16: The basic cell of the two-dimensional iterative network in [32]

Figure 1.17: Two-dimensional iterative array for conversion of an integer from a radix p
to a radix q number system
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(150)10 in decimal.

Figure 1.18: An example for binary to decimal conversion algorithm in [32] for integer
numbers

For the fraction numbers where the absolute values are pure positive fractional number
(0 ≤ N < 1), The following expressions describe the p-q systems for the fraction numbers:

A =

k∑

i=1

a−i . p−i a−i ∈ P (1.2)

B =

l∑

j=1

b− j . q− j b−i ∈ Q (1.3)

The values k and l will be chosen in such a way that the maximum error will be
negligible.

The main disadvantage of this structure is the large delay for large binary number bits.
The delay increases linearly with the number of input bits.
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1.4.2.2 BCD to Binary Conversion

1.4.2.2.1 Algorithms for large binary numbers but not efficient: There are differ-
ent methods of BCD to binary conversions in [14], [34], [32], [25], [23] and [13].

“Shift and Modify” algorithm is used in [14], “one- step” algorithm [34] is a modified
algorithm of Couleur’s algorithm [14]. A combinational hardware iterative array in [25]
that converts from 8421-BCD or 2421-BCD to binary code is one of these methods.

Conversion algorithm from radix 10 to radix 2 [32] is another BCD to binary conversion
method.

1.4.2.2.2 Algorithms for small BCD numbers: A Sequential method of BCD to bi-
nary conversion was presented in [49] and [13]. Using an iterative addition of the two
multiple to the eight multiple of each BCD digit, we can get the resulting binary number.

In [29] and [35], the inventors proposed a method of serial BCD input to binary output
conversion. The basic idea is using BCD bit weights (1, 2, 4, 8, 10, 20, 40, 80, 100, 200, ...
). If we add the binary numbers of each bit has value ’1’ in the BCD number we get the
corresponding binary number.

In [20], Adder/Subtractor modules in series are used to get the corresponding binary
number to the input BCD, This hardware is not efficient in area and delay for large numbers.

In [12], the inventors proposed new decimal to binary conversion method. The pro-
posed hardware receives a BCD number made up of one or more sets of three digits. These
three digits is converted to binary then multiplying on 1000 and adding to the sum. At the
last iteration we get the binary number.

Using central processing unit and memory chips, BCD to binary conversion method
was presented in [10].

1.4.2.2.3 Algorithms have better performance with large BCD numbers: Another
method [51] and [23] uses groups of memory chips and levels of binary adders to get the
binary output. In this method [51] and [23] large BCD numbers can be converted.

Our design uses new algorithm which divides the BCD input number into digits, then
converts each digit with its weight to binary vectors then using CSA “carry save adder”
tree we can get the final binary number.

1.4.2.3 BCD to DPD and DPD to BCD conversion

In Our design, we used a block which converts from DPD to BCD and from BCD to
DPD [16], [17]. These hardware modules are known as DPD encoder and DPD decoder.
DPD encoder divides the BCD number to three digits (12 BCD bits) and converts each set
of three decimal digits to 10 bits or 1 declet in DPD (10 bits = 1 declet). DPD decoder
converts each set of 10 bits in DPD to 12 BCD bits. The conversion rules of Densely
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DPD encoded values Decimal digits
b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 d2 d1 d0 Values en-

coded
Description

a b c d e f 0 g h i 0abc 0def 0ghi (0-7) (0-7) (0-
7)

Three small
digits

a b c d e f 1 0 0 i 0abc 0def 100i (0-7) (0-7) (8-
9)

a b c g h f 1 0 1 i 0abc 100f 0ghi (0-7) (8-9) (0-
7)

Two small dig-
its, one large

g h c d e f 1 1 0 i 100c 0def 0ghi (8-9) (0-7) (0-
7)

a b c 1 0 f 1 1 1 i 0abc 100f 100i (0-7) (8-9) (8-
9)

One small
digit, two large

d e c 0 1 f 1 1 1 i 100c 0def 100i (8-9) (0-7) (8-
9)

g h c 0 0 f 1 1 1 i 100c 100f 0ghi (8-9) (8-9) (0-
7)

x x c 1 1 f 1 1 1 i 100c 100f 100i (8-9) (8-9) (8-
9)

Three large
digits

Table 1.5: Densely packed decimal encoding rules [15]

Packed Decimal to/from Decimal digits are shown in table 1.5.

In [12], the inventors presented a method for converting scaled binary coded decimal
(SBCD) into decimal floating point (DFP) and converting from (DFP) into (SBCD). The
coefficient of the DFP number is in DPD.

1.5 Organization of the thesis
In this chapter we presented a brief introduction about the decimal floating point (DFP)
addition and the related work to decimal floating point adders and binary to/from BCD
converters. Chapter 2 gives an overview of the IEEE754-2008 standard. In chapter 3, we
present our proposed decimal floating point adder architecture and implementation. Also
we present schulte adder architecture and our implementation for it. Chapter 4 presents
the verification of our proposed design and comparison between the synthesis results we
get from each design, this chapter includes a conclusion of the thesis and the future work.
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Chapter 2: Overview of the IEEE
Decimal Floating-Point Standard
As previously indicated, there was an increasing need to DFP arithmetic. Hence, there
were many efforts to find out the most appropriate DFP formats, operations and rounding
modes that completely define the DFP arithmetic. These efforts ended up with the IEEE
754-2008 floating-point arithmetic standard. This section gives a brief overview to this
standard [4].

There are two methods of encoding the significand of DFP numbers in IEEE Std
754-2008 as described before in subsection 1.3, Binary Integer Decimal (BID) [39] and
Densely Packed Decimal (DPD). The main difference between the BID encoding and
DPD encoding is in the significand representation. In IEEE Std 754-2008, BID encoding
is called binary encoding and DPD encoding is called decimal encoding. But either
encodings can represent the same DFP numbers.

There are five supported rounding modes in IEEE Std 754-2008 standard. The stan-
dard supports four binary formats (binary16, binary32,binary64 and binary128) and three
decimal formats (decimal32, decimal64 and decimal128).

2.1 Decimal Formats
The decimal formats are described in subsection 1.3. The DPD encoding represents every
three consecutive decimal digits in the decimal significand using 10 bits, and the BID
encoding represents the entire decimal significand in binary.

Before being encoded in the combination field, the exponent is first encoded as binary
excess code and its bias value depends on the precision used. There are also minimum
and maximum representable exponents for each precision. The different parameters for
different precision values are presented in table 2.1

Table 2.1: Parameters for different decimal interchange formats
Parameter Decimal32 Decimal64 Decimal128

Total storage width (bits) 32 64 128
Combination Field (W+5) (bits) 11 13 17

Trailing significand Field (T) (bits) 20 50 110
Total Significand digits (P) 7 16 34

Exponent Bias 101 398 6176
Exponent Width (W) (bits) 8 10 14

In a decimal floating-point format a number might have multiple representations. This
set of representations is called the floating-point numbers cohort. For example, if c is a
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multiple of 10 and q is less than its maximum allowed value, then (s, q, c) and (s, q+1,
c/10) are two representations for the same floating-point number and are members of
the same cohort. In other words, a one-digit floating-point number might have up to p
different representations while a p-digit floating-point number with no trailing zeros has
only one representation (a n-digit floating-point number might have fewer than p-n+1
members in its cohort if it is near the extremes of the formats exponent range). A zero has
a much larger cohort: the cohort of +0 contains a representation for each exponent, as does
the cohort of -0. This property is added to decimal floating-point to provide results that
are matched to the human sense by preserving trailing zeros as discussed before. Hence,
different members of a cohort can be distinguished by the decimal-specific operations.
In brief, for decimal arithmetic, besides specifying a numerical result, the arithmetic
operations also select a member of the results cohort. And thus, decimal applications can
make use of the additional information cohorts convey.

2.2 Operations
Operations can be classified as the following:

• Computational Operations:
These operations operate on either floating-point or integer operands and produce
floating-point results and/or signal floating-point exceptions.

• Non-Computational Operations:
These operations do not produce floating-point results and do not signal floating-
point exceptions. It includes, for example, operations that identify whether a DFP
number is negative/positive, finite/infinite, Zero/Non-zero and so on.

Operations can be also classified in a different way according to the relationship be-
tween the result format and the operand formats:

• Homogeneous operations: in which the floating-point operands and floating- point
results are all of the same format.

• Format Of operations: which indicates that the format of the result, independent
of the formats of the operands.

It should be highlighted that, besides the required operations for a standard compliant
implementation, there are other recommended operations for each supported format. These
operations mainly include the elementary functions such as sinusoidal and exponential
functions and so on.

28



2.3 Rounding
There are five rounding modes defined in the standard, Round ties to even, Round ties
to away, Round toward zero, Round toward positive infinity, and Round toward negative
infinity. Also, there are two well-known rounding modes supported in the Java BigDecimal
class [33] . Table 2.2 summarizes the different rounding modes with their required action.

Table 2.2: Different Rounding Modes
Rounding Mode Rounding Mode Rounding Be-

havior
Round Ties To Away (RA) Round to nearest number and

round ties to nearest away
from zero, the result is the one
with larger magnitude.

Round Ties to Even (RE) Round to nearest number and
round ties to even, the result
is the one with the even least
significand digit.

Round Toward Zero (RTZ) Round always towards zero,
the result is the closest DFP
number with smaller or equal
magnitude.

Round Toward Positive (RPI) Round always towards posi-
tive infinity, the result is the
closest DFP number greater
than or equal the exact result.

Round Toward Negative (RNI) Round always towards nega-
tive infinity, the result is the
closest DFP number smaller
than or equal the exact result.

Round Ties to Zero (RZ) Round to the nearest number
and round ties to zero

Round To Away Round always to nearest away
from zero, RA the result is the
one with larger or equal mag-
nitude.

2.4 Special numbers and Exceptions

2.4.1 Special numbers
Normal and Subnormal numbers: Operations on DFP numbers may result in ei-

ther exact or rounded results. However, the standard also specifies two special DFP
numbers, infinity and NaN.
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A normal number can be defined as a non-zero number in a floating point representa-
tion which is within the balanced range supported by a given floating-point format. The
magnitude of the smallest normal number in a format is given by bemin , where b is the base
(radix) of the format and emin is the minimum representable exponent. On the other hand,
subnormal numbers fill the underflow gap around zero in floating point arithmetic. Such
that any non-zero number - which is smaller than the smallest normal number is subnormal.

Table 2.3: Examples of some DFP operations that invlove infinities, x represents any
positive finite non-zero number

Operation Exception Operation Exception
∞+ x =∞ NONE ∞/±x = ±∞ NONE
∞+∞ =∞ NONE ±x/∞ = ±0 NONE
∞− x =∞ NONE ∞/∞ = NaN INVALID
∞−∞ = NaN INVALID

√∞ =∞ NONE
∞×±x = ±∞ NONE

√−∞ = NaN INVALID
∞×±∞ = ±∞ NONE ±x/0 = ±∞ Division by Zero
∞×0 = NaN INVALID remainder(S ubnormal,∞) = NaN UnderFlow

Infinities: Infinities represent numbers of arbitrarily large magnitudes, larger than
the maximum represented number by the used precision. That is:

−∞ < each representable finite number < +∞

In table 2.3, a list of some arithmetic operations that involve infinities as either operands
or results are presented. In this table, the operand x represents any finite non-zero number.

NaNs (Not a Number): Two different kinds of NaN, signaling and quiet, are sup-
ported in the standard. Signaling NaNs (sNaNs) represent values for uninitialized variables
or missing data samples. Quiet NaNs (qNaNs) result from any invalid operations or opera-
tions that involve qNaNs or sNaNs as operands. When encoded, all NaNs have a sign bit
and a pattern of bits necessary to identify the encoding as a NaN and which determines
its kind (sNaN vs. qNaN). The remaining bits, which are in the trailing significand field,
encode the payload, which might contain diagnostic information that either indicates
the reason of the NaN or how to handle it. However, the standard specifies a preferred
(canonical) representation of the payload of a NaN.

2.4.2 Exceptions
There are five different exceptions which occur when the result of an operation is not the
expected floating-point number. The default nonstop exception handling uses a status flag
to signal each exception and continues execution, delivering a default result. The IEEE
754-2008 standard defines these five types of exceptions as shown in table 2.4.
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Table 2.4: Different Types of Exceptions
Exception Description Output
Invalid Operation (Descrip-
tion shows only common ex-
amples)

- Computations with sNan
operands - Multiplication of
0×∞ - Effective subtraction
of infinities - Square-root of
negative operands - Division
of 0/0 or ∞/∞ - Quantize in
an insufficient format - Re-
mainder of x/0 or ∞/x (x: fi-
nite non zero number

Quite NaN

Division by Zero The divisor of a divide opera-
tion is zero and the dividend
is a finite non-zero number.

Correctly signed∞

Overflow The result of an operation ex-
ceeds in magnitude the largest
finite number representable.

The largest finite number rep-
resentable or a signed ∞ ac-
cording to the rounding direc-
tion.

Underflow The result of a DFP operation
in magnitude is below 10emin

and not zero.

Zero, a subnormal number
or±10emin according to round-
ing mode.

Inexact The final rounded result is not
numerically the same as the
exact result (assuming infinite
precision).

The rounded result or over-
flowed result.
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Chapter 3: Implementation and
Architecture
In this chapter, our proposed design will be discussed and will be compared with one of
decimal floating point adder units [43]. Both designs have been implemented on the same
hardware target with the same technology. In this chapter we will discuss in details the
architecture of each design.

3.1 DFP Addition/Subtraction Technique
In this section, we will describe a high level approach for BID Addition. Consider that we
have two DFP operands A, B. A can be represented as (Asign, Ac and Aexp) and B can be
expressed as (Bsign, Bc andBexp).

At first, the operands may be swapped to enable the simplifying assumption that
(Aexp >= Bexp), the swapped operands AN , BN , are represented by the triples (ANsign,
ANc and ANexp) and (BNsign, BNc and BNexp) respectively.

The addition of two DFP numbers can be performed by aligning the significands. This
alignment can be achieved when the exponents are equal but because we have base10 and
the significands are in binary form so we need to multiply by powers of 10.

Then we need to add the aligned significands to get the intermediate result , this
intermediate result need to be rounded to the format’s precision. Rounding DFP numbers
by d decimal digits is equivalent of discarding d decimal digits followed by a possible
increment of the truncated significand depending on the rounding mode and an increase
of the exponent by d, this operation is done in binary so the design of the rounder is not
simple as we want to discard d decimal digits in a binary form.

Consider that we have two DFP operands A = 1234567890123456×1017

,B = 6543210987654321×1014. With this technique, ANc is multiplied by 10ANexp−BNexp =

103 to align with BNc, having exponent of 14. After the addition, the intermediate signifi-
cand result ZIc = 1241111101111110321 and the intermediate exponent ZIexp = BIexp = 14.
Then the 19-digits intermediate significand is rounded to fit 16 digits ,d = digits(ZIc)− p =

19− 16 = 3 digits are rounded off and the intermediate exponent is increased by d .
digits(n) is a function that computes the number of decimal digits including the trailing
zeros in n. In the RTZ rounding mode, the correctly rounded significand and exponent
Zc = 1241111101111110 and Zexp = 14 + 3 = 17.
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3.2 The proposed Adder Architecture
The proposed architecture performs decimal addition on DFP operands represented ac-
cording IEEE 754-2008 and encoded either in BID or DPD.

The BID operands are first converted to BCD then the BCD numbers enter into a DFP
adder and finally the resulting BCD output is converted back to BID.

Alternatively, two DPD operands can be used as inputs and converted to BCD numbers
which are fed to the adder. The output of the adder in this case is converted by to DPD.
The generic architecture of our proposed adder design is shown in figure 3.1.

Figure 3.1: Generic architecture of our proposed adder design

In our implementation, we use the SilMinds DFP adder unit which adds two decimal
floating point numbers of decimal encoding (DPD) and do all operations in decimal,
BID to/from DPD converters to enable getting BID operands and give the result in BID
encoding format. In this chapter we will discuss the architecture of our proposed design.
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There are two parallel BID to DPD converters for each operands followed by SilMinds
DFP adder then DPD to BID converter at the last phase. The block diagram of our pro-
posed design is shown in figure 3.2.

Figure 3.2: Our Proposed DFP Adder Architecture

An enhancement in our implementation can be done if we eliminate the grey blocks in
the shown figure 3.2, these grey blocks refer to DPD to BCD converter and BCD to BID
converter. The final implementation should contain only the grey blocks in figure 3.1.

3.2.1 SilMinds DFP Adder
This is the main block in our design which does the addition operation. It is the largest
area component in the design as shown in table 4.2; this block is owned completely by
SilMinds and the company allowed us to use it in this research work.

Based on the exponents values and the number of leading zeros, the significands
are aligned. The core of SilMinds adder [22] uses a Kogge-Stone prefix tree adder to
implement a fast decimal adder. In this adder, there are two paths; one for data and the
other one for carry as shown in figure 3.3. Both the addend and augend are converted to
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regular Binary Coded Decimal (BCD) and excess-3 encodings simultaneously. The sum
of two BCD digits requires a correction only if it exceeds nine. After the correction of the
sum, an incremented BCD digit is produced for each BCD Sum location, the carry signals,
which are produced from the other path, select the correct result for each BCD location.

Excess-3 encoding is used in the other path (carry path) to get the propagate and gener-
ate signals that are fed into Kogge-Stone tree to get quickly the carry signals corresponding
for each BCD digit in the significand.

In parallel, SilMinds DFP adders generate the sticky bit which is used by the alignment
shifter in an injection based rounding [47]. SilMinds DFP Adder architecture is shown in
figure 3.4.

Convert to Exess3

P & G

KoggeStone tree

Convert to BCD

Digit Addition

Corret &

Inrement

MUX

Result

Carry Signals

Sum + 1
Sum

Figure 3.3: SilMinds Fast Multidigit Adder

3.2.1.1 Excess-3 Encoding

Excess-3 is a binary-coded decimal code which simplifies Propagate and Generate P-G
signals generation and sum digits correction. It is a complementary BCD code so we can
easily detect if the sum of two excess-3 coded numbers is more than 9 or no. This method
of using excess-3 encoding simplifies the circuit of decimal addition operation. As shown
in table 3.1, it shows the Excess-3 corresponding values for the decimal numbers.

From table 3.1, we can easily detect if the decimal digit is 5 or more when the fourth
bit is ’1’, we can also detect if the sum is 9 by comparing the most significant two bits with
“11” and comparing the least two bits by “00”. We can check if the sum is more than 9 by
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Figure 3.4: SilMinds DFP Adder architecture

Table 3.1: Excess-3 Encoding truth table
Decimal Number Excess3-Code

0 0011
1 0100
2 0101
3 0110
4 0111
5 1000
6 1001
7 1010
8 1011
9 1100
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binary adding of the two numbers in excess-3 encoding and checking the carry signal.

3.2.1.2 Propagate and Generate

SilMinds Adder uses the concepts of generating and propagating carries. The addition of
two 1-digit inputs A and B is said to generate if the addition will always carry, regardless
of whether there is an input carry (equivalently, regardless of whether any less significant
digits in the sum carry). For example, in the decimal addition 52 + 67, the addition of the
tens digits 5 and 6 generates because the result carries to the hundreds digit regardless of
whether the ones digit carries (in the example, the ones digit does not carry (2 + 7 = 9)).

The addition of two 1-digit inputs A and B is said to propagate if the addition will
carry whenever there is an input carry (equivalently, when the next less significant digit in
the sum carries). For example, in the decimal addition 37 + 62, the addition of the tens
digits 3 and 6 propagate because the result would carry to the hundreds digit if the ones
were to carry (which in this example, it does not).

Note that propagate and generate are defined with respect to a single digit of addition
and do not depend on any other digits in the sum.

3.2.1.3 Kogge-Stone Tree

The KoggeStone adder is a parallel prefix form carry look-ahead adder. It generates the
carry signals in O(logn) time, and is widely considered the fastest adder design possible.
It is the common design for high-performance adders in industry.

As shown in figure 3.5, Each of the shaded circles at the next figure represent the Dot
Operator; two P-G pairs are input and a single P-G pair is output to the next stage. It may
be modeled as:

(P,G) = DotOperator(Pi, Gi, Piprev, Giprev) (3.1)

For all shaded circles, the outputs are following these equations:

P = Pi · Piprev (3.2)
G = Gi + Pi · Giprev (3.3)

Each of the clear circles at the next figure represent another Dot Operator with a sin-
gle P-G pair as input and a single P-G pair as output to the next stage. It may be modeled as:

P = Pi (3.4)
G = Gi (3.5)
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For the square units, Ai and Bi are the inputs of each square unit, each unit has a P-G
pair as output, it may be modeled as:

P = Ai ⊕ Bi (3.6)
G = AiBi (3.7)

At the last stage, we get the carry and sum signals according to these equations 3.8
and 3.9:

Ci = Gi (3.8)

S umi = Pi⊕Ci−1 (3.9)

Figure 3.5: The Kogge Stone Adder

3.2.2 DPD to BID Converter
We use SilMinds BID converters in our proposed DFP Adder. As shown in figure 3.2,
these units are attached at the beginning and the end to the SilMinds DFP adder unit to set
the input/output operands in BID format.

The main aim of this module is to convert DPD encoding [15], [16] and [17] to BID
encoding (64 and 128 bits).

Several operations are done in this module:

• Extract the exponent from (G-field).

• Convert the DPD value of T-field to BCD value.

• Extract the whole BCD value from the BCD converted T-field and G-field.

• Convert the BCD value to its equivalent Binary value.
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• Decode the most significant bits for the exponent.

• Decode the sign bit.

Where the encoded T-field payload is the Trailing Significand Field where it is decoded
to P−1 BCD digits, G-field is a combination field that contains the exponent, the most
significant digit of the significand, and the encoding classification.

3.2.2.1 System Overview

In this section, a new Densely Packed Decimal Encoding (DPD) (64 and 128 bits) to
Binary integer Decimal (BID) Hardware Converter is described.

DPD encoding format [15], [16] and [17] can be divided into four main sections. The
first section is the trailing significand field, the second section is the partial exponent
field that constitutes the biased exponent, the third section is the combination field which
contains the complete other information of the significand (the leading digit),the most two
exponent bits and detects if there is a special value while the fourth section is the sign bit.

Figure 3.6: DPD to BID converter (64 bits) block diagram

Our design can be divided into three main parts as shown in Figure 3.6 , the first
part is the significand conversion from DPD encoding format [15], [16] and [17] to BID
encoding format. The second part is some logic units which extract certain fields of BID
encoding (the most significant digit, the most exponent bits and the Sign) and the third
part is the output block which combines all fields to formulate the output BID encoding.
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We differentiate between the special numbers (NaNs and Infinity) and the normal decimal
floating point numbers in this part. The grey blocks indicate the critical path delay through
it . In this section we will describe each module in the system individually.

3.2.2.2 DPD Decoder

DPD encoding format [15], [16] and [17] is an encoding representation that represents
every three consecutive decimal digits in the decimal significand using 10 bits. We can
use this module for 64 bits DPD encoding format ([15], [16] and [17]) or 128 bits DPD
encoding format [15], [16] and [17] .

In 64 bits DPD encoding format [15], [16] and [17], the DPD trailing significand field
size is 50 bits (5 declets 1 declet = 10 bits ), each declet can be converted to 3 decimal
digit (12 bits in BCD) so 50 DPD trailing significand bits can be converted to 5x12 BCD
bits (60 bits).

In 128 bits DPD encoding format, the DPD trailing significand field size is 110 bits
(11 declets - one declet size equals 10 bits ), each declet can be converted to 3 decimal
digit (12 bits in BCD) so 110 DPD trailing significand bits can be converted to 11x12
BCD bits (132 bits).

The conversion from Densely Packed Decimal encoding to BCD are described in table
1.5.

3.2.2.3 BCD to Binary Converter

The main aim of this module is converting BCD number to the binary form.

In 64 bits DPD encoding format, the converted BCD significant size is 60 bits from
“DPD Decoder” but there is extended digit, the extended digit has 4 bits size so the overall
size of the significand is 64 bits (16 digits).

While in 128 bits DPD encoding format, the converted BCD significant size is 132
bits “from DPD Decoder” but there is extended digit, the extended digit has 4 bits size so
the overall size of the significand is 136 bits (34 digits).

Some notes here:

• For DPD64 encoding format the maximum expected decimal value of the completed
significand is 9 999 999 999 999 999 (16 digits) which equals 23 86F2 6FC0 FFFF
in Hexadecimal (54 bits size), so we have 64 bits width size for the input and 54
bits size for the output of this module. (This module has 64 Input size - 54 output
size) as shown in Figure 3.7 .
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For DPD128 encoding format, the maximum expected decimal value of the com-
pleted significand has size of 136 bits while the converted binary format has maxi-
mum size of 114 bits as shown in Figure 3.7.

• All range of the input is not covered as the input is in BCD form where each 4 bits
range from 0000 to 1001.

Figure 3.7: BCD to Binary converter entities

The main idea of converting BCD value to binary value is to convert each digit (4 BCD
bits) with its weight to the corresponding binary value then we have several(BCD size/4) bi-
nary vectors. The sum of these vectors using tree of “three2twocompressor” modules will
be the binary output as shown in figure 3.9 for decimal64 format. “three2twocompressor”
module adds two binary numbers and outputs the result in Sum/Carry form. We use this
module as the critical path delay is small comparable to other adders.

For example, if we have an Input “932” BCD number, we can divide it to three numbers
900, 30 and 2, By adding the binary values of each number we can get the overall binary
value.

3.2.2.3.1 Digit to Binary module The important question right now is how can we
get the binary values of a decimal number? SilMinds design uses new algorithm which
divides the BCD input number into digits, then converts each digit with its weight to
binary vectors then using CSA “carry save adder” tree we can get the final binary number.

We can use full truth-table for all possible digits in each weighted locations, for ex-
ample if we have 3 digits in decimal , the range of these 3 digits is from 000 to 999 and
there are 3 weights 1’s (units) and 10’s (tens) and 100’s (hundreds), each weight has ten
possible digits from 0 to 9 so we need to save 30 binary numbers which represents the
different possibilities we can get.

In our case, for DPD64 numbers, the significand in BCD has 64 bits width size or 16
digits and we need to save 10 binary numbers for each digit so the overall memory size
will be (16 digits x 10 possible binary numbers x 54 bits size for each number - 16x10x54
bits or 8,640 bits memory size).
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Digit first component second component third component
0 0 0 0
1 1 0 0
2 1sl1 0 0
3 1 1sl1 0
4 1sl2 0 0
5 1 1sl2 0
6 1sl1 1sl2 0
7 1 1sl1 1sl2
8 1sl3 0 0
9 1 1sl3 0

Table 3.2: Decimal Digit Components

A good optimization can be done for the previous solution is to save one value only
in each digit weight, the one saved digit is ‘1’ , for example we need to save (1, 10, 100,
1000 and so on till the maximum weight).

We can get it easily from adding shifted versions of the stored binary numbers, as
example if we want to get the binary value of 30 000, We have an information of the
binary value of 10 000 so if We get the binary value of 20 000 we can add the binary value
of 10 000 and 20 000 in binary to get the binary value of 30 000. We can get the binary
value of 20 000 by shifting the binary value of 10 000 to the left one location.

Generally, we can get the binary value of the other weighted decimal digit by adding
three components as shown in Table 3.2 and Figure 3.8.

sl1 means shift left by 1 bit(multiply by 2), sl2 means shifting left by 2 bits (multiply
by 4) and sl3 means shifting left by 3(multiply by 8).

Figure 3.8: Digit to Binary block architecture
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Figure 3.9: BCD to Binary Adder tree - 64 BCD input bits

3.2.2.3.2 The Adder Tree In DPD64 encoding format, we have a BCD number with
64 bits width size (16 digits). We get the least significant 60 bits from DPD decoder but the
most significant four bits we extract from the input. In our design we use 16 “digit2binary”
modules to convert all digits with its weight to its binary value. As “digit2binary” outputs
two vectors, we have 32 binary vectors, the binary output vector is the sum of those
resulting 32 binary vectors.

We use “three2twocompressor” modules to add 32 binary vectors through eight levels,
at the last stage we have two binary vectors. We use “Binary Adder” module to add two
binary vectors at the last stage. The grey modules indicate the critical path delay through
it, the critical path may be one of the paths shown in figure 3.9.

3.2.2.4 The most significant digit decoding

This logic is responsible for extracting the most significant digit from DPD64 or DPD128
encoding formats.

As shown in Figure 3.10, 0XXX, 0YYY and 0ZZZ are the extracted BCD digit from
DPD64 encoding format, this logic extracts the most significant digit.

But if the most significant digit is 1000 or 1001, 000Y is the extracted BCD digit from
DPD64 encoding format as shown in figure 3.11 , this logic extracts the most significant
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Figure 3.10: DPD64 Encoding format for the most significant digit from 0 – 7

digit. The extracted BCD digit in DPD64 encoding format is concatenated with 60 bits
resulting from DPD decoder then the whole 64 bits converted into the binary .

Figure 3.11: DPD64 Encoding format for the most significant digit from 8 – 9

The same idea of extracting the most significant digit in DPD128 encoding format, the
extracted BCD digit in DPD128 encoding format is concatenated with 132 bits resulting
from DPD decoder then the whole 136 bits converted into the binary form as shown in
figure 3.12 and 3.13.

Figure 3.12: DPD128 Encoding format for most significant digit from 0 – 7

3.2.2.5 The most exponent bits decoding

This logic is responsible for extracting the valid most exponent two bits, the exponent bits
has a limitations in it. The most exponent two bits are “00,01 or 10”.
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Figure 3.13: DPD128 Encoding format for most significant digit from 8 – 9

In DPD64 encoding format, to get the complete exponent value (10 bits), we should
concatenate the extracted most exponent (two bits ) with the 8 bits exponent field G5-G12
as shown in figure 3.10 and 3.11.

In DPD128 encoding format, To get the complete exponent value (14 bits), we should
concatenate the extracted most exponent (two bits ) with the 12 bits exponent field G5-G16
as shown in figure 3.12 and 3.13.

3.2.2.6 Special value detection

This logic is responsible for detecting if the DPD input number is a special value or not.
For DPD64 encoding format, the special values has G0-G3 of “1111” (Infinity if G4 = 0
and NaN if G4 = 1). If the DPD input is a special value , BID payload will be Trailing
significand field of input(T).

3.2.2.7 The output Formulation

This module combines all field of BID encoding format and outputs it.

3.2.3 BID to DPD Converter
3.2.3.1 System overview

In this design, we convert the binary coefficient in BID encoding format to DPD encoding
format through two levels of conversions. Firstly, we convert from the binary form to
BCD form then from BCD form to DPD encoding format. We need first to extract the
complete binary significand form BID encoding format.

“The significand formulation” module is the module that is responsible of formulating
the binary significand, it checks the most significant two bits after the sign bit G0-G1 to
formulate the binary significand.

“binary2bcd” converts from binary form to BCD form, in decimal64 the complete
binary significand size is 54 bits and the resulting BCD output size from “Binary to BCD”
module is 64 bits while in decimal128 the complete binary significand size is 114 bits and
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Figure 3.14: Binary Integer Decimal to Densely Packed Decimal Converter block diagram
- 64 bits

the resulting BCD output size from “Binary to BCD” module is 132 bits.

There are other logic blocks that decode (the most exponent bits, formulate the DPD
combination field and detect the special values (NaNs or Infinity).

The last part of this architecture is the output formulation module, it formulates the
DPD encoding format [15], [16] and [17] and outputs it.

3.2.3.2 The significand formulation

In decimal64 , the significand width size can be 53 or 51 bits with hidden ‘0’ , “100” re-
spectively depending on the most significant digit in the decimal number of the coefficient
whether its range 0-7 or 8-9. By checking the combination field in BID encoding format
we can differentiate between the two forms, if the most significant two bits after the sign
bit G0-G1 is “00” or “01” or “10” then the most significant bit of 54 bits significand is ’0’
so the stored bits in the significand field is 53 bits and there is a ’0’ hidden bit at the left so
the significand field will be T[52:0], the exponent field will be G0-G9, where the 2 most
significant bits (take values of 00,01,10) and the sign bit will be BID[63].

But if G0-G1 is “11” then the most significant bits of 54 bits significand are “100” so
the stored bits in the significand field are 51 bits and there are “100” hidden bits at the
left so the significand field will be T[50:0], the partial exponent field will be G4-G11,the
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combination field will be G0-G3 (G0-G1 = “11”) the sign bit will be BID[63]. Please
refer to figure 3.14.

3.2.3.3 The exponent bits decoding unit

This logic is responsible for extracting the exponent bits from BID64 or BID128 encoding
formats.

We check G0-G1 at first, if there is “11”, the most significant four bits of the significand
are “‘1000” or “1001” - the second BID form for BID64 - as shown in figure 1.5. So the
most exponent two bits are G2-G3 and the partial exponent bits are G4-G11.

But if G0-G1 is “00” or “01” or “10”, this mean that the most exponent two bits are
G0-G1 and the partial exponent bits are G2-G9 and the most significant four bits of the
significand is between “0000” and “0111” - the first BID form for BID64 - as shown in
figure 1.4.

The same idea for BID128 as before, if the most two exponent bits after the sign are
“11” then the most exponent two bits are G2-G3 and the partial exponent bits are G4-G15
but if G0-G1 are “00” or “01” or “10” so the most exponent two bits are G0-G1 and the
partial exponent bits are G2-G13.

3.2.3.4 Special value detection

This logic is responsible for detecting if the BID input number is a special value or not.
For BID64 encoding format, the special values has G0-G3 of “1111” (Infinity if G4 = 0
and NaN if G4 = 1). If the BID input is a special value , Nan payload will be the trailing
significand filed of the input T.

3.2.3.5 Binary to BCD Converter

SilMinds has three different designs to convert 54-bits binary input, in this section we will
describe each design.

3.2.3.5.1 The first design In the first design, we divide the binary input to several
parts then convert each binary part using smaller E6 decoding tree (which were described
in subsection 1.4.2.1.1) (smaller binary to BCD converter) to several BCD vectors. The
next step is to multiply these parts by their corresponding BCD weighted numbers 2W ,
where W is the location of the least significant bit in the corresponding binary input part.
Using CSA(3:2) (Carry Save adder) tree adder and correction units we can get the BCD
number of the binary input.

For example, If we have binary number of 1111 1010 (250 in decimal) then we can
divide it into two parts, 1111 (in binary) is the left half part and 1010 (in binary) is
the right half part, To get the binary number from these parts we can add 1010 to 1111
multiplied by 24. 1010 is 10 in decimal and 1111 is 15 in decimal so the final result will
be 10 + 15×24 = 10 + 240 = 250 as expected.
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The same idea has been used in our design, dividing the binary number to several
parts then converting each part to BCD then multiply the resulting BCD vectors by the
corresponding constant binary weighted numbers (2W) in BCD. Multiplication modules
will generate more number of vectors than the number of BCD input vectors. Decimal
adder tree is used to add the resulting BCD vectors.

So what are the points we take into consideration when we design?

1. Decrease the number of binary parts as possible to decrease the number of the BCD
vectors we need to sum (It will reflect on decreasing the delay of the BCD adder
tree).

2. Divide the parts to make the large part size at the left (the most significant bits of the
binary number) to decrease the value of the weighted number we multiply on (It will
reflect on decreasing the number of BCD vectors so the delay will be decreased).

3. Use binary weighted multiplier number that has decimal digit 0,1,2,4 and 8. More
we use these digits in the multiplier number, more we get less vector number.

4. The tree is used in BCD 4221 format so a carry correction is need “mult carryby2”.
Arrange the tree units (three2twocompressor and mult carryby2 modules) so we
can get less delay of the adder.

Using the previous considerations to design 54 bits binary to BCD converter, we
divided 54 bits to be as shown in figure 3.15 into three parts: 11 bits, 20 bits and 23 bits.

There are three modules in the design which convert from binary input to BCD output.
The first used converter is “bin2bcd 11bits”, the architecture of this module is something
like the shown architecture in figure 3.16 but using 11 input bits and using six E6 unit
modules). It converts 11 input bits to (14 bits) BCD output vector.

The second converter is “bin2bcd 21bits” which has four BCD output vectors (x1, x2,
x4 and x8) (Figure 3.16). There are four output vectors which are (x1, x2, x4 and x8) BCD
values of the binary input vector. At the end stages, at least 3 stages of E4 units are used
to get more than output vectors of shifted versions of the binary input by one location.

To get (x1, x2, x4 and x8) BCD values, let the input of the tree is [Ip 000] where Ip is
the binary input number and it is shifted to the left by three locations.

The expected BCD output value will express x8 of the binary input, to get x4 BCD
output take the output from the penultimate stage of binary to BCD tree as shown in figure
3.16, It is the same result if a new tree is used and we use shifted input to the left by two
locations [IP 00].

x1 and x2 BCD output vectors take their values from preceding stages for x4 output
stage, All output vectors are shown in figure 3.16.
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Figure 3.15: 54bits Binary to BCD Converter – The first design
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Figure 3.16: Binary to BCD converter – 21 bits
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Multiplier digit Output Vectors Number of vectors
x1 x1 1
x2 x2 1
x3 x1 x2 2
x4 x4 1
x5 x1 x4 2
x6 x2 x4 2
x7 x1 x2 x4 3
x8 x8 1
x9 x1 x8 2

Table 3.3: The number of vectors for each digit of the multiplier

The input of this module has 21 input size while the output sizes are (30, 31, 33 and
33) bits respectively, the four BCD outputs (x1,x2,x4 and x8) vectors are connected to the
BCD multiplier.

The third used converter is “bin2bcd 23bits”. The input of this module has 23 input
size and the four BCD output vectors are connected to the BCD multiplier.

We use an easy technique to implement BCD multipliers with low output delay and
low area. This multiplier multiplies by a constant number.

Each BCD multiplier we have has a constant number to multiply, for example “bcd
mul 2pw11” multiplier multiply the BCD input by 211 which is 2048, we can multiply
the BCD input by 8, 40 and 2000 individually then output three BCD vectors but if we
want to multiply by 220 which is 1 048 576 we can multiply the BCD input vector by 6,
70, 500, 8 000, 40 000 and 1 000 000.

We use shifting to multiply by multiple of ten in BCD and we have four inputs which
are (x1, x2, x4 and x8) for the BCD input, we can multiply the input by any decimal digit
easily. For example if we want to multiply by 5 , we can produce two output vectors which
are x1 and x4 input vectors and if we want to multiply by 7, we can produce three output
vectors which are x1, x2 and x4 input vectors. But If we want to multiply by x30 000 we
need to generate two vectors (x10 000 and 20 000) using the two techniques above, to get
x10 000 we need to shift to the left x1 by four digits and to get x20 000 we need to shift
to the left x2 by four digits. for the previous example, If we have a BCD multiplier by
220 or 1 048 576 (in decimal) we need to output these vectors: (x2, x4, x10, x20, x40,
x100, x400, x8 000, x40 000 and x1 000 000). The sum of these vectors will be x1 048 567.

Table 3.3 shows the number of vectors we need to output for each digit we need to
multiply on.

Table 3.4 shows some parameters for some different binary weighted multiplier num-
bers 2W .
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9 512 3 3 0 2 0 1 4
10 1 024 4 3 1 3 0 0 3
11 2 048 4 3 1 3 0 0 3
28 268 435 456 9 9 0 4 0 5 14
29 536 870 912 9 8 1 3 1 4 14
30 1 073 741 824 10 9 1 6 2 1 14
31 2 147 483 648 10 10 0 7 1 2 14
32 4 294 967 296 10 10 0 4 1 5 17
33 8 589 934 592 10 10 0 4 0 6 16
34 17 179 869 184 11 11 0 6 2 3 18

Table 3.4: Number of the output vectors from the BCD multiplier for different Binary
weighted Multiplier Numbers

As shown in Table 3.4 the grayed rows is the selected BCD multiplier numbers. As it
has more number of digits comparable to the near weighted numbers and less number of
vectors.

Our proposed design has 3 sets of BCD vectors:

• The resulting BCD vector from “bin2bcd11bits” module (1 vector).

• The resulting BCD vectors from “bcd mul 2pw11” module (x2048) (3 vectors).

1. x8 forward x8 Input.

2. x40 shifting left x40 Input by one digit locations.

3. x2000 shifting left x2 Input by three digit locations.

• The resulting BCD vectors from “bcd mul 2pw31” module (x2 147 483 648) (14
vectors).

1. x8 forward x8 Input.

52



2. x40 shifting left x4 Input by one digit locations.

3. x600 part1 shifting left x2 Input by two digit locations.

4. x600 part2 shifting left x4 Input by two digit locations.

5. x3000 part1 shifting left x1 Input by three digit locations.

6. x3000 part2 shifting left x2 Input by three digit locations.

7. x80000 shifting left x8 Input by four digit locations.

8. x400000 shifting left x40 Input by five digit locations.

9. x7000000 part1 left shifting x1 Input by six digit locations.

10. x7000000 part2 left shifting x2 Input by six digit locations.

11. x7000000 part3 left shifting x4 Input by six digit locations.

12. x40000000 shifting left x4 Input by seven digit locations.

13. x100000000 shifting left x1 Input by eight digit locations.

14. x2000000000 shifting left x2 Input by nine digit locations.

The total number of BCD vectors which are needed to be added is 18 vector. To get
the final result we need to add them.

“Three2TwoCompressor” modules will be used to add BCD numbers but after con-
verting 8421 BCD vectors into 4221 BCD vectors. “Three2TwoCompressor” module has
two output vectors, the first one is the sum vector (in weight of unit) and the second one is
the carry vector (in weight of half) so in the next sum level we need first to multiply carry
by 2 using “mult carryby2” to add it with unit vectors or to add it directly with other half
weight vectors.

Tree of 3:2 compressors and “mult carryby2” combine the BCD adder tree as shown in
figure 3.15, the critical path delay through the grey blocks. It consists of 5 “3:2 compressor”
modules and 5 “mult carryby2” modules.

3.2.3.5.2 The second design The second proposed design is to use complete E6 de-
coding tree to convert 54 binary input bits to BCD, there are 16 E6 level stages that
converts 51 binary bits and there are three E4 stages as shown in figure 3.17.

The advantage of this design that it doesn’t use “three to two compressor” or “mul carry by2”
delays which have large delays but the disadvantage of this design that the tree critical
path has large delay.

3.2.3.5.3 The third design In this design, we calculate the BCD value of the 54 binary
input bits through adding the BCD values of each binary input bit, We stored the BCD
values of 20 , 21 , 22 , 23, 24 , ... and 253 .
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Figure 3.17: 54bits Binary to BCD Converter – The second design
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using 54 2x1 multiplexer we output either the corresponding BCD vector value of each
bit or zero vector if the corresponding binary input bit equals zero.

54 BCD vectors we get from the multiplexer stage, the resulting BCD vector can be cal-
culated using tree of “3:2 compressor” and “mul carry by2” , we use two “bcd adder 27i to 4o”
modules as shown in figure 3.18. “bcd adder 27i to 4o” module is a “CSA” carry save
adder tree with correction units which has 27 BCD input and four output vectors.

The advantage of this design that the delay increases logarithmic with the number of
binary input bits, so it can be used for large input bits.

Figure 3.18: 54bits Binary to BCD Converter – The third design
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3.3 Schulte Adder
The adder implementation of Schulte, Tsen and Gonzalez-Navarro [43] is the first hard-
ware design for adding and subtracting BID-encoded floating-point numbers. This may
be due to a perception that the BID format is more appropriate for software rather than
hardware. Contrarily, they argue that BID is well suited for hardware implementations,
since it can share hardware with binary arithmetic units. For example, a 64-bit fixed-point
multiplier occupies a large percentage of the area of their BID adder, can also be used to
perform BFP multiplication, and BID multiplication, comparison, minimum, maximum,
quantize, and toIntergalValue.

In this document, we will refer to this implementation as “Schulte Adder”. We
implemented this adder for decimal64 format according to the adder hardware design
architecture which is puplished in this paper[43]. A VHDL code has been written for this
design. This design has been implemented on Altera Stratix VI FPGA device family. we
estimated the performance and area results for the decimal128 format.

3.3.1 BID Addition/Subtraction Technique in Schulte Adder
Schulte Adder uses the same algorithm described in section 3.1, It uses BID encoding
for the DFP numbers. This hardware is not practical for large exponent difference as the
maximum exponent difference in decimal64 is 767, this means that the Intermediate result
can reach over 2500 bits (No.o f bits = log2(10767) = 2585) which is not practical for the
rounder architecture as it will take large amount of the hardware resources.

In Schulte Adder they used 64-bits decimal rounder which accept 20 decimal digits
(264−1 = 18446744073709551615) to round it to 16 decimal digits. All decimal rounding
operations are in binary format. The problem space now can be divided into three cases.
In the first case, ZIc is guaranteed to fit into the 64-bits rounder as in the previous example.
The second case is a special case of the first case, where Aexp = Bexp , this case occurs
frequently and doesn’t require significand alignment, and requires rounding of at most one
digit. In the third case, the intermediate result is too large for the rounder and alternative
approach is needed.

3.3.1.1 BID Addition/Subtraction Algorithm

In this section,we will discuss the Schulte Adder algorithm and our implementation for
this algorithm. The general algorithm is shown in figure 3.21. The shown algorithm
doesn’t include the exceptions and special cases for simplicity.

At first, A and B may be swapped to achieve the conditions Aexp ≥ Bexp , the swapped
operand AN ,BN are represented by the triples (ANsign, ANc and ANexp) and (BNS ign, BNc
and BNexp).

Then we prepare the operand for further operation, we calculate the difference between
the two operand exponents considering that A operand should have the larger exponent
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or the same exponent. If not, we need a swap operation to make sure of this condition 3.10:

ANexp ≥ BNexp (3.10)

The rest of the circuit is designed by considering this assumption. Also, the effective
operation EOP is calculated at this stage as shown in equation 3.11, based on the input
operation OP and the signs of the operands. The block diagram of the step 1 is shown in
figure 3.19.

EOP = OP ⊕ ANsign ⊕ BNsign (3.11)

Swap

|Aexp − Bexp|

Op

EOP

K

sign

Asign Bsign Ac Bc Aexp Bexp

ANsignBNsignANc BNc ANexp BNexp

E�etive Operation

Figure 3.19: Hardware For Algorithm Step 1

The second step is to calculate the number of decimal digits in ANc which is referred
to as Qa. The number of derived digits has a direct effect on the rounded intermediate
result and final result. It will be described in details later.

The next step is to estimate the number of the Intermediate result decimal digits, upon
this count we can categorize the output in two main cases:

• The number of Intermediate decimal digits are less than the rounder limit

• The number of Intermediate decimal digits are greater than or equal the rounder
limit.

The case of equal exponents is important and it occurs frequently. In this case, we
don’t need to align the significands so the two significands have 16 decimal digits as
maximum.
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The intermediate result has 17 decimal digits as maximum so we may need to round
this intermediate result one decimal digit. The three cases right now are:

Case1 : ANc × 10K < 1019 and ANexp , BNexp (3.12)

Case2 : ANexp = BNexp, thus ANc × 10K < 1016 as K = 0 (3.13)

Case3 : ANc × 10K > 1019 (3.14)

In the first case, there is no problem for the intermediate result to work with the
rounder. The term (ANc×10k), where k is the absolute difference between the exponnts of
A and B (K = | Aexp−Bexp |), has the larger number of the decimal digits. The maximum
possible number of decimal digits is 20 so 1019 is selected to be compared to (ANc × 10k)
so we add/subtract ANc × 10K and BNc directly without any preparation. To multiply
ANc by 10K , we need 64x54 multiplier. ANc is represented in binary in 54 bits, the binary
representation of 10K is stored in LUT, the maximum value of 10K is 1019 which is
represented in 64 bits, this multiplier is described in more details in subsection 3.3.1.2.3.
Then we add/subtract the two terms (ANc × 10k) and BNc and get the absolute value of
the intermediate result and compute the sign of the intermediate result.

ZIsign = ((10K × ANc ± BNc) < 0) (3.15)

The operation we do is the effective operation that we determined in the previous step.
The inequality operation returns a boolean result ‘0’ or ‘1’, ‘0’ refers to positive sign while
‘1’ refers to negative sign.

The final sign of the result can be computed using this equation:

Zsign = ANsign ⊕ ZIsign (3.16)

The next step is to round off the intermediate result to fit the 16 decimal digits, as we
operate in the first case, we guarantee that the number of decimal digits of the intermediate
result will not exceed 19 which will not violate the maximum number of the rounder size.
If the intermediate result has size of 16 decimal digits or less, we will not need to round
off as the intermediate result fits the 16 decimal digits but if we have more than 16 decimal
digits in the intermediate result. We will need to round off this intermediate result by
the difference between the number of decimal digits of the intermediate result and the
precision size which is 16. The number of digits to round off (d1) is expressed as:

d1 = max(QI −16,0), where QI = digits(ZIc) (3.17)

digits(n) is a function that computes the number of decimal digits including the trailing
zeros in n.

The final exponent Zexp can be computed using the number of round-off digits and
Bexp , the number of rounded digits-off d1 is added to the exponent of the intermediate
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result before rounding which is Bexp to get the final exponent Zexp.

Zexp = Bexp + d1 = Aexp − k + d1 (3.18)

In the second case, Aexp = Bexp. This case is an optimized case of the first case. It is
so common case so it is worth optimizing.

We don’t need significands aligning in this case so we will save a multiply. The
rounder can be ignored if the number of decimal digits fits the format’s precision. To
determine this case, a control signal must be generated if ZIc ≥ 1016, if this condition is
valid, rounder module is used with one digit rounding off.

The sign of the intermediate result is:

ZIsign = ((ANc ± BNc) < 0) (3.19)

The operation in 3.19 is the Effective operation (EOP). The inequality operation returns
a boolean result ‘0’ or ‘1’, ‘0’ refers to positive sign while ‘1’ refers to negative sign.

The final sign of the result can be computed using the following equation:

Zsign = ANsign ⊕ ZIsign (3.20)

The final exponent of the result depends on the number of decimal digits of the inter-
mediate result significand. If it is less than 1016 then the final exponent is equal Aexp and
Bexp and but if this is not valid, the final exponent can be obtained from incrementing Aexp.

Figure 3.20 shows the hardware implementation of the first and the second case. There
are two terms, the first term is related to the ANc which may be multiplied by 10k , the
second term is BNc in either the first case or in the second case. To differentiate between the
first case and the second case, Aexp = Bexp condition should be checked. If it is achieved,
ANc is selected to be added/subtracted to the second term BNc. If not, ANc is multiplied by
10k, this is implemented using a multiplier and LUT for values of 10k for K values from 0
to 18.

After generating ZIc, we need to know the number of digits in the intermediate result.
In the first case, the intermediate result may have 20 decimal digits while the standard
precision P is 16 decimal digits. The difference between the number of decimal digits
in the intermediate result and the standard precision digits is the round-off digits. To get
the number of digits in the intermediate result, we need to count it using “decimal digit
counter” module.
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Figure 3.20: Direct Hardware For Cases 1 and 2
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In some cases, we don’t need the rounder module so a control flag is used to determine
if (ZIc ≥ 1016). If this flag is set then the rounder must be used. The non-rounded results
are bypassed if this condition is not valid.

All operations in the first case and the second case are done in one clock cycle. It is
implemented using combinational blocks, no other re-calculations or cycles are needed in
the first case and the second case.

The third case handles the condition when the intermediate result is large to be handled
by the rounder. In particular, when the condition of digits(ANc × 10k) > 19. The block
diagram of the third case hardware is shown in figure 3.22. The rounder maximum input
size is 20 digits. So what we do is to get maximum possible size of (ANc×10k) but without
crossing the standard precision which is 16. The new term will be ANc × 10g Where,
g = 16−Qa, Qa is the number of decimal digits in ANc. The second term should be aligned
with the first term to have the same exponent. BNc should be rounded by the difference
between K and g so the second term. d3 is the number of digits in BNc to be aligned with
the first term (ANc ×10g). The operation in the equation 3.21 is the effective operation
(EOP).

ZIc = ANc×10g± round(BNc,d3) (3.21)

The intermediate result exponent ZIexp will compensate the exceeded digits in the first
term so it has the value of ANexp −g, ZIexp is also equal the number of truncated digits
from BNc in the second term so it is BNexp−d3.

ZIexp = ANexp−g = BNexp + d3 (3.22)

The result sign Zsign has the same sign of operand A, ANsign, as the term which has the
larger exponent is the dominant term, the final result has a relative near result of this term.

Zsign = Asign (3.23)

Although the estimated number of digits is 16, we need to verify that the significand of
the intermediate result ZIc fits exactly 16 digits. Three possible cases after first calculation:

1016 > ZIc ≥ 1015 (3.24)

ZIc ≥ 1016 (3.25)

ZIc < 1015 (3.26)

The first case is the common one which the significand of the intermediate result ZIc is
passed to be the final result Zc. In the second condition, the significand of the intermediate
result has 17 decimal digits, so we need to round-off it by one decimal digit and increment
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the intermediate exponent ZIexp to get the final exponent Zexp.

The final result significand Zc for the second condition 3.25 can be expressed as:

Zc = round(ZIc,1) (3.27)

The final result exponent Zexp can be expressed as:

Zexp = ZIexp + 1 (3.28)

At the third case, we have another possible digit to fit the result so an adjustment is
needed here in our calculation.

The final result significand Zc for the third condition 3.26 can be expressed as:

Zc = ANc×10g+1± round(BNc,d3−1) (3.29)

The final result exponent can be expressed as:

Zexp = ANexp−g−1 = BNexp + d3−1 (3.30)
Zexp = ZIexp−1 (3.31)

The calculations of the needed adjustments - after verifying the number of digits of
the intermediate result if r > 19 - is shown in the algorithm flowchart figure 3.21.

As shown in the above equations, We need a hardware to calculate g and d3. g is
the needed amount to align with the second term BNc but without crossing the standard
precision which is 16 while d3 is the number of digits in BNc to be aligned with the first
term (ANc × 10g) . A LUT that stores 10g is needed. ANc × 10g is performed using a
binary multiplier. There are more than rounding operations for different signals in the
third case. We handle these different cases by determining which cycle we operate in,
Some cases need a second cycle if the significand of the intermediate result is greater
than or equal 1016 or less than 1015 .These cases are indicated using a control flag signals.
GE10pw16 control signal is used if the significand of the intermediate result is greater
than or equal than 1016 , Lt10pw15 is another control signal that indicates that the signif-
icand of the intermediate result is less than 1015. In both cases, second cycle signal is
set high then other calculations are needed according to the shown algorithm in figure 3.21.

The calculation of second cycle can be expressed as shown in equation 3.32.

second cycle = (GE10pw16 AND (case2 OR case3)) OR (Lt10pw15 AND case3)
(3.32)
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Figure 3.21: The BID Addition/Subtraction Algorithm Flowchart
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3.3.1.2 The detailed implementation

3.3.1.2.1 Swap module In this module, the two operands A, B are probably swapped
depending on the exponents values. The two exponents are compared using 10-bits
binary comparator, if the exponent of operand B is larger than the exponent of operand A,
Swapping operation is valid.

3.3.1.2.2 Decimal digits counter module In this module, we want to count the num-
ber of decimal digits in binary form. We do this operation through more than one step.
First, we need to count the number of leading zeros, then we can determine the number
of non-leading zeros bits. According to the number of binary bits, We can conclude a
first estimation of the number of decimal digits we need. To know the exact number, We
compare this binary input value with a certain limit value in the decimal numbers to know
if we need to increment the number of expected decimal digits by one or not.

A simple example of that, if we get four binary non-zero bits, we have two probabilites
of the number of the decimal digits which may be one or two decimal digits, as the
minimum value in four binary bits is 8 which is one decimal digit and the maximum value
in the same four binary bits is 15 which is two decimal digits. In this example we need to
compare the input with 10 to detect if the input has one or two decimal digits.

Table 3.5 shows the equivalent number of decimal digits for different number of binary
bits, for each binary bits, there is corresponding threshold value we need to compare the
input with. The limit in table 3.5 depends on the maximum number of binary input bits.
We use this module to count the decimal digits for ANc or ZIc. The maximum number of
binary bits of ANc is 54 bits while the maximum number of binary bits of ZIc is 64 bits
due to rounder design considerations which will be described later. A top-level design of
the decimal digits counter module is shown in figure 3.23.

3.3.1.2.3 64x54 binary multiplier This is a custom binary multiplier for this BID
adder. There are two input operands A, B. operand A has 64-bits and operand B has
54-bits. This is a binary multiplier which outputs a 118-bits result.

In this multiplier, We use A as a multiplicand and B as a multiplier, the main idea is
to get the partial products of A x B, then using binary adder tree, we can add the partial
products to get the final result.

The partial products can be got by multiplying either 0 or 1 by the multiplier, the
source of these 0’s and 1’s is the multiplier. By a simple method, these partial products are
shifted with a certain number of positions according to the multiplier bit location then we
add these partial products to get the final result.

3.3.1.2.4 Binary Adder Binary adder module is used to add two operands in binary.
In our implementation, we used this module for many operations as calculation of the
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Figure 3.23: Decimal Digit Counter Block Diagram

Table 3.5: The equivalent number of decimal digits for different number of binary bits
The number of binary bits Threshold value to compare in decimal No. of Decimal deigits

4 10 1 or 2
7 100 2 or 3

10 1000 3 or 4
14 10000 4 or 5
17 100000 5 or 6
20 1000000 6 or 7
24 10000000 7 or 8
27 100000000 8 or 9
30 1000000000 9 or 10
34 10000000000 10 or 11
37 100000000000 11 or 12
40 1000000000000 12 or 13
44 10000000000000 13 or 14
47 100000000000000 14 or 15
50 1000000000000000 15 or 16
54 10000000000000000 16 or 17
57 100000000000000000 17 or 18
60 1000000000000000000 18 or 19
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design parameters and adding the significands of the inputs. Binary adder implementation
uses Kogge-stone tree as described before in subsection 3.2.1.3.

3.3.1.2.5 decimal incrementer Decimal Incrementer adds one to an integer number
or BCD8421 operand, we use the concept of propagate and generate to get the carry
signals for all digits, using these carry signals we can choose between two options, the
first option is to get the digit as is while the second option is to get the incremented digit
so in this module we have two paths, one for the carry signals and the other path for the
data.

To get the incremented digit in decimal we use “digit incrementer” module which
increments the decimal digit regardlessof the expected carry. Table 3.6 shows the truth
table of the digit incrementer block.

Table 3.6: “Decimal Incrementer” module truth table
A3 A2 A1 A0 B3 B2 B1 B0

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0

A number of instances of digit incrementer module increments all decimal digits, this
number equals the number of decimal digits or the number of input bits divided by four.
Regardless the digits value, the output of the first digit incrementer is always connected to
the first decimal digit output of the decimal incrementer module.

For all other digits, there are digit incrementer modules, according to the carry signals
values, we choose between the incremented digit and the digit without incrementing.

In our design, we consider that there are two internal operands, the first one is the
module’s input (to be incremented) and the second operand is a fixed number (0... 001)
and the carry in is always ’0’. The generate signals (G) will be always 0....01 as we
guarantee always that we have a carry generation from the first digit only. The propagate
signals (P) represent the possibly digits that may generate a carry, in the BCD8421, the
only digit that can generate a carry if there are carry in ’1’ is ’9’, the first propagate signal
is always ’0’.
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G 0 0 0 0 . . . 0 1
P X X X X . . . X 0

For example, if A = 2499

1. The first digit is incremented to be 0.

2. The generate signals (G) are 0001

3. The propagate signals (P) are 0010

4. The other incremented digits are 350

According to equations from 3.1 to 3.9, the first three carry bits are 011 and the final
output will be 3500. The used kogge-stone tree in this example is shown in figure 3.24.

Figure 3.24: An example of decimal incrementer which uses kogge-stone tree

3.3.1.2.6 Binary Rounder The binary rounder unit is an important component of the
schulte adder, the implemented rounder is an enhanced unit of other design in a previ-
ously published BID rounding unit [44], this enhanced implementation is implemented
in Schulte adder and in our implementation for Schulte adder. The new enhanced design
supports up to 20 decimal digits or 64 binary bits. In this section we will describe the used
rounding algorithm and our implementation.

In this module, the input Ci is truncated d decimal digits, the input Ci and the out-
put (the rounded input) Co are in binary. An example, consider we have 123410 =

100110100102 , if we want to round this number by two decimal digits, the output should
be 1210 = 11002 or 1310 = 11012 depending on the rounding mode. A simple method to
do that in binary operations is to divide by 10d to truncate d decimal digits then to possibly
increment the rounded result but his method is costly in terms of area and delay. Instead,
the used method is a reciprocal multiplication to avoid division by 10d and an innovative
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approach to ensure that results are correctly rounded in spite of errors due to reciprocal
multiplication.

The reciprocal multiplication technique can be viewed as multiplication by precalcu-
lated approximation of Wd ≈ 10−d to effectively achieve division by m = 10d.

Reciprocal multiplication is well suited for division in cases that the divisors are known
and few. In our case we don’t have numbers more than 20 decimal digits and the maximum
round-off is four as the maximum input for the rounder has 20 decimal digits and it will
be fitted in 16 decimal digits. In this implementation we support up to 16 decimal digit
round off for 20 input digits (64 binary input).

To get an exact result of the rounded result, we need to get the pre-rounded result
which has some information regarding which location it lies. Before or after or on the mid
point between two consecutive decimal floating point, or it can be exactly represented as a
floating point number with the desired exponent.

To achieve correct rounding when using reciprocal multiplication, the theorem that
is published in [44] is applied, where Ci is a u-bit input significand, m = 10d is a v-bit
unsigned integer, wd is a (u+1)-bit unsigned integer that approximates 10−d, left shifted by
u+v bits, and P is the (2u+1)-bit product of Ci×Wd . P is partitioned into three fields, Q,
R, and D as shown in figure 3.25, where Q gives the truncated quotient (i.e, floor( Ci/10d

)), R provides rounding information, and D is discarded.

Based on this theorem in [44], Q provides the truncated quotient, q = f loor(Ci/10d),
and R provides all information needed to determine the correctly rounded result. We
elaborate on how this theorem helps to detect midpoints and exactness by focusing on the
calculation of the two parameters u and v. The number of bits in the input significand, , is
referred to as u. In our implementation , u is fixed at 64 bits, since the maximum input,
1020−1, fits within 64 bits. The number of bits needed to represent 10d, is referred to as v,
where

v = ceil(log2(10d)) = ceil(d.log2(10)) (3.33)

For example,105 is represented in 17 bits, so v is 17 when rounding off d = 5 decimal
digits. It is important to note that v varies with d as shown in table 3.7, whereas u is fixed.

The (2u+1)-bit product, P = CiWd is shown in figure 3.25, where P is partitioned into
three fields: Q, R, and D. D consists of the u least significant product bits, which contain no
useful information and are discarded. The Q and R fields occupy the remaining (u+1)-bits
and vary in width depending on v. The most significant (u+1-v) bits, Q, correspond to the
truncated quotient. The next lowest v bits, R, are inspected to determine if the truncated
decimal digits, when viewed as a fraction, represent exactly zero, exactly one half, between
zero and one half, or above one half.

To determine whether the pre-rounded result is exact, less than a midpoint, a midpoint,
or greater than a midpoint, we use the properties described in table 3.8. The round bit, r*,
is the most significant bit of the R field, and the sticky bit, s*, is set if any of the remaining
bits of the R field are 1. As shown in table 3.8, these two bits keep enough information to
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Table 3.7: v versus d
d 10d v (No. of bits of 10d)
1 101 4
2 102 7
3 103 11
4 104 14
5 105 17
6 106 20
7 107 24
8 108 27
9 109 30

10 1010 34
11 1011 37
12 1012 40
13 1013 44
14 1014 47
15 1015 50
16 1016 54

Figure 3.25: Product Fields
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know if the pre-rounded result is exact (r*=0, s*=0), less than a midpoint (r*=0, s*=1), a
midpoint (r*=1, s*=0), or greater than a midpoint (r*=1, s*= 1).

Table 3.8: Midpoint and Exact Results
Conditions Values of R r* s*
Pre-rounded result is exact R == 0 0 0
Pre-rounded result less than midpoint R < 2v−1 0 1
Pre-rounded result exactly midpoint R == 2v−1 1 0
Pre-rounded result greater than midpoint R > 2v−1 1 1

In our implementation, we pre-calculate sixteen values of and store them in a lookup
table. The lookup table has the input d , it is considered as the address of the different
stored entries. The pre-calculated values of Wd used in this design are shown in table 3.9.
Since u=64, each table entry is u+1= 65 bits. Though 65 bits are needed for the entries
each values most significant bit is always 1. Thus, only 64 bits are stored per entry, and
the most significant bit of Wd is hardwired to 1. A value of Wd is selected from the table
3.9, based on the number of digits to round off. The 64-bit input Ci , is then multiplied by
to produce the result P, a 129-bit intermediate value.

Table 3.9: Pre-calculated values of Wd

I/m = 10−d LUT Location Wd
10−1 0001 65’h1999999999999999A
10−2 0010 65’h147AE147AE147AE14
10−3 0011 65’h10624DD2F1A9FBEFF
10−4 0100 65’h1A36E2EB1C432CA58
10−5 0101 65’h14F8B588E368F0846
10−6 0110 65’h10C6F7A0B5ED8D36B
10−7 0111 65’h1AD7F29ABCAF48578
10−8 1000 65’h15798EE2308C399FA
10−9 1001 65’h112E0BE826D694B2E
10−10 1010 65’h1B7CDFD9D7BDBAB7D
10−11 1011 65’h15FD7FE17864955FE
10−12 1100 65’h119799812DEA11198
10−13 1101 65’h1C25C268497681C26
10−14 1110 65’h16849B86A12B81C26
10−15 1111 65’h1203AF9EE756159B2
10−16 0000 65’h1CD2B297D889BC2B7

The top-level design of our rounding unit is presented in Figure 3.26. The design takes
as inputs, the 64-bit input,Ci , an 11-bit value, d, that indicates the number of digits to be
rounded off, the sign of the input operand,S i , and the 3-bit Rounding Mode. The output
is a 54-bit rounded significand, Co.

Figure 3.26 shows the block diagram of the rounder design, the middle and left sides
of this diagram shows the data path of this module. In the right side, there is logic control
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unit which generate some control signals.
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Figure 3.26: Schulte Rounder Block Diagram

RES MUX CTL is a control signal which choose between the incremented path and the
normal path without incrementing. This control signals is dependent on the rounding mode.
This implementation supports five rounding modes in the IEEE standard (754-2008):

• roundTiesToEven (RTE): rounds to the nearest value; if the number falls midway it
is rounded to the nearest value with an even (zero) least significant bit, which occurs
50floating-point and the recommended default for decimal.

• roundTiesToAway (RTA): rounds to the nearest value; if the number falls midway it
is rounded to the nearest value above (for positive numbers) or below (for negative
numbers); this is intended as an option for decimal floating point.

• roundTowardZero (RTZ): directed rounding towards zero

• roundTowardNegative (RTN): directed rounding towards negative infinity

• roundTowardPositive (RTP): directed rounding towards positive infinity
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dGt16 MUC CTL is the control signal which select between the pre-rounded result
Ctmp from the “Extract Significand” module and zeros, zeros are selected in the case of d
is greater than 20 which is the rounder maximum limit.

BYPASS MUX2 CTL selects between the normal path Ctmp if there is valid round-
ing operation or another path as the number of digits rounded off d is zero, or special values.

BYPASS MUX1 CTL choose between Ci if no rounding is needed (d = 0) and between
zreo in case of special values as NaNs,±∞ , these values can not be rounded.

The extract significant, round and sticky bit unit following 65x64 multiplier, is used to
extract Q, r* and s* fields. P[128:64] is the important part in the pre- rounded result, we
can get the rounding bit r* by shifting right this part by v-1, r* is in its least significant bit
location while Q is the most u+1-v significant bits. This unit extracts also the sticky bits
which uses a mask obtained from a lookup table on d[3:0] to keep only relevant bits of
P[128:64]. It then OR’s these all bits to get the sticky bit s*.

The table 3.10 shows when RES MUX CTL control signal is activated, based on the
sign, r*, s*, Ctmp[0] and the rounding mode.

Table 3.10: Logic Equations for Increment Control
Rounding Mode Increment Condition
roundTiesToEven r* & (s* — Ctmp[0])
roundTiesToAway r*
roundTowardZero 0
roundTowardPositive S i & (r* — s*)
roundTowardNegative S i & (r* — s*)

An example of the rounder unit, consider we have an input 6721500 and we want to
round-off three digits in roundTiesToEven (RTE) rounding mode, from table 3.10, the
precalculated Wd for d = 3 is 10624D2F1A9FBEFF16 which multiplied by the input
672150010, given a product P = 690600000000003692942416. Since v = 10 and u = 64
the quotient Q = P[128 : 74] = 00000000001A4116 = 672110, Ctmp = 00000000001A4116
and the remider R = P[73 : 64] = 20016, this means that r* = 1 and s* = 0. Which means
that this pre-rounded result is an exact mid-point. In RTE, the increment condition for the
mid-point numbers is Ctmp[0] = 1, this condition is achieved so the increment operation
is valid for this number, the expected result is 672210

3.3.1.2.7 Our Enhancement in Binary Rounder A new design is presented here for
the binary rounder, the design has better results in term of area and delay when compared
to above rounder of schulte [44]. The synthesis results are shown in 4.4.
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The main idea is to convert 64-bits in binary to 20 decimal digits represented in BCD,
then to do our rounding which can be translated to shifting and some small logics, then to
determine if an increment operation is needed,then to convert to binary form.

As shown in figure 3.27, First we convert the 64 bits bianry input Co to BCD format
using BIN2BCD converter module, the input has size of 64 bits while the output has 80
bits size. Then a decimal shifter which takes the number of digits to be rounded off d and
shift right by 4 ∗ d bit locations. The most significant four truncated bits represent the
rounded digit R while the others truncated bits represent the sticky bits.

At this time, we can determine easily in decimal representation if the rounded digit is
greater than or equal 5 using simple hardware. In the control unit we get the rounded bit
r* and s*, r* can be expressed as:

r* = R[3] OR (R[2] AND (R[1] OR R[0]))
s* = ORing(all sticky bits)

The control unit also checks the increment condition as shown in table 3.10, it outputs the
increment flag to select between the incremented rounded number and the non-incremented
rounded number.

The selected signal is converted to binary using BCD2BIN module which converts
from BCD format to binary format. This converted output is the final rounded result Co

In this design, the most area and delay are consumed in the converters.

3.3.1.3 Combined BID Adder Design

Cases 1-3 have been presented to explain the ideas behind the BID adder design. Figure
3.28 shows complete schulte BID adder design, which shares components to use less hard-
ware, by adding multiplexers and control logic. With intelligent scheduling and adding an
additional path through the rounder, only one multiplier is needed. The multiplication used
to push ANc to the full decimal64 precision of p = 16 digits is performed with the multiplier
inside the rounder. To simplify figure 3.28, the multiplier is darkened to illustrate this point.

The ability to reuse the multiplier in the DFP unit has important effects. First, by adding
logic around the multiplier, many functions may be incrementally added to a DFP solution
at a modest area cost. Second, the high utilization of the multiplier requires sophisticated
scheduling with several possibilities for optimization including adding buffers, reservation
stations, and control logic. These details are not shown in Figure 3.28.

3.4 Conclusion
In this chapter, we propose a novel decimal floating point adder, the proposed architecture
performs decimal addition on DFP operands represented according to IEEE 754-2008 and
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Figure 3.27: The Proposed Rounder Block Diagram
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encoded in BID.

We also propose to use novel converters from BID to DPD and vice-versa to surround
the inner core of SilMinds DPD adder design [22]. This conversion from BID followed by
the core of a DPD unit and finally a conversion back to BID is proved in Chapter 4 to be a
better alternative to direct BID units’ implementations [43].

In this chapter, we propose a new binary rounder design which is used in the BID
adder units’ implementation in [43].
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Chapter 4: Experimental Results
In this chapter, we present the verification and the synthesis results of the proposed
implementation and compare it with the other implemented design. At the end of this
chapter, we suggest some points as a future work to extend or enhance our proposal in this
thesis.

4.1 Functional Verification
The verification for decimal floating point units is very interesting research topic as the
test space is large. For our adder unit, there are two operands and five rounding modes
and two operations (addition subtraction), the total test space is 22X64×5×2 � 3.4×1039

test vectors. The average simulation time on a system using Intel CoreT M 2 Duo 2 GHz
processor and 3 GB RAM is 6.7 msec/test vector. The time needed to test the design on
all possible test vectors would then be 7.23×1029 years. Hence, we used only a much
smaller number of testcases. The total number of the tested vectors is 268200. Some of
test vectors are generated by Cairo University [36] and IBM [6]. For all test vectors, both
implemented designs are passed successfully.

4.2 Synthesis Results
The designs were synthesized using Altera Quartus II tool on Stratix VI FPGA family,
EP4SGX230KF40C2 device. The Optimization technique for analysis and synthesis is
set to “Balanced” which means balance high performance with minimal logic usage. The
following table 4.1 show the synthesis results of the implemented decimal floating point
adders (the proposed design and the Schulte Adder design - without any modifications in
the binary rounder design).

Table 4.1: synthesis results of the implemented decimal floating point adders (the proposed
design and the Schulte Adder design - decimal64)

Area (LUTs) Delay (ns) Power (mW) Area Delay
Product
(KLUT.ns)

The proposed Adder design 6787 89.46 484 607.165
Schulte’s Adder design 15638 40.18 647 628.335

The results in table 4.1 show 56.6% reduction in the area and 25.2% reduction in
power consumption and 3.4% reduction in Area Delay Product compared to the Schulte’s
BID adder. Power consumption and Area Delay Product results are better for the proposed
adder despite the increase in the time.

The column chart in figure 4.1 compares between the proposed adder design and
Schulte’s adder for Area, Delay, Power and Area Delay Product for decimal64 mode.
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Figure 4.1: Comparison between the synthesis results of the proposed Adder and Schulte
Adder - decimal64

Our proposed adder design is divided into three main parts, the synthesis results are
shown in table 4.2.

Table 4.2: The synthesis results of the proposed Adder - decimal64
Area (LUTs) Delay (ns)

BID2DPD Converter A 1100 40.5
BID2DPD Converter B 1100 40.5
SilMinds DFP Adder 2491 29.5
DPD2BID Converter 2085 19.5

The following chart 4.2 shows the area profiling for our proposed Adder in decimal64
mode.

Figure 4.2: The area profiling for our proposed Adder - decimal64
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The power consumption of the proposed adder in decimal64 mode is 484 mWatt, this
consumed power is divided into 422 mWatt static power and 62 mWatt dynamic power.

The time delay of our proposed adder is divided between the three units as shown in
figure 4.3, the BID2DPD converter unit has the largest delay among the other units.

Figure 4.3: Time delay distribution of the proposed adder - decimal64 mode

The Schulte Adder is fully implemented on the same FPGA technology Stratix VI.
The synthesis results are shown in table 4.3. As shown, the binary rounder has the largest
percentage of Schulte area, it has 53% of the total area of the schulte adder design. The
binary multiplier 54x64 has large area as well, it covers 34.4% of the total area of Schulte
adder design. An important note that the binary rounder module has a multiplier inside
it. This multiplier is not the same as the external multiplier 54x64. Its size is 64x65 and
it has 90.8% as shown in figure 4.4. It is used to get the rounded result using reciprocal
multiplication method. The two used multipliers have an area of 12903 LUTs on Stratix
VI FPGA family, this area is 82.5% of the overall adder area (15638 LUTs) which is high
ratio.

Table 4.3: Synthesis results of Schulte Adder - decimal64
Area (LUTs) Percentage

Binary Rounder 8281 53%
Binary Multiplier 64 x 54 5376 34.4%
Decimal Digits Counters 552 3.5%
Other logics(Binary Adder, Com-
parators, ... )

1426 9.1%
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The Area profiling results for the Schulte adder units for decimal64 mode are shown
in figure 4.4.

Figure 4.4: The area profiling of Schulte adder design - decimal64

Binary rounder has a very large area, so the area optimization may lead to better
Synthesis results. Table 4.4 shows the synthesis results of our proposed binary rounder and
Schulte binary rounder. As shown, we have an advantage in the area but the delay becomes
worse. In some applications, our design may be used if we are concerned with area. In
other applications where area is not the primary concern, Schulte rounder may be the better
choice. The Schulte adder synthesis results is changed when we use our proposed binary
rounder. The area and delay results will be balanced between our proposed DFP adder
and Schulte DFP adder as shown in table 4.5. The area, Delay and Power consumbtion
values are in between our proposed Adder design and Schulte adder design results. The
Schulte adder design with our proposed rounder has better area and power consumbtion
results comparing to the schulte adder design results without any modifications.

Table 4.4: synthesis results of different binary rounder designs - decimal64
Area (LUTs) Delay (ns) Area De-

lay Product
(KLUT.ns)

The Proposed Rounder
design

3188 59 188.092

Schulte Rounder design 8281 34.6 286.522

For decimal128, we implemented the proposed design on Stratix VI FPGA. Schulte
Adder is not implemented totally, we implement the largest percentage area units on Stratix
VI FPGA, 114x127 binary multiplier and 127x128 binary multiplier and estimate other
logic in the adder. This other logic contains Decimal Digits Counters, Binary Adders,
Comparators, Rounder control logic and Look Up Tables. The other logic area has 17.5%
of the total area in Schulte adder design for decimal64. By analogy, we get the synthesis
result as shown in Table 4.6. The implemented binary multipliers synthesis results and the
estimated other logic synthesis results are shown in Table 4.7.
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Table 4.5: Synthesis results of the different DFP adders - decimal64
Area
(LUTs)

Delay
(ns)

Power
(mW)

Area Delay
Product
(KLUT.ns)

The proposed Adder design 6787 89.46 484 607.165
Schulte’s Adder design 15638 40.18 647 628.335
Schulte’s Adder design with
our proposed rounder

10645 64.68 545 688.519

Table 4.6: Synthesis results of the implemented decimal floating point adders (the proposed
design and the Schulte Adder design - decimal128)

Area (LUTs) Delay (ns) Power (mW) Area Delay Prod-
uct ( KLUT.ns)

The proposed Adder design 43661 109.5 644 4780.88
Schulte’s Adder estimated re-
sults

73168 49.9 1155 3651.11

Table 4.7: Synthesis results of the binary multipliers in Schulte adder for decimal128
Area (LUTs) Delay (ns) Area De-

lay Product
(KLUT.ns)

114x127 binary multi-
plier

25516 41.14 1049.728

127x128 binary multi-
plier

34848 42.86 1493.585
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From table 4.6, Our proposed adder area is less than Schulte adder area in decimal128
mode. Our proposed design delay is more than the double value of Schulte adder design
delay. In our design, we have 109.5 ns time delay while in Schulte adder design, the time
delay is 49.9 ns. We have a better result in the power consumption, our design has 644
mWatt while 1155 mWatt in Schulte adder design. Figure 4.5 shows the synthesis results
for both designs.

Figure 4.5: Comparison between the synthesis results of the proposed Adder and Schulte
Adder - decimal128

Our proposed adder design is divided into three main parts, the synthesis results are
shown in table 4.8.

Table 4.8: Synthesis results of the proposed Adder - decimal128
Area (LUTs) Delay (ns)

BID2DPD Converter A 14910 43.2
BID2DPD Converter B 14910 43.2
SilMinds DFP Adder 5903 41.7
DPD2BID Converter 7938 24.6

The following chart 4.6 shows the area profiling for our proposed Adder in decimal128
mode.

The time delay of our proposed adder is divided between the three units as shown in
figure 4.7, the BID2DPD converter unit has the largest delay among the other units.

The power consumption of the proposed adder in decimal128 mode is 644 mWatt, this
consumed power is divided into 424 mWatt static power and 220 mWatt dynamic power.
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Figure 4.6: The area profiling for our proposed Adder - decimal128

Figure 4.7: The time delay of our proposed adder units - decimal128

84



In decimal128, the Schulte Adder synthesis results are estimated, it is not implemented
totally on FPGA technology Stratix VI as . The estimated synthesis results are shown in
table 4.9. As shown, the 127x128 binary multiplier which is used in the binary rounder to
get the rounded result using reciprocal multiplication method, has the largest percentage
of Schulte adder area, it has 47.6% of the total area of the schulte adder design. The binary
multiplier 114x127 has large area as well, it covers 34.9% of the total area of Schulte adder
design. The two used multipliers has area of 60364 LUTs on Stratix VI FPGA family, this
area is 82.5% of the overall estimated adder area (73168 LUTs) which is high ratio.

Table 4.9: Synthesis results of Schulte Adder - decimal128
Area (LUTs) Percentage

127x128 binary multiplier 34848 47.6%
114x127 binary multiplier 25516 34.9%
Other logics(Decimal Digits Counter, Binary
Adder, Comparators, Rounder control logic,
... )

12804 17.5%

The Area profiling results for the Schulte adder units for decimal128 mode are shown
in figure 4.8.

Figure 4.8: The area profiling of Schulte adder design - decimal128
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Chapter 5: Conclusions and
Suggestions For Future Work
5.1 Conclusion
In this thesis, we present a novel architecture for the decimal floating point adder for
decimal64 and decimal128 formats.

In decimal64, We achieved 56% reduction in the area, 25% reduction in the power
consumption and 4% reduction in the area delay product. compared to Schulte DFP adder
design.

In decimal128, we have 24% reduction in area but we have 158% increase in the time
delay.

Our design uses SilMinds DFP adder which operates in decimal encoding, We convert
from/to binary encoding at the input and output using decimal floating point converters.
Schulte DFP adder was implemented for decimal64 and its synthesis results were esti-
mated for decimal128. to compare with our proposed design results.

The two novel Converters were filed at the United States Patents and Trademark Office
(USPTO):

• “DPD/BCD to BID converters”, October 2012, US Patent application number
13644374.

• “BID to BCD/DPD converters”, October 2012, US Patent application number
13657458.

5.2 Future Work
In this section, some ideas are suggested to work on and to extend our work:

• In decimal128 mode, Some block are very large in area as in our proposed design
(Binary to BCD converter) and in Schulte design (the binary rounder, the binary
multiplier). More optimization are needed for these blocks.

• An ASIC implementation of both designs using 0.11 µm LSI standard cells library
is needed. We need to use this technology as the synthesis ASIC results in Shulte
design were performed using the LSI Logic Gflxp 0.11 µm CMOS Standard Cell
Library [43].

• For other decimal floating point operations as Multiplication, Division, Power,
Square root, we can use our proposed converters in the rounder design. The BID
rounders can use the same idea in subsection 3.3.1.2.7 which use Binary to BCD
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converter then do a simple rounding operation in decimal by shifting decimal digits
then converting back the rounded result using BCD to Binary converter.

Our proposed DFP adder can not be used in these units. For example, Divders and
Square root units use subtractive or multiplicative methods in thier designs, they
need binary or decimal adders/subtractors and/or binary multipliers which deal with
integers not floating point numbers.
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 البحث ممخص
 

البحثية المثيرة يعتبر تصميم الدوائر الحسابية للأعداد الكسرية العشرية من الموضوعات  
 للإىتمام في العقد الأول من القرن الواحد والعشرين.

  
يمكن تمثيل الأعداد الكسرية العشرية بطريقتين: الترميز العشري لمكسور العشرية ويشار  

 Binary, الترميز الثنائي لمكسور العشرية ويشار إليو ب " "Densely Packed Decimal (DPD)"إليو ب 

Integer Decimal (BID)  الترميز العشري لمكسور العشرية إلى الّان  الدوائر". تستخدم أغمب ىذه
 لأن التعامل مع التصميمات التي تعمل بالترميز الثنائي لمكسور العشرية غير فعال.

 
لممحولات من الترميز الثنائي لمكسور  ةجديد دوائر في ىذه الرسالة, تم اقتراح تصميم 

حاطة ىذه المحولات ل تقميدية  دوائرالعشرية الى الترميز العشري لمكسور العشرية والعكس, وا 
 لمكسور العشرية. عشريتعمل بالترميز ال

 
تم إثبات أن ىذا التحويل من الترميز الثنائي إلى الترميز العشري لمكسور العشرية يميو  

داد ذات الترميز العشري لمكسور العشرية يميو تحويل مرة أخرى من الترميز وحدة جامع الأع
العشري إلى الترميز الثنائي لمكسور العشرية, أفضل من إستخدام الجامع للأعداد ذات الترميز 

 الثنائي لمكسور العشرية بطريقة مباشرة.
 

الرسالة, ونتائج منشورة بمقارنة نتائج الجامع الذي يستخدم الطريقة المقترحة في ىذه  
لمكسور العشرية, نجد التالي: انخفاض في المساحة بمقدار  لمتصميم الذي يعمل بالترميز الثنائي

% وانخفاض في مضروب المساحة 55% وانخفاض في استيلاك الطاقة بمقدار 56.6
ستيلاك الوقت بمقدار   %.4وا 
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القاهرة جامعة –الهندسة كلية إلى مقدمة رسالة

الماجستير درجة على الحصول متطلبات من كجزء

في

هندسةالإلكترونياتوالإتصالاتالكهربية













القاهــرة جامعــة - الهندســة كليــة

العربيــة مصـر جمهوريـة - الجيـزة





4102


