
TWO EXTENDED PROGRAMMABLE BCH SOFT DECODERS

USING LEAST RELIABLE BITS REPROCESSING

by

Mohamed Tarek Abdelsadek Osman

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2014

TWO EXTENDED PROGRAMMABLE BCH SOFT DECODERS

USING LEAST RELIABLE BITS REPROCESSING

by

Mohamed Tarek Abdelsadek Osman

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

Under the Supervision of

Associate Professor Ahmed Shalash

Principal Adviser

Associate Professor Hossam Aly

Hassan Fahmy

Adviser

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2014

TWO EXTENDED PROGRAMMABLE BCH SOFT DECODERS

USING LEAST RELIABLE BITS REPROCESSING

by

Mohamed Tarek Abdelsadek Osman

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

Approved by the

Examining Committee

Associate Professor Ahmed Shalash, Thesis Main Advisor

reader1, Member

reader2, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2014

Acknowledgements

In the name of Allah the most merciful the most gracious; all thanks to Allah the

Lord of the Heavens and Earth and peace be upon Mohamed and his companions.

I wish to express my gratitude to my advisers, Associate Prof. Ahmed Shalash

and Hossam Fahmy who were helpful and offered invaluable assistance, support

and guidance. I am also genuinely grateful for the support of Associate Prof.

Yasmine Fahmy and Maha Elsabrouti throughout my work.

Many thanks to my colleagues at silicon vision for their support and help

through the duration of this work.

My deepest gratitude to my family. Without their encouragement, I would

not have gone this far.

Mohamed

iv

Abstract

This thesis proposes two BCH soft decoders suitable for high-rate codes with

medium to large word length. The proposed decoders extend the correcting ca-

pability by providing a programmable performance gain according to the choice

of the extra compensated bits p, with a theoretical maximum likelihood de-

coding when 2t + p approaches the codeword size n, where t is the correcting

capability of the code under algebraic decoding. Our proposed architectures for

the proposed algorithms use pipelined arithmetic units, leading to a reduction

in the critical paths. This allows for an increase in the operating frequency by

up to m
2 times compared to algebraic decoders, where m is the Galois field size.

Our proposed decoders operate only on the least reliable bits, which leads to a

reduction in the decoder complexity by removing the Chien search procedure.

Synthesizing the two proposed decoders on TSMC 90 nm G technology for

BCH (255, 239), our proposed EBP decoder obtains a throughput of 617.5

Mbits/sec, 509 Mbits/sec and 420 Mbits/sec at an area of 14727, 18510 and

22365 µm2 at p = 2, 4and 6 obtaining a gain of 0.05, 0.2, 0.35 dB over algebraic

decoding. While EHe decoder obtains a throughput of 726.4 Mbits/sec, 458.7

Mbits/sec and 185.4 Mbits/sec at an area of 14320, 19542 and 28461 µm2 at

p = 2, 4 and 6 obtaining a gain of 0.75, 1, 1.2 over algebraic decoding.

v

Contents

Acknowledgements iv

Abstract v

List of Tables iv

List of Figures vi

1 Introduction 1

2 Galois Fields 3

2.1 Galois Field Properties . 3

2.2 Binary Extension Field Arithmetic 4

2.2.1 Basis Representation . 5

2.2.2 Operations . 6

2.3 Summary . 8

3 BCH Code 9

3.1 BCH Codes . 9

3.2 Encoding BCH codes . 11

3.3 Decoding BCH Codes . 13

3.3.1 Calculation of the Syndromes 13

3.3.2 Solving the Key Equation 14

3.3.3 Finding the Error Locations 16

3.4 Summary . 17

4 Soft Decoding Algorithms Survey 18

4.1 Least Reliable bits Reprocessing Decoding Algorithms 18

i

4.2 Most Reliable Bits Reprocessing Decoding Algorithms 21

4.3 Belief Propagation (BP) Based Algorithms 23

4.4 Summary . 24

5 Galois Field Arithmetic Units Survey 25

5.1 Galois Field GF (2m) Multipliers 25

5.1.1 Polynomial Basis Multipliers 26

5.1.2 Shifted Polynomial Basis Multipliers 28

5.1.3 Normal Basis Multipliers 33

5.1.4 Dual Basis Multipliers . 34

5.1.5 Comparison and Discussion 36

5.2 Galois Field GF (2m) Exponentiation 37

5.2.1 Polynomial Basis Power Sum Operation 40

5.2.2 Normal Basis Power Sum Operation 41

5.2.3 Comparison and Discussion 41

5.3 Summary . 43

6 Proposed BCH Soft Decoding Algorithms 44

6.1 Proposed Programmable BCH Soft Decoding Algorithm 44

6.1.1 Soft Decoding Algorithms 46

6.1.2 EHe-EMS Algorithm . 46

6.1.3 EBP-EMS Algorithm . 48

6.1.4 Geometric Interpretation of the Proposed Algorithms . . . 50

6.2 Simulation And Comparison Results 51

6.3 Summary . 54

7 Implementation of the EHE and EBP Soft Decoders 55

7.1 Arithmetic Units . 56

7.2 Error Locator Evaluator . 58

7.3 Syndrome Calculator . 59

7.4 EHe-EMS Architecture . 59

7.4.1 Bodd Matrix Calculation Unit 59

7.4.2 The Effective Syndrome Calculation Unit 59

7.4.3 The Heuristic Search Unit 60

7.4.4 The Weight and Error Location Unit 61

ii

7.5 EBP-EMS Architecture . 61

7.5.1 The BP Solver Unit . 61

7.5.2 The Binary Sequence Check Unit 62

7.5.3 The Incremental Syndrome Unit 62

7.5.4 The Error Calculation Unit 62

7.6 Proposed Architecture Evaluation and Discussion 63

7.6.1 Complexity of the Proposed Architectures 63

7.7 Implementation Results . 71

7.7.1 Functional Verification . 73

7.7.2 Implementation Results 74

7.8 Summary . 75

8 Conclusion 76

8.1 Future Work . 77

References 78

iii

List of Tables

3.1 Polynomials for (15, 5) 3-Error Correcting BCH Code 12

5.1 Comparison Between Multipliers 38

5.2 Comparison Between Exponentiation Units 42

7.1 Arithmetic Units . 57

7.2 Summary of the EHe Decoder Complexity 64

7.3 Summary of EBP Decoder Complexity 65

7.4 Comparison for BCH (n, k, t) and (255, 239, 2) 69

7.5 EBP and EHe Decoders Pin Description 72

7.6 Implementation Results for BCH(255,239) EBP and EHe Decoders 74

iv

List of Figures

3.1 Encoding Circuit for a (n, k) BCH Code 12

3.2 Circuit Computing S3 for m = 4. 14

3.3 Berlekamp Massey Algorithm with Inversion 16

3.4 Chien’s Search Circuit. 17

4.1 BCH code(255,239) Hard Decoding versus Soft Decoding 21

4.2 BCH code(255,239) Hard Decoding versus Soft Decoding and GMD 22

5.1 LSB-First Bit-Serial Polynomial Basis Multiplier 27

5.2 MSB-First Bit-Serial Polynomial Basis Multiplier 28

5.3 Logic Level Diagram of the LSB-First Semisystolic Array Multi-

plier over GF (24) . 29

5.4 Basic Cells in the LSB-First Semisystolic Array Multiplier. 29

5.5 Hybrid Bit Serial Shifted Polynomial Basis Multiplier 31

5.6 Semi-Systolic Shifted Polynomial Basis Multiplier 32

5.7 Shifted Polynomial Basis Cell (i, j), and the Leftmost Column Cells 33

5.8 Massey Omura Multiplier . 34

5.9 Massey Omura Multiplier for GF (25) 35

5.10 Structure of General Dual Basis Multiplier 35

5.11 Structure of Optimal Normal Basis Multiplier 36

5.12 General Dual Basis Multiplier . 36

5.13 Exponentiation Using Power Sum Unit 39

5.14 Power Sum Unit for GF(24) . 41

5.15 Power Sum Cell . 42

5.16 Power Sum Cell Using Normal Basis 42

6.1 3-D Representation of a Received Signal. 51

6.2 Simulation Results for BCH (255,239), EHe Decoder. 52

v

6.3 Simulation Results for BCH (255,239), EBP Decoder. 53

6.4 Simulation Results for t = 1 and 3 for n = 255 53

6.5 Simulation Results for t = 1 and 3 for n = 511 54

7.1 Syndrome Calculator and Error Locator Evaluator Units 66

7.2 EHe-EMS Architecture . 67

7.3 EBP-EMS Architecture . 68

7.4 EBP Block Diagram . 72

7.5 EHe Block Diagram . 72

7.6 OVM Verification Environment 73

vi

Chapter 1

Introduction

BCH codes are invented in 1959 by French mathematician Alexis Hocquenghem

[1], and independently in 1960 by Raj Bose and D. K. Ray-Chaudhuri [2]. The

acronym BCH comprises the initials of these inventors names. BCH codes are

powerful linear block codes that are used widely in multimedia and storage

applications; this is due to the fact that BCH codes acquire strong correcting

capability outperforming Reed-Solomon codes [3] in binary channels [4]. The

class of BCH codes employed in such systems is characterized by large word

length and low redundancy length. The choice of class is because BCH codes are

employed to remove the error floor of the system, either by being concatenated

to a more powerful channel codes as in DVB-T2 [5] and DVB-C2 [6] systems, or

in systems with low probability of error like storage applications [7].

Conventional decoding of BCH codes is simple and suitable for VLSI im-

plementation [8]. Yet hard decision decoding has limited decoding capability

as it disregards channel information which is available in most of BCH code

applications. In this thesis we propose two programmable soft decoders both

targeting the class of BCH codes mentioned above. These decoders acquire

a programmable coding gain and speed that outperforms conventional decod-

ing, with area comparable to conventional decoding. These decoders provide

a trade off between complexity and performance, and are feasible to be imple-

mented in programmable hardware. This allows our proposed decoders to be

used in multi-rate systems, or multiple power consumption architectures where

the performance can be sacrificed in a certain mode to reduce the system power

consumption. The work done in this thesis was published in [9] and [10].

This rest of the thesis is organized as follows. An introduction about Galois

1

fields is given in chapter 2, an overview on BCH codes encoding and conventional

decoding is detailed in chapter 3, then a survey on BCH soft decoding is given in

chapter 4, followed by a survey on Galois field arithmetic units in chapter 5. The

two proposed decoding algorithms are shown in chapter 6, and their proposed

implementation are described in chapter 7.

2

Chapter 2

Galois Fields

Galois field, so named in honour of Evariste Galois, is a field that contains a finite

number of elements. All mathematical operations in BCH codes are performed

using Galois field arithmetic. In this chapter the properties of Galois field are

presented, then different representation approaches of Galois field elements are

explained. At the end of this chapter a mathematical foundation of arithmetic

operations is presented.

2.1 Galois Field Properties

A field F is a non-empty set closed under two operations addition and multi-

plication, denoted by ‘+’ and ‘*’ respectively. For F to be a field a number of

conditions must hold [11] [12]:

1. Closure: For every a, b in F ,

c = a+ b , d = a ∗ b, (2.1)

where c, d ∈ F .

2. Associative: For every a, b, c in F

a+ (b+ c) = (a+ b) + c, a ∗ (b ∗ c) = (a ∗ b) ∗ c. (2.2)

3. Identity: For every element a in F , there exists an identity element ‘0’ for

3

addition and ‘1’ for multiplication that satisfy,

a+ 0 = 0 + a = a, a ∗ 1 = 1 ∗ a = a. (2.3)

4. Inverse: For every element a in F , there exist elements b, c in F such that,

a+ b = 0, a ∗ c = 1, (2.4)

where element b is called the additive inverse, b = −(a), element c is called

the multiplicative inverse, c = a−1 and a 6= 0.

5. Commutative: For every a, b in F

a+ b = b+ a, a ∗ b = b ∗ a. (2.5)

6. Distributive: For every a, b, c in F

(a+ b) ∗ c = a ∗ c+ b ∗ c. (2.6)

The existence of a multiplicative inverse a−1 leads to the presence of division

operation. This is because for every a, b, c in F , c = b/a is defined as c = b∗a−1 .

Similarly the existence of an additive inverse (−a) enables the use of subtraction.

In this case for every a, b, c in F , c = b − a is defined as c = b + (−a). It can

be shown that the set of integers 0, 1, 2, ... , p− 1 where p is a prime, together

with modulo p addition and multiplication forms a field [13]. Such a field is

called the finite field of order p, or GF (p). In this thesis only binary arithmetic

is considered, where p is constrained to equal 2.

2.2 Binary Extension Field Arithmetic

GF (2m) is a finite field that contains 2m different elements. This finite field

is an extension of GF (2) which contains 0 and 1. The extended binary field

GF (2m), is associated with an irreducible polynomial of degree m over GF (2),

i.e.P (z) = pmz
m + pm−1z

m−1 + . . . + p1z
1 + p0z

0, where pi ∈ GF (2), and po =

pm = 1. A polynomial P (z) of degree m is called primitive or irreducible if the

smallest positive integer λ for which P (z) divides zλ+1 is λ = 2m−1. Elements

4

in GF (2m) can be represented using different basis function, supporting the

operations described above.

2.2.1 Basis Representation

Polynomial Basis

Let x be a primitive element of P (z) , i.e., P (x) = 0. An element, A, of GF (2m)

can be represented as a polynomial of degree up to m− 1 over GF (2) as,

A =
m−1∑

i=0

aix
i, (2.7)

where ai ∈ GF (2).

This representation is called the polynomial basis (PB) representation. In

this case, the addition of any two elements is easily performed by the exclusive-

or (XOR) operation. However, the multiplication and squaring operations are

complicated as the intermediate product needs further reduction by P (x).

Shifted Polynomial Basis

Assuming v is an integer, 0 < v ≤ m − 1, and the set 1, x, x2, . . . , xm−1 is a

polynomial basis for GF (2m), the Shifted Polynomial Basis (SPB) for GF (2m)

is denoted as the set x−v, x−v+1, . . . , xm−v+1 . Similar to the polynomial basis,

it is possible to represent each field element using the SPB. For example, if A is

an element of GF (2m), then it can be represented as

A =
m−1∑

i=0

aix
i−v, (2.8)

where ai ∈ GF (2).

The addition of two field elements, represented in the SPB, is carried out by

the XOR operation. However, the multiplication and squaring operations are

complicated as the intermediate product needs further reduction by P (x).

5

Normal Basis

It is shown that there exists a normal basis for the binary extension field GF (2m)

for all positive integers m [14]. The normal basis is constructed by finding a field

element β , where
{
β, β2, β4, . . . , β2(m−1)} is a basis forGF (2m). In this case,

if A ∈ GF (2m), then it can be represented as,

A =
m−1∑

i=0

aiβ
2i, (2.9)

where ai ∈ GF (2).

Normal basis representations of field elements are especially attractive in sit-

uations where squaring is required, since squaring an element A = a0β
1 +a1β

2 +

a2β
4 + . . . + am−1β

2(m−1) is simply its cyclic right shift A2 = am−1β
1 + a0β

2 +

a1β
4 + . . .+ am−2β

2(m−1).

Dual Basis

The dual basis is an important concept in finite field theory and was originally

exploited to allow for the design of hardware efficient BCH and RS decoders [15].

For 2 basis functions {λi} and {µi} ,define f a linear transformation function

from GF (2m) −→ GF (2), and β ∈ GF (2m), β 6= 0. Then {λi} and {µi} are

dual to each other with respect to f and β if:

f (βλiµj) =

{
1 if i = j

0 if i 6= j

}
, (2.10)

In this case {λi} is the standard and{µi} is the dual basis.

2.2.2 Operations

Addition

Let A and B be two field elements inGF (2m) represented by (am−1, am−2, . . . , a0)

and (bm−1, bm−2, . . . , b0), respectively in any basis representation. Now, C =

A+B can be obtained by pair-wise addition of the coordinates of A and B over

6

GF (2) (i.e., modulo 2 addition), then C can be represented as,

ci = ai ⊕ bi, (2.11)

where 0 ≤ i ≤ m− 1, and ⊕ denotes XOR operation

Multiplication

The multiplication over GF (2m) is much more complicated than addition. This

operation has been considered by researchers from different points of view. The

most common approaches are based on the polynomial basis, normal basis, dual

basis and the shifted polynomial basis. Each of these multiplication algorithms

offers different time and area complexities, more details about multipliers will

be given in Chapter 4

Multiplication By a Constant Field Element

It is frequently required to carry out multiplication by a constant field element.

This can be accomplished using two-variable input multipliers. Alternatively

it is often beneficial to employ a multiplier designed specifically for this task.

Consider the operation xj ∗ A, where A is a finite field element, and x is a

primitive root over the polynomial P (z) = zm + fm−1z
m−1 + . . . + f1z

1 + f0z
0,

and P (x) = 0, thus xm can be expressed as,

xm = fm−1x
m−1 + . . .+ f1x

1 + f0x
0 (2.12)

thus for simplicity x1 ∗ A can be expressed as,

x1 ∗ A = a0x+ a1x
2 . . .+ am−2x

m−1 + am−1x
m, (2.13)

substituting with the expression of xm above thus,

x1 ∗ A = am−1f0 ∗ x0 + (a0 + am−1f1) ∗ x+ (a1+

am−1f2) ∗ x2 . . .+ (am−2 + am−1fm−1) ∗ xm−1 (2.14)

The previous expression can be implemented using simple XOR operations,

it is shown at [16] that in constant multiplication, the number of XOR gates is

7

bounded by m2− m
2 , and its critical path is bounded by log2(m) the delay of an

XOR gate.

Squaring

Squaring over GF (2m) is a special case of multiplication and as a result, re-

quires less resources. The normal basis offers the best squaring operation which

is performed by a circular right shift. The squaring in polynomial basis and

shifted polynomial basis is more complicated and the complexity depends on

the irreducible polynomial P (z).

Inversion

Inversion over binary extension fields is considered an expensive operation. As-

suming A ∈ GF (2m), the objective is to find a field element A−1, where AA−1 =

1. Algorithms proposed for inversion are based on the fact that A2m−2 = A−1.

Various approaches to find A2m−2 are proposed for each basis function.

2.3 Summary

In this chapter an overview on Galois fields is given, the basic definitions of fields

and Galois field extensions is elaborated, and the different basis representation of

elements in Galois field are shown. This chapter is a preliminary to understand

BCH codes structure which is based on Galois fields, for more details on Galois

fields refer to [13]

8

Chapter 3

BCH Code

In this chapter Bose-Chaudhuri-Hocquenghem (BCH) code is introduced, BCH

encoding and algebraic decoding algorithms are presented. The decoding is

broken down into three processes: syndromes calculation, Berlekamp-Massey al-

gorithm (BMA), and Chien search. This chapter will be divided as follows, a

brief introduction on BCH code is described in section 3.1, the encoding pro-

cedure is described in section 3.2, and the decoding procedure is described in

section 3.3.

3.1 BCH Codes

The first class of linear codes derived for error correction were Hamming codes.

These codes are capable of correcting only a single error because of their sim-

plicity. Later the generalised binary class of Hamming codes for multiple-errors

was discovered by Hocquenghem in 1959 [1], and independently by Bose and

Chaudhuri in 1960 [2]. Almost at the same time independently of the work of

Bose, Chaudhuri and Hocquenghem, the important subclass of non-binary BCH

codes RS codes were introduced by Reed and Solomon [17].

The class of BCH codes is a large class of error correction codes that occupies

a prominent place in theory and practice of error correction. This prominence

is a result of the relatively simple encoding and decoding techniques. Before

considering BCH codes, some additional theory needs to be introduced [18].

• The minimum distance of a linear code is the minimum Hamming weight

of any non-zero codeword, where the hamming weight is the number of

different bits.

9

• A code with minimum distance d can correct b(d− 1)/2c errors.

• A linear code C is cyclic if whenever (c0, c1, ..., cn−1) is a codeword in C

then (cn−1, c0, c1, ..., cn−2) is also a codeword.

• A codeword (c0, c1, ..., cn − 1) of a cyclic code can be represented as the

polynomial c(x) = c0 + c1x + + cn−1x
n−1 . This correspondence is very

helpful as the mathematical background of polynomials is well developed,

and so this representation is used here.

It is frequently convenient to define error-correcting codes in terms of the gen-

erator polynomial of that code g(x). The generator polynomial of a t-error-

correcting BCH code is defined to be the least common multiple (LCM) of

f1, f3, ...f2∗t−1, that is,

g(x) = LCMf1, f3, f5, ...f2∗t−1 (3.1)

where fj is the minimal polynomial of αj, and (0 < j < 2t+ 1).

Let fj, where (0 < j < 2t + 1), be a minimal polynomial of αj then fj is

obtained by:

fj(x) =
e−1∏

i=0

(x+ β2i) (3.2)

where β = αj, β2e = β and e ≤ m

To generate a codeword for an (n, k) t error-correcting BCH code, the k

information symbols are formed into the information polynomial i(x) = i0 +

i1x + ... + ik−1x
k−1 where ij ∈ GF (2). Then the codeword polynomial c(x) =

c0 + c1x++ cn−1x
n−1 is formed as

c(x) = i(x) ∗ g(x) (3.3)

Since the degree of fj(x) is less or equal to m (e ≤ m), the degree of g(x)

(and consequently the number of parity bits n − k) is at most equal to m ∗ t.
For small values of t, the number of parity check bits is usually equal to m ∗ t.

For any positive integer m ≥ 3 there exists binary BCH codes (n, k) with the

following parameters:

• n = 2m − 1 the length of codeword in bits

10

• t the maximum number of error bits that can be corrected

• k ≥ n−m ∗ t number of information bits in a codeword

• dmin ≥ 2 ∗ t+ 1 the minimum distance.

Note that for t = 1, this construction of BCH codes generates Hamming codes.

The number of parity bits equals m, and so (2m − 1, 2m − m − 1) codes are

obtained. In this case the generator polynomial g(x) satisfies

g(x) = f1(x) = p(x) (3.4)

where p(x) is the irreducible polynomial for GF (2m).

In this thesis only primitive BCH codes are considered. Non-primitive BCH

codes have a generator polynomial g(x) with βl, βl+1, βl+2, βl+d−2

as roots, where β is an element in GF (2m) and l is a non-negative integer.

Non-primitive BCH codes obtained in this way have a minimum distance of at

least d. When l = 1, d = 2 ∗ t + 1 and β = α where α is a primitive element of

GF (2m), primitive BCH codes are obtained.

3.2 Encoding BCH codes

If BCH codewords are encoded the data bits do not appear explicitly in the

codeword. To overcome this let

c(x) = xn−k ∗ i(x) + b(x) (3.5)

where c(x) = c0 + c1x + ... + cn−1x
n−1, i(x) = i0 + i1x + ... + ik−1x

k−1, b(x) =

b0 + b1x+ ...+ bm−1x
m−1 and cj, ij, bj ∈ GF (2). Then if b(x) is taken to be the

polynomial such that

xn−k ∗ i(x) = q(x) ∗ g(x)− b(x) (3.6)

the k data bits will be present in the codeword [14].

BCH codes are implemented as cyclic codes, that is, the digital logic imple-

menting the encoding and decoding algorithms is organised into shift-register

circuits that mimic the cyclic shifts and polynomial arithmetic required in the

11

 47

as roots, where β is an element in GF(2m) and l is a non-negative integer. Non-primitive

BCH codes obtained in this way have a minimum distance of at least d. When l = 1, d = 2*

t + 1 and β = α where α is a primitive element of GF(2m), primitive BCH codes are

obtained.

1.3 Encoding BCH codes

 If BCH codewords are encoded as in equ(3.3) the data bits do not appear explicitly

in the codeword. To overcome this let

 c(x) = xn-k * i(x) + b(x) (3.4)

where c(x)= c0 + c1x +...+ cn-1xn-1, i(x)= i0 + i1x +...+ ik-1xk-1, b(x)= b0 + b1x +...+ bm-1xm-1

and cj, ij, bj ∈ GF(2). Then if b(x) is taken to be the polynomial such that

 xn-k * i(x) = q(x) * g(x) - b(x) (3.5)

the k data bits will be present in the codeword. (By implementing equ(3.4) instead of

equ(3.3) systematic ([29] p. 54) codewords are generated).

 BCH codes are implemented as cyclic codes [42], that is, the digital logic

implementing the encoding and decoding algorithms is organised into shift-register circuits

that mimic the cyclic shifts and polynomial arithmetic required in the description of cyclic

codes. Using the properties of cyclic codes [29, 30], the remainder b(x) can be obtained in a

linear (n-k)-stage shift register with feedback connections corresponding to the coefficients

of the generator polynomial g(x) = 1 + g1x + g2x2 + ... + gn-k-1xn-k-1 + xn-k. Such a circuit is

shown on Figure 3.1.

b0 b1 b2 bn-k-1

g1 g2 gn-k-1

xn-k i(x)

c(x)

S1

S2

1

2

 Figure 3.1. Encoding circuit for a (n, k) BCH code. Figure 3.1: Encoding Circuit for a (n, k) BCH Code

Table 3.1: Polynomials for (15, 5) 3-Error Correcting BCH Code

roots minimal polynomial

α, α2, α4 f1(x) = (x + α)(x + α2)(x + α4)(x + α8) =
1 + x+ x4

α3, α6 f3(x) = (x + α3)(x + α6)(x + α12)(x + α9) =
1 + x+ x2 + x3 + x4

α5 f5(x) = (x+ α5)(x+ α10) = 1 + x+ x2

description of cyclic codes. Using the properties of cyclic codes [18], the re-

mainder b(x) can be obtained in a linear (n − k)-stage shift register with feed-

back connections corresponding to the coefficients of the generator polynomial

g(x) = 1 + g1x + g2x
2 + ... + gn−k−1x

n−k−1 + xn−k. Such a circuit is shown in

Fig. 3.1. Encoding circuit for a (n, k) BCH code.

The encoder operates as follows:

• For clock cycles 1 to k, the information bits are transmitted in unchanged

form (switch S2 in position 2) and the parity bits are calculated in the

Linear Feedback Shift Register (LFSR) (switch S1 is on).

• For clock cycles k + 1 to n, the parity bits in the LFSR are transmitted

(switch S2 in position 1) and the feedback in the LFSR is switched off (S1

- off).

As an example, the (15, 5) 3-error correcting BCH code is considered. The

generator polynomial with α, α2, α3, ..., α6 as the roots is obtained by multiplying

the minimal polynomials given in Table 3.1.

Thus the generator polynomial g(x) is given by g(x) = f1(x) ∗ f3(x) ∗ f5(x) =

1 + x+ x2 + x4 + x5 + x8 + x10.

12

3.3 Decoding BCH Codes

The decoding process is far more complicated than the encoding process. As a

general rule, decoding can be broken down into three separate steps:

1. Calculating the syndromes

2. Solving the key equation

3. Finding the error locations.

3.3.1 Calculation of the Syndromes

Let c(x) = c0 + c1x + ... + cn−1x
n−1, r(x) = r0 + r1x + ... + rn−1x

n−1 and

e(x) = e0 + e1x + ... + en−1x
n−1 be the transmitted polynomial, the received

polynomial and the error polynomial respectively so that

r(x) = c(x) + e(x) (3.7)

The first step of the decoding process is to store the received polynomial r(x)

in a buffer register and to calculate the syndromes Sj for 1 ≤ j ≤ 2t. The most

important feature of the syndromes is that they do not depend on transmitted

information but only on error locations.

Define the syndromes Sj as

Sj =
n−1∑

i=0

riα
i−j (3.8)

for 1 ≤ j ≤ 2t.

Since rj = cj + ej, for j = 0, 1,, n− 1, thus

Sj =
n−1∑

i=0

(ci + ei)α
i−j =

n−1∑

i=0

ciα
i−j +

n−1∑

i=0

eiα
i−j (3.9)

By the definition of BCH codes
n−1∑
i=0

ciα
i−j = 0 for 1 ≤ j ≤ 2t, thus

Sj =
n−1∑

i=0

eiα
i−j (3.10)

13

 50

15 times and the received bits ri (0 ≤ i ≤ 14) are clocked into the syndrome calculation

circuit. Then the S3 is obtained in the s0 - s3 register.

s0 s1 s2 s3
r(x)

Figure 3.2. Circuit computing S3 for m = 4.

 Syndromes can also be calculated in a second way ([29] p. 152, 165), ([30] p. 271).

Employing this approach, Sj is obtained as the remainder in the division of the received

polynomial by the minimal polynomial fj(x), that is,

 r(x) = aj * fj(x) + bj(x) (3.13)

where

 Sj = bj(αj). (3.14)

It should be mentioned that the minimal polynomials for α, α2, α4, are the same and so

only one register is required to calculate the syndromes S1, S2, S4, The rule can be

extended for S3, S6, ..., and so on.

 For example the circuit calculating S3 for m = 4 is shown in Figure 3.3. The

minimal polynomial of α3 is

 f3(x) = 1 + x + x2 + x3 + x4

and let b(x) = b0 + b1x + b2x2 + b3x3 be the remainder on dividing r(x) by f3(x). Then

 S3 = b(α3) = b0 + b1α3 + b2α6 + b3α9 = b0 + b3α + b2α2 + (b1 + b2 + b3) α3.

The circuit in Figure 3.3 therefore operates by first dividing r(x) by f3(x) to generate b(x)

and then calculating b(α3). The result is obtained after the register b0 - b3 have been

clocked 15 times.

Figure 3.2: Circuit Computing S3 for m = 4.

It is therefore observed that the syndromes Sj depends only on the error poly-

nomial e(x), and so if no errors occur, the syndromes will all be zero.

To generate the syndromes, express the syndrome equation as

Sj = (...((rn−1 ∗ αj + rn−2) ∗ αj + rn−3) ∗ αj +) ∗ αj + r0 (3.11)

Thus a circuit calculating the syndrome Sj carries out (n − 1) multiplications

by the constant value αj and (n− 1) single bit summations. Note that because

rj ∈ GF (2) the equation S2i = S2
i is met [19].

For example a circuit calculating S3 for m = 4 and p(x) = x4 + x + 1 is

presented in Fig. 3.2. Initially the register si (0 ≤ i ≤ 3) is set to zero. Then

the register s0 − s3 is shifted 15 times and the received bits ri (0 ≤ i ≤ 14) are

clocked into the syndrome calculation circuit. Then the S3 is obtained in the

s0 − s3 registers.

3.3.2 Solving the Key Equation

The second stage of the decoding process is finding the coefficients of the error

location polynomial σ(x) = σ0 + σ1x + ... + σtx
t using the syndromes Sj. The

relationship between the syndromes and these values of σj is given by

t∑

j=0

St+i−jσj = 0 (3.12)

for i = 1, ..., t , and the roots of σ(x) give the error positions. The coefficients

of σ(x) can be calculated by methods such as the Peterson-Gorenstein-Zieler

algorithm [20] or Euclid’s algorithm [21] or Berlekamp-Massey Algorithm (BMA)

[22] which is the most efficient method in practice [20].

In the BMA, the error location polynomial σ(x) is found by t − 1 recursive

14

iterations. During each iteration n, the degree of σ(x) is usually incremented by

one. Through this method the degree of σ(x) is exactly the number of corrupted

bits, as the roots of σ(x) are associated with the transmission errors. The BMA

is based on the property that for a number of iterations r greater or equal the

number of errors ta that have actually occurred (n ≥ ta), the discrepancy dn = 0,

where dn is expressed as

dn =
t∑

j=0

S2n−j−1σj (3.13)

On the other hand if n < ta, the discrepancy dn is non zero and is used to modify

the degree and coefficients of σ(x). What the BMA essentially does therefore is

compute the shortest degree σ(x) such that Eq. 3.13 holds.

The BMA with inversion is given below. Initial values:

dp =

1 , S1 = 0

S1 , S1 6= 0

σ0(x) = 1 + S1x

β1(x) =

x3 , S1 = 0

x2 , S1 6= 0

l1 =

0 , S1 = 0

1 , S1 6= 0

n = 1

(3.14)

The error location polynomial σ(x) is then generated by the following set of

recursive equations:

15

 53

B2 B3 B4 Bt

C1 C2 C3 C4 Ct

Sj-1 Sj-2 Sj-3 Sj-4 Sj-t+1

Sj+2 Sj+1

Sj

inv

dr
reg

0

0
1

Figure 3.4. Berlekamp Massey Algorithm with inversion.

 In some applications it may be beneficial to implement the BMA without inversion.

A version of the BMA achieving this was presented in [8, 56]. For inversionless BMA the

initial conditions are the same as for the BMA with inversion given in equ(3.17). The error

location polynomial is then generated by following recursive equations:

d S

x d x d x

bsel
if d or r l
if d and r l

x
x x if bsel
x x if bsel

l
l if bsel

r l if bsel

d
d if bsel

d if bsel
r r

r i
r

r i
i

t

r
p

r
r

r

r r

r r

r
r

r

r
r

r

p
p

r

= ⋅

= ⋅ − ⋅

=
= <
≠ ≥

=
⋅ =

⋅ ≠

=
=

⋅ − + ≠

=
=

≠

= +

⋅ − +
=

−

+

−

+

∑σ

σ σ β

β
β

σ

()

() () ()

()
()

()

() () ()

()
()

()

.

2 1
0

1

1
2

2 1

1

0 0
1 0

0
0

0
2 1 0

0

0
1

 (3.19)

 In conclusion, inversionless BMA is more complicated and requires a greater

number of multiplications than the BMA with inversion. On the other hand, inversion can

take (m-1) clock cycles (see Section 2.7) and therefore even if parallel multiplication is

Figure 3.3: Berlekamp Massey Algorithm with Inversion

dn =
t∑
i=0

σni .S2n−i+1

σn(x) = σn−1(x)− d−1p .dn.β
n(x)

bsel =

0 , dn = 0 or n < ln

1 , dn 6= 0 or r ≥ ln

βn+1(x) =

x3.βn(x) , bsel = 0

x2.σn−1(x) , bsel 6= 0

ln+1 =

ln , bsel = 0

2 ∗ ln − ln + 1 , bsel 6= 0

dp =

dp−1 , bsel = 0

dn , bsel 6= 0

n = n+ 1

(3.15)

These calculation are carried out for n = 1, ..., t− 1. A circuit implementing the

BMA is given in Fig. 3.3. The error location polynomial σ(x) is obtained in the

C registers after t− 1 iterations.

3.3.3 Finding the Error Locations

The last step in decoding BCH codes is to find the error location numbers.

These values are the reciprocals of the roots of σ(x) and may be found simply

16

 54

used this constraint will slow down the algorithm. Therefore the inversionless algorithm

has to be implemented for some BCH codes.

1.4.3 Finding the error locations

 The last step in decoding BCH codes is to find the error location numbers. These

values are the reciprocals of the roots of σ(x) and may be found simply by substituting 1, α,

α2, ... , αn-1 into σ(x). A method of achieving this using sequential substitution has been

presented by Chien [10]. In the Chien search the sum

 σ0 + σ1αj + σ2α2j + ... + σtαtj (j= 0, 1, ... , k-1) (3.20)

is evaluated every clock. It can be noticed that if σ(αj)= 0, the received bit rn-1-j is

corrupted. Therefore if for clock cycle j the sum equals zero the received bit rn-j-1 should be

corrected.

 A circuit implementing the Chien search is shown in Figure 3.5. The operation of

this circuit is as follows. The registers c0, c1, ..., ct are initialised by the coefficients of the

error location polynomial σ0, σ1, ... , σt. Then the sum c j
j

t

=
∑

0

 is calculated and if this equals

zero, the error has been found and after being delayed in a buffer, the faulty received bit is

corrected using an XOR gate. On the next clock cycle each value in the ci register is

multiplied by αi (using a constant multiplier), and the sum c j
j

t

=
∑

0

 is calculated again. The

above operations are carried out for every transmitted information bit (that is k times).

buffer

c0 c1 c2 ct

*α *α2 *αt

c j
j

t

=
∑

0

input

output

Figure 3.4: Chien’s Search Circuit.

by substituting 1, α, α2, ..., αn−1 into σ(x). A method of achieving this using

sequential substitution has been presented by Chien [23]. In the Chien search

the sum

σ0 + σ1α
j + σ2α

2j + ...+ σtα
tj (3.16)

for j = 0, 1, ..., k−1, is evaluated every clock. It can be noticed that if σ(αj) = 0,

the received bit rn−1−j is corrupted. Therefore if for clock cycle j the sum equals

zero the received bit rn−j−1 should be corrected.

A circuit implementing the Chien search is shown in Fig. 3.4. The operation of

this circuit is as follows, the registers c0, c1, ..., ct are initialized by the coefficients

of the error location polynomial σ0, σ1, ..., σt. Then the sum
t∑

j=0

cj is calculated

and if this equals zero, the error has been found and after being delayed in a

buffer, the faulty received bit is corrected using an XOR gate. On the next

clock cycle each value in the ci register is multiplied by αi (using a constant

multiplier), and the sum is calculated again. The above operations are carried

out for every transmitted information bit (that is k times).

3.4 Summary

In this chapter an overview on BCH code is given. In this thesis BCH codes soft

decoders are proposed; accordingly, this chapter contains the definition of BCH

codes, and basic encoding and decoding procedures, which will be later on used

to indicate the performance of our proposed decoders.

17

Chapter 4

Soft Decoding Algorithms Survey

BCH codes [24] are powerful linear block codes that are used widely in multi-

media and storage applications; this is due to the fact that BCH codes acquire

strong correcting capability and can be easily encoded and decoded.

Conventional decoding of BCH codes [25] is simple and suitable for VLSI im-

plementation. Modifications to the Berlekamp algorithm were proposed [8,26] to

have an efficient implementation of the decoding algorithm. Yet hard decision

decoding has limited decoding capability as it disregards channel information

which is available in most of BCH code applications. Efficient usage of the

channel information was studied through the years [27–38] and can be divided

into three main classes. The choice of a suitable class of algorithms from these

classes depends on the codeword length, message length, correcting capability

and code rate. The previous factors play a major role in both the performance

and complexity of the decoding procedure, in our work we focus on medium to

large codes with codeword length n > 200 and with high code rates, n/k > 0.9 ,

due to their various applications [5, 6]. The first class of decoding algorithms is

called least reliable bits reprocessing techniques and will be explained in section

4.1. The second class of decoding algorithms rely on the most reliable bits repro-

cessing, and will be detailed in section 4.2. The third class is belief propagation

decoding algorithms, and will be explained in section 4.3.

4.1 Least Reliable bits Reprocessing Decoding Algorithms

The first class of algorithms relies on the bits with the least reliable channel

information. GMD [27], SEW [28], and Chase [29] algorithms produce a list

18

of candidate codewords by flipping the least reliable bits and then algebraically

decoding the resultant bit sequence. The original algorithm proposed by Chase

was modified in [30] to compute the candidate codewords in only one run. The

Chase algorithm and its modification offer a trade off between performance and

complexity according to the number of flipped bits in the codeword; however,

the performance gain obtained is insufficient compared to its complexity.

Chase Algorithm

Input : e : extra correctable bits, S : recieved bits,

: min error weight = MAX

I. sort input reliabilities in L

II. for (j = 1 ; j ≤ e ; j + +)

a. flip bit at location lj in S

b. Decode S algebraiclly to Sdecoded

c. caclulatethe error vector, the bit− wise xor
between Sdecoded in X

d. Calculate the sum of reliabilities at error

locations in error weight

e. if error weight < min error weight

min error weight = error weight, err = X

The soft decoding algorithms [31,32] are based on obtaining a valid codeword

which varies from the received one at the least reliable positions only. A modifi-

cation [33] to the previous algorithms allows an extra error compensation. The

algorithm with one extra error compensation offers acceptable performance with

low complexity for codes with high rates and medium length. Suppose an (n, k, t)

BCH code has an n-bits codeword, k-bits message and t correctable bits using

algebraic decoders, operating under Galois field GF (2m), where m = log2(n+1),

and α is a primitive root over the primitive polynomial f(x).

Consider a message M = [mo m1 m2 . . . mk−1] encoded to a codeword

C = [co c1 c2 . . . cn−1], and transmitted through a channel, the received signal

at the decoder is Rl = [Rl0 Rl1 Rl2; . . . Rln−1], where the magnitude of Rli
represents the reliability of the received bit i. The hard decision of the received

19

sequence is R = [ro r1 r2 . . . rn−1].

The Syndrome polynomial, S (x) = S1 + S2X + S3X
2 · · · S2tX

2t−1, can be

expressed as

Si = R (αi)
v

=
∑

j=1

(
αi
)ej v

=
∑

j=1

(
βej
)i

(4.1)

for i = 1, 2...t, where ei is the ith error location, and βej = αej indicates the

corresponding error locator.

The input bits reliabilities are sorted into the set L = [l1 l2 . . . l2t], where

the absolute value of the reliability of bit li is less than that of bit li+1. From

the error location vector L, the error locator vector β = [β0 β1 . . . β2t−1] is

calculated as βi = αli.

The relation between the error locator matrix B = [β β2 . . . β2t], the

syndrome S and the discrepancy vector ∆ = [δ1 δ2 . . . δ2t] is ∆ = B × Γ + S,

which is expressed as

βl1 βl2 · · · βl2t
β2
l1

β2
l2
· · · β2

l3
...

... · · · ...

β2t
l1

β2t
l2
· · · β2t

l2t

γ1

γ2
...

γ2t

+

S1

S2
...

S2t

=

δ1

δ2
...

δ2t

(4.2)

where Γ = [γ1 γ2 . . . γ2t] is the error magnitude set corresponding to error bits

at L. In other words, γi represents whether an error exists at bit location li or

not.

In [32], two decoding algorithms are proposed to solve Eq.(4.2). The first

is by iterating on all error locations Γ and then test the resultant vector ∆, if

∆ = 0, then Γ corresponds to error locations at L, i.e if γi = 1 then there is an

error at bit location i in L. This technique is referred to as the heuristic error

magnitude solver algorithm.

The second technique is to obtain the inverse of the B matrix; thus, Γ is

calculated by solving Γ = B−1S. If Γ is a binary sequence, then Γ corresponds

to error locations at L. This technique is referred to as the Bjorck–Pereyra error

magnitude solver algorithm.

These two proposed algorithm correct up to 2t errors in the received sequence.

Figure 4.1 shows the performance of soft decoding versus the soft decoding

algorithm explained at [32], while figure 4.2 shows the performance of the GMD

20

An Improved Soft BCH Decoder with
One Extra Error Compensation

Yi-Min Lin, Hsie-Chia Chang, and Chen-Yi Lee

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

E-mail: ymlin@si2lab.org

Abstract—In existing soft decision algorithms, a soft BCH
decoders provides better error correcting performance but has
much higher hardware complexity than a traditional hard BCH
decoder. In this paper, a soft BCH decoder with both better error
correcting performance and lower complexity is presented. The
low complexity feature of the proposed architecture is achieved
by dealing with least reliable bits. By compensating extra one
error outside the least reliable set, the error correcting ability
is improved. In addition, the proposed error locator evaluator
evaluates error locations without Chien search, leading to high
throughput. As compared with the traditional hard BCH decoder,
the experimental result reveals that our proposed improved soft
BCH decoder can achieve 0.75db coding gain for BCH (255,239)
code. Implemented in standard CMOS 90nm technology, it can
reach 316.3Mb/s throughput at 360MHz operation frequency
with gate-count of 4.06K according to the post-layout simulations.

I. INTRODUCTION

The Bose-Chaudhuri-Hocquenghen (BCH) [1] codes are
popular in storage and communication systems, such as flash
device, DMB-T [2] and DVB-S2 [3] broadcasting systems. Re-
cently, soft decoding of BCH codes has aroused many research
interests. Forney developed the generalized-minimum-distance
(GMD) [4] to generate a list of candidate codewords and
choose a most likely codeword from the list. Other algorithms
with similar concept, such as Chase [5] and SEW [6], are
also widely used in many applications. Moreover, Therattil
and Thangaraj provided a sub-optimum MAP BCH decoding
method with Hamming SISO decoder in 2005 [7].

In general, the complexity of a soft BCH decoder is much
higher than a hard BCH decoder for decoding an entire code-
word. Nevertheless, soft BCH decoders with lower complexity
can be revealed by focusing on the least reliable bits instead
of the whole codeword. A soft BCH decoding algorithm
using error magnitudes to deal with the least reliable bits was
developed in 1997 [8]. However, Fig. 1 shows that there is
about 0.25 db performance loss at BER = 10−5 in AWGN
channel as compared to hard decision BCH decoder for BCH
(255,239) code. For the existing soft decision algorithms, the
soft BCH decoder provides either better error correcting per-
formance or lower hardware complexity than a traditional hard
BCH decoder. In this paper, a soft BCH decoder which has
similar concept as [8] and enhances the correcting performance
by compensating one extra error while maintaining the low

0 1 2 3 4 5 6 7 8

10
−4

10
−2

10
0

Eb/No(db)

B
E

R

HARD BCH (255,239)

SOFT BCH (255,239)

Fig. 1. Simulation results for BCH (255,239)

hardware complexity is presented.
The conventional BCH decoding contains three major steps

: syndrome calculator, key equation solver, and Chien search.
For long block length BCH decoders, the decoding latency
is dominated by the syndrome calculator and Chien search.
Unlike conventional algorithms using parallelism Chien search
to enhance throughput [9] [10], an error location aimed
architecture to eliminate Chien search is also proposed in this
paper.

This paper is organized as follows. Section II describes the
proposed improved soft BCH decoding algorithm. The corre-
sponding architectures are presented in section III. Based on
the proposed method, Section IV demonstrates the simulation
and implementation results. Section V concludes the paper.

II. PROPOSED COMPENSATION SOFT BCH DECODING

The proposed soft BCH decoder shown in Fig. 2 includes
three major steps: syndrome calculator, error locator eval-
uator, and compensation error magnitude solver. From the
received polynomial R(x), the syndrome polynomial S(x) =
S1 + S2x

1 + · · ·+ S2tx
2t−1 is expressed as

Sj = R(αj) =

v∑

i=1

(αj)ei =

v∑

i=1

(βei)
j (1)

for j = 1, 2, · · · , 2t, where α is the primitive element over
GF (2m). Notice that ei is the i-th actual error location and
βei = αei indicates the corresponding error locator.

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 3941

Figure 4.1: BCH code(255,239) Hard Decoding versus Soft Decoding

decoding algorithm at [27], the algorithm proposed at [33] and hard decoding.

4.2 Most Reliable Bits Reprocessing Decoding Algorithms

The second class of algorithms relies on the bits with the most reliable channel

information. The motivation behind this category of algorithms is that these

bits have few error bits. The correction of these few error bits would result in

an error-free section of the codeword that could be used to generate the received

codeword. Fossorier and Lin [34] first proposed this class of algorithms and

later modifications [35, 36] decrease their time and space complexity, but the

complexity of such algorithms remains prohibitively large and more suitable for

short codes with low rates.

All most reliable bits reprocessing techniques have one step in common. This

step is to perform permutation on the generator matrix G and the received data

r = [r0 r1 ... rn−1] according to their reliability in descending order of reliability

r′ = [r′0 r
′
1 ... r

′
n−1] such that |ri| > |rj| if i > j. The resultant generator matrix

G′ generated by permuting the columns of G by π1 the reordering function

performed on r to obtain r′. The first k columns are not necessarily independent;

thus, to obtain a generator matrix G′′ with the first k columns independent

Gaussian elimination operation is performed on G′. The resultant function is

21

TABLE I
COMPARISON TABLE FOR A (n, k, t) BCH CODE

(n,k,t) (n,k,t) (255,239,2) (255,239,2)
Hard BCH Soft BCH Hard BCH Soft BCH
with iBM Proposed with iBM Proposed

register 5t + 2 2t2 + 6t 12 20
multiplier 3t + 3 3t − 1 9 5
constant

3t t+ 1 6 3
multiplier

square 0 2t + 1 0 5
LUT 0 1 0 1

latency 2n+ 2t
n+ 22t+ 514 272
t− 1

IV. SIMULATION AND IMPLEMENTATION RESULTS

Simulation and implementation results for our proposed
soft BCH decoder are presented in this section. Fig. 5 shows
the performance comparison for 2-error-correcting (255,239)
BCH code under BPSK modulation in AWGN channel. The
achieved coding gain is about 0.75dB over the hard BCH
decoder at BER = 10−5. Our proposed decoder can outperform
0.35dB and 0.2db coding gain as compared with GMD [4] and
sub-optimum MAP [7] respectively.

The BCH (255,239) decoder is implemented with hard
decision and soft decision methods and demonstrated in TA-
BLE II. The hard BCH decoder uses iBM algorithm to solve
key equation and needs Chien search to get error locations.
Computing error locations without Chien search, the soft BCH
decoder has almost half latency of the hard BCH decoder.
Hence, the soft BCH decoder has much better throughputs
than the hard BCH decoder. According to the post-layout
simulations, the soft BCH decoder saves 47.1% clock cycle
latency with similar gate count and operation frequency as
compared with the hard BCH decoder in standard CMOS
90nm technology.

V. CONCLUSION

This paper provides an improved soft BCH decoder which
performs better performance and comparable hardware com-
plexity as compared to the conventional hard BCH decoder.
The complexity is reduced by dealing with the least reli-
able bits, and the error correcting ability is enhanced by

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No(db)

B
E

R

BCH (255,239) HARD

BCH (255,239) PROPOSED

BCH (255,239) GMD

Fig. 5. Simulation results for BCH (255,239) code

TABLE II
SUMMARY OF IMPLEMENTATION RESULTS

Hard BCH (255,239) t = 2 Soft BCH (255,239), t = 2

Technology 90nm 90nm
Architecture iBM + Chien Search CEMS w/o Chien Search
Operation 360MHz 360MHz
Frequency (Post Layout) (Post Layout)
Core Area 14400µm2 13225µm2

Gate Count 4.38K 4.06K
Latency 514 272

Throughput 167.4Mb/s 316.3Mb/s

compensating an extra error outside the least reliable set. In
addition, Chien search can be eliminated with a counter that
evaluates error locations in the proposed error locator evaluator
procedure. Thus, a lot of redundant decoding latencies can be
eliminated and higher throughputs can be achieved without
parallelism.

From the experimental results of BCH (255,239) code, the
proposed soft decoder can give 0.75dB coding gain over the
hard BCH decoder at BER = 10−5. Also, it can achieve
316.3Mb/s throughput while reducing 7% gate-count as com-
pared with the 167.4Mb/s traditional hard BCH decoder in
CMOS 90nm technology.

ACKNOWLEDGEMENT

The authors thank Chip Implementation Center for provid-
ing the CAD tools. This work was supported by NSC and
MOEA of Taiwan, R.O.C., under grant NSC 97-2221-E-009-
166 and 98-EC-17-A-01-S1-124 respectively.

REFERENCES

[1] C. R. Baugh and B. A. Wooley, Theory and Practice of Error Control
Codes. Addison-Wesley, 1983.

[2] Framing Structure, Channel Coding and Modulation for Digital Tele-
vision Terrestrial Broadcasting System, NSPRC Std. GB 20 600-2006,
2007.

[3] Digital Video Bracasting (DVB) Second Generation System for Broad-
casting, Interactive Services, News Gathering and Other Broadband
Satellite Applications, ETSI Std. En 302 307, 2005.

[4] G. D. Forney, “Generalized Minimum Distance Decoding,” IEEE Trans.
Inform. Theory, vol. 12, p. 125V131, Apr. 1966.

[5] D. Chase, “A Class of Algorithms for Decoding Block Codes with
Channel Measurement Information,” IEEE Trans. Inform. Theory, vol.
IT-18, p. 170V182, Jan. 1972.

[6] M. Lalam, K. .Amis, D. Lerous, D. Feng, and J. Yuan, “An Improved
Iterative Decoding Algorithm for Block Turbo Codes,” IEEE Int. Symp.
on Info. Theory, pp. 2403–2407, July 2006.

[7] F. Therattil and A. Thangaraj, “A Low-complexity Soft-decision De-
coder for Extended BCH and RS-Like Codes,” IEEE Trans. Inform.
Theory, p. 1320V132, Sept. 2005.

[8] W. J. ReidIII, L. L. Joiner, and J. J. Komo, “Soft Decision Decoding of
BCH Codes Using Error Magnitudes,” IEEE Int. Symp. on Info. Theory,
p. 303, June 1997.

[9] Y. Chen and K. Parhi, “Small Area Parallel Chien Search Architectures
for Long BCH Codes,” IEEE Trans. on VLSI, vol. 12, no. 5, pp. 545–
549, May 2004.

[10] J. Cho and W. Sung, “Strength-Reduced Parallel Chien Search Archi-
tecture for Strong BCH Codes,” IEEE Trans. on Circuits and Systems
II, vol. 55, no. 5, pp. 427–431, May 2008.

[11] I. S. Reed, M. T. Shih, and T. K. Truong, “VLSI Design of Inverse-
Free Berlekamp-Massey Algorithm,” Proc. Inst. Elect. Eng, vol. 138,
pp. 295–298, Sept. 1991.

3944

Figure 4.2: BCH code(255,239) Hard Decoding versus Soft Decoding and GMD

π2. The generator matrix G′′ is in the form

G = [I P] =

1 0 0 p11 · · · p1(n−k)
... · · · ...

... · · · ...

0 0 1 pk1 · · · pk(n−k)

 (4.3)

All algorithms based on most reliable bits reprocessing are variation of the

one suggested at [34]. After the preprocessing stage explained earlier, the or-

dered statistics algorithm re-encodes the k−most reliable bits in r based on the

fact that these location are with least probability of error; thus, the generated

codeword is most likely the optimum received codeword. An order i ordered

statistics algorithm flips all combination of i bits, then the resultant codeword

discrepancy from the received codeword is calculated. The optimum codeword

is the one with the least error weight, as shown below.

22

Ordered Statistics Algorithm

Input : i : order of reprocessing, s recieved ordered

reliabilities, min error weight = MAX

I. sort input reliabilities into r

II. hard decode r intox

III. itterate on all error patterns e in i bits of the first

k locations of x

a. recode x to v using G′′

b. calculate descripancy weight of v from r

c. if descripancy weight < min error weight

min error weight = descripancy weight,

error = π−11 [π−12 [e]]

4.3 Belief Propagation (BP) Based Algorithms

The third class of algorithms was motivated by the superior performance of

belief propagation decoding for LDPC codes. The application of this algorithm

directly to BCH codes resulted in poor performance due to the dense nature

of their parity check matrices which resulted in large number of short cycles in

their Tanner graph. This motivated the modification of the parity check matrix

which was proposed in [37,38]. The parity check matrix of the code is modified

according to the reliability of the receive sequence in ascending order, so that

least reliable positions correspond to sparse columns in the parity check matrix.

23

Adaptive Belief Propagation Algorithm

Input : num : number of iterations, S : recieved bits

I. sort input reliabilities in L

II. for (j = 1 ; j ≤ num ; j + +)

a. adapt the parity check matrix according to

output of stage j − 1

b. Perform Belief propagation decoding using

the current parity check matrix

e. if all parity checks pass

Sdecoded = output of BP decoder

The resultant decoders are more complex than the belief propagation de-

coders, which makes them inappropriate for VLSI implementation at such code

rate and word length.

4.4 Summary

In this chapter BCH soft decoding algorithms were proposed. The algorithms

proposed can be classified into three major types, least significant bits reprocess-

ing algorithms, most significant bits reprocessing algorithms and belief propa-

gation based algorithms. As we target decoders for long codes with high rates

most significant bits reprocessing algorithms and belief propagation algorithms

show large complexity compared to its coding gain; thus, least reliable bits re-

processing algorithms was the most suitable class of decoding algorithms. In

our work we extend the work in [31] into a programmable decoder, where the

coding gain can be traded off with the decoder complexity.

24

Chapter 5

Galois Field Arithmetic Units

Survey

Galois field operations in BCH decoding are addition, multiplication, exponen-

tiation and inversion. With inversion being viewed as a special case of expo-

nentiation, as will be shown later, and addition being a simple xor operation.

The arithmetic operations performed can be classified to multiplication and ex-

ponentiation operations.

This chapter will survey the algorithms and architectures used in multiplica-

tion and exponentiation operations, and will be divided as follows, multiplication

operations will be discussed in section 5.1, and exponentiations will be discussed

in section 5.2.

5.1 Galois Field GF (2m) Multipliers

Multipliers can be classified according to the basis function of the elements.

Another way would be according to the method of bit processing whether it is

serial processed (bit serial) or parallel processed (bit parallel). A category of

multipliers that exists between bit serial and bit parallel operates on groups of

bits (digits). Digit serial processing of bits is a processing technique where bits

are grouped into digits which are processed together as one unit. In this section

we focus on basis classification, and we point out its variations according to

other types of classifications.

25

5.1.1 Polynomial Basis Multipliers

Polynomial basis multipliers form a popular category of finite field multipliers.

These multipliers are easily implemented, reasonably hardware efficient. Let A

and B are two elements over GF (2m) represented using polynomial basis, their

multiplication C = AB mod F (x) . As A and B can be represented in the

polynomial basis then:

A =
m−1∑

i=0

aix
i, and B =

m−1∑

i=0

bix
i, (5.1)

the product C is given by:

C =
m−1∑

i=0

cix
i = A (bm−1 bm−2 . . . , bo), (5.2)

this can be formulated based on the way the bits are processed, there are two

kinds of polynomial basis bit-serial multipliers. They are called the Least signif-

icant bit first LSB-first and the most significant bit first MSB-first polynomial

basis multipliers. In the next subsection we give detailed explanation of the

operation of both these algorithms for bit serial case. For bit parallel and digit

serial case, similar classification is made with a different problem formulation.

LSB-First Algorithm

In the LSB-first bit-serial algorithm, the bits are processed starting from the

LSB. To obtain the LSB-first bit-serial PB multiplier, the product C can be

formulated as:

C = bm−1(Ax
m mod F (x)) + . . .+ b1(Ax mod P (x)) + b0(A mod P (x)). (5.3)

The previous relation can be formulated using the LSB-first algorithm below.

Equations 2 − a, and 2 − b in the algorithm are depicted in figure 5.1, where

2− a is calculated at the right part, and 2− b is calculated at the left part.

26

13

Algorithm 1 The LSB-first bit-serial PBM
Inputs: A,B ∈ GF (2m), F (x)
Output:C = A ·B modF (x)
Step 1:A′ := A, Y := 0
Step 2: For i := 0 to m− 1
Step 3: Y := biA

′ + Y
Step 4: A′ := A′ · xmodF (x)
Step 5:C := Y

(a)

AND

1 2 1 0m m
b b b b

x A! Y

()i
A

(1)i
A

"

C

XOR

(b)

Figure 2.1: The LSB-�rst bit-serial polynomial basis multiplication (PBM) [6]: (a)
algorithm, (b) architecture.

1f2mf

(1)
2

i

ma
(1)
1
ia (1)

0
ia

()
3

i

ma
()
1

i

ma
()
1

i

ma
()
0
ia

...

(1)
1

i

ma

()
1

i

ma1mf
()
1

i

ma
()
2

i

ma

Figure 2.2: The architecture of the x-module for general irreducible polynomials.

Figure 5.1: LSB-First Bit-Serial Polynomial Basis Multiplier

LSB-first bit-serial Polynomial Basis algorithm

Inputs : A, B ∈ GF (2m), F (x)

Output : C = A.B mod F (x)

1 - A
′
= A, Y = 0

2 - For i = 0 : m− 1

a - Y = biA
′
+ Y

b - A
′
= A

′
.x mod F (x)

3 - C = Y

MSB-First Algorithm

The other bit-serial polynomial basis multiplier is the MSB-first bit-serial mul-

tiplier. To obtain this bit-serial multiplier, one can use the Horner’s rule to

calculate the product C can be formulated as:

C = (. . . (bm−1Axmod P (x) + bm−2A)x mod P (x) + . . . b1A)

x mod F (x) + boA. (5.4)

In this multiplication algorithm, as shown in the algorithm below, the bits

are processed starting from the MSB of B. Equation 1− a is divided into three

parts, a constant multiplication by x part, an AND gate level to perform biA,

and an XOR level to perform the addition as shown in Fig. 5.2.

27

14

Algorithm 2 The MSB-first bit-serial PBM
Inputs: A,B ∈ GF (2m), F (x)
Output:C = A ·B modF (x)
Step 1:A′ := 0
Step 2: For i := m− 1 downto 0
Step 3: A′ := A′ · xmodF (x) + bi ·A
Step 4:C := A′

(a)

A

x A!

1 2 1 0m m
b b b b

C

AND

XOR

(b)

Figure 2.3: The MSB-�rst bit-serial PBM [6]: (a) algorithm, (b) architecture.

C =(· · · (bm−1AxmodF (x) + bm−2A)xmodF (x)+

· · ·+ b1A)xmodF (x) + b0A.
(2.9)

In this multiplication algorithm, as shown in Fig. 2.3a, the bits are processed by

starting from the MSB (Most Signi�cant Bit) of B, i.e.,bm−1. The multiplication of

A′ by x followed by the reduction by F (z) is the same as (2.8). The architecture

of this multiplier is depicted in Fig. 2.3b. In this case, we need two m-bit latches

to hold the value of A and A′. Also, we need m two-input AND gates as well as m

two-input XOR gates as labeled with AND and XOR in Fig. 2.3b. The x-module in

Fig. 2.3b is the same as introduced for Algorithm 1 in Fig. 2.2. This architecture

requires (2m − 1) two-input AND gates, (2m − 1) two-input XOR gates, and two

m-bit latches. The critical path delay of this multiplier equals TA + 2TX as there are

one multiplication and two additions in the critical path. Finally,the latency of the

MSB-�rst polynomial basis multiplication algorithm is m clock cycles.

Figure 5.2: MSB-First Bit-Serial Polynomial Basis Multiplier

MSB-first bit-serial Polynomial Basis algorithm

Inputs : A, B ∈ GF (2m), F (x)

Output : C = A.B mod F (x)

1 - For i = m− 1 down to 0

a- A
′
= A

′
.x mod F (x) + biA

2 - C = A
′

Logic level Implementation of Polynomial Basis Multipliers

Various polynomial basis multipliers were proposed through the years [39], [40],

[41], [42] and [43]. The most efficient of those is the LSB-first algorithm proposed

in [39]. Figure 5.3 shows the implementation of a GF (24), and figure 5.4 shows

a cell of the multiplier.

As shown in figure 5.4, the multiplier consists of m2 cells, with each cell

containing 2 AND gates, 2 XOR gates, and 3 1-bit latches. The critical path

of the multiplier T is T = TAND + TXOR , where TAND denotes the delay of an

AND gate, and TXOR denotes the delay of an XOR gate. The latency of this

unit is m cycles.

5.1.2 Shifted Polynomial Basis Multipliers

Shifted Polynomial Basis Multipliers are similar to Polynomial Basis Multipliers,

with a shift in the basis representation of the elements by x−v . With the proper

28

104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

Fig. 2. Basic cells in the LSB-first semisystolic array multiplier.

Fig. 3. System level diagram of the LSB-first semisystolic array multiplier
over GF(24).

1) Multiplier Architecture: A MSB-first semisystolic
cellular-array multiplier based on (5) and (13) was introduced
in [4]. A similar LSB-first semisystolic multiplier can be
designed based on (4) and (10). The gate level circuit diagram
of each basic cell and the system level block diagram for
LSB-first multiplier over GF are shown in Figs. 2 and
3, respectively. This multiplier can be pipelined by placing
delay elements at feedforward cutsets shown in dashed lines
in Fig. 3 to reduce critical path delay time.

2) VLSI Chip Implementation of Bit-Level Pipelined
LSB-First Semisystolic Multiplier:A bit-level pipelined
parallel-in parallel-out semisystolic multiplier over GF
was implemented using CMOS 1.2m n-well technology.
The chip layout is shown in Fig. 4. A true single phase
clocking scheme [23] was used. The chip is a multistage
pipeline and can produce one result every clock cycle.
The chip has an active area of 0.434 mm2 and requires

Fig. 4. Layout of the LSB-first semisystolic multiplier chip.

TABLE I
COMPARISON OFPERFORMANCECHARACTERISTICS FORSYSTOLIC AND BIT-LEVEL

PIPELINED SEMISYSTOLIC MULTIPLIERS BASED ON LSB-FIRST SCHEME

1076 transistors and is programmable for different primitive
irreducible polynomials. The design has been functionally
verified using IRSIM [24]. Using Hspice simulator, the
critical path was found to be 2.7 ns.

3) Comparison and Comments:As pointed out in the last
subsection, multiplication based on the LSB-first scheme
has less computation delay time than the MSB-first due to
the increase of parallelism among internal computations.
The basic cell computation time in the LSB-first
semisystolic cellular-array multiplier has been reduced from

to where and
denote AND and XOR gate delay time, respectively.

As a result, 30% reduction in total computation delay of
one multiplication operation can be achieved by utilizing
the LSB-first scheme as opposed to MSB-first. Note that
the bidirectional edges in the vertical datapath in Fig. 3 do
not introduce any feedback since they only carry broadcast
signals. This can be observed clearly by replacing the basic
cells in Fig. 3 by the detailed circuit in Fig. 2.

The systolic multiplier in [7] was also based on the LSB-
first scheme. However, this fully systolic architecture requires
twice the number of latches when compared with the proposed
bit-level pipelined LSB-first semisystolic multiplier and has a
latency which is three times as that of the proposed multiplier.
Their performance characteristics are compared in Table I.

C. Generalized Cellular-Array Multiplier

Although the semisystolic multipliers obtained by direct
algorithm-architecture mapping are programmable with re-

Figure 5.3: Logic Level Diagram of the LSB-First Semisystolic Array Multiplier
over GF (24)

104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

Fig. 2. Basic cells in the LSB-first semisystolic array multiplier.

Fig. 3. System level diagram of the LSB-first semisystolic array multiplier
over GF(24).

1) Multiplier Architecture: A MSB-first semisystolic
cellular-array multiplier based on (5) and (13) was introduced
in [4]. A similar LSB-first semisystolic multiplier can be
designed based on (4) and (10). The gate level circuit diagram
of each basic cell and the system level block diagram for
LSB-first multiplier over GF are shown in Figs. 2 and
3, respectively. This multiplier can be pipelined by placing
delay elements at feedforward cutsets shown in dashed lines
in Fig. 3 to reduce critical path delay time.

2) VLSI Chip Implementation of Bit-Level Pipelined
LSB-First Semisystolic Multiplier:A bit-level pipelined
parallel-in parallel-out semisystolic multiplier over GF
was implemented using CMOS 1.2m n-well technology.
The chip layout is shown in Fig. 4. A true single phase
clocking scheme [23] was used. The chip is a multistage
pipeline and can produce one result every clock cycle.
The chip has an active area of 0.434 mm2 and requires

Fig. 4. Layout of the LSB-first semisystolic multiplier chip.

TABLE I
COMPARISON OFPERFORMANCECHARACTERISTICS FORSYSTOLIC AND BIT-LEVEL

PIPELINED SEMISYSTOLIC MULTIPLIERS BASED ON LSB-FIRST SCHEME

1076 transistors and is programmable for different primitive
irreducible polynomials. The design has been functionally
verified using IRSIM [24]. Using Hspice simulator, the
critical path was found to be 2.7 ns.

3) Comparison and Comments:As pointed out in the last
subsection, multiplication based on the LSB-first scheme
has less computation delay time than the MSB-first due to
the increase of parallelism among internal computations.
The basic cell computation time in the LSB-first
semisystolic cellular-array multiplier has been reduced from

to where and
denote AND and XOR gate delay time, respectively.

As a result, 30% reduction in total computation delay of
one multiplication operation can be achieved by utilizing
the LSB-first scheme as opposed to MSB-first. Note that
the bidirectional edges in the vertical datapath in Fig. 3 do
not introduce any feedback since they only carry broadcast
signals. This can be observed clearly by replacing the basic
cells in Fig. 3 by the detailed circuit in Fig. 2.

The systolic multiplier in [7] was also based on the LSB-
first scheme. However, this fully systolic architecture requires
twice the number of latches when compared with the proposed
bit-level pipelined LSB-first semisystolic multiplier and has a
latency which is three times as that of the proposed multiplier.
Their performance characteristics are compared in Table I.

C. Generalized Cellular-Array Multiplier

Although the semisystolic multipliers obtained by direct
algorithm-architecture mapping are programmable with re-

Figure 5.4: Basic Cells in the LSB-First Semisystolic Array Multiplier.

29

choice of v Shifted Polynomial Basis Multipliers can be formulated in a manner

to reduce the latency of polynomial basis multipliers by half, as will be seen.

Let A and B be two elements over GF (2m) represented using shifted poly-

nomial basis, their multiplication C = AB mod P (x) . As A and B can be

represented in the shifted polynomial basis then:

A =
m−1∑

i=0

aix
i−v, and B =

m−1∑

i=0

bix
i−v, (5.5)

the product C is given by:

C =
m−1∑

i=0

cix
i = boAx

−v + b1Ax
1−v . . . + bm−2Ax

m−2−v

+ bm−1Ax
m−1−v modF (x) (5.6)

with the choice of v =
⌊
m
2

⌋
thus C is given by:

C = boAx
−bm2 c + b1Ax

1−bm2 c . . . + bm−2Ax
m−2−bm2 c+
bm−1Ax

m−1−bm2 c modF (x). (5.7)

It is clear from the equation above that C includes two parts. One part is based

on the positive powers of x and the other part is based on the negative powers

of x. Thus C is given by

C = C ′ + C”, (5.8)

where

C ′ = boAx
−bm2 c + b1Ax

1−bm2 c . . . + bbm2 c−1Ax
−1 modF (x), (5.9)

and

C” = bbm2 cAx
0 + bbm2 c+1Ax

1 . . . + bm−1Ax
m−1−bm2 c modF (x). (5.10)

The previous equations can be formulated based in a hybrid bits processing

manner as will be shown in the next subsection.

30

71

× XOR

m

m m

× XOR

m

m m

D

mod

()F x
m

C
XOR

Figure 4.3: Architecture of the hybrid digit-serial SPB multiplication (Algorithm 4.2).

SPB multipliers.

The main operation in Algorithm 4.1 is the multiplication by x−D followed by a

reduction by F (x). Thus, by making this operation faster, one can reduce the critical

path delay of the proposed multipliers. Assuming T ∈ GF (2m), we have the following

T · x−D =(tm−1x
m−v−1 + · · ·+ tDx

D−v + tD−1x
D−v−1 + · · ·

+ t1x
−v+1 + t0x

−v) · x−DmodF (x),

=(tm−1x
m−v−D−1 + · · ·+ tDx

−v + tD−1x
−v−1 + · · ·

+ t1x
−v−D+1 + t0x

−v−D)modF (x).

(4.12)

There are D terms in (4.12) which should be reduced by F (x) i.e., (tD−1x−v−1 +

· · ·+ t1x
−v−D+1 + t0x

−v−D)modF (x). As a result, the complexity of (4.12) depends

on the irreducible polynomial F (x) and the value of D. In this regard, we present

the following proposition.

Proposition 4.2. Assume F (z) = zm +
m−1∑
i=l+1

fiz
i + flz

l + 1 is an irreducible polyno-

mial over GF (2) and x is a root of F (z). In this case, no reduction is required to

represent x−v−k in the shifted polynomial basis if k ≤ l.

Proof. We can write

Figure 5.5: Hybrid Bit Serial Shifted Polynomial Basis Multiplier

Hybrid Bit Serial Algorithm

Using the same formulation of the equations above. The product C = ABmodF (x)

is calculated as in the algorithm below, equations 2-a, and 2-b in the algorithm

are calculated in the upper part of figure 5.5, while equations 2-c, and 2-d in the

algorithm are calculated in the lower part.

Hybrid bit serial Shifted Polynomial Basis algorithm

Inputs: A, B ∈ GF (2m), F (x), v =
⌊
m
2

⌋

Output:C = A.B mod F (x)

1-A
′
= A, C

′
= 0, C” = 0, A” = A

2-For i = 0 : m
2 − 1

a-A
′
= A

′
.x−1 mod F (x)

b-C
′
= C

′
+ bm

2 −i−1.A
′

c-C” = C” + bm
2 +i.A

”

d-A” = A”.x mod F (x)

3-C = C
′
+ C”

31

80

0
f 0 00
a

0
a0 01

a
1a

2

mb

0

1ma 0
a

1
2

mb

00mf
1ma 2ma

0 2ma1ma01mf 2mf

0
c

1
c2mc1mc

0b
1mb

1
2

mb

1
b

2mb

1
a

0
a

02a3ma2ma 1ma0

0, 1m

1, 1m

, 1
2

m
m

1, 1
2

m
m

0, 2m

1, 2m

1, 2
2

m
m

, 2
2

m
m

0,0

1,0

1,0
2

m

, 0
2

m
,1

2

m

1,1
2

m

1,1

0,1

1
f

(a)

1jf

jf
(1)i

ja (1)i

ja
(1)i

jc
(1)i

jc

(1)
0
ia

(1)
1
i

ja (1)
1
i

ja

(1)
1
i

ma

()i
ja

()i
ja ()i

ja
()i
ja

()i
jc

()i
jc

jf

(b)

1m
f

(1)i

ja (1)i

ja
(1)i

jc
(1)i

jc

(1)
0
ia

(1)
1
i

ja

(1)
1
i

ma

()i
ja

()i
ja ()i

ja
()i
ja

()i
jc

()i
jc

jf

(c)

Figure 5.2: (a) Two-dimensional semi-systolic SPB multiplier, (b) the cell (i, j), (c)
the leftmost column cells (the black dots represent latches).

Figure 5.6: Semi-Systolic Shifted Polynomial Basis Multiplier

Logic level Implementation of Shifted Polynomial Basis Multipliers

The multiplier discussed here was proposed in [44], where the product C =

AB modFP (x) is calculated using the formulation proposed above. The multi-

plier consists of m ∗ m2 cells and a final XOR level as shown in figure 5.6. Each

unit consists of 4 AND, 4 XOR gates, and 5 1-bit latches for general cells.

While contains 3 AND, 3 XOR gates and 5 1-bit latches for left most cells, as

shown in figure 5.7. The critical path of the unit is T = TAND + TXOR, and a

latency of m
2 clock cycles.

32

80

0
f 0 00
a

0
a0 01

a
1a

2

mb

0

1ma 0
a

1
2

mb

00mf
1ma 2ma

0 2ma1ma01mf 2mf

0
c

1
c2mc1mc

0b
1mb

1
2

mb

1
b

2mb

1
a

0
a

02a3ma2ma 1ma0

0, 1m

1, 1m

, 1
2

m
m

1, 1
2

m
m

0, 2m

1, 2m

1, 2
2

m
m

, 2
2

m
m

0,0

1,0

1,0
2

m

, 0
2

m
,1

2

m

1,1
2

m

1,1

0,1

1
f

(a)

1jf

jf
(1)i

ja (1)i

ja
(1)i

jc
(1)i

jc

(1)
0
ia

(1)
1
i

ja (1)
1
i

ja

(1)
1
i

ma

()i
ja

()i
ja ()i

ja
()i
ja

()i
jc

()i
jc

jf

(b)

1m
f

(1)i

ja (1)i

ja
(1)i

jc
(1)i

jc

(1)
0
ia

(1)
1
i

ja

(1)
1
i

ma

()i
ja

()i
ja ()i

ja
()i
ja

()i
jc

()i
jc

jf

(c)

Figure 5.2: (a) Two-dimensional semi-systolic SPB multiplier, (b) the cell (i, j), (c)
the leftmost column cells (the black dots represent latches).

Figure 5.7: Shifted Polynomial Basis Cell (i, j), and the Leftmost Column Cells

5.1.3 Normal Basis Multipliers

Let A, and B be two elements of GF (2m) represented in normal basis. Let C

be their product C = AB mod F (x) . Then, any coordinate of C, say cm−1, is

a function u of A and B which can be obtained by a matrix multiplication, i.e.,

cm−1 = u (A, B) = A .M .BT , where M is a binary m×m matrix known as the

multiplication matrix [45], and T denotes matrix transposition.

Massey and Omura [46] have shown that if the function u (A, B) is imple-

mented to generate cm−1, then the other coordinates of C can be obtained from

the same implementation with inputs appropriately shifted in cyclic fashion,

more precisely, cm−1−i = u (A2i, B2i) as shown in Fig. 5.8, Which was previ-

ously shown to be equivalent to a cyclic shift. The M matrix is constant for a

given field size m, and a normal basis β. The number of 1′s in M is known as the

complexity of the normal basis N and is denoted as CN . The latter determines

the gate counts and, hence, time delay for a normal basis multiplier.

Logic level Implementation Of Massey Omura Multiplier

As the implementation of Massey Omura multipliers [46] depends on the function

u, an example of Massey Omura multipliers is given for GF (25) and β = x5.

From [45]

M =

0 0 1 0 1

0 0 1 1 0

1 1 0 0 0

0 1 0 1 0

1 0 0 0 0

,

33

M ¼

0 0 1 0 1

0 0 1 1 0

1 1 0 0 0

0 1 0 1 0

1 0 0 0 0

2
6666664

3
7777775
;

c4 ¼ a3b3 þ ða0b2 þ a2b0Þ þ ða0b4 þ a4b0Þ þ ða1b2 þ a2b1Þ
þ ða1b3 þ a3b1Þ;

ð1Þ

and the corresponding GF ð25Þ bit-serial multiplier is

shown in Fig. 2b.

In general, the number of AND gates and XOR gates of
Fig. 2a are CN and CN � 1, respectively. Also, its critical

path delay is TA þ log2 CNd eTX, where TA and TX are the

time delays due to one AND gate and one XOR gate,

respectively.
It is well-known that (1) can be rearranged to reduce

the AND gate count of the Massey-Omura multiplier

from CN to m (see, for example, [11]). This increases the

critical path of the multiplier from TA þ log2 CNd eTX to
TA þ ð log2 �d e þ log2 md eÞTX, where � is the maximum

number of 1s among all rows (or columns) of the multi-

plication matrix M. For an optimal normal basis, � ¼ 2 and

CN ¼ 2m� 1. Thus, the difference in the critical path delays

for these two variants of the Massey-Omura multipliers

disappears when an optimal normal basis is chosen. For
trade off between area and time, one can use the digit serial

multiplier (see, for example, [12]).

2.3 Bit-Level Sequential Multiplier with Parallel
Output

In [6], Agnew et al. presented another architecture for
multiplier using the normal basis. The output coordinates of
this multiplier are generated in parallel after m clock cycles
(i.e., it is a bit-level SMPO architecture). For the field and

normal basis constructed in Example 1, the corresponding
multiplier architecture is shown in Fig. 3a. In this multiplier
structure, all coordinates ci, 0 � i � 4 are obtained using (1)
as follows:

ci ¼ biaiþ1 þ biþ1ðai þ aiþ3Þ þ biþ2ðaiþ3 þ aiþ4Þ
þ biþ3ðaiþ1 þ aiþ2Þ þ biþ4ðaiþ2 þ aiþ4Þ;

ð2Þ

where the additions in the subscript indices are reduced

modulo 5. In (2), if one implements the first term, i.e., b0a1 for

c0, the second term, i.e., b2ða1 þ a4Þ for c1 and up to the final

term, i.e., b3ða1 þ a3Þ for c4; , the SMPO of Fig. 3a is obtained.

The initial contents of shift registersA andB are shown in the

figure. Details of theRi cell are shown in Fig. 3b. Initially, the

Di latches ofRis are cleared to zero and, afterm clock cycles,

theDis contain the coordinates of C ¼ AB.
The number of AND gates and XOR gates of the SMPO

can be easily obtained as m and CN , respectively. The

critical path delay of the multiplier is TA þ ð1þ log2 �d eÞTX,

where � is the maximum number of ai terms that are XORed

before being multiplied with a bi term in (2). As mentioned

earlier, this parameter � is the maximum number of 1s

among all rows (or columns) of the multiplication matrix

M. It is noted that 2 � � � m. For optimal normal bases

(which is the case in Example 1), the critical path delay is

TA þ 2TX, as shown in Fig. 3a and, for an arbitrary normal

basis, this delay is � TA þ ð1þ log2 md eÞTX.

2.4 Useful Lemmas

Before presenting our new architectures, below we present
Lemmas 1 and 2 from [4] and [13], respectively. These
lemmas will be used to formulate a multiplication algo-
rithm which will then lead to different architectures.

Lemma 1 [4]. Let C be the multiplication of A and B over

GF ð2mÞ, then

100 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

Fig. 2. (a) Massey-Omura bit-level SMSO for GF ð2mÞ. (b) The GF ð25Þ Massey-Omura multiplier of Example 1.

Figure 5.8: Massey Omura Multiplier

c4 = a3b3 + (a0b2 + a2b0) + (a0b4 + a4b0) + (a1b2 + a2b1) + (a1b3 + a3b1). Which

is implemented as in figure 5.9. In general, the unit consists of m 1-bit latches,

the number of AND gates and XOR gates are CN and CN − 1, respectively.

Also, its critical path delay is TAND + dlog2CNeTXOR, and its latency is m clock

cycles.

5.1.4 Dual Basis Multipliers

Dual basis multipliers rely on performing the multiplication of two GF (2m)

elements A, B. the first A is represented in a general basis representation, and

B in the dual basis of A. Two types of dual basis multipliers exist. The first

is general dual basis multiplier, where A is represented in the polynomial basis

representation, B, and C are in its dual basis. The second is optimal normal

basis multiplier, where A,B, and C are represented in a special class of normal

basis called optimal normal basis [47]. Optimal normal basis representation

has a special property that it is self dual, i.e the dual basis of the polynomial

representation is a normal representation of low complexity of multiplication

matrix CN = 2m− 1.

Let B be represented in polynomial basis, thus B =
m−1∑
i=0

bix
i, A be represented

in dual basis representation, which is normal basis in case of optimal normal basis

multiplier. Thus A =
m−1∑
i=0

a∗ix
i. It was shown in [48] that a∗i = f (aβxi) and the

34

M ¼

0 0 1 0 1

0 0 1 1 0

1 1 0 0 0

0 1 0 1 0

1 0 0 0 0

2
6666664

3
7777775
;

c4 ¼ a3b3 þ ða0b2 þ a2b0Þ þ ða0b4 þ a4b0Þ þ ða1b2 þ a2b1Þ
þ ða1b3 þ a3b1Þ;

ð1Þ

and the corresponding GF ð25Þ bit-serial multiplier is

shown in Fig. 2b.

In general, the number of AND gates and XOR gates of
Fig. 2a are CN and CN � 1, respectively. Also, its critical

path delay is TA þ log2 CNd eTX, where TA and TX are the

time delays due to one AND gate and one XOR gate,

respectively.
It is well-known that (1) can be rearranged to reduce

the AND gate count of the Massey-Omura multiplier

from CN to m (see, for example, [11]). This increases the

critical path of the multiplier from TA þ log2 CNd eTX to
TA þ ð log2 �d e þ log2 md eÞTX, where � is the maximum

number of 1s among all rows (or columns) of the multi-

plication matrix M. For an optimal normal basis, � ¼ 2 and

CN ¼ 2m� 1. Thus, the difference in the critical path delays

for these two variants of the Massey-Omura multipliers

disappears when an optimal normal basis is chosen. For
trade off between area and time, one can use the digit serial

multiplier (see, for example, [12]).

2.3 Bit-Level Sequential Multiplier with Parallel
Output

In [6], Agnew et al. presented another architecture for
multiplier using the normal basis. The output coordinates of
this multiplier are generated in parallel after m clock cycles
(i.e., it is a bit-level SMPO architecture). For the field and

normal basis constructed in Example 1, the corresponding
multiplier architecture is shown in Fig. 3a. In this multiplier
structure, all coordinates ci, 0 � i � 4 are obtained using (1)
as follows:

ci ¼ biaiþ1 þ biþ1ðai þ aiþ3Þ þ biþ2ðaiþ3 þ aiþ4Þ
þ biþ3ðaiþ1 þ aiþ2Þ þ biþ4ðaiþ2 þ aiþ4Þ;

ð2Þ

where the additions in the subscript indices are reduced

modulo 5. In (2), if one implements the first term, i.e., b0a1 for

c0, the second term, i.e., b2ða1 þ a4Þ for c1 and up to the final

term, i.e., b3ða1 þ a3Þ for c4; , the SMPO of Fig. 3a is obtained.

The initial contents of shift registersA andB are shown in the

figure. Details of theRi cell are shown in Fig. 3b. Initially, the

Di latches ofRis are cleared to zero and, afterm clock cycles,

theDis contain the coordinates of C ¼ AB.
The number of AND gates and XOR gates of the SMPO

can be easily obtained as m and CN , respectively. The

critical path delay of the multiplier is TA þ ð1þ log2 �d eÞTX,

where � is the maximum number of ai terms that are XORed

before being multiplied with a bi term in (2). As mentioned

earlier, this parameter � is the maximum number of 1s

among all rows (or columns) of the multiplication matrix

M. It is noted that 2 � � � m. For optimal normal bases

(which is the case in Example 1), the critical path delay is

TA þ 2TX, as shown in Fig. 3a and, for an arbitrary normal

basis, this delay is � TA þ ð1þ log2 md eÞTX.

2.4 Useful Lemmas

Before presenting our new architectures, below we present
Lemmas 1 and 2 from [4] and [13], respectively. These
lemmas will be used to formulate a multiplication algo-
rithm which will then lead to different architectures.

Lemma 1 [4]. Let C be the multiplication of A and B over

GF ð2mÞ, then

100 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 2, FEBRUARY 2005

Fig. 2. (a) Massey-Omura bit-level SMSO for GF ð2mÞ. (b) The GF ð25Þ Massey-Omura multiplier of Example 1.

Figure 5.9: Massey Omura Multiplier for GF (25)

Assume that α=γ1+γ−1 generates an optimal normal
basis of GF(2m) over GF(2), where γ is a primitive (2m+1)
th root of unit. The minimum polynomial P(x) of α=γ1+γ−1

can be repressed as

P xð Þ ¼ Qm
i¼1

xþ γi þ γ�ið Þ
¼ p0 þ p1xþ � � � þ pm�1xm�1 þ xm

ð6Þ

Notably, P(x) is the irreducible polynomial of α=γ1+ γ−1

under Theorem 1.
By Dickson’s formula, for any positive integer k,

γ1 þ γ�1ð Þi ¼Pi
j¼0

i
j

� �
γi�jγ�j

¼ Pi=2b c

j¼0

i
j

� �
γi�2j þ γ� i�2jð Þ� � ð7Þ

Let

αi ¼
Xi=2b c

j¼0

di�2jμi�2j ð8Þ

where

di�2j ¼ i
j

� �
mod 2

Assume that the field GF(2m) is constructed from Eq. 6,
every element is given by A ¼ a0 þ a1αþ . . .þ am�1αm�1,
where α=γ1+γ−1. Then, its normal basis element can be
represented as

A ¼ tr m1Að Þm1 þ tr m2Að Þm2 þ � � � þ tr mmAð Þmm

where mi ¼ gi þ g�i. From Lemma 1, the type-II normal
basis {μ1, μ2,⋯, μm} of GF(2m) is satisfied as

tr μiμj

� �
¼ 1 for i ¼ j

0 for i 6¼ j

	
ð9Þ

Applying Eqs. 8 and 9, an element A ¼Pm
i¼1

a*i μiwith
respect to the polynomial basis is given by

a*i ¼ tr μiAð Þ
¼ tr μi

Pm�1

j¼0
ajαj

 !

¼ Pm�1

j¼0
ajtr μiα

jð Þ

ð10Þ

a*1 ; a
*
2 ; � � � ; a*m

h iT
¼ T � a0; a1; � � � ; am�1½ �T ð11Þ

where the basis conversion matrix T is defined by

T ¼
tr μ1ð Þ tr μ1αð Þ � � � tr μ1α

m�1ð Þ
tr μ2ð Þ tr μ2αð Þ � � � tr μ2α

m�1ð Þ
..
. ..

. . .
. ..

.

tr μmð Þ trðμmαÞ tr μmα
m�1ð Þ

2
6664

3
7775

tr μkα
i

� � ¼Xi=2b c

j¼0

di�2jtr μkμi�2j

� �

Example 1 Let the irreducible polynomial P xð Þ ¼ x5 þ
x4 þ x2 þ xþ 1 of a¼g1 þ g�1 under Theorem 1 be cho-
sen for the field GF(25). Each element A of GF(25) can be
represented by A ¼ a0 þ a1a þ a2a2 þ a3a3 þ a4a4. Using
Eq. 8, we have

α ¼ μ1

α2 ¼ μ2

α3 ¼ μ3 þ μ1

α4 ¼ μ4

Thus, its normal element A ¼P5
i¼1

a*i μi using Eq. 11 can

be translated from the following matrix

a*1
a*2
a*3
a*4
a*5

2
66664

3
77775 ¼

1 1 0 0 0
1 0 1 0 0
1 1 0 1 0
1 0 0 0 1
1 0 0 0 0

2
66664

3
77775

a0
a1
a2
a3
a4

2
66664

3
77775

2.4 Proposed Finite Field Arithmetic Operation Scheme

In [26], Hasan–Bhargava multiplier (HBM) is an very
efficient multiplication algorithm to construct a bit-serial
multiplier by using the polynomial basis representation in GF
(2m), as shown in Fig. 1. In Fig. 1, the basis converter 1 is
permutated from the polynomial basis to the dual basis; the
basis converter 2 is permutated from the dual basis to the
polynomial basis. Given such configuration, the major
advantage of the HBM can alternate from the polynomial
basis multiplier to the double basis multiplier. The multiplica-
tion can be represented by the Berlekamp bit-serial multipli-

multiplier

A
(PB)

Basis

converter 1
Basis

converter 2
B

(PB)

A
(DB)

C
(DB)

C
(PB)

Figure 1 HBM architecture.

316 Lee and Chiou

Figure 5.10: Structure of General Dual Basis Multiplier

product, C = AB mod P (x) can be formulated as:

ao a1 · · · am−1

a1 a2 · · · am
...

... · · · ...

am−1 am · · · a2m−2

bo

b1
...

bm−1

=

co

c1
...

cm−1

,

where am+k = f (aβxm+k) =
m−1∑
i=0

Piai+k, for k = 0, 1, . . . , m − 1. Fig. 5.10,

and Fig. 5.11 show the structure of a general dual basis multiplier, and optimal

normal basis multiplier.

35

cation scheme [27]. However, it still requires two basis
conversions at both the input and output of the multiplier.

With two advantages of finite field arithmetic operations:
(1) the squaring of a normal basis element in GF(2m) is
performed by a permutation, and (2) polynomial basis
multiplication can be employed to construct the recursive
multiplication algorithm by using the Horner rule scheme.
Combining such two advantages of both normal basis and
polynomial basis operations, the new bit-parallel systolic
architectures with both normal basis and polynomial basis
representations for computing the normal basis multiplica-
tion and division/inversion are investigated. Figure 2 shows
the proposed normal basis multiplication and division/
inversion scheme. In Fig. 2, the proposed architecture only
requires one basis conversion at the input of arithmetic
circuits while the HBM demanded two basis converters at
the input and output of the multiplier. The following sec-
tions will introduce multiplication and division/inversion
under double bases to realize bit-parallel systolic architectures.

3 Proposed Multiplication Algorithm Under
the Polynomial Basis and Normal Basis

Given the structure of Fig. 2, this section will investigate
the double basis multiplication algorithm by using both the
polynomial basis and its normal basis. By using such
algorithm, we can efficiently realize a new bit-parallel
systolic multiplier.

Theorem 2 Let N 0 ¼ m1;m2; � � � ;mmf g be a normal basis
of type-II, where mi ¼ gi þ g�i and γ is a root of
x2mþ1 þ 1. Assume that a ¼ g1 þ g�1, we have the fol-
lowing properties:

1ð Þ αμ1 ¼ μ2

2ð Þ αμi ¼ μi�1 þ μiþ1 for 2 � i � m� 1
3ð Þ αμm ¼ μm þ μm�1:

proof:

1ð Þ αμ1 ¼ γ þ γ�1ð Þ γ þ γ�1ð Þ
¼ γ2 þ γ�2

¼ μ2;

2ð Þ αμi ¼ γ þ γ�1ð Þ γi þ γ�ið Þ
¼ γiþ1 þ γ� iþ1ð Þ þ γi�1 þ γ� i�1ð Þ

¼ μiþ1 þ μi�1;

3ð Þ αμm ¼ γ þ γ�1ð Þ γm þ γ�mð Þ
¼ γmþ1 þ γ� mþ1ð Þ þ γm�1 þ γ� m�1ð Þ:

Since g2mþ1 ¼ 1, we have

γmþ1 ¼ γ�m

γ� mþ1ð Þ ¼ γm

Thus,

αμm ¼ γm þ γ�m þ γm�1 þ γ� m�1ð Þ

¼ μm þ μm�1

Now, let us consider that C=AB, where A ¼ Pm�1

i¼0
aiai,

B ¼Pm
i¼1

biμi, and C ¼Pm
i¼1

cimi, where μi ¼ γi þ γ�i and

a ¼ g þ g�1. Applying Horner’s rule, the product C can be
represented as

C ¼ AB

¼ a0 þ a1αþ � � � þ am�1α
m�1

� �
B

¼ a0Bþ a1αBþ � � � þ am�1α
m�1B

¼ � � � am�1Bð Þαþ am�2Bð Þαþ � � �ð Þαþ a0B

ð12Þ

By the condition of Theorem 2, assuming that Ti ¼
ti;1m1 þ ti;2m2 þ ti;3m3 þ . . .þ ti;mmm over GF(2) represents
the ith intermediate product of A and B, which can be
represented as

Ti ¼ Ti�1αþ Bam�i

¼ ti�1;1μ1αþ ti�1;2μ2αþ � � � þ ti�1;mμmα

þb1am�iμ1 þ b2am�iμ2 þ � � � þ bmam�iμm

¼ ti�1;2 þ b1am�i

� �
μ1 þ ti�1;1 þ ti�1;3 þ b2am�i

� �
μ2

þ ti�1;2 þ ti�1;4 þ b3am�i

� �
μ3 þ � � �

þ ti�1;m�1 þ ti�1;m þ bmam�i

� �
μm

ð13Þ

Arithmetic

circuit

A
(NB)

Basis

converter

B
(NB)

A
(PB)

C
(NB)

Figure 2 Proposed normal ba-
sis arithmetic circuit scheme.

New Bit-Parallel Systolic Architectures in GF(2m) 317317

Figure 5.11: Structure of Optimal Normal Basis Multiplier

 15

a a a

a a a

a a a

b

b

b

c

c

c

m

m

m m m m m

0 1 1

1 2

1 2 2

0

1

1

0

1

1

...

...

...

 (2.16)

where ai = f(ai
) and ci = f(ci

) (i = 0,1, ..., m-1) are the dual basis coefficients of a and

c respectively and ai = f(ai
) (i=m, m+1,..., 2m-2). It can be shown [15] that

 am+k = f(am+k
) = p aj j k

j

m

*

0

1

 (k= 0,1,) (2.17)

where the pj are the coefficients of p(x). These values of am+k can therefore be obtained

from an m-stage linear feedback shift register (LFSR) where the feedback terms

correspond to the pj coefficients and the LFSR is initialised with the dual basis coefficients

of a. On clocking the LFSR am is generated, then on the next clock cycle am+1 is produced,

and so on. The m vector multiplications listed in equ(2.16) are then carried out by a

structure comprising m 2-input AND gates and (m-1) 2-input XOR gates. As an example, a

Berlekamp multiplier for GF(2
4
) is shown in Fig. 2.2 where p(x) = x

4
 + x + 1.

A3 A2 A1 A0

B3 B2 B1 B0

c3 c2 c1 c0

Figure 2.2 Bit-serial Berlekamp multiplier for GF(2
4
).

 The registers in Fig. 2.2 are initialised by Ai = ai and Bi = bi for (i= 0,1,2,3). At this

point the first product bit c0 is available on the output line. The remaining values of c1, c2

and c3 are obtained by clocking the register a further three times.

 With the above scheme at least one basis conversion is required if both inputs and

the output are to be represented over the same basis. This basis transformation is a linear

Figure 5.12: General Dual Basis Multiplier

General Dual Basis Multiplier

The matrix multiplication is performed using an AND level followed by an XOR

level. the transformation of the elements of ai to a∗i is performed using a linear

feedback shift register. Fig. 5.12 shows the structure of a GF (24) multiplier

from [48].

5.1.5 Comparison and Discussion

In this section we show a comparison between various pipelined multipliers, with

throughput 1 operation per cycle, proposed in open literature and discuss their

performance. As shown in table 5.1 various multipliers are proposed, shifted

polynomial basis multiplier proposed in [15] is superior compared to other mul-

tipliers. As it has almost the same gate count compared to the polynomial basis

multiplier proposed in [39], with almost half its latency. Even though multiplier

in [41] has the best performance, yet, it is not widely used in cryptography due

36

to the absence of inversion, exponentiation, division units in shifted polynomial

basis, this requires a basis conversion circuit which causes additional hardware

and latency. Normal basis multipliers are widely used in cryptographic appli-

cations where squaring is of frequent manner, due to its very low cost. A less

pipelined version of these multipliers can be used in cases the frequency of oper-

ation of the design is bottlenecked by another unit, thus, increasing the critical

path of the multiplier unit, by removing latch levels from the design, reduces

the hardware complexity of the multiplier and reduces its latency.

5.2 Galois Field GF (2m) Exponentiation

The exponentiation operation Y = αN can be considered as the main operation

for inversion, division and exponentiation where in case of inversion N = −1,

and in case of division C = AB−1. Conventionally, exponentiation is performed

using the following operations, let the exponent N be expressed as

N = n0 + n12
1 + n22

2...nm−12
m−1 (5.11)

where the maximum exponent is 2m−1 as α2m−1

= 1; thus, N is represented in

m bits. Thus Y = αN can be expressed as

Y = (αn0)(αn1)2
1

(αn2)2
2

...(αnm−1)2
m−1

= (αn0)[(αn1)(αn2)2
1

...(αnm−1)2
m−2

]2

= (αn0)[(αn1)[(αn2)...(αnm−1)2
m−3

]2]2 (5.12)

=

= (αn0)[(αn1)[(αn2)[...(αnm−2)(αnm−1)2]...2]2

Accordingly, the exponentiation can be performed using the algorithm below,

as shown in figure 5.13

37

T
ab

le
5.1:

C
om

p
arison

B
etw

een
M

u
ltip

liers

B
asis

R
ep

resen
tation

#
of

cells
cell

com
p

on
en

t
critical

p
ath

laten
cy

P
oly

n
om

ial
b
asis

[39]
m

2
X
O
R

:
2

A
N
D

:
2

L
a
tch

:
3

T
A
N
D

+
T
X
O
R

m

P
oly

n
om

ial
b
asis

[40]
m

2
3X

O
R

:
2

A
N
D

:
1

L
a
tch

:
7

T
A
N
D

+
T
3
X
O
R

3m

P
oly

n
om

ial
b
asis

[41]
m

2
X
O
R

:
2

A
N
D

:
2

L
a
tch

:
7

T
A
N
D

+
T
X
O
R

3m

P
oly

n
om

ial
b
asis

[42]
m

2
X
O
R

:
1

A
N
D

:
1

L
a
tch

:
5

T
A
N
D

+
T
X
O
R

4m

P
oly

n
om

ial
b
asis

[43]
m

2
3X

O
R

:
1

A
N
D

:
2

L
a
tch

:
3

T
A
N
D

+
T
3
X
O
R

m

S
h
ifted

p
oly

n
om

ial
b
asis

[44]

m
(⌊

m2 ⌋
+

1)p
lu

s
m

X
O
R

gates

X
O
R

:
4

A
N
D

:
4

L
a
tch

:
5

T
A
N
D

+
T
X
O
R

⌊
m2 ⌋

+
2

N
orm

al
b
asis

[46]
1

X
O
R

:
C
N
−

1
A
N
D

:
C
N

L
a
tch

:
2m

T
A
N
D

+
dlog

2 C
N e

T
X
O
R

m

N
orm

al
b
asis

[49]
1

X
O
R

:
m

A
N
D

:
C
N

L
a
tch

:
2m

T
A
N
D

+
dlog

2 C
N e

T
X
O
R

m

G
en

eral
D

u
al

b
asis

[48]
m

2
X
O
R

:
2

A
N
D

:
2

L
a
tch

:
8

T
A
N
D

+
T
X
O
R

3m

O
p
tim

al
N

orm
al

b
asis

[50]
m

2
p
lu

s
m
X
O
R

gates

3X
O
R

:
1

A
N
D

:
2

L
a
tch

:
5

T
A
N
D

+
T
3
X
O
R

m
+

1

38

852 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 10, OCTOBER 1997

For a special case of (14) becomes the conventional
definition used in [20]. For an integer can be
expressed by

(15)

and may also be represented by an-tuple vector
with called the least

significant bit (LSB) and called the most significant
bit (MSB). By means of the representation of (2), the
exponentiation of is expressed as

(16)

in which

(17)

Equation (16) is suitable for implementing on the basis of
normal basis because the squaring operations may be im-
plemented by cyclic shifts in the normal basis. However,
(16) based on the standard basis is inefficient due to too
many multiplications. With the help of the power-sum circuit,
the idea of consecutive multiplications on the standard basis
becomes realizable. Based on the basic operations,
(16) may be rearranged as follows:

(18)

Equation (18) is a recursive function of power-sum operations.
Based on (18), a simple algorithm for computing in

based on the power-sum operations, is
presented as follows:4

THEN ELSE
set initial value of

for the first with or 1.
FOR TO 0

IF THEN ELSE

with or 1, and
The final result is

The computation algorithm is based on the power-sum basic
functions, Fig. 5 shows a VLSI architecture based on the
algorithm for computing exponentiations in The
architecture is constructed by combining three (i.e.,)
power-sum circuits. The architecture can clearly be extended
in an analogous way to any other finite field In Fig. 5
the multiplexers (MUX’s) are, respectively, set by the value

4Symbol =� followed text is the comment that used to help reader
understand the algorithm.

Fig. 5.

of ; where the output of the
corresponding MUX is element whereas if 0, then the
output of the corresponding MUX is the fixed element The
fixed value 1 is sent to the first input of a power-sum
circuit, the power-sum circuit works like a square-law circuit.
Delay buffers are required to make the signals arrive at each
input of the power-sum circuits at the same time. An element
delay buffer over say can be implemented by

one-bit registers or -bit shift registers controlled by
a special clock signal.

Since the architecture requires power-sum circuits,
it is suitable only for moderate values of e.g.,
The value of can be preinstalled in a buffer for conven-
tional definition of exponentiation, thus the required
input to the architecture is only the -bit of integer
The comparisons of circuit complexity and computation time
between the presented linear-systolic exponentiator and Scott’s
two-systolic-multiplier architecture [20] are listed in Table II,
which shows that the presented linear-systolic exponentiator
has the following advantages: 1) more general functioning;
2) 100% throughput; the computation speed is improved by
a factor of in comparison to the two-systolic-multiplier
architecture; 3) shorter latency, the latency of the linear-
systolic exponentiator is improved by a factor of 2 over that
of the two-systolic-multiplier architecture. Comparing circuit
complexity, as illustrated by the example case of 8,

Figure 5.13: Exponentiation Using Power Sum Unit

Exponentiation Algorithm

Input : Y = 1

for (i = m− 1 ; i ≥ 0 ; i−−)

if(ni = 1) Y = Y 2α else Y = Y 2

Power sum operation is the basic operation in exponentiation, and can be

expressed as P = AB2 + C. The complexity of the power sum operation is a

critical matter, as it is multiplied by the field size m due to m repetitions of

the operations. In general 2 approaches were proposed to perform power sum

operation, polynomial basis power sum operation, and normal basis power sum

operation.

39

5.2.1 Polynomial Basis Power Sum Operation

let A, B and C be polynomial basis elements of GF (2m). Thus B2 = [b0 + b1α+

b2α
2....bm−1α

m−1]2 is expressed as

B2 = b0 + b1α
2 + b2α

4...bm−2α
2m−4 + bm−1α

2m−2 (5.13)

Thus the power sum product P = p0 + p1α+ p2α
2...pm−1α

m−1 is expressed as

P =
m−1∑

k=0

(A.α2k).bk +
m−1∑

n=0

cnα
n

=
m−1∑

k=0

Q(k).bk +
m−1∑

n=0

cnα
n

=
m−1∑

k=0

(
m−1∑

n=0

q(k)n αn).bk +
m−1∑

n=0

cnα
n

=
m−1∑

n=0

(
m−1∑

k=0

(q(k)n bk + cn)αn) (5.14)

With initial values of q
(0)
n = an, Q can be represented as

Q = (A.α2k−2)α2

= q
(k−1)
m−1 α

m+1 + q
(k−1)
m−2 α

m +
m−1∑

n=2

qk−1n−2α
n (5.15)

Using modulo-polynomials

αm = f0 + f1α + f2α
2...fm−1α

m−1

αm+1 = f0α + f1α
2 + f2α

3...fm−1α
m

= g0 + g1α + g2α
2...gm−1α

m−1 (5.16)

After substitution Q becomes as follows

qkn = qk−1n−2 + qk−1m−1gn + qk−1m−2fn (5.17)

The above algorithm can be realized according to [51] using the semi systolic

40

WEI: VLSI ARCHITECTURES FOR COMPUTING EXPONENTIATIONS 851

Fig. 4.

gate is used to obtain and the 2-inputXOR is used

to perform , that is, (14).

Since the signal is obtained in the -
cell, a traverse line in the -cell is thus required to
pass the signal from the cell to the
cell, as shown in Fig. 4. When the cell is located at the bottom
of a PE (i.e., and then the first term of (9),

and is zero and (9) will be reduced
to (7) and (8). This means that one should feed zero signals
to the inputs at the bottom of the PE, as shown in Fig. 2. On
the other hand, when the cell is located in the top-most place,

then This implies that thetraverse
line must be connected to thesecond carry lineat the top side
of the PE, as shown in Fig. 2. Similarly, in the first cell of
PE’s, the line must also be connected to thefirst carry

line because for
A comparison of computation performed by the

systolic-array power-sum circuit and the linear-systolic power-
sum circuit is given in Table I. It turns out that in both circuit
complexity and latency, the modified linear-systolic power-
sum circuit is an improvement. The only penalty incurred by
the linear-systolic power-sum circuit is that the cycle time
(propagation delay of a PE) is slightly longer. The propagation
delay of a PE is determined by the routing delay of the
critical path and two gate delays, as shown in the example
circuit of Fig. 4.3 In practice, to design an error-correcting
decoder for high-speed data communications, a finite field

is large enough. The finite field
is the most frequently employed field and has important
applications in communications and computers [1], [2], [5],

3See the bold lines shown in Fig. 4.

TABLE I

[6], [14]. For these cases, the routing delay of the critical path
may be controlled within a reasonable value. For example,
if single-metal-double-poly technology is used to layout the
circuit, the layout of the first and second carry lines may be
implemented by metal line. One may also insert buffers in the
carry lines to shorten propagation delays.

III. CONPUTATION ALGORITHM AND

ARCHITECTURE FOREXPONENTIATION IN

Let and be elements of the exponentiation
of is defined here as

(14)

Figure 5.14: Power Sum Unit for GF(24)

implementation shown in figure 5.14, where each cell is as shown in figure 5.15.

5.2.2 Normal Basis Power Sum Operation

In case of formulating the power sum operation as two successive operations,

a squaring operation followed by a multiplication operation the optimum basis

function for such operation would be normal basis. As mentioned earlier squaring

is merely a shift operation in normal basis. The block diagram of a normal basis

power sum unit is as shown in figure 5.16, where the multiplier used could be

any multiplier explained earlier in section 5.1.

5.2.3 Comparison and Discussion

As a comparison between exponentiation units based on polynomial basis power

sum at [51] and exponentiation units based on normal basis power sum units,

we will choose the normal basis multiplier at [48]. The table 5.2 compares both

approaches, it is shown that the polynomial basis exponentiation unit is superior

to the normal basis one in terms of area and latency.

41

850 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 10, OCTOBER 1997

Fig. 3.

Comparing (2) with (6), one obtains

(7)

(8)
and

for (9)

Equations (7) and (8) may be absorbed by (9) with the
following initial conditions:

for all (10)

Finally, substituting (9) into (1) yields

(11)

in which the new symbol is defined as:

(12)

Rearranging the above equation, we may obtain the following
iterative equation

(13)

Based on (9) and (13), a new parallel-in–parallel-out linear-
systolic power-sum circuit for performing com-

putations is presented in Fig. 1. The presented new linear-
systolic power-sum circuit consists of basic processing
elements (PE’s). Each PE is constructed by combining
basic cells, as shown in Fig. 2. Based on (9) and (13), the
circuit diagram of a basic cell is shown in Fig. 3. An example
of a linear-systolic power-sum circuit for is given
in Fig. 4. Based on Figs. 1–3, the linear-systolic power-sum
circuit shown in Fig. 4 can be in an analogous way extended
to any other finite field

Fig. 1 shows the timing sequences of the input/output
elements and the wire-connections among the PE’s, while
Fig. 2 shows the wire-connections among the cells. As shown
in Fig. 3, each basic cell is made up of three 2-inputAND

gates, one 2-inputXOR gate, one 3-inputXOR gate, and four
latches. Assuming the cell, as shown in Fig. 3, is theth cell
of the th PE of the linear-systolic power-sum circuit, denoted
as the -cell, then the secondAND gate is used to perform
the computation,2 and the thirdAND gate is used to

perform the computation. When the cell is located
in the first PE, i.e., 1, then the output of the second
AND gate is and the output of the

third AND gate is When the cell is

located in the other PE’s, then is obtained from the

-cell and is obtained from the -
cell. The 3-inputXOR gate is used to obtain the result of

In summary,
integration of the second, the thirdAND gates and the 3-input
XOR gate is used to perform the operation of (9). The firstAND

2When the cell, as shown in Fig. 3, is located in theith cell of thejth PE,
it implies thatn = m � i andk = j � 1: Recall that variablesi andj are
in the range1 � i; j � m whereas that variablesn andk are in the range
0 � n; k � m� 1:

Figure 5.15: Power Sum Cell

B

A P

Figure 5.16: Power Sum Cell Using Normal Basis

Table 5.2: Comparison Between Exponentiation Units

Basis
Represen-
tation

of cells
cell com-
ponent

critical
path

latency

Polynomial
basis [51]

(m−1)m2
XOR : 2
AND : 3
Latch : 4

TAND +
TXOR3

m(m− 1)

Normal
basis [48]

(m−1)m2
XOR : 2
AND : 2
Latch : 8

TAND +
TXOR

3m(m−1)

42

5.3 Summary

In this chapter a survey on Galois field arithmetic units was done. As will be

shown later the proposed decoders requires addition, multiplication and power

sum units. Accordingly, the most suitable basis representation for elements

would be the polynomial basis. This returns to the efficiency of the multiplica-

tion using the unit proposed in [39] and the power sum unit proposed in [51].

43

Chapter 6

Proposed BCH Soft Decoding

Algorithms

In this chapter, we propose two least reliable bit reprocessing algorithms. The

choice of this class of algorithms is due to their low complexity and high per-

formance gain for high-rate codes, with medium to large codeword length. The

proposed algorithms are based on the algorithms in [32, 33] and use a variation

proposed in [31]. These algorithms provide a trade off between complexity and

performance, and are feasible to be implemented in programmable hardware.

This rest of the chapter is organized as follows. The two proposed algorithms

are shown in sect. 6.1. The simulation results are provided in section 6.2.

6.1 Proposed Programmable BCH Soft Decoding Algorithm

Suppose an (n , k , t) BCH code has an n-bits codeword, k-bits message and t

correctable bits using algebraic decoders, operating under Galois field GF (2m),

where m = log2(n+ 1), and α is a primitive root over the primitive polynomial

f(x).

Consider a message M = [mo m1 m2 . . . mk−1] encoded to a codeword

C = [co c1 c2 . . . cn−1], and transmitted through a channel, the received signal

at the decoder is Rl = [Rl0 Rl1 Rl2; . . . Rln−1], where the magnitude of Rli
represents the reliability of the received bit i. The hard decision of the received

sequence is R = [ro r1 r2 . . . rn−1].

The Syndrome polynomial, S (x) = S1 + S2X + S3X
2 · · · S2tX

2t−1, can be

44

expressed as

Si = R (αi)
v

=
∑

j=1

(
αi
)ej v

=
∑

j=1

(
βej
)i

(6.1)

for i = 1, 2...t, where ei is the ith error location, and βej = αej indicates the

corresponding error locator.

The input bits reliabilities are sorted into the set L = [l1 l2 . . . l2t], where

the absolute value of the reliability of bit li is less than that of bit li+1. From

the error location vector L, the error locator vector β = [β0 β1 . . . β2t−1] is

calculated as βi = αli.

The relation between the error locator matrix B = [β β2 . . . β2t], the

syndrome S and the discrepancy vector ∆ = [δ1 δ2 . . . δ2t] is ∆ = B × Γ + S,

which is expressed as

βl1 βl2 · · · βl2t
β2
l1

β2
l2
· · · β2

l3
...

... · · · ...

β2t
l1

β2t
l2
· · · β2t

l2t

γ1

γ2
...

γ2t

+

S1

S2
...

S2t

=

δ1

δ2
...

δ2t

(6.2)

where Γ = [γ1 γ2 . . . γ2t] is the error magnitude set corresponding to error bits

at L. In other words, γi represents whether an error exists at bit location li or

not.

In [32], two decoding algorithms are proposed to solve Eq.(6.2). The first

is by iterating on all error locations Γ and then test the resultant vector ∆, if

∆ = 0, then Γ corresponds to error locations at L, i.e if γi = 1 then there is an

error at bit location i in L. This technique is referred to as the heuristic error

magnitude solver algorithm.

The second technique is to obtain the inverse of the B matrix; thus, Γ is

calculated by solving Γ = B−1S. If Γ is a binary sequence, then Γ corresponds

to error locations at L. This technique is referred to as the Bjorck–Pereyra error

magnitude solver algorithm.

These two proposed algorithms correct up to 2t errors in the received se-

quence. In our developed algorithm we increase the correction capability to p

extra error locations outside the set L with the least reliabilities; thus, the total

error correction capability is 2t + p. The number of extra corrected bits p is

a configurable number, chosen according to the required correcting capability

45

versus the decoder complexity.

6.1.1 Soft Decoding Algorithms

We define the incremental syndrome ∆Sj as the difference in the syndrome

due to flipping a bit at location ilj from the received polynomial R(x), where

iL = [il1 il2 · · · ilp] is the incremental error location vector, and the values ilj

are the locations with the least reliability outside the 2t least reliable locations

represented in the set L, these extra locations represent the increase in the code

correcting capability. The incremental syndrome can be expressed by

∆Sji = R
′
(αi)−R (αi) = βiilj (6.3)

where R
′
(x) is the received sequence after flipping ilj. Similarly define the ex-

tended error magnitude matrix Γext = [Γ Γl1 Γl2 . . . Γlp], where Γlj =

[γlj1 γlj2 . . . γlj2t] is the error magnitude set for the received sequence after flip-

ping ilj. Eq.(6.2) will be reformulated to accommodate for the extra correcting

capability in both heuristic search, and Bjorck–Pereyra error magnitude solver

algorithms. The newly formulated decoding algorithms will be referred to as the

extended heuristic search error magnitude solver algorithm (EHe-EMS) and the

extended Bjorck–Pereyra error magnitude solver algorithm (EBP-EMS).

6.1.2 EHe-EMS Algorithm

In the extended heuristic error magnitude solver, Eq.(6.2) is extended to correct

p extra bits by heuristically searching for all error combinations in the error

location vectors L and iL. This is performed by iterating on all error locations

in L 2p times. At each time we calculate the effective syndrome at each iteration,

where the effective syndrome is the syndrome of the original pattern adding to

it the incremental syndrome Sji:

Seff = S +

p∑

i=1

ai ∆Sji, (6.4)

where ai is the binary value representing the combination of incremental syn-

drome vectors, corresponding to extra errors in iL, and j = 0 , 1 · · · 2p − 1

represents all the possible combinations of error at iL.

46

This is equivalent to searching for all error combinations in L, for all combi-

nations of extra errors in iL.

The discrepancy vector can be formulated as

∆ = B × Γ + Seff (6.5)

A valid codeword is obtained when ∆ = 0, representing error bits at locations

[γ1 γ2 . . . γ2t] in the error location vector L, and error bits at locations A =

[a1 a2 . . . ap] from the incremental error location vector iL. For heuristic error

magnitude solver, the correcting capability could be increased for an extra bit

of correcting capability resulting in a correcting capability of 2t + p + 1 if ∆

is checked for a geometric sequence. The presence of a geometric sequence

∆ = [βx β
2
x . . . β

2t
x] indicates an extra error at location x, as shown in [33].

This search for a valid error pattern may result in more than one allowed error

pattern for the received codeword. The receiver chooses the codeword with the

minimum error vector weight, calculated by summing the reliabilities of the error

locations. It is known that S2
1 = S2, S

2
2 = S4, . . . ,S2

t = S2t; thus, a simplification

can be employed to calculate only the odd syndromes and thus the simplified

version of the Algorithm can be formulated into solving ∆odd = Bodd× Γ+Soddeff
as shown in algorithm I.

47

Algorithm I - EHe-EMS Algorithm

Input : Bodd, Soddext, Γ = 0,

Soddeff = Sodd,min weight = max

1. A = 0

2. ∆odd = Bodd × Γ + Soddeff

3. if ∆odd = 0

if error weight < min weight

error bits at locations Γ from L,

and A from iL

4. else if ∆odd = [βx β
3
x . . . β

2t−1
x]

if error weight < min weight

error bits at locations Γ from L, A

from iL , and extra error at x

5. Γ = Γ + 1

6. if Γ < 22t − 1 go to (2) else go to (7)

7. A = A+ 1, Seff = S +
p−1∑
i=0

ai ∆Si

8. if A < 2p − 1 go to (1) else exit

6.1.3 EBP-EMS Algorithm

Although the EHe-EMS algorithm provides a high performance gain by com-

pensating an extra error location outside the 2t + p correcting capability, the

complexity of the decoding algorithm grows exponentially with the error cor-

recting capability t, and the number of extra compensated bits p. Also, the

extra error compensation requires a look-up table. The size of this look-up ta-

ble increases exponentially with the codeword size. In order to mitigate the

complexity of EHe-EMS, EBP-EMS is proposed. The complexity of EBP-EMS

grows linearly with t and p, and does not require an additional look-up table.

A matrix with geometric progression in each row or column is called a Van-

dermonde matrix; an n× n Vandermonde matrix has the form

48

1 X1 X2
1 · · · Xn−1

1

1 X2 X2
2 · · · Xn−1

2

1
...

... · · · ...

1 Xn−1 X2
n−1 · · · Xn−1

n−1

(6.6)

As the error locator matrix B is a Vandermonde matrix, an inverse can be ob-

tained using the Bjorck–Pereyra matrix solution method [26,52], where instead

of O(n3) computations required to solve a system of n equations, the BP algo-

rithm requires only O(n2) computations.

In order to extend this method to compensate for extra p error locations,

Eq.(6.2) is solved p + 1 times using the BP matrix solution method, at each

time obtaining a resultant error magnitude vector Γli, where i = 0 1 . . . p . For

i = 1 . . . p, Eq.(6.2) is reformulated to

B × Γli + ∆Si = 0, (6.7)

where ∆Si is the incremental syndrome, and i = 0 in the equation above is

the case where ∆Si = S the original syndrome of the received codeword. After

the p+ 1 iterations the resultant error magnitude vectors for the extended error

magnitude vector matrix Γext are used to obtain the error locations as follows

∆ = Γ +
2p−1∑

i=1

bi Γli (6.8)

where bi is a binary value. If the discrepancy vector ∆ ∈ GF (2) then a solution

is obtained with error bits at locations [γ1 γ2 . . . γ2t] in the error location vector

L, and error bits at locations B = [b1 b2 . . . bp] from the incremental error

location vector iL. The receiver chooses the codeword with the minimum error

vector weight,as shown in Algorithm II.

49

Algorithm II - EBP-EMS algorithm

Input : β, Sext, Γext = 0, B = 0

Γext = Sext, min weight = max

a.for (j = 1 ; j ≤ p+ 1 ; j + +)

1. for (k = 1 ; k < 2t ; k + +)

for (i = 2t ; i > k ; i−−)

Γj,i = Γj,i − βkΓj,i−1
2. for (k = 2t− 1 ; k > 0 ; k −−)

for (i = k + 1 ; i ≤ 2t ; i+ +)

Γj,i = Γj,i/(βi − βi−k)
for (i = k ; i < 2t ; i+ +)

Γj,i = Γj,i − Γj,i+1

3.for (k = 1 ; k ≤ 2t ; k + +)

Γj,i = Γj,k/βk

b. ∆ = Γ +
p−1∑
i=0

bi Γli

1. if ∆ = 0

if error weight < min weight

error bits at locations Γ from L ,

and B from iL

2. B = B + 1

3. if B < 2p − 1 go to (b) else exit

6.1.4 Geometric Interpretation of the Proposed Algorithms

Consider a unity n-dimensional cube. The set of vertices ψ for this cube defines

all the possible binary combinations of an n-dimensional vector. A reduced set

Φ, where Φ ⊂ ψ, is a set that contains only the valid codewords for a given BCH

code (n, k, t). The received codeword R is a point in the n-dimensional space.

A decoding algorithm chooses a vertex from Φ satisfying a certain criterion

depending on the decoding algorithm itself.

A maximum likelihood decoding algorithm calculates the distance between R

50

R

Valid codeword

Invalid codeword

Invalid codeword

Cube center

x

y

z

Valid codeword on z-axis

1 2

3 4

5 6

7 8

Figure 6.1: 3-D Representation of a Received Signal.

and all the possible vertices in Φ, and the correct codeword is the nearest vertex

from R. Our proposed algorithms reduce the computational effort required

for maximum likelihood decoding, and consider only the vertices lying on the

sides in the direction of the 2t+ p dimensions corresponding to the bits of least

reliability in R. As p increases the complexity of the algorithm increases and the

performance approaches more the theoretical maximum likelihood performance.

A maximum likelihood decoding is obtained when 2t+ p approaches n.

To better illustrate the idea, consider Fig. 6.1. It shows a hypothetical three-

dimensional (3-D) space, with a set of valid and invalid vertices. The received

signal R is a point in the 3-D space, thus the maximum likelihood decoding

compares R to all the valid codewords in the 3-D space. For a one-dimensional

decoding, i.e 2t+p hypothetically equals 1, our proposed algorithm will compare

R only to the valid codewords that lie on sides in the direction of the dimensions

where the point is nearer to the center of the cube. In our case the magnitude of

R in the z-direction is the nearest to the cube center; thus, the chosen codeword

is the valid codeword on the z-axis, in our case node 7.

6.2 Simulation And Comparison Results

Simulation and implementation results for the two proposed decoders are pre-

sented in this subsection; Fig. 6.2 and 6.3 show simulation results for BCH

(255,239,2) for BPSK modulation under AWGN for p equal to 0,2,4 and 6. The

51

0 1 2 3 4 5 6 7 8

10
−4

10
−3

10
−2

10
−1

Eb/No(db)

B
E

R

BCH (255,239) HARD

BCH (255,239) EHe p=0

BCH (255,239) EHe p=2

BCH (255,239) EHe p=4

Figure 6.2: Simulation Results for BCH (255,239), EHe Decoder.

performance of EHe and EBP decoders are compared to the conventional alge-

braic decoder. Results show a gain that is proportional to the choice of p with

a theoretical maximum likelihood decoding achieved at p = n. At bit error rate

(BER)=10−5, the EHe decoder has a coding gain of 0.75, 1, 1.2 dB for p=0, 2,

4, respectively, over hard decoding, and for EBP has a coding gain of -0.15, 0.05,

0.2, 0.35 dB for p=0, 2, 4, 6, respectively, over hard decoding. These results

conform with our interpretation of the proposed algorithms.

Figure 6.4 compares the performance of algebraic decoder, EHe decoder and

EBP decoder at p = 2 for same codeword length n = 255 for rate 0.97 at k = 247

and rate 0.9 at k = 231. The results show a 1 dB gain for EBP decoder and 1.3

dB gain for EHe decoder for rate 0.97 over algebraic decoding, while the results

show an 0.3 dB gain for EBP decoder and 0.8 dB gain for EHe decoder at rate

0.9. These results show that with increasing the word length, the decoder still

obtains a significant gain over algebraic decoding.

Figure 6.5 compares the performance of algebraic decoder, EHe decoder and

EBP decoder at p = 2 for same codeword length n = 511 for rate 0.982 at

k = 502 and rate 0.94 at k = 484. The results show a 0.9 dB gain for EBP

decoder and 1.1 dB gain for EHe decoder for rate 0.982 over algebraic decoding,

52

0 1 2 3 4 5 6 7 8

10
−4

10
−3

10
−2

10
−1

B
E

R

BCH (255,239) HARD

BCH (255,239) EBP p=0

BCH (255,239) EBP p=2

BCH (255,239) EBP p=4

BCH (255,239) EBP p=6

Figure 6.3: Simulation Results for BCH (255,239), EBP Decoder.

0 1 2 3 4 5 6 7 8 9

10−4

10−3

10−2

10−1

100

Eb/No (db)

B
it

E
rr

or
 R

at
e

(B
E

R
)

BCH(255, 231) Hard

BCH(255, 231) EHe p=2

BCH(255, 231) EBP p=2

BCH(255, 247) Hard

BCH(255, 247) EHe p=2

BCH(255, 247) EBP p=2

Figure 6.4: Simulation Results for t = 1 and 3 for n = 255

53

0 1 2 3 4 5 6 7 8 9

10
−4

10
−3

10
−2

10
−1

Eb/No (db)

B
it

E
rr

or
 R

at
e

(B
E

R
)

BCH(511, 484) Hard

BCH(511, 484) EHe p=2

BCH(511, 484) EBP p=2

BCH(511, 502) Hard

BCH(511, 502) EHe p=2

BCH(511, 502) EBP p=2

Figure 6.5: Simulation Results for t = 1 and 3 for n = 511

while the results show an 0.3 dB gain for EBP decoder and 0.8 dB gain for EHe

decoder at rate 0.94. These results show an increase in the coding gain obtained

as the code rate increases. These results indicate that the proposed decoders

are more suitable for large rate codes.

6.3 Summary

In this chapter we proposed two decoding algorithms, the two decoding algo-

rithms provide a programmable coding gain according to the number of extra

compensated bits p with a theoretical maximum likelihood decoding as p ap-

proaches the codeword size n.

54

Chapter 7

Implementation of the EHE and

EBP Soft Decoders

In this chapter we give a detailed explanation of the proposed architectures for

the two soft decoding algorithms proposed. The objective of our design was

to obtain a programmable architecture for the two proposed algorithms, with a

focus on reducing the critical path of the overall system, in order to enable high

operating frequency and a pipelined architecture.

In [32], [33] architectures of EHe and EBP decoding algorithms were proposed.

Such architectures acquire a large critical path. The critical path in these ar-

chitectures of the EHe algorithm is the delay of a square unit and a multiplier

unit, while, in the EBP architecture, the critical path is the delay of a multiplier

unit and an inversion unit. In our design, as will be shown later, the critical

path of the overall system is around the critical path of the syndrome calculation

unit, which is the delay of a constant multiplier, and an adder unit, where the

critical path of the syndrome calculation unit is the least possible critical path

for all BCH decoders. Also, the proposed soft decoders show hardware savings

compared to the EHe and EBP architectures.

The architectures proposed can be divided into error locator evaluator, syn-

drome calculation unit, EHe error magnitude solver (EHe-EMS) in the case of

EHe architecture and EBP error magnitude solver (EBP-EMS) in the case of

EBP architecture.

This section will be divided as follows: in Subsect. 7.1, the used arithmetic

units are discussed in detail. The error locator evaluator and syndrome cal-

culation unit architectures are shown in Subsect. 7.2 7.3, respectively. The

55

architecture of the EHe-EMS for the EHe decoder is described in Subsect. 7.4,

and the architecture of the EBP-EMS for the EBP decoder is described in Sub-

sect. 7.5. In Subsect. 7.6, the complexity of the proposed architectures are

shown, and compared against other BCH soft decoders.

7.1 Arithmetic Units

Several arithmetic units are used in the two proposed architectures. The choice

of such units was based on finding a suitable unit with minimum complexity,

short critical path and possibility of pipelining with different pipelining stages.

In the proposed architectures constant multiplier, adder, multiplier, power

sum and inversion units were used, operating under the Galois field GF (2m).

The Galois field constant multiplier is implemented using a maximum of m2− m
2

XOR gates, and a critical path of log2 (m) the delay of an XOR gate. The adder

unit requires m XOR gates with a critical path of the delay of one XOR gate.

The semi-systolic multiplier unit used is based on the one proposed by [53], where

a LSB first algorithm was used to compute the product C = AB in m+ 1 clock

cycles, requiring m2 cells. Each cell consist of two two-input AND gate, two two-

input XOR gate, and three one-bit latches, with a critical path of TAND+TXOR,

and a throughput of one operation per clock cycle. A less pipelined version of

this architecture is used to reduce the latency and the number of required latches

on the expense of increasing the critical path. Thus the number of cells required

is m2

q and each unit consists of 2q two-input AND gate, 2q two-input XOR

gate, and three one-bit latches, with a critical path of q (TAND + TXOR), where

q is the number of cells between each pipe-lining stage. The systolic power sum

unit used is based on the one proposed by [51] . The calculation of P = AB2 is

performed in m clock cycles requiring m2 cells. Each unit consist of three two-

input AND gate, one two-input XOR gate, one three-input XOR gate, and

four one-bit latches with a critical path of TAND + T3XOR, and a throughput of

one operation per clock cycle. Also a less pipelined version of this architecture

is used, thus the number of cells is reduced to m2

q , and each cell consists of 3q

two-input AND gate, q two-input XOR gate, q three-input XOR gate, and four

one-bit latches, with a critical path of q (TAND + T3XOR). The inversion unit

used consists of m − 1 power sum units [51]. Table 7.1 shows the complexity

and critical paths of the arithmetic units used.

56

Table 7.1: Arithmetic Units

Constant
multiplier

Adder Multiplier
Power
sum

Inversion

Cells 1 1 m2

q
m2

q
m2

q (m−1)

Two-
input
AND
gate

0 0 2q 3q 3q

Two-
input
XOR
gate

m2 − m
2

m 2q q q

Three-
input
XOR
gate

0 0 0 q q

One-bit
latch

0 0 3 4 4

Latency
(cycles)

1 1 m+1
q

m
q

m
q

Critical
path

log2(m) *
TXOR

TXOR
q(TAND
+TXOR)

q(TAND
+T3XOR)

q(TAND
+T3XOR)

57

7.2 Error Locator Evaluator

The error locator evaluator section sorts the input bits according to their re-

liabilities, and for the 2t+p least reliable bits store their reliabilities Rl =

[Rl1 Rl2 . . . Rl2t+p], where Rli is the ascending order sorted reliability number

i, locations le = [L iL], and error locators βe = [βl1 βl2 βl3 . . . βl2t+p].

This is obtained using a structure similar to the one proposed in [32] but

the number of registers is extended to store the extra p values of reliabili-

ties,locations, and error locators. The location of input bit i is obtained using a

counter initialized with zero, where the output of the counter at each input bit

is referred to as cL. The error locator of input bit i is obtained by multiplying

a register by α−1 which is preloaded by αm, where the output of the constant

multiplier at each input bit is referred to as cβ , and the reliability of each input

bit is referred to as cR. A sorting algorithm is used where the input reliability is

compared to the 2t+ p stored reliabilities and the reliability, location, and error

locator at stage i are updated as follows:

if input < Rli−1 then Rli = Rli−1 & βli = βli−1 & lei = lei−1 (7.1)

if input > Rli−1 & input < Rli then Rli = cR & βli = cβ

& lei = cL (7.2)

if input > Rli then Rli = Rli & βli = βli & lei = lei (7.3)

This architecture for the error locator evaluator requires a total of 3 (2t+ p)

registers, a counter circuit, and a constant multiplier
(
α−1

)
. The critical path

of the unit is the delay of a constant multiplier, which is log2(m)Txor, requiring

a total of n clock cycles.

58

7.3 Syndrome Calculator

The 2t syndromes are calculated using the Horner rule. Thus Si = ((. . . (rn−1α
i+

rn−2)α
i + rn−3)α

i . . . ro). This is calculated using 2t constant multipliers and

adders. The critical path of this unit is the delay of a constant multiplier,

and an adder which is bounded by (log2(m) + 1)Txor. The number of clock

cycles required to calculate the 2t syndromes is n clock cycles, executed at the

beginning of the decoding procedure.

7.4 EHe-EMS Architecture

The EHe-EMS solver can be divided into four units:

• the Bodd matrix calculation unit,

• the effective syndrome calculation unit,

• the heuristic search unit, and

• the weight and error location unit.

7.4.1 Bodd Matrix Calculation Unit

Bodd is calculated from β by sequentially multiplying βi by β2
i to obtain β3

i , then

multiplying β3
i by β2

i and (β3
i)

2 = β6
i to obtain β5

i and β9
i and so on to obtain

β2t−1
i . This is performed using t power sum circuit and 2t (t−1) registers, with a

critical path of q (Tand+T3xor). Define D(i, x,m, n) as the number of clock cycles

required to calculate x exponents of a Galois field element, using a power sum

circuit, up to the exponent power n, with step m between each two exponents,

where D(i, x,m, n) = m
q ∗i+x

i−1
(
∑
j=0

3j)− x
m(3i−2t+1)−i and i : 3i−1 < n ≤ 3i.

Thus the number of clock cycles required by this unit is D(i, 2, 2, 2t− 1) clock

cycles, to be executed once after the first n clock cycles.

7.4.2 The Effective Syndrome Calculation Unit

The effective syndrome at each iteration can be expressed by Seffective = S +
p∑
i=1

ai∆Si and ai is the binary value representing the combination of incremental

syndrome vectors. The effective syndrome Seff at each iteration is calculated,

59

as in step 7 of Algorithm I in subsection 6.1.2. The incremental syndrome ∆Si
is calculated using a power sum circuit similar to the approach used in the Bodd

matrix calculation. Using a Grey code counter in the calculation of Seff , leads

to a difference in only one position per iteration between S
(i)
eff and S

(i+1)
eff . This

technique reduces the number of adder units to one adder, and the critical path

to the critical path of one adder, which is 1 XOR gate. Thus this unit requires

one power sum circuit, one adder unit, and t registers with a critical path of this

unit of q (Tand + T3xor) + Txor. The number of clock cycles required by this unit

is D(i, t, 2, 2t − 1), to be executed after the first n clock cycles once every 22t

cycles.

7.4.3 The Heuristic Search Unit

The heuristic search unit iterates on all possible error locations Γ solving the

equation ∆odd = Bodd × Γ+Soddeffective, as in steps 2, 5, 6, 7, and 8 in Algorithm

I in subsection 6.1.2. The output sequence ∆odd is checked whether it forms a

geometric sequence or not. If so, an extra is located, unless this geometric

sequence is a zero vector 0; then, no extra error exists.

Using a Grey code counter for Γ simplifies the calculations by reducing the

number of AND gates and adders required to one adder circuit only, and the

critical path to the delay of one XOR gate only. At the beginning of 22t clock cy-

cles ∆odd is loaded with the value output from the effective syndrome calculation

unit.

To check the output for a geometric sequence t − 2 power sum circuit are

used on the output of the adders circuit to calculate β3
l β

5
l . . . β

2t−1
l from βl and

compare them with the output sequence ∆odd. Additional register stages are

added to accommodate for the m
q delay cycles of the power sum circuit,requiring

additional (t− 1)
(
m
q − 1

)
registers.

A comparator unit is used to compare the output of the power sum circuit

against ∆odd , if the check succeeds a memory access is attempted and the extra

error is calculated, if ∆odd =0 no additional error bits exist.

The heuristic search unit requires t − 2 power sum circuit, 3t − 1 adders,

a look-up table, and (t − 1)
(
m
q

)
+ 1 registers, the critical path of this unit is

q (Tand+T3xor)+Txor, to be executed after Bodd matrix calculations continuously

till the decoding stops, requiring m
q + 22t clock cycles.

60

7.4.4 The Weight and Error Location Unit

This unit calculates the error weight after each iteration, as in steps 3 and 4

in Algorithm I in subsection 6.1.2, and if a valid codeword is found, the error

weight is compared to the minimum weight stored at this iteration. If the error

weight is found less than the minimum weight, the minimum weight is updated

with the new value, and the corresponding error locations are stored. In case an

extra error is found the weight of that error location is assumed to be half the

maximum reliability value, such assumption reduces the complexity required for

storing the reliabilities of all codewords, and does not affect the performance

significantly.

The same approach of a Grey code counter is used, where at each iteration

the reliabilities are updated with only the changed location. Since a transition

can either be the presence of an error at a location or the absence of an error

from that location, an adder subtracter fixed point unit is used. The previous

procedure is performed for the 2t least reliabilities each clock cycle, and for p

extra bits each 22t + m
q clock cycles.

This unit requires two fixed point adder/subtracter units, four registers and

one comparator. The critical path of this unit is the delay of a fixed point adder

and comparator, which is 2(Tand + Txor). This unit requires one clock cycle, and

it operates each clock cycle after Bodd calculation.

7.5 EBP-EMS Architecture

EBP-EMS can be divided into four main sections:

• the BP solver unit,

• the binary sequence check unit,

• the incremental syndrome unit, and

• the error calculation unit.

7.5.1 The BP Solver Unit

The BP algorithm is carried out sequentially performing steps a1, a2 and a3 from

Algorithm II in subsection 6.1.3. The values in S are loaded from the syndrome

61

calculation unit each iteration. Since the inversion unit’s input is βi which is

constant, no stalls are required for the inversion unit. In case of the multiplier,

data dependency occurs between the output of the multiplier unit and its input,

which leads to stalls; such stalls are m
2q

(
m
q − 1

)
for step a1, 2(m2q

(
m
q − 1

)
− 1)

for step a2 and none for step a3, resulting in a total of 3
2

(
m
q

)2
− 3

2

(
m
q

)
− 2 stall

cycles to be added to the 6t2 − t cycles required to perform the algorithm. The

critical path of this unit is q (Tand +T3xor) +Txor . This unit operates iteratively

P + 1 times to obtain Γext requiring three adder circuits, an inversion unit and

multiplier units.

7.5.2 The Binary Sequence Check Unit

The binary sequence check unit receives Γext from the BP solver unit, and iter-

ates on all possible combinations ∆ = Γ +
p∑
i=1

bi Γli, as in steps b1, b3 and b4

in Algorithm II in subsection 6.1.3. The result is checked whether it forms a

binary sequence or not. A Grey code counter is used to perform the previous

iterations. The output of the adder unit is checked to be a binary sequence using

a comparator. The previous operation requires 2p−1 extra delay cycles after the

calculation of Γlp, with a critical path of the delay of an adder which is Txor,

performed after the first iteration of the BP solver unit.

7.5.3 The Incremental Syndrome Unit

The incremental syndrome unit uses a power sum circuit to calculate ∆Si during

each iteration from the BP solver unit, similar to the approach used to calculate

Bodd. This unit requires 2t registers, and one power sum circuit ,with a critical

path of q (Tand + T3xor). The number of clock cycles required by this unit is

D(i, t, 1, 2t) clock cycles, to be executed after the first n clock cycles once

during every 6t2 − t+ 3
2(mq)2 − 3

2(mq)− 2 cycles.

7.5.4 The Error Calculation Unit

The error calculation unit calculates the error weight of each error sequence as

in step b2 in Algorithm II in subsection 6.1.3. The unit operates in two stages;

the first stage uses a Grey code counter to update the error weight due to the

62

incremental syndrome, similar to that in weight and the error locations unit,

while the other stage depends on whether the output sequence is binary. In case

of a binary sequence the error weight is calculated using a fixed point adder tree.

The error weight is compared to the minimum weight stored, and if found

less the minimum weight is updated with the new weight, and the corresponding

error pattern is stored. This circuit requires m+ 1 fixed point adders, and three

registers. The critical path of this unit is the delay of a fixed point adders

tree and a comparator, which is (log2(t) + 1) (Tand + Txor) . Pipelining may

be required to reduce the critical path of the fixed point tree, in such case the

critical path becomes (log2(t)+1)(Tand+Txor)
St+1 , where St is the number of pipelining

stages. The number of clock cycles required is one, to be performed after each

iteration of the binary sequence check unit.

7.6 Proposed Architecture Evaluation and Discussion

In this subsection the complexity of the proposed architectures are shown, then

the complexity of the proposed architecture is compared to other BCH decoders

for general BCH (n, k, t) code and for BCH (255, 239, 2) code.

7.6.1 Complexity of the Proposed Architectures

The combined architectures of the two proposed decoders are shown in Figs.

7.1, 7.2 and 7.3, each architecture was divided into main functional units, where

for each unit in both algorithms the number of arithmetic units required, the

critical path and the latency are stated. In this section we show the overall

complexity of architectures proposed for the two algorithms.

Tables 2 and 3 show summaries of the complexities of the EHe and EBP de-

coders. It is shown that the number of power sum units for the EHe decoder

depends on the number of correctable bits t, the latency of the decoding proce-

dure is a function of 22t, also the size of the LUT depends on the codeword size

n; thus, the EHe decoding algorithm is more suited to codes of medium size,

rather than large codes.

63

T
ab

le
7.2:

S
u
m

m
ary

of
th

e
E

H
e

D
eco

d
er

C
om

p
lex

ity

P
ow

er
su

m
R

egisters
C

on
stan

t
m

u
ltip

lier
L

aten
cy

(cy
-

cles)
C

ritical
p
ath

E
rror

lo
cator

evalu
ator

0
3(2t+

p
)

1
n

log
2 (m

)T
x
or

S
y
n
d
rom

e
calcu

lation
0

t
t

n
(log

2 (m
)

+
1)T

x
or

B
od
d

m
atrix

con
stru

ction
t

2t
2-3t

0
D

(i,
2,

2
,

2t−
1)

q
(T

a
n
d

+
T
3
x
or)

E
ff

ective
sy

n
-

d
rom

e
calcu

-
lation

1
t

0
D

(i,
t,

2
,

2t−
1)

q
(T

a
n
d

+
T
3
x
or)

+
T
x
or

H
eu

ristic
search

t-2
mq

(t−
1)

+
1

0
2
2
t+

mq
q

(T
a
n
d

+
T
3
x
or)

+
T
x
or

W
eigh

t
an

d
error
lo

cation
0

4
0

1
2

(T
a
n
d

+
T
x
or)

O
verall

com
-

p
lex

ity
t

2t
2+

(5+
mq

)t+
3p

-
mq

+
5

t+
1

n
+
D

(i,
2,

2,
2t
−

1)
+

2
2
t+
p+

mq
+

1

m
ax

(2
(T

a
n
d

+
T
x
or),

q
(T

a
n
d

+
T
3
x
or)

+
T
X
O
R

,
(log

2 (m
)

+
1)T

x
or)

64

T
ab

le
7.

3:
S
u
m

m
ar

y
of

E
B

P
D

ec
o
d
er

C
om

p
le

x
it

y

P
ow

er
su

m
R

eg
is

te
rs

C
on

st
an

t
m

u
lt

i-
p
li
er

m
u
lt

ip
li
er

L
at

en
cy

(c
y
cl

es
)

C
ri

ti
ca

l
p
at

h

E
rr

or
lo

ca
-

to
r

ev
al

u
at

or
0

3(
2t

+
p
)

1
0

n
lo
g 2

(m
)T

x
or

S
y
n
d
ro

m
e

ca
lc

u
la

ti
on

0
2t

2t
0

n
(l
og

2
(m

)
+

1)
T
x
or

B
P

so
lv

er
u
n
it

m
-1

2t
2
-3

t
0

1
6t

2
-t

+
3 2
(m
q

)2
-

3 2
(m
q

)-
2

q
(T

a
n
d

+
T
3
x
or

)
+

T
x
or

B
in

ar
y

se
q
u
en

ce
ch

ec
k

0
2t

p
0

0
2p

T
x
or

In
cr

em
en

ta
l

sy
n
d
ro

m
e

1
2t

0
D

(i
,t
,1
,2
t)q

(T
a
n
d

+
T
3
x
or

)

E
rr

or
ca

lc
u
-

la
ti

on
0

3
0

0
S
t+

1
(l
og

2
(t
)
+
1
)

S
t+

1
*

(T
A
N
D

+
T
X
O
R

)

O
ve

ra
ll

co
m

-
p
le

x
it

y
m

10
t+

(2
t

+
3)

p
+

3
2t

+
1

1
n
+

(p
+

1)
(6

t2
-

t+ 3 2
(m
q

)2
-

3 2
(m
q

)-

2)
+

2p
−
1

+
st

+
1

m
ax

(
(l
og

2
(t
)
+
1
)

S
t+

1
*

(T
A
N
D

+
T
X
O
R

),
q

(T
a
n
d

+
T
3
x
or

)
+

T
x
or

,
(l
og

2
(m

)
+

1)
T
x
or

)

65

���

�

�

�

���

�

�

�

���

�

�

��
	
���

�

�

��

���
���

�
�

�
�

�
����

� � ����

�

��

�
�

�
�

�
����

�
����������������

�����������������������

Figure 7.1: Syndrome Calculator and Error Locator Evaluator Units

In EBP algorithm the number of power sum units depends on the extension

field size m, and the latency is a function of t2, thus EBP is suitable for large

BCH codes.

It is also worth noting that the major section of the latency in case of the EBP

algorithm, which is the latency of the BP solver, is linearly proportional with

the number of extra compensated bits p, while in the case of EHe algorithm the

major section of the latency, which is the latency of the heuristic search unit, is

exponentially proportional with p, allowing EBP algorithm to correct more extra

bits (higher p) for the same latency compared to EHe algorithm, but the extra

error compensation in EHe leads to a superior initial performance (at p = 0)

compared to the EBP algorithm, as will be shown later.

Architecture Comparison

66

������ ���

������ ���

������ ���

������	
���	����

� � �

�

�

�

�

�

�

�

���

�

���

�

���

�

�

���

�

���

���

���

���

���

���

���

���

�	�������

�	�������

�

�

������������

���

�

�

���

��������	�

�
���

����
���

���
�
�������

���

�
�������

�

�
�������

�

�
���

�

�
���

�

�
���

�

�
���

�

�	������� �	�������

���

���

���

� ���

���

��� ��� ���

�

���

�
�

�
�

�
�

�
��

!

!
�

!

�
���

�
���

������	
���	����

��� ������

��� ��� ��

�	������� �

���

���

���

��
�

��
�

���	��!�"#$���%&�%�"	� �''�&"(�����
�	�����%&�%�"	�

)
	

���"��&�%&�%�"	�

*���"+"&�����&$

Figure 7.2: EHe-EMS Architecture

67

���

���

���

�

�

��

�

� �
	
�����

�
��

��� ��� ���

�
� �

�
�
��

�

��� ��� ���

�
�

�
��

�
�

��� ��� ���

���� ���� ����

��������
������ ���

������ ���

������ ���

������������
��

�

���

�

���

��

���

�

���

�

���

��

���

�

���

�

���

��

���

�

�

���

�

���

���

�

�

��
��� ��� ���

�

���

�
����

�
����

�
����

�
�

���

���

���

�
�

�
�

����

 ��
���

���

�
�

�
�

�
��

������!"�

#�
$����%��
&���"�&'

	
&���
�$(���
����

#����(��

Figure 7.3: EBP-EMS Architecture

68

T
ab

le
7.

4:
C

om
p
ar

is
on

fo
r

B
C

H
(n

,
k
,

t)
an

d
(2

55
,

23
9,

2)

B
C

H
(n

,k
,t

)
iB

M
H

e-
E

M
S

B
P

-
E

M
S

p
ro

p
os

ed
E

H
e-

E
M

S
p
ro

p
os

ed
E

B
P

-E
M

S
B

C
H

(2
55

,2
39

,2
)

R
eg

is
te

r
5t

+
2

2t
2
+

6t
8t

2t
2

+
(6

+
m q

)t
+

3p
-m
q

+
5

10
t+

(2
t

+
3)

p
+

3

12
20

16
27

+
3p

23
+

7p

M
u
lt

ip
li
er

3t
+

3
3t

-1
1

0
1

9
5

1
0

1

P
ow

er
S
u
m

0
0

0
t

m
0

0
0

2
8

C
on

st
an

t
M

u
lt

ip
li
er

3t
t+

1
2t

+
1

2t
+

1
2t

+
1

6
3

5
3

5

S
q
u
ar

er
0

2t
+

1
0

0
0

0
5

0
0

0

In
ve

rs
io

n
U

n
it

0
0

1
0

0
0

0
1

0
0

L
U

T
0

1
0

1
0

0
1

0
1

0

L
at

en
cy

2n
+

2t
n
+

22
t +

t-
1

n
+

6t
2
-t

n
+
D

(i
,

2,
2,

2t
−

1)
+

22
t+
p
+
m q

+
1

n
+

(6
t2

-t
+

3 2
(m
q

)2
-

3 2
(m
q

)-
2)

(p
+

1)
+

2p
+

S
t+

1

51
4

27
2

27
7

26
5+

16
∗2

p
29

4+
38
p

+
2p
−
1

C
ri

ti
ca

l
P

at
h

2T
a
n
d
+

(2
m

+
1)
T
x
or

2T
a
n
d
+

3 2
m
T
x
or

2T
a
n
d

+
2m

T
x
or

)

m
ax

(2
(T

a
n
d

+
T
x
or

),
q

(T
a
n
d

+
T
3
x
or

)
+

T
X
O
R

,
(l
og

2
(m

)
+

1)
T
x
or

)

m
ax

(
(l
og

2
(t
)
+
1
)(
T
A
N

D
+
T
X

O
R
)

S
t+

1
,

q
(T

+
T
3
x
or

)+
T
X
O
R

,
(l
og

2
(m

)
+

1)
T
x
or

)

2T
a
n
d
+

17
T
x
or

2T
a
n
d
+

12
T
x
or

2T
a
n
d

+
16
T
x
or

2
(T

a
n
d

+
T
3
x
or

)
+
T
X
O
R

2
(T

a
n
d

+
T
3
x
or

)
+
T
X
O
R

69

In this Subsection, a comparison between the proposed architecture and other

BCH soft decoders for general BCH (n, k, t) and for BCH (255, 239, 2). As

shown in Table 7.4 comparing the complexity of the proposed EHe-EMS to the

complexity of He-EMS [33], the 3t−1 multiplier circuits, and the 2t+1 squarers

in the He-EMS architecture are replaced with t power sum units. Extra registers

are added in the proposed architecture to store the information corresponding to

the extra p bits stored. Also, to compensate the latency of the systolic arithmetic

units used. The latency of the proposed algorithm is 2p clock cycles more than

than of He-EMS, in order to iterate on the p extra extra error locations. Also

some extra stall cycles appear due to the latency of the used systolic arithmetic

units.

Comparing the complexity of the proposed EBP-EMS to the complexity of

BP-EMS [32], the inversion unit is replaced with m power sum units, note that

the inversion in our proposed architecture is carried out using m − 1 power

sum units, and the extra unit is used to evaluate the incremental syndrome.

Extra registers are added in the proposed architecture to store the information

corresponding to the extra p bits stored. The latency of the proposed algorithm

is about p times more than that of EBP-EMS, in order to iterate on the p extra

extra error locations. Also some extra stall cycles appear in order to calculate

the error locations.

As for the critical path, the two proposed architectures acquire a configurable

critical path according to the choice of the pipelining stages q, thus allowing for

flexible choice of the critical path. Also, in case of EBP-EMS the choice of the

number of pipelining stages in the fixed point adder tree St allows a configurable

critical path. In the case of He-EMS the critical path is the delay of a multiplier

and a squarer unit, while in the case of EBP-EMS the critical path is delay of a

multiplier and an inversion unit, and in the case in the inversion-less Berlekamp-

Massey algebraic decoder (iBM) [8] the critical path is the delay 2 multipliers

and (log2(
t−1
2) + 2) adder units. Although the critical path of the multiplier,

inversion, squarer units depends on the choice of the arithmetic unit itself, but

the critical path of a bit parallel multiplier unit is around TAND +mTXOR [48],

while the critical path of an inversion unit is around (m−1)(TAND+mTXOR), and

the critical path of the squarer is around TAND + m
2 TXOR. For BCH (255,239,

2), the critical path for the EHe-EMS decoder becomes max(2 (Tand + Txor),

70

q (Tand + T3xor) + TXOR, 4Txor), and for EBP-EMS becomes max(2(TAND+TXOR)
St+1 ,

q (T+T3xor)+Txor, 4Txor), thus an optimum critical path is obtained by choosing

q = 2 and St = 0, i=1, thus D(1, 2, 2, 3)=5, the critical path of EHe-EMS and

EBP-EMS becomes 2 (Tand + T3xor) + TXOR.

The increase in required registers in our design compared to [32], [33], and [8]

is a linear factor of p the extra compensated bits, while the gain from using the

pipelined architecture is a decrease in the critical path of around m/2 where m

is the Galois field size.

7.7 Implementation Results

Table 7.4 shows the BCH (255,239,2) complexity for the two proposed decoders

and compares them to the algebraic decoder, and the soft decoders presented

in [32, 33]. Results show a significant complexity reduction compared to the

algebraic decoder [8], comparing the complexities of the EBP decoder to [32]

a complexity reduction is obtained by using two power sum circuits instead of

five squarers, and multipliers, and comparing the complexity of the EHe decoder

to [33] only an increase in the required registers occurs which is insignificant to

the overall complexity. The number of clock cycles for the decoding procedure

is reduced compared to the algebraic decoder due to the elimination of the

Chien search procedure; the number of clock cycles required for EBP and EHe

decoders depends on the number of extra compensated bits p; thus, an increase

in the required number of clock cycles occurs for high values of p, but with a

critical path of about four times less than that of the algebraic decoder, or to the

decoders at [32,33]. The overall latency of the decoding procedure is reduced as

the dominating factor in the overall latency is due to the codeword length.

The register transfer level (RTL) implementation of the EBP and EHe de-

coders were written using VHDL hardware description language(HDL) for a

generic number of extra corrected bits p, the block diagram of the decoders is

shown in figures 7.4 and 7.5, and the pin description is shown in table 7.5.

71

Table 7.5: EBP and EHe Decoders Pin Description

Pin Name Width Pin Description

clock 1 Input clock

reset 1 Active high reset

data in 1 k input bits

op ready 1 Output ready flag

sorted rel (2t+p)∗m Locations of the 2t+p least re-
liable bits

error loca-
tions

2t+ p
Locations in the 2t + p sorted
reliabilities containing error
bits

extra error m
In EHe decoder, the extra error
location

clock

reset

data_in

op_ready

error_locations

sorted_rel

Figure 7.4: EBP Block Diagram

clock

reset

data_in

op_ready

error_locations

sorted_rel

extra_error

Figure 7.5: EHe Block Diagram

72

OVM Agent OVM Agent

OVM driver OVM driver

OVM monitor
OVM monitor

OVM environment

OVM Test

OVM Scoreboard

Figure 7.6: OVM Verification Environment

7.7.1 Functional Verification

To verify the functionality of the RTL designs open verification methodology(OVM)

was employed. Two OVM agents were used the first agent generates the stim-

ulus and sends the generated stimulus to the OVM scoreboard, and the other

reads the stimulus and sends it to the OVM scoreboard. This structure is shown

in figure 7.6

The first OVM agent’s driver generates stimulus as follows:

• Random bits are generated with length equal to the message length k which

is 239 in our case.

• The k random bits are encoded using the generator polynomial 1 + x2 +

x3 + x5 + x7 + x8 + x10 + x11 + x15 + x16.

• A configurable number of errors are inserted at the coded message of length

n to test the correcting capability

An OVM monitor of the second agent then waits for the decoding to be fin-

ished, then reads the error locations and sends these error locations to the OVM

scoreboard. The OVM scoreboard then compares the error locations generated

at the first agent, to the results captured by the second agent. Then if the de-

sign under test fails to correct a number of error bits less than or equal to its

correcting capability, an error message is produced to indicate a bug in the RTL

design of the decoders.

73

Table 7.6: Implementation Results for BCH(255,239) EBP and EHe Decoders

BCH
Decoder

Cell Area
(µm)2

Operating
Frequency
(MHz)

Latency
(Clock
Cycles)

Throughput
(Mbits/sec)

EBP Decoder
p = 2 14727

1000
n+ 132 617.5

p = 4 18510 n+ 214 509
p = 6 22365 n+ 314 420

EHe Decoder
p = 2 14320

1000
n+ 74 726.44

p = 4 19542 n+ 266 458.7
p = 6 28461 n+ 1034 185.4

Algebraic Decoder 14400 360 2n+ 4 167.4

He Decoder 13225 360 n+ 17 316.3

7.7.2 Implementation Results

The designs were synthesized on Taiwan Semiconductor Manufacturing Com-

pany (TSMC) general purpose (G) 90 nm technology [54], and the target clock

frequency was set to 1 GHz, and Physical Layout Estimation (PLE) interconnect

model. With the inverter delay at standard voltage being 26 picoseconds; thus,

a maximum of 38 inverter delays is required to be able to close the circuit timing

at 1 nanosecond. The implementation results for BCH(255,239) EBP and EHe

decoders for p = 2, 4, 6 is shown below in table 7.6 and compared to algebraic

decoder, and decoders at [32,33].

The number of clock cycles for EBP decoder p = 2, 4and6 is n+132, n+214

and n + 314 clock cycles, at 1 Ghz operating clock this results in a throughput

of 617.5 Mbits/sec, 509 Mbits/sec and 420 Mbits/sec. While for EHe decoder

p = 2, 4 and 6 is n+ 74, n+ 266 and n+ 1034 clock cycles, at 1 Ghz operating

clock this results in a throughput of 726.4 Mbits/sec, 458.7 Mbits/sec and 185.4

Mbits/sec. Thus, the throughput in our proposed decoders exceeds that of

algebraic decoder of throughput 167.4 Mbits/sec and decoders proposed at [33]

and [32] of throughput 316.3 Mbits/sec.

The cell area for EBP decoder for EBP decoder p = 2, 4and6 is 14727, 18510

and 22365 µm2. While for EHe decoder p = 2, 4and6 is 14320, 19542 and 28461

µm2. Thus, the area in our proposed decoders is comparable to that of algebraic

decoder of area 14400 µm2 and decoders proposed at [33] and [32] of area 13225

µm2.

74

7.8 Summary

In this chapter the implementation is EHe and EBP decoders is detailed. Where

EHe decoder’s complexity increases exponentially with the number of extra com-

pensated bits p and the number of power sum units is a function of the number

of extra compensated bits t, while EBP decoder’s complexity increases linearly

with p and the number of power sum units is a function of the field size m. This

makes EHe decoder more suitable for medium sized BCH codes with a small

number of extra compensated bits, while EBP decoder is more suitable for large

sized BCH codes with large number of extra compensated bits.

75

Chapter 8

Conclusion

In this thesis, two soft BCH decoders are proposed for high-rate BCH codes,

where the EHe decoder is suitable for codes with medium code word size, and

the EBP decoder is suitable for codes with large code word size. This work was

published in [9] and [10].

The proposed algorithms obtain a programmable coding gain that varies ac-

cording to the number of extra compensated bits p and reaches a theoretical

maximum likelihood bound as p approaches the codeword length n. The coding

gain of the proposed algorithms increase compared to algebraic decoding algo-

rithms as the code rate n/k increase. As shown in Table 7.4, the increase in the

number of compensated bits results in an insignificant increase in complexity of

the decoder, and an increase in the required number of clock cycles is compen-

sated by the reduced critical path of the design. the shorter critical path allows

the system to operate at the maximum operating frequency which is set by the

syndrome calculation unit. Compared to the legacy Berlekamp-Massey decoder,

the proposed soft decision decoding algorithms not only outperform the hard-

decision based algorithm but also eliminate the Chien search procedure resulting

in a reduction in the hardware complexity, latency and an increase in the overall

system throughput.

Synthesizing the two proposed decoders on TSMC 90 nm G technology for

BCH (255, 239), our proposed EBP decoder obtains a throughput of 617.5

Mbits/sec, 509 Mbits/sec and 420 Mbits/sec at an area of 14727, 18510 and

22365 µm2 at p = 2, 4and 6 obtaining a gain of 0.05, 0.2, 0.35 dB over algebraic

decoding. While EHe decoder obtains a throughput of 726.4 Mbits/sec, 458.7

Mbits/sec and 185.4 Mbits/sec at an area of 14320, 19542 and 28461 µm2 at

76

p = 2, 4 and 6 obtaining a gain of 0.75, 1, 1.2 over algebraic decoding.

As the results indicate the EHe decoder obtain a higher coding gain over EBP

decoder, but with a non-linear increase in the complexity with the increase in

the number of extra corrected bits p. This makes EHe decoder more suitable for

medium length codes with high rates and less number of extra correctable bits,

while, EBP decoder is more suitable for large codes with high rates with high

number of extra correctable bits.

8.1 Future Work

The future work could be to integrate the proposed decoders into DVB second

generation systems and test the following:

1. The two algorithms provided here can be integrated into , to test the effi-

ciency of an iterative loop between the LDPC decoder and the BCH decoder.

2. The two decoders can be implemented, and the reduction in power con-

sumption could be measured, or the possibility of changing the number of

extra compensated bits p which changes the coding gain according to system

power mode.

The two proposed decoders can be implemented for a larger size

77

Bibliography

[1] Cohen. Codes correcteurs d’erreurs. December 1997.

[2] G. Dagnino. On a new class of binary group codes. CALCOLO, 5(2):277–

294, 1968.

[3] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields.

Journal of the Society for Industrial and Applied Mathematics, 8(2):300–

304, 1960.

[4] Faisal Rasheed Lone, Arjun Puri, and Sudesh Kumar. Performance com-

parison of reed solomon code and bch code over rayleigh fading channel.

CoRR, abs/1307.6930, 2013.

[5] ETSI Standard. Digital Video Broadcasting (DVB); Frame Structure Chan-

nel Coding and Modulation for a Second Generation Digital Terrestrial Tele-

vision Broadcasting System (DVB-T2), Sep. 2009.

[6] ETSI Standard. Digital Video Broadcasting (DVB); Frame Structure Chan-

nel Coding and Modulation for a Second Generation Digital Terrestrial Tele-

vision Broadcasting System (DVB-C2), Feb. 2011.

[7] G. Atwood, A Fazio, D Mills, and B Reavesi. Intel StrataFlash memory

technology overview. In Intel Tech. Journal, pages 1–8, 1997.

[8] I.S. Reed and M.T. Shih. Vlsi design of inverse-free berlekamp-massey algo-

rithm. Computers and Digital Techniques, IEE Proceedings E, 138(5):295–

298, Sep 1991.

[9] M.T.A. Osman, H.A.H. Fahmy, Y.A.H. Fahmy, and M.A. Elsabrouty. Two

programmable bch soft decoders for high rate codes with large word length.

In Circuits and Systems (ISCAS), 2013 IEEE International Symposium on,

pages 1556–1559, 2013.

78

[10] MohamedT.A. Osman, HossamA.H. Fahmy, YasmineA.H. Fahmy, MahaM.

Elsabrouty, and Ahmed Shalash. Two extended programmable bch soft

decoders using least reliable bits reprocessing. Circuits, Systems, and Signal

Processing, pages 1–23, 2014.

[11] R E Blahut. Theory and practice of error-control codes. Addison-Wesley,

Reading, MA, 1983.

[12] Shu Lin and Daniel J Castello. Error control coding, Fundamentals and

applications. Prentice hall, New Jersey, 1983.

[13] I Stewart. Galois theory. Chapman and Hall, London, 1973.

[14] F J Mac Williams and N J A Sloane. The theory of error correcting codes.

North Holand, 1977.

[15] E R Berlekamp. Bit-serial Reed-Solomon encoders. In IEEE Transaction

on Information Theory, volume 28, pages 120–126, Nov 1982.

[16] E Mastrovito. VLSI Architectures for Computation in Galois Fields. PhD

thesis, Linkoping Univ., Dept. of Electrical Eng, 1991.

[17] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite

fields. Journal of the Society for Industrial and Applied Mathematics, 8:300–

304, 1960.

[18] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting

Codes. North-holland Publishing Company, 2nd edition, 1978.

[19] Shu Lin and Daniel J. Costello Jr. Error Control Coding: Fundamentals

and Applications. Prentice-Hall, 1983.

[20] Richard E. Blahut. Theory and practice of error control codes. Addison-

Wesley Pub. Co. c1983, Reading, MA, 1983.

[21] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko

Namekawa. A method for solving key equation for decoding goppa codes.

Information and Control, 27(1):87–99, January 1975.

[22] E. R. Berlekamp. Algebraic coding theory. Aegean Park Press, Laguna Hills,

CA, USA, 1984.

79

[23] R. Chien. Cyclic decoding procedures for bose- chaudhuri-hocquenghem

codes. IEEE Transaction on Information Theory, 10(4):357–363, September

2006.

[24] W Liu, J Rho, and W Sung. Low-power high-throughput BCH error correc-

tion VLSI design for multi-level cell NAND flash memories. In Proc. SiPS,

pages 303–308, Banff, Alberta, Canada, Oct. 2006.

[25] E R Berlekamp. Algebraic Coding Theory. Aegean Park Press, New York:

McGraw-Hill, 1968.

[26] J Hong and M Vetterli. Simple algorithms for BCH decoding. In IEEE

Transaction on Communications, volume 43, pages 2324–2333, Aug. 1995.

[27] Jr. Forney, G.D. and A. Vardy. Generalized minimum-distance decoding of

euclidean-space codes and lattices. Information Theory, IEEE Transactions

on, 42(6):1992–2026, Nov 1996.

[28] M Lalam, K Amis, D Lerous, D Feng, and J Yuan. An improved iterative

decoding algorithm for block turbo codes. In Proc. IEEE International

Symposium on Information Theory, pages 2403–2407, Jul. 2006.

[29] D Chase. A class of algorithms for decoding block codes with channel

measurement information. In IEEE Transaction on Information Theory,

volume IT-18, pages 170–182, 1972.

[30] Xinmiao Zhang, Jiangli Zhu, and Yingquan Wu. Efficient one-pass Chase

soft-decision BCH decoder for multi-level cell NAND flash memory. In Proc.

MWSCAS, pages 1–4, 2011.

[31] W J Reid, L L Joiner, and J J Komo. Soft decision decoding of BCH codes

using error magnitudes. In IEEE International Symposium on Information

Theory, page 303, June 1997.

[32] Y M Lin, C Chen, H Chang, and C Lee. A 26.9 K 314.5 Mb/s soft

(32400,32208) BCH decoder chip for DVB-S2 system. IEEE Journal of

solid-state circuits, 45(11), Nov. 2010.

[33] Y M Lin, H Chang, and C Lee. An improved soft BCH decoder with one

extra error compensation. In Circuits and Systems (ISCAS), 2013 IEEE

International Symposium on, pages 3941–3944, Paris, France, 2011.

80

[34] M Fossorier and S Lin. Soft-decision decoding of linear block codes based on

ordered statistics. In IEEE Transaction on Information Theory, volume 41,

pages 1379–1396, Sep. 1995.

[35] A Valembois and M Fossorier. Box and match techniques applied to soft

decision decoding. In Information Theory and Applications Workshop, page

143, 2002.

[36] W Jin and M Fossorier. Efficient box and match algorithm for reliability-

based soft-decision decoding of linear block codes. In Information Theory

and applications workshop, pages 160–169, Feb. 2007.

[37] J S Yedidia, J Chen, and M Fossorier. Generating code representations

suitable for belief propagation decoding. In Proc. Allerton, Oct. 2002.

[38] J Jiang and K R Narayanan. Iterative soft-input-soft-output decoding of

Reed-Solomon codes by adapting the parity check matrix. In IEEE Trans-

action on Information Theory, volume 52, 2006.

[39] S K Jain, L Song, and K K Parhi. Effecient Semisystolic Architectures for

Finite-Field Arithmetic. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, pages 101–113, 1998.

[40] C L Wang and J L Lin. Systolic array implementation of multipliers for

finite fields GF(2m). In IEEE Transaction on Circuits Systems, volume 38,

pages 796–800, 1991.

[41] C S Yeh, I S Reed, and T K Troung. Systolic multipliers for finite fields

GF(2m). In IEEE Transaction on Computer, 1984.

[42] C Y Lee. Low-complexity bit-parallel systolic multipliers over GF(2m).

Integrat. In IEEE Journal on VLSI, 2008.

[43] B A Laws and C K Rushforth. A Cellular-Array Multiplier for GF (2m).

In IEEE Transaction on computers, volume 100, pages 1573–1578, March

1971.

[44] Arash Hariri. Arithmetic Units for the Elliptic Curve Cryptography with

Concurrent Error Detection Capability. PhD thesis.

[45] IEEE Standard Specifications for Public-Key Cryptography, Jan. 2000.

81

[46] J L Massey and J K Omura. Computational Method and Apparatus for

Finite Field Arithmetic. Technical report, US Patent No. 4,587,627, 1986.

[47] R Lidl and H Niederreiter. Introduction to finite fields and their applications.

Cambridge University Press, New York, 1994.

[48] S T J Fenn, M Benaissa, and D Taylor. GF(2m) Multiplication and division

over the dual field. In IEEE Transaction on computers, volume 45, pages

319–327, March 1996.

[49] T Beth and D Gollman. Algorithm Engineering for Public Key Algorithms.

In IEEE Journal Selected Areas in Communication, volume 7, pages 458–

465, May 1989.

[50] S Kwon. A low complexity and a low latency bit parallel systolic multiplier

over GF(2m) using an optimal normal basis of Type II. In 16th IEEE

Symposium Computer Arithmetic, pages 196–202, June 2003.

[51] Shyue-Win Wei. VLSI architectures for computing exponentiations, multi-

plicative inverses, and divisions in GF(2m). In IEEE Transaction on Circuits

and Systems-II, volume 44, pages 847–855, Oct. 1997.

[52] A Bjorck and V Pereyra. Solution of Vandermonde systems of equations.

In Math. Comput., volume 24, pages 893–903, Oct. 1970.

[53] Surendra K Jain, Leilei Song, and Keshab K Parhi. Efficient semisystolic

architectures for finite-field arithmetic. In IEEE Transaction on VLSI sys-

tems, volume 6, March 1998.

[54] C.C. Wu, Y.K. Leung, C.S. Chang, M.-H. Tsai, H.T. Huang, D.W. Lin, Y. M

Sheu, C.-H. Hsieh, W.J. Liang, L. K. Han, W.M. Chen, S. Z. Chang, S.Y.

Wu, S.S. Lin, H.C. Lin, C.H. Wang, P.W. Wang, T.-L. Lee, C.Y. Fu, C.W.

Chang, S-C Chen, S.M. Jang, S. L. Shue, H.T. Lin, Y.C. See, Y.J. Mii, C.H.

Diaz, B.J. Lin, M.-S. Liang, and Y.C. Sun. In Electron Devices Meeting,

2002. IEDM ’02. International, title=A 90-nm CMOS device technology

with high-speed, general-purpose, and low-leakage transistors for system on

chip applications, pages 65–68, Dec 2002.

82

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Galois Fields
	Galois Field Properties
	Binary Extension Field Arithmetic
	Basis Representation
	Operations

	Summary

	BCH Code
	BCH Codes
	Encoding BCH codes
	Decoding BCH Codes
	Calculation of the Syndromes
	Solving the Key Equation
	Finding the Error Locations

	Summary

	Soft Decoding Algorithms Survey
	Least Reliable bits Reprocessing Decoding Algorithms
	Most Reliable Bits Reprocessing Decoding Algorithms
	Belief Propagation (BP) Based Algorithms
	Summary

	Galois Field Arithmetic Units Survey
	Galois Field GF(2m) Multipliers
	Polynomial Basis Multipliers
	Shifted Polynomial Basis Multipliers
	Normal Basis Multipliers
	Dual Basis Multipliers
	Comparison and Discussion

	Galois Field GF(2m) Exponentiation
	Polynomial Basis Power Sum Operation
	Normal Basis Power Sum Operation
	Comparison and Discussion

	Summary

	Proposed BCH Soft Decoding Algorithms
	Proposed Programmable BCH Soft Decoding Algorithm
	Soft Decoding Algorithms
	EHe-EMS Algorithm
	EBP-EMS Algorithm
	Geometric Interpretation of the Proposed Algorithms

	Simulation And Comparison Results
	Summary

	Implementation of the EHE and EBP Soft Decoders
	Arithmetic Units
	Error Locator Evaluator
	Syndrome Calculator
	EHe-EMS Architecture
	Bodd Matrix Calculation Unit
	The Effective Syndrome Calculation Unit
	The Heuristic Search Unit
	The Weight and Error Location Unit

	EBP-EMS Architecture
	The BP Solver Unit
	The Binary Sequence Check Unit
	The Incremental Syndrome Unit
	The Error Calculation Unit

	Proposed Architecture Evaluation and Discussion
	Complexity of the Proposed Architectures

	Implementation Results
	Functional Verification
	Implementation Results

	Summary

	Conclusion
	Future Work

	References

