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Abstract

Emotion conversion using a small speech corpus is very important for expressive text
to speech systems. Applying the unit selection paradigm for intonation conversion has been
widely used for different languages. Different intonation units were used depending on the
linguistic characteristics of different languages.

In this thesis, an emotion conversion system is proposed for expressive Arabic speech.
This system combines the transformation of both spectral and prosodic parameters of speech
based on the linguistic context. Four speech parameters are transformed to obtain the desired
expression: pitch, duration, energy, and spectral envelope. The linguistic features of Arabic
speech which are responsible for different intonation are studied. Unit selection is used for
pitch conversion and the effect of using different intonation units and different pitch
detectors is studied. We also study the effect of converting each of the four speech
parameters, using our proposed system, on different expressions. Finally we evaluate the
overall emotion conversion system for different expressions.

Subjective tests were carried out to evaluate the system on three target expressions:
sadness, happiness and questioning. Results show the effectiveness of both syllable and word
units as the basic intonation unit for pitch conversion, however using syllable unit gives
higher expressiveness for sadness and happiness. Results also show that converting pitch
contours using our system is dominant for happiness and questioning and highly affects the
sadness, while duration conversion affects only sadness, and spectral conversion affects only
happiness.

After analyzing the training corpus; we have proposed decreasing the energy level for
sadness and results show the effectiveness of energy level decrease in sadness.

Finally, the evaluation of the overall emotion conversion system for expressive speech
shows that the proposed system managed to add an acceptable expressiveness in Arabic
speech with a good quality (MOS =~ 3) for sadness and happiness. The same results can be
obtained for questioning if only the pitch contour is converted, since spectral conversion
degrades the output quality of questioning without increasing the expressiveness and
duration conversion has no effect on questioning.



Chapterl: Introduction

Text to speech system (TTS) is a machinery system which generates human-like speech
from any input text. Speech synthesizers used in TTS have been developed over the years as
the memory resources become available and cheaper; as a result, large enhancements in the
quality and the intelligibility of the synthesized speech have been achieved.

The task of learning a TTS machine to convert text into speech can be represented as
learning a child reading a text aloud. Imagine if this child reads all expressive sentences in a
neutral manner without illustrating questioning, surprise, sadness, happiness, fear, and other
expressions; the utterances may be unintelligible. The same thing for the TTS machine,
which makes adding expressiveness to TTS systems required to increase the naturalness and
intelligibility of the system.

1.1 Expressive TTS literature review

Many studies in the literature were done in the field of expressive TTS, starting with
studying the acoustic correlates of emotions to find speech parameters which are responsible
for emotion [1-5], passing by designing good corpora for emotional speech [6, 7], and finally
studying how to generate expressive speech.

1.1.1 Acoustic correlates of emotions

Several studies were made to find the effective parameters of the speech signal that are
responsible for different emotions. Results in [1] proved that there are systematic changes in
the spectral envelopes of neutral and emotional speech signals. A copy-synthesis approach
is used in [2-5] and their results proved that modifying only the prosodic parameters(pitch-
duration- intensity), or only the spectral parameters isn’t sufficient to achieve a successful
emotion conversion, so both prosodic and spectral parameters should be modified to achieve
a successful emotion conversion, however combining both spectral and prosodic
transformation increases the identification rate of each emotion at the expense of decreasing
the output speech quality [5].

1.1.2 Generating expressive speech

Three approaches for adding expressiveness to TTS systems were proposed in the
literature for different speech synthesizers. These approaches are: expressive unit selection
(or playback), expressive HMM-based synthesis, and emotion conversion; as summarized in
Figure 1-1.



expressive TTS approaches

: : expressive unit expressive HMM-
emotion conversion selection (playback) based synthesis
I
I I
rule-based data-driven

Figure 1-1 literature work of generating expressive speech

1.1.2.1 Expressive unit selection

Expressive unit selection, also called playback, is an approach used to obtain expressive
speech in concatenative synthesizers; where a database containing different speaking styles
is recorded, and at the synthesis time; appropriate units are selected from this database and
concatenated to obtain expressive speech.

This approach was used in early diphone concatenative synthesizers [8]; where a
diphone inventory was recorded in different speaking styles by the same speaker, and at the
synthesis time target diphones were selected from the desired emotion inventory and
concatenated to obtain expressive speech.

Recent unit selection concatenative synthesizers, which store large database of different
speech units (phonemes, diphones, words, and phrases) to reduce the concatenation
distortion, make use of the playback approach to achieve expressiveness [9-12].

1.1.2.2 Expressive HMM-based synthesis

Another approach for expressive TTS is to model the speech parameters (spectrum,
excitation, and phoneme duration) and linguistic features of different emotions using HMMs.
At the synthesis time, these parameters are used to synthesize the speech in the desired style
[13, 14].

1.1.2.3 Emotion conversion

Emotion conversion is used for adding expressiveness to the text to speech system using
a small corpus recorded in different styles. Emotion conversion for expressive TTS is
independent of the synthesizer type, unlike the playback and HMM-based approaches; where



emotion conversion approach can be applied to the output speech of any synthesizer or to
the parameters used for speech generation in a parametric HMM synthesizer.

In emotion conversion approach, a set of speech parameters are transformed to the
desired emotion. Emotion conversion uses either rule-based techniques or statistical
techniques to convert the neutral speech to the desired emotion. A major issue in emotion
conversion is that it is difficult to compare the results of two different works, since the
emotion conversion system is affected by the linguistic features of the language, the quality
and expressiveness of the training data, and the size of the database (for statistical approach).

1.1.2.3.1 Rule-based emotion conversion

Rule-based approach was used to convert an input utterance to the desired emotion using
a set of pre-determined rules [15-21]. Rules are designed for different parameters of speech
signal such as FO level and range, speech tempo, possibly loudness, voice quality, and the
number and duration of pauses.

1.1.2.3.2 Data-driven emotion conversion (statistical approach)

In data-driven emotion conversion, an efficient-size of parallel training corpus is used
to train statistical models or to build a unit selection framework, which are used later to
convert the neutral speech into the desired emotion. Two main tasks are exist in the statistical
emotion conversion: mapping neutral speech parameters to their emotional values, and then
modifying them in the speech waveform without affecting the quality of the converted
waveform.

Different machine learning techniques have been proposed to map the speech
parameters to different emotions. Several techniques were explored for pitch conversion
such as Linear Modification Model (LMM), Gaussian Mixture Model (GMM), and
Classification and Regression Tree (CART). A comparison between those methods was
presented in [22] and results show that the best of them is CART if trained with a large
corpus. In [23] Hidden Marcov Models (HMMSs) and unit selection were proposed for pitch
modification, and results show that unit selection outperforms HMM-based pitch conversion.

For spectral envelope mapping, the most popular learning technique used for emotion
conversion is GMM [24-26]. A comparison between three methods for transforming spectral
envelopes from neutral to emotional speech is presented in [27] and results show that
weighted frame mapping and GMM based transformations are slightly better than the
weighted codebook mapping.

Several signal processing techniques for prosody modification were introduced in the
literature. The most popular one of them is PSOLA (TD-PSOLA, FD-PSOLA, and LP-
PSOLA) [28]. A prosody modification using the instants of significant excitation is
presented in [29]. Some approaches for prosody modification represent the speech signal in
a parametric form like STRAIGHT [30, 31] or HSM [32], and then modify the prosody
parameters.



1.2 Motivation and contribution of the thesis

In this work we employ data-driven emotion conversion to obtain expressive Arabic
speech. As mentioned above that emotion conversion is affected by the linguistic features of
the language. The Arabic language is classified as a stress timed language and word stress is
predictable and regular. In contrast to English, which is also stress-timed language, the
unstressed syllables are pronounced more clearly with neutral vowels.

In our work, the linguistic characteristics of Arabic language which affects the
expression are studied. An emotion conversion system is proposed for expressive speech,
this system combines the transformation of both spectral and prosodic parameters. Pitch,
duration, energy, and spectral envelope are transformed to obtain the desired expression. In
pitch conversion, we evaluate the effect of using different intonation units (words-syllables)
and using different pitch detectors on the quality and the expressiveness of the output speech.

The effect of changing different speech parameters using our system is evaluated and
the overall system performance is also evaluated.

1.3 Thesis Organization

First, in chapter 2 and chapter 3, we give a background in text to speech systems and a
more detailed review of expressiveness in TTS. Chapter 4 includes the overall description
of the emotion conversion system used for expressive Arabic speech, while the system
modules are illustrated in detail in chapters 5. Chapter 6 shows the experiments carried out
to evaluate the system and their results, and chapter 7 includes the final conclusions and
proposals for future work.



Chapter2: Overview of Text To Speech systems

Text to Speech system (TTS) is a machinery system which generates speech from an
input text. The task of learning a machine how to convert text into speech can be represented
as learning a child reading a text aloud. Three tasks are required for reading aloud; the first
task is to decode the input text to realize its phonetic transcription (or speakable form), the
second task is to convey the intonation of the sentences properly to sound natural, and the
final task is pronouncing the phonetic transcription of the text with the appropriate
intonation. The same for TTS, it can be divided into three main blocks: Text and Phonetic
Analysis, Prosody Generation, and Acoustic Synthesis [33]. The basic blocks of TTS are
shown in Figure 2-1.

Input Text

\
[Text and phonetic]

analysis

Prosody
generation
Acoustic
synthesis

\

speech output

Figure 2-1 Text To Speech system.

2.1 Text and phonetic Analysis

Text and phonetic analysis module in TTS is responsible for analyzing the input text to
generate its phonetic transcription and the main information needed for the prosody analysis
and acoustic synthesis modules. Figure 2-2 shows the basic blocks of the text and phonetic
analysis module, and they are described in the following subsections.



raw text
or tagged text

Document Structure
Detection

Lexicon

Phonetic Analysis

|
[
[
[
|
|
[
[
[
|
|
Morphological Analysis [
[
|
[
[
|
|
|
|
|
[
[
[

tagged text & phones

Figure 2-2 Modularized function blocks for text and phonetic analysis [33].



2.1.1 LEXICON

TTS lexicon or dictionary is considered the most important resource for text and phonetic
analysis module. TTS lexicon should provide the text and phonetic analysis module with the
following information [33]:

Inflected forms of lexicon entries.

Phonetic pronunciations for each lexicon entry.
Morphological analysis capability.

Abbreviation and acronym expansion and pronunciation.

Attributes indicating word status, including proper-name tagging, and other special
properties.

List of speakable names of all common single characters.
Word part-of-speech (POS) and other syntactic/semantic attributes.

Other special features, e.g., how likely a word is to be accented, etc.

2.1.2 DOCUMENT STRUCTURE DETECTION

TTS detects the structure of the input document to control and regulate prosody for
different document structures. For example, the pitch range at the start of a new paragraph
should be higher than at the mid-paragraph sentences, and it narrows at the final few clauses.
Different document structures should be detected by TTS such as:

Chapter and Section Headers
Lists or bulleted items
Paragraphs

Sentences

E-mail

Web Pages

Dialog Turns and Speech Acts

2.1.3 TEXT NORMALIZATION

Text normalization (TN) is the process of transforming abbreviations or non-alphabetic
symbols into normalized orthography. This process is performed using lexicon. Table 2-1
shows different types of symbols in Arabic and their normalized texts.



Table 2-1 Example of text normalization in Arabic

Text type Example normalized orthography
Abbreviations and Acronyms 3 Sl A
Numbers 375 i dased g 5L

Phone Numbers 02233331414 |~ — - Cpf— jia

—aa) Ay i aa ) D — A

£

MJ\

Dates 1992/5/27 | ale sle G (s pially ol

Oty Cpfily alanniiy all

Times o= 8:30 Blia Caaillg 4uall)

2.1.4 LINGUISTIC ANALYSIS

Linguistic analysis is used for syntactic and semantic parsing. TTS can use natural
language processing (NLP) systems, which produce structural and semantic information
about the sentences, for linguistic analysis.

Linguistic analysis supports the phonetic analysis (homograph disambiguation-
morphological analysis) and prosody generation modules with the following information
[33]:

=  Word part of speech (POS) or word type (e.g., houn, verb, or preposition).

= Word sense, e.g., river bank vs. money bank.

= Phrasal cohesion of words, such as idioms, syntactic phrases, clauses, sentences.
= Modification relations among words.

= Anaphora (co-reference) and synonymy among words and phrases.

= Syntactic type identification, such as questions, quotes, commands, etc.

= Semantic focus identification (emphasis).

= Semantic type and speech act identification, such as requesting, informing,
narrating, etc.

= Genre and style analysis.



2.1.5 HOMOGRAPH DISAMBIGUATION

In written languages, some words have the same spelling but vary in pronunciation,
since they have different syntactic/semantic meanings. POS tags and semantic analysis are
used in English to resolve homograph disambiguation. In Arabic TTS, Automatic Arabic
Phonetic Transcriptor (Diacritizer/\VVowelizer) is used for all words in the text to resolve
Homograph variation. An example of this in Arabic is the following sentences:

(k) el Copam = 200 iy e Gyl 2 5a)
After using the Automatic Arabic Diacritizer, these sentences will be:

(Bl Gl Gl — 2B i e Sl 359

It is obvious that the word (<) in these sentences has two different pronunciation;
although they have the same spelling.

2.1.6 MORPHOLOGICAL ANALYSIS

In TTS, when an input word doesn’t exist in the lexicon, and can be analyzed into shorter
units (morphemes), morphological analyzer is used to analyze this word in terms of stems
and affixes. The pronunciations of these morphemes can be then combined with some
adjustment to obtain the pronunciation of the input word.

2.1.7 LETTER-TO-SOUND CONVERSION

Letter-to-sound conversion, also known as grapheme-to-phoneme conversion, is the
process of converting an input text to its phonetic pronunciation form via dictionary lookup
and using different information generated from other blocks of text and phonetic analysis
module. For example, the phonetic pronunciation of Arabic word (->4&) is (/D ala:m/), and
of the English word (dogs) is (/'dogz/).

When the dictionary lookup fails to find an input word, a set of rules for pronunciation
is used to obtain the phonetic pronunciation of this word.

2.2 Prosody Generation

Prosody generation provides the TTS system of how to utter different texts. Sheridan
illustrated the importance of prosody generation as follows [34]:

“Children are taught to read sentences, which they do not understand; and as it is
impossible to lay the emphasis right, without perfectly comprehending the meaning of what
one reads, they get a habit either of reading in a monotone, or if they attempt to distinguish
one word from the rest, as the emphasis falls at random, the sense is usually perverted, or
changed into nonsense. ”

Prosody or intonation of an utterance can be generated using different parameters of
speech signal such as pitch, phoneme duration, and loudness. The value of these parameters
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can be estimated from an input text using either a set of pre-designed rules or statistical
methods.

2.3 Acoustic Synthesis

The acoustic synthesis module is responsible for generating the output speech
waveform. The input to this module is the phonetic transcription of the text and its associated
prosody. For high-quality speech production, the original text with tags are included in the
input to the acoustic synthesizer.

Acoustic synthesizers have been developed over the years, they can be divided into three
generations depending on the quality of their output speech [33, 35]. In the following
subsections we describe an overview of these generations.

2.3.1 First generation acoustic synthesizers

First generation synthesizers were the main synthesis techniques until 1980s and they
are used less today. They were based on vocal tract models. The most famous synthesizers
from the first generation are the formant synthesizer and articulatory synthesizer.

2.3.1.1 Formant synthesizer

Formant synthesizers make use of the source-filter model shown in Figure 2-3, where a
source signal is fed into the vocal tract model to generate the sound. The vocal tract is
considered as a filter with variable resonance frequencies (formants), formants vary with
time according to the pronounced phoneme, and the source signal is either a sequence of
periodic impulse train of one pitch period for voiced sounds, a white noise for obstruent
sounds, or both for voiced obstruents.

It has been shown that only the first three formants can be used by the listeners to
discriminate sounds, and so the higher formants may be used to add naturalness to the output
speech. The locus theory indicates that formant frequencies within a phoneme tend to reach
a stationary value named the target. The formant values in the transition regions between
different phonemes are interpolated. Rule-based methods were used to find the value of these
targets for different phonemes. Data-driven methods to generate the formant values have
also been proposed [36].

A single formant can be implemented using a second-order IIR filter with the following
transfer function:

1
. = 2.1
Hi(2) 1 — 2e ™bicos(2nmf;) z71 + e~2mbiz =2 (2.1)
fi=F/k (2.2)
bi = B/F, (2.3)
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Where F;, B;, and F; are the formant center frequency, formant bandwidth, and sampling
frequency, respectively.

A filter with several resonances can be obtained by connecting several second-order
sections in series (cascade synthesizer) or by adding them (parallel synthesizer). Usually the
first three formants were used for speech production

L] e
O—» H(E) | 5]
Sy —e

Figure 2-3 Source-filter model for voiced and unvoiced speech [33].

The output speech of formant synthesizer is intelligible but far from natural because of
the simplicity of the model and the excitation signal.

2.3.1.2 Articulatory synthesizer

Avrticulatory synthesizer is another speech synthesizer which belongs to the first
generation. The output speech is created by simulating the air flow through the vocal tract
and the mechanical motions of human articulators which are responsible for speech
production as shown in Figure 2-4.

Two difficulties in articulatory synthesis makes the quality of their output speech not
comparable to that of the formant synthesis:

1- Finding the right model which simulates the human articulators accurately and at the
same time is practical and easy to design and control.

2- Finding the correct model parameters, since they can’t be estimated directly from the
speech signal, rather they are estimated using X-rays and magnetic resonance
imaging (MRI) by placing sensors in the vocal tract which change the way by which
speech is generated.

2.3.2 Second generation acoustic synthesizers (diphone-concatenative
synthesizers)

Over time, memory has become cheaper such that it becomes possible to store speech
waveforms instead of recording parameters to produce speech. In the diphone-concatenative
synthesizer, speech units (diphones) are recorded, and these units are concatenated to
produce any new word sequence. Different signal processing algorithms (like PSOLA) are
used to modify the concatenated speech to eliminate the concatenation distortion due to
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discontinuities between units, and to modify the prosodic parameters (pitch- duration-
intensity) of the output speech.

alveclar ridge

welum

nasal cavity

higrd pala soft palate
niostril v -
\ oral cavity I uvula

. pharynx

lips
vocal folds
glottis
larynx

Figure 2-4 vocal organs [35].

2.3.3 Third generation of acoustic synthesizers

These are the most used synthesizers today because of their high accuracy. Third
generation of acoustic synthesizers is data-driven which means that a very large database is
used for these synthesizers. Two types of synthesizers exist in the third generation: HIDDEN
MARKOV MODEL (HMM) SYNTHESIZERS, and UNIT SELECTION
SYNTHESIZERS.

The main advantage of HMM synthesizers over the unit selection synthesizers is the
high efficient use of memory, since they use orders of magnitude less memory to store the
HMM parameters than storing the original speech waveforms as in the case of unit selection
synthesizers.
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2.3.3.1 HIDDEN MARKOV MODEL SYNTHESIZER

In the HMM-based speech synthesis [37], also called statistical parametric synthesis,
speech waveforms are generated using trained context-dependent HMMs which models
different speech parameters such as spectrum, excitation, and phoneme duration.

A well-known example of HMM-based speech synthesizer is HMM-based Speech
Synthesis System (HTS) [38]. The system as shown in Figure 2-5 consists of two stages:
training stage and synthesis stages.

Heiga Zen, and et al, illustrated the stages of HTS in [38] as follows:

“The training part is similar to that used in speech recognition systems. The main
difference is that both spectrum (mel-cepstral coefficients, and their dynamic features) and
excitation (logarithmic fundamental frequencies (log Fy) and its dynamic features)
parameters are extracted from a speech database and modeled by context-dependent HMMs
(phonetic, linguistic, and prosodic contexts are taken into account). To model variable
dimensional parameter sequence such as (log F,) with unvoiced regions properly, multi-
space probability distributions (MSD) are used. Each HMM has state duration probability
density functions (PDFs) to capture the temporal structure of speech. As a result, the system
models spectrum, excitation, and durations in a unified HMM framework. The synthesis part
does the inverse operation of speech recognition. First, an arbitrarily given text to be
synthesized is converted to a context-dependent label sequence, and then an utterance HMM
is constructed by concatenating the context-dependent HMMs according to the label
sequence. Second, state durations of the utterance HMM are determined based on the state
duration PDFs. Third, the speech parameter generation algorithm generates the sequence
of spectral and excitation parameters that maximize their output probabilities. Finally, a
speech waveform is synthesized directly from the generated spectral and excitation
parameters using the corresponding speech synthesis filter (mel-log spectrum
approximation (MLSA) filter for mel-cepstral coefficients).”

If any modification is desired in this system, like emotion conversion or voice
conversion, HMM parameters are modified using various techniques such as adaptation,
interpolation, eigen voice, or multiple regression to achieve the desired modification.

13
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Figure 2-5 overview of HTS system [38].

2.3.3.2 UNIT SELECTION SYNTHESIS

Unit selection is the highest quality synthesis technique till now [33, 35, 39]. The main
disadvantage of unit selection synthesis is the inefficient use of memory, since they require
large memory to store a very large number of units which are used later to generate the
synthesized speech.

Unit selection synthesis is an extension of diphone-concatenative synthesis, where in
unit selection synthesis, an algorithm selects the best sequence of units to be concatenated to
generate the desired utterance.

Different types of units with different lengths are used, including phonemes, diphones,
syllables, words, and phrases. These units have different linguistic and acoustic (prosodic)
features. Unit selection concatenation process can be seen as Huang, and et al said [33]:

“Unfortunately, this is equivalent to assembling an automobile with parts of different
colors: each part is very good yet there is a color discontinuity from part to part that makes
the whole automobile unacceptable. Speech segments are greatly affected by coarticulation,
so if we concatenate two speech segments that were not adjacent to each other, there can be
spectral or prosodic discontinuities. Spectral discontinuities occur when the formants at the
concatenation point do not match. Prosodic discontinuities occur when the pitch at the
concatenation point does not match.”
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A simple way to minimize the concatenation discontinuities is to use long units such as
words, phrases or sentences if available, to obtain less concatenations; but when these long
units aren’t available, we will have to concatenate small units to obtain the desired utterance;
which causes concatenation distortion and requires modification by some signal processing
techniques.

To find the best sequence of units to be concatenated, a veterbi search algorithm is used
to find the set of units with the lowest total cost. The total cost is the sum of the two following
cost functions:

- Target cost: measures the distance between the desired specifications and the
candidate units. These specifications are based on a set of linguistic features
resulting from the text and prosodic analysis of the TTS, such as: target word,
phone sequence, phone duration, pitch, and intonation.

- Concatenation cost: measures the discontinuity of concatenating different units
based on the acoustic features.

The target cost between the desired target unit t; and the candidate unit u;, is a weighted
sum of the distances (sub-costs) between the target and candidate feature vectors. If we have
p target features, then the target cost will be:

14
C (k) = ) @fCF(t,w) @4)
j=1

The concatenation cost between two adjacent units u;, u;_4, is a weighted sum of g
concatenation sub-costs between these units:

q
Couiau) = ) @f CE iy, u) 25)
k=1

The total cost between the target unit t;, and the candidate unit u; is the sum of the target
and concatenation costs, target and concatenation costs are illustrated in Figure 2-6:
C(ui, ti) = Ct(ui, ti) + Cc(ui_l,ui) (26)

The best sequence of units for a given utterance is the sequence which minimizes the
total cost of the whole utterance:

U= argmin{c(ul:n' tl:n)} (27)
u
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Figure 2-6 target and concatenation costs.

2.4 Applications of Text To Speech systems

Text To Speech systems have many applications in our life, such as: Aid-to-the
handicapped, Education, interactive voice response (IVR) systems, entertainment
applications, and speech-to-speech translation [33, 40].

>

Aid-to-the handicapped: The most important application of TTS is the aid to blind
people in various areas such as: reading books, easy use of different devices like
computers and talking calculators.

Education: Text to speech systems can be used in learning different languages.

Entertainment applications: like reading e-mail while driving, or other applications
which belong to car navigation systems.

Interactive voice response (IVR) systems: IVR is a system that allows interaction
between a computer and humans. The input to this system is entered by a keypad or
by a speech recognition module and the output speech is produced either from pre-
recorded messages or from a text to speech system. An important use of IVR systems
is in the field of customer service in companies, hospitals, and etc.; which reduces
the cost and increase the service efficiency.

Speech-to-speech translation (S2S): speech-to-speech translation between different
languages enables cross-lingual communication. S2S requires speech recognition ,
machine translation and text-to-speech synthesis [41].
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Chapter3: Expressiveness in Text To Speech
systems

Generating an expressive speech from a TTS system is required to increase the
naturalness and intelligibility of the output of these systems. Usually, a number of emotions
or expressions are considered as fundamental emotions needed for TTS and the other
emotions can be derived from them. Fundamental emotions vary in different studies, but
several studies deal with anger, fear, surprise, happiness, sadness, and disgust as the
fundamental emotions. In this chapter, we illustrate the acoustic correlates of emotions and
various approaches to obtain expressive speech from TTS.

3.1 Acoustic correlates of emotions

Emotions may be defined as: mental states with identifiable effects on physiology and
behavior. Different studies in the literature were done to find the acoustic correlates of
emotion. Janet E. Cahn described the physiological and acoustical effects of emotion in [21]
as follows:

“When emotion affects physiology the corresponding effects on speech show up
primarily in the fundamental frequency (FO) and timing. Thus, with the arousal of the
sympathetic nervous system — as with fear, anger or joy — heart rate and blood pressure
increase, the mouth becomes dry and there are occasional muscle tremors. Speech is
correspondingly loud, fast and enunciated, with strong high frequency energy. With the
arousal of the parasympathetic nervous system — as with boredom or sadness — heart rate
and blood pressure decrease and salivation increases, producing speech that is slow, low-
pitched and with little high frequency energy .

Studies on the speech parameters, which are responsible for emotion, show that both
prosodic parameters (including pitch, duration, and intensity), and spectral parameters of the
speech signal are responsible for emotion in speech [2-5].

3.2 Approaches for expressive TTS

Different approaches for expressive TTS were proposed in literature including
expressive unit selection for concatenative synthesizers, expressive HMM-based for HMM
synthesizers, and both rule-based and data-driven emotion conversion for any type of speech
synthesizer; since they operate on the output speech waveform itself regardless of the
components of the text to speech system.

3.2.1 Expressive unit selection

One approach to obtain expressiveness in unit selection synthesis is to record either the
complete set or just a small set of the original neutral database in different speaking styles.
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In case of limited domain speech synthesis, in which the neutral database size is small
to cover a specific area of speech, the complete database is recorded in different emotions
and at the synthesis time the units from the desired emotion are concatenated to obtain the
output utterance [10, 42]. In [42] an example of expressive unit selection in a limited domain
was proposed for the application of computer games, where about 200 sentences from the
poker domain in addition to 400 sentences which cover the most important diphones in
German were recorded in different emotions. Different expressive styles can be obtained by
switching from one emotional database to another.

For large neutral databases, usually just a small set of the neutral database is recorded
in different emotions and combined with the original database and at the synthesis time the
selection of the best candidate unit would be according to a cost function. As in the basic
unit selection synthesis; the cost function consists of a target cost and a concatenation cost,
the new thing in expressive unit selection is that the target cost includes a style cost with an
appropriate weight. The style cost is either symbolic or acoustics-based.

Symbolic style cost is determined according to the distance between the desired emotion
and the emotion of the candidate unit in the database which is represented by a label attached
to it. The style label can be attached manually to the emotional corpus [12], or automatically
to the overall corpus using an automatic labelling scheme trained by the small emotional
corpus [43, 44]. The reason for labelling the complete database using this model is that some
of the neutral units may sound emotional and this is used to increase the size of the emotional
corpus.

Acoustics-based style cost is determined using the acoustic distance between the target
and the candidate units. This distance is calculated according to pitch and voice quality
parameters [12].

3.2.2 Expressive HMM-based synthesis

In the basic HMM-based synthesizer, speech parameters (spectrum, excitation, and
phoneme duration) are modelled using context-dependent HMMs which are used later to
produce the synthesized speech. The same for expressive HMM-based synthesizer, either
each emotion is modeled individually using separate HMMs, or all emotions are modelled
by a single model and the emotion of each utterance is treated as a contextual feature with
other linguistic features [13]. A comparison between these two methods in [13] shows that
both methods have the same performance. However, using a single model for all styles
enables interpolation between different emotions to obtain new emotions which weren’t
found in the training database as proposed in [14].

3.2.3 Rule-based emotion conversion

Rule-based emotion conversion is used to obtain expressive speech, where a set of rules
is designed to convert the effective acoustic parameters of speech to their emotional values.
Different speech parameters affect the emotion in the speech signal; they can be divided into
4 categories: pitch, timing, voice quality and articulation parameters.

The pitch parameters describe the features of fundamental frequency, while the timing
parameters are used to control different durations in the speech utterance, and the voice
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quality represent the parameters of the speech spectrum. Precision of articulation is also used
to convert the emotion.

Table 3-1 shows some speech parameters, which affect the emotion in the speech signal.
Different sets of these parameters are used in [17-21] for emotion conversion.

Rules for transforming different speech parameters are set based on: analysis of parallel
neutral-emotional corpus to find the variation of the parameters between different
emotions[15-17], systematic parameter change to obtain the optimal variation of each
parameter for each emotion[18], or using rules of prior studies in the literature [19-21].

A rule-based system for emotion conversion is presented in [21], each speech parameter
has a known minimum and maximum values and varying this parameter between its min and
max affects the output emotion. Modification of different parameters for different emotions
is shown in Table 3-2. Parameter modification is performed on a scale centered at zero and
varies from negative ten to positive ten. Zero represents the parameter value of neutral affect,
while negative ten and positive ten represent the minimum and maximum values of this
parameter, respectively. Output samples of this system can be found on the following link:
http://alumni.media.mit.edu/~cahn/emot-speech.html.

The main problem of rule-based emotion conversion system is the tedious manual
analysis required to obtain good rules, so a limited set of parameter variations can be
captured [23].

Table 3-1 different acoustic parameters which are responsible for emotion in speech signal

Parameter parameter Parameter meaning
category
Accent shape The rate of FO change for any pitch accent in the
utterance.
average pitch | The average FO for the utterance.
The overall trend of the pitch range for the utterance —
contour slope hether i q ins level
Pitch whether it expands, remains level or contracts.
. . The rate and direction of FO change at the end of an
parameters | final lowering L
utterance, whether it rises or falls.
itch ranae The bandwidth of the range bounded by the lowest and
P g highest FO for the utterance.
. The FO to which the pitch contour appears to return
reference line : . . .
following a high or low pitch excursion.
. The degree to which pitch accented words receive
Exaggeration . .
exaggerated duration as a means of emphasis.
fluent pauses The fr_eque_ncy of pausing between syntactic or
semantic units.
Timing The frequency of pausing within a syntactic or
parameters | hesitation pauses | semantic unit. These pauses often occur after the first
function word in a clause.
The rate of speech. It affects the number of syllables
speech rate or words spoken per minute and the duration of
pauses.
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Stress frequency

The ratio of stressed to stressable words in an
utterance. Stressable words may legitimately receive a
pitch accent in accord with sentence semantics.
Stressed words are those stressable words which
actually do receive pitch accents.

phonation type

The phonation type can either be a modal, falsetto,
breathy, creaky, or tense voice

Breathiness

The amount of frication noise that may be co-present
with non-fricative phonemes.

Brilliance The ratio of low to high frequency energy.
Loudness The amplitude of the speech signal.
The degree to which intensity drops off as frequency
Spectral tilt increases. The overall slope of the spectrum is an

indication of spectral tilt.

Describes the creaky voice phenomena in which there
is minimal subglottal pressure, a small open quotient,

Voice Laryngealization | a narrow glottal pulse and an irregular fundamental
quality period. The speech of older speakers is often
laryngealized.
pause Describes the smoothness or abruptness of a pause
discontinuity | onset.
pitch Describes the smoothness or abruptness of FO
discontinuity | transitions throughout the utterance.
Refers to irregularities between successive glottal
Tremor or vocal . )
ittor pulses. It was observed in recordings of fearful
J utterances.
This feature affects mainly the happiness emotion and
lip-spreading | is implemented by raising the frequencies of the first
two formants by a given rate.
. . Precision of Describes the degree of slurring or enunciation for all
Articulation : :
articulation phoneme classes.
parameter
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Table 3-2 example of speech parameter modification for different emotions [21]

Parameter Angry | Disgusted | Glad Sad Scared Surprised
Accent shape 10 0 10 6 10 5
average pitch -5 0 -3 0 10 0
contour slope 0 0 5 0 10 10
final lowering 10 0 -4 -5 -10 0

pitch range 10 3 10 -5 10 8
reference line -3 0 -8 -1 10 -8
fluent pauses -5 0 -5 5 -10 -5

hesitation pauses -7 -10 -8 10 10 -10

speech rate 8 -3 2 -10 10 4

Stress frequency 0 0 5 1 10 0
Breathiness -5 0 -5 10 0 0
Brilliance 10 5 -2 -9 10 -3
Laryngealization 0 0 0 0 -10 0
Loudness 10 0 0 -5 10 5

pause discontinuity 10 0 -10 -10 10 -10
pitch discontinuity 3 10 -10 10 10 5
Precision of articulation 5 7 -3 -5 0 0

3.2.4 Data-driven emotion conversion

The basic idea of data-driven emotion conversion, also referred as statistical emotion
conversion, is to train a statistical model or build a unit selection framework using a
sufficient size of neutral-emotional corpus to be used later for converting speech parameters
to the desired emotion. As in rule-based emotion conversion, speech parameters which are
responsible for emotion are prosodic parameters (pitch- duration- energy) and spectral
parameters. Data-driven emotion conversion requires the use of suitable machine learning
techniques to map the speech parameters to their emotional values and appropriate signal
processing algorithms to modify the speech parameters in the waveform without affecting
the quality.

LMM, GMM, CART, HMM, and codebook mapping are well known machine learning
techniques which are used for emotion conversion [22-26, 32], while we can find that
PSOLA [28], LPC [23] STRAIGHT [30, 31] or HSM (Harmonic plus Stochastic Model)
[32] are familiar signal processing algorithms which are used for analysis-synthesis and
modification of the speech signal for emotion conversion. In the remaining sections of this
chapter, we explain different signal processing and machine learning techniques which are
used in our system.
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3.3 Signal processing and machine learning algorithms for data-
driven emotion conversion system

The implementation of data-driven emotion conversion involves three topics: finding
the effective speech parameters which are responsible for each emotion in the speech signal,
mapping each of these parameters to their emotional values using an appropriate machine
learning technique, and modifying these parameters in the speech waveform using a suitable
signal processing algorithm. In this section, we explain different signal processing and
machine learning techniques which are used in our system, while finding the speech
parameters which are responsible for emotion is covered in the next chapter.

3.3.1 Linear Predictive Coding

Linear Predictive Coding (LPC) is one of the most powerful analysis-synthesis techniques
of the speech signal [45]. In LPC, the current time-domain sample s[n] is predicted as a
linear combination of the past time-domain samples s[n — 1],s[n — 2],...,s[n — M].

s[n] = §[n] = —Z a;s[n — i (3.1)

M
i=1

where S[n] is the predicted sample, and a;, i = 1,2,...,M are the LPC coefficients. The
prediction error can be written as:

M M
e[n] = s[n] —§[n] = s[n] + z ais[n —i] = Zais[n —i] (3.2)

where a, = 1. By taking the z-transform of Equation (3.2), we will obtain:

M M
E(2) = S(2) + Z aS(z)z = S(2) |1+ z a; z"i] = S(2)A(2) (3.3)
where
M M
AZ) =1+ ) az7'= ) az™! (3.4)

Equation (3.3) can be written as follows:

1

S(z) = E(z) 2@

(3.5)
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From the above equation, the speech signal can be considered as the output of an all-
pole filter whose transfer function is H(z) = ﬁ and excited by the error signal E[z]. Thus
the excitation signal can be obtained by inverse filtering the speech signal:

G *S(z)
H(z)

E(z) = (3.6)

where, G is the filter gain.

3.3.1.1 Spectral estimation via LPC

LPC is mainly used for spectral estimation of speech, so we illustrate the relation
between LPC spectrum and the speech spectrum. The total prediction error using Parseval’s
theorem is:

(0]

1 [,
Bp= Y elm) =5 j IE(¢)[2dw (3.7)

n=-—0oo W=—TT

Substituting Equation (3.6) into Equation (3.7) we obtain,

_G [ @)
N o =

W=—T

The main idea of LPC parameter calculation is to find the coefficients that minimize the
prediction error E,. From Equation (3.8), this minimization can be seen as minimizing the
average ratio of the speech spectrum to its LPC spectrum. Thus the LPC spectrum is used to
model the speech spectrum; the higher the LPC order is, the more spectral details that can be
modeled by LPC.

3.3.1.2 Line Spectral Frequencies

An equivalent representation of LPC is the line spectral frequencies (LSFs) [46]. LSFs
are more useful than LPC in many applications because of their good interpolation and
quantization properties. LSFs are considered as the roots of the following two polynomials:

P(2) = A(z) + z~®+D4(z™1)
=1- (al—ap)z_1 - (az—ap_l)z_z — (3.9
—(ap —ay)z7P + z7P*1

Q(2) = A(2) —z~®*VA(z™)

=1- (a1+ap)z‘1 — (a2+ap_1)z‘2 — (3.10)
— (ap + a,)z7P + z7P*1

where A(z) =1—a,z7" —a,z72 — - — a,z7P is the inverse linear predictor filter.
Thus it is clear that
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A(z) = [P(2) + Q(2)]/2 (3.11)
The equations (3.9), (3.10) can be written as

P(2) = 1_[ (1—2cosw;z™* +z72) (3.12)
i=1,3,5,...

0(2) = 1—[ (1 —2cosw;z"t +z72) (3.13)
i=2,4,6,...

where w; are the LSF parameters. Using equations (3.9-3.13) the LPC parameters
|a1, a,, ..., a, ] can be converted to their LSF representation [wy, wy, ..., wp].

3.3.2 TD-PSOLA

Time-Domain Pitch-Synchronous Overlap and Add method (TD-PSOLA) is the most
popular algorithm for time-scale and pitch-scale modifications [35, 47, 48].

3.3.2.1 TD-PSOLA analysis-synthesis without modification

The analysis process of TD-PSOLA is to divide the speech signal into pitch-
synchronous overlapped frames (short-term signals, x,,, (n)). This is achieved by multiplying
the speech waveform by overlapping windows (generally Hanning window, h,, (n)) centered
at a predetermined pitch-marks, t,,, and usually extends to the next and the previous pitch-
marks

Xm (n) = hm(tm —n)x(n) (314)

Pitch-marks are set at a pitch-synchronous rate for voiced segments (one pitch-mark for
every pitch period) and at a constant rate for unvoiced segments. Glottal Closure Instants are
often used as pitch-marks in PSOLA.

To synthesize these frames; their centers are placed back on the original pitch-marks
and the overlapping regions are added together, this process is known as overlap and add
synthesis. The output speech waveform of PSOLA analysis-synthesis is perceptually
indistinguishable from the original waveform. The analysis-synthesis process using TD-
PSOLA is illustrated in Figure 3-1.

3.3.2.2 Time-scale & pitch-scale modification using TD-PSOLA

The main idea of time-scale modification using TD-PSOLA is to eliminate or duplicate
some frames to achieve the desired expansion or compression of the speech waveform
without affecting the pitch contour, this operation is illustrated in Figure 3-2.

Pitch-scale modification is carried out by recombining the speech frames on modified
pitch-marks which are set synchronous with the new pitch values as shown in Figure 3-3.
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In both cases of modifications; new pitch-marks which achieves the desired
modification are calculated, then the frames which correspond to those pitch-marks are
determined and centered on those new pitch-marks. Finally, the overlapping regions are
added together to obtain the modified speech waveform.

3.3.2.3 Computation of synthesis pitch-marks for pitch modification

Let t. be the i*" analysis pitch-mark, t! be the i*" synthesis pitch-mark, and a(t) be
the pitch-scale modification factor. The analysis pitch-marks are set at a pitch synchronous
rate for voiced frames (one pitch-mark for each pitch period), then

tert =t + P(th) (3.15)

where P(t}'l) is the local pitch period in the interval ti <t < ti*1. The same for the
synthesis pitch-marks:

it = ¢l + P'(¢l) (3.16)

where P’(tsi) is the modified pitch around time-instant t%, and equals the mean value of
the scaled original pitch period over the frame ti — i+

t£+1
. 1 P(b)
"(th) = — , 3.17
P =g | 17
ts
a(t) = a(tl) forth <t<titt (3.18)

Substituting Equation (3.17) in Equation (3.16), we will obtain
t§'+1
. . 1 P(t)
+1 _ 40
BTk f oM (319)

ts

If we have the synthesis pitch-mark t¢, the next synthesis pitch-mark can be obtained
using Equation (3.19). An example of computation of synthesis pitch-marks for pitch
modification by 1.5 is shown in Figure 3-4. The virtual time axis here in pitch-scale
modification is the same as the synthesis time axis.

3.3.2.4 Computation of synthesis pitch-marks for time-scale modification

Let pB(t) be the time-scale modification factor at time instant t, the mapping
th, — ti = D(t) will be as follow:
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t

D(®) = f B(D)d (3.20)

0

where D(t) is called time-scale warping function. As mentioned before, time-scale
modification should be done without affecting the pitch contour, so a stream of virtual pitch-
marks, t5, in the original signal is used. The relation between virtual and synthesis pitch-
marks is:

ti =D(t) (3.21)
ti = D7(tl) (3.22)

The synthesis pitch value over the interval ti*1 — t! equals the mean pitch value of the
original signal over the interval t{*1 — ¢},

t,i,+1
) ) 1
ot = j P(¢) dt (3.23)
v v

th
Thus, given the synthesis pitch-mark t¢, and the virtual pitch-mark t}, the next synthesis

pitch-mark, ti*, which preserves the original pitch value over the interval tit! —tl, is
obtained from the following relation:

t1l;+1

teft = ts +
ty

with t£ = D(t}). An example of computation of synthesis pitch-marks for time-scale
modification by 1.5 is shown in Figure 3-5.
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Figure 3-1 TD-PSOLA analysis-synthesis process without modification, (a) Original speech waveform
with pitch-marks, (b)A Hanning window is centered on each pitch-mark, (c) Separate frames created by the

Hanning window, and (e) synthesized speech waveform by overlap-add method [35].
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Figure 3-2 time-scaling (Iengthening) using TD-PSOLA [35]
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Figure 3-3 pitch scaling (lowering) using TD-PSOLA [35]
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Figure 3-4 Computation of synthesis pitch-marks for pitch modification by 1.5 [47].
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Figure 3-5 Computation of synthesis pitch-marks for time-scale modification by 1.5 [47]

3.3.2.5 From the synthesis pitch-marks to the modified waveform

After calculating the synthesis and virtual pitch-marks, the nearest analysis pitch-mark
to the virtual pitch-mark is found (This process is illustrated in Figure 3-4, and Figure 3-5),
then the frames which corresponds to the nearest analysis pitch-marks are centered on the
synthesis pitch-marks. Finally, the overlapping regions are added together. An example of
increasing the pitch in speech waveform is shown in Figure 3-6.
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Figure 3-6 pitch raising in speech waveform using TD-PSOLA [47]

Pitch-modified waveform

3.3.3 Dynamic time warping

Dynamic Time Warping (DTW) is a popular algorithm used in many applications such
as speech recognition, data mining, and signature matching [49-51]. DTW can be used to
find the best time-alignment between sequences of features of two signals by minimizing the
distance between them. An example of alignment of two signals is shown in Figure 3-7.
Given two time series X of length N, and Y of length M, where

X = X1,X0, ey Xiy ey XN (3.25)

Y = Y1, Y2 s Yir o0 Y (3.26)

DTW can be used to align these sequence. First, an N-by-M matrix is constructed, the
(ith, jt") element in this matrix equals the distance between the two points (xi,yj):

d(x,y;) = |lx — vl (3.27)

Second, the cumulative cost matrix is constructed, where each element in this matrix,
C(i, j), represents the minimum cumulative cost of reaching this point:

o J
Z d(x1, yi) =1
k=1
Ci =14 <
EED =1 (29
k=1
gd(xl-,yj) +min{C(i—1,j—1),C(i—1,j),C(i,j—1)} ,other
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The final step is to find the optimal warping (alignment) path W. The warping path is a
set of matrix elements, w;,, = (i, j)x, which defines the mapping between the two sequences
(X,Y). The optimal warping path contains a set of points which minimize the cumulative
cost and achieve the following conditions:

- Boundary conditions: the warping path starts and finishes at start and end points
of the two sequences (X, and Y):

w; = (1,1),and wg = (N, M)
- Continuity: the steps in the warping path is only to the adjacent cells:
wi — w1 € {(1,1),(1,0),(0,1)}
- Monotonicity: if w, = (a, b), and wy_; = (a’,b"), then,
a=>a',and b = b’

An algorithm for calculating the optimal path is shown in algorithm 3.1, and Figure 3-8
shows an example of finding the optimal warping path.

Figure 3-7 example of alignment of two signals [50]
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Figure 3-8 example of finding the optimal warping path [51]
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Algorithm 3.1. OPTIMAL WARPING PATH (W) [49]

1:

2:

10:

11:

12:

13:

14

15:

16:

17:

18:

19:

20:

path[] < new array
i=N=rows(C)
j =M = columns(C)
while(i > 1)&( > 1) do
if i ==1then
j=j-1
elseif j == 1then
i=i—1
else
ifCi—1,j)==min{C(i—-1,j);CGj—1);C(i—1,j—1)}then
i=i—-1
elseif C(i,j — 1) ==min{C(i—1,j);C{,j—1);C(i—1,j— 1)} then
j=j-1
else
i=i—1;j=j—-1
endif
path.add((i,j))
endif
end while

return path
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3.3.4 Pitch detection

Pitch detection of the speech signal is required for many applications such as speech
enhancement, coding, and synthesis. Pitch detectors estimate the voiced or quasi-periodic
frames of the speech signal (voiced/unvoiced (V/UV) estimation), and then calculate the
pitch or fundamental frequency (FO) for voiced frames. Pitch detection can be done in either
time-domain, frequency-domain, or both time-frequency-domain [52].

In time-domain pitch detection, the signal periodicity is computed from the temporal
correlation between the signal samples. RAPT [53], PRAAT [54], and YIN [55] are well-
known examples for pitch detectors which perform time-domain detection and give accurate
pitch estimation for clean speech.

In frequency-domain pitch detection, the signal periodicity is computed from the short-
time spectral representation of the speech signal by searching for strong harmonic peaks near
integer multiples of a frequency value, this value would be the fundamental frequency, FO.
SHR [56], and SWIPE’ [57] are well-known examples for frequency domain pitch detectors.

Pitch detection in time-frequency-domain involves the decomposition of the speech
signal into multiple frequency sub-bands, and then applying time-domain techniques on each
sub-band. MBSC [52] is an example of time-frequency-domain detection with accurate
estimation for both clean and noisy speech.

In the following subsections, we present the basic idea of operation of PRAAT, and
MBSC pitch detectors which were used in our system.

3.3.4.1 PRAAT pitch detector

PRAAT pitch detector employs the autocorrelation method for pitch calculation [54].
The basic idea of the autocorrelation method is to estimate the pitch period of a periodic
signal from the position of the maximum of the autocorrelation function of this signal. The
autocorrelation of the signal x(t) is defined as:

(1) = fx(t) x(t + t)dt (3.29)

1(7) has a global maximum at T = 0, if there exist global maxima at T = nT, the signal
x(t) would be a periodic signal with period T. For quasi-periodic signals like the speech
signals, these signals have periodic parts with different periods, if the autocorrelation of any
segment of this signal has local maxima with enough height (autocorrelation values at these
maxima are large enough), this segments would be periodic and its period is calculated from
the location of these local maxima.

This simple calculation causes errors in pitch detection due to sampling and windowing
of the speech segment, these errors were tackled in PRAAT.

In PRAAT, the acoustic signal is divided into frames of length equals three times of the
minimum pitch period (the minimum value of FO, pitch estimation should be higher than this
value), then each segment is multiplied by a Hanning window. Let x(t) be an acoustic
segment with duration T and centered around t,,;;, and w(t) is the window function, then
the windowed speech segment is:
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MU=(x@md—%T+Q—uQWU) (3.30)

where p, is the segment mean, and w(t) is symmetric around t =%T and zero

everywhere outside the time interval [0, T]. The normalized autocorrelation of the windowed
segment is defined as:

fOT_T a(®a(t + 1)dt
fOT a?(t)dt

12(7) = (3.31)

The autocorrelation of the speech segment is calculated as the ratio between the
normalized autocorrelation of the windowed segment to the normalized autocorrelation of
the window.

1a(7)
1w (7)

The sampling and windowing problems of the simple autocorrelation pitch detection
mentioned above were solved in PRAAT by using sinx/x interpolation of the sampled

version of the autocorrelation function r,.(7) and by the division by the autocorrelation of
the window as in Equation (3.32), respectively. PRAAT algorithm is illustrated in [54].

(3.32)

(1) =

3.3.4.2 MBSC pitch detector

Multi-band summary correlogram-based pitch detection [52] gives high accuracy for
clean and noisy speech signals. MBSC employs several signal processing schemes in both
time-domain and frequency-domain such as sub-band multi-channel comb-filtering, HSR -
based channel-selection-and-weighting (HSR stands for Harmonic-to-subharmonic energy
ratio), stream-reliability-weighting. The use of multiple signal processing algorithms, in both
time-domain and frequency-domain, is to obtain high accuracy of pitch estimation, and
V/UV detection.

3.3.5 Gaussian Mixture Model (GMM)

Gaussian Mixture Model [46] is used to model the probability density function of a
random signal space. A mixture of a number of Gaussian probability density functions is
used to fit the signal space. Figure 3-9, and Figure 3-10 show an example of modelling of
two-dimensional random variable using a mixture of two bivariate Gaussian densities.

34



Pdf(obj,[x1,x2])

01—
009—:
08—
007 —

006 —

4 2 y1 3 2

Figure 3-9 modelling of two-dimensional random variable using a mixture of two bivariate Gaussian
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Figure 3-10 modelling of two-dimensional random variable using a mixture of two bivariate Gaussian

densities (projection of the probability density functions on the variable plane).
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A random process X can be fitted by a mixture of Gaussian components such that

£0) = D Pl o 22 (333)
k=1

where K is the number of Gaussian components used to fit the random process,
Ny (x; g, 2x) is the k" component probability density function (pdf), with mean vector p,
and covariance matrix X, and P, is the prior probability of the k" Gaussian component (the
probability that the process X is associated with the k** mixture).

A signal space can be fitted by an infinite number of different K-mixture Gaussian
densities. Expectation Maximization (EM) can be used to estimate GMM parameters

(Pkr."lk;zk)'
3.3.5.1 EM Estimation of Gaussian Mixture Model

EM algorithm is an iterative maximum-likelihood (ML) estimation, and is used to
estimate GMM parameters (Py, iy, L) [46].

Given the observation vectors [y(m),m =0, ... ,N — 1], we define the complete and
incomplete datasets as follows:

- The incomplete data set: is the input observation vectors:

y(m),m=0,..,N—1 (3.34)

- The complete data set: is the observation vectors with a tag k attached to each
vector to indicate the GMM component which generated the vector:

x(m) = [y(m),k] = y,(m)ym=0,...N-1Lke(1,..,k) (3.35)

With this definition of the complete data set, if this data set is known, the
calculation of the GMM parameters (Py, u, i) would be relatively simple.

Let ©® = {6, = [Py, hi, 2kl k = 1,...,K} be the parameters of the GMM to be
estimated, the EM algorithm starts with an initial estimate @; = {6y, = [Py, i, Zi, | k =
1, K} then given the observations and a current estimate @;, the expectation of the
complete data would be as follows:

U(0,0,) = E[In fy k.6 (y(m), k; @) |y(m); 6]

N-1 K

m), k|0,
_ Z frxio(y(m) @I ) In fy .0 (0m), K ©) (3.36)
La L fio(y(m)]6;)
Now the joint pdf of y(m) and the k®* GMM component is:
fY,K|@(Y(m);k|@i) = Pkifk(y(m)léki) = PkiNk(y(m);ﬁki;iki) (3.37)
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where Nk(y(m);ﬁk,fk) is a Gaussian density with mean vector u;, and covariance
matrix Z:

N (y(m); pg, Z)
1 1
- (2m)P/2|x5, |1/2 exp <_ 7 (y(m) — w2z (y(m) — Hk)) (3.38)

The pdf of y(m) as a mixture of k Gaussian densities is given by:

K
Frio(Ym18:) = N(y(m)I0)) = > BN (ym; e, ) (3.39)
k=1
Substituting Equation (3.37) and Equation (3.39) in Equation (3.36) yields:

Ul 2, P), (4,25, Pr)]

N-1 K A

_ P Nie(y(m); i, i) |

EK: <ﬁkiNk(y(m); ﬁkiff:ki) In P (3.40)
] N(y(m)|6;) “

iNk(Y(m)i ﬁki,iki)
N(y(m)|6;)

To find the next iteration (i+1), Equation (3.40) is maximized with respect to the GMM
parameters {0, = [Py, Uk, Zx ]} each at a time, and given that ), P, = 1, yields:

=3
Ll

Il
3

o

In N(y(m); ,uk,Zk)>

N—-1 -~ ~
5 & B 1 P, N (y(m); iy, )
P, = Ul P), (i, 5., P =—Z i e 2k
i argpr;qax [(wx,P), (2,5, B)] NZ, N(y(m)[8y)

(3.41)

Ak, = arg max U[(w, %, P), (A, £, )]

Uk
_y PN (y(m); e, E)
N-—1 Tki*'k ke “k;
_Zmzo NOmI8) (m) (3.42)
n-1 PN (Y (m); e, B
= N()’(m)|@i)

,and
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ikm = argiinax U[(u, 3, P), (ﬁi,fi,ﬁi)]
TN-1 pkiNk(y(m);ﬁAki'ik
N()’(m)|9i)
-1 Py, Ny (y(m); ﬁAki;iki)
N(y(m)|6;)
Equations (3.41)—(3.43) are the estimates of the GMM parameters at the (i + 1)t"

iteration using the parameters’ estimate at the i*" iteration. The iterative process continues
until the parameters’ estimate converge.

i) (y(m) — ljki)(y(m) - ﬁki)T (3.43)

3.3.6 CLASSIFICATION AND REGRESSION TREES (Decision trees)

Classification and regression tree (CART) is an important machine learning technique
used for a variety of applications [33]. To construct the CART from the training dataset 3;
First a set of questions about the variables are found, then the tree is grown from the root
node towards the leaf node using the best questions, finally the tree is pruned to a level which
minimizes the misclassification rate of the new test data.

3.3.6.1 Choice of Question Set
Let X denotes the input sample to the CART

X = (x1, X3, ., Xy) (3.44)

where the values of each variable x; can be discrete in case of classification tree or
continuous in case of regression tree. A standard set of questions Q for the CART will be as
follows:

1. Each question in Q is simply about the value of one variable x;.
2. For classification trees, if x; has discrete values of the set {c,, c,, ..., ¢ }, then the
question about its value will be in the form of:

s x; € S} (3.45)

where S is any subset of {c;, c,, ..., ¢}

3. For regression trees, the question about the value of the continuous variable x;
will be in the form of:

{Isx; <c,} n=12,... M (3.46)

_Up1+ Uy

Cp = > , V9 =0 (3.47)

where M is the number of training samples in 3, and v,,is the value of the variable
x;0f the nt" sample.
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3.3.6.2 Splitting Criteria

leaf leaf
Figure 3-11 classification tree example

As shown in Figure 3-11, the tree grows from the root node towards the leaf nodes. Each
node has a question which represents a split of the training samples. The task to find the
splitting criteria is to find the best question set which split the training data at each node.

For an input sample X, let its classification decision output be the random variable Y.
the weighted entropy for any node t can be defined as follows:

H,(Y) = H,(Y)P(t) (3.48)

H(Y) = —Z P(w;|t) log P(w;|t) (3.49)

where P(w;|t) is the percentage of samples for class i in node t; and P(t) is the prior
probability of visiting node t.

Let the question g at node t splits the node t into leaves [ and r, then the entropy
reduction will be:

AH(q) = H (V) = (H(N)+H-(Y)) = H.(Y) — H:(Y|q) (3.50)

Thus, the splitting criterion can be considered as finding the question which gives the
greatest entropy reduction.

q* = arg(rlnaX(AHt(q)) (3.51)

The entropy for a tree, T, is defined as the sum of weighted entropies for all the terminal
(leaf) nodes

AM = ) W)

t is terminal

(3.52)

It can be shown that the entropy of the tree is reduced during the tree-growing process.
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3.3.6.3 Growing the Tree

The tree-growing algorithm begins from the root node and splits nodes using the best
question set Q and the splitting criteria AH,(q). The algorithm continues for all nodes until
reaching terminal nodes (leaf nodes) which satisfy one of the following conditions:

1. All the samples in the node are of the same class.

2. The maximum entropy reduction of best question is less than a pre-determined
threshold B:

max AH(q) < B (3.53)

3. The number of samples in the node is less than a pre-determined threshold « which
is known as (minimum leaf parameter).
3.3.6.4 Tree Pruning

CART may be designed precisely on the training data without generalization, so high
classification error may occur for new test data. To minimize the classification error for new
test data, a pruning approach is used. This approach merges leaves on the same tree branch
until the misclassification rate for the new test data reaches its minimum. Using Minimum
Cost-Complexity pruning algorithm [33], the weakest subtree (subtrees) for each pruning
level k is determined. For k = 1, the weakest subtree T;, is determined using the minimum

cost complexity algorithm. After pruning away T;, from T, the new pruned tree T; will be:

I=T-T, (3.54)

Using the same process, the weakest subtree T, in T; can be found. After pruning away
T;, from Ty, the new pruned tree T, will be:

Tl = T1 - th = T - Ttl - th (3.56)

k=2 (3.57)

This process continues to find the next weakest subtree until obtaining a tree contains
only the root node.

T>T,>T, >T;... >{r} (3.58)

Figure 3-12 shows an example of regression tree which is pruned at different pruning
levels.
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Figure 3-12 regression tree example with different pruning levels, (a) the original tree without pruning,
(b)the tree after pruning the weakest subtree (pruning level k=1), (c) the tree after pruning the 6 waekest
subtrees (k=6)
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3.3.6.5 Cross-Validation

In the previous section, we illustrated the importance of tree pruning to reduce the
misclassification rate for any new test data, and the use of the Minimum Cost-Complexity
pruning algorithm to find the weakest subtree for each pruning level. In this section we
describe the use of v-fold cross-validation to find the best pruning level which minimizes
the misclassification rate of the tree for any new test data.

In v-fold cross-validation, the training set 7 is divided into v separate subsets
3. 3, - 5, Which contain the same number of training samples. The it" training set 3’ is
defined as follows:

3 =33 i=1,2,..,v (3.59)

v is usually selected to be high, like 10. The main tree T is grown on the training set 3,
and v auxiliary trees are grown on the v training sets defined by Equation (3.59).

The misclassification rate of the new test data for the main tree can’t be estimated
directly since we don’t have any test data, but this rate can be approximated via the test-set
misclassification measure of the v auxiliary trees as follows:

1w .
REV(T) = ;Z R*(T*) (3.60)
i=1

Where RV (T) is the cross-validation estimate of the misclassification rate of the main
tree T, and R*(T*) is the misclassification rate of the i™" tree, which was built on the training

set 3 defined by Equation (3.59). The optimal v-fold cross-validation pruning level can be
obtained through:

v . pCV
k —arg;nlnR (Ty) (3.61)

where T, is the pruned tree at pruning level k.
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Chapter4: System overview

We propose a data-driven emotion conversion system to obtain an expressive Arabic
TTS. Literature work on emotion conversion ensures that converting both spectral and
prosodic parameters are necessary for emotion conversion. In our first trial to perform
emotion conversion, we employed a phoneme-based spectral conversion using temporal
decomposition and Gaussian mixture model, which has been proposed in [58] for voice
conversion. In [25] a similar method is proposed for emotion conversion, and in addition to
spectral conversion; prosody conversion is performed.

After the implementation of the proposed spectral conversion technique in [58]; we
tested the system for questioning and found that no change in expressiveness occurred (i.e.
the utterance remains neutral). We have made several efforts to modify this method including
adding pitch value of every frame to the spectral parameter vector and mapping both
spectrum and pitch contour [59], trying to add delta and delta-delta features [25], trying
different machine learning techniques like neural networks, and finally changing the window
size, LSF order, and the training data size; but all these efforts didn’t improve the results.

Finally, we found two studies on emotion conversion; where both prosodic and spectral
parameters are modified based on their linguistic context [23, 32], and their results are
reasonable in terms of quality and expressiveness, so our proposed system is based on these
two studies.

In this chapter, we first illustrate the Phoneme-based Spectral Conversion Using TD and
GMM. Then, we give an overview of our proposed emotion conversion system to obtain
expressive speech.

4.1 Emotion conversion based on “Phoneme-based Spectral
Conversion Using Temporal Decomposition and Gaussian
Mixture Model”

This method can be summarized as follows: a trained GMM is used to transform LSF
parameters, which represent the speech spectrum, to the desired expression. The method
employs STRAIGHT analysis-synthesis [60] to get a smoothed spectrum and temporal
decomposition is used to remove the discontinuities between the converted frames which
results from traditional GMM as will be illustrated in the following subsections. Two stages
for the implementation of this system: training and transformation stages.

To train the GMM: for each parallel utterances (neutral-expressive utterances) in the
training database; the input speech signal is decomposed into spectral envelopes, FO
(fundamental frequency) information, and aperiodic components (AP) using STRAIGHT.
From the spectral envelopes; LSF parameters are calculated, and then decomposed into event
targets and event functions using Modified Restricted Temporal Decomposition (MRTD).
Event targets of parallel utterances are modeled using GMM. The training procedure is
illustrated in Figure 4-1.
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In the transformation phase: for any new utterance, spectral envelopes are calculated
from the speech signal using STRAIGHT; then LSF parameters are calculated from these
spectral envelopes; and then using MRTD, LSF parameters are decomposed into event
targets and event functions. These event targets are transformed to their expressive values
using the trained GMM. The reverse process is performed to obtain the synthesized
converted speech signal: using MRTD synthesis, the modified event targets are re-
synthesized with the original event functions (unmodified) to obtain the new LSF
parameters; then spectral envelopes are obtained from LSF synthesis. Finally, STRAIGHT
synthesis is used to obtain the converted speech. The transformation procedure is illustrated
in Figure 4-2.

4.1.1 Modified Restricted Temporal Decomposition

Traditional GMM-based spectral conversion do not take into account the relationship
between frames in both training and conversion procedures, which causes discontinuous in
the converted spectral contours and these discontinuities are heard as clicks in the converted
speech. The use of temporal decomposition is proposed in [58] to solve this problem.

Temporal decomposition (TD) is proposed by Atal [61] for efficient coding of speech.
Speech parameters (LPC or other parameter) are decomposed into event functions and event
targets. Let y;(n) be the i" speech parameter at frame n, then y;(n) can be represented as:

K

37i(n)=zakqok(n) 1<n<N,1<i<P (4.1)
k=1

where J;(n) is the approximate value of y;(n) resulted from TD synthesis. ¢, (n) is
the k" event function (interpolation function) at frame n, and a,, is the k" event target or
the contribution of the k" event function to the i* speech parameter. The value of K refers
to the number of event functions in the speech segment which contains N frames (N > K).

Event targets can be seen as an average values over a set of frames and are interpolated
using their event functions to re-produce the original speech parameters. The matrix form of
Equation (4.1) is:

Y = AD Y € RP*N A € RPXK @ € RKXN (4.2)

where P, N, and K are the order of the spectral parameters, the number of frames in the
speech segment, and the number of event functions, respectively.
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Figure 4-1 training procedure of Phoneme-based Spectral Conversion Using TD and GMM [58].
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—— .| .| . |e <
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Figure 4-2 transformation procedure of Phoneme-based Spectral Conversion Using TD and GMM [58].
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Modified Restricted Temporal Decomposition (MRTD) [62] is a modified form of TD,
where only two event functions can overlap and sum up to one at any time, thus Equation
(4.1) can be written as:

i) = arpr(n) + apy1Pres1 (M) Mg SN SNy (4.3)

where n;, and n,,, are the locations of event k and event k + 1, respectively. Since

@r(n) and @1 (n) sum up to one in the interval n, < n < n;,4, the above equation can
be written as follows:

9i() = @) + ag1(1 — (M) e SN <myyy (4.4)

The event function in MRTD is well-shaped which means that the event function has
only one peak, this peak exists at the event location as shown in Figure 4-3. Event locations
were set based on phoneme locations as proposed in [63]; where each phoneme is divided
into four equal parts, and the event locations are set at the five points marking these parts.
Phoneme locations are extracted using HTK-based forced alignment [64]. Calculation of
event target and event function as illustrated in [62] are as follows:

I{1 = Pp-1(n), if g <n <my
1, if n=mny
n) = 45

i) imin ((pk(n — 1),max(0, (ﬁk(n))), if e <n<ngyq (4.5)

0, otherwise

((y(n) — agy1), (ag — ag41))
D, (n) = (4.6)
Pulm) T — Gl

where (.,.) and ||.|| are the inner product of two vectors and the norm of a vector,

respectively.

The event targets are calculated from the event function using the least square sense as
follows:

A=YOT(PPT)? (4.7)
Using TD, speech parameters can be modified by modifying their event targets and event

functions, instead of modifying these parameters frame by frame, this ensures the
smoothness of the modified speech through the shape of the event functions.
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Figure 4-3 Two adjacent event functions in MRTD [62].

4.1.2 GMM training and transformation function estimation

As mentioned earlier, two parallel neutral and expressive utterances are introduced to
STRAIGHT and LSF analysis, then MRTD decompose the LSF parameters into event
targets and event functions. Let X = [X;,X,, ..., Xy] be the event targets of the neutral
utterance, where X; = [x4, X5, ..., xp]T, P, N are the LSF order, and the number of events in
the utterance. The same for the expressive utterance, the event targets would be Y =
[Y,,Y,, ..., Yy], and where Y; = [yy, v, ..., yp]T. Note that X, and Y are aligned and have the
same number of events because event locations in both utterances are set based on phoneme
locations.

We define the feature pair Z = [Z;,Z,,...,Zy], Where Z; = [X],Y]7. The joint
distribution Z is modelled by M-mixtures GMM with a,,, u,, £, are the weight, mean, and
variance of the m*"* Gaussian component. The probability of any input joint feature vector z
will be as follows:

M
P() = ) anN(Z i Bm) (4.8)
m=1
and
1 1 —
N(Z; Um» Zm) = (2n)k/2|2m|1/2 exXp\| — E (Z - .um) z:m (Z - .um) (49)

where N(z; i Z.,) is the Gaussian probability density function (pdf) of the mt"
Gaussian component with mean, u,,,, and variance, %,,.

GMM parameters (ay, Ux, ) are expected using the expectation—maximization (EM)
algorithm illustrated in section 3.3.5.1. Matlab Statistics Toolbox implementation of GMM
was used to estimate the model parameters.
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4.1.3 Transformation Procedure

For any new neutral utterance, the speech waveform is introduced to STRAIGHT and
LSF analysis, then MRTD decompose the LSF parameters into event targets and event
functions. The output event targets are transformed to their expressive values using the
trained GMM as follows:

F(x) =EQlx) = fyp(ylx)dy

M (4.10)
= D P (1 + E R - )
m=1
) = amN(x; py, Em) (4.11)
P S N Gt 13, Z0)
‘ux $XX ny
where u,, = [ ;"] DI l 3’,’; ;‘yl and a,,, (x) are the mean, variance, and weight
Hm z:m z:m

of the m®" Gaussian component, respectively, and x, y, are the neutral and converted event
targets.

After calculating the modified event targets, they are re-synthesized with the original
event functions (unmodified) to obtain the modified LSFs, then spectral envelopes are
obtained from LSF synthesis. Finally, STRAIGHT synthesis is used to get the converted
speech.
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4.2 The proposed system for emotion conversion

As proved in several literature studies [2-5], successful emotion conversion is achieved
by converting both prosodic (pitch- duration- intensity), and spectral parameters. In this
section, we start with copy-synthesis experiments to check the effect of different speech
parameters on each expression, and then give an overview of our proposed emotion
conversion system to obtain expressive speech.

4.2.1 Copy-synthesis experiments

Copy-Synthesis is a straight approach used to check the effect of prosodic and spectral
parameters on each expression and to find the dominant and the ineffective parameters for
each expression. An analysis-synthesis scheme is used, and before synthesis the parameter
under check is changed to its expressive value [2].

In our copy-synthesis experiments, each of the prosodic and spectral parameters (pitch-
duration- intensity- and spectrum) was checked separately, then we tested the effect of
changing all of these parameters at one time. Changing one of the four parameters at a time
plus changing all the parameters in 3 expressions (sadness- happiness- questioning);
resulting in 15 (5x3) utterances in the experiment. Figure 4-4, Figure 4-5, and Figure 4-6
show copy-synthesis modules of spectrum, pitch, and duration. Only one utterance for each
expression and one listener was asked to evaluate the output of these experiments; so results
can’t be generalized. These experiments are used only as indicator that changing these
parameters will be useful to obtain expressive speech.

P —————— TS
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L__ Spectral analysis J {
NBHEEI e e e e e e S i e T st |
waveform synthesis i W w«,

1
1
1
1
1
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LPC analysis ——» LPC-to-LSF —:—b Emotional LSFS

1

1

Spectral analysis :

emotional waveform

Figure 4-4 copy-synthesis of spectral parameters
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Figure 4-6 copy-synthesis of duration

Results of copy-synthesis experiments for the three expressions (sadness- happiness-
questioning) are shown in Table 4-1. Results show that the dominant parameter in all
expressions is the pitch variation, while the spectrum change has the lowest effect on all
expressions.
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Table 4-1 Results of copy-synthesis experiments for different expressions, these results show

percentage of the desired expression in the output of each experiment

experiment Effect on Effect on Effect on

neutral to sad | neutral to happy | neutral to question
Change spectrum 10% 30% 0%
Change pitch 40% 60% 80%
Change duration 40% 0% 0%
Change (pitch + duration) 90% 60% 80%
Change (spectrum + pitch + 100% 100% 90%
duration)

4.2.2 System modules

Our emotion conversion system consists of four modules: pitch conversion, duration
conversion, spectral conversion, and energy conversion. The combination of these modules
is shown in Figure 4-7, and a summary description for each module is illustrated in the
following sub-sections.
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Figure 4-7 proposed emotion conversion system
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4.2.2.1 Spectral conversion

A GMM framework Based on [23] is used to convert LSF parameters from the neutral
to the target expression. 16-mixture GMM were used to fit the thirty-order LSF parameters
which were extracted from each pitch-synchronous overlapping frame. DTW is used for
time-alignment of the neutral and target expressions. Overlap and add approach is used to
synthesize the converted LSFs with the unconverted residual signal.

4.2.2.2 Pitch conversion

Unit selection paradigm for pitch conversion using different intonation units and
different pitch detectors. Pitch contour of the spectral-converted waveform is extracted; then
the best expressive contour, which minimizes the total cost, is selected from a prepared
database; and finally the neutral pitch contour is modified to the new converted contour by
using Time Domain Pitch Synchronous Overlap Add (TD-PSOLA).

4.2.2.3 Duration conversion

Duration conversion is performed on the phoneme level using regression trees, neutral
phone durations including pauses are transformed to their expressive durations and the
duration is modified in the neutral waveform using Time Domain Pitch Synchronous
Overlap Add (TD-PSOLA).

4.2.2.4 Energy conversion

The speech signal is multiplied by a factor to increase or decrease the energy level to
the level of the target expression.
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Chapter5: System implementation

As illustrated in the previous chapter that our emotion conversion system consists of
four modules: pitch conversion, duration conversion, spectral conversion, and energy
conversion. In this chapter, we illustrate each module in detail.

5.1 Spectral conversion

A GMM framework is used to convert LSF parameters from the neutral to the target
expression. GMM is the most popular technique for spectral envelope modification in
emotion conversion. A comparison between three different methods for transforming
spectral envelopes from neutral to emotional speech is presented in [27] and results showed
that weighted frame mapping and GMM based transformations are slightly better than the
weighted codebook mapping.

16 Gaussian components were used to fit the thirty-order LSF parameters which were
extracted from each pitch-synchronous frame. DTW is used for time-alignment of the LSF
parameters of the neutral and the target expression. Overlap and add approach is used to
synthesize the converted LSFs with the unconverted residual signal [23, 65]. Spectral
conversion module is illustrated in Figure 5-1.

The choice of LSF parameters, to represent the speech spectrum for spectral conversion,
is because they have the following characteristics [24]:

- Sensitivity (a bad estimation or modification of one coefficient affects only a port
of frequency spectrum around this frequency)

- Efficiency (interpolation of LSFs causes low spectral distortion).
- Reliability (LSFs are reliably estimated).
- Relation to formant frequencies.
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Figure 5-1 spectral conversion module
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5.1.1 Speech Analysis / Synthesis without modification
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Figure 5-2 LSF analysis/synthesis module

Speech signal is divided into pitch-synchronous overlapped frames with frame length
equals three times of the frame shift. Variable frame length of three pitch periods was used
for voiced frames, and constant frame length of 10msec was used for unvoiced frames. After
dividing the speech signal into frames, a hamming window is applied to each frame. Finally,
LPC analysis is applied to each windowed frame, and then the LPC coefficients are
converted to their LSF representation and the residual signal is calculated. A high LPC order
of thirty was used in order to capture the spectral details.

The voice/voiceless decision of each frame is determined using the pitch marks
calculated by PRAAT software [66] as follows: if the distance between two successive pitch
marks is lower than a pre-determined threshold (50 Hz), the region between these pitch
marks is considered unvoiced.

In the synthesis stage, the reverse operation is used to obtain the speech signal from the
LSF parameters. First, LSF parameters are transformed back to their LPC representation.
Second, these parameters are used as a filter parameters which filters the residual signal.
Finally, Overlap and Add approach (OLA) is used to synthesize the overlapped frames;
where the centers of these frames are placed back on their original pitch-marks, and the
overlapping regions are added together, as illustrated in section 3.3.2.1.

5.1.2 Spectral transformation

A GMM framework is used to convert LSF parameters from the neutral to the target
expression. GMM parameters and transformation matrix are estimated during the training
phase to be used for any new utterance in the conversion phase.

5.1.2.1 Training phase

In the training phase of spectral conversion module, both the GMM parameters and the
transformation matrix are estimated from the parallel training data using the following steps:
5.1.2.1.1 Analysis and feature extraction

For each sentence in the training data, LSF parameters of each pitch-synchronous frame
are extracted, and then each frame gets a tag identifying the frame type (voiced / voiceless).
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5.1.2.1.2 Time alignment

The number of frames in parallel utterances is different due to the difference in
articulation and phoneme durations, so time alignment is used to align LSF vectors of parallel
utterances (neutral-expressive pair). For more accurate alignment, feature alignment is
performed on parallel phonemes in parallel utterances since phoneme locations can be
extracted using HTK-based forced alignment [64] (these phoneme locations are then
manually corrected to avoid mistakes). DTW is used for time alignment (section 3.3.3), and
after alignment each frame in the neutral utterance corresponds to a frame in the expressive
utterance.

Let n;, and e, denote the neutral LSF vector and its corresponding expressive LSF
vector for frame t. They are k x 1 dimensional vectors, where k is the LSF order. After
feature extraction and time alignment of all the training data we will have N, E matrices for
neutral-expressive utterances,

N = [nl,nz,n3, .....,nT] , E = [91,32,93,.....,6'['] (51)

where N,E are k x T matrices, and T is the total number of aligned frames in the
training data. After the construction of N, E matrices, the unvoiced frames will be removed
and the training will be done only on the voiced frames.

5.1.2.1.3 GMM fitting of the neutral speech

M-mixtures GMM is used to fit the neutral LSF parameters with a,,, u,, Z,, are the
weight, mean, and variance of the m*" Gaussian component (see section 3.3.5 for more
details). The probability of any input feature vector x will be as follows:

M
PE) = D amN (it Z) (5.2)
m=1
And
1 1 —
N(x; i, ) = (Zn)"/ZIEmIl/Z exp| — E (x — um)" Zi (x — ) (5.3)

where N(x; u,,2,) is the Gaussian probability density function (pdf) of the mth
Gaussian component with mean, u,,,, and variance, X,,.

GMM parameters (a,,,, Um, Z.,) are expected using the expectation—maximization (EM)
algorithm illustrated in section 3.3.5.1. Matlab Statistics Toolbox implementation of GMM
is used to estimate the model parameters.

5.1.2.1.4 Transformation matrix estimation

The final step of the training phase is the estimation of the transformation matrix. Our
transformation function is given by:
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M
e, =F(n) = (z P(lent)Wm> ng (5-4)
m=1

Where

ny = [n 1]’
n;, and e; are the neutral and expressive LSF vectors.

W, is the transformation matrix, and P(c,,|n;) is the probability that vector n,
belongs to the mixture class c,,.

AN (g5 Uy Zm) 55
LyaiN(ng i, 2) (55)

P(cmlne) =

The matrix form of the transformation Equation (5.4) is:

E = Wy(N) (5.6)
Where
W= [Wy i Wy i Ws it Walismxr)) (5.7)
[P(cilm)n]
[+ |
p(n) = |P(Crr§|n)ﬁ| (5.8)
EICHIDLI
P(C1|Tl1)7_l1 P(C1|flt)7_lt P(Cll‘flT)ﬁT}
YO = [Pnlniy - Plemlndfe -+ P(emlnr)r (5.9)
P(cy |'n1)1_11 P(cy int)ﬁt P(CMl.nT)ﬁT (Mx(k+1))xT

To estimate the transformation matrix for each mixture component, W,,,, Least Squares
method (LSE) for Equation (5.6) is used, then the transformation matrix is given by the
following equation

W = Ep(N) @ (N)p(V)) ™ (5.10)
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5.1.2.2 Conversion phase

Spectral conversion for any test utterance involves the following steps:

Analysis and feature extraction: LSF parameters of each pitch-synchronous frame
are extracted, and then each frame gets a tag identifying the frame type (voiced /
voiceless).

The transformation formula given by Equation (5.6) is applied on the voiced frames,
and the unvoiced frames remains as in the neutral case.

New LSF parameters are transformed to their LPC representation, and then LPC
parameters are used as a filter parameters which filters the original residual signal.

Finally Overlap and add approach (OLA) is used to synthesize the overlapping
converted frames.
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5.2 Pitch conversion

Unit selection paradigm for pitch conversion (selection of expressive units from a
database according to a cost function) is presented in [23, 32] and gives good performance.
Several studies used the syllables as the basic intonation unit for pitch conversion [23, 29,
67]. However, the proposed work in [32] shows that the choice of the best intonation unit
depends on the language and the word unit is the best intonation unit for Basque language.
In our work on Arabic, we applied unit selection paradigm for pitch conversion and tried two
different intonation units (words, and syllables) with the appropriate linguistic features for
each unit type. The effect of using different pitch detectors is also examined.

As shown in Figure 5-3, pitch conversion for any input neutral utterance is performed
as follows: the pitch contour and the linguistic features of the utterance are extracted. Then
using a prepared corpora and a trained cost function, the best expressive contours are chosen
from the database. Finally, TD-PSOLA is used to convert the neutral pitch contour into the
converted contour.

nl, Unit selection
Lot ), ———> ——>  Pith ——>» TD-PSOLA
1\\!"“ !‘ﬂ ™ conversion

|

Input sentence Acoustic &linguistic

features extraction

Pitch
detection

I

e T S ——— RSP

N ———————— e — -

pitch conversion

Figure 5-3 pitch conversion module

5.2.1 Preparation of parallel corpora

First for each parallel utterances in the input database (and using the text of the recorded
sentence), a set of linguistic features and phoneme boundary information are extracted by
HTK-based forced alignment; then using these information, it would be a very simple task
to obtain the boundaries of our intonation unit (syllable or word). Second, pitch contours of
parallel utterances in the training database are extracted, and the unvoiced segments in these
contours are interpolated; then using intonation unit boundary information, these contours
are chopped into small contours of each intonation unit. Finally neutral-expressive F,
contours of each intonation unit in the training corpus with their corresponding linguistic
features are stored to be used later for the emotional unit selection. Figure 5-4 shows an
illustration to corpus preparation.

58



Neutral contour Linguistic features Emotional contour

\/\ Spos=1 pofs=1 ppofs=0 nsyl=4 ppt=0 npt=2 \/\/‘

\/\/\;\ Spos=2 pofs=5 ppofs=1 nsyl=4 ppt=2 npt=2 | "~~~
l o~~~ | Spos=3 pofs=1 ppofs=5 nsyl=4 ppt=2 npt=2 \/\’\ﬂ\

\’\/ Spos=3 pofs=1 ppofs=1 nsyl=2 ppt=2 npt=1 W

Figure 5-4 overview of word unit corpus (neutral contour- linguistic features- expressive contour).

5.2.1.1 Linguistic features

A set of linguistic features of Arabic speech which are thought to be responsible for
different intonation are used for pitch conversion, the following features are used for both
intonation units (word-syllable):

Sentence position, Spos: identifies the position of the word in the sentence.

Part of speech, Pofs: is the part of speech tag of the current word, thirteen tags are
used for Arabic speech.

Previous part of speech tag, PPofs: is the part of speech tag of the previous word.
Number of syllables in the current word, Nsyl.

Previous pause type, Ppt: is the type of the pause before the current word (no pause,
full stop, or other).

Next pause type, Npt: is the type of the pause after the current word (no pause, full
stop, or other).

In the case of using syllables as the basic intonation units, a set of features related to
syllables are added to the previous features:

Syllable position in a word, Wpos.

Structure of the syllable, Sylstruct: 5 syllable structures exist in Arabic, (CVV, CV,
CVC, CVVC, and CVVC).

Vowel identity within the syllable, Sylvow.

These features and their possible values are shown in Table 5-1, and Table 5-2.
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Table 5-1 linguistic features for pitch conversion and their values

Feature Name

Symbol

Possible Values

Sentence position

Spos

1: for the first word in the sentence

2: for the second word in the sentence
3: for any n" word in the middle of
the sentence

4: for the word before the last word
in the sentence

5: for the last word in the sentence

Part of speech / Previous
part of speech

Pofs /
Ppofs

1: noun (proper) [2eas = jad
2: noun (number) [l — aal]
3: noun (quantity) [am — JS]
4: noun+ pronoun [Wiba — 4zia s
5: noun (other) [CsY! - Cuaall]
6: adjective [2ia — saldall]

7: comparative adjective [ — i
Jsl

8: adverb [(3s8 — W]

9: pronoun [a — sa]

10: verb [C_id) - Ae]

11: particle [l — Y]

12: preposition [ —

13: conjunction [of — L — 13 — 4

Number of syllables in the
word

Nsyl

Previous pause type / Next
pause type

Ppt/
Npt

0: no pause
1: full stop
2: any other type of pauses
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Table 5-2 additional linguistic features for syllable-based pitch conversion

Feature Name Symbol Possible Values
word position Wpos 0: for single syllable word
1: for the first syllable in the word
2: for the middle syllables in the
word
3: for the last syllable in the word
Sy”able structure Sylstruct 1:if Sy”able structure |S CV or CVV
2: if syllable structure is CVC or
CvvC
3: if syllable structure is CVCC
Vowel identity in Sylvow 12 [488 )0 2and]
syllable
2: [Acdia 4ad]
4: [andia 20 ]

e IR N e Y,

Bl PONSX
t[ae sl
: 8]

t ey
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5.2.2 Conversion of pitch contour

First, for any new input neutral utterance to be converted to the expressive case, the
linguistic features and the pitch contour of each intonation unit is calculated as illustrated in
section 5.2.1. Second a target cost between the input unit, i, and each candidate unit n is
calculated (candidates are the stored units out of the parallel corpora preparation), then the
best unit from the candidates which minimizes the target cost is determined, and this
operation is done for all input units. Finally, the best candidates’ expressive contours are
assembled to obtain the desired pitch contour of the utterance, and then the pitch contour is
modified in the input waveform using TD-PSOLA (illustrated in section 3.3.2).

Target cost T, between the input unit i and the candidate unit n is the sum of two sub-
costs: acoustic sub-cost A4, and linguistic sub-cost L.

T(i,n) = A(i, n) + L(i, n) (5.11)

The acoustic sub-cost is determined between the neutral contours of the two units, i, n,
and it is a weighted sum of the contour distance, d,,:, mean log FO level distance, d;,,,, and
length distance, d,.,, [32]. To calculate these distances, the durations of the two FO0 contours
are normalized to 1, and then their log FO contours are represented in m‘" order polynomials
P(t) (4" order polynomial was proved to be enough to capture the log FO contour [32]).
The use of log FO instead of FO is because the frequency distances are perceived by the
human ear in a logarithmic scale. The three distance values and the acoustic cost are
calculated according to Equations (5.12 - 5.15)

1

deoneli) = | [ (RO =R @) at (512
0

where

PO =PO —pp, wp=J, PO (5.13)
and
diew (i) = |tp, =t | (5.14)
T;

dyon (i, n) = [log (T—) (5.15)

where T;, T,, are the durations of the two contour, then the acoustic sub-cost is:

A(i: n) = Wcontdcont(i» n) + Wlevdlev(i' n) + Wlendlen(i' n) (5-16)
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The linguistic sub-cost between the two units, i, n, is a weighted sum of the distance
between the linguistic features of the two units, d, (i,n), this distance is zero for matching
features and one for mismatch.

P
L(i,n) = Z wpd, (i, ) (5.17)
p=1

where P is the number of linguistic features.

Substituting Equation (5.16), and Equation (5.17) in Equation (5.11), we will obtain the
target cost as follows:

P
T(i,n) = Weontdeont (i 1) + Wieydiey (i, 1) + Wiendien (i, 1) + z wpdp(i,n)  (5.18)
p=1

The concatenation cost between units is neglected because the intonation unit is large
enough to reduce the effect of this cost.

Pitch modification in the waveform is implemented using PRAAT software [66], only
voiced parts are converted and the unvoiced parts remain unconverted, so interpolating these
parts wouldn’t affect the output. This interpolation only makes the selection of units more
accurate.

5.2.3 Estimation of the cost function weights

During the conversion of pitch contours, the cost is a weighted sum of different
distances; these weights are used to normalize distances and to rank the features by their
impact. To calculate these weights four methods are proposed in [32]: (the Full Prediction
Method, the Acoustic-Only Method, the Linguistic-Only Method, and the Classification&
Prediction Method), in our system the second method gave the worst results and the
remaining methods almost had the same effect; so we used the Full Prediction Method which
can be illustrated as follows:

For a unit j in our prepared corpora, the target cost between the neutral part of this unit
and the neutral part of another different unit k in the corpora is calculated as follows:

T(j; k) = Wcontdcont(Nj' Nk) + Wlevdlev(Nj' Nk) + Wlendlen (Nj' Nk)

P
4 Z wyd, G, ) (5.19)
p=1

Where Weont, Wiev, Wien, and wy, are the weights of different sub-costs to be calculated,

deont (Nj, Ni), diey(N;, Ni), and dye, (N;, Ny ) are the contour distance, mean log FO level
distance, and length distance between the neutral contours of the two units j, k, respectively.
d,(j, k) is the distance between the linguistic features of the two units. The calculation of
these distances is illustrated in section 5.2.2.
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To estimate the weights of different sub-costs, the target cost between the neutral parts
of two different units in the corpora is set equal to the acoustic distance between their
corresponding expressive contours as follows:

T(j, k) = 0.5 * deont(Ej, E) + 0.5 * diey (E;, Ex.) (5.20)
Substituting from Equation (5.19) in Equation (5.20) we obtain the following equation:

Wcontdcont(Nj' Nk) + Wlevdlev(er Nk) + Wlendlen (Nj’ Nk)
P

5.21

+ > wpdy( k) = 0.5 * deone(Ej, Ex) + 0.5 * diey (Ej, Ex) (6:21)

p=1

Equation (5.21) is applied on each unit j in the parallel corpora with the remaining units
k, to obtain a set of equations which can be solved using least squares to find the weights
estimate.

5.2.4 Choice of pitch detector

The choice of pitch detector must first ensure high analysis-synthesis quality using
PRAAT software (the software used for the conversion). Then it would be checked for the
emotion conversion. In the implemented system, two well-known pitch detectors were
examined (PRAAT (section3.3.4.1), and MBSC (section 3.3.4.2)) and their performance was
compared for such application.

The selection of PRAAT pitch detectors is because pitch modification is used using
PRAAT software, and the default pitch detector is PRAAT [54], while the selection of
MBSC pitch detector [52] because it gives accurate results in both clean and noisy speech.
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5.3 Duration conversion

Duration conversion is performed on the phoneme level. Regression trees are used to
transform neutral phone durations including pauses to their expressive durations, then the
neutral durations are modified to their new values in the speech waveform using TD-PSOLA
[32]. As shown in Figure 5-5, duration conversion involves three basic blocks: phoneme-
duration and linguistic features extraction, CART-based duration conversion, and waveform
modification using TD-PSOLA.

Y

| ]
] 1

" ] ! Phonetic and CART-based Waveform 1

W" ().w W —— 15 linguistic features —» duration —» modification —i>

1 extraction conversion (TD-PSOLA)
1
i
1

Input duration conversion
waveform S S S SR ’

\ 4

Converted
waveform

Figure 5-5 duration conversion module

5.3.1 Phonetic and linguistic features extraction

Phoneme duration in different expressions depends on different phonetic and linguistic
parameters of the phoneme like: phonetic label, type (vowel/consonant), manner of
articulation, voicing (voiced/unvoiced), label and manner of articulation of the previous and
next phonemes, neutral phone duration, phoneme position within the syllable (first, middle,
and last) , position of the syllable within the word (single syllable, first, middle, and last),
position of the word within the sentence (initial, second, final, after pause, before pause,
none), and part of speech tag of the word containing the phoneme and the previous word.
These features are extracted using HTK-based forced alignment [64].Table 5-3, and
Table 5-4 show values of phonetic and linguistic features for different Arabic phonemes.

5.3.2 CART-based duration conversion

Classification And Regression Trees (CART) (section 3.3.6) are used to transform
neutral phone durations to their expressive values. Phonetic and linguistic features of the
neutral phonemes are introduced as input to the regression tree and the output is the ratio
between the phoneme duration of the target expression and of the neutral.

5.3.2.1 Training of Regression Trees

Matlab Statistics Toolbox implementation of classification and regression trees was
used to train our trees as follows:

e Phonetic and linguistic features of each neutral phoneme in the training corpus and
its corresponding expressive phoneme duration are extracted using HTK-based
forced alignment.
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The optimal minimum leaf parameter which minimizes the error is calculated, this
parameter specifies the minimum number of observations per tree leaf.

The tree is built using this minimum leaf parameter.
The optimal pruning level is calculated by minimizing the cross-validated error
The tree is pruned to the optimal pruning level.

An example of regression tree for phoneme duration conversion from neutral to happy
is shown in Figure 5-7.

5.3.3 Waveform modification using TD-PSOLA

As shown in chapter 2, TD-PSOLA is used for time scale modification, we used PRAAT
software implementation of TD-PSOLA to perform phoneme duration modification. The
duration tier is determined, duration tier is an object specifies the duration ratio between
expressive and neutral phonemes at each time instant of a speech signal as shown in
Figure 5-6, and this duration tier is presented to PRAAT software with the neutral waveform
to perform duration modification.
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Table 5-3 phonetic parameters of Arabic phones

Feature Name Symbol | Possible Values
Phonemic label / label | phoneticlabel Phoneme id from 1 to 39
of two previous and
next phonemes
Vowel/consonant Vowcon 1: vowel
0: consonant
Manner of articulation |  Artmanner 1: Vowels
/ type of the two 2: Fricatives
previous and next )
phonemes 3: Glides
4: laterals
5: Trills
6: Nasals
7: Affricates
8: Stops
9: Pauses
Voiced/unvoiced VUV 1: voiced
0: unvoiced
position within the sylpos 1: first phoneme in the syllable
syllable 2: middle phonemes in the syllable
3: last phoneme in the syllable
position of the syllable WpOos 0: single syllable word
within the word 1: first syllable in the word
2: middle syllables in the word
3: last syllable in the word
position of the word Spos 1: first word in the sentence
within the sentence 2: second word in the sentence
3: previous to last word in the
sentence
4: last word in the sentence
5: word after pause
6: word before pause
7: any other word
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Table 5-4 Features of Arabic phonemes

pﬁorﬁg:ge Pholr[lfme Vowel/Consonant | Voiced/Unvoiced al\r/:?:unlgziga
488 0 4and 1 \Y \Y Vowel
dadda 4718 2 \% \% Vowel
e 2 all 3 Y, Y, Vowel
adde 2o call 4 V V Vowel
4o 5 \Y \ Vowel
e sl 6 \% \% Vowel
oy 7 \Y, \Y Vowel
el 8 \% \% Vowel

5yl 9 C uv Fricative
- 31 C \Y Stop
. 32 C uv Stop

: 10 C uv Fricative

z 30 C \% Affricate

z 11 C uv Fricative

z 12 C uv Fricative
2 33 C V Stop

3 13 C \% Fricative
A8y o)) 26 C Vv Trill
dada ¢y 27 C \Y, Trill

B 14 C \% Fricative

o 15 C uv Fricative

g 16 C uv Fricative

ua 17 C uv Fricative
Ua 34 C \% Stop
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L 35 C uv Stop
L 18 C \% Fricative
¢ 36 C V Stop
¢ 19 C \ Fricative
a 20 C uv Fricative
3 37 C uv Stop
& 38 C uv Stop
d88y J 24 C \% Lateral
4adda J 25 C \Y/ Lateral
2 28 C \% Nasal
29 C \% Nasal
21 C uv Fricative
P 22 C Vv Glide
s 23 C Vv Glide
a8l Gladle
39 - - pauses

(<255)
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Figure 5-7 Regression tree for phoneme duration conversion from neutral to happy.
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5.4 Energy conversion

Changing the energy level is required for some expressions like sadness and anger. It
was observed from the analysis of parallel corpus that energy levels of sadness is lower than
those of neutral. Energy conversion in our system is achieved by multiplying the converted
signal by a factor. This multiplication factor is obtained from the training utterances by
calculating the average power ratio of the target expressive to the neutral signals [2].

i " ]
I 1
! 1
| . "
— gain >

! 1
! 1
': energy !

|
|

)

conversion
Input waveform i &

Output waveform

Figure 5-8 energy conversion module
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Chapter6: System evaluation

To evaluate our system for emotion conversion in Arabic, first a speech corpus of neutral
and other important expressions was recorded, then different experiments were carried out
to evaluate pitch conversion using different intonation units and different pitch detectors,
then evaluate the effect of different modules in our system, and to evaluate the quality and
expressiveness of the overall system. Finally, subjective tests were used for the evaluation,
where a reasonable number of volunteers were asked to evaluate the converted speech.

6.1 Expressive speech data collection

Sadness, happiness, and questioning expressions were chosen in our study because they
are thought to be useful for expressive Arabic TTS.

Expressive speech data for sadness and happiness was recorded using a subset of unit
selection concatenative TTS text corpus designed by the Research & Development
International Company (RDI®), where a professional male speaker , who recorded the TTS
corpus, was asked to record this subset in two expressions (sadness and happiness). The
corpus was recorded at a sampling rate of 96 KHz in a high quality studio, then they were
downsampled to 16 KHz. The corpus contains around 100 sentences, 80% of them were used
for training, and 20% for test.

Since questioning is an important expression for Arabic TTS, another professional male
speaker was asked to record a new text corpus in neutral and questioning expressions. At
this time the text corpus was designed to contain sentences with different lengths, and can
be uttered as a neutral utterance and as a question. The corpus was recorded at a sampling
rate of 44 kHz, and also downsampled to 16 kHz. 280 sentences were recorded, and the best
expressive set of them was chosen to be used for training resulting in 68 parallel utterances
for training and 15 for test.

Table 6-1 parallel training corpus size for different expressions.

Neutral-sad Neutral-happy Neutral-question
Number of sentences 77 75 68
Total number of words 575 567 295
Total number of syllables 1614 1555 845
Total duration of neutral 5:25 5:16 2:47
utterances (min)
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6.2 Experimental setup

Two experiments were carried out, the first one was to examine the effect of using
different intonation units and different pitch detectors in pitch conversion, while the second
experiment was to evaluate the effect of changing different speech parameters (pitch,
duration, and spectrum) on both the expressiveness and the quality of the output converted
speech. We can also conclude the expressiveness and the quality of the overall emotion
conversion system from the second experiment. These experiments are illustrated in the
following subsections and the summary of them is shown in Table 6-2.

6.2.1 Experimentl: evaluation of pitch detection using different intonation
units and pitch detectors

During the first experiment, using only pitch conversion module, each utterance in the
test corpus was converted into the target expression using MBSC and PRAAT pitch detectors
and using words and syllables as the intonation units, mutually. This experiment results in
three transformed voices for each test utterance:

1. Voicel: is the converted speech signal using word based pitch conversion and MBSC
pitch detector.

2. Voice2: is the converted speech signal using word based pitch conversion and
PRAAT pitch detector.

3. Voice3: is the converted speech signal using syllable based pitch conversion and
MBSC pitch detector.

Subjective tests were used for the evaluation, where 38 volunteers participated in the
system evaluation only 10 of them were familiar with speech technologies. The volunteers
were divided into seven groups and two or three sentences were presented to each group.

An opinion score of five levels was used for judging the quality and expressiveness of
the converted utterances [68]. The volunteers were asked to listen to the neutral and
expressive test utterances then listen to the three transformed voices and evaluate their
expressiveness and quality as illustrated in the evaluation sheet shown in Table 6-3.

6.2.2 Experiment2: evaluation of conversion modules separately and the
overall system performance
During the second experiment, pitch conversion is performed using MBSC pitch
detector and word as the intonation unit. Pitch, duration, and spectrum of each input utterance
were transformed to the desired expression by changing: first pitch contours only, second
pitch and duration, third prosodic parameters (pitch, duration, and energy), and finally

prosodic and spectral parameters of each test utterance. This experiments results in four
transformed voices for each test utterance:

1. voicel: is the converted speech signal after converting only pitch contours.
2. Voice2: is the converted speech signal after converting pitch and duration.
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3. Voice3: is the converted speech signal after converting prosodic parameters (pitch,
duration, and energy).

4. Voice4: is the converted speech signal after converting all parameters (prosodic and
spectral parameters).

Since the energy conversion is performed only in case of sadness, voice 2 and voice 3 are
the same for happiness and questioning.

Subjective tests were used for the evaluation, where 17 volunteers participated in the
system evaluation only seven of them were familiar with speech technologies. The
volunteers were divided into four groups and four or five sentences were presented to each
group.

As in experimentl, the volunteers were asked to listen to the neutral and expressive test

utterances then listen to the three transformed voices and evaluate their expressiveness and
quality as illustrated in the evaluation sheet shown in Table 6-3.
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Table 6-2 summary of the experiments

Experiment Voices The purpose of the experiment NlliJsTe?]ergf
Voicel: is the converted speech signal using word | Evaluation of pitch detection using
based pitch conversion and MBSC pitch detector. | different intonation units and pitch
) Voice2: is the converted speech signal using word detectors. 38= (10
Experimentl based pitch conversion and PRAAT pitch N
expert+28

detector.

Voice3: is the converted speech signal using
syllable based pitch conversion and MBSC pitch
detector.

non-expert)

Experiment2

Voicel: is the converted speech signal after
converting only pitch contours.

Voice2: is the converted speech signal after
converting pitch and duration.

Voice3: is the converted speech signal after
converting pitch, duration, and energy.

Voice4: is the converted speech signal after
converting all parameters (pitch, duration,
energy, and spectrum).

Evaluation of conversion modules
separately and the overall system
performance.

17=
(7expert+10
non-expert)
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6.3 Experimental results and evaluation

Subjective tests were carried out to evaluate our system. The most widely used method
for subjective tests is the Mean Opinion Score (MOS) test, where a number of listeners are
asked to listen and evaluate the test utterances using a five- point scale and the average of
their scores is calculated and is referred as MOS score. This method is one of the subjective
tests recommended by IEEE subcommittee and ITU. The minimum number of listeners who
participate in the test is 10 if they are expert listeners or 20 in case of non-expert listeners
[69].

Statistical significance is used in experiments which are performed just on samples of
the population to determine if their results can be generalized to the population or no. The p-
value, the probability of rejecting the results (hypothesis) of an experiment, is used to
indicate statistical significance. In most scientific literature, the results were significant if p-
value is less than 0.05 [70]. In our system evaluation we use p-values resulted from t-test to
verify MOS score results.
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Table 6-3 evaluation sheet

Voice 1

Voice 2

Voice 3

Expressiveness score

Expressiveness score

Expressiveness score

sounds exactly like neutral

sounds exactly like neutral | 1

sounds exactly like neutral

sounds slightly different from
neutral

sounds slightly different from 2

neutral

sounds slightly different from
neutral

sounds different from neutral

sounds different from neutral | 3

sounds different from neutral

sounds more different from
neutral

sounds more different from 4

neutral

sounds more different from
neutral

sounds exactly like target

sounds exactly like target 5

sounds exactly like target

Speech quality

Speech quality

Speech quality

Very poor 1 Very poor 1 Very poor 1
Poor 2 Poor 2 Poor 2
Good 3 Good 3 Good 3

Very Good 4 Very Good 4 Very Good 4

Excellent 5 Excellent 5 Excellent 5
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6.3.1 Results of using different intonation units for pitch conversion

The effect of using different intonation units can be examined through a comparison
between the evaluation of voicel and voice3 in experiment 1, where different intonation
units were used with the same pitch detector for pitch conversion, we can see that both
syllables and words are effective for emotion conversion in Arabic speech as shown in
Figure 6-1. The p-values of preferences for word-based and syllable-based pitch conversion
are shown in Table 6-4. From the resulting MOS score and p-values, we can conclude that
using syllables as the basic intonation unit significantly gives higher expressiveness for
sadness and happiness (p < 0.05). The difference in quality for the three expressions weren’t
significant (p > 0.05), and the same for expressiveness in questioning (p > 0.05).

W words

; ~ mwords
2 I I I — syllable 2 B syllable
1 1

sadness  happiness questioning sadness  happiness questioning

expressiveness MOS
w
quality MOS
w

target emotion target emotion

@ (b)
Figure 6-1 MOS of output speech of pitch conversion using two different intonation units (Word-
syllable), (a) expressiveness MOS, (b) quality MOS

Table 6-4 the p-values performed on preferences for word-based and syllable-based pitch conversion.

Word-based, syllable based Word-based, syllable

pitch conversion based pitch conversion
(expressiveness) (quality)
Sadness 0.012888 0.45199
Happiness 0.013893 0.089904
questioning 0.443308 0.110547

6.3.2 Results of using different pitch detectors for pitch conversion

As in the previous test, to conclude the effect of using different pitch detectors, a
comparison between the evaluation of voicel and voice2 in experiment 1 was carried out.
MOS scores of using different pitch detectors are shown in Figure 6-2, and p-values for those
different detectors MOS preferences are shown in Table 6-5. We can conclude that MBSC
pitch detector significantly gives higher quality than PRAAT for questioning, while no
significant difference between using PRAAT and MBSC for happiness and sadness.
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Figure 6-2 MOS of output speech of pitch conversion using two different pitch detectors (MBSC-
PRAAT), (a) expressiveness MOS, (b) quality MOS

Table 6-5 the p-values performed on preferences for pitch conversion using MBSC & PRAAT.

pitch conversion using pitch conversion using
MBSC &PRAAT MBSC & PRAAT
(expressiveness) (quality)
Sadness 0.063538 0.5
Happiness 0.123029 0.257965
questioning 0.346172 0.040194

6.3.3 Evaluation of system modules

Our system consists of four modules, each of them is used to convert a speech parameter
(pitch, duration, energy, and spectrum). In this section we used the results of experiment 2
to evaluate the effect of converting each parameter using our proposed modules. The
evaluation of converting each parameter is illustrated in the following subsections and a
summary of the effective parameters for different expressions is illustrated in Table 6-10.

6.3.3.1 Evaluation of pitch conversion

We evaluate the effect of pitch conversion in our system by comparing the output of
converting only pitch contours and converting all speech parameters. This is done by
comparing voicel & voice4 in experiment 2.

We can see that converting the pitch contour, in our proposed system, is the dominant
for expressiveness in happiness and questioning as illustrated in Figure 6-3. For questioning,
we recommend using only pitch conversion since adding other parameters (duration, and
spectrum) add no significant effect on expressiveness (p=0.09) but significantly affects the
speech quality (p «< 0.05).
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Figure 6-3 MOS of output speech of pitch conversion and all parameter conversion, (a) expressiveness
MOS, (b) quality MOS

Table 6-6 the p-values performed on preferences for pitch conversion & the overall system conversion.

Pitch conversion , all parameter conversion
expressiveness quality
Sadness 5.92577E-14 2.68291E-06
Happiness 0.000863 0.000513
questioning 0.093665993 4.20258E-07

6.3.3.2 Evaluation of duration conversion

In this section we evaluate the contribution of duration conversion in our system to the
expressiveness and quality of the output speech. This is can be done by comparing the output
of converting only pitch contours and converting pitch and duration parameters in the three
expressions. A comparison between voicel & voice2 in experiment 2 is shown in Figure 6-4.

We can conclude that converting duration significantly improve the sadness in the
converted speech (p « 0.05), however no significant effect of duration conversion was
observed on neither expressiveness nor quality for happiness and questioning (p > 0.05).

5 5
a
v 4 4
c
@ Fy
-2 3 —_— 3
] i
2 = FO 3 = FO
T
s 2 = 2 -
X I I I FO+dur FO+dur
1 - 1 -
sadness happiness questioning sadness  happiness questioning
target emotion target emotion

(@) (b)

Figure 6-4 MOS of output speech of pitch conversion and pitch &duration conversion, (a)

expressiveness MOS, (b) quality MOS
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Table 6-7 the p-values performed on preferences for pitch conversion & pitch and duration conversion.

Pitch conversion , pitch +duration
conversion
expressiveness quality
Sadness 1.61577E-08 0.00410488
Happiness 0.095994 0.215926
questioning 0.320704175 0.109373702

6.3.3.3 Evaluation of energy conversion for sadness

Energy conversion was proposed only for sadness, since the analysis of training data
illustrated that the energy level decreases in sadness. To evaluate decreasing the energy level
we compare voice 2 and voice 3 for sadness in experiment 2. Results show that decreasing
the energy level has a significant effect on expressiveness (p = 0.00158) while the quality
didn’t significantly affected (p = 0.10459).

" 5 - - 5
g 4 - Q4
Swj W FO+dur E 3
> —_-— | ' - —
20 =
7 2 W FO+dur
§ = 2 [ g 2 :. I
a l o
x 1 fO+dur+energy 1 ‘ fo+dursenergy
sadness sadness
target emotion target emotion
(a) (b)

Figure 6-5 MOS of output speech of adding energy conversion to pitch and duration conversion, (a)
expressiveness MOS, (b) quality MOS

6.3.3.4 Evaluation of spectral conversion

Finally, to evaluate the effect of spectral conversion in our system; voice3 and voice4
are compared. Figure 6-6 shows the MOS scores of converted speech using all prosodic
parameters (pitch, duration, and energy) with and without spectral conversion. The p-values
for MOS score preferences are shown in Table 6-8.

From the MOS scores and p-values of adding spectral conversion, we can conclude that
spectral conversion adds significant expressiveness to happiness only, and the quality of the
converted speech with spectral conversion is significantly becomes worse in happiness and
questioning. No significant effect was observed on the quality of sadness, this may be
because of energy level decrease makes the effect of quality not observable.
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Figure 6-6 MOS of the output speech with and without spectral conversion, (a) expressiveness MOS, (b)
quality MOS

Table 6-8 the p-values performed on preferences for speech conversion using all parameters with and

without spectral conversion

Prosody conversion , prosody +spectral conversion
expressiveness quality
Sadness 0.3490 0.17900
Happiness 0.0300 0.00342
questioning 0.20021 5*10°

6.3.3.5 Processing time estimation of different modules

To estimate the processing time of different modules, we calculate the average ratio
between the processing time of the module and the duration of the utterance for all test
utterances. Results are shown in Table 6-9.

Table 6-9 the average ratio between the processing time of the module and the duration of the utterance.

Spectral conversion Word-based pitch conversion Duration conversion
MBSC PRAAT
0.8906 7.79 6.3916 0.0392

6.3.4 Overall emotion conversion system evaluation

After transforming the four parameters of speech: pitch, duration, energy, and spectral
envelope; we can see that the implemented system managed to add the expressiveness
somewhat well with a good quality (MOS = 3) for sadness and happiness as shown in
Figure 6-7. The questioning has the least quality due to the limited size of training data for
this expression. It is recommended to change pitch contours only for the questioning, since
converting duration and spectral parameters doesn’t improve the expressiveness and
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degrades the quality. If only pitch contours for questioning are converted, almost the same
results of the two other expressions will be obtained. Some of the synthesized speech
samples are available at the following link: http.//rdi-eg.com/Technologies/Expressive_TTS.htm.

. expressiveness MOS s quality MOS
4 4
3 - 3
1 A 1
sadness  happiness questioning sadness _happiness questioning
() (b)

Figure 6-7 MOS of the output speech from the overall system, (a) expressiveness MOS, (b) quality MOS

Table 6-10 summary of effective parameters in our system on different expressions.

PITCH | DURATION | ENERGY | SPECTRUM

SADNESS \ \ \ —

HAPPINESS v - —~ \

QUESTIONING | - — —
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Chapter7: Conclusion and Future Work

7.1 Thesis contribution

This thesis presents an emotion conversion system for expressive Arabic speech based
on linguistic context. The system combines prosody and spectral conversion. Unit selection
was used for pitch conversion and the effect of using different intonation units and different
pitch detectors was studied. Subjective tests were carried out to evaluate the pitch conversion
module with different intonation units and pitch detectors, and to evaluate the effect of
converting each speech parameter using our proposed system, and also to evaluate the overall
emotion conversion system.

7.1.1 Unit selection pitch conversion

Conversion of pitch contours was performed through the selection of expressive units
from a database according to a cost function and pitch is modified in the waveform using
TD-PSOLA. Words and syllables were used as intonation units and different pitch detectors
were checked.

We can conclude that both syllables and words are effective intonation units for emotion
conversion in Arabic speech when the right linguistic features are used. Using syllables as
the basic intonation unit significantly gives higher expressiveness for sadness and happiness
(p < 0.05). No significance difference is observed on the quality of the converted speech
using the two intonation units.

MBSC pitch detector significantly gives higher quality than PRAAT for questioning,
while there isn’t significant difference between using the two detectors for sadness and
happiness.

7.1.2 Emotion conversion system

The proposed emotion conversion system for expressive Arabic speech combines
spectral and prosodic parameter transformation. Pitch, duration, energy, and spectral
envelope are transformed to the desired expression. Subjective tests were carried out to study
the effect of converting each parameter using our system and also the effect of the overall
system on both the expressiveness and the quality of the converted speech.

From subjective tests we can conclude that, pitch conversion in our system is the
dominant for expressiveness in happiness and questioning (this conclusion also was
observed from copy-synthesis experiments). Converting phoneme duration significantly
improves the sadness, and makes no significant effect on happiness and questioning. Spectral
conversion adds significant expressiveness to happiness.

For questioning, it is proposed to change only pitch contours, since duration conversion
module has no effect on questioning and spectral conversion module adds degradation on
the output quality without any observable improvement on the expressiveness.
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Energy conversion was proposed only for sadness, since the analysis of training data
illustrated that the energy level decreases in sadness, and results show that decreasing the
energy level has a significant effect on expressiveness in sadness and makes the degradation
due to spectral conversion unobservable.

Finally we can say that using a small training corpus, the overall emotion conversion
system succeed to achieve an acceptable level of expressiveness with good quality for
sadness and happiness, and the quality degradation in questioning can be solved by changing
only pitch contours in this expression.

7.2 Future Research

Future work of our research for expressive Text To Speech can include the following
proposed points:

= Change the prosody parameters in the residual:

To increase the system quality, prosody modifications can be performed on the residual
signal of the LSF [29], since spectral modification of the speech signal causes quality
degradation, and our proposed system performs spectral transformation and then modifies
the pitch, duration and energy of the output of spectral modification.

= Increase the size of training corpora and determine the minimum size to obtain good
emotion conversion system.

= Try rule-based emotion conversion to obtain expressive speech and compare the
output results with data-driven emotion conversion.

= Non-verbal vocalization

It is thought that adding non-verbal laughs, speech grunts, and other small sounds which
indicate a certain expression may increase the expressiveness of the output speech.
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