
IEEE-COMPLIANT BINARY/DECIMAL UNIT

BASED ON A BINARY/DECIMAL FMA

by
Ahmed Adel Abdelghany Wahba

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

ELECTRONICS AND ELECTRICAL COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2014

IEEE-COMPLIANT BINARY/DECIMAL UNIT

BASED ON A BINARY/DECIMAL FMA

by
Ahmed Adel Abdelghany Wahba

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

ELECTRONICS AND ELECTRICAL COMMUNICATIONS ENGINEERING

Under the Supervision of

Associate Prof. Hossam A. H. Fahmy
Principal Adviser

*
Adviser

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2014

IEEE-COMPLIANT BINARY/DECIMAL UNIT

BASED ON A BINARY/DECIMAL FMA

by
Ahmed Adel Abdelghany Wahba

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

ELECTRONICS AND ELECTRICAL COMMUNICATIONS ENGINEERING

Approved by the
Examining Committee

Associate Prof. Hossam A. H. Fahmy, Thesis Main Advisor

——————————, Member

——————————, Member

——————————, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2014

c© Ahmed Adel Abdelghany Wahba 2014

All Rights Reserved

iv

Acknowledgment
In the name of Allah the most merciful the most gracious; all thanks to Allah

the Lord of the Heavens and Earth and peace be upon Mohamed and his compan-
ions.

First of all I want to thank my family, especially my parents, for their invalu-
able support during my whole my life; After Allah, without their help and support
I wouldn’t have accomplished anything in my life.

Also many thanks to my students and friends, especially 2011 TAs, who were
more than supportive during my journey.

Finally, I would like to express my sincere gratitude to my advisor and mentor
Dr. Hossam Fahmy for his enriching advice, help, and support during the last four
years of my life.

Ahmed Adel Wahba,
May, 2014.

v

Abstract

In this work a combined binary/decimal floating point unit based on a com-
bined binary/decimal floating point Fused Multiply-Add unit is proposed.

A binary/decimal multiplier that uses SD-radix5 encoding for decimal, and
SD-radix4 for binary is used to multiply the first two operands.

A redundant octal/decimal adder that uses the digit set [-6,6] is used to add
the addend to the multiplication result. Leading zeros are anticipated in parallel
with the redundant addition to remove the delay of the Leading Zeros Anticipator
(LZA) out of the critical path. In order to eliminate the carry propagation caused
by rounding, the result is rounded while still in the redundant format.

A new redundant to decimal/octal converter based on a look-ahead carry tree
is proposed. Also a new binary LZA that generates its output in base 3 to simplify
the final binary normalization shifting is proposed.

Decimal verification was done using more than 1.1 million test vectors that
were generated specifically to test every part of the FMA. For binary a number
of random test vectors were used to test the design in different cases. All of the
binary and decimal test vectors passed correctly, and the design showed complete
functionality as an adder/subtractor, multiplier, or an FMA.

The design was synthesized using TSMC65LP kit, on typical temperature and
process, and 1.2V supply. The results showed a delay of 118 FO4 gate delays, an
Area of 122,000 NAND2 gates, and power of 112mW.

Synthesis results also showed that the proposed combined binary/decimal
FMA has 8% less delay and 30% more area than the fastest previously published
decimal FMA.

vi

Contents

Acknowledgment v

Abstract vi

List of Tables xiii

List of Figures xv

List of Symbols and Abbreviations xvii

1 Introduction 1
1.1 Decimal Redundant representations 2
1.2 IEEE Decimal Floating-Point Standard 6

1.2.1 Decimal Formats . 6
1.2.2 Rounding . 8
1.2.3 Special numbers and Exceptions 8

1.3 Binary IEEE Standard . 10

2 Previous Work 12
2.1 General FMA Architecture . 12

2.1.1 Decoding the Operands 12
2.1.2 Multiplier Tree . 12
2.1.3 Addend preparation . 13
2.1.4 Final Adder . 13
2.1.5 Leading Zeros Anticipator (LZA) 13

2.2 SilMinds’ Architecture . 13
2.2.1 Multiplier Tree . 15

2.2.1.1 Multiplier Recoding 15
2.2.1.2 Partial Products Generation 15
2.2.1.3 Reduction Tree 15

vii

2.2.2 Leading Zeros Counter 15
2.2.3 Rounding . 16

2.3 Decimal FMA using Combined Add/Round module 16
2.3.1 Multiplier Tree . 16
2.3.2 Decimal Carry Save Adder 18
2.3.3 Leading Zeros Anticipation 18
2.3.4 Final alignment . 19
2.3.5 Rounding Set Up . 19

2.3.5.1 Top Level Architecture 19
2.3.5.2 The addend 10’s complement 19

2.3.6 Combined Add/Round 20
2.3.6.1 Rounding Position 20
2.3.6.2 Pre-Correction 21
2.3.6.3 Compound Adder 22
2.3.6.4 Rounding Stage 22
2.3.6.5 Rounding Conditions 22
2.3.6.6 Post-Correction and Selection 23

2.3.7 A Decimal Floating-point Fused Multiply-Add Unit with
a Novel Decimal Leading-zero Anticipator 23
2.3.7.1 Multiplier Tree 23
2.3.7.2 Operand Alignment 24
2.3.7.3 Addition . 24
2.3.7.4 Leading Zeros Anticipation 24
2.3.7.5 Final Shift And Rounding 24

2.4 Binary Floating–Point Fused Multiply–Add with Reduced La-
tency . 25
2.4.1 Multiplier Tree . 25
2.4.2 Preparing the addend . 25
2.4.3 Addition and Rounding 25
2.4.4 Leading Zeros Anticipation and Normalization Shifting . . 25

2.5 Binary/Decimal FMA . 26
2.5.1 Multiplier Tree . 26
2.5.2 Alignment . 26
2.5.3 Addition: . 29
2.5.4 Leading Zeros Anticipation (LZA): 29
2.5.5 Rounding . 29
2.5.6 Design Functionality . 30

viii

2.6 Conclusion . 30

3 Proposed Binary/Decimal Design 31
3.1 Decoding The Inputs . 31
3.2 Multiplier Tree . 34

3.2.1 Multiplicand Multiples Generation 34
3.2.2 Partial Products Generation 36
3.2.3 Sign Extension . 40

3.2.3.1 Decimal Sign Extension 40
3.2.3.2 Numerical Example 41
3.2.3.3 Binary Sign Extension 43

3.2.4 Partial Products Reduction 43
3.2.5 Sign of the two resulting decimal vectors 44

3.3 Addend Preparation . 46
3.4 Selection and Carry Save Adder 48

3.4.1 Case of Decimal . 48
3.4.2 Case of Binary . 50
3.4.3 Sign extension of the resulting vectors of the CSA 51

3.5 Leading Zeros Anticipation . 53
3.5.1 Decimal LZA . 53

3.5.1.1 Inputs to the LZA 53
3.5.1.2 Effective Subtraction Case 54
3.5.1.3 Effective Addition Case 54
3.5.1.4 Leading Zeros Detector 55

3.5.2 Binary Leading Zeros Anticipation 57
3.5.2.1 Inexact LZA 57
3.5.2.2 Leading Zeros Detector 58
3.5.2.3 Base-3 Leading Zero Detector 58
3.5.2.4 Leading Ones Anticipator 60

3.6 Intermediate Sign detection . 61
3.6.1 Decimal Intermediate Sign Detection 61
3.6.2 Binary Intermediate Sign Detection 61

3.7 Final Alignment . 62
3.7.1 Final Alignment Control 62

3.7.1.1 Case of Decimal 62
3.7.1.2 Case of Binary 62

ix

4 Redundant Addition, Normalization, and Rounding 64
4.1 Conversion from Binary/Decimal to Redundant 64
4.2 Redundant Addition . 66

4.2.1 Correction Digit Generation 67
4.2.2 Adder Carry in . 68

4.3 Result Complementation . 69
4.4 Size of the redundant vectors . 69
4.5 Normalization Shifting . 69

4.5.1 Binary Shifting . 69
4.5.2 Decimal Shifting . 70

4.6 Sticky Generation . 72
4.6.1 Separating the Sticky . 73
4.6.2 Sticky Sign Detector . 73

4.7 Conversion Back to Binary/Decimal 74
4.7.1 Previous technique . 74

4.7.1.1 Our proposed technique 74
4.7.2 Converting back to Decimal 75
4.7.3 Converting back to Binary 75

4.8 Rounding . 77
4.8.1 Rounding in binary . 77
4.8.2 Rounding in decimal . 79
4.8.3 Rounding Cell . 80

5 Sign, Flags, and Exceptional Data paths 84
5.1 Final Sign Calculation . 84
5.2 Exponent Calculating . 85

5.2.1 Decimal Exponent . 85
5.2.2 Binary Exponent . 85

5.3 Flag Generation . 86
5.3.1 Inexact Flag . 86
5.3.2 Invalid Flag . 86
5.3.3 Overflow Flag . 86
5.3.4 Underflow Flag . 86

5.4 Exceptional Decimal Data path 87
5.4.1 Zero Addend . 87
5.4.2 Zero Multiplication Result 87

5.5 Exceptional Binary Data path . 87

x

5.6 Special Values Handling . 88

6 Verification and Synthesis Results 89
6.1 Verification . 89

6.1.1 Decimal Verification . 89
6.1.2 Binary Verification . 90

6.2 Synthesis Results . 90
6.2.1 Delay and Area contributions 90
6.2.2 Comparison With Other Units 90

6.2.2.1 Power consumption 92

7 Conclusion 93

References 94

xi

List of Tables

1.1 Decimal Representations . 3
1.2 Parameters for different decimal interchange formats 7
1.3 Different Rounding Modes . 8
1.4 Examples of some DFP operations that involve infinities 9
1.6 Parameters for different binary formats 10
1.5 Different Types of Exceptions 10
1.7 Special Cases in Binary . 11

3.1 Special Cases in Binary-64 . 32
3.2 Decoding The Combination Field 32
3.3 Decoding each declet to the corresponding BCD digits 34
3.4 Generated Signals For Multiplier Recoding in Decimal SD-Radix5 38
3.5 Generated Signals For Multiplier Recoding in Binary SD-Radix4 . 39
3.6 The four possibilities of two sign digit vectors 40
3.7 equivalent sign digit values . 40
3.8 Four Cases of Reduced Data path 48
3.9 Signals used for Leading Zeros Anticipation 54
3.10 Truth Table for the Base-3 LZD basic Cell 59

4.1 Conversion from decimal to redundant 65
4.2 Conversion from octal to redundant 66
4.3 Calculating the redundant shifting amount from base-3 shifting

amount . 71
4.4 supported rounding directions 78
4.5 Values of the parameters needed for rounding for each value of

fine shift . 78
4.6 Values of the parameters needed for rounding for both cases of shift 80
4.7 Rounding to Nearest, Ties to Even 80
4.8 Rounding Away from Zero . 81

xii

4.9 Rounding towards positive infinity 81
4.10 Rounding towards negative infinity 82
4.11 Rounding towards zero . 82
4.12 Rounding to Nearest, Ties away from zero 82
4.13 Rounding to Nearest, Ties towards zero 83

6.1 Number of test vectors applied for each decimal operation 90
6.2 Comparison of Delay in FO4 and Area in NAND2 with Other

FMAs . 92

xiii

List of Figures

1.1 Decimal interchange floating-point format 7
1.2 Binary64 floating-point format 10

2.1 SilMind’s Architecture . 14
2.2 Rounding Setup . 20
2.3 Rounding Position . 21
2.4 Combined/Add Round Module 22
2.5 Compound Adder . 23
2.6 T. Lang’s FMA . 27
2.7 Monsson’s Binary/Decimal FMA 28

3.1 Binary-64 Format . 32
3.2 Top Level Architecture . 33
3.3 Decimal-64 DPD encoding . 34
3.4 Decimal Partial Product Array before offline reduction 38
3.5 Final Decimal Partial Product Array 41
3.6 Final Binary Partial Product Array 44
3.7 Longest Column Reduction . 45
3.8 Decimal Operating Width Selection 49
3.9 Decimal Carry Save Adder . 50
3.10 Binary Operating Width Selection 52
3.11 LZA block diagram . 56
3.12 (a)LZD for 4-bit Binary String (b)Internal Structure of LZD4 . 56
3.13 Leading Zero Detector of 32-bit Binary String 57
3.14 Intermediate Sign Detector For 16-Digit Decimal Operands 61

4.1 Redundant Adder Cell . 68
4.2 Rounding and Conversion Block Diagram 76

6.1 Delay of Different Blocks in the Critical Path 91

xiv

6.2 Area of Different Blocks in the FMA 91

xv

List of Symbols and
Abbreviations

Abbreviations

BCD Binary Coded Decimal.

BID Binary Integer Decimal.

CPA Carry Propagate Adder.

CSA Carry Save Adder.

DCSA Decimal Carry Save Adder.

DFP Decimal Floating Point.

DPD Densily Packed Decimal.

EOP Effective Operation.

Exp Exponent.

IEEE Institute of Electronics and Electrical Engineering.

FMA Fused Multiply Add.

FO4 Fan Out of Four.

FPU Floating Point Unit.

GD Guard Digit.

ITD Input Transfer Digit.

xvi

LSB Least Significant Bit.

LSD Least Significant Digit.

LZA Leading Zeros Anticipator.

LZC Leading Zeros Count.

LZD Leading Zeros Detector.

MSB Most Significant Bit.

MSD Most Significant Digit.

MUX Multiplexer.

NaN Not a Number.

OTD Output Transfer Digit.

RD Round Digit.

RndMode Rounding Mode (Direction).

xvii

This thesis is dedicated to my family and friends.

xviii

Chapter 1

Introduction

Decimal floating point arithmetic is getting more and more urgent to be imple-
mented in computer systems especially in financial, military, and space applica-
tions where the small truncation error of the binary-based units can lead to massive
losses in big companies [1].

For example, in some financial applications such as phone billing using deci-
mal is a must. Some fractions that we -humans- use a lot in our daily transactions
and expect the computer to use it as accurate as we do, may be inexactly rep-
resented in binary. For example the fraction 1

10 when converted to binary single
precision (binary 32), it will be (0.0001100110011· · ·), the value of that fraction
is not exactly 0.1, it’s 0.099999964. This conversion error can cause millions of
dollars loss per year in large transactions such as banks transferring credit, or huge
companies paying their phone bills [1].

Other urgent need for decimal representations in computer systems, is that
the user of some human oriented applications expect some trailing zeros, not a
normalized number which is the case in binary. For example a resistor is said to
have value of 4.700K Ohm, we expect it to be 4700 Ohm accurate to three decimal
places, or in other words the precision of the value of this resistor is 1 Ohm. This
is totally different than saying it’s 4.7 K Ohm, in that last case the precision is
100 Ohm not 1 Ohm as in the first case. The IEEE754-2008 decimal standard [2]
solved this problem by allowing for different cohorts of the same number.

Due to its importance, decimal floating point arithmetic was included in the
IEEE754-2008 standard [2]. The decimal operations can be performed either in a
software layer that uses a binary-based Floating Point Unit (FPU), or in a separate
decimal FPU. Performing decimal operations on a hardware that is just made for

1

decimal is much faster and more power efficient than using software libraries to
perform them on a binary hardware.

Fused Multiply Add (FMA) operation is one of the operations defined in the
IEEE754-2008 standard. The FMA operation has three operands: A, B, and C,
The result of the FMA operation is A×B+C, it’s equivalent to multiplying A and
B then adding the result, without rounding, to the third operand (C) and perform-
ing one final rounding. The main advantage of the FMA operation is its accuracy,
instead of performing two rounding steps, after the multiplication and after the ad-
dition, only one rounding step is performed at the end of the FMA operation. Also
FMA is a separate instruction with only one fetch and decode stages. Performing
the multiplication then the addition requires a fetch and a decode cycle for each
instruction.

Multiplication and addition can also be performed using the FMA unit. Mul-
tiplication can be performed as A×B± zero, and addition/subtraction can be per-
formed as A× one±C . Hence in some applications where the area is critical,
the FMA unit can replace the adder and the multiplier. FMA is very vital in
many applications, especially DSP applications where the accumulation equation
sum = sum+ai×b j appears a lot, which is basically an FMA operation [3].

The first decimal FMA was presented in [4], and it was a combined bi-
nary/decimal architecture. The first verified architecture was proposed by Sil-
Minds in [5], which will be explained in details later.

1.1 Decimal Redundant representations
Beside the usual well known BCD-8421 encoding, there are some redundant en-
codings to represent any decimal digit. Some properties of these representations
can simplify the decimal operations such as carry save addition, getting the 9’s
complement, and multiplication by some constants. One of these representations
is the (4221) encoding, where each decimal digit is represented in four bits with
weights of 4,2,2, and 1, i.e. the most significant bit has a weight of four, and the
least significant bit has a weight of 1. For example, 8 is represented as (1110).
An example of the redundancy in this representation is that some decimal values
have more than one representation. For example, 6 can be represented as (1010)
or (1100). In this work we used, as well as the 8421 and 4221 encodings, the 5211
and 5421 encodings which represent each digit in four bits with the weights (5,2,1,

2

Digit 8421 4221 5211 5421
0 0000 0000 0000 0000
1 0001 0001 0001 | 0010 0001
2 0010 0010 | 0100 0100 | 0011 0010
3 0011 0011 | 0101 0101 | 0110 0011
4 0100 1000 | 0110 0111 0100
5 0101 1001 | 0111 1000 1000
6 0110 1010 | 1100 1001 | 1010 1001
7 0111 1011 | 1101 1100 | 1011 1010
8 1000 1110 1101 | 1110 1011
9 1001 1111 1111 1100

Table 1.1: Decimal Representations

and 1), and (5,4,2, and 1). The different decimal representations used in this work
are shown in Table 1.1.

The following are some useful properties that were used in this work and their
proof:

1) The decimal encodings that have the sum of their weights = 9, such as
(4221) and (5211) encodings, have an important property, that is all the sixteen
4-bit combinations represent a decimal digit (Xi ∈ [0,9]). Therefore, any Boolean
function (AND, OR, XOR,. . .) operating over two or more input digits in these
encodings produces a 4-bit vector that represents a valid decimal digit (input and
output digits represented in the same code). Hence we can use simple full adders
to perform a carry save addition to add three numbers represented in one of those
codes, and the resulting sum and carry vectors will be in the same representation
as the inputs.

2) In the encodings that have the sum of their weights = 9, it’s very easy
to get the 9’s complement of any decimal number represented in any of these
representations, simply by inverting each bit. Hence we can get negative numbers
by inverting each bit of the original positive number, and add a (+1) increment at
the least digit position.

It’s important to be stated that it’s very easy to convert between any of the four
decimal representations shown in Table 1.1 using a simple few gate delays logic.

Proof:
Assume X is a decimal digit represented in a decimal format that has the bit

weights of w3w2w1w0, where w3 +w2 +w1 +w0 = 9, as x3x2x1x0. Hence X =
w3 ∗ x3 +w2 ∗ x2 +w1 ∗ x1 +w0 ∗ x0.

By inverting each bit we get X = w3 ∗ (1−x3)+w2 ∗ (1−x2)+w1 ∗ (1−x1)+

w0 ∗ (1−x0) = w3+w2+w1+w0− (w3 ∗x3+w2 ∗x2+w1 ∗x1+w0 ∗x0) = 9−X .

3

Hence by inverting each bit of a digit represented in a decimal format that has the
sum of its weights = 9, we get the nine’s complement of this digit. So we can
easily get the nine’s complement of a decimal number simply by inverting the bits
representing each of its digits.

3) Multiplying by 2:
If a decimal number X is encoded such that the 4-bits of each digit are

weighted as (5421) then shifted left by ’1’ bit and and the result is read again
as if weighted as (8421) for each digit, it is the same as multiplying the decimal
number X by 2.

(L1shi f t{X5421})8421 = (2×X)8421 (1.1)

This can be simply proved as follows: (v j
i bit number (i) in digit (j) in 5421

encoding)

X5421= (· · ·vi+1
0 vi

3vi
2vi

1vi
0 vi−1

3 · · ·)5421

= · · ·10i+1×(· · ·+vi+1
0)+10i×(5vi

3+4vi
2+2vi

1+vi
0)+10i−1×(5vi−1

3 + · · ·)

with one bit left shift:

(L1shi f t{X5421})8421= (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 vi−1
2 · · ·)8421

= · · ·10i+1×(· · ·+vi
3)+10i×(8vi

2+4vi
1+2vi

0+vi−1
3)+10i−1×(5vi−1

2 + · · ·)

= 2×(· · ·10i+1×(· · ·+vi+1
0)+10i×(5vi

3+4vi
2+2vi

1+vi
0)+10i−1×(5vi−1

3 +

· · ·))

= 2× (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 · · ·)5421 = (2X)8421

This proves the initial claim.

4) Another way to multiply by 2: If a decimal number X is encoded such
that the 4-bits of each digit are weighted as (5211) then shifted left by ’1’ bit and
the result is read again as if weighted as (4221) for each digit, it is the same as
multiplying the decimal number X by 2.

4

(L1shi f t{X5211}p)4221 = (2×X)4221 (1.2)

This can be simply proved as follows: (v j
i bit number (i) in digit (j) in 5221

encoding)

X5211= (· · ·vi+1
0 vi

3vi
2vi

1vi
0 vi−1

3 · · ·)5211

= · · ·10i+1×(· · ·+vi+1
0)+10i×(5vi

3+2vi
2+2vi

1+vi
0)+10i−1×(5vi−1

3 + · · ·)

with one bit left shift:

(L1shi f t{X5211})4221= (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 vi−1
2 · · ·)8421

= · · ·10i+1×(· · ·+vi
3)+10i×(4vi

2+2vi
1+2vi

0+vi−1
3)+10i−1×(4vi−1

2 + · · ·)

= 2×(· · ·10i+1×(· · ·+vi+1
0)+10i×(5vi

3+2vi
2+2vi

1+vi
0)+10i−1×(5vi−1

3 +

· · ·))

= 2× (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 · · ·)5221 = (2X)5211

5) Multiplying by 5: If a decimal number X is encoded such that the 4-bits
of each digit are weighted as (4221) then shifted left by ’3’ bits and the result is
read again as if weighted by (5211) for each digit, it is the same as multiplying the
decimal number X by 5.

(L3shi f t{X4221}p)5211 = (5×X)4221 (1.3)

This can be simply proved as follows: (v j
i bit number (i) in digit (j) in 4221

encoding)

X4221= (· · ·vi+1
0 vi

3vi
2vi

1vi
0 vi−1

3 · · ·)4221

= · · ·10i+1×(· · ·+vi+1
0)+10i×(4vi

3+2vi
2+2vi

1+vi
0)+10i−1×(4vi−1

0 + · · ·)

with three bits left shift:

5

(L3shi f t{X4221})5211= (· · ·vi
1vi

0vi−1
3 vi−1

2 vi−1
1 vi−1

0 · · ·)5211

= · · ·10i+1× (· · ·+ vi
1)+10i× (5vi

0 +2vi−1
3 + vi−1

2 + vi−1
1)+10i−1× (5vi−1

0 +

· · ·)

= 5×(· · ·10i+1×(· · ·+vi+1
0)+10i×(4vi

3+2vi
2+2vi

1+vi
0)+10i−1×(4vi−1

0 +

· · ·))

= 5× (· · ·vi+1
0 vi

3vi
2vi

1vi
0vi−1

3 · · ·)4221 = (5X)5211

This proves the initial claim.

Using properties 3,4,5 we can easily get the multiples 2X, 4X, by two cascaded
2X operations, and 5X. These multiples are easy decimal multiples, that we can
get without carry propagation. Note that we can also get 2X, 4X, and 5X multiples
without carry propagation also in the 8421 format.

1.2 IEEE Decimal Floating-Point Standard
As previously indicated, there was an increasing need to Decimal Floating Point
(DFP) arithmetic. Hence, there were many efforts to find out the most appropri-
ate DFP formats, operations and rounding modes that completely define the DFP
arithmetic. These efforts ended up with the IEEE 754-2008 floating-point arith-
metic standard. This section gives a brief overview to this standard [2].

1.2.1 Decimal Formats
The IEEE 754-2008 defines DFP number as : (−1)s× (10)q× c , where: S is
the sign bit, q is the exponent, c = (dp−1dp−2 · · ·d0) is the significand where di ∈
{0,1,2,3,4,5,6,7,8,9}, and p is the precision.

Figure1.1 shows the basic decimal interchange format specified in the IEEE
754-2008 standard. S is the sign bit which indicates either the DFP number is
positive (S = 0) or negative (S = 1) and G is a combination field that contains the
exponent, the most significant digit of the significand, and the encoding classifi-
cation. The rest of the significand is stored in the trailing significand field (T),
using either the Densely Packed Decimal (DPD) encoding or the Binary Integer

6

Table 1.2: Parameters for different decimal interchange formats
Parameter decimal32 decimal64 decimal128

Total storage width 32 64 128
Combination Field (w+5) 11 13 17

Trailing significand Field (t) 20 50 110
Total Significand Digits (p) 7 16 34

Exponent Bias 101 398 6176
Exponent Width 8 10 14

Decimal (BID) encoding, where the total number of significand digits corresponds
to the precision, p. The DPD encoding represents every three consecutive decimal
digits in the decimal significand using 10 bits, and the BID encoding represents
the entire decimal significand in binary.

Before encoded in the combination field, the exponent is first encoded as bi-
nary excess code and its bias value depends on the precision used. There are also
minimum and maximum representable exponents for each precision. The different
parameters for different precision values are presented in Table 1.2.

In decimal floating-point format a number might have multiple representa-
tions. This set of representations is called the floating-point number’s cohort. For
example, if c is a multiple of 10 and q is less than its maximum allowed value,
then (s, q, c) and (s, q+ 1, c/10) are two representations for the same floating-
point number and are members of the same cohort. In other words, a one-digit
floating-point number might have up to p different representations while a p-digit
floating-point number with no trailing zeros has only one representation (An n-
digit floating-point number might have fewer than p−n+1 members in its cohort
if it is near the extremes of the format’s exponent range). A zero has a much larger
cohort: the cohort of +0 contains a representation for each exponent, as does the
cohort of −0. This property is added to decimal floating-point to provide results
that are matched to the human sense by preserving trailing zeros. In brief, for dec-
imal arithmetic, besides specifying a numerical result, the arithmetic operations
also select a member of the result’s cohort. And thus, decimal applications can
make use of the additional information cohorts convey.

Figure 1.1: Decimal interchange floating-point format

7

1.2.2 Rounding
There are five rounding modes defined in the standard, Round ties to even, Round
ties to away, Round toward zero, Round toward positive infinity, and Round toward
negative infinity. Also, there are two well-known rounding modes supported in the
Java BigDecimal class [6]. Table 1.3 summarizes the different rounding modes
with their required action.

Rounding Mode Rounding Behavior
Round Ties To Away Round to nearest number and round ties

RA to nearest away from zero, the result is
the one with larger magnitude.

Round Ties to Even Round to nearest number and round ties
RNE to even, the result is the one with the

even least significand digit.
Round Toward Zero Round always towards zero (truncate)

RZ , the result is the closest DFP number
with smaller magnitude.

Round Toward Positive Round always towards positive infinity
RPI , the result is the closest DFP number

greater than the exact result.
Round Toward Negative Round always towards negative infinity,

RNI the result is the closest DFP number
smaller than the exact result.

Round Ties to Zero Round to the nearest number and round
RZ ties to zero, i.e. truncate in case of ties.

Round To Away Round always to nearest away from zero,
RA the result is the one with larger magnitude.

Table 1.3: Different Rounding Modes

1.2.3 Special numbers and Exceptions

Special numbers:
Operations on DFP numbers may result in either exact or rounded results.

However, the standard also specifies two special DFP numbers, infinity and NaN.
Infinities:
Infinity represent numbers of arbitrarily large magnitudes, larger than

the maximum represented number by the used precision. That is: −∞ <

{each representable f inite number} < +∞. In Table 1.4, a list of some arith-
metic operations that involve infinities as either operands or results are presented.
In this table, the operand x represents any finite non-zero number.

8

Operation Exception Operation Exception
∞+ x = ∞ None ∞/x =±∞ None
∞+∞ = ∞ None x/∞ =±0 None
∞− x = ∞ None ∞/∞ = NaN

∞−∞ = NaN Invalid
√

∞ = ∞ None
∞× x = ∞ None

√
−∞ = NaN Invalid

∞×∞ = ∞ None x/0 =±∞ Division by Zero
∞×0 = NaN Invalid subnormal÷∞ Underflow

Table 1.4: Examples of some DFP operations that involve infinities

NaNs (Not a Number):
Two different kinds of NaN, signaling and quiet, are supported in the standard.

Signaling NaNs (sNaNs) represent values for uninitialized variables or missing
data samples. Quiet NaNs (qNaNs) result from any invalid operations or opera-
tions that involve qNaNs as operands. When encoded, all NaNs have a sign bit and
a pattern of bits necessary to identify the encoding as a NaN and which determines
its kind (sNaN vs. qNaN). The remaining bits, which are in the trailing significand
field, encode the payload, which might contain diagnostic information that either
indicates the reason of the NaN or how to handle it. However, the standard speci-
fies a preferred (canonical) representation of the payload of a NaN.

Exceptions:
There are five different exceptions which occur when the result of an operation

is not the expected floating-point number. The default nonstop exception handling
uses a status flag to signal each exception and continues execution, delivering a
default result. The IEEE 754-2008 standard defines these five types of exceptions
as shown in Table 1.5.

9

Parameter binary32 binary64 binary128
Total storage width 32 64 128

Exponent Field 8 11 15
Mantissa 23 52 112

Exponent Bias 127 1023 16383

Table 1.6: Parameters for different binary formats

Exceptions Description Output
Invalid Operation -Computations with sNaN operands Quite NaN

-Multiplication of 0×∞

(Description shows -Effective subtraction of infinities
only common examples) -Square-root of negative operands

-Division of 0/0 or ∞/∞

-Quantize in an insufficient format
-Remainder of x/0 or ∞/x

(x: finite non zero number)
Division by Zero The divisor of a divide operation Correctly signed ∞

is zero and the dividend is a finite
non-zero number.

Overflow The result of an operation exceeds The largest finite number
in magnitude the largest finite number representable or a signed
representable. ∞ according to the

rounding direction.
Underflow The result of a DFP operation in zero, a subnormal number

magnitude is below 10emin and or±10emin according
not zero to rounding mode.

Inexact The final rounded result is not The rounded or the
numerically the same as the exact overflowed result.
result (assuming infinite precision)

Table 1.5: Different Types of Exceptions

1.3 Binary IEEE Standard
The value of the binary number consists of three parts: sign, exponent, and sig-
nificand. The sign is the most significant bit of the bits representing the binary
number. Exponent is calculated as biased exponent, which is the field next to
the sign and its width depends on the precision as shown in Table 1.6, minus the

Figure 1.2: Binary64 floating-point format

10

Exponent Trailing Significand Value of the number
111111...11111 = 0 NAN
111111...11111 6= 0 (-1)Sign* ∞

000000...00000 = 0 0
000000...00000 6= 0 (−1)Sign ∗0.Matissa∗2−exponent bias+1

Table 1.7: Special Cases in Binary

exponent bias, which is also shown in Table1.6. Finally significand is the remain-
ing part, and is concatenated from the left by one (the hidden one), unless the
number was subnormal or zero. The value of any normalized binary number is
(−1)Sign ∗ 1.Trailing Signi f icand ∗ 2Exp. Special cases of the binary representa-
tion are shown in Table 1.7.

The binary standard is the same as the decimal standard concerning excep-
tions, special cases handling, and rounding directions.

The rest of the thesis is organized as follows: In Chapter 2, we present an
overview of the previous binary and decimal FMAs. We present our design in
details in Chapters 3 and 4. Chapter 5 shows how the exceptional data paths were
handled. Chapter 6 shows the verification and synthesis results and comparisons
with the previously published FMAs. Finally Chapter 7 concludes the thesis.

11

Chapter 2

Previous Work

2.1 General FMA Architecture
Most of the FMAs consist of the same major blocks. The difference is mainly
in the implementation of each of these blocks. In this section we will present
the common parts, without going through the details of implementing each block.
And in the next sections, we will present how each of the previously published
FMAs implemented each block.

2.1.1 Decoding the Operands
First The Three operands (OpA, OpB, and OpC) are read in the IEEE 754-2008
format, then each operand is decoded into sign bit, exponent, significand, and flags
for special values (NaN or infinity). For decimal, the significand is then decoded
to BCD-8421 format.

2.1.2 Multiplier Tree
After decoding the operands, the first two operands are sent to the multiplier tree
to get the multiplication result. The multiplication process is performed in two
steps:

1) Generating the partial products: In this step, the partial products are gen-
erated, the multiplier might be recoded from the usual binary or decimal format to
a new format to simplify the multiplicand multiples that needs to be generated.

12

2) Reducing the partial products: In this step, the partial products are reduced
to only two vectors in order to add them with the addend to produce the final result.

2.1.3 Addend preparation
In order to align the addend with the multiplication result, the addend is shifted
by the shift amount, which is calculated from the exponent difference. Shifting
is performed to the left or right depending on the sign of the exponent difference,
and is done in parallel with the multiplication tree.

2.1.4 Final Adder
The two resulting vectors of the multiplier tree, as well as the prepared addend has
to be added. First they are reduced to only two vectors using a Carry Save Adder
(CSA), then the resulting two vectors are added using the final Carry Propagate
Adder (CPA).

2.1.5 Leading Zeros Anticipator (LZA)
In order to produce a normalized result, the leading zeros has to be counted and
shifted out of the result. Unless the preferred exponent (preferred exponent is
defined ad Min(ExponentA + ExponentB, Exponent C) or the minimum allowable
exponent is reached in decimal, or the minimum exponent is reached in binary and
in that case the binary result is subnormal.

The LZA operates on the two operands of the final adder and produces the
leading zeros count in their sum.

2.2 SilMinds’ Architecture
The first hardware implementation of a fully parallel decimal floating-point FMA
unit is presented in [5]. This design supports decimal-64, and decimal-128 spec-
ified by the IEEE754-2008 standard [2]. The top level of the design is shown in
Figure 2.1.

13

Multiplier Tree

R/L-Shifter

R: p L: 2p

Master Control

CSA

CPA

LZD

LZD

L-Shifter (4p)

Rounding

LZD TZD

Exponent Calculating

Decoding Stage

C B A

SgnC ExpC SigC SpcSignC

SigC SigC

SgnB ExpB SigB SpcSignB SgnA ExpA SigA SpcSignA

TZCC

C

LZCC

C TZCC

C

LZCC

C

ExpA ExpB ExpC

R/L

Shft1

SigC

4p

p

2p

Shft2

SigA SigB

p

3p

4p

LZCIR1

C

LZCIR2

C

LZCIR1

C
LZCIR2

C

2p 2p

Special Case

Handling

SpcSignA SpcSignB SpcSignC

RndMode

Others

SpcSignResult

Sign Calculation

SgnA SgnB SgnC op SgnInt

SgnResult

ExpA ExpB ExpC Shft1 Shft2

INC[1:0]

 ExpResult

SgnInt

INC[0]

INC[1]

Encoding Stage

SgnResult ExpResult SigResult SpcSignResult

Result

R/L 2p 2p

1-Digit R-Shifter

SigResult

Figure 2.1: SilMind’s Architecture

14

2.2.1 Multiplier Tree
2.2.1.1 Multiplier Recoding

In the multiplier tree used in this work, the multiplier (B) is recoded into the Radix-
10 format presented in [7], where the multiplier digits are recoded from the regular
digit set {0, · · · ,9} to the SD Radix-10 digit set {−5,−4 · · · ,4,5}. The multiplier
(B) is recoded into (p+1) digits, where p is the number of digits in the significand.
Each digit generates a corresponding partial product from (±A,±2A,±3A,±4A,
±5A), where A is the multiplicand.

2.2.1.2 Partial Products Generation

The required multiples are generated in a few levels of logic gates, using recoders
and wired left shifts. Negative multiples are obtained by getting the 10’s comple-
ment of the positive corresponding multiples.

2.2.1.3 Reduction Tree

After selecting the correct multiples, the (p+1) partial products are aligned accord-
ing to their decimal weights. A decimal Carry Save Adder (CSA) tree is used to
reduce the middle (2p) digits of the partial products, as well as the middle (2p)
digits of the addend, into two vectors: the sum vector and the carry vector. The
least significant p digits and the most significant p digits are treated separately out-
side the CSA. finally a (2p) width Carry Propagate Adder (CPA) is used to add the
sum and carry vectors to get the intermediate result. the carry out of the CSA is
used to get the sign of the result, and complement it if needed.

2.2.2 Leading Zeros Counter
The result of the CPA might need some left shift to be in the IEEE754-2008 stan-
dard. A leading zeros counter (LZC) is used to get the amount of shifting needed.
After shifting, the most significant (p+1) digits (p digits + the rounding digit) are
sent to the rounding module.

15

2.2.3 Rounding
The inputs to this stage are the p+1 digits resulting from the left shifting after
the LZC, which contain the round digit, and the sticky bit, which is calculated in
parallel with the LZC.

The rounding stage selects either the most significant p digits of the result and
truncate the less significant digit, or their increment. This decision is done accord-
ing the rounding direction, the sign of the result, as well as the round digit, and
sticky bit. For example, if the rounding direction is rounding towards zero, then
we always select the most significant p digits of the result without any increment.
On the other hand, of the rounding direction was towards positive infinity, then the
most significant p digits of the result are selected if the result is negative and their
increment is selected if the result is positive. In case of rounding to nearest, ties
away from zero. If the round digit less than five, the most significant p digits of
the result are chosen, otherwise their increment is chosen. The sticky is needed in
rounding to nearest ties to even, to determine if it was a Tie case or not.

The rounding unit supports the five rounding directions specified in the
IEEE754-2008 standard, as well as two more rounding directions.

2.3 Decimal FMA using Combined Add/Round
module

This design was presented by Ahmed El-Tantawi in [8]. The main disadvantage of
this design is the LZA and the normalization shifting has to be done in the critical
path before the addition, because the addition is combined with the rounding. And
the rounding position will not be known before the normalization shifting. Which
leads to higher than minimal delay.

2.3.1 Multiplier Tree
After decoding the significands, the multiplier and multiplicand are sent to the
multiplier tree to get the multiplication result. The Radix-5 implementation pro-
posed in [9] is used in this design as it provides the speed required with reasonable
area. Moreover, it has a property that can simplify the rest of the design; that is
one of the two resulting vectors of the multiplication (the sum vector) is always
negative. This property is used to simplify the LZA design as will be discussed

16

later. The multiplier tree used in this design is essentially the same as the one
proposed in [9].

The multiplier is divided into two main stages: Generation of the decimal
partial products and reduction of the partial products into only two vectors (sum
and carry vectors). Each digit in the multiplier is recoded from the regular BCD-
8421 format whereYi ∈ {0, · · · ,9} into the radix-5 encoding Yi = 5×YU

i +Y L
i ,

where YU
i ∈ {0,1,2} andY L

i ∈ {−2, · · · ,2}. This results in a 32 digit multiplier
(16 digits YU and 16 digits Y L). Each Y L digit selects a positive multiplicand
multiple of {0,X ,2X} in (4221) format, while each YU digit selects a positive
multiple of {0,5X ,10X} in (5221) format. To generate the negative multiples
{−X or −2X}; the corresponding positive multiple (coded in 4221) is inverted
to get the 9’s complement. Then a (+1) has to be added to each negated partial
product to get the 10’s complement. this (+1) is inserted without extra delay as
will be shown. The 32 partial products are then aligned according to their decimal
weights in order to be used as an input to the 32:2 decimal CSA tree.

Multiplier Recoding As explained in the previous section, each digit of the
multiplier Yi ∈ {0, · · · ,9} is recoded into two parts: YU

i and Y L
i such that Yi =

5×YU
i +Y L

i , where YU
i ∈ {0,1,2} and Y L

i ∈ {−2, · · · ,2}. Each digit YU
i is repre-

sented as two signals {y1U
i , y2U

i }, and each digit Y L
i is represented as four signals

{y(+2)L
i , y(+1)L

i , y(−1)L
i , y(−2)L

i } and a sign bit ysi, .

Multiplicand Multiples Generation The following Multiples need to be gener-
ated in (4221) format for each multiplicand (±X, ±2X, 5X, and 10X):

The X BCD multiplicand: is easily done by recoding the Multiplicand into
(4221).

Multiple 2X: each BCD digit is recoded into (5421) format, Then the multi-
plicand is shifted one bit to the left, to get the 2X multiple in (BCD-8421). Then,
result is recoded into (4221).

Multiple 5X: It is obtained by a simple 3-bits left shift of the (4221) recoded
multiplicand, with resultant digits coded in (5211).

Multiple 10X: It is obtained by a simple 3-bit left shift of the 2X (4221) re-
coded multiplicand multiples, with resultant digits coded in (5211).

Negative Multiples: For negative multiples (i.e. ysi = 1), the positive multiple
is inverted to get the 9’s complement. For 10’s complement, a (+1) has to be added
at the least significant digit position. Since only the Y L

i multiples may be negative,
the (+1) is inserted in the least significant bit of the corresponding YU

i multiple.

17

Partial Product Array As detailed before, the SD radix-5 architecture produces
32 partial products: 16 of them are coded in (4221) format and the other 16 are
coded in (5211) format. The next step is to reduce these 32 partial products to only
2 vectors.

Partial Product Reduction In order to reduce the partial products , The longest
columns (the middle ones) are first reduced using decimal counters. The result is
then reduced using a tree of carry save adders. This tree is designed to reduce the
critical path delay using parallelism as much as possible and balancing the delay
of different paths. To achieve such parallelism, the intermediate results that needs
to be multiplied by a factor of 2 or 4 is multiplied in parallel with the reduction
of the remaining intermediate results that doesn’t need to be multiplied. The×4
operation is simply composed of two cascaded ×2 stages.

To reduce the multiplier array to only two vectors, 32 of this carry save adders
tree (n : 2) are needed where n ∈ {2,4 · · · ,16,32}. These CSA trees can be found
in [7]. At the end of this stage, the 32 partial products are reduced to only two
vectors (the sum vector M1, and the carry vector M2) both of 33 digits and in the
(4221) format. As stated before, the sum vector is always negative and the carry
vector is always positive.

2.3.2 Decimal Carry Save Adder
In this stage, the addend, which is aligned, negated if needed, and ready to be
added, is inserted with the two resulting vectors of the multiplier tree into a dec-
imal 3:2 carry save adder (CSA). The resulting two vectors are converted from
(4221) to BCD-8421 format in order to be used in the LZA block. Finally selec-
tion is done to select 3p+1 digits that contains the result starting from the MSD
and discard any digits to the left of the MSD, and any digits to the far right that
will contribute only to the sticky bit.

2.3.3 Leading Zeros Anticipation
The leading zeros in the sum of the two resulting vectors of the decimal CSA are
anticipated in this stage. The LZA used in this design is also used in our work,
and will be explained later in Section 3.5.1. It has to mentioned that the used LZA
has an error in anticipation of one digit. This error is handled in the combined
add/round stage.

18

2.3.4 Final alignment
The two vectors are shifted by the amount of the leading zeros, unless the preferred
exponent is reached. Alignment is done before the combined add/round module
in order to know the location where the rounding will take place.

2.3.5 Rounding Set Up
2.3.5.1 Top Level Architecture

Figure 2.2 shows the top level architecture of the rounding set up module. The
main target of this stage is to calculate, in parallel to the combined add/round
module, the guard and the round digits, the sticky bit, and the possible carry in to
the most significant (p-digits) fed to the combined add/round module. To calculate
these signals, the two vectors passed to the rounding set up have to be added.

In order to maintain only p-digit carry rippling delay at the critical path, the
rounding setup is implemented as a conditional adder. The 2p+1 width is divided
into p and p+1, the most significant p+1 digits are calculated twice using two carry
networks. One of them assumes Cin = 1 to this part of the adder, while the other
assumes Cin = 0. In order to use a Kogge-Stone binary carry network [10], a pre-
correction stage that adds 6 to each digit is necessary to perform decimal addition
using the binary adder. The correct carry out resulting from the least significant p
digits selects the appropriate carry signals out of the two carry networks.

A small post-correction circuitry is used to generate the correct guard and
round digits. However, the less significant digits contribute only to the sticky and
there is no need for their exact values. Hence, no post correction is needed, and
they are only processed to get their correct sticky share. The carry out of the most
significant carry network is fed to the combined add/round module.

2.3.5.2 The addend 10’s complement

In case of effective subtraction, the addend is 9’s complemented without adding
the (+1) required for 10’s complement. Hence, we will use the carry in (Cin) of the
least significant carry network to perform the required (+1) increment.

However, if the intermediate result is negative, it will need another 10’s com-
plementing which requires adding (+1). In order to avoid this, we use the following
property:

10′scomp.(X) = 9′s comp.(X)+1 = 9′s comp.(X−1) (2.1)

19

Pre-Correction

Carry NetworkCarry Network Carry Network

‘1’
‘0’

Op2-Rnd

(2p+1-digit)

Op1-Rnd

(2p+1-digit)

I0

(p-digit)

I1

(p-digit)

I1

(2p+1:p-digit) I0

(2p+1:p-digit)

‘’Cin

’

Sticky GenerationPost-Corr.

MUXMUX

Cin1

inc1

{SGDt,SRDt}

{SGD,SRD}

C-Vector1C-Vector2

St1RShft

St1M

St1C

eop

IntSign

Lst

Figure 2.2: Rounding Setup

Hence, if the effective operation is subtraction and the intermediate result is
negative no need to add Cin = 1. It will be sufficient to get the 9’s complement of
the intermediate result. However, if the intermediate result is positive, the Cin = 1
must be added, to account for the (+1) required for the 10’s complement of the
addend.

2.3.6 Combined Add/Round
This stage performs both BCD addition and rounding. The Combined Add Round
Technique is proposed in [11]. However, this design is implemented for floating
point adders and needs some modifications to fit this FMA.

These differences require different modifications in the design to handle them
without delay or area overheads.

2.3.6.1 Rounding Position

As discussed previously, the rounding position is not exactly determined. It has
an uncertainty of one digit due to the uncertainty of the preliminary anticipation
of leading zeros. Figure 2.3 shows the unrounded result supposed to be produced
from the two operands fed to the combined add/round module with three different

20

0
Unrounded

Result

Case-1 Wrong anticipation for leading zeros and

the preferred exponent is not reached.

GD

Rounding

Position

p-digits

X
Unrounded

Case-2 The preferred exponent is reached.

GD

p-digits

LSDX
Unrounded

Result
GD

Rounding

Position

LSD

Unrounded

Result

Case-3

GD

Rounding

Position

p-digits

LSD

Correct anticipation for leading zeros and

the preferred exponent is not reached.

Figure 2.3: Rounding Position

cases in which the rounding position has two possibilities: either the least signifi-
cant digit, or the guard digit produced from the rounding set-up stage.

Hence, the rounding increment inc2, fed to the most significant highlighted
p-digits, must be calculated correctly according to the current case. This requires
detecting the MSD of the unrounded result to determine whether it is zero or not,
besides using the signal that indicates if preferred exponent is reached. This signal
is generated from the final alignment module.

Figure 2.4 shows a top-level block diagram for the combined add/round mod-
ule.

2.3.6.2 Pre-Correction

To allow the use of a fast binary adder that uses a Kogge-Stone carry network,
p-digit BCD operands Op1-Add and Op2-Add are processed in the pre-correction
stage. It performs the digit additions (Op1Add)i+(Op2Add)i+6 in a 4p-bit binary
3:2 CSA, obtaining the 4p-bit sum and carry operands S and Cint .

Each +6 bias, coded in BCD as (0, 1, 1, 0), is connected to an input of a 4-bit
binary 3:2 CSA. The p-digit BCD operands Op1-Add and Op2-Add are introduced
into the other two inputs.

However, this stage is also used to prepare for the computation of the SUM−1
required in case of Slsb.cmp = 1 where SUM = (Op1Add)+(Op2Add). Therefore,

21

PreCorrection

Binary
Compound

Addition
Rounded Logic

Cmp

Op2Add
(P-digit)

Op1Add
(P-digit)

SH C1

Cmp

inc1

Slsb

SMSDt

SlMSDt

PrefExp-
Rchd

Post-Correction

SumtSumIt

SumMSDtSumIMSDt

Selection

SumI -(Sumt)Sum

Slsb

inc1

inc2

cmp

IntSign

eop

Lstti SGDi SRDi

inc2 Lstti SGDi SRDi

Figure 2.4: Combined/Add Round Module

the least significant digit of the correction vector is replaced by ’5’ instead of ’6’
in this case. This implements the (-1) decrement without needing any extra logic.

2.3.6.3 Compound Adder

The compound adder proposed in [12] is used in this design. It is shown in Figure
2.5. This adder computes Sumt = S+C and Sumlt = S+C+ 1. Where S, and C
are the inputs to the combined/add module after the pre-correction.

2.3.6.4 Rounding Stage

In parallel to the binary sum, the decimal rounding unit computes the increment
signal inc2 and the guard digit of the result. Apart from the rounding mode, the
rounding decision depends on the intermediate sign, the guard, the round and the
sticky digits computed in the rounding set-up stage, the sum least significant bit
(Slsb) and the unrounded result MSD. The MSD of the unrounded result depends
on the MSD of Sumt, Sumlt, Slsb and inc1.

2.3.6.5 Rounding Conditions

In addition to the five IEEE 754-2008 decimal rounding modes [2], this design
supports two additional rounding modes [6]: round to nearest down and away
from zero.

22

Prefix Carry

Netwok

Group Alive

Generate

Generate (g,p,a)

a p g

C1 SH

Generate Late

Carries

Sum Cells Sum Cells

Suml Sum

Figure 2.5: Compound Adder

2.3.6.6 Post-Correction and Selection

The post-correction stage is very simple. A ’10’ is added digit wisely to both Sumt
and Sumlt to produce corrected sums: Sum and Suml. If the intermediate result
is negative and the result will be complemented, it does not need post-correction.
Hence, inverting of an excess-6 BCD number is equivalent to getting the 9’s com-
plement of an 8421 BCD number. The selection stage selects the correct output
out of Sum, Suml, inverted version of Sumt or Sumlt.

2.3.7 A Decimal Floating-point Fused Multiply-Add

Unit with a Novel Decimal Leading-zero Antici-

pator
In 2011 Akkas et al proposed w new Decimal-64 FMA in [13].

2.3.7.1 Multiplier Tree

The radix-10 multiplier presented in [7] is used to multiply the first two operands.
The result is 32 digits that represent the multiplication result. This is the same
multiplier explained in Section 2.2.1.

23

2.3.7.2 Operand Alignment

Instead of shifting the addend to align it with the multiplication result, to have the
width of the result in 4P digits, where P is the number of digits in the significand,
the multiplication result and the addend are both aligned at the same time. The
result of the multiplication and the addend may be swapped according to which
one has the larger exponent. The vector with the larger exponent is shifted to the
left by the exponent difference, unless this shift amount is larger than the leading
zeros count, in that case the other vector is shifted to the right by the difference
between the required shift amount and the leading zeros count (the actual shift
amount).

2.3.7.3 Addition

The addition is done using a Kogge-Stone parallel prefix adder. First the signif-
icands are pre-corrected, then the carries and flags are calculated using Kogge-
Stone networks, and finally a post-correction is done using the generated carry
and flag bits.

2.3.7.4 Leading Zeros Anticipation

In parallel to the Kogge-Stone adder, a leading zeros anticipator works on the pre-
corrected operands, to calculate the leading zeros in the addition result. The LZA
is divided into two stages:

The first stage computes two vectors (e1 and e2). Each bit of e1 has the in-
formation whether the corresponding digit in the sum of the two inputs are zero
or not in case of effective addition. In case of effective subtraction e2 has this
information.

The second stage is a binary Leading Zeros Detector (LZD) that detects the
leading zeros in e1 and e2 in parallel.

Finally the effective operation signal (EOP) selects between the results of the
two LZDs.

2.3.7.5 Final Shift And Rounding

The sum calculated by the Kogge-Stone adder is shifted by one digit location to
the right, in case of an overflow in the addition, or by a massive amount, up to
P digit locations. The result is finally rounded based on one of the five rounding
directions specified in the IEEE-754 standard.

24

2.4 Binary Floating–Point Fused Multi-
ply–Add with Reduced Latency

This architecture was proposed by T. Lang in [14].
The top level design of this binary FMA is shown in Figure 2.6.

2.4.1 Multiplier Tree
In this design a radix-4 binary multiplier tree is used. This is the same as the binary
multiplier tree used in our work which is explained in Section 3.2.1, and 3.2.2.

2.4.2 Preparing the addend
The addend is prepared (shifted and complemented if needed) in parallel with the
multiplier tree. The two resulting vectors from the multiplier tree as well as the
prepared addend are then sent to a 3:2 CSA to get the final two vectors that need
to be added in order to get the final sum.

2.4.3 Addition and Rounding
In this design, T. Lang tried to reduce the total latency by combining the addition
with rounding. In the addition stage he prepared two vectors: sum, and sum+1,
then the rounding increment selects the correct sum; if the rounding increment =
0, then the sum is chosen, and if it was 1 the sum+1 is chosen.

Since the addition is combined with rounding, the result has to be normalized
before the final addition/rounding module. As if the result is not normalized before
rounding, the rounding position is not known, and the rounding can not be done.
Hence, normalization must be done before the addition/rounding module.

2.4.4 Leading Zeros Anticipation and Normalization

Shifting
Instead of waiting for the LZA to finish Anticipation and get the final normaliza-
tion shift amount, the LZA operates in parallel with the normalization shifter. The
LZA generates the MSB of the shifting amount first, then the shifter uses this bit

25

to shift the result. Once the second MSB is generated, it’s used to shift the re-
sult again, and so on. However, there is a gap at the beginning of the anticipation
process before any bits are calculated. This gap is filled with complementing the
vectors, and a part of the most significant bits addition.

After the normalization shifting is done, the addition can start. The most sig-
nificant 51 bits are sent to the adder to produce sum, and sum+1. In parallel to
this adder, the rounding decision is made using the least significant 3 bits. Once
the addition is done, and the rounding decision is made, the correct result can be
selected.

2.5 Binary/Decimal FMA
The only binary/decimal FMA was proposed by Monsson in 2008 [4], unfortu-
nately it was not fully functional according to the standard. The top level architec-
ture is shown in Figure 2.7.

2.5.1 Multiplier Tree
In the multiplier tree used in this design, each multiplier digit selects two multiples
from the set of (0,A,2A,4A,5A) where A is the multiplicand. Two multiplexers
are used to generate the partial products corresponding to each multiplier digit as
follows:

muxi = (0,2A,4A,4A)where i = 2b3 +b1 (2.2)

mux j = (0,A,4A,5A)where j = 2(b3⊕b2)+b0 (2.3)

where b3b2b1b0 are the bits of the Multiplier digit. A simple Wallace tree of
binary CSAs are used, and a correction logic is enforced if a carry comes out of
the edge of any digit.

2.5.2 Alignment
Alignment is done in parallel with the reduction tree. A two way shifter is used
to align the addend with the multiplication result. If the exponent of the addend
is larger than the exponent of the multiplication result, then it’s shifted to the left.
And if not, it’s shifted to the right. Finally, there is a limitation on the shifting

26

A

Bit Invert
record

CSA Tree

3:2 CSA

3p+2-bits

Alignment

Shifter

Complement HAs and part

of part of adder

Normalization Shifters

Sign

Extension

LZA

:

B C

Sub

(p+2)-d

complement

p-bit adder

sum sum+1

Round bit

Guard bit

Carry and

Sticky

selection

LSBs

MSBs

Combined

Addition and

Rounding

Figure 2.6: T. Lang’s FMA

27

Multiplier Tree

R –Shifter (5p+3) Controller-1

CSA

CPA

L-Shifter (5p+3)

Rounding

LZD

Exponent Calculating

Decoding Stage

C B A

SgnC ExpC SigC SpcSignC

SigC

SgnB ExpB SigB SpcSignB SgnA ExpA SigA SpcSignA

LZCC

C
LZCC

C

ExpA ExpB ExpC

Shft1

SigC

5p+3

SigA SigB

p

Sign Calculation

SgnA SgnB SgnC op SgnInt

SgnResult

ExpA ExpB ExpC Shft1 Shft2

INC[1:0]

 ExpResult

INC[1]

Encoding Stage

SgnResult ExpResult SigResult SpcSignResult

Result

LOP

Controller-2

ALZCIR ExpA ExpB ExpC

Shft2

Special Case

Handling

SpcSignA SpcSignB SpcSignC

RndMode

Others

SpcSignResult Flags

SgnInt

INC[0]

1-Digit R-Shifter

SigResult

Figure 2.7: Monsson’s Binary/Decimal FMA

28

amount: the addend should be shifted to the left until its LSB and the guard and
round digits are to the left of the multiplication result.

2.5.3 Addition:

Addition is performed over two steps: CSA stage, CPA stage, with some cor-
rection logic for decimal. The addition is straight forward in binary, a simple 3:2
CSA is used to reduce the vectors from 3 to 2, then a binary CPA is used to perform
the addition of these two vectors. Decimal addition can also be performed using
a binary two’s complement adder if the operands are pre-corrected. For effective
addition, one operand must be pre-corrected by adding each digit to +6 which
is already done by the multiplier. For effective subtraction one operand must be
nine’s complemented and pre-corrected by adding each digit to +6. This is the
same as getting the fifteen’s complement which is a simple bit inversion. A row
of 4-bit CPAs, with +6 post-correction for each 4-bits if their value is larger than 9
or they produce a carry out, is used to reduce the number of decimal inputs to two
from three; instead of the binary CSA. Finally the simple 2’s complement adder is
then used for both binary and decimal. But in case of decimal a post-correction is
performed.

2.5.4 Leading Zeros Anticipation (LZA):

The location of leading one (non zero) digit is anticipated from the two inputs
of the adder. For both binary and decimal, prediction strings are generated for both
binary and decimal in parallel, and the leading one in these strings are calculated.

2.5.5 Rounding
Rounding is done in two steps: rounding decision, and increment. The decision
is made by some logic gates depending on the rounding direction. A CPA incre-
menter is used to add the increment to the final result.

29

2.5.6 Design Functionality
Monsson himself states that the design doesn’t work according to the standard in
many cases. Also he tried only 30 test cases on his FMA which is a tiny number
of test vectors to check such a massive input space of an FMA.

2.6 Conclusion
In this chapter we explored the main blocks required to build a functional FMA
such as the multiplier tree, the LZA, and how the final addition and rounding
could be done. We also presented most of the previously published FMAs, and
highlighted the main differences in their implementation. In the next chapters
we are going to present our combined binary/decimal FMA, give the details of
implementing each block, and compare the synthesis results of our FMA with the
previous FMAs presented in this chapter.

30

Chapter 3

Proposed Binary/Decimal
Design

In this chapter we are going to propose a new 64-bit FMA that can work as a binary
or decimal unit. The main idea is to re-use as much hardware as possible between
binary and decimal to save area and hence static power. The most expensive units
-area wise- are the multiplier and the adder, so we chose both the multiplier and
the adder such that each of them can work as a binary or decimal multiplier and
adder.

Our multiplier is based on the multi operand adder proposed by L. Dadda
in [15], and the adder is based on the adder K. Yahia proposed in his master’s
thesis [16] .

A selection bit called (bd) is used to choose between binary and decimal archi-
tectures. When this signal is high the design operates as a binary FMA, and if it’s
low, the design operates as a decimal FMA. The block diagram of the presented
FMA is shown in Figure 3.2.

3.1 Decoding The Inputs
In case of binary the inputs are in binary-64 format which is shown in Figure
3.1. The decoding is pretty much straight forward, we just split the most sig-
nificant bit as the sign bit, the following 11 bits as the biased exponent, and
the least significant 52 bits are the trailing significand. The trailing significand
is then concatenated to the hidden one unless the number is subnormal or zero.
The exponent of the number (Exp) is defined as the biased exponent - 1023.

31

Figure 3.1: Binary-64 Format

Exponent Mantissa Value of the number
11111111111 = 0 NAN
11111111111 6= 0 (-1)Sign* ∞

00000000000 = 0 0
00000000000 6= 0 (−1)Sign ∗0.Trailing Signi f icand ∗2−1022

Table 3.1: Special Cases in Binary-64

Hence the numerical value of the binary double precision normalized number is
(−1)Sign ∗ 1.Trailing Signi f icand ∗ 2Exp. Special cases, such as subnormal num-
bers, infinities and NANs are shown in Table 3.1.

In case of decimal the three operands (OpA, OpB, and OpC) are read in the
IEEE 754-2008 decimal-64 format with decimal encoding. The decimal encoding
uses the Densely Packed Decimal (DPD) code. Each operand is decoded into its
sign bit, exponent, significand, and flags for special values (NaN or infinity). The
significand is then decoded to BCD-8421 format, where each digit of the 16 digits
is represented in 4-bits. As shown in Figure 3.3, decimal numbers are decoded
such that their sign is the MSB. The next 13-bits are the combination field, which
is decoded according to Table 3.2 to get the MSD and the exponent of the decimal
number, and to determine if the number is a special number (infinity, quite NaN
or signaling NaN). The trailing significand which is 15 digits is decoded from the
trailing part. Each successive 10-bits are decoded according to Table 3.3 to get
three significand digits.

Combination Filed (G) Special Case or
G12G11 · · · · · ·G7 Exponent and MSD

0xxxxx MSD = 0G5G6G7 ,Ebiased = G12G11G6G5 · · ·G0
10xxxx MSD = 0G5G6G7 ,Ebiased = G12G11G6G5 · · ·G0
110xxx MSD = 100G7 ,Ebiased = G9G8G6G5 · · ·G0
1110xx MSD = 100G7 ,Ebiased = G9G8G6G5 · · ·G0

1111xx
11110x MSD = 0000

Ebiased = 00 · · ·0
Infinity

111110 Signaling NaN
111111 Quiet NaN

Table 3.2: Decoding The Combination Field

32

Decoding

Binary/
Decimal

Multiplier

O
p

A

O
p

B

b
in

_O
p

A

b
in

_O
p

B

Expdiff
Complementer

b
in

_O
p

C

RLShifter

Sh
ift_am

o
u

n
t

b
in

_Exp
C

bin_ExpB

bin_ExpA

Binary 4:2 CSADecimal 4:2 CSA

M1M3 M2 B1B3 B2

Selection Stage Selection Stage

Decimal to redundant converter Binary to redundant converter

Decimal
LZA

Binary
LZA

Redundant Adder

Redundant complementer

dec_conv_cin bin_conv_cin

adder_cin

IntSign

dec_RLShifter bin_LShifter
Final_shift_amount

Final_coarce
shift_amount

Binary
Rounder

Decimal
Rounder

Redundant to binary/decimal
Converter

dec_fbout bin_fbout

Binary fine
Shifter

fine_shiftDecimal fine
Shifter

MSD Decimal
Exponent

Calculating

Binary
Exponent

Calculating

DPD Encoder Binary Encoder

D
ec

im
al

 S
ig

n

B
in

ar
y

Si
gn

Final Decimal Result Final Binary Result

fine_shift

bdbarbdbar

bdbar

ExpC

ExpB

ExpA

Expdiff
Complementer

RLShifter
Sh

if
t_

am
o

u
n

t

O
p

C

Figure 3.2: Top Level Architecture

33

Figure 3.3: Decimal-64 DPD encoding

Declet (I9 · · · · · · I0) BCD {O2}{O1}{O0}
(I3I2I1I6I5) {O2

3O2
2O2

1O2
0O1

3O1
2O1

1O1
0O0

3O0
2O0

1O0
0

0xxxx {0, I9, I8, I7}{0, I6, I5, I4}{1, I2, I1, I0}
100xx {0, I9, I8, I7}{0, I6, I5, I4}{1,0,0, I0}
101xx {0, I9, I8, I7}{1,0,0, I4}{1, I2, I1, I0}
110xx {1,0,0, I7}{0, I6, I5, I4}{0, I9, I8, I0}
11100 {1,0,0, I7}{1,0,0, I4}{0, I9, I8, I0}
11101 {1,0,0, I7}{0, I9, I8, I4}{1,0,0, I0}
11110 {0, I9, I8, I7}{1,0,0, I4}{1,0,0, I0}
11111 {1,0,0, I7}{1,0,0, I4}{1,0,0, I0}

Table 3.3: Decoding each declet to the corresponding BCD digits

3.2 Multiplier Tree
The multiplier is the most important block of the FMA. In [8] it consumes almost
33% of the total delay, and takes about 50% of the total area. In our design it uses
39% of the total delay and 43% of the total area. So we have to start multiplication
as soon as possible. The significands of the first two decoded operands (A and B)
are sent right after the decoding stage to the multiplier to get the multiplication
result (M).

The multiplier tree consists of two parts: partial products generation, and par-
tial product reduction. In the generation stage, the partial products are generated,
the partial products array is formed and the sign extension is handled and reduced
to minimize the size of the partial product array. In the reduction stage these par-
tial products are reduced to only three vectors in order to be added to the prepared
addend (C).

3.2.1 Multiplicand Multiples Generation
The SD Radix-5 architecture proposed in [9] is used for decimal, but instead of
generating the partial products in 4221, and 5211 format they are generated in
BCD-8421 format in order to fit the used reduction tree, which uses the inputs in
BCD-8421 format. This simplifies the Multiplicand Multiples Generation , mak-
ing it faster with less area and power.

34

In SD Radix-5, each multiplier digit is recoded from the normal digit set B ∈
{0,1,2, ...9} to the Radix-5 encoding: Bi = 5×BU

i +BL
i , where BU

i ∈ {0,1,2} and
BL

i ∈ {−2, · · · ,2}.
The following multiplicand multiples needs to be generated (±A, ±2A, 5A,

and 10A) in BCD-8421 format. It should be noted that all these multiples are
easy decimal multiples that can be obtained with no carry propagation, but with a
simple O(1) logic with a few gate delays, using the properties explained in Section
1.1, as explained below:
The A BCD multiplicand: is the same input generated by the input decoder.

Multiple 2A: Each BCD digit is first recoded to the (5421) format then shifted one
bit to the left, obtaining the 2A multiple in BCD-8421 format.

Multiple 5A: Each BCD digit is first recoded to the (4221) format then shifted
three bits to the left with resultant digits coded in (5211). Finally each Digit is
Converted back to BCD-8421 format.

Multiple 10A: The BCD digits are just shifted one decimal location (four bits) to
the left obtaining the 10A multiple in the required format.

Negative Multiples: For negative multiples needed in the Lower partial products,
we get the 9’s complement with a simple two gate delay logic. For 10’s comple-
ment, a (+1) is added at the least significant digit position of the corresponding
Upper partial product.

It can be noted that in the 10A multiple, the least significant bit is always zero,
so the (+1) is inserted in that bit. Also in 5A multiple, and after the three-bit left
shift, the least significant bit is also zero, so the (+1) increment can be inserted
in that bit, before the final conversion to BCD-8421. So in case of negative BL

i

multiple, the (+1) increment is inserted in the corresponding BU
i multiple.

For binary, the SD Radix-4 architecture presented in [7] is used. The SD
Radix-4 decodes each 4-bits of the multiplier B∈ 0,1,2, ...15, as well as a carry-in
from the lower significant 4-bits, into two digits : upper and lower digit, and a carry
out (Cout) to the next four bits. This carry out is generated directly from the input
and doesn’t depend on the value of Cin as shown in Equation 3.5. Hence it doesn’t
cause any carry propagation delay overhead. Bi+Cin = 16×Cout +4×BU

i +BL
i ,

35

where the upper digit BU
i ∈ {−2,−1,0,1,2} and the lower digit BL

i ∈ {−2, · · · ,2}.
We need to generate the following multiplicand multiples (±A, ±2A, ±4A, and
±8A). All the positive multiples can be generated by a simple left shifting of the
multiplicand bits.

For example, Bi = 6 is decoded into BL
i = 2, BU

i = 1, and Cout = 0, where
6 = 16×0+4×1+2. Also Bi = 13 is decoded into BL

i = 1, BU
i =−1, and Cout

= 1, where 13 = 16×1−4×1+1.
In order to generate the negative multiples without extra delay, we get the one’s

complement of the corresponding positive multiple by inverting each bit, and the
(+1) required for the two’s complement is added in a separate vector (the I-vector
in the right bottom corner of the graph) as shown in Figure 3.6.

3.2.2 Partial Products Generation
As mentioned above, for decimal, in the used Radix-5 encoding each multiplier
digit is recoded into two digits: lower and upper digits, and a sign bit, each of
these digits selects a partial product. The lower digit selects from {0,A,2A}, and
the upper digit selects from {0,5A,10A}. The sign bit negates the partial product
selected by the lower digit as mentioned above.

In order to simplify the partial product selection process, each digit YU
i is rep-

resented as two signals {y1U
i , y2U

i }. Also each digit Y L
i is represented as four

signals {y(+2)L
i , y(+1)L

i , y(−1)L
i , y(−2)L

i } and a sign bit ysi. The truth table for
these seven signals are shown in Table 3.4. By examining the different possibili-
ties, these signals can be obtained directly from the BCD multiplier digits Yi using
the following logical expressions, where Yi = {yi,3,yi,2,yi,1,yi,0}is the multiplier
digit being recoded.

(YU
i)

 y2U
i = yi,3;

y1U
i = yi,2 + (yi,1.yi,0);

(3.1)

(Y L
i)

y(+2)L
i = yi,1 .((yi,2 .yi,0) + (yi,2 .yi,0));

y(+1)L
i = (yi,3 .yi,2 .yi,1 .yi,0) + (yi,2 .yi,1 .yi,0);

y(−1)L
i = (yi,3 .yi,0) + (yi,2 .yi,1 .yi,0);

y(−2)L
i = (yi,3 .yi,0) + (yi,2 .yi,1 .yi,0);

ysi = y(−2)L
i + y(−1)L

i ;

(3.2)

36

After selecting the partial products, we have 32 decimal partial products, each
of 17 digits as shown in Figure (3.4). Some of them are negative and need their
sign to be extended.

In the case of binary, the multiplier upper digit selects from {0,4A,8A} and the
lower digit selects from {0,A,2A}. The following signals are generated to simplify
the selection of the multiplicand multiples{y(+2)L

i , y(+1)L
i , y(−1)L

i , y(−2)L
i } for

the lower digit, and {y(+8)Ui , y(+4)Ui , y(−4)Ui , y(−8)Ui } for the upper digit. Also
ysU

i and ysL
i , which are the sign of the upper and lower digits respectively, are

generated.
The truth table for these signals are shown in Table 3.5 and the equations

are shown below, where cin is the Cout from the hexadecimal digit i-1, and Yi =
{yi,3,yi,2,yi,1,yi,0}is the multiplier digit being recoded.:

(Y L
i)

y(+1)L
i = (yi,1 .yi,0 .cin) + (yi,1 .yi,0 .cin);

y(+2)L
i = yi,1 .yi,0 .cin;

y(−1)L
i = (yi,0 .yi,1 .cin) + (yi,1 .yi,0 .cin);

y(−2)L
i = yi,0 .yi,1 .cin;

ysL
i = (yi,1 .yi,0) + (yi,1 .cin);

(3.3)

(YU
i)

y(+4)Ui = (yi,3 .yi,2 .yi,1) + (yi,3 .yi,2 .yi,1);

y(+8)L
i = yi,3 .yi,2 .yi,1;

y(−4)Ui = (yi,2 .yi,3 .yi,1) + (yi,3 .yi,2 .yi,1);

y(−8)Ui = yi,2 .yi,3 .yi,1;

ysU
i = (yi,3 .yi,2) + (yi,3 .yi,1);

(3.4)

Couti = yi,3 (3.5)

The sign bit inverts the partial products to get the one’s complement and the
(+1) increment for each partial product is inserted in a separate vector. Three zeros
were added to the left of the multiplier 53 bits in order to generate the proper val-
ues for the partial products, these 56 bits are divided into 14 groups of 4 bits each.
Hence, in the case of binary, the partial product array consists of 28 partial prod-
ucts plus extra partial product for the (+1) increments. These 28 partial products
may be negative and need to properly extend their sign.

37

Digit y(+1)L y(+2)L y(−1)L y(−2)L Y 1U Y 2U ys
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 0 1 1 0 1
4 0 0 1 0 1 0 1
5 0 0 0 0 1 0 0
6 1 0 0 0 1 0 0
7 0 1 0 0 1 0 0
8 0 0 0 1 0 1 1
9 0 0 1 0 0 1 1

Table 3.4: Generated Signals For Multiplier Recoding in Decimal SD-Radix5

X X X X X X X X X X X X X X X X X

s s s s s s s s s s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s s s s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s s s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s s X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

s X X X X X X X X X X X X X X X X X

Figure 3.4: Decimal Partial Product Array before offline reduction

38

Y cin y(1)L y(2)L y(−1)L y(−2)L ysL y(4)U y(8)U y(−4)U y(−8)U ysU cout
0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 1 0 0 0 0 0
2 1 0 0 1 0 1 1 0 0 0 0 0
3 0 0 0 1 0 1 1 0 0 0 0 0
3 1 0 0 0 0 0 1 0 0 0 0 0
4 0 0 0 0 0 0 1 0 0 0 0 0
4 1 1 0 0 0 0 1 0 0 0 0 0
5 0 1 0 0 0 0 1 0 0 0 0 0
5 1 0 1 0 0 0 1 0 0 0 0 0
6 0 0 0 0 1 1 0 1 0 0 0 0
6 1 0 0 1 0 1 0 1 0 0 0 0
7 0 0 0 1 0 1 0 1 0 0 0 0
7 1 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 0 0 1 1 1
8 1 1 0 0 0 0 0 0 0 1 1 1
9 0 1 0 0 0 0 0 0 0 1 1 1
9 1 0 1 0 0 0 0 0 0 1 1 1

10 0 0 0 0 1 1 0 0 1 0 1 1
10 1 0 0 1 0 1 0 0 1 0 1 1
11 0 0 0 0 0 1 0 0 1 0 1 1
11 1 0 0 0 0 0 0 0 1 0 1 1
12 0 0 0 0 0 0 0 0 1 0 1 1
12 1 1 0 0 0 0 0 0 1 0 1 1
13 0 1 0 0 0 0 0 0 1 0 1 1
13 1 0 1 0 0 0 0 0 1 0 1 1
14 0 0 0 0 1 1 0 0 0 0 0 1
14 1 0 0 1 0 1 0 0 0 0 0 1
15 0 0 0 1 0 1 0 0 0 0 0 1
15 1 0 0 0 0 0 0 0 0 0 0 1

Table 3.5: Generated Signals For Multiplier Recoding in Binary SD-Radix4

39

Case(1) Case(2) Case(3) Case(4)
S1 · · ·S1S1 0 · · ·00 0 · · ·00 9 · · ·99 9 · · ·99
S2 · · ·S2S2 0 · · ·00 9 · · ·99 0 · · ·00 9 · · ·99
SR · · ·SRSR 0 · · ·00 9 · · ·99 9 · · ·99 9 · · ·98

Table 3.6: The four possibilities of two sign digit vectors

Case(1) Case(2) Case(3) Case(4)
Q1 · · ·Q1Q1 0 · · ·01 0 · · ·01 0 · · ·00 0 · · ·00
Q2 · · ·Q2Q2 9 · · ·99 9 · · ·98 9 · · ·99 9 · · ·98
SR · · ·SRSR 0 · · ·00 9 · · ·99 9 · · ·99 9 · · ·98

Table 3.7: equivalent sign digit values

3.2.3 Sign Extension
3.2.3.1 Decimal Sign Extension

As mentioned above, for decimal, we have 32 partial products in the partial product
array, 16 of them are generated by BU

i which are always positive and don’t need
sign extension. The other 16 partial products, which are generated by BL

i might
be negative, and need their sign to be extended. However, the part of the sign
extension can be reduced offline. Since the sign digit (S) can only be (9) or (0),
the possibilities of each two successive sign vectors are explored in order to reduce
the part of the sign extension in the array, and hence the area and power of the
reduction tree needed to reduce them.

Table 3.6 shows the four possibilities of two sign digit vectors S1 and S2 and
their sum SR. The same SR value can be obtained from the values of the modified
sign digits (Q1 and Q1) shown in Table 3.7.

The four equivalent values of Q1and Q2 can be generically expressed as:

Q1 · · ·Q1Q1 0 · · ·0(000s1)

Q2 · · ·Q2Q2 9 · · ·9(100s2)
, si =

{
0 Si = 0
1 Si = 9

Where Q is the sign digit after the first stage of reduction.

The same technique can be used to reduce the leading nines in each two suc-
cessive vectors starting from the second sign extended row as follows:

40

1 X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

W X X X X X X X X X X X X X X X X X

Figure 3.5: Final Decimal Partial Product Array

Case(1) Case(2)
Q1 · · ·Q1Q1 9 · · ·99 9 · · ·99
Q2 · · ·Q2Q2 0 · · ·09 0 · · ·10

QR · · ·QRQR 0 · · ·08 0 · · ·09

This can be replaced by:

Case(1) Case(2)
W1 · · ·W1W1 0 · · ·00 0 · · ·00
W2 · · ·W2W2 0 · · ·0(100s2) 0 · · ·0(100s2)

where W is the sign digit after the second reduction.

Now the sign extended partial product array is simplified offline, and the final
array is shown in Figure (3.5).

3.2.3.2 Numerical Example

In order to explain the method shown above, imagine we have four vectors each
is a 4-digit number resulting from the lower digit from the multiplier, and each
number is extended by 4 digits of sign extension as shown:

41

7 6 5 4 3 2 1 0

S1 S1 S1 S1 X1 X1 X1 X1
S2 S2 S2 X2 X2 X2 X2 0
S3 S3 X3 X3 X3 X3 0 0
S4 X4 X4 X4 X4 0 0 0

Applying first reduction step, this will turn into:

7 6 5 4 3 2 1 0

0 0 000S1 S1 X1 X1 X1 X1
9 9 100S2 X2 X2 X2 X2 0

000S3 S3 X3 X3 X3 X3 0 0
100S4 X4 X4 X4 X4 0 0 0

Now applying second reduction step on vectors 2 and 3 starting from digit
number 7 we get:

7 6 5 4 3 2 1 0

0 0 000S1 S1 X1 X1 X1 X1
0 0 100S2 X2 X2 X2 X2 0
0 100S3 X3 X3 X3 X3 0 0

100S4 X4 X4 X4 X4 0 0 0

Finally, we can look closer at digits 4 and 5 of vector 1:

S1=1 S1=0
digits 4,5 09 10

0(100S1) +1 0(100S1) +1

Finally, digits 4 and 5 of the first vector can be represented as (0 100S1) + 1.
This +1 is placed in the vector resulting from the first upper multiplier digit:

7 6 5 4 3 2 1 0

0 0 0 1 X1u X1u X1u X1u
0 0 0 000S1 X1 X1 X1 X1
0 0 100S2 X2 X2 X2 X2 0
0 100S3 X3 X3 X3 X3 0 0

100S4 X4 X4 X4 X4 0 0 0

The final reduction tree is shown in Figure (3.5).

42

3.2.3.3 Binary Sign Extension

In the case of binary we have 28 partial products than may be negative. The sign
extension bits of each partial products can be represented as ss.........s where s is
the sign of the partial product this can also be written as 11.........1 + s. If s = 1
then the sign extension is 11.........1, and if s = 0 the sign extension is 100.........0,
the same without sign extension but with extra carry out that must be taken into
consideration while extending any sign later in the design, and while checking for
overflow.

This is done for all the 28 partial products, and then the strings of ones of all
partial products are added offline and replaced by their sum in order to reduce the
hardware required to reduce them in the run time.

In order to use the same reduction hardware for binary and decimal, each
binary partial product is divided into groups of four bits. During reduction each
group is treated as a decimal digit. The final partial product array is shown in
Figure 3.6. Where I is a vector containing the increments for all negative partial
products, D is the hexa-decimal value D = 1101 in binary, and E is also the hexa-
decimal value E = 1110 in binary, and Sn = ysU

i Plus ysL
i (As mentioned above,

each partial product generates an (s) to have its sign extension in the form of
(111111 + s), and since each upper and lower partial products are of the same
weight, their s (ysU

i and ysL
i) has to be added together to give the Sn signal).

3.2.4 Partial Products Reduction
The multi-operand decimal adder presented in [15] is used to add the digits in each
column.

As shown in Figure 3.5, and 3.6 the partial product array consists of 32
columns (for binary three of them are zeros). Number of digits (N) in each column
varies from 2 digits (in the last columns), up to 32 in the three middle columns.

Each column is reduced independently. The digits of each column are reduced
using binary CSA tree into two binary numbers, which are then added using a
binary carry look-ahead adder into the final sum of this column. The maximum
number of bits in this sum is 9 bits. For binary this is the final sum and is divided
again into groups of four bits (B3,B2,B1), where B2 has a weight of 16 times the
weight of B1, and the weight of B3 is 16 times the weight of B2.

For decimal we need another stage to convert this sum into decimal weighted
digits (units, tens and hundreds). This is done using the binary to decimal converter
proposed in [15]. After conversion to decimal, the sum can be represented in two

43

Sn X X X X X X X X X X X X X X X

E X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

Sn X X X X X X X X X X X X X X X I

D X X X X X X X X X X X X X X X

I

Figure 3.6: Final Binary Partial Product Array

or three digits depending on the length of the column. In the first five columns,
the maximum sum of the digits (if all digits were 9’s) is 90 as the number of digits
per column is 10 in the fifth (longest) column of them, hence the sum of each of
these columns can be represented in two digits (Units, and Tens). Also the sum of
each of the last five columns are represented in two digits. Each of the middle 23
columns has the sum of its digits between 108 in the sixth column, and 288 in the
longest columns, hence the sum of each of them can be represented in three digits
(Units, Tens, and Hundreds).

As mentioned above, each column is reduced independently, which reduces
the carry propagation between different columns, hence reduces the total switching
power. The block diagram of the reduction of the longest column is shown in
Figure 3.7.

3.2.5 Sign of the two resulting decimal vectors
If we look at the final column in the reduced partial product array, we can easily
calculate its sum to be (w + 0) = w, which equals to either 8, or 9 depending on

44

��������	
�	

��������	��
��

�	������

��������	
�	

������
��������	�
�

������

��������

���	

������

��������

���	

������

��������

���	

Figure 3.7: Longest Column Reduction

45

the sign of the 31st partial product. Hence the resulting Units vector will have its
last (sign) digit equals to either 8, or 9 which means it will always be negative.

If we look at the column before the last one, we can calculate its maximum
sum as (w + 0 + x + x ∈[8,27]), which means that the last (sign) digit of the Tens
vector will be either 0, 1, or 2 which means that the Tens vector will always be
positive.

The Hundreds vector is also positive, since the last few columns will produce
a sum less than a hundred, which leads to some leading zeros in the Hundreds
vector.

After the first decimal 3:2 compressor in the CSA stage, which is explained in
Section 3.4, the resulting sum vector (M1) will be negative, and the carry vector
(M2) will always be positive. The sign digit of the inputs to this 3:2 compressor
are shown in the following table:

Vector 4221 representation

U 111x (either 8 or 9)
T 0000
H 0000

M1 111x
M2 0000

3.3 Addend Preparation
The decimal addend is prepared to be added to the multiplication result in parallel
with the Multiplier tree. First it’s converted to (BCD-4221) format to simplify
adding it with the result of the multiplier tree using decimal 3:2 compressor as will
be shown below. To avoid adding more delay in the critical path by shifting the
multiplication result, the addend is shifted in parallel with the multiplier tree. It is
shifted to the right or to the left depending on the sign of the exponent difference
(ExpDi f f) between the result of the multiplication and the addend as shown in
Equations (3.8),(3.9). Where ExpA, ExpB, ExpC, and ExpM are the exponents of
the multiplier, multiplicand, addend, and the multiplication result respectively and
Bias is the exponent bias defined by the IEEE standard.

ExpM = ExpA+ExpB−Bias (3.6)

46

ExpDi f f = |ExpM−ExpC | (3.7)

Shi f tR = Max(ExpDi f f , 2p+1) ExpM > ExpC (3.8)

Shi f tL = Max(ExpDi f f , 3p+1) ExpM ≤ ExpC (3.9)

The maximum amount to shift the addend to the right is (2p+1) as shown in
equation (3.8), other wise the addend only contributes to the sticky (unless the
multiplication result (M)=0, yet this case is considered as an exception of the de-
fault data path) as it will be out of the selected operating width. In case of shifting
to the left the maximum shift amount to be considered is (3p+1), otherwise the
multiplication result only contributes to the sticky (unless the addend (C)=0, yet
this case is also considered as an exception of the default data path) as it will be out
of the selected operating width. Also the 9’s complement of the addend is needed
in case of effective subtraction. The 9’s complement is easily calculated by invert-
ing every bit in the recoded addend (since it’s now in BCD-4221 format). We do
that using one level of Xor gates that xor the addend with the effective operation
(eop), where:

eop = signA⊕ signB⊕ signC⊕op (3.10)

where op is an input signal which defines either the operation is A×B+C or
A×B−C .

In case of effective subtraction, the 10’s complement is needed, so a (+1)
increment needs to be added to the 9’s complement. This increment is added later
in the conversion to redundant stage.

In case of binary, the addend is also prepared in parallel with the multiplier.
First we get the exponent difference according to equations 3.6, and 3.7. While
the exponent difference is calculated, the addend is complemented if the effective
operation (eop) is subtraction. Then the addend is shifted to the right or to the left
depending on the sign of the ExpDiff. The shift amount is calculated as follows:

binShi f tR = Max(ExpDi f f , 2P+1) ExpM > ExpC (3.11)

binShi f tL = Max(ExpDi f f , P+1) ExpM ≤ ExpC (3.12)

47

Case Condition MSD
1 ExpM > ExpC 3p+1
2 ExpC−LZC− p < ExpM ≤ ExpC 3p+1
3 ExpC−LZC− p≤ ExpM ≤ ExpC−LZC−2p 4p+1
4 ExpC−LZC− p > ExpM 5p+1

Table 3.8: Four Cases of Reduced Data path

The maximum right shift amount is calculated such that the addend is com-
pletely shifted out of the multiplication result by at least one bit, so that it con-
tributes only to the sticky. The same concept applies in case of left shifting, the
maximum shift amount is chosen such that the multiplication result is shifted out
of the addend by at least one bit, hence the multiplication result contributes only
to the sticky. This is shown in Figures 3.8 and 3.10.

3.4 Selection and Carry Save Adder

3.4.1 Case of Decimal
Instead of working with the full width (4p+1) digits, the width of the significand
path is reduced in the selection stage. The selection stage determines the position
of the most significant digit (MSD) and ignores the higher significant digits. The
four cases of the position of the MSD are shown in Figure 3.8. The selection is
done by the selection lines generated from the data path control unit. This unit
also determines the amount of shifting the addend Shi f t1, and its direction. Table
3.8. also lists the four cases of the MSD position.

After the digits to the left of the MSD are removed, the selected digits of the
aligned addend and the three resulting vectors of the multiplier tree (U, T, and
H in) are added using a 4:2 Decimal Carry Save Adder (DCSA) that uses the
properties of the BCD-4221 encoding to simplify and speed-up the addition. The
structure of the DCSA is shown in Figure 3.9, the blocks inside the dotted area
performs the ×2 operation. The resulting sum and carry vectors of the DCSA are
converted back to BCD-8421 as it’s easier to use in the next stages that require
carry generation networks as will be shown.

The selected operating width is 3p+1, as in case 1 the multiplication result
might have some leading zeros up to (2p-1) zeros if it’s not zero. In that case we
will need extra p digits to the right of the multiplication result. Hence the selected
width is 3p+1 digits and we will operate with that width in all cases.

48

Shift1

A

B

C

M

C

×

×±

×

Default Alignment

Shift1

After Selection

Alignment after LZA

Shift1

Case(4) ���� − �	� −
� < ����

Shift1

Case(3) ���� − �	� − � < ���� <= ���� − �	� −
�

Case(1) ���� > ����

Case(2) ���� − �	� − � < ���� <= ����

Add and Round

 Final Result

Shift2

Figure 3.8: Decimal Operating Width Selection

49

3:2 Binary Carry Save Adder

8421 4221

T

M1

M2

1-bit Shift Left

4221 5211

8421 4221

U

8421 4221

H

3:2 Binary Carry Save Adder

8421 4221

OpC

Carry

1-bit Shift Left

4221 5211

4221 8421

4221 8421

SUM

Figure 3.9: Decimal Carry Save Adder

On the other hand, as mentioned before, one of the vectors resulting from
the first 3:2 DCSA (the sum vector M1) is negative and the other is positive. If
we explored the two possibilities of the addend in case of effective addition and
subtraction and the possible carry in at the sign digit, we can prove that, in all cases
one of the resulting two vectors will be positive and the other will be negative.

3.4.2 Case of Binary
Unlike the case of decimal, the default alignment of the addend is not at the right
most of the multiplication result. The default alignment is shown in Figure 3.10.
In the binary data path, we have only two cases for selecting the location of the
MSB in order to reduce the data path width to minimize area and delay.

Case1: Right Shift: In case of right shift (if ExpC < ExpM), the multiplication
result can’t be subnormal as its exponent is larger than ExpC, i.e there is at least a
leading one in the most significant two bits of the multiplication result. Hence the
location of the MSB of the result is at the MSB of the multiplication result i.e at
bit number (3p+1) and the intermediate exponent of the result (ExpRi) is ExpM.

50

Case2: Left Shift: In case of left shift (if ExpC > ExpM) the location of the
MSB of the result is at the MSB of the addend i.e at bit location 4p+2 and the
intermediate exponent of the result (ExpRi) is ExpC + 54.

Special Cases: - The case of left shift by one bit or no shift at all: In that case,
the MSB of the addend is aligned with the MSB of the multiplication result and
huge cancellation can occur if the effective operation is subtraction, so if we treat
it as Case2, we will need 3P bits as the operating width. However, in that case the
MSB of C didn’t Exceed the MSB of M, and it can be treated as Case1. This way
the required width is also 2p+1.

-Case of SubnormalM and ZeroC, in that case and irrespective of the shifting
amount or direction, the MSB is chosen at 4p+2 and the exponent is ExpM + 54 .
This is done to avoid shifting the result to the right after the addition to normalize
the exponent. Then it can be treated like Case2 but with different exponent.

So in All cases the width of the next hardware is limited to 2p+1. Unlike the
case of decimal, where the required operating width is 3p+1, the case that forced us
to work with 3p+1 width in decimal can’t happen in binary, as in case of right shift,
the multiplication result can’t be subnormal so it can’t have any leading zeros.

After selecting the operating width, the three resulting vectors from the mul-
tiplier tree (B1, B2, and B3) as well as the addend are reduced using a 4:2 binary
CSA into only two vectors which will be added using the redundant adder as will
be shown below.

3.4.3 Sign extension of the resulting vectors of the CSA
In cases 3,4 in decimal, and in case 2 in binary, where the location of the MSD is
to the left of the MSD of the multiplication result (and the result from the CSA),
the resulting vectors of the CSA has to be properly sign-extended. As mentioned
before in the case of binary, there is an extra carry inside the sign extension of the
multiplication result that will always propagate to the higher bits as the result of
the multiplication must be positive. The same for decimal, one of the vectors from
the multiplication result has to be negative and the other one is positive, hence a
carry out will occur. This carry out, in both cases, can appear in the CSA stage, or
after the final addition, and in both cases this is not considered as an overflow. If it
didn’t appear in the CSA stage, one of the resulting vectors has to be concatenated
by leading nines (ones) in order to keep proper sign extension. And if this carry
appeared in the CSA stage, the digits to the left of the CSA output are (999...9999)

51

x1.xxxxxxxx….xxxxxxx

1.xxxxxxxx

Default
Alignment

M

C

x1.xxxxxxxx….xxxxxxx

1.xxxxxxxx

M

C

Case 1: Right
Shift Case

106 bits

107 bits

x1.xxxxxxxx….xxxxxxx

1.xxxxxxxx

M

C

Case 2: Left Shift
Case

107 bits

x1.xxxxxxxx….xxxxxxx

1.xxxxxxxx

M

C

Special Case1:
Left shift by one

bit

107 bits

00.xxxxxxxx….xxxxxxx

000….000

M

C

Special Case2:
Subnormal M

and Zero C

107 bits

Selected width

Selected width

Selected width

Selected width

Figure 3.10: Binary Operating Width Selection

52

for proper sign extension, and now this carry is added to these nines making them
all zeros. Hence in case a carry out appeared from the CSA, the resulting vectors
of the CSA are concatenated with a string of leading zeros, and in case there was
no carry from the CSA, one of the resulting vectors is concatenated with a string
of leading nines (ones in case of binary).

3.5 Leading Zeros Anticipation

3.5.1 Decimal LZA
In parallel with the adder, that will be explained in Section 4, we have to anticipate
the leading zeros count in the result from the two output vectors of the DCSA
before adding them. This is done using an LZA as follows:

In general there are two types of LZAs: Exact and Inexact LZAs. Exact LZAs
produce the exact leading zeros count directly, but it takes long delay and big area.
Inexact LZAs produce the correct Leading Zeros Count (LZC) with an error of
one. The inexact LZA requires another stage of correcting this error of one digit
in the anticipation in order to produce the correct leading zeros count. In our work
we used an inexact LZA for both binary and decimal. In binary a correction stage
is used to correct the LZA error. In case of decimal the correction takes huge area
and delay, hence the correction circuit is removed and the error in the anticipation
is handled in the rounding stage.

The LZA consists of two main stages: the preliminary anticipation which an-
ticipates the leading zeros with a possible error of one digit, and the correction
unit that corrects that error. In this design there is no need for the correction stage,
because the decimal rounder can handle this one digit error. That reduces the area
and the delay of the LZA.

Next, the technique for leading zero anticipation in both effective addition and
subtraction operations will be explained.

Since the inputs to the LZA in this design is almost in the same format as the
inputs to to LZA in [8], we will use the same LZA used in [8].

3.5.1.1 Inputs to the LZA

The inputs to the LZA stage are the most significant 2p+1 digits of the two result-
ing vectors of the DCSA. As stated before, one of the two vectors is positive and
the other one is negative.

53

In case of effective subtraction, the addend is negated in the 4221 format but
the (+1) increment is not added yet, so the negative vector can be considered in 9’s
complement format.

In case of effective addition, the addend is positive, and the negative vector
comes from the multiplier tree which is in the correct 10’s complement format.
and in this case there is no need for the (+1) increment.

3.5.1.2 Effective Subtraction Case

In effective subtraction case, the preliminary leading zero anticipator proposed
in [17] is used with small modifications as explained below: The inputs to the LZA
in this case are A and B (the nine’s complement of B), and we want to anticipate the
leading zeros in (A−B). To anticipate the leading zeros we apply the following
steps:

1) Encode the two operands digit wisely to the following signals (g9, g2, g1,
zero, s1, s2, s9). The meaning of each of these signals is shown in Table 3.9, where
Ai is the ith digit in operand A, and Bi is the ith digit in operand B.

Signal Condition Signal Condition
g9i Ai = 9, Bi = 0 s9i Ai = 0, Bi = 9
g2i Ai ≥ Bi +2 s2i Ai ≤ Bi−2
g1i Ai = Bi +1 s1i Ai = Bi−1

zeroi Ai = Bi

Table 3.9: Signals used for Leading Zeros Anticipation

2) Explore different digit pattern sets and get leading zero count of each pat-
tern.

3) Extract a binary string P that has leading zeros equivalent to the leading
zeros count in the result of (A−B) with an error of one digit. Note that the string
P will consist of 33 bits.

4) Use an LZD detect the leading zeros in the binary string (P), we get the
leading zeros count as follows (where LZR is the correct leading zeros count):

LZA{A,B}= PLZR{A−B}= LZR or LZR−1 (3.13)

3.5.1.3 Effective Addition Case

In case of effective addition, the previously proposed decimal leading zero antici-
pator in [17] is not the best design for our case as will be discussed below.

54

In the design proposed in [17] the preliminary leading zero anticipation in
case of addition is calculated as PLZRe f f add = Min{LZCOp1, LZCOp2} where
LZCOp1, LCZOp2 are the leading zero count of the added operands. This gives
the leading zeros count with a possible error of (+1) digit. Although the leading
zeros count of the operands of the LZA are not known up to this stage and has
to be calculated in the critical path, This can be avoided by using the LZC of the
initial operands that needs to be added. The first operand is the addend , its LZC
can be detected in parallel with the Multiplier tree and it doesn’t add any extra
delay in the critical path. The other operand is the Multiplication result (M). It
can be anticipated with a possible error of (-1) digit error as follows : PLZM =

LZCA+LZCB , for M = A×B. If we used this anticipation to get the PLZC of
the result such that PLZRe f f add = Min{PLZCM, LZCC}, this will result in one
of the three possibilities: PLZRe f f add = LZCR− 1 or LZCR or LZCR+ 1. This
will complicate the decimal rounder since we will have three possible positions
for rounding.

Thus the proposed technique in [17] is not suitable for this architecture and the
problem of the leading zero anticipation in case of effective addition is reformu-
lated to overcome this issue. As previously stated, in case of effective addition, one
of the two operands is positive and the other is negative in the 10’s complement
format. Using this fact, the problem can be reformulated as follows:

LZA{A,B+1}= LZA{A,B+1}

= PLZCR{(A− (B+1))}= PLZCR{(A−1)−B)}

Hence the problem of getting the PLZC of (A,B) in case of effective addition
is reformulated to be an LZC problem in case of effective subtraction for (A-1,B).
The effect of the (-1) is examined in the different digit patterns in order to get the
correct PLZC, and it’s been proven in [8] that the same hardware as the case of
effective subtraction is needed in this case to produce either the correct LZC or the
correct LZC-1, and as in the case of effective subtraction, this (-1) can be tolerated
in the rounding stage.

3.5.1.4 Leading Zeros Detector

The LZD used here is the one proposed in [18].
The main block in this LZD tree is the LZD of 2-bit string. This block takes

two bits B1, B0 where B1 is the most significant bit and B0 is the least significant

55

Generation of (g9, g2, g1, zero, s1, s2, s9)

A

_

B
131-bits

(2p+1) digits
131-bits

(2p+1) digits

33-bits for each signal

(2p+1)
(g9, g2, g1, zero, s1, s2, s9)

Generation of Binary String (P)

Leading Zero Detection

33-bits for each signal

(2p+1)
P

PLZC 6-bits

Figure 3.11: LZA block diagram

L
Z

D
 4

-b
it

s

LZD 2-bits LZD 2-bits

B3 B2 B1 B0

v2 P2 v1 P1L
Z

D

Combiner of a LZD-4bits

P-2bitsv

v2 P2 v1 P1

v2
P2

v1P1

MUX

1 0

MUX

P-2bits v

Figure 3.12: (a)LZD for 4-bit Binary String (b)Internal Structure of LZD4

one. Then, it generates two signals the valid signal (v) and the LZC signal (P)
such that:

v = B0 |B1 (3.14)

P = B1 (3.15)

The valid signal indicates if the two bits are zeros or not and the leading zero
count signal ’P’ indicates if there is a leading zero bit or not. Two of these blocks
can be used to detect the LZC signal in a four bit binary string such as Figure 3.12.
As shown in Figure 3.12 (b), the two bit signal (P) counts the number of leading
zeros in the binary string (B3B2B1B0) and the signal v = 0 if all the bits in the
string are zeros.

56

32-bits input

P-5bits v

Figure 3.13: Leading Zero Detector of 32-bit Binary String

This can be generalized for any number of bits. Hence, a 32 LZD can be
implemented as 5 levels starting with 16 LZDs of 2-bits as shown in Figure 3.13.

3.5.2 Binary Leading Zeros Anticipation
3.5.2.1 Inexact LZA

Same as the case of decimal, we have to anticipate the leading zeros in the result
from the two resulting vectors of the CSA in order to perform proper normalization
shift of the intermediate result after the addition. Since the intermediate result
may be positive or negative, we have to count the leading zeros or the leading
ones depending on the sign of the intermediate result. The Inexact LZA proposed
in [19] is used. The main idea is based on a property that if two normalized vectors
are added then a string of leading zeros will be found if and only if this pattern
is detected starting from the MSB: pigk j In that case the leading zeros count is
i+ j+1, where i and j are the longest values that this formula holds for. In order
to detect such a pattern a string x is generated as shown in Equations 3.16, and
3.17. The leading zeros count in the string x is one less than the number of leading
zeros in the result, and is detected using a leading zeros detector as explained
below.

x0 = p0 (3.16)

xi = pi ki−1 , i > 0 (3.17)

57

3.5.2.2 Leading Zeros Detector

As will be shown later, the result of the addition has to be shifted while in the
redundant format. In the redundant system used in this work, each redundant
digit (4-bits) contains the information of one octal digit (3-bits). So the minimum
shifting step is one redundant digit, which is three bits. Hence we have to generate
the shift amount (the LZC) as a multiple of 3. Usually the LZDs generate the
LZC as a binary string. Hence previously published LZDs are not suitable for this
design and have to be modified.

A new LZD is proposed here, the main advantage of this LZD is that its output
is in base-3 format, since the weights of the base-3 digits (3,9,27,81,... etc.) are
multiples of 3 then there will be no problem while shifting the redundant result.
The only problem is with the least significant base-3 digit, which is of weight 1.
But this problem is solved in the rounding block as will be explained in Section
4.8.1.

3.5.2.3 Base-3 Leading Zero Detector

First the 2P +1 (107) bits, are divided into 36 groups of 3 bits each. The leading
zeros of each group is calculated using a small 3-bit LZD cell.

Basic Base-3 LZD cell: The Basic LZD cell generates the LZC of its 3-bit input
as well as a valid signal that is set if the input is not all zeros indicating that the
string of zeros has been terminated inside these bits and the LZC of the next blocks
(the ones to the right) is not needed to determine the LZC of the input string. The
truth table of the basic cell is shown in Table 3.10,where v is the valid signal, and
X2,X1,X0 are the input three bits. A simple 2-gate delay logic is used to determine
the 2-bit (one base-3 digit) LZC and the valid signal for each group of three bits
as shown in Equation 3.18.

LZC[0] = X1 X2

LZC[1] = X1 X2

valid = X0+X1+X2 (3.18)

Logarithmic Tree: The Next step is to take the results of the Basic 3-bit LZC
cells and count the LZC in the input string. This is done by grouping the results of

58

X2 X1 X0 LZC v
0 0 0 xx 0
0 0 1 10 1
0 1 0 01 1
0 1 1 01 1
1 0 0 00 1
1 0 1 00 1
1 1 0 00 1
1 1 1 00 1

Table 3.10: Truth Table for the Base-3 LZD basic Cell

each three cells together and find the LZC of this 9-bit string, which can be repre-
sented in two base-3 digits, and generate these digits as well as a valid signal if any
of the 9 bits is non-zeros. The design equations for this tree are shown in Equa-
tions 3.19,3.20, and 3.21. This step is repeated again using the same equations to
find the LZC in each consecutive 27-bit strings.

LZCi =

LZC2 i f (v2 = 1)
LZC1 i f (v2 = 0) and (v1 = 1)
LZC0 f (v2 = 0) and (v1 = 0)

(3.19)

LZC = {v1+ v2,v1 v2,LZCi} (3.20)

valid = v0+ v1+ v2 (3.21)

Instead of grouping three 27-bits LZC to form an 81-bits LZC, in the final step
four 27-bits LZCs are combined to form a 108-bits LZC according to the following
equations:

LZCi =

LZC3 i f (v3 = 1)
LZC2 i f (v3 = 0) and (v2 = 1)
LZC1 f (v3 = 0) and (v2 = 0) and (v1 = 1)
LZC0 f (v3 = 0) and (v2 = 0) and (v1 = 0)

(3.22)

LZC f = {v1+ v2+ v3,v1 v2 v3,v2 v3,LZCi} (3.23)

where LZC3, LZC2, LZC1, LZC0 are the leading zeros from each 27-bits
block, LZCf is the final LZC count, and v3,v2,v1,v0 are the corresponding valid
bits.

59

Correction Network: Since the least significant base-3 digit of the LZC is not
a multiple of 3, then there is three different locations of rounding already, as will
be explained later. So using just the inexact LZA will add more complications to
the rounding module. Hence correction stage is needed.

As mentioned in [19], a (+1) correction is needed if and only if there was no
carry to the right most location of string of zeros in x. The idea is to determine
if there is a carry resulting from the two added vectors at the leading one loca-
tion in x. In order to determine that, a 107 bits carry look-ahead network is used
to get the carry from each bit location. Then we define the vector Co that con-
tains the 107 carries from each bit location. and we define the vector x̂, where
x̂i = xi xi−1 + xi−2 +x0. x̂ contains all zeros except at the location of the
leading 1 of x. Finally the correction is needed if the vector corr =Co x̂ is all zeros.
It has to be pointed out that the delay of the correction tree is less than the delay
of the redundant adder, hence this carry look ahead network doesn’t add any extra
delay in the critical path.

3.5.2.4 Leading Ones Anticipator

In case of negative result, the leading ones are needed instead of the leading zeros.
To find the leading ones count (LOC), the one’s complement of the two input
vectors is obtained and the same LZA explained above is used to find the LZC of
the inverted inputs. Note that LOC(A,B) = LZC(A,B). This can be easily proven
if we can prove the property that if all of the inputs of a full adder is inverted, the
output sum and carry will be inverted as well. If this is correct, then the leading
ones in A+B will be leading zeros in A+B. The proof of this property is shown
below:

if (a+b+Cin = S+2Cout)
then
(1-a) + (1-b) + (1-Cin) = 3 - (a+b+Cin)

= 3 - (S + 2Cout) = (1-S) + 2(1-Cout).

Hence inverting the inputs of the full adder, will result in inverted outputs.

60

zero(i+1)
Gr(i+1)

Gr(i) zero(i)

Figure 3.14: Intermediate Sign Detector For 16-Digit Decimal Operands

3.6 Intermediate Sign detection

3.6.1 Decimal Intermediate Sign Detection
We propose a simple sign detection tree that operates in parallel to the preliminary
anticipation. We use the zeroi and Gri = g1i |g2i signals generated in the LZA
to detect the intermediate sign in case of effective subtraction. Where Gri = 1
indicates that digit Ai is greater than digit Bi. This vector Gr and the zero vector
are used as inputs to the sign detection tree shown in Figure 3.14.

3.6.2 Binary Intermediate Sign Detection
In case of effective addition, the intermediate sign is always positive. However,
in the case of effective subtraction, the intermediate sign depends on whether C is
larger than M or not. In that case we are performing two’s complement addition,
hence the intermediate result is positive if there is a carry out from the addition
and it’s negative it there is no carry out. The carry out is detected in parallel with
the LZA using a look-ahead carry tree.

Note that we have the addend in the one’s complement format so far as the
increment is not yet added. However, this increment is ready at this stage, and is
taken into consideration as a carry-in to the look-ahead carry network. It has to
be pointed out that the delay of this carry look ahead tree is smaller than the delay
of the adder, and the intermediate sign is ready before the addition result, where it

61

is needed, hence it doesn’t add any extra delay in the critical path. Also it’s not a
complete adder, so the area is not that huge either.

3.7 Final Alignment

3.7.1 Final Alignment Control
3.7.1.1 Case of Decimal

After the PLZC is calculated, it is used to determine the required final shift of the
two operands. The shifting at the default data path will always be to the left. The
shifting will take place after the addition as will be shown below, where cases 1 to
4 are the cases explained in Table 3.8.

Shi f t2 =

Min{PLZC,ExpDi f f} case(1)

Min{PLZC, p+1} case(2)
PLZC case(3,4)

(3.24)

Finally, the 3p+1 digits are sent to the redundant adder to be added and
rounded, and the final result is obtained.

It is important to note that, the underflow case limits the value of final shift or
shift the operands to the right instead. However, it is considered as an exceptional
data path case.

3.7.1.2 Case of Binary

After obtaining the LZC using the LZA or the LOA explained above, the final
normalization shift amount is obtained and the result is shifted after the addition.
It has to be said here that the shifting is always to the left in all cases, including in
the case of subnormalM and ZeroC. As in the case of submormalM and ZeroC the
location of the MSB is chosen to the far left (4P+2) hence the exponent already is
biased by 54, so we can shift the result to the left up to 54 bits without reaching
the minimum exponent. Note that we can’t need more left shift than 54 as in that
case the result should be an inexact zero.

The only limit on the shifting amount is the underflow. Underflow will occur
if the biased exponent of the result reaches 0 (ExpR = 0), and since ExpR =

ExpRi− normshi f ting, Hence the maximum normalization shifting amount is
reached when 0 < ExpRi−normshi f ting , i.e normshi f ting = ExpRi−1. Hence
the normalization shifting amount is obtained as shown in Equation :

62

normshi f ting = Min{LZC , ExpRi−1}

63

Chapter 4

Redundant Addition,
Normalization, and
Rounding

The next step is to add the two vectors resulting from the selection stage together
to get the un-normalized sum. To be able to use the same adder for both binary
and decimal, both binary and decimal are first converted to the same redundant
format. The sum is then obtained by adding these two vectors.

The redundant system proposed in [16] is used. This redundant system uses
the digit-set [-6, 6] encoded in the two’s complement format instead of the conven-
tional representation ([0,9] in the case of decimal, and [0,7] in the case of octal)
which does not allow for a carry-free addition/subtraction.

4.1 Conversion from Binary/Decimal to Re-
dundant

In case of decimal, each conventional decimal digit is converted to the redundant
digit set [-6,6]. In case of binary, each three bits are grouped together to form an
octal digit [0,7], then this octal digit is converted to the redundant format [-6,6].

The conversion procedure is shown below:

if (inputi > 5)

64

Input output OTD
0000 0000(0) 0
0001 0001(1) 0
0010 0010(2) 0
0011 0011(3) 0
0100 0100(4) 0
0101 0101(5) 0
0110 1100(-4) 1
0111 1101(-3) 1
1000 1110(-2) 1
1001 1111(-1) 1

Table 4.1: Conversion from decimal to redundant

{

INTi = inputi - radix;

OTDi = 1;

}

else

{

INTi = inputi ;

OTDi = 0;

}

outputi = INTi+ ITDi;

where ITDi = OTDi−1, inputi is the input digit at location i, INTi is the inter-
mediate sum, radix = 10 for decimal, and 8 for octal, OTD, and ITD are the output
and input transfer digits respectively.

65

Input output OTD
0000 0000(0) 0
0001 0001(1) 0
0010 0010(2) 0
0011 0011(3) 0
0100 0100(4) 0
0101 0101(5) 0
0110 1110(-2) 1
0111 1111(-1) 1

Table 4.2: Conversion from octal to redundant

4.2 Redundant Addition
After the two vectors are converted to the redundant representation, they are ready
to be added using the redundant adder. The redundant adder used is the one
presented in [16], but with small modification to enhance the delay of the bi-
nary/decimal adder cell.

The adder takes two inputs in the redundant format shown above, adds them
and puts the result in the same redundant format. First the two digits are added
together using a simple 4-bit carry look-ahead adder to get the intermediate sum.
Instead of waiting until the intermediate sum is ready to calculate the OTD from
the intermediate sum, the OTD is accurately estimated from the two inputs using
a 8-input combinational circuit in parallel with the 4-bit adder. After the OTD is
ready, which should be ready a little before the addition result, a correction digit
is formed, this correction digit contains the radix addition or subtraction, and the
value of the ITD as shown in the algorithm below. Finally the correction digit is
added to the intermediate sum to get the final redundant result. The algorithm is
shown below:

if (sumi > 5)

{

INTi = sumi - radix;

OTDi = 1;

}

if (sumi < -5)

66

{

INTi = sumi + radix;

OTDi = -1;

}

else

{

INTi = inputi ;

OTDi = 0;

}

final_sumi = INTi + ITDi;

where ITDi = OTDi−1, inputi is the input digit at location i, INTi the interme-
diate sum, radix = 10 for decimal, and 8 for octal, OTD, and ITD are the output
and input transfer digits respectively.

The OTD is represented in two bits: otdn, and otdp. If the transfer digit is
negative, otdn is raised. And if it’s positive, otdp is raised. Hence the numerical
value of the transfer digit is OTD = otdp - otdn. Also the numerical value of the
input transfer digit is : ITD = itdp - itdn.

4.2.1 Correction Digit Generation
The different values of correction digits are studied and limited to four possibilities
I1,I2,I3, and I4.

In order to calculate the values of these vectors, we first define the vector O,
where O = {itdn . itd p, itdn . itd p, itdn . itd p, itdn⊕ itd p }. The four vectors are
defined as follows:

I1 = O.
I2 = {0,1,itd p . itdn,itdn⊕ itd p}.
I3 = {O[3], O[2:0]}.

67

4-bits binary adder

X Y

Transfer digit
generation

otdp

otdn

bd

Selection generation 4:1 Mux

4-bits binary adder

itdp

itdn
Correction
generation

I1 I2 I3 I4

In
term

ed
iate_su

m

Final_sum

Figure 4.1: Redundant Adder Cell

I4 = {1,0,itd p . itdn,itdn⊕ itd p}.
The correction digit is chosen as one of the above four possibilities according

to the two-bit signal selection, where selection = {otd p . otdn + bd . otdn . otd p,
bd . (otdn⊕ otd p)}. The selection is done using a four to one Mux as shown in
Figure 4.1.

4.2.2 Adder Carry in
The transfer to the least significant digit of the adder is assumed to be zero, as
there is no digits to the right of that location that can produce an output transfer
digit. This input transfer digit can be used to inject a carry-in to the adder without
any overhead in the delay or the area.

In case 2 of binary selection and case 4 in decimal selection, the least signif-
icant bit of the selected width lies in the middle of the multiplication result. It’s
assumed that there is no carry to the right location of the selected width as the
least significant part of multiplication result, the part which lies outside the se-
lected width, should be added to a string of zeros because the addend is shifted
to the left of the multiplication result. Unfortunately, a carry to the most signifi-
cant half of the multiplication result may occur (while adding the three resulting

68

vectors of the multiplication result to each other) due to the used sign extension in
the multiplier tree. This carry is calculated in parallel with the second stage of the
CSA and is injected as a carry-in to the redundant adder.

4.3 Result Complementation
After obtaining the redundant sum from the adder, it may need to be comple-
mented if the intermediate sign is negative. The complementation is easily done
without any carry propagation, since each digit can be positive or negative, the 2’s
complement of each digit is obtained separately and in parallel with each other.

4.4 Size of the redundant vectors
To determine the width of the redundant vectors, we have to know the width of the
inputs to the adder.

As mentioned above, the width of the decimal vectors after selection stage is
3p+1, which is 49 digits, after conversion to redundant, we will have 50 digits, as
we may have OTD from the final digit.

In case of binary, the width is 107 bits, which is cascaded with one zero to the
left to form 36 octal digits, which will be 37 redundant digits.

So to work for binary and decimal, the width of the redundant operands are
selected to be 50, and 13 zero digits are concatenated to the left of binary operands.

4.5 Normalization Shifting
As mentioned above, the result from the adder may contain some leading zeros
that has to be shifted out. The result has to be normalized (shifted to the left) by
the leading zeros count calculated from the LZA, unless the preferred exponent is
reached in decimal, or the exponent becomes subnormal in binary. The calculation
of the shift amount is explained in Section 3.7.1. A simple barrel left shifter is used
to perform the coarse normalization of the result.

4.5.1 Binary Shifting
As mentioned above, each four bits (one digit) of the redundant sum contains the
information of three bits of the binary output. This will cause a problem while

69

shifting if the shift amount is in binary format. For example, if the shift amount
is (1000), so we have to shift the result by eight binary bits, to know how much
digits should be shifted we have to divide the number by 3, hence the result has
to be shifted to the left by two digits, and two bits. Since the division by 3 is a
complicated operation, we have to find another way to solve this problem. Instead
of changing the way we perform the shift, we can change the format of the shift
amount, in order to represent it as a multiple of 3. The chosen format is to represent
it as a base-3 number. Since the shifting amount is limited to the width of the
operand, we need only five base-3 digits to represent the shifting amount, with the
most significant digit (the one with the weight 81) can’t exceed 1, as the maximum
shifting amount can’t be more than 107 bits. Now we have five base-3 digits with
weights of (81,27,9,3,1) and any multiple of them, is divisible by 3, except the least
significant digit. Hence the shifting process is divided into two stages: coarse and
fine shifting as explained below.

Coarse shifting Coarse shifting is done using the most significant four digits of
the shifting amount. It takes place right after the complementation stage after the
redundant addition. It’s done while the result is still in the redundant format. The
problem of the shifting amount not being divisible by 3 discussed above will not
happen in this case, because the shifting amount is represented as multiples of 3
(in base-3 format). Table 4.3 shows how the shifting amount is calculated.

Fine Shifting Fine shifting is done using the least significant digit of the base-3
shifting amount. It has to be done after converting the result to binary, i.e after
the rounding. Which implies that rounding has to be done while the result could
be shifted for one or two bits to the left, or not shifted at all. This complicates
the rounding stage as we have three different locations of rounding. However, this
problem doesn’t add extra delay in the critical path and rounding is done in parallel
with the conversion to binary with no extra delay as will be shown in Section 4.8.1.

4.5.2 Decimal Shifting
In case of decimal, we don’t have the problem we faced in binary because each
decimal digit is encoded in one redundant digit. However, the decimal LZA
doesn’t always give the correct shifting amount, the actual shifting amount may
be one larger than the PLZC obtained from the decimal LZA. The correction of

70

S4 S3 S2 S1 shifting amount (binary bits) shifting amount (redundant digits)
00 00 00 00 0 0
00 00 00 01 3 1
00 00 00 10 6 2
00 00 01 00 9 3
00 00 01 01 12 4
00 00 01 10 15 5
00 00 10 00 18 6
00 00 10 01 21 7
00 00 10 10 24 8
00 01 00 00 27 9
00 01 00 01 30 10
00 01 00 10 33 11
00 01 01 00 36 12
00 01 01 01 39 13
00 01 01 10 42 14
00 01 10 00 45 15
00 01 10 01 48 16
00 01 10 10 51 17
00 10 00 00 54 18
00 10 00 01 57 19
00 10 00 10 60 20
00 10 01 00 63 21
00 10 01 01 66 22
00 10 01 10 69 23
00 10 10 00 72 24
00 10 10 01 75 25
00 10 10 10 78 26
01 00 00 00 81 27
01 00 00 01 84 28
01 00 00 10 87 29
01 00 01 00 90 30
01 00 01 01 93 31
01 00 01 10 96 32
01 00 10 00 99 33
01 00 10 01 102 34
01 00 10 10 105 35
01 01 00 00 108 36

Table 4.3: Calculating the redundant shifting amount from base-3 shifting amount

71

this error in the LZA shift amount, can be done by checking the MSD after the con-
version to decimal, if it’s zero then it has to be shifted one digit more to the left,
unless the preferred exponent is reached. And since we also don’t exactly know
the shifting amount before rounding, there is two different locations of rounding.
The same solution applied to the binary is applied in decimal, and rounding is
done in parallel with the conversion to decimal and doesn’t add extra delay in the
critical path.

4.6 Sticky Generation
There are three parts that can contribute to the sticky:

1) The left-out bits in the selection stage (selection_sticky): The bits to the
right of the selected bits in the selection stage explained in Section 3.4.

2) In case decimal, if underflow occurs, and right shifting is needed
(dec_underflow_sticky): The bits that has been shifted out of to the right of the
result.

3) The redundant sticky: The redundant digits that doesn’t contribute to the
final result, i.e. the digits to the right of the least significant redundant digit used
in the rounding explained in Section 4.6.1.

The first two contributors are unsigned, so we need to know only if they exist
or not. On the other hand, since the redundant sticky is signed, and may be nega-
tive, it can generate a borrow to the higher significant digits which may affect the
rounding decision. So in case of redundant sticky we need to know if there is a
sticky or not, and if the sticky exist what its sign is.

Hence, the sticky is represented in two bits: sticky, and sticky_effective_sign.
The equations of these two bits are shown below:

sticky = redundant−sticky+ selection−sticky+dec−under f low−sticky

sticky−e f f ective−sign = redundant−sticky−sign

+ redundant−sticky . IntSign . selection−sticky

Note that the sticky_effective_sign is not the actual sticky sign, it’s the sign
relative to the IntSign. In other words, if the sticky_effective_sign is zero this

72

means that this sticky (if exists) will be added to the absolute value of the result,
and if sticky_effective_sign was one, it means that the sticky (it has to be existent
in that case) will be subtracted from the absolute value of the result. And since
the dec_underflow_sticky has always a sign that is similar to the result (as it is
obtained after the complementation of the intermediate result), its contribution
to the sticky_effective_sign will always be positive. Now, to calculate these two
signals we have to define the sticky first, then find if it exists and detect its sign
using a sticky sign detector as will be shown below.

4.6.1 Separating the Sticky
As mentioned above, the result is represented in 50 redundant digits.

In case of decimal, the redundant result contains one extra digit due to a pos-
sible OTD from the MSD of the decimal input, then 16 digits which are the sig-
nificand digits, then a guard digit as we may have one extra left shift, and finally
the round digit. So the most significant 19 redundant digits may contribute to the
result and the rounding decision. the remaining 31 digits are the sticky digits that
we need to find out if they are all zeros or not, and to detect their effective sign.

In binary, there is 13 zero digits, then the extra redundant digit due to the OTD
from the last octal digit, followed by 18 digits that carries the 53 significant bits
of the results. then we need two guard bits, as we might have to shift the result by
1 or 2 bits according to the fine_shift amount, and a round bit, hence we need an
extra digit (three bits). which makes the least significant 17 digits the sticky digits.

4.6.2 Sticky Sign Detector
For the sticky sign detector to work for both binary and decimal, it is designed to
accept 31 digits of sticky. The output of this block is two bits: sticky which equals
1 if there is any non-zero redundant digit in the sticky, and sticky−e f f ective−sign
which is raised if the sticky exists, and its sign is negative.

In order to generate these two bits, two signals (sign, and zero) are generated
from each redundant digit. sign signal is 1 if this redundant digit is negative, and
zero signal is 1 if the digit is zero. These two signals are calculated according to
the following equations:

73

signi = Xi[3]

zeroi = Xi[3]+Xi[2]+Xi[1]+Xi[0]

where Xi[j] is the jth bit of the ithredundant digit.
It may be clear now that the problem of calculating sticky−e f f ective−sign

is exactly the problem of calculating the carry out of a 31-bit binary adder. A
carry look-ahead tree is used to determine the final sign, using the zeroi signal
as a propagate signal, and signi as the generate signal. Also the sticky signal is
calculated from the zeroi signals as follows:

sticky = zero0 . zero1...........zero30

It has to be mentioned here that the part of calculating the sign of the sticky is
done in parallel with the first part of the rounder where the sticky effective sign is
not needed. The two paths has almost the same delay, so the choice of the carry
look ahead tree doesn’t add any delay overhead to the critical path.

4.7 Conversion Back to Binary/Decimal
Conversion to Binary/Decimal is the exact opposite of conversion to redundant.
But it includes carry propagation.

4.7.1 Previous technique
The previously proposed techniques was to separate the positive digits in a vector,
and the negative digits in a separate vectors. Then add these two vectors using a
carry propagate adder. The separation takes a MUX delay, and the carry propagate
adder needs correction if its result is negative.

In this work we propose a new simpler conversion technique as shown in the
next section.

4.7.1.1 Our proposed technique

To derive the new technique, we can start the way we started in the conversion to
redundant process. If the redundant digit is positive or zero, then it’s representable
in the non-redundant format, hence it doesn’t need any correction. Otherwise,

74

if it’s negative, it needs to be corrected by adding the radix (10 if we convert to
decimal, and 8 of we convert to octal (binary)) and a borrow should be “generated”
to the next digit. This borrow will only affect the higher significant digit, unless
this higher significant digit is zero. In that case the borrow is “propagated” to the
next digit. We can easily see the similarity between our case of calculating the
borrow-in of each redundant digit, and the case of calculating the carry-in in case
of performing a simple binary addition. Hence a look-ahead carry tree is used to
quickly calculate the borrow-in of each digit. The propagate signal of each digit
is raised if this digit is zero with a simple four-input NOR gate. and the generate
signal is raised if its sign bit = 1 with no gate delays.

4.7.2 Converting back to Decimal
In case of decimal, and as mentioned in Section 4.6.1 the most significant redun-
dant digit (digit 50) is discarded, the next 16 redundant digits (49-34) contain the
result significand and the digit (33) is the rounding digit if there is no error in the
anticipation of leading zeros. In case there was an error in the anticipation, one
more digit (digit 49) will be discarded, and the significand will be in the 16 digits
following the two most significant digits (digits 48-33) and the rounding digit is
digit (32).

Since we don’t know yet whether we have an error in the anticipation or not,
digits 34,33, and 32 are sent to the decimal rounder, in order to perform rounding
in the two possible locations simultaneously.

The remaining 15 significand digits (digits 49-35) are converted back to dec-
imal using the redundant to decimal/binary converter explained above. Also we
don’t know the value of the borrow to the right to these 15 digits, which depends
on the rounding decision as will be shown in Section 4.8.2, so the conversion pro-
cess is done using the concept of carry select; these 15 digits are converted once
assuming input borrow = 0, and in parallel these 15 digits are converted assuming
input borrow = 1. Once the rounding decision is made, which is done in parallel
with the conversion, we can select the correct result using the correct borrow from
the rounder.

4.7.3 Converting back to Binary
In case of binary, and as mentioned in Section 4.6.1 The most significant 13 redun-
dant digits (50-38) are all zeros, the next redundant digit (digit 37) is discarded,

75

Rounder

Converter from
redundant to

binary/decimal

Converter from
redundant to

binary/decimal

borrow_in = 1 borrow_in = 0

2:1 Mux
Correct_borrow_in

ls
b

s

M
sb

s

St
ic

ky

St
_e

ff
_s

ig
n

L,
G

,R

Figure 4.2: Rounding and Conversion Block Diagram

and the next 18 digits (36-19) contains the result significand and the digit (18)
contains the guard and round bits for different values of the fine shift.

Since we can’t perform the fine shift yet, digits 19, and 18 are sent to the
binary rounder, in order to perform rounding in the three possible bit locations
simultaneously.

The remaining 17 redundant digits that contain all of the binary significand ex-
cept the least significant three, four, or five bits depending on the fine shift amount
(digits 36-20) are converted back to binary using the redundant to decimal/binary
converter explained above. Also we don’t know the value of the borrow to the
right to these 17 digits, which depends on the rounding decision as will be shown
in Section 4.8.1, so the conversion process is also done using the concept of carry
select; these 17 digits are converted once assuming input borrow = 0, and in par-
allel these digits are converted assuming input borrow = 1. Once the rounding
decision is made, which is done in parallel with the conversion, we can select the
correct result using the correct borrow from the rounder.

76

4.8 Rounding
Rounding is very critical for both accuracy, and correctness of the design, and also
for the total delay. It can be done after converting the number to the non-redundant
format, but in that case we will add a logarithmic carry propagation delay in the
critical path. Or it can be done in parallel with the conversion, this way we remove
the rounding delay completely from the critical path. In our design, rounding is
done in parallel with the conversion for both binary and decimal.

Rounding while in the redundant format is one of the big challenges of using
a redundant format. In the next three sections, we will present how the rounding
is done with no overhead in the delay, although we don’t actually know the exact
location of the rounding yet.

4.8.1 Rounding in binary
As mentioned before, in case of binary, two redundant digits are sent to the binary
rounder. First these two digits are converted to binary using a redundant to binary
converter to get six bits (lsbs[5:0]), as well as an initial borrow signal f bout−local.
This is not the final borrow out signal that is used to choose between the results of
the two redundant to binary converters mentioned above, as the rounding decision
may generate a carry out, which cancels the f bout−local signal. Also the rounding
increment may be negative as will be shown below, and generate a borrow out
signal even if f bout−local was zero.

In order to correctly round the result, we have to define these variables and
find their values:

1) LSB: is the least significant bit of the result, it’s needed in the rounding to
nearest, ties to even.

2) RB: it’s the bit in the right to the LSB, it determines whether the value of
the bits right to the LSB is smaller that half LSB, or not.

3) Sticky: if there is any non-zero bit to the right of the rounding bit, this
should be raised indicating that this is not a TIE case.

4) sticky_effective_sign: the effective sign of the sticky to the right of the
rounding bit.

5) Sign: the sign of the number is needed in the rounding towards positive, or
negative infinity.

6) rounding−mode: three bits that determines the rounding direction. Our
design supports the five rounding directions specified in the IEEE-754 standard,

77

rounding_mode rounding direction
000 Round to nearest, Ties to even
001 Round away from zero
010 Round towards positive infinity
011 Round towards negative infinity
100 Round towards zero
101 Round to nearest, Ties away from zero
110 Round to nearest, Ties towards zero

Table 4.4: supported rounding directions

fine shift 00 01 10
LSB lsbs[3] lsbs[2] lsbs[1]
RB lsbs[2] lsbs[1] lsbs[0]

sticky stin + lsbs[1] + lsbs[0] stin + lsbs[0] stin
sticky_effective_sign lsbs[1]+ lsbs[0] . st_sign lsbs[0] . st_sign st_sign

Sign Sign Sign Sign

Table 4.5: Values of the parameters needed for rounding for each value of fine
shift

as well as two extra rounding directions. The supported rounding directions are
shown in Table 4.4

Now we have to define these bits for each value of the fine shift. This is shown
in Table 4.5. Where stin is the input sticky which is the sticky to the right of the
converted two redundant digit, i.e. the value of the sticky calculated by the sticky
sign detector. And st_sign is the sticky effective sign also to the right of these two
digits, i.e. the one calculated by the sticky sign detector.

After obtaining the values of LSB, RB, sticky, sticky_effective_sign, and Sign
they are sent to the rounding cell to take the rounding decision and generate the
incp, and incn signals, which are the positive and negative increments respectively.

In order to save time from the critical path, we don’t wait for the values of
incp and incn to be calculated, we start preparing the result in each case. Two
vectors are prepared in parallel with the rounding cell, lsbs_p and lsbs_n. Where
lsbs_p = lsbs[5:i] + 1, and lsbs_n = lsbs[5:i] -1. where i=3-final_shift. Carry look-
ahead adder is used to perform these two additions in parallel with the rounding
cell. Once the rounding cell has made the decision the correct LSBs can be chosen
according to the following equation:

lsbs[5 : i] =

lsbs−p i f incp = 1
lsbs−n i f incn = 1

lsbs[5 : i] i f incp = incn = 0

78

The final borrow signal is calculated as:
f bout = f bout−local . cout + lsbs[i−1]+ lsbs[i−2]...lsbs[0] . incn
Where cout is the carry out from the carry look-ahead adder.

4.8.2 Rounding in decimal
As mentioned before, in case of decimal, three redundant digits are sent to the
decimal rounder. First these three digits are converted to decimal using a redundant
to decimal converter to get the corresponding three decimal digits: LSD,GD, and
RD, as well as an initial borrow signal f bout−local. As in the case of binary
rounding, this is not the final borrow out signal that is used to choose between
the result of the two redundant to decimal converters mentioned earlier, as the
rounding decision may generate a carry out, which cancels the f bout−local signal.
Also the rounding increment may be negative as will be shown below, and generate
a borrow out signal even if f bout−local was zero.

In order to use the same rounding cell used in binary, we have to correctly
map the decimal parameters to the inputs of the rounding cell. In decimal we have
only two possible locations of rounding, since the LZA can give the leading zeros
count with an error of one. The signals sent to the rounding cell for both cases of
shift are shown in Table 4.6. The extra shift can be determined by checking the
MSD of the resulting number, and if this MSD = 0 we have to shift the result one
digit to the left.

In binary, the RB is raised if the bits to the right of the LSB are half, or more.
The sticky bit is raised if the bits to the right of the LSB are either more than
half, or nonzero and less than a half. In order to correctly fit decimal to the binary
rounding cell, three signals are generated for each of the GD, and the RD. These
signals are notequalto f ive, greaterthanorequalto f ive, and nonzero, indicating if
the RD, or the GD are not equal to exactly five (half), greater than or equal to five
(more than a half), and if they are not zero. The use of these signals to generate
the rounding cell parameters are shown in table 4.6.

The rest of the rounder is the same as the binary rounder. In parallel with the
rounding cell, two BCD adders are generating the correct digits in case of positive
and negative increments respectively. Finally the rounding decision chooses the
correct result and cout signals and the final borrow is obtained the same way as the
binary case.

79

MSD >0 MSD = 0
LSB LSD[0] GD[0]
RB GD_greaterthatorequattofive RD_greaterthatorequattofive

sticky (GD_notequaltofive . GD_nonzero) (RD_notequaltofive . RD_nonzero)
+ RD_nonzero + stin + stin

sticky_ (GD−notequalto f ive +GD−iszero) (RD−notequalto f ive+RD−iszero)
effective_sign . RD−iszero . st_sign . st_sign

Sign Sign Sign

Table 4.6: Values of the parameters needed for rounding for both cases of shift

LSB RB sticky sticky_effective_sign incp incn
0 0 0 0 0 0
0 0 0 1 x x
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 x x
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 x x
1 0 1 0 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 1 0 1 x x
1 1 1 0 1 0
1 1 1 1 0 0

Table 4.7: Rounding to Nearest, Ties to Even

4.8.3 Rounding Cell
The rounding cell is the thinking mind of the rounding logic. It calculates the
positive and negative increments. The inputs to the rounding cell are LSB, RB,
sticky, sticky_effective_sign, and sign.

The truth table of the positive increment (incp) and the negative increment
(incn) in different rounding directions are shown in Tables 4.7, 4.8, 4.9, 4.10,
4.11, 4.12, and 4.13.

80

RB sticky sticky_effective_sign incp incn
0 0 0 0 0
0 0 1 x x
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 0 1 x x
1 1 0 1 0
1 1 1 1 0

Table 4.8: Rounding Away from Zero

Sign RB sticky sticky_effective_sign incp incn
0 0 0 0 0 0
0 0 0 1 x x
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 1 x x
0 1 1 0 1 0
0 1 1 1 1 0
1 0 0 0 0 0
1 0 0 1 x x
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 0 0
1 1 0 1 x x
1 1 1 0 0 0
1 1 1 1 0 0

Table 4.9: Rounding towards positive infinity

81

Sign RB sticky sticky_effective_sign incp incn
0 0 0 0 0 0
0 0 0 1 x x
0 0 1 0 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 1 0 1 x x
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 x x
1 0 1 0 1 0
1 0 1 1 0 0
1 1 0 0 1 0
1 1 0 1 x x
1 1 1 0 1 0
1 1 1 1 1 0

Table 4.10: Rounding towards negative infinity

RB sticky sticky_effective_sign incp incn
0 0 0 0 0
0 0 1 x x
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 x x
1 1 0 0 0
1 1 1 0 0

Table 4.11: Rounding towards zero

RB sticky sticky_effective_sign incp incn
0 0 0 0 0
0 0 1 x x
0 1 0 0 0
0 1 1 0 0
1 0 0 1 0
1 0 1 x x
1 1 0 1 0
1 1 1 0 0

Table 4.12: Rounding to Nearest, Ties away from zero

82

RB sticky sticky_effective_sign incp incn
0 0 0 0 0
0 0 1 x x
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 x x
1 1 0 1 0
1 1 1 0 0

Table 4.13: Rounding to Nearest, Ties towards zero

83

Chapter 5

Sign, Flags, and
Exceptional Data paths

5.1 Final Sign Calculation
The sign is calculated as follows:

SignR1 = SignIR .signM |signIR .signCe f f (5.1)

where SignIR : is the intermediate result sign.
and SignCe f f = eop⊕ signC is the effective sign of the addend.
and SignM = signA⊕ signB is the multiplication result sign.

The intermediate result equals to M±C; therefore, if the intermediate result is
negative this means that C > M and the final result will follow the addend effective
sign (eop⊕ signC). If M > C then the intermediate sign will be positive and the
final result will follow the multiplication result sign. In case of having M =C with
the intermediate result being zero, then the final sign will be zero in all cases unless
the rounding mode is rounding to negative infinity. This is defined by equation 5.2.
Equation 5.3 gives the final sign of the result.

signR2 = (RndMode == RM) (5.2)

signR =

{
signR1 ExactIntResult 6= 0
signR2 ExactIntResult = 0

(5.3)

84

5.2 Exponent Calculating

5.2.1 Decimal Exponent
The exponent is calculated as follows:

expt1 = expM−Shi f t2 (5.4)

expt2 = expt1−dec+ inc (5.5)

where dec=1 if the preferred exponent is not reached and the most significant digit
of the rounded result is zero and inc=1 if a carry out at the final digit is detected
due to rounding in case of effective addition.

expR = expt2+bias (5.6)

where

bias =

p+1 case(1,2)
2p+1 case(3)
3p+1 case(4)

(5.7)

The bias value compensates the initial shift due to the selection stage and case
1 to 4 are shown in Table 3.8.

5.2.2 Binary Exponent
The final binary exponent is calculated as follows

expt1 = expM−normshi f ting (5.8)

expR = expt2+bias (5.9)

where

bias =

0 case(1)
54 case(2)
54 SubnormalM&ZeroC

(5.10)

and case 1 to 4 are shown in Section 3.4.2.

85

5.3 Flag Generation

5.3.1 Inexact Flag
The inexact flag is raised if the result is rounded. It is detected from the sticky,
guard and round digits.

5.3.2 Invalid Flag
The invalid flag is generated in either of these cases:

- One of the operands is sNaN.
- In case of FMA(0,±∞,c) or FMA(±∞,0,c); where c is any DFP number

including special numbers (NaNs, infinities).
The standard in this case states that it is optional to raise the invalid flag if the

third operand in qNaN. In our implementation we activate the invalid flag even if
the third operand in qNaN.

- In case of FMA(|a|,+∞,−∞) or FMA(|a|,−∞,+∞); where a is a DFP num-
ber that is not a NaN.

5.3.3 Overflow Flag
The overflow is detected after rounding. It is signaled if the final exponent exceeds
the maximum exponent in the standard. If an overflow is detected, the result is
rounded either to infinity or to the largest representable number according to the
rounding mode and the final sign.

5.3.4 Underflow Flag
If the intermediate result is a non-zero floating point number with magnitude less
than the magnitude of that format’s smallest normal number, an underflow is de-
tected. However, the underflow flag is not raised unless the result is inexact.

In case of decimal underflow a right shifter is needed to bring the exponent
into range even if some precision digits are lost. Therefore right shifters used in
that case in parallel with the normalization shifter right after the complementation
stage. The left shifter is used in the default data path cases as explained before.
However, if underflow is detected the result may be shifted to the right; hence,
there is a right shifter.

86

5.4 Exceptional Decimal Data path

5.4.1 Zero Addend
This case is detected from the signal iszeroC that results from decoding of the
addend. If the addend is zero, the default data path will not produce a correct result
in all cases. If the addend is shifted at the preparation stage by a large amount,
the multiplication result may be totally or partially considered in the sticky only;
which is not the correct answer. Hence, in this case, the addend is not shifted.
The selection signals only indicate either preferred exponent equals to ExpC or to
ExpM.

The final shift amount is determined separately. Since the multiplication result
is added to zero. It is only required to either shift the multiplication result to the left
to reach or to approach the preferred exponent (ExpA plus ExpB) or to the right to
overcome underflow. The different control blocks are reconfigured to handle this
exceptional case. The sign and exponent calculation are also modified to produce
a correct result in this case.

5.4.2 Zero Multiplication Result
This case is detected from the signal iszeroM = (iszeroA+iszeroB). In this case,
the result should equal to the addend unless the preferred exponent is the exponent
of the multiplication result. If so, the addend has to be shifted to the left to reach or
approach the preferred exponent. There is no underflow in this case. The different
control blocks are configured to handle this exceptional case. Also, the sign and
exponent calculation are modified to produce a correct result in this case.

5.5 Exceptional Binary Data path
In binary all of the special cases are handled in the default data path. For example,
if the addend is zero, the selection stage will always choose the multiplication
result as the operating width and produce the correct result.

Also if the multiplication result is zero, the addend has to be shifted to the
left as the biased exponent of the multiplication result in that case is zero and
the addend exponent can’t be less than that. Hence the selection stage selects the
addend in the operating width and also produce the correct result.

The case of subnormalM and ZeroC is also explained in section 3.4.

87

5.6 Special Values Handling
Special values (NANs and Infinities) are handled in both binary and decimal ac-
cording to the standard as explained in Chapter 1.

88

Chapter 6

Verification and Synthesis
Results

6.1 Verification
Due to the large input space of the FMA ,192 bits of operands, 3 bits of rounding
direction, a bit for binary/decimal selection, and a three bits to select the operation
if it was multiplication of addition or FMA, it’s impossible, using today’s computa-
tional power, to try all of the possibilites of these inputs to verify full functionality
in a reasonable time. However, it may be sufficient to try a large number of test
vectors that was designed to test different corner cases of the design as well as the
normal operation.

6.1.1 Decimal Verification
Decimal unit was verified as a multiplier, adder, and as an FMA using a large
number of test vectors specially designed to check the unit in all corners. The
vectors used to test the decimal functionality were presented by S. Ahmed et al in
[20] and are available for download from [21]. More than 1.1 million test vectors
were used to verify full decimal functionality. Our unit passed all of these test
vectors which is an excellent indication of full decimal functionality. The number
of test vectors used in each case is shown in Table 6.1.

89

Decimal Operation Number of Test Vectors
Fused Multiply Add 927668

Addition 136340
Multiplication 96845

Total 1160853

Table 6.1: Number of test vectors applied for each decimal operation

6.1.2 Binary Verification
Unfortunately, as far as we know, there is no open source test vectors for binary
available so far. Hence our design is not fully verified as a binary FMA. However,
it has been tested for different cases including underflow, overflow, zero result,
subnormal result, subnormal inputs, massive right and left shift, normal operation
and it passed in all cases giving the correct result.

6.2 Synthesis Results
Our design was synthesized using TSMC65nmLP kit using typical process and
temperature, and 1.2V supply, where the gate delay of a FO4 inverter is 35 ps,
and the Area of the smallest NAND2 gate is 1.6 µm2. Synthesis was done using
Synopsys design compiler. compile_ultra command was used to get the maximum
minimization effort. The target of the synthesis was the delay. Synthesis results
showed a delay of 4.13 ns, area of 195,000µm2, and power consumption of 112
mW.

It has to be pointed out that our unit ,without any modification, when operated
as a binary unit has a total delay of 3.4 ns (97 FO4 delay).

6.2.1 Delay and Area contributions
Figure 6.1 shows the main contributors in the critical path delay, and Figure 6.2
shows the area of the largest blocks of the FMA.

6.2.2 Comparison With Other Units
Table 6.2 shows a comparison with the previously published FMAs. As shown in
Table 6.2 our binary/decimal design is faster than any of decimal FMAs published
before, and when compared to binary units, IBM Power6’s binary unit is only 6.2%
faster than our binary/decimal unit when it operates as a binary unit. Also when we

90

Multiplier

36%

CSA

8%

Redundant

Adder/rounder/shifter/

converter

41%

Other

15%

45

Figure 6.1: Delay of Different Blocks in the Critical Path

Multiplier

43%

CSA

9%

LZA

7%

Redundant

28%

Other

13%

46

Figure 6.2: Area of Different Blocks in the FMA

91

Notes Delay Norm- Area Norm-
(FO4) alized (NAND2) alized

Akkas’s [13] decimal64 128.6 1.06 77,461 0.635
Ahmed El- Tantawi’s [8] decimal64 132 1.09 100,000 0.821

Rodina’s [5] dec64/128 144.4 1.19 83,421 0.684
Lang’s [14] binary64 145 1.2 NA NA

IBM Power6 Unit [22] binary64 91 0.75 NA NA
Monsson’s∗ [4] bin/dec64 121.7 1.002 273,766 2.246

Our Binary Design binary64 80 0.68 52,283 0.43
Our Decimal Design decimal64 115 0.97 84,375 0.69
Our proposed design bin/dec64 118∗∗ 1 121,875 1

∗Incomplete
∗∗When it operates as a binary unit, the total delay is 97 FO4 delay

Table 6.2: Comparison of Delay in FO4 and Area in NAND2 with Other FMAs

remove the decimal parts of our design it takes a delay which is comparable to the
IBM power 6 binary unit and when we remove the binary hardware, our decimal
unit is even faster than any of the decimal Units. Also, Our binary/decimal unit
takes 12% less area than two stand-alone binary and decimal units.

The advantage in delay over other decimal units comes from using the redun-
dant system, which allowed us to remove the delay of the rounding completely
from the critical path.

6.2.2.1 Power consumption

To compare power consumption, we can not compare to previously published units
as they didn’t report the power dissipation. We can only compare to our stan-
dalone binary and decimal units. Our binary unit consumes 52 mWatts, and our
decimal unit consumes 88 mWatts. The combined binary/decimal unit consumes
112 mWatts. Which means that the binary/decimal unit consumes 20% less power
than the two standalone units.

92

Chapter 7

Conclusion

In this work we presented a new 64-bit floating point Binary/Decimal FMA. After
decoding the operands, the multiplier and the multiplicand are sent to the mul-
tiplier tree to get the multiplication result. In parallel to the multiplier tree, the
addend is complemented if needed and aligned by shifting it to the left or the
right depending on the exponent difference. The multiplier tree used here uses the
SD-radix5 and SD-radix4 recoding for decimal and binary respectively. A multi-
operand adder is used to reduce the multiplication tree to only three columns.
These three columns, as well as the prepared addend, are reduced using a 4:2 CSA
to only two vectors that needs to be added. In parallel to the adder the LZA antic-
ipates the leading zeros in the result for both binary and decimal. In binary a new
LZA that generates its output in base-3 format to simplify the final normalization
shifting is proposed. The addition is performed in a redundant system that uses
the digit set [-6,6] to represent each decimal or octal digit. The two vectors are
converted to this redundant format and added using a redundant adder. The result
is normalized after the addition and needs to be rounded and converted back to
binary/decimal. A new rounding-while-redundant technique is proposed to hide
the rounding delay and perform the rounding in parallel with the conversion to
binary/decimal. Finally the design was synthesized using TSMC65nmLP kit and
the results were discussed and compared with other previously published units.

93

References

[1] “Telco Benchmark for telephone company billing application, Available on-
line at : http://speleotrove.com/decimal/telco.html/, last accessed on May,
23rd 2014.”

[2] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp. 1–
58, Aug 2008.

[3] C. Hinds, “An enhanced floating point coprocessor for embedded signal
processing and graphics applications,” in Signals, Systems, and Computers,
1999. Conference Record of the Thirty-Third Asilomar Conference on, vol. 1,
pp. 147–151 vol.1, Oct 1999.

[4] P. K. Monsson, “Combined binary and decimal floating-point unit,” Master’s
thesis, Technical University of Denmark, 2008.

[5] R. Samy, H. Fahmy, R. Raafat, A. Mohamed, T. ElDeeb, and Y. Farouk,
“A decimal floating-point fused-multiply-add unit,” in Circuits and Systems
(MWSCAS), 2010 53rd IEEE International Midwest Symposium on, pp. 529
–532, aug. 2010.

[6] “Sun BigDecimal Library, Available Online At :
http://download.oracle.com/javase/1.5.0/docs/api/java/math/BigDecimal.html,
last accessed on May, 23rd 2014 .”

[7] A. Vazquez, E. Antelo, and P. Montuschi, “A new family of
high.performance parallel decimal multipliers,” in Computer Arithmetic,
2007. ARITH ’07. 18th IEEE Symposium on, pp. 195 –204, June 2007.

[8] A. EL-Tantawy, “Decimal floating point arithmetic unit based on a
fused multiply add module,” Master’s thesis, Electrical and Electrical
Communications Department, Cairo University, 2011, Available At :
http://eece.cu.edu.eg/∼hfahmy/thesis/2011_08_dfma.pdf.

94

[9] A. Vazquez, E. Antelo, and P. Montuschi, “Improved design of high-
performance parallel decimal multipliers,” Computers, IEEE Transactions
on, vol. 59, pp. 679 –693, May 2010.

[10] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution
of a general class of recurrence equations,” Computers, IEEE Transactions
on, vol. C-22, pp. 786 –793, Aug 1973.

[11] A. Vazquez, High Performance Decimal Floating Point Units. PhD thesis,
Electrical and Computer Engineering, Universidade de Santiago de Com-
postela. Spain, 2009.

[12] A. Vazquez and E. Antelo, “A high-performance significand BCD adder with
IEEE 754-2008 decimal,” in Computer Arithmetic, 2009. ARITH-19 2009.
19th IEEE Symposium on, pp. 135 – 144, June 2009.

[13] A. Akkas and M. Schulte, “A decimal floating-point fused multiply-add unit
with a novel decimal leading-zero anticipator,” in Application-Specific Sys-
tems, Architectures and Processors (ASAP), 2011 IEEE International Con-
ference on, pp. 43–50, Sept 2011.

[14] T. Lang and J. Bruguera, “Floating-point multiply-add-fused with reduced
latency,” vol. 53, pp. 988–1003, Aug 2004.

[15] L. Dadda, “Multioperand parallel decimal adder: A mixed binary and BCD
approach,” Computers, IEEE Transactions on, vol. 56, no. 10, pp. 1320–
1328, 2007.

[16] K. Yehia, “A mixed decimal/binary redundant floating-point
adder,” Master’s thesis, Electronics and Electrical Engineer-
ing Department, Cairo University, 2011, Available At :
http://eece.cu.edu.eg/∼hfahmy/thesis/2011_07_d_b_fpadd.pdf.

[17] L.-K. Wang and M. Schulte, “A decimal floating-point adder with decoded
operands and a decimal leading-zero anticipator,” in Computer Arithmetic,
2009. ARITH 2009. 19th IEEE Symposium on, pp. 125 –134, June 2009.

[18] V. G. Oklobdzija, “An algorithmic and novel design of a leading zero detec-
tor circuit: Comparison with logic synthesis,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 2, pp. 124 –128, March 1994.

95

[19] A. Verma, A. Verma, P. Brisk, and P. Ienne, “Hybrid LZA: A near optimal
implementation of the leading zero anticipator,” in Design Automation Con-
ference, 2009. ASP-DAC 2009. Asia and South Pacific, pp. 203–209, Jan
2009.

[20] A. Sayed-Ahmed, H. Fahmy, and M. Hassan, “Three engines to solve veri-
fication constraints of decimal floating-point operation,” in Signals, Systems
and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth
Asilomar Conference on, pp. 1153–1157, 2010.

[21] “Cairo University Test vectors, Available Online At :
http://eece.cu.edu.eg/∼hfahmy/arith_debug/index.htm, last accessed on
May, 23rd 2014l.”

[22] S. Trong, M. Schmookler, E. Schwarz, and M. Kroener, “P6 binary floating-
point unit,” in Computer Arithmetic, 2007. ARITH ’07. 18th IEEE Sympo-
sium on, pp. 77–86, June 2007.

96

	Acknowledgment
	Abstract
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	Introduction
	Decimal Redundant representations
	IEEE Decimal Floating-Point Standard
	Decimal Formats
	Rounding
	Special numbers and Exceptions

	Binary IEEE Standard

	Previous Work
	General FMA Architecture
	Decoding the Operands
	Multiplier Tree
	Addend preparation
	Final Adder
	Leading Zeros Anticipator (LZA)

	SilMinds' Architecture
	Multiplier Tree
	Multiplier Recoding
	Partial Products Generation
	Reduction Tree

	Leading Zeros Counter
	Rounding

	Decimal FMA using Combined Add/Round module
	Multiplier Tree
	Decimal Carry Save Adder
	Leading Zeros Anticipation
	Final alignment
	Rounding Set Up
	Top Level Architecture
	The addend 10's complement

	Combined Add/Round
	Rounding Position
	Pre-Correction
	Compound Adder
	Rounding Stage
	Rounding Conditions
	Post-Correction and Selection

	A Decimal Floating-point Fused Multiply-Add Unit with a Novel Decimal Leading-zero Anticipator
	Multiplier Tree
	Operand Alignment
	Addition
	Leading Zeros Anticipation
	Final Shift And Rounding

	Binary Floating–Point Fused Multiply–Add with Reduced Latency
	Multiplier Tree
	Preparing the addend
	Addition and Rounding
	Leading Zeros Anticipation and Normalization Shifting

	Binary/Decimal FMA
	Multiplier Tree
	Alignment
	Addition:
	Leading Zeros Anticipation (LZA):
	Rounding
	Design Functionality

	Conclusion

	Proposed Binary/Decimal Design
	Decoding The Inputs
	Multiplier Tree
	Multiplicand Multiples Generation
	Partial Products Generation
	Sign Extension
	Decimal Sign Extension
	Numerical Example
	Binary Sign Extension

	Partial Products Reduction
	Sign of the two resulting decimal vectors

	Addend Preparation
	Selection and Carry Save Adder
	Case of Decimal
	Case of Binary
	Sign extension of the resulting vectors of the CSA

	Leading Zeros Anticipation
	Decimal LZA
	Inputs to the LZA
	Effective Subtraction Case
	Effective Addition Case
	Leading Zeros Detector

	Binary Leading Zeros Anticipation
	Inexact LZA
	Leading Zeros Detector
	Base-3 Leading Zero Detector
	Leading Ones Anticipator

	Intermediate Sign detection
	Decimal Intermediate Sign Detection
	Binary Intermediate Sign Detection

	Final Alignment
	Final Alignment Control
	Case of Decimal
	Case of Binary

	Redundant Addition, Normalization, and Rounding
	Conversion from Binary/Decimal to Redundant
	Redundant Addition
	Correction Digit Generation
	Adder Carry in

	Result Complementation
	Size of the redundant vectors
	Normalization Shifting
	Binary Shifting
	Decimal Shifting

	Sticky Generation
	Separating the Sticky
	Sticky Sign Detector

	Conversion Back to Binary/Decimal
	Previous technique
	Our proposed technique

	Converting back to Decimal
	Converting back to Binary

	Rounding
	Rounding in binary
	Rounding in decimal
	Rounding Cell

	Sign, Flags, and Exceptional Data paths
	Final Sign Calculation
	Exponent Calculating
	Decimal Exponent
	Binary Exponent

	Flag Generation
	Inexact Flag
	Invalid Flag
	Overflow Flag
	Underflow Flag

	Exceptional Decimal Data path
	Zero Addend
	Zero Multiplication Result

	Exceptional Binary Data path
	Special Values Handling

	Verification and Synthesis Results
	Verification
	Decimal Verification
	Binary Verification

	Synthesis Results
	Delay and Area contributions
	Comparison With Other Units
	Power consumption

	Conclusion
	References

