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Software Defined Radio is a flexible platform that can provide dynamic reconfiguration for
communication systems using software only. In other words the same hardware can be used to
implement different transceiver functions such as modulation, detection and channel
estimation.

With the ever-increasing need for higher data rates and stable performance, SDR systems
importance is growing. In addition, it is vital to provide communication services globally
including rural and poor areas. This thesis investigates SDR systems to provide the rural
communities in the developing countries with cheap and basic telecom services such as voice
communication. Many governments and agencies in the developing countries are focusing on
extending telecommunications services into rural areas, as they seek to alleviate poverty,
encourage economic and social growth, and overcome a perceived ‘digital divide’.

SDR systems face three challenges; namely increased electric energy consumption, increased
resource utilization, and increased processing time. There is a great opportunity to introduce a
cost effective communication network, by overcoming these challenges.

This work is focused on reducing resource utilization, to increase the number of the offered
services per the system deployed. Intuitively, this in turn will improve the power consumption.
This is because any system module with same functionality and less resource usage, will
consume less energy. However, the processing time for the SDR system may increase due to
the optimized modules. Therefore, a trade off is needed to reduce the resource usage, while
maintaining the real time requirements of the SDR system. The contribution of this work is to
address this tradeoff. The results are verified using system simulation, and experimental results
using the open source hardware Universal Software Radio Peripheral (USRP).
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Chapter 1 Introduction

1.1 Motivation

Software Defined Radio is a flexible platform that can provide dynamic reconfiguration for
communication systems using software only. In other words the same hardware can be used to
implement different transceiver functions such as modulation, detection and channel estimation.
One motivation for the rapid development of SDR systems, is the need to add new features to the
radio equipment or to upgrade its functionality. This is needed by important sectors such as
military and public safety [1]. In these sectors, special purpose radios were the norm rather than
the exception. One radio device is needed for a few number of functions or wave forms, and it is
not straightforward to alter the device functionality.

With the ever-increasing need for higher data rates and stable performance, SDR systems
importance is growing. In addition, it is vital to provide communication services globally including
rural and poor areas. This thesis investigates SDR systems to provide the rural communities in the
developing countries with cheap and basic telecom services such as voice communication. Many
governments and agencies in the developing countries are focusing on extending
telecommunications services into rural areas, as they seek to alleviate poverty, encourage
economic and social growth, and overcome a perceived ‘digital divide’.

SDR systems face three challenges; namely increased electric energy consumption, increased
resource utilization, and increased processing time [2]. There is a great opportunity to introduce a
cost effective communication network, by overcoming these challenges. This work is focused on
reducing resource utilization, to increase the number of the offered services per the system
deployed. Intuitively, this in turn will improve the power consumption. Because any system
module with same functionality and less resource usage, will consume less energy. However, the
processing time for the SDR system may increase due to the optimized modules. Therefore, a trade
off is needed to reduce the resource usage, while maintaining the real time requirements of the
SDR system. The contribution of this work is to address this tradeoff.



1.2 Related Work

The related work can be classified into two streams. The first stream is related to SDR
optimization under performance constraints, such as [3], [4], and [5]. The second stream, is related
to implementation of low complexity channel equalization techniques such as [6], [7], and [8].

Now, the first stream of related work is presented. In [3], the main motivation was to reduce the
energy consumption, and the complexity requirements to satisfy an embedded system needs.
Therefore, fixed point arithmetic was used to present an optimized WCDMA receiver. The merit
for this work was finding an analytical relation between the receiver performance, and the number
of bits needed to satisfy energy consumption constraints. Using this approach, the minimum data
width can be estimated with negligible performance degradation compared to floating point
arithmetic. However, to deduce the minimum data width one cannot reach closed form expression
for some equations. For SDR systems, it is impractical to update the performance equations each
time the system functions are modified.

In [4], the work highlighted the need to implement complex signal processing algorithms in fixed
point. The authors developed a metric to compensate for the loss in accuracy due to the conversion
from floating point to fixed point. That metric is system dependent, and needs to be dimensioned
carefully for each application.

In [5], the concept of scalable SDR was introduced for battery powered devices. To achieve the
two contradicting requirements of fast time to market and minimum energy consumption, a new
method was presented to deal with fixed point arithmetic. The new method considered the changes
in data format such as modulation scheme, and number of antennas. Accordingly data width can be
adjusted to save energy consumption of the battery. However, the savings in power consumption
came at the expense of increased resource utilization.

Now we move to the second stream of related work. In [6], the complexity was reduced by
observing that in communication systems the input data has shift structure. In [7], spectral
factorization was used to calculate the Decision Feedback Equalizer (DFE) coefficients in fast and
efficient way. In [8], a new Dichotomous Coordinate Descent (DCD) algorithm was developed to
solve the Recursive Least Squares (RLS) equations.

Related work proposed different solutions, but they all have one thing in common, which is the
reduction of the total number of required mathematical operations. Hence, it is not straightforward
to compare between different DFE algorithms. In this work, we will introduce a new metric to
compare fairly between DFE algorithms, by considering the implementation of each mathematical
operation.



1.3 Thesis Scope

The focus of this work is to optimize the resource usage in a SDR system, taking into
consideration the real time requirements of embedded system. All simulations and experiments are
investigated for a generic SDR system. Without loss of generality, the proposed enhancements are
validated by a case study of a recent SDR system; namely the Open BTS project.

1.3.1 Generic block diagram of SDR

Transmit L Radio Base Band Application
Front End [€>| Processing

User

N
\ 4

Receive T_,

R R R P

Control (re-configuration)

Figure 1-1 - Software Defined Radio Aspects

A SDR system is a generic communication system starting with user data layer and ending with
physical data layer [9]. The generality of a SDR system is due to its ability to reconfigure the
system modules without changing the hardware. This is obtained by adding control to a
communication system as shown in Figure 1-1. A SDR system consists of radio front end, base
band processing, control bus, and application. These modules are combined to map the required
data from the application into physical signal at arbitrary carrier frequency. The application is
modified during design and/or execution time by sending reconfiguration messages through the
control bus. Hence, to modify the functionality of the system, only the application is updated using
software configuration.

Without loss of generality, one SDR project will be studied in this work to show the effectiveness
of our proposed methods. This project is entitled "OpenBTS" which is an open source
implementation of a low cost mobile network. A complete mobile network can be implemented
using one Universal Software Radio Peripheral (USRP), with a personal computer, or using one
Embedded USRP. The embedded USRP is preferred because it can be deployed in practically, not
only for development purposes.

1.3.2 The OpenBTS Project

The OpenBTS is based on the embedded family of USRP, which is called E1x0' family. The
embedded USRP family is generic and can be customized to perform the BTS functions. As was
described in Section 1.3.1, the OpenBTS project consists of three parts; namely the application, the

'E1x0 family has two members, the E100 and the E110



base band processing, and the radio front end. The application is the OpenBTS source C++ project
that can be downloaded and modified. The base band processing part is implemented on the
FPGA, as well as the ADC/DAC operating at a sample frequency of 52 MHz. The front end is
fully customized and can be flexibly modified by only changing a daughter board. Each daughter
board has a range of frequency operation. In this work any daughter board may be used. As an
example the Wide Bandwidth Transceiver (WBX) with range of operation SOMHz to 2.2 GHz is
used in our work. The OpenBTS project can be projected to generic SDR block diagram as shown
in Figure 1-2.

RF Front end Base band processing Application
Daughter FPGA ARM Cortex8
Board P DAC L _ | Processor
< €] Sample rate [€
WBX board T Conversion OpenBTS C++
: Project
> > ADC >
T
|
1 1 | 1
! 1 GPMC Bus I 1

Figure 1-2: OpenBTS block diagram as a SDR system

When the OpenBTS project is run, it was observed that the processing power of the ARM
CORTEX 8 can only support a single RF carrier with one call at a time instead of 7 calls. Since
there is room inside the FPGA for user expansion, some software functions are moved from CPU
into FPGA to reduce the CPU utilization. The functions that are assigned to the FPGA in the
current OpenBTS project can be summarized as follows:

¢ Digital Up Conversion (DUC),
¢ Digital Down Conversion (DDC),
¢ Bus Interfacing using General Purpose Memory Controller (GPMC), and
¢ Control functions
o Daughterboard Control
o Testing and monitoring

Channel equalization, and its pre-processing functions will be moved to FPGA, because they have
the highest execution time. Since the CPU and FPGA communicate through the VITA Radio
Transport (VRT) protocol, it should be noted that communication will not be changed in order to
avoid communication overhead. The communication overhead can increase the processor
utilization and outweigh the benefit of moving functions to the FPGA.



1.3.3 BTS Performance Improvement

A new process is proposed to design any new SDR system, or add features to an existing one. This
process will be applied to the OpenBTS project to show its effectiveness. A simulation based
approach is chosen because it is more adequate to the nature of programmable SDR systems in
terms of supporting new features in short design cycle, and coping with fast market changes. The
added value of this process is the link between system performance and computational accuracy. A
similar method was proposed in [10] using an analytical approach. The analytical approach was
chosen there because it needed less execution time. However, obtaining closed form expressions
for each application is not straightforward, and may have to be solved numerically. Therefore, the
increase in problem complexity may outweigh the decrease in execution time. Moreover, a SDR
system needs to be flexible to changes in system functions. It is impractical to update the
performance equations each time the system functions are modified.

Moreover, the design process enables both the system architect, and the designer to discover
modules that affect system performance in terms of resource usage, such as channel equalization.
Therefore, a great attention is paid for selection and implementation of channel equalization
module. A novel metric is developed to compare fairly between different channel equalization
algorithms. Significant resource savings can be accomplished by using the proposed metric.

Finally, a new method is developed to implement channel equalization algorithms efficiently. It is
usually advised to avoid using algorithms containing division operations [11]. This is advised to
save resource usage when the algorithms are implemented in programmable devices. However,
using the proposed method, it is permitted to use the division process for implementing
equalization algorithms. Hence, it is now permitted to use advanced equalization algorithms in
terms of channel tracking capability, containing division operations under reduced complexity
constraints.

The contribution of this thesis is summarized by the following three points

¢ A new simulation based process to design any SDR system under development, or add features
to an existing one.

e A novel metric to evaluate the complexity of different DFE is introduced which can
significantly reduce the effort to choose a suitable algorithm for implementation.

¢ A new method is proposed to implement the division process with minimum resource usage.



1.4 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 1, a case study of SDR systems is
presented; namely Open BTS project. Open BTS is explained briefly to highlight the available
opportunities to optimize the current system performance, using the proposed design process.
In Chapter 2, a new process is proposed to design any new SDR system, or add features to an
existing one. In Chapter 3, a comparison is accomplished for an important module of SDR
communication system. This module is the channel equalizer. The importance of this module
comes from the fact that it consumes high resource utilization relative to other modules in the
system. In Chapter 4, simulation and experimental results of the methods developed for SDR and
channel equalization are detailed. Finally, the conclusion of this work is presented in Chapter 5.

1.5 Published Papers

Two research papers have been published. The first was published in AICT 2013 in Rome, Italy:

e S. Yassin, and H. Tawfik, “Reduced Complexity Decision Feedback Channel Equalizer
using Series Expansion Division”, The Ninth Advanced International Conference on
Telecommunications, June 2013, pp. 219-223.

®  http://www.thinkmind.org/index.php?view=article&articleid=aict 2013 10 10 10064

The second was published in ICONS 2014 in Nice, France:

e S. Yassin, I. R. Kamel, and H. Tawfik " A New Design Process to Reduce Resource
Usage in SDR Systems", The Ninth International Conference on Systems, Feb. 2014,
pp-1-5.

®  http://www.thinkmind.org/index.php?view=article&articleid=icons 2014 1 10 40017



Chapter 2 SDR Resource Usage

Optimization

One of the important properties of a SDR is the flexibility in adding new, or modifying current
features of a communication system. In order to make use of this property, any added features
should not alter the performance of a communication system. Hence, the system performance
should be monitored before and after the addition of new features. This chapter presents a design
process to achieve this requirement.

The aim of the design process is to calculate an optimum data width that can be used without
affecting the system performance. A metric will be developed to compare between system
performance in floating, and fixed point representation. The proposed design process is outlined in
the flowchart shown in Figure 2-1. The flowchart is similar to the data width optimization
performed by Digital Signal Processing (DSP) engineers[3]. The added value of this work, is the
application of the optimization process into SDR systems. Moreover, the proposed design process
provides the link between system performance and resource usage.

Software  Profiling to  obtain
execution time and calling frequency

v

Simulation using double floating
point number representation

v
Calculate initial value for data width
Reduce Simulation using fixed point number
data width “| representation
A N

Is system

Yes Performance met?

No

Roll back last data width
and finish.

Figure 2-1: Flow chart of the proposed design process
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2.1 Proposed design process

Usually, the data width is calculated once for any system under development [9], [11]. In the
design process it is proposed to calculate the output data width for each block within the system.
The data width is optimized by allocating proper number of bits to the integer part 1y, and the
fraction part fy,;. The design process contains five steps as shown in Figure 2-1, which will be
described next.

The first step is to determine the utilization of processing power by each system function. This is
achieved by software profilingz. Software profiling is used to measure two factors for each system
function; namely its execution time, and the number of times it is called. Both factors are needed to
avoid optimizing one function with high execution time when it is only called few times. This can
be illustrated by a simple example as shown in Figure 2-2.

At the top of Figure 2-2, the execution time and calling frequency are plotted for two functions.
Function 1 and Function 2 have the same execution time, and different calling frequency. In the
bottom of Figure 2-2, the multiplication between execution time percentage, and calling frequency
is plotted for the two functions. It can be observed that Function 1 has 28% of CPU resources,
while Function 2 has only 8% of CPU resources.

The second step is to simulate the system performance using double floating point number. It is
efficient to use floating point numbers, when a large dynamic range is required [10]. The dynamic
range is an important factor in a digital receiver, and is defined as the ratio between the largest and
the lowest signal amplitudes. During the system simulation, the performance metric can be chosen
to be either Bit Error Rate (BER) [10], or Signal to Noise Ratio (SNR). In this work, BER is used
for comparison, because it can be accurately measured.

The third step, is to determine an initial data width for fixed point simulation as will be discussed
in Section 2.2. This initial value will be optimized in the following steps.

The fourth step, is to simulate the system and obtain performance curves using fixed point data
width similar to Figure 2-3. The curve for BER versus SNR will be used to compare the
performance of both the fixed point, and the floating point systems.

% The details of software profiling are deferred to Appendix A.
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Figure 2-2: Example on software profiling to start the design process

The fifth step, is to compare between the BER curves obtained in steps two and four, as shown in
Figure 2-3. By comparing both BER curves, the required increase in SNR to obtain the same BER
value can be calculated. The required increase € in the SNR can be calculated using Equation
(2.1).

€ = SNR;, — SNRy, 2.1)

where SNVRo, SNRy» are the SNR for floating point, and fixed point, respectively. The value of € is
a design parameter that is chosen arbitrarily. When the system is desired to have the same BER
value for both fixed point and floating point, € is set to minimum value close to 0 dB. For further
savings in resource usage, € is increased. The fifth step proceeds by decreasing SNRgy — SNRp. If
the difference SVRp — SNRp is still smaller than €, then reduce the data width (i, fw1). Otherwise,
roll back previous value of data width and proceed to the end of the process.



Note that the data width is reduced gradually by reducing the integer part iy by one bit at a time,
until its minimum value is obtained. Afterwards, the fraction part fy, is reduced by one bit at a time
until its minimum value is obtained.
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Figure 2-3: Illustrative example for step 5 of the design process
2.2 Dynamic range estimation

To estimate the initial value of data width a signal flow graph for the SDR system under
development should be constructed, as shown in Figure 2-4. Afterwards, the dynamic range can be
estimated for both receiver and transmitter chains. The initial value for data width will be
calculated for receiver chain because it is more complex than the transmitter in terms of the
required number of functions. Without loss of generality, the same method can be applied to
transmitter chain to calculate its initial data width.
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Figure 2-4: General block diagram for SDR systems

For the receiver chain, the points of interest are highlighted and marked as Pi where 1< 1 < N,
where N is the number of blocks with different data width. Next, the initial value of data width can
be estimated by observing each point in the receiver chain. At point P1, the data width is the
precision of the front end Analog to Digital Converter (ADC), such that

wlp, = Accuracy,pc. (2.2)

At point P2, the data is prepared for base band processing by reducing its sampling rate using the
decimation process. The input stream sampling frequency is reduced by an integer factor called
decimation factor R, even though only the sample rate is changed, and not the bandwidth of the
signal. The input signal bandwidth must be filtered to avoid aliasing. Therefore, the decimation
process requires an increase in the data width to maintain proper number of bits per sample. The
increase in data width can be calculated, depending on the decimation method of choice. One
example is the Cascaded Integrated Comb (CIC) filter. The input signal is fed through one or more
cascaded integrator sections, then a down sampler, followed by one or more comb sections [12].
The increase in the data width will be dependent on the differential delay M of the comb section,
and the number of blocks N as in Equation (2.3), where Ceil(A) rounds to the nearest integer
greater than or equal to A.

At point P3, the timing and phase changes relative to the original transmitted signal are estimated.
This includes correlation operation, which is composed of addition, shift, and multiplication
operations. The multiplication operation particularly leads to the most significant increase in the
input data width, which is proportional to the multiplier width n;, and the multiplicand width 72 as
shown in Equation (2.4).

Wlp3 = Wlpz + Z(nl + le - 1). (2.4)
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At point P4, application specific functions can also increase the input data width, and may alter the
numerical stability due to the use of fixed point such as channel equalization. The data width for
this block must maintain numerical stability of the SDR system. In case of channel equalization,
the data width should result in quantization noise power that will not alter the computation of the
Mean Square Error (MSE) of the equalization algorithm [11]. To illustrate how to maintain
numerical stability of equalization algorithm, one channel equalization algorithm, namely the
Recursive Least Squares (RLS) is considered.

To maintain numerical stability of RLS, data width should be increased as shown in Figure 2-5(a) .
A family of MSE curves is obtained for different data widths ranging from (iy; = 8, fy; = 14) bits,
to (iw1 = 16, fy,; = 14) bits. This family of curves can be used to conclude that the minimum value is
1w1 = 12, because it keeps MSE decreasing as the time samples advance. To obtain the minimum
value for fractional part f,; = 14, a similar family of curves is developed in Figure 2-5(b), but with
fixed integer part, and variable fractional part. Finally, the chosen values can be compared to the
floating performance as shown in Figure 2-5(c).

Note that stabilizing the algorithm will increase the data width. Therefore, fast fixed order filters
can be used to reduce the data width [22]. To choose an equalizer algorithm with the lowest
resource utilization, a fair comparison between different equalizer algorithms was proposed
in [23]. In [12], the authors proposed to weigh the resource usage of equalizers by mapping the
algorithm in terms of mathematical operations. This fair choice will compensate for the increase in
data width. The data width for this block can be calculated as in Equation (2.5), where 9 is the
required increase in the data width to maintain the numerical stability.

Wlp4_ = Wlp3 + 0. (2.5)

The value wlps can be used initially for the design process. To validate the design process, a case
study will be considered in Section 2.3.

12
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2.3 Case Study: Open BTS receiver chain

The case study is part of the Open Base Transceiver Station (OpenBTS) project [14] [15], which is
based on ETTUS research platform named Universal Software Radio Peripheral (USRP). This
platform provides a cheap alternative to standard BTS [16] [17]. Hence, rural communities can
enjoy cheap and basic telecommunication services using Global System for Mobile
communications (GSM) [32]. The five steps of the design process will be applied to transfer the
functions of synchronization from software to FPGA.

The first step is to perform software profiling for the OpenBTS system as shown in Figure 2-6.
The function identities of the OpenBTS system appear on the x axis, while the y axis shows both
the percentage of processor execution time, and the normalized number of calls of each function.
As previously mentioned, only those functions with high execution time and high calling
frequency should be optimized.
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Figure 2-6: Software profiling result for OpenBTS

14



It can be observed from Figure 2-6 that the functions with identities (7, 8, and 11) have the highest
utilization. These functions are grouped into one large function named “Analyze Traffic Burst”.
The purpose of the function is to calculate important parameters of the receiver, namely Time of
Arrival (ToA), Valley Power (VP), and channel estimation coefficients. The two parameters ToA,
and VP are used for synchronization between mobile station and base station.

The second step, is to simulate system performance using double floating point representation as
shown in Figure 2-7.

I
—&— Floating point

BER (%)

SNR (dB)

Figure 2-7: Simulation of system performance using floating point
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Figure 2-8: Block diagram for the function Analyze Traffic Burst

The third step is to calculate an initial data width for simulation. A block diagram is constructed
for the “Analyze Traffic Burst” function as shown in Figure 2-8. At P1, the accuracy of the ADC
component in USRP is 12 bits. Then the input data width equals the ADC accuracy wlp; = 12.

At P2, decimation is implemented using CIC filter with N = 4 stages and a variable decimation rate
log2(M * R) = 7 resulting in wlp, = (12 + 28). However, the original OpenBTS design chose to
truncate this value to be wlp, = (12 + 12) to save resource usage. This truncation will not affect the
design process, and can be ignored without affecting the obtained results.

At P3, the data width will be doubled due to the multiplication in the correlation function resulting
in a data width of wlp; = (24 + 24 - 1).

e Correlation: This block has two input vectors with length of 16 and 27 samples respectively.
Each sample is represented by data width wlp, = 24 bits. This block is implemented as a
Systolic Finite Impulse Response (FIR) with Adder Cascade as shown in Figure 2-10. The
Systolic FIR is implemented using internal blocks of Spartan-3A DSP FPGA named DSP48A
blocks using sixteen blocks. In general, the baseband signal is represented in complex number
notation. Therefore, the correlation block has to be able to accept complex inputs and produce
complex outputs. To achieve this, complex multipliers should be implemented. The complex
multiplication is a resource greedy operation. It has been optimized by using off the shelf ready
Xilinx components as will be discussed in Chapter 4.
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At P4, the peak detection is divided into two sub blocks, namely Coordinate Rotation Digital
Computer (CORDIC) and interpolation. Peak detection can be described by a Finite State Machine
(FSM) as in Figure 2-11.

CORDIC: The basic operation is to rotate the x-y axes to eliminate the y component. Hence,
the magnitude of the input vector is stored in the x component. The CORDIC block consists of
twelve stages. It is implemented by using ready blocks from original OpenBTS FPGA code.
However, in this work, the CORDIC is used differently to calculate the 2-norm of each sample.
This block is re-used from the original project with modifications to perform this new task. For
example, the gain of CORDIC block is compensated to obtain correct outputs.

Interpolation: Interpolating at fractional spacing around an initially determined integer peak
index can enhance the accuracy of peak location as illustrated in Figure 2-9. Two early and late
points are evaluated around the initially estimated peak. The two points are initially separated
by one sample period. The early, late and peak locations are shifted towards the index of the
larger of the early/late samples by half the previous shift, and 3 new values; peak, early and
late, are interpolated using sinc function lookup table. The shift/interpolate process is
successively repeated, with the shift halved every repetition, till we get a peak location when
the early and late values are almost equal. After 8 repetitions, the peak location is determined
with a resolution of 1/256 of one sample period.
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A SINC function with 1/256 resolution is required by GSM system [32]. This SINC function has
maximum integer value of 1, and minimum value of 1/256. Hence, a SINC can be represented with
only 8 bits without increasing the data width. Yet, we choose to represent the SINC function by
the same data width as wlp, = 24 to reuse components from the correlation module. Now, the data
width of multiplier equals wlps = 47, and the data width of multiplicand is 24. Therefore, the initial
value for data width in the simulation will be wlps = (47 + 24) = 71 bits. The initial value will be
optimized by repeating steps four and five until the performance condition is violated as was
detailed in Section 2.1.

The fourth and fifth steps are performed by simulation. The simulation is used to calculate BER
curve for different values of SNR as shown in Figure 2-12. The graph with solid line and ‘o’
marker is calculated when all variables are represented in floating point. The design process starts
by choosing €= 0.2 dB to obtain system performance similar to the case of floating point
arithmetic. This results in a minimum data width of (iy; = 62, fy; = 4) bits, which is shown in the
curve with the solid line and ‘x’ marker. It can be observed that for the same BER value, the SNR
difference between the two curves is less than 1 dB. This was expected because € is small.

If the system performance is relaxed to reduce resource utilization, the same process can be run
again with € = 2 dB, resulting in data width of (iy = 52, fy; = 2) bits. It should be mentioned that
the advantage of using fixed point is twofold. First, the data width can be minimized at different
points of the receiver chain. Second, all fixed point mathematical operators will consume less
resources than floating point operators [13].

I I
—— Floating point

—<— iwl=62, fwl=4
iwl=52, fwl=2

BER (%)

SNR (dB)

Figure 2-12: Simulation results for different values of €
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2.4 Simulation Parameters

The results obtained in Section 2.3 are validated by developing a simulation model using
Mathworks tool Simulink Matlab v7:12 [29]. The model consists of transmitter, channel, and
receiver.

e The transmitter: consists of random data source generator, GSM burst formatter, and digital

up converter.

e The channel: is a Rayleigh fading channel, with variable fractional delay, and Additive White
Gaussian Noise (AWGN). This channel model [14] can be used to simulate the system for the
cases of typical urban, and rural areas as shown in Figure 2-13.

A
In1 f E
In )
-f > Rayleigh > AWGN > -

Z Fadin
0.7 f———P|Delay 9 ChannelOut
Variable
Delay Fractional Delay1
Multipath Rayleigh AWGN
Fading Channel Channel

Figure 2-13: Channel model

e The receiver: consists of digital down conversion, timing and phase alignment, channel
equalization, burst de-formatter, and bit error rate calculator.

One of the advantages for using the simulation based approach, is the ability to track the system
behavior at different stages of the system. For the system under test, OpenBTS, it is important to
monitor the variations to the transmitted symbols during their journey to the receiver side as
tracked in Figure 2-14.

In Figure 2-14(a) the constellation of the transmitted signal is shown. Each symbol has three points
instead of one due to the Gaussian pulse shaping filtering of GSM. Therefore, instead of four
points only of Minimum Shift Keying (MSK) , there exist 12 points of Gaussian Minimum Shift
Keying(GMSK). In Figure 2-14(b), the constellation has been changed due to the channel. In
Figure 2-14(c), the analyze traffic has extracted the receiver parameters only, but the receiver
parameters have not been used yet. Therefore, the constellation is still not useful to detect the
original transmitted symbols.

In Figure 2-14(d), a serial receiver is used to enable the detection of GMSK by a Binary Shift
Keying (BPSK) demodulator. This idea is attributed to Proakis [21]. It can be observed that now,
the constellation points have been grouped into almost two groups, one to the right of the y-axis
and the other is to the left of the y-axis as in Figure 2-14(d).
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In Figure 2-14(e), to improve the error rate, the two groups should be sent away from the y-axis. In
this last graph, the constellation points are moved away from the y-axis, and located into exactly
two groups. The two groups will be demodulated using a simple BPSK modulator.

By the end of this chapter, we have applied the SDR design process in a real application, which is
the OpenBTS system. Functions that have the largest processor utilization was identified, and
implemented in fixed point representation. The fixed point presentation was based on optimum
data widths from resource usage point of view. During our investigation in SDR systems, we found
that the channel equalization is a critical system component from the implementation point of
view. A separate study will be presented in the next chapter to enable smooth integration of
channel equalization inside SDR system with optimum resource usage.
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Chapter 3 Reduced Complexity Channel

Equalization

In the previous chapter, the functions that have the largest utilization were identified. These
functions are the correlation, CORDIC, and channel equalization. The implementation of channel
equalization in either software or on FPGA is not straightforward [8]. Therefore, this chapter is
dedicated to make a survey of channel equalization techniques, and to highlight the challenges in
their implementation. The most important challenge is to evaluate the complexity of a chosen
equalization technique. The main focus of this chapter is to evaluate the computational cost or
complexity for DFE that is generic enough to be used with any algorithm and structure.

The work in this chapter is twofold. First, a new metric to evaluate the complexity of different
DFE is developed. This would decrease the effort to choose a suitable algorithm to be
implemented. Second, DFE algorithms containing division operations consume large chip area,
and it is advised to avoid them for implementation in programmable devices [11]. This work
proposes a new method to implement division process. Hence, it is now permitted to use DFE
containing division operations under reduced complexity constraints.

3.1 Why Channel Equalization

Inter Symbol Interference (ISI) is a common phenomenon encountered when recovering band
limited channels. ISI occurs if modulation bandwidth increases beyond the channel coherence
bandwidth [19]. Channel equalization is used to compensate for ISI at the receiver to decrease the
bit errors. In the family of DFE equalizers the previous output decisions influence the current
estimated symbol [20]. Therefore, DFE has better tracking performance than the family of linear
equalizers when the channel has severe distortion and many nulls in the pass band. Both linear, and
non-linear equalizers are identified by a structure, and an algorithm as shown in Figure 3-1.
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Figure 3-1: Channel equalization classification

The structure of DFE may be linear transversal or lattice. Both types will be treated in a similar
approach to evaluate their complexity. The choice of an algorithm to update the equalizer weights
is of great importance. Rate of convergence, misadjustment, computational complexity, and
numerical properties are used to evaluate different algorithms [19]. A comprehensive survey on
DFE can be found in [20].

3.2 Complexity as Number of operations

Let N be the total number of forward and backward taps of DFE and consider two channel
equalization algorithms A and B. Algorithm A has O(7N) multiplications and two divisions, while
algorithm B has O(8N) multiplications and one division. Note that O(7N) represents that the total
number of an operation is dominated by a term that is seven times the number of taps in DFE. It is
not straightforward to determine which algorithm has lower computational cost. Hence, it is
required to find a metric or weighting score for each basic arithmetic operation to be able to
determine the overall computational cost. The value of the weight score will represent the overall
complexity of DFE. A lower weight score corresponds to reduced complexity.

In previous work where the complexity of DFE is addressed, the weight score is reported as the
number of basic mathematical operations [7], [8], and [15]. The complexity of DFE is usually
reported for real data and linear filtering. These results are extended to include complex data,
which is the general case for communication systems [21] as shown in Table 3-1. It is important to
know that the computational cost of DFE is the same as linear filtering for the same total number
of taps [22]. Hence, the calculations are not only applied for linear filtering but also for the DFE
problem.
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Algorithm X + e
Conventional [20] 4N” + 16N 4N” + 12N 1
+1 -1
A priori lattice [11] 64N 32N 32N
FAEST [11] 28N + 6 28N + 2 5
FTF [11] 28N+ 10 28N + 1 3
Fast Kalman [11] 36N + 2 32N + 1 2
ERLS-DCD-16 [8] 12N 134N 0
LMS [20] 8N +2 8N 0

Table 3-1: Mathematical operations for different equalization techniques

Candidate algorithms will be chosen to represent the families of conventional Least Mean Square
(LMS), conventional RLS, fast fixed order, lattice, and a recent study [8] of RLS based on Decent
Coordinate Descent (DCD) iterations. Each candidate algorithm is generic enough to represent its
family. The same procedure can be used to calculate the weight score for any other algorithm. It
will be shown in Section 3.5 how the proposed metric simplifies the comparison between different
families.

(LMS) algorithm has the lowest computational cost [20]. Although LMS has the slowest
convergence rate, it will be used as a reference scenario for the proposed metric.

3.2.1 Fast fixed order family

Due to the desirable feature of fast fixed order family [22] with the complexity in the order of
O(N), three members of this family will be evaluated; namely Fast Transversal Filter (FTF), Fast
Aposterior Error Sequential Technique (FAEST) and Fast Kalman. Fast fixed order algorithms are
based on RLS; namely FTF, FAEST and Fast Kalman. Their complexity is in the order of O(N)
and their rate of convergence is similar to the conventional RLS, which is considered fast.
Therefore, they will be suitable for systems needing short iterations to reach optimum weights of
the channel to reduce transmission overhead [20].

3.2.2 Lattice RLS algorithms

The lattice RLS algorithms have a lot of desirable features such as improved numerical properties
and modularity [11]. However, lattice filters have higher computational requirements and cannot
be used in all applications [8]. They will be compared here with other families, only to show the
effectiveness of using the proposed metric.

3.2.3 Enhanced RLS with DCD

A recent study to reduce the complexity of RLS algorithm is based on DCD iterations [8]. The
RLS is expressed in terms of auxiliary normal equations with respect to increments of the filter
weights. Auxiliary equations are solved using line search methods. These methods have more than

27



one solution for conventional RLS problem. One of these solutions is chosen, which has the least
computational cost among its family namely; Exponentially Weighted RLS with 16 iterations per
sample (ERLS-DCD-16). However, the ERLS-DCD offer reduced complexity at the expense of
increased convergence time.

3.3 Complexity Weight Score

After describing the candidate algorithms briefly, it can be observed from Table 3-1 that it is not
straightforward to determine which algorithm has the least computational cost. Moreover, it is
impossible to arrange the rows in Table 3-1 in a descending order according to computational cost.
Therefore, we found a need to develop a new metric to evaluate the weight score of DFE. To
accomplish this goal, it is proposed to normalize all operations to a weight score as will be
discussed in this section.

As stated in [23] the simplest mathematical operation is the binary addition. Therefore, all
operations should be mapped to a finite number of additions. Then, the overall weight score of
DFE will be a linear summation of the weight score of all used operations. In order to accomplish
the normalization, we propose to analyze the low level details of each operation involved in DFE.
In the following, the normalization will be developed for the multiplication operation. This
normalization enables one to compare fairly between different families of algorithms. The three
major categories for multiplication [23] will be discussed:

¢ Shift and add multiplication
e Wallace tree multiplications
e [terative array multiplication

3.3.1 Shift and add Multiplication

As described in Table 3-2 the binary multiplication may be performed by adding the multiplier to
the multiplicand and storing to a temporary result. Then the multiplier is shifted one bit to the left
and added to the previous temporary result [23]. To illustrate the multiplication of X and Y Let M,
and M, be the data width for multiplier and multiplicand respectively. The first partial product is
the binary multiplication of first bit in the multiplier y, and each bit in the multiplicand x; where
the index “i ” is in the range 0 to Mc-1. Recalling that binary multiplication is the logical “AND”
operation, the first bit of the first partial product equals xoyo, and the second bit of the first partial
product equals x;yo, up to Xmc.1yo- The same procedure is repeated for each bit in the multiplier
until all of the partial products are generated.
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Multiplicand | L. X3 X2 X1 X0

Multiplier | Y3 y2Y¥1Yo
..X3Y0 X2Yo0 X1Yo XoYo

Partial .X3Y1 X2V1 X1Y1 XoY1

Products .X3Y2 X2¥2 X1y2 Xoy2

Final

Pio uct TMCAMIL  eoesesssesssss st srsssssssee 7o Ii Zo

Table 3-2: Multiplication using add and shift method

This method is the simplest from complexity point of view because it can be implemented using
only one adder and one shifter. However, from processing time point of view it is considered the
slowest to store the final result.

3.3.2 Wallace Tree Multiplication

Another multiplication method is the Wallace Tree [23]. It is based on parallel generation of the
required number of partial products. Afterwards this number of partial products is reduced. It is the
fastest multiplier scheme at the expense of increased computational cost.

3.3.3 Iterative array Multiplication

A method that is considered a good compromise between processing time and computational cost
is the iterative array of cells [23]. Hence, the iterative array multiplication will be used in the rest
of this chapter. However, the new proposed metric can be calculated for all multiplication methods
as will be discussed in the following paragraph. In general, the iterative array method is used for
short data lengths, which is the case for communication receiver [24], because its delay increases
with operand length.

Multiplication consists of a finite number of cells or building blocks. To perform one
multiplication, a finite number of building blocks are needed. let G be the number of building
blocks needed to perform one multiplication. In order to calculate the number of required building
blocks G, the following relation is used [23]

M, X M,
C = _] 3.1)

m; Xmg

Where and m; and m, are the data width of the building block used. For example, using M; = M, =
12 and m; = m. = 4 will result in G = 9. Therefore, nine building blocks will construct one
multiplier, and each building block has two operands with data widths m. m, respectively.
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Figure 3-2: Structure of 4 x 4 multiplier using full adder cells

To complete the normalization, each building block is composed of finite number of 1-bit full
adder cell as shown in Figure 3-2. Hence, one multiplier building block is composed of [(m; - 1)
(m¢) + 1] 1-bit full adder blocks. Therefore, the weight cost of multiplication Mgcore can be
rewritten as

Mulgeore = ((m; —1) x m.+ 1) X G. (3.2)

Equation (3.2) explains how to calculate the weight score of multiplication operation in terms of 1-
bit full adder cells. It can be observed that there exists an inverse proportional relation between the
data width of the building block and the number of building blocks G. As ml x mc increases, the
number of required building blocks G decreases as shown in Figure 3-3.

From complexity point of view, the weight score of multiplier is independent of the number of
used building blocks G. Intuitively it does not matter whether to use one large building block or
many small building blocks. In both situations the total number of 1-bit full adder cells are the
same as shown in Figure 3-3. However, from processing time point of view it is favored to use
smaller building blocks. This is due to the fact that the processing time to obtain a result is
proportional to the width of the building block [25].
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Figure 3-3: Compromise between number of blocks G and operands width ml, mc

It can be observed, from Figure 3-3, that using 3*3 building block generates an extra partial
product because the data width is not integer multiple of the building block data width. This extra
partial product will be zeros and may be skipped using a multiplexer [25]. In general, for any
MI*Mc data width, and any ml*mc building block width the extra partial products will not affect
the final weight score. This is because the weight score is used for comparison based on the
number of used 1-bit full adder cells and not on the number of building blocks.

3.4 Division Using Series Expansion

In the literature of adaptive filtering such as [7] [20], the computational cost of DFE is reported as
the number of four basic mathematical operations in addition to the square root one. To reduce
complexity it is advised neither to use divisions nor square root, and as few multiplications as
possible [8]. In this work division will be permitted by reducing its weight score.

Division algorithms can be divided into two categories; the first category is based on iteration of
subtraction and the second is based on iteration of multiplication [9]. The first category is
performed as the normal pencil and paper division. For each iteration there is a remainder R,
divisor D, and quotient Q. The i bit of quotient g; can be calculated using the following equation

R@=R(G{+1)— gq;xD x 10 (3.3)

For example, the first iteration of division of 4000 over 3 will be 4000 — 1 x 3 x 1000, where R(7
+1)=4000, g3=1, D=3, and 10' = 10°. Each iteration giis chosen to be 0 or 1 according to the
negative or positive value of R(7) respectively. This method is considered slow because the delay
is proportional to the ratio between the divisor and the dividend. Therefore, we will consider
another category of division algorithms, which has less processing time. The second category of
division algorithms is based on the use of Maclaurin series expansion [23]. The division a/b will be
obtained as the multiplication of a and 1/b . Note that, according to the floating point standard [26],
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t .
XPOREt where x is a

numbers are represented in either 32 or 64 bits with the format 1.x*radix
fraction. Therefore, one can use b = 1 + x and ignore higher orders of x, depending on the required

accuracy, in the familiar series expansion

1 1
=T 1-20)1+x)A+xH( + xB). (3.4)

Memory location address

All possible values of the reciprocal are stored in a memory element with its length proportional to
the data width. This would replace the need to true division with a simple memory allocation. The
memory score (Memoryscore) is the size of the table to store the values of 1/b. To estimate the table
size we recall that in typical communication systems [24] the data widths are in the range 8, 10, 12
or 14 bits. A memory block of size 2° is needed to store all values of a digital word with data width
c bits. Hence, the memory size is approximately 0.25, 1, 4 or 16 kbits.

One divider consists of a finite number of adders and multipliers to form the memory address. This
number varies according to the desired data accuracy. For 8-bit data accuracy, six multipliers and
four adders are needed to implement one divider and the calculation of the memory address is
shown in Figure 3-4. To locate the memory element address we need to calculate the powers x%;
x* and x* depending on the desired accuracy. For 8-bit accuracy, the weight score of one division
Dqcore can be calculated according to the following relation

DSCOTG = 6 * Mulscore + 4 * Addscore + MemorySCOTE' (3'5)

To increase the accuracy of the division operation, higher powers of x should be considered. For
increased accuracy, such as 12-bit, x'? can be calculated by multiplying x* by x®, which have been
calculated earlier as shown in Figure 3-4. Consequently, one extra multiplier and two adders are
needed. The weight score can be modified accordingly such that

Dscore = 7 * Mulscore + 9 * Addscore + MemorySCOT"e‘ (3'6)

According to equations (3.5) and (3.6) the division is normalized into a finite number of 1-bit full
adder cells. In the following section results of weight score for different algorithms are presented.
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Figure 3-4: Division using series expansion for 8-bit accuracy

3.5 Weight score simulation results

In this section, results obtained by computer simulation are presented. All equations are plotted
using Mathworks tool Simulink Matlab v7.12 [29]. The complexity weight score of different
algorithms is plotted against filter order N. First, the weight score of each operation is calculated
according to equations (3.2) and (3.5). For each algorithm the total computational cost is calculated
according to Table 3-1. Then the number of multiplications, and divisions in Table 3-1 is
multiplied by Mulgcore and Dgcore respectively. In this manner the computational cost is compared
fairly. The total weight score of each algorithm is the linear summation between the weight score
of additions, multiplications and divisions required for that algorithm. This procedure is repeated
for different values of equalizer order N as shown in Figure 3-5.

It can be observed from Figure 3-5 that the conventional RLS has much higher weight score
compared to all other graphs, which are located at the bottom of the y-axis. The weight score of
conventional RLS is almost 5,500 at N = 10. However, its complexity increases exponentially
afterwards until it reaches 20,000 at N = 20. It is observed that the LMS has the least weight score
over all values of N. This result was expected as was mentioned in Section 3.2. To be able to zoom
into different algorithms, the RLS graph will be removed as shown in Figure 3-6.

The ERLS-DCD-16 has slightly higher complexity than LMS. This result conforms with the
results in [5], which states that LMS complexity is proportional to 2N, while ERLS-DCD-16
complexity is proportional to 3N. Both FTF and FAEST have almost the same weight score over
N. It is important to observe that fast Kalman has higher weight score than FASET. This result is
not obvious without using the weight score metric because FAEST has 5 divisions while Fast
Kalman has 2 divisions only.
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By the end of this chapter, we will consider two FPGA experiments to verify the simulation
results experimentally. The two experiments are evidences of the real resource usage of the FPGA.
The first experiment is related to the new design process of Chapter 2, while the other is related to
channel equalization.
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Figure 3-5: Complexity of DFE versus the total number of taps (with RLS)
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Figure 3-6: Complexity of DFE versus the total number of taps (without RLS)
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Chapter 4  Experimental Results and

Guidelines

The proposed methods in Chapter 2, and Chapter 3 are validated by implementing their designs on
FPGA. The implementation results is collected and summarized in tables, to show the
effectiveness of the proposed methods. The implemented designs are simulated twice using
functional, and timing simulations. A functional simulation is performed on the input text files
only. The Integrated Development Environment (IDE) extracts the architecture and creates files
responsible to simulate the circuits, without mapping them into physical gates. On the contrary, a
timing simulation is performed on the design after it has been translated, placed, and routed into
physical gates.

Before the two Hardware Description Language (HDL) experiments are presented, implementation
guidelines are highlighted. These guidelines were discovered during the design time, and can be
used as general guidelines when one is programming for resource minimization.

4.1 Implementation Guidelines
4.1.1 Complex multiplication

In general, the baseband signal is represented in complex number notation. Therefore, the
correlation block has to be able to accept complex inputs and outputs. To achieve this, complex
multipliers should be implemented. This can be implemented using four real input multipliers as
shown in Equation (4.1).

re(c) = re(a)re(b) — im(a)im(b) 4.1
im(c) = re(a)im(b) + im(a)re(b)

To improve the resource usage one complex multiplier will be implemented using only three
multipliers as in Equation (4.2). This implementation will increase the number of used adders.
However, the resource usage of an adder is very small compared to one real multiplier.

re(c) = (re(a) — im(a))im(b) + (re(b) — im(b))re(a) 4.2)
im(c) = (re(a) - im(a))im(b) + (re(b) + im(b))im(a)'
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4.1.2 Forming wide operands multipliers

To implement multipliers with MxM-bit operands, the built-in NxN-bit multiplier of the FPGA is
used. For instance, a 35x35 multiplier is composed of four 18x18-bit multipliers, as shown in
Figure 4-1. It should be noted that the optimization can be written manually, or automatically be
setting the proper synthesis options.

Ay = A[34:17] A= 0,A[16:0]
By = A[34:17] Bi= 0,A[16:0]
Sign Extend 36 Bits of '0' BL * AL = 34 bits
[33:17] [16:0]
! ! |
Sign Extend 18 ||| BL * Ay % 35  bis [17-bit Offset
Bits of A[34] 1134:17] 1 [16:0] f
1 1 I
Sign Extend 18 ||| Bu * AL 1 35 bis |
Bits of B[34] || i[34:17] 1 [16:0] :
i i i
By * Av = 36 | bits | 34-bit Offfset
[35:18] |[16:0] i ) @ g
i : i [
v v v v
P[69:52] P[51:34] P[33:17] P[16:0]

Figure 4-1: 35x35-bit Multiplication from 18x18-bit Multipliers

4.1.3 FIR Filters

The Systolic FIR is implemented using internal blocks of Spartan-3A DSP FPGA named DSP48A
blocks. Sixteen blocks are needed for the current software version of OpenBTS. This will be used
for correlation, and convolution operations.

It is worth mentioning that the 16 DSP48A blocks are programmed to have three groups as shown
in Figure 4-2. The first group is the bottom DSP48A block that accepts two external inputs, and its
output is shifted internally. The second group consists of the next 14 DSP48A blocks which
accepts only one external input, one internal input from the previous block, and one internal output
shifted to the next block. The third group consists of the last DSP48A block which is similar to the
previous group but with one external output. This is the actual final output of the correlation
process.
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4.2 HDL implementation of Analyze Traffic Burst
4.2.1 Experiment Setup

In this experiment, the steps to move functions from the CPU to the FPGA are detailed. The
experiment is performed on USRP E110 device.

Step 1: Get the source files of the Universal Hardware Driver (UHD)

The UHD contains all software drivers that control the USRP device. The UHD enables to modify
the FPGA image, which comes as a pre-built binary in the OpenBTS. To download the latest UHD
release, use the "git" shell command

| git clone git://github.com/EttusResearch/uhd.git |

The current version is of UHD is Mirror-release_003_007_001. The downloaded source files will
have the structure as shown in Figure 4-3. Following the arrows in Figure 4-3 starting from "fpga"
folder, any part of the FPGA code can be modified. In this experiment, we will modify the top
module of E110, which is located at the "top" folder. Strictly speaking, this file will be modified
"~/fpga/usrp2/top/E1x0/ule_core.v", where "~" denotes the path where the UHD is installed.

[ boot_cp]d gpif simple_gemac
firmware usrpl control_lib gpmc testbench
fpga )< | ustp2 = < coregen models timing
host usrp3 custom opencores top
. extramfifo sdr_lib udp
images

v | fifo serdes vrt
tools

Figure 4-3: The folder structure of UHD code

Step 2: Locate the functions with the highest CPU utilization

Now we need to install OpenBTS project either on Windows or Linux Operating system. The
source code can be downloaded from the following web link "http://openbts.org/get-the-code/".
The functions with the highest execution time are shown in Table 4-1. The two functions
"equalizeBurst" and "convolve" will be moved according to software profiling. These two
functions are located in the file "~/ openbts/Transceiver52M/sigProcLib.cpp".
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Function Name Execution Comment

time (us)
USRPifyVector 11.66 It cannot be moved because it is needed for interface.
equalizeBurst 7.9 It can be implemented
convolve 5.28 It consists the major part of "Analyze Traffic Burst"
unUSRPifyVector 1.81 It cannot be moved because it is needed for interface.

Table 4-1: Function execution times in OpenBTS project

Step 3: Determine the FPGA module to be modified

Before we determine where to place the moved function into the Verilog code, we need to
understand the general architecture of the FPGA code. Therefore, a low level block diagram was
constructed highlighting the main modules, and the connections between them as shown in
Figure 4-4. Each block indicates the file name where a function is defined, such as
"rx_frontend.v", and the instance name which uses that file such as "RxFrontEnd".

From the left of the diagram the signal is received from ADC and transmitted to the processor at
the right of the diagram. Data from ADC is concatenated with 4 zeros, then decimated through the
module ddc_chain0O. Afterwards, the data is transmitted via VRT protocol [16], which is handled
by the block vita_rx_chain. Finally, the multiplexer is used to combine the two DDC chain data
(second chain is not drawn for simplicity) and forward them to the wishbone master (GPMC)
towards the processor.

From To ARM
ADC Processor
RxFrontEnd ddc_chain( vita_rx_chain( mux_data_streams WishboneMaster(
rx_frontend.v ddc_chain.v vita_rx_chain.v fifo36_mux_ch.v wb_1master.v
rx_i
—|adc_a[15:0] data_out[36:0] » rx_data_i[35:0]
x9q . sample[31:0]—® sample[31:0] src_rdy_o » src0_rdy_i
——p{ adc_b[15:0] stroge dst_rdy i |e—|dst0_rdy o
strobe
. rx_data_o[35:0 > ir3s: GPIO Interface { >
i_out[23:0] —{ rx_fe_i[23:0] -data_o[35:0] > data0_i[35:0]
1230 rx_src_rdy_o » srcO_rdy_i .
q-out[23:0] p{ rx_fe_q[23:0] rx_dst_rdy_i dstO_rdy_o GPMC Interface { "
wb_clk ------p---------- :——:— —————————————— '--i— ------------- '--:r—-——--——-——-———:——-i —————
wb rst —---__ b e O TN PO IO EON PR SO

Figure 4-4: The code hiearchyinside the FPGA
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Step 4: Check the FPGA project Hierarchy

After the code hierarchy has been explored, the new module can be added into the proper location.
The code snippet in Table 4-2 shows the added module "AnalyzeTrafficBurst". By observing the
clear mapping between the code hierarchy and the source code, the location to insert
"AnalyzeTrafficBurst" is determined. It is inserted before the last module in the receiver chain;
namely the VRT module,

i i i 0w i h i ! i i
// DSP RX 0

wire [31:0] sample_rx0;

wire strobe_rx0, clear_rx0;
wire [35:0] vita_rx_data0;
wire vita_rx_src_rdy0, vita_rx_dst_rdyO0;

ddc_chain #(. BASE(SR_RX_DSP0), .DSPNO(0)) ddc_chain(

(.clk(wb_clk), .rst(wb_rst), .clr(clear_rx0),
.set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),

.set_stb_user(set_stb_user), .set_addr_user(set_addr_user), .set_data_user(set_data_user)
rx_fe_i(rx_fe_i),.rx_fe_q(rx_fe_q),

.sample(sample_rx0), .run(run_rx0), .strobe(strobe_rx0),

.debug() );

AnalyzeTrafficBurst #( .WordWidth(16),.SamplesPerSymbol(1)) A0

(.clk(wb_clk),.rst(wb_rst),.sampleln(sample_rx0),.peakIndex(),.toa() );

vita_rx_chain #(.BASE(SR_RX_CTRLO), .UNIT(0), .FIFOSIZE(10), .PROT_ENG_FLAGS(0),
.DSP_NUMBER(0)) vita_rx_chain0

(.clk(wb_clk),.reset(wb_rst),

.set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),

.set_stb_user(set_stb_user), .set_addr_user(set_addr_user), .set_data_user(set_data_user),
.vita_time(vita_time), .overrun(rx_overrun_dsp0),

.sample(sample_rx0), .run(run_rx0), .strobe(strobe_rx0), .clear_o(clear_rx0),
rx_data_o(vita_rx_data0), .rx_dst_rdy_i(vita_rx_dst_rdy0), .rx_src_rdy_o(vita_rx_src_rdy0),
.debug() );

Table 4-2: A code snippet illustrating the location of the added module
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After "AnalyzeTrafficBurst" is added to the OpenBTS project, the Xilinx tools indicate the
instance among other modules. The instance is named AQ as show in Figure 4-5. Finally, generate
the FPGA image and report the resource usage in the next section.

View: @) H:F:.;:Elmplemenmﬁnn ] Simulatinn

Hierarchy
E"ﬁﬁﬁ ule (ulew)

AR ule core - ule_core (ule_core.w)
i b [w] sroreset - setting_reg (setting_reg.v)
reset_sync - reset_sync (reset_sync.v]
sr_clear_fifo - setting_reg (setting_reg.v)
gpmec - gpme (gpmec.v)
ri_frontend - ne_frontend (n_frontend.v)
ddc_chain - ddc_chain (ddc_chain.wv)
AD - AnalyzeTrafficBurst (AnalyzeTrafficBurst.v)
v wita_re_chaind - vita_n_chain (vita_nc_chain.v)
v| ddc_chainl - ddc_chain (ddc_chain.v)
v wita_rne_chainl - vita_rnc_chain (vita_rc_chain.v)
W] mux_data_streams - fifo36_mux (fifo36_muxw)
v wita_tw_chain - vita_te_chain (vita_tc_chain.v)
Y| duc_chain - duc_chain (duc_chain.v)
v te_frontend - te_frontend (be_frontend.v)
Y] wh_1master - wb_lmaster (wb_1masterv)
-|¥] shared_spi - spi_toplh (spi_toplb.v) —
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Figure 4-5: The FPGA code hierachy from Xilinx tool
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4.2.2 Analyze Traffic Burst FPGA Resource Report

The results of implementation are generated by Xilinx’s design tools v14.1; namely ISE, and ISIM.
The USRP is equipped with Xilinx’s FPGA named Spartan 3A-DSP 3400. The resource utilization
due to the mapped design is reported in Table 4-3.

When the design is implemented using floating point arithmetic, the synthesis operation fails to
map the design into the FPGA. This is expected because a floating point multiplier can consume
one, or more FPGA units [13][31]. Therefore, we apply the two guidelines that were mentioned in
Section 4.1.1, and Section 4.1.2. The first guideline makes use of the internal DSP units in the
FPGA as shown in Figure 4-2, to implement the correlation. This results in saving the general
logic cells for the rest of the design. The second guideline eliminates the need to implement a wide
operand multiplier, in the order of O(35) bits. Alternatively, wide operand multipliers were built
based on internal FPGA 18x18-bit multipliers.

After applying the design process, the design can fit the function "Analyze Traffic Burst" into the
FPGA with resource usage less than 50%. The DSP48 blocks have relatively high utilization of
45%, because they are required to implement multiplication operation without using the logic
slices of FPGA [32]. Note that, the multipliers have 36 bits operands, and hence they can be used
for both cases of (iwl = 62, fwl = 4) and (iwl = 52, fwl = 2), with the same resource utilization.
Finally, the experimental results verify the validity of the proposed design process.

Resources i = 52 i = 62
Used Available % Used Available %

Slices 7538 23872 31% 9548 23872 40%
Flip Flops 9273 47744 19% 15278 47744 32%
4-LUTs 14074 47744 29% 18620 47744 39%
BRAMs 7 126 5% 7 126 5%
GCLKs 2 24 8% 2 24 8%
DSP48s 57 126 45% 57 126 45%

Table 4-3: Logic utilization for the function ''Analyze Traffic Burst"
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4.3 HDL implementation of RLS Equalizer
4.3.1 Experiment Setup

The test vectors for the channel equalization are extracted from the MATLAB system model that
was created in Chapter 2. Two input vectors are needed; namely received signal vector, and
training signal vector. One control input is needed to choose whether the equalizer works in
training mode or equalization mode. The simulation is run and the output vectors are stored in text
files. Finally, these vectors are compared to the output vectors from the MATLAB simulation.

4.3.2 RLS FPGA Resource Report

In order to verify the usage of the proposed division method experimentally, the resource
utilization for the Xilinx FPGA “Spartan3A-DSP1800” [27] is shown in Table III. Results are
obtained using Xilinx development suite ISE12:1.

Using the automatic synthesis procedure, the synthesizer fails to design the division process and
ends with error messages. This result was expected because the implementation of division
operation into FPGA is problematic [28].

To solve this synthesis failure, divisions are implemented as proposed using memory elements,
which is called Block RAM (BRAM). The synthesis process succeeded with chip utilization less
than 5%. In addition the guideline of Section 4.1.3 is applied, to make use of the internal DSP units
in the FPGA as shown in Figure 4-2. This will save the general logic cells for the rest of the
design, and will protect general logic cell from being digested by the multiplications and shift
registers in the tapped delay line.

Resources N=38 N=12 N=16
Slice 127(1%) 177(1%) 206(1%)
D-FF 136(1%) 186(1%) 226(1%)
LUT-4 206(1%) 313(1%) 403(1%)
BRAM 1(1%) 2(2%) 4(4%)
DSP48 2(2%) 3(3%) 3(3%)

Table 4-4: FPGA resources utilization for channel equalizer
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Chapter 5 Conclusions

SDR has a desirable nature of adding new features by reconfiguration. However, this will increase
the resource usage and may affect system performance. One solution was to implement algorithms
in fixed point number representation. In this work, a new design process was proposed to link
between system performance and computational accuracy using simulation. To validate the
proposed process a case study of the OpenBTS project was considered. It was not possible to
implement the case study into FPGA without applying the proposed process, while maintaining
system performance. Moreover, the system performance was relaxed to obtain more savings in
resource usage. Finally, the results were verified experimentally using FPGA implementation. It
was shown that the utilization of FPGA did not exceed 50 % of the available resources.

During our research, it was discovered that some system modules should be paid more attention
such as channel equalization. Choosing a channel equalization algorithm affects the total system
resources considerably. Therefore, a novel metric was developed to compare fairly between
channel equalization algorithms. In addition, a new method was presented to implement the
channel equalization algorithms that contain division operation. It was usually advised to include
division operation into FPGA designs. By using the proposed method, it was permitted to
implement division on FPGA.

The results here can be used by both academia and industry. For industry, the proposed model can
be deployed for different generations of mobile networks form 2G, 3G, and 4G. For academia, a
broad range of research areas can benefit from this work, such as design automation for SDR, and
open source networking.

This work was based on creating a simulation model for the system under improvement.
Therefore, we can extend this work by adding a library for common system modules such as
source coders and burst formatters. Another trend is to apply the same approach for recent mobile
networks such as the fourth generation mobile networking, and wireless fidelity. In addition,
instead of applying our work into base station only for OpenBTS, the concept of network in a box
can be achieved. Network in a box aims at collecting all mobile network elements into one device,
that can be programmed and operated with minimal installation effort.
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Appendix A: Software Profiling
What is profiling

The profiling process can determine the time spent by each function by a processor within any
software. In addition, it records the order of function calls during execution of the main program.
This information is vital to discover software functions that are slower than expected. Accordingly
the program can be modified to improve execution time. The profiling can also report the calling
frequency of all functions. The calling frequency is the number of function calls over a predefined
period of time. This may help spot bugs that had otherwise become unnoticed.

Profiling tools used

A software profiling tool can be classified according to its output as either flat, or call graph
profilers. A flat profiler computes the total execution time spent in each function and its percentage
of the total running time only. A call graph profiler shows the call times, and frequencies of the
functions, and also the call chains involved based on the caller function. As explained earlier
in Chapter 2, both execution time and calling frequency are needed to indicate the processor
utilization. In the following paragraph, famous call graph profilers are presented.

i. Gprof

The most commonly used profiler on Linux systems is the program gprof. Gprof comes bundled
with the open source GNU Compiler Collection (GCC). Profiling a program with Gprof involves
three steps:

1. Prepare for profiling by adding profiling options while compiling.
2. Execute the program under evaluation to collect data.
3. Run Gprof to analyze the results.

ii. Valgrind

Valgrind is a suite of tools for both debugging, and profiling. Valgrind is famous for its Memory
check tool which can be used to detect memory leaks and errors. However, Valgrind also includes
the Cachegrind, and Callgrind tools which can be used to construct a profile of a program.
Valgrind is basically a virtual machine or processor emulator. The program should be executed,
meaning that it is not a static profiler. Valgrind records information about the instructions the
program executes, and the memory accessed.

Since Valgrind is a processor emulator it does not need to augment a program to profile it. This
means that we don't need to prepare a special program for profiling. Therefore, special compilation
options such as the “-pg' can be removed. This also means that we can run Valgrind on programs
that we do not have the source code for. However, running a program through Valgrind will cause
the program to run around 50 times slower.
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Differences between Gprof and Valgrind

Both techniques can be used to output flat profile, and call graph of the program under evaluation.
There are few differences between Gprof and Valgrind as shown in Table 5-1. Although Valgrind
output is much slower than Gprof, it will be used in our work because we don't need to compile the

source code. This is required to cope with the flexibility of a SDR system. The increased

execution time will not be a bottleneck, because the profiling is performed once at the start of the

design process.

Gprof

Valgrind

Speed relative to
original code

3x slower

50x slower

Result elaboration

Less readable because results
are output to text files

More user friendly due to the
automatic creation of call graphs.

Static profiling

Yes, the source code must be
compiled

No, it can be run without the source
code

Table 5-1: Comparison between two famous software profiling tools
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