

RESOURCE USAGE OPTIMIZATION IN SOFTWARE DEFINED

RADIO SYSTEMS

By

Sameh Yassin Rashad

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2014

i

RESOURCE USAGE OPTIMIZATION IN SOFTWARE DEFINED

RADIO SYSTEMS

By

Sameh Yassin Rashad

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Prof. Dr. M. Hazim Tawfik

……………………………….

Professor of Communications

Electronics and Communications

Department

Faculty of Engineering, Cairo University

Dr. Hossam. A. H. Fahmy

……………………………….

Associate Professor of Computer

Electronics and Communications

Department Faculty of Engineering, Cairo

University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2014

ii

RESOURCE USAGE OPTIMIZATION IN SOFTWARE DEFINED

RADIO SYSTEMS

By

Sameh Yassin Rashad

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by

The Examining Committee

Prof. Dr. Ahmed Abu Auf

Prof. Dr. Magdi Fikri Ragaey

Prof. Dr. M. Hazim Tawfik

Dr. Hossam A. H. Fahmy

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2014

iii

Engineer's Name: Sameh Yassin Rashad

Date of Birth: 08/09/1985

Nationality: Egyptian

E-mail: syassin@eece.edu.eg

sameh_yassin99@yahoo.com

Phone: +201003781998

Address: El Haram, El Galoly Street, Building 1

Registration Date: 01/10/2008

Degree: Master of Science

Department: Electronics and Communications

Supervisors: Prof. Dr. M. Hazim Tawfik

Dr. Hossam. A. H. Fahmy

Examiners: Prof. Dr. Ahmed Abu Auf

Prof. Dr. Magdi Fikri Ragaey

Prof. Dr. M. Hazim Tawfik

Dr. Hossam. A. H. Fahmy

Title of Thesis:

Resource Usage Optimization In Software Defined Radio Systems

Key Words:

Software Defined Radio; Resource Utilization; FPGA; Channel Equalization

Summary:

Software Defined Radio is a flexible platform that can provide dynamic reconfiguration for

communication systems using software only. In other words the same hardware can be used to

implement different transceiver functions such as modulation, detection and channel

estimation.

With the ever-increasing need for higher data rates and stable performance, SDR systems

importance is growing. In addition, it is vital to provide communication services globally

including rural and poor areas. This thesis investigates SDR systems to provide the rural

communities in the developing countries with cheap and basic telecom services such as voice

communication. Many governments and agencies in the developing countries are focusing on

extending telecommunications services into rural areas, as they seek to alleviate poverty,

encourage economic and social growth, and overcome a perceived ‘digital divide’.

SDR systems face three challenges; namely increased electric energy consumption, increased

resource utilization, and increased processing time. There is a great opportunity to introduce a

cost effective communication network, by overcoming these challenges.

This work is focused on reducing resource utilization, to increase the number of the offered

services per the system deployed. Intuitively, this in turn will improve the power consumption.

This is because any system module with same functionality and less resource usage, will

consume less energy. However, the processing time for the SDR system may increase due to

the optimized modules. Therefore, a trade off is needed to reduce the resource usage, while

maintaining the real time requirements of the SDR system. The contribution of this work is to

address this tradeoff. The results are verified using system simulation, and experimental results

using the open source hardware Universal Software Radio Peripheral (USRP).

iv

Acknowledgements

For my family; my father, my mother, my sister, and my brother.

For my teachers.

For my brilliant work mates.

For NTRA.

v

Table of Contents

Table of Contents ... v

List of Figures .. vii

List of Tables .. viii

List of Acronyms .. ix

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 Related Work... 2

1.3 Thesis Scope .. 3

1.3.1 Generic block diagram of SDR .. 3

1.3.2 The OpenBTS Project .. 3

1.3.3 BTS Performance Improvement .. 5

1.4 Thesis Organization... 6

1.5 Published Papers ... 6

Chapter 2 SDR Resource Usage Optimization ... 7

2.1 Proposed design process.. 8

2.2 Dynamic range estimation ... 10

2.3 Case Study: Open BTS receiver chain .. 14

2.4 Simulation Parameters... 21

Chapter 3 Reduced Complexity Channel Equalization .. 25

3.1 Why Channel Equalization.. 25

3.2 Complexity as Number of operations.. 26

3.2.1 Fast fixed order family ... 27

3.2.2 Lattice RLS algorithms .. 27

3.2.3 Enhanced RLS with DCD .. 27

3.3 Complexity Weight Score ... 28

3.3.1 Shift and add Multiplication .. 28

3.3.2 Wallace Tree Multiplication .. 29

3.3.3 Iterative array Multiplication ... 29

3.4 Division Using Series Expansion .. 31

vi

3.5 Weight score simulation results .. 33

Chapter 4 Experimental Results and Guidelines .. 35

4.1 Implementation Guidelines ... 35

4.1.1 Complex multiplication ... 35

4.1.2 Forming wide operands multipliers ... 36

4.1.3 FIR Filters .. 36

4.2 HDL implementation of Analyze Traffic Burst .. 38

4.2.1 Experiment Setup ... 38

4.2.2 Analyze Traffic Burst FPGA Resource Report ... 42

4.3 HDL implementation of RLS Equalizer ... 43

4.3.1 Experiment Setup ... 43

4.3.2 RLS FPGA Resource Report ... 43

Chapter 5 Conclusions .. 44

References ...46

Appendix A Software profiling...48

vii

List of Figures

Figure 1-1 - Software Defined Radio Aspects ... 3

Figure 1-2: OpenBTS block diagram as a SDR system... 4

Figure 2-1: Flow chart of the proposed design process ... 7

Figure 2-2: Example on software profiling to start the design process .. 9

Figure 2-3: Illustrative example for step 5 of the design process ... 10

Figure 2-4: General block diagram for SDR systems ... 11

Figure 2-5: Finite precision effects on channel equalization .. 13

Figure 2-6: Software profiling result for OpenBTS .. 14

Figure 2-7: Simulation of system performance using floating point .. 15

Figure 2-8: Block diagram for the function Analyze Traffic Burst ... 16

Figure 2-9: Accuracy improvement of peak location .. 18

Figure 2-10: Systolic FIR with Adder Cascade [27] .. 19

Figure 2-11: FSM describing the Peak Detect block .. 19

Figure 2-12: Simulation results for different values of Ԑ .. 20

Figure 2-13: Channel model ... 21

Figure 2-14: The signal constellation at different receiver stages .. 24

Figure 3-1: Channel equalization classification ... 26

Figure 3-2: Structure of 4 x 4 multiplier using full adder cells... 30

Figure 3-3: Compromise between number of blocks G and operands width ml, mc .. 31

Figure 3-4: Division using series expansion for 8-bit accuracy ... 33

Figure 3-5: Complexity of DFE versus the total number of taps (with RLS) .. 34

Figure 3-6: Complexity of DFE versus the total number of taps (without RLS) ... 34

Figure 4-1: 35x35-bit Multiplication from 18x18-bit Multipliers ... 36

Figure 4-2: Systolic FIR with Adder Cascade [2] .. 37

Figure 4-3: The folder structure of UHD code ... 38

Figure 4-4: The code hiearchyinside the FPGA ... 39

Figure 4-5: The FPGA code hierachy from Xilinx tool... 41

viii

List of Tables

Table 3-1: Mathematical operations for different equalization techniques .. 27

Table 3-2: Multiplication using add and shift method .. 29

Table 4-1: Function execution times in OpenBTS project .. 39

Table 4-2: A code snippet illustrating the location of the added module .. 40

Table 4-4: Logic utilization for the function "Analyze Traffic Burst" ... 42

Table 4-5: FPGA resources utilization for channel equalizer .. 43

Table 5-1: Comparison between two famous software profiling tools .. 48

ix

List of Acronyms

SDR Software Defined Radio

DFE Decision Feedback Equalizer

DCD Dichotomous Coordinate Descent

RLS Recursive Least Squares

OpenBTS Open source Base Transceiver Station project

USRP Universal Software Radio Peripheral

DSP Digital Signal Processing

DDC Digital Down Conversion

DUC Digital Up Conversion

GPMC General Purpose Memory Controller

fwl Fractional part Word Length

iwl Integer part Word Length

BER Bit Error Rate

SNR Signal to Noise Ratio

MSE Mean Square Error

GSM Global System for Mobile Communicsations

ToA Time of Arrival

VP Valley Power

FSM Finite State Machine

FPGA Field Programmable Gate Array

FIR Finite Impulse Response Filter

GMSK Gaussian Minimum Shift Keying

LMS Least Mean Squares

FTF Fast Transversal Filter

FAEST Fast Aposterior Error Technique

IDE Integrated Development Environment

HDL Hardware Description Language

BRAM Block Random Access Memory

GCC GNU Compiler Collection

UHD Universal Hardware Driver

VRT VITA Radio Transport Protocol

1

Chapter 1 Introduction

1.1 Motivation

Software Defined Radio is a flexible platform that can provide dynamic reconfiguration for

communication systems using software only. In other words the same hardware can be used to

implement different transceiver functions such as modulation, detection and channel estimation.

One motivation for the rapid development of SDR systems, is the need to add new features to the

radio equipment or to upgrade its functionality. This is needed by important sectors such as

military and public safety [1]. In these sectors, special purpose radios were the norm rather than

the exception. One radio device is needed for a few number of functions or wave forms, and it is

not straightforward to alter the device functionality.

With the ever-increasing need for higher data rates and stable performance, SDR systems

importance is growing. In addition, it is vital to provide communication services globally including

rural and poor areas. This thesis investigates SDR systems to provide the rural communities in the

developing countries with cheap and basic telecom services such as voice communication. Many

governments and agencies in the developing countries are focusing on extending

telecommunications services into rural areas, as they seek to alleviate poverty, encourage

economic and social growth, and overcome a perceived ‘digital divide’.

SDR systems face three challenges; namely increased electric energy consumption, increased

resource utilization, and increased processing time [2]. There is a great opportunity to introduce a

cost effective communication network, by overcoming these challenges. This work is focused on

reducing resource utilization, to increase the number of the offered services per the system

deployed. Intuitively, this in turn will improve the power consumption. Because any system

module with same functionality and less resource usage, will consume less energy. However, the

processing time for the SDR system may increase due to the optimized modules. Therefore, a trade

off is needed to reduce the resource usage, while maintaining the real time requirements of the

SDR system. The contribution of this work is to address this tradeoff.

2

1.2 Related Work

The related work can be classified into two streams. The first stream is related to SDR

optimization under performance constraints, such as [3], [4], and [5]. The second stream, is related

to implementation of low complexity channel equalization techniques such as [6], [7], and [8].

Now, the first stream of related work is presented. In [3], the main motivation was to reduce the

energy consumption, and the complexity requirements to satisfy an embedded system needs.

Therefore, fixed point arithmetic was used to present an optimized WCDMA receiver. The merit

for this work was finding an analytical relation between the receiver performance, and the number

of bits needed to satisfy energy consumption constraints. Using this approach, the minimum data

width can be estimated with negligible performance degradation compared to floating point

arithmetic. However, to deduce the minimum data width one cannot reach closed form expression

for some equations. For SDR systems, it is impractical to update the performance equations each

time the system functions are modified.

In [4], the work highlighted the need to implement complex signal processing algorithms in fixed

point. The authors developed a metric to compensate for the loss in accuracy due to the conversion

from floating point to fixed point. That metric is system dependent, and needs to be dimensioned

carefully for each application.

In [5], the concept of scalable SDR was introduced for battery powered devices. To achieve the

two contradicting requirements of fast time to market and minimum energy consumption, a new

method was presented to deal with fixed point arithmetic. The new method considered the changes

in data format such as modulation scheme, and number of antennas. Accordingly data width can be

adjusted to save energy consumption of the battery. However, the savings in power consumption

came at the expense of increased resource utilization.

Now we move to the second stream of related work. In [6], the complexity was reduced by

observing that in communication systems the input data has shift structure. In [7], spectral

factorization was used to calculate the Decision Feedback Equalizer (DFE) coefficients in fast and

efficient way. In [8], a new Dichotomous Coordinate Descent (DCD) algorithm was developed to

solve the Recursive Least Squares (RLS) equations.

Related work proposed different solutions, but they all have one thing in common, which is the

reduction of the total number of required mathematical operations. Hence, it is not straightforward

to compare between different DFE algorithms. In this work, we will introduce a new metric to

compare fairly between DFE algorithms, by considering the implementation of each mathematical

operation.

3

1.3 Thesis Scope

The focus of this work is to optimize the resource usage in a SDR system, taking into

consideration the real time requirements of embedded system. All simulations and experiments are

investigated for a generic SDR system. Without loss of generality, the proposed enhancements are

validated by a case study of a recent SDR system; namely the Open BTS project.

1.3.1 Generic block diagram of SDR

A SDR system is a generic communication system starting with user data layer and ending with

physical data layer [9]. The generality of a SDR system is due to its ability to reconfigure the

system modules without changing the hardware. This is obtained by adding control to a

communication system as shown in Figure 1-1. A SDR system consists of radio front end, base

band processing, control bus, and application. These modules are combined to map the required

data from the application into physical signal at arbitrary carrier frequency. The application is

modified during design and/or execution time by sending reconfiguration messages through the

control bus. Hence, to modify the functionality of the system, only the application is updated using

software configuration.

Without loss of generality, one SDR project will be studied in this work to show the effectiveness

of our proposed methods. This project is entitled "OpenBTS" which is an open source

implementation of a low cost mobile network. A complete mobile network can be implemented

using one Universal Software Radio Peripheral (USRP), with a personal computer, or using one

Embedded USRP. The embedded USRP is preferred because it can be deployed in practically, not

only for development purposes.

1.3.2 The OpenBTS Project

The OpenBTS is based on the embedded family of USRP, which is called E1x0
1
 family. The

embedded USRP family is generic and can be customized to perform the BTS functions. As was

described in Section 1.3.1, the OpenBTS project consists of three parts; namely the application, the

1
 E1x0 family has two members, the E100 and the E110

Application Base Band

Processing

Radio

Front End
Receive

Transmit

Control (re-configuration)

User

Figure 1-1 - Software Defined Radio Aspects

4

base band processing, and the radio front end. The application is the OpenBTS source C++ project

that can be downloaded and modified. The base band processing part is implemented on the

FPGA, as well as the ADC/DAC operating at a sample frequency of 52 MHz. The front end is

fully customized and can be flexibly modified by only changing a daughter board. Each daughter

board has a range of frequency operation. In this work any daughter board may be used. As an

example the Wide Bandwidth Transceiver (WBX) with range of operation 50MHz to 2.2 GHz is

used in our work. The OpenBTS project can be projected to generic SDR block diagram as shown

in Figure 1-2.

When the OpenBTS project is run, it was observed that the processing power of the ARM

CORTEX 8 can only support a single RF carrier with one call at a time instead of 7 calls. Since

there is room inside the FPGA for user expansion, some software functions are moved from CPU

into FPGA to reduce the CPU utilization. The functions that are assigned to the FPGA in the

current OpenBTS project can be summarized as follows:

• Digital Up Conversion (DUC),

• Digital Down Conversion (DDC),

• Bus Interfacing using General Purpose Memory Controller (GPMC), and

• Control functions

o Daughterboard Control

o Testing and monitoring

Channel equalization, and its pre-processing functions will be moved to FPGA, because they have

the highest execution time. Since the CPU and FPGA communicate through the VITA Radio

Transport (VRT) protocol, it should be noted that communication will not be changed in order to

avoid communication overhead. The communication overhead can increase the processor

utilization and outweigh the benefit of moving functions to the FPGA.

ARM Cortex8

Processor

OpenBTS C++

Project

Application

DAC

ADC

FPGA

Sample rate

Conversion

Daughter

Board

WBX board

RF Front end Base band processing

Figure 1-2: OpenBTS block diagram as a SDR system

GPMC Bus

5

1.3.3 BTS Performance Improvement

A new process is proposed to design any new SDR system, or add features to an existing one. This

process will be applied to the OpenBTS project to show its effectiveness. A simulation based

approach is chosen because it is more adequate to the nature of programmable SDR systems in

terms of supporting new features in short design cycle, and coping with fast market changes. The

added value of this process is the link between system performance and computational accuracy. A

similar method was proposed in [10] using an analytical approach. The analytical approach was

chosen there because it needed less execution time. However, obtaining closed form expressions

for each application is not straightforward, and may have to be solved numerically. Therefore, the

increase in problem complexity may outweigh the decrease in execution time. Moreover, a SDR

system needs to be flexible to changes in system functions. It is impractical to update the

performance equations each time the system functions are modified.

Moreover, the design process enables both the system architect, and the designer to discover

modules that affect system performance in terms of resource usage, such as channel equalization.

Therefore, a great attention is paid for selection and implementation of channel equalization

module. A novel metric is developed to compare fairly between different channel equalization

algorithms. Significant resource savings can be accomplished by using the proposed metric.

Finally, a new method is developed to implement channel equalization algorithms efficiently. It is

usually advised to avoid using algorithms containing division operations [11]. This is advised to

save resource usage when the algorithms are implemented in programmable devices. However,

using the proposed method, it is permitted to use the division process for implementing

equalization algorithms. Hence, it is now permitted to use advanced equalization algorithms in

terms of channel tracking capability, containing division operations under reduced complexity

constraints.

The contribution of this thesis is summarized by the following three points

• A new simulation based process to design any SDR system under development, or add features

to an existing one.

• A novel metric to evaluate the complexity of different DFE is introduced which can

significantly reduce the effort to choose a suitable algorithm for implementation.

• A new method is proposed to implement the division process with minimum resource usage.

6

1.4 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 1, a case study of SDR systems is

presented; namely Open BTS project. Open BTS is explained briefly to highlight the available

opportunities to optimize the current system performance, using the proposed design process.

In Chapter 2, a new process is proposed to design any new SDR system, or add features to an

existing one. In Chapter 3, a comparison is accomplished for an important module of SDR

communication system. This module is the channel equalizer. The importance of this module

comes from the fact that it consumes high resource utilization relative to other modules in the

system. In Chapter 4, simulation and experimental results of the methods developed for SDR and

channel equalization are detailed. Finally, the conclusion of this work is presented in Chapter 5.

1.5 Published Papers

Two research papers have been published. The first was published in AICT 2013 in Rome, Italy:

• S. Yassin, and H. Tawfik, “Reduced Complexity Decision Feedback Channel Equalizer

using Series Expansion Division”, The Ninth Advanced International Conference on

Telecommunications, June 2013, pp. 219-223.

• http://www.thinkmind.org/index.php?view=article&articleid=aict_2013_10_10_10064

The second was published in ICONS 2014 in Nice, France:

• S. Yassin, I. R. Kamel, and H. Tawfik " A New Design Process to Reduce Resource

Usage in SDR Systems", The Ninth International Conference on Systems, Feb. 2014,

pp.1-5.

• http://www.thinkmind.org/index.php?view=article&articleid=icons_2014_1_10_40017

7

Chapter 2 SDR Resource Usage

Optimization

One of the important properties of a SDR is the flexibility in adding new, or modifying current

features of a communication system. In order to make use of this property, any added features

should not alter the performance of a communication system. Hence, the system performance

should be monitored before and after the addition of new features. This chapter presents a design

process to achieve this requirement.

The aim of the design process is to calculate an optimum data width that can be used without

affecting the system performance. A metric will be developed to compare between system

performance in floating, and fixed point representation. The proposed design process is outlined in

the flowchart shown in Figure 2-1. The flowchart is similar to the data width optimization

performed by Digital Signal Processing (DSP) engineers [3]. The added value of this work, is the

application of the optimization process into SDR systems. Moreover, the proposed design process

provides the link between system performance and resource usage.

Software Profiling to obtain

execution time and calling frequency

Yes

Simulation using double floating

point number representation

Calculate initial value for data width

Is system

Performance met?

Roll back last data width

and finish.

No

Simulation using fixed point number

representation

Reduce

data width

Figure 2-1: Flow chart of the proposed design process

8

2.1 Proposed design process

Usually, the data width is calculated once for any system under development [9], [11]. In the

design process it is proposed to calculate the output data width for each block within the system.

The data width is optimized by allocating proper number of bits to the integer part iwl, and the

fraction part fwl. The design process contains five steps as shown in Figure 2-1, which will be

described next.

The first step is to determine the utilization of processing power by each system function. This is

achieved by software profiling
2
. Software profiling is used to measure two factors for each system

function; namely its execution time, and the number of times it is called. Both factors are needed to

avoid optimizing one function with high execution time when it is only called few times. This can

be illustrated by a simple example as shown in Figure 2-2.

At the top of Figure 2-2, the execution time and calling frequency are plotted for two functions.

Function 1 and Function 2 have the same execution time, and different calling frequency. In the

bottom of Figure 2-2, the multiplication between execution time percentage, and calling frequency

is plotted for the two functions. It can be observed that Function 1 has 28% of CPU resources,

while Function 2 has only 8% of CPU resources.

The second step is to simulate the system performance using double floating point number. It is

efficient to use floating point numbers, when a large dynamic range is required [10]. The dynamic

range is an important factor in a digital receiver, and is defined as the ratio between the largest and

the lowest signal amplitudes. During the system simulation, the performance metric can be chosen

to be either Bit Error Rate (BER) [10], or Signal to Noise Ratio (SNR). In this work, BER is used

for comparison, because it can be accurately measured.

The third step, is to determine an initial data width for fixed point simulation as will be discussed

in Section 2.2. This initial value will be optimized in the following steps.

The fourth step, is to simulate the system and obtain performance curves using fixed point data

width similar to Figure 2-3. The curve for BER versus SNR will be used to compare the

performance of both the fixed point, and the floating point systems.

2
 The details of software profiling are deferred to Appendix A.

9

Figure 2-2: Example on software profiling to start the design process

The fifth step, is to compare between the BER curves obtained in steps two and four, as shown in

Figure 2-3. By comparing both BER curves, the required increase in SNR to obtain the same BER

value can be calculated. The required increase Ԑ in the SNR can be calculated using Equation

(2.1).

Ԑ = ����� 	− 	���
, (2.1)

where SNR0, SNRfp are the SNR for floating point, and fixed point, respectively. The value of Ԑ is

a design parameter that is chosen arbitrarily. When the system is desired to have the same BER

value for both fixed point and floating point, Ԑ is set to minimum value close to 0 dB. For further

savings in resource usage, Ԑ is increased. The fifth step proceeds by decreasing SNRfp − SNR0. If
the difference SNRfp − SNR0 is still smaller than Ԑ, then reduce the data width (iwl, fwl). Otherwise,

roll back previous value of data width and proceed to the end of the process.

0

10

20

30

40

50

60

70

80

90

100

1 2
Function Id

Execution Time %

Calls %

0

10

20

30

40

50

60

70

80

90

100

1 2
Function Id

Execution Time % * Calls %

10

Note that the data width is reduced gradually by reducing the integer part iwl by one bit at a time,

until its minimum value is obtained. Afterwards, the fraction part fwl is reduced by one bit at a time

until its minimum value is obtained.

Figure 2-3: Illustrative example for step 5 of the design process

2.2 Dynamic range estimation

To estimate the initial value of data width a signal flow graph for the SDR system under

development should be constructed, as shown in Figure 2-4. Afterwards, the dynamic range can be

estimated for both receiver and transmitter chains. The initial value for data width will be

calculated for receiver chain because it is more complex than the transmitter in terms of the

required number of functions. Without loss of generality, the same method can be applied to

transmitter chain to calculate its initial data width.

10 11 12 13 14 15 16 17 18 19 20
10

-2

10
-1

10
0

SNR (dB)

B
E

R
 (

%
)

Floating point

Fixed point

ε

11

For the receiver chain, the points of interest are highlighted and marked as Pi where 1< i < N,

where N is the number of blocks with different data width. Next, the initial value of data width can

be estimated by observing each point in the receiver chain. At point P1, the data width is the

precision of the front end Analog to Digital Converter (ADC), such that

���� = �����������. (2.2)

At point P2, the data is prepared for base band processing by reducing its sampling rate using the

decimation process. The input stream sampling frequency is reduced by an integer factor called

decimation factor R, even though only the sample rate is changed, and not the bandwidth of the

signal. The input signal bandwidth must be filtered to avoid aliasing. Therefore, the decimation

process requires an increase in the data width to maintain proper number of bits per sample. The

increase in data width can be calculated, depending on the decimation method of choice. One

example is the Cascaded Integrated Comb (CIC) filter. The input signal is fed through one or more

cascaded integrator sections, then a down sampler, followed by one or more comb sections [12].

The increase in the data width will be dependent on the differential delay M of the comb section,

and the number of blocks N as in Equation (2.3), where Ceil(A) rounds to the nearest integer

greater than or equal to A.

���� = ���� + 	!"#�(� ∗ 	 log�() ∗ �)). (2.3)

At point P3, the timing and phase changes relative to the original transmitted signal are estimated.

This includes correlation operation, which is composed of addition, shift, and multiplication

operations. The multiplication operation particularly leads to the most significant increase in the

input data width, which is proportional to the multiplier width n1, and the multiplicand width n2 as

shown in Equation (2.4).

���. = ���� +	/(0� + 0� 	− 1).	 (2.4)

Decimation Timing &

Phase

Alignment

Interpolation

Command

Control

Data

Streaming

P2 P3

P4

Application

Specific

Functions

P1

From

ADC

To

DAC

Figure 2-4: General block diagram for SDR systems

Control for reconfiguration

To

Embedded

Processor

12

At point P4, application specific functions can also increase the input data width, and may alter the

numerical stability due to the use of fixed point such as channel equalization. The data width for

this block must maintain numerical stability of the SDR system. In case of channel equalization,

the data width should result in quantization noise power that will not alter the computation of the

Mean Square Error (MSE) of the equalization algorithm [11]. To illustrate how to maintain

numerical stability of equalization algorithm, one channel equalization algorithm, namely the

Recursive Least Squares (RLS) is considered.

To maintain numerical stability of RLS, data width should be increased as shown in Figure 2-5(a) .

A family of MSE curves is obtained for different data widths ranging from (iwl = 8, fwl = 14) bits,

to (iwl = 16, fwl = 14) bits. This family of curves can be used to conclude that the minimum value is

iwl = 12, because it keeps MSE decreasing as the time samples advance. To obtain the minimum

value for fractional part fwl = 14, a similar family of curves is developed in Figure 2-5(b), but with

fixed integer part, and variable fractional part. Finally, the chosen values can be compared to the

floating performance as shown in Figure 2-5(c).

Note that stabilizing the algorithm will increase the data width. Therefore, fast fixed order filters

can be used to reduce the data width [22]. To choose an equalizer algorithm with the lowest

resource utilization, a fair comparison between different equalizer algorithms was proposed

in [23]. In [12], the authors proposed to weigh the resource usage of equalizers by mapping the

algorithm in terms of mathematical operations. This fair choice will compensate for the increase in

data width. The data width for this block can be calculated as in Equation (2.5), where δ is the

required increase in the data width to maintain the numerical stability.

���2 = ���. + 	3. (2.5)

The value wlP4 can be used initially for the design process. To validate the design process, a case

study will be considered in Section 2.3.

13

(a)

(b)

(c)

Figure 2-5: Finite precision effects on channel equalization

0 10 20 30 40 50 60
-30

-25

-20

-15

-10

-5

0

Time samples

M
S

E

iwl=08, fwl=14

iwl=10, fwl=14

iwl=12, fwl=14

iwl=14, fwl=14

iwl=16, fwl=14

0 10 20 30 40 50 60
-30

-25

-20

-15

-10

-5

0

Time samples

M
S

E

iwl=14,fwl=08

iwl=14,fwl=10

iwl=14,fwl=12

iwl=14,fwl=14

iwl=14,fwl=16

0 10 20 30 40 50 60
-30

-25

-20

-15

-10

-5

0

Time samples

M
S

E

iwl=16,fwl=14

iwl=14,fwl=16

double

14

2.3 Case Study: Open BTS receiver chain

The case study is part of the Open Base Transceiver Station (OpenBTS) project [14] [15], which is

based on ETTUS research platform named Universal Software Radio Peripheral (USRP). This

platform provides a cheap alternative to standard BTS [16] [17]. Hence, rural communities can

enjoy cheap and basic telecommunication services using Global System for Mobile

communications (GSM) [32]. The five steps of the design process will be applied to transfer the

functions of synchronization from software to FPGA.

The first step is to perform software profiling for the OpenBTS system as shown in Figure 2-6.

The function identities of the OpenBTS system appear on the x axis, while the y axis shows both

the percentage of processor execution time, and the normalized number of calls of each function.

As previously mentioned, only those functions with high execution time and high calling

frequency should be optimized.

Figure 2-6: Software profiling result for OpenBTS

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Function Id

Execution Time % Calls %

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Function Id

(Execution Time %) * (Calls %)

15

It can be observed from Figure 2-6 that the functions with identities (7, 8, and 11) have the highest

utilization. These functions are grouped into one large function named “Analyze Traffic Burst”.

The purpose of the function is to calculate important parameters of the receiver, namely Time of

Arrival (ToA), Valley Power (VP), and channel estimation coefficients. The two parameters ToA,

and VP are used for synchronization between mobile station and base station.

The second step, is to simulate system performance using double floating point representation as

shown in Figure 2-7.

Figure 2-7: Simulation of system performance using floating point

6 7 8 9 10 11 12 13 14 15 16
10

-2

10
-1

SNR (dB)

B
E

R
 (

%
)

Floating point

16

The third step is to calculate an initial data width for simulation. A block diagram is constructed

for the “Analyze Traffic Burst” function as shown in Figure 2-8. At P1, the accuracy of the ADC

component in USRP is 12 bits. Then the input data width equals the ADC accuracy wlP1 = 12.

At P2, decimation is implemented using CIC filter with N = 4 stages and a variable decimation rate

log2(M * R) = 7 resulting in wlP2 = (12 + 28). However, the original OpenBTS design chose to

truncate this value to be wlP2 = (12 + 12) to save resource usage. This truncation will not affect the

design process, and can be ignored without affecting the obtained results.

At P3, the data width will be doubled due to the multiplication in the correlation function resulting

in a data width of wlP3 = (24 + 24 - 1).

• Correlation: This block has two input vectors with length of 16 and 27 samples respectively.

Each sample is represented by data width wlP2 = 24 bits. This block is implemented as a

Systolic Finite Impulse Response (FIR) with Adder Cascade as shown in Figure 2-10. The

Systolic FIR is implemented using internal blocks of Spartan-3A DSP FPGA named DSP48A

blocks using sixteen blocks. In general, the baseband signal is represented in complex number

notation. Therefore, the correlation block has to be able to accept complex inputs and produce

complex outputs. To achieve this, complex multipliers should be implemented. The complex

multiplication is a resource greedy operation. It has been optimized by using off the shelf ready

Xilinx components as will be discussed in Chapter 4.

Decimation Timing &

Phase

Alignment

Interpolation

Command

Control

Data

Streaming

P2 P5 P6
Cannel

Equalization

P1

From

ADC

To

DAC

Peak

Detection

Calculate Rx

Parameters

Correlation P2 P3 P4 P5

Figure 2-8: Block diagram for the function Analyze Traffic Burst

To

Embedded

Processor

17

At P4, the peak detection is divided into two sub blocks, namely Coordinate Rotation Digital

Computer (CORDIC) and interpolation. Peak detection can be described by a Finite State Machine

(FSM) as in Figure 2-11.

• CORDIC: The basic operation is to rotate the x-y axes to eliminate the y component. Hence,

the magnitude of the input vector is stored in the x component. The CORDIC block consists of

twelve stages. It is implemented by using ready blocks from original OpenBTS FPGA code.

However, in this work, the CORDIC is used differently to calculate the 2-norm of each sample.

This block is re-used from the original project with modifications to perform this new task. For

example, the gain of CORDIC block is compensated to obtain correct outputs.

• Interpolation: Interpolating at fractional spacing around an initially determined integer peak

index can enhance the accuracy of peak location as illustrated in Figure 2-9. Two early and late

points are evaluated around the initially estimated peak. The two points are initially separated

by one sample period. The early, late and peak locations are shifted towards the index of the

larger of the early/late samples by half the previous shift, and 3 new values; peak, early and

late, are interpolated using sinc function lookup table. The shift/interpolate process is

successively repeated, with the shift halved every repetition, till we get a peak location when

the early and late values are almost equal. After 8 repetitions, the peak location is determined

with a resolution of 1/256 of one sample period.

18

Figure 2-9: Accuracy improvement of peak location

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Peak location

before

interpolation

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X= 4.6

Y= 4.5Peak Location

after

interpolation

19

Figure 2-10: Systolic FIR with Adder Cascade [27]

Idle

CORDIC

Interpolation

Output Ready

Figure 2-11: FSM describing the Peak Detect block

20

A SINC function with 1/256 resolution is required by GSM system [32]. This SINC function has

maximum integer value of 1, and minimum value of 1/256. Hence, a SINC can be represented with

only 8 bits without increasing the data width. Yet, we choose to represent the SINC function by

the same data width as wlP2 = 24 to reuse components from the correlation module. Now, the data

width of multiplier equals wlP3 = 47, and the data width of multiplicand is 24. Therefore, the initial

value for data width in the simulation will be wlP4 = (47 + 24) = 71 bits. The initial value will be

optimized by repeating steps four and five until the performance condition is violated as was

detailed in Section 2.1.

The fourth and fifth steps are performed by simulation. The simulation is used to calculate BER

curve for different values of SNR as shown in Figure 2-12. The graph with solid line and ‘o’

marker is calculated when all variables are represented in floating point. The design process starts

by choosing Ԑ= 0.2 dB to obtain system performance similar to the case of floating point

arithmetic. This results in a minimum data width of (iwl = 62, fwl = 4) bits, which is shown in the

curve with the solid line and ‘x’ marker. It can be observed that for the same BER value, the SNR

difference between the two curves is less than 1 dB. This was expected because Ԑ is small.

If the system performance is relaxed to reduce resource utilization, the same process can be run

again with Ԑ = 2 dB, resulting in data width of (iwl = 52, fwl = 2) bits. It should be mentioned that

the advantage of using fixed point is twofold. First, the data width can be minimized at different

points of the receiver chain. Second, all fixed point mathematical operators will consume less

resources than floating point operators [13].

Figure 2-12: Simulation results for different values of Ԑ

6 7 8 9 10 11 12 13 14 15 16
10

-2

10
-1

SNR (dB)

B
E

R
 (

%
)

Floating point

iwl=62, fwl=4

iwl=52, fwl=2

6 7 8 9 10 11 12 13 14 15 16
10

-2

10
-1

SNR (dB)

B
E

R
 (

%
)

Floating point

iwl=62, fwl=4

iwl=52, fwl=2

21

2.4 Simulation Parameters

The results obtained in Section 2.3 are validated by developing a simulation model using

Mathworks tool Simulink Matlab v7:12 [29]. The model consists of transmitter, channel, and

receiver.

• The transmitter: consists of random data source generator, GSM burst formatter, and digital

up converter.

• The channel: is a Rayleigh fading channel, with variable fractional delay, and Additive White

Gaussian Noise (AWGN). This channel model [14] can be used to simulate the system for the

cases of typical urban, and rural areas as shown in Figure 2-13.

Figure 2-13: Channel model

• The receiver: consists of digital down conversion, timing and phase alignment, channel

equalization, burst de-formatter, and bit error rate calculator.

One of the advantages for using the simulation based approach, is the ability to track the system

behavior at different stages of the system. For the system under test, OpenBTS, it is important to

monitor the variations to the transmitted symbols during their journey to the receiver side as

tracked in Figure 2-14.

In Figure 2-14(a) the constellation of the transmitted signal is shown. Each symbol has three points

instead of one due to the Gaussian pulse shaping filtering of GSM. Therefore, instead of four

points only of Minimum Shift Keying (MSK) , there exist 12 points of Gaussian Minimum Shift

Keying(GMSK). In Figure 2-14(b), the constellation has been changed due to the channel. In

Figure 2-14(c), the analyze traffic has extracted the receiver parameters only, but the receiver

parameters have not been used yet. Therefore, the constellation is still not useful to detect the

original transmitted symbols.

In Figure 2-14(d), a serial receiver is used to enable the detection of GMSK by a Binary Shift

Keying (BPSK) demodulator. This idea is attributed to Proakis [21]. It can be observed that now,

the constellation points have been grouped into almost two groups, one to the right of the y-axis

and the other is to the left of the y-axis as in Figure 2-14(d).

22

In Figure 2-14(e), to improve the error rate, the two groups should be sent away from the y-axis. In

this last graph, the constellation points are moved away from the y-axis, and located into exactly

two groups. The two groups will be demodulated using a simple BPSK modulator.

By the end of this chapter, we have applied the SDR design process in a real application, which is

the OpenBTS system. Functions that have the largest processor utilization was identified, and

implemented in fixed point representation. The fixed point presentation was based on optimum

data widths from resource usage point of view. During our investigation in SDR systems, we found

that the channel equalization is a critical system component from the implementation point of

view. A separate study will be presented in the next chapter to enable smooth integration of

channel equalization inside SDR system with optimum resource usage.

(a) Transmitted signal constellation

23

(b) Signal received at channel output

(c) After performing "Analyze Traffic Burst"

24

(d) After rotation

(e) At the output of channel equalization

Figure 2-14: The signal constellation at different receiver stages

25

Chapter 3 Reduced Complexity Channel

Equalization

In the previous chapter, the functions that have the largest utilization were identified. These

functions are the correlation, CORDIC, and channel equalization. The implementation of channel

equalization in either software or on FPGA is not straightforward [8]. Therefore, this chapter is

dedicated to make a survey of channel equalization techniques, and to highlight the challenges in

their implementation. The most important challenge is to evaluate the complexity of a chosen

equalization technique. The main focus of this chapter is to evaluate the computational cost or

complexity for DFE that is generic enough to be used with any algorithm and structure.

The work in this chapter is twofold. First, a new metric to evaluate the complexity of different

DFE is developed. This would decrease the effort to choose a suitable algorithm to be

implemented. Second, DFE algorithms containing division operations consume large chip area,

and it is advised to avoid them for implementation in programmable devices [11]. This work

proposes a new method to implement division process. Hence, it is now permitted to use DFE

containing division operations under reduced complexity constraints.

3.1 Why Channel Equalization

Inter Symbol Interference (ISI) is a common phenomenon encountered when recovering band

limited channels. ISI occurs if modulation bandwidth increases beyond the channel coherence

bandwidth [19]. Channel equalization is used to compensate for ISI at the receiver to decrease the

bit errors. In the family of DFE equalizers the previous output decisions influence the current

estimated symbol [20]. Therefore, DFE has better tracking performance than the family of linear

equalizers when the channel has severe distortion and many nulls in the pass band. Both linear, and

non-linear equalizers are identified by a structure, and an algorithm as shown in Figure 3-1.

26

The structure of DFE may be linear transversal or lattice. Both types will be treated in a similar

approach to evaluate their complexity. The choice of an algorithm to update the equalizer weights

is of great importance. Rate of convergence, misadjustment, computational complexity, and

numerical properties are used to evaluate different algorithms [19]. A comprehensive survey on

DFE can be found in [20].

3.2 Complexity as Number of operations

Let N be the total number of forward and backward taps of DFE and consider two channel

equalization algorithms A and B. Algorithm A has O(7N) multiplications and two divisions, while

algorithm B has O(8N) multiplications and one division. Note that O(7N) represents that the total

number of an operation is dominated by a term that is seven times the number of taps in DFE. It is

not straightforward to determine which algorithm has lower computational cost. Hence, it is

required to find a metric or weighting score for each basic arithmetic operation to be able to

determine the overall computational cost. The value of the weight score will represent the overall

complexity of DFE. A lower weight score corresponds to reduced complexity.

In previous work where the complexity of DFE is addressed, the weight score is reported as the

number of basic mathematical operations [7], [8], and [15]. The complexity of DFE is usually

reported for real data and linear filtering. These results are extended to include complex data,

which is the general case for communication systems [21] as shown in Table 3-1. It is important to

know that the computational cost of DFE is the same as linear filtering for the same total number

of taps [22]. Hence, the calculations are not only applied for linear filtering but also for the DFE

problem.

Figure 3-1: Channel equalization classification

Decision Feedback

Equalizer

Structure

Algorithm

Transversal

LMS,

RLS,

FTF,

FAEST,

Fast Kalman

Lattice

A Priori,

Posterior

27

Algorithm × + ÷

Conventional [20] 4N2 + 16N

+ 1

4N2 + 12N

− 1

1

A priori lattice [11] 64N 32N 32N

FAEST [11] 28N + 6 28N + 2 5

FTF [11] 28N + 10 28N + 1 3

Fast Kalman [11] 36N + 2 32N + 1 2

ERLS-DCD-16 [8] 12N 134N 0

LMS [20] 8N + 2 8N 0

Table 3-1: Mathematical operations for different equalization techniques

Candidate algorithms will be chosen to represent the families of conventional Least Mean Square

(LMS), conventional RLS, fast fixed order, lattice, and a recent study [8] of RLS based on Decent

Coordinate Descent (DCD) iterations. Each candidate algorithm is generic enough to represent its

family. The same procedure can be used to calculate the weight score for any other algorithm. It

will be shown in Section 3.5 how the proposed metric simplifies the comparison between different

families.

(LMS) algorithm has the lowest computational cost [20]. Although LMS has the slowest

convergence rate, it will be used as a reference scenario for the proposed metric.

3.2.1 Fast fixed order family

Due to the desirable feature of fast fixed order family [22] with the complexity in the order of

O(N), three members of this family will be evaluated; namely Fast Transversal Filter (FTF), Fast

Aposterior Error Sequential Technique (FAEST) and Fast Kalman. Fast fixed order algorithms are

based on RLS; namely FTF, FAEST and Fast Kalman. Their complexity is in the order of O(N)

and their rate of convergence is similar to the conventional RLS, which is considered fast.

Therefore, they will be suitable for systems needing short iterations to reach optimum weights of

the channel to reduce transmission overhead [20].

3.2.2 Lattice RLS algorithms

The lattice RLS algorithms have a lot of desirable features such as improved numerical properties

and modularity [11]. However, lattice filters have higher computational requirements and cannot

be used in all applications [8]. They will be compared here with other families, only to show the

effectiveness of using the proposed metric.

3.2.3 Enhanced RLS with DCD

A recent study to reduce the complexity of RLS algorithm is based on DCD iterations [8]. The

RLS is expressed in terms of auxiliary normal equations with respect to increments of the filter

weights. Auxiliary equations are solved using line search methods. These methods have more than

28

one solution for conventional RLS problem. One of these solutions is chosen, which has the least

computational cost among its family namely; Exponentially Weighted RLS with 16 iterations per

sample (ERLS-DCD-16). However, the ERLS-DCD offer reduced complexity at the expense of

increased convergence time.

3.3 Complexity Weight Score

After describing the candidate algorithms briefly, it can be observed from Table 3-1 that it is not

straightforward to determine which algorithm has the least computational cost. Moreover, it is

impossible to arrange the rows in Table 3-1 in a descending order according to computational cost.

Therefore, we found a need to develop a new metric to evaluate the weight score of DFE. To

accomplish this goal, it is proposed to normalize all operations to a weight score as will be

discussed in this section.

As stated in [23] the simplest mathematical operation is the binary addition. Therefore, all

operations should be mapped to a finite number of additions. Then, the overall weight score of

DFE will be a linear summation of the weight score of all used operations. In order to accomplish

the normalization, we propose to analyze the low level details of each operation involved in DFE.

In the following, the normalization will be developed for the multiplication operation. This

normalization enables one to compare fairly between different families of algorithms. The three

major categories for multiplication [23] will be discussed:

• Shift and add multiplication

• Wallace tree multiplications

• Iterative array multiplication

3.3.1 Shift and add Multiplication

As described in Table 3-2 the binary multiplication may be performed by adding the multiplier to

the multiplicand and storing to a temporary result. Then the multiplier is shifted one bit to the left

and added to the previous temporary result [23]. To illustrate the multiplication of X and Y Let Ml

and Mc be the data width for multiplier and multiplicand respectively. The first partial product is

the binary multiplication of first bit in the multiplier y0 and each bit in the multiplicand xi where

the index “ i ” is in the range 0 to Mc-1. Recalling that binary multiplication is the logical “AND”

operation, the first bit of the first partial product equals x0y0, and the second bit of the first partial

product equals x1y0, up to xMc-1y0. The same procedure is repeated for each bit in the multiplier

until all of the partial products are generated.

29

Multiplicand

Multiplier
.........x3 x2 x1 x0
.........y3 y2 y1 y0

Partial

Products

...x3y0 x2y0 x1y0 x0y0
...x3y1 x2y1 x1y1 x0y1 ------

...x3y2 x2y2 x1y2 x0y2 ----- -------
.. ------------------

Final

Product
ZMc+Ml-1 ... Z2 Z1 Z0

Table 3-2: Multiplication using add and shift method

This method is the simplest from complexity point of view because it can be implemented using

only one adder and one shifter. However, from processing time point of view it is considered the

slowest to store the final result.

3.3.2 Wallace Tree Multiplication

Another multiplication method is the Wallace Tree [23]. It is based on parallel generation of the

required number of partial products. Afterwards this number of partial products is reduced. It is the

fastest multiplier scheme at the expense of increased computational cost.

3.3.3 Iterative array Multiplication

A method that is considered a good compromise between processing time and computational cost

is the iterative array of cells [23]. Hence, the iterative array multiplication will be used in the rest

of this chapter. However, the new proposed metric can be calculated for all multiplication methods

as will be discussed in the following paragraph. In general, the iterative array method is used for

short data lengths, which is the case for communication receiver [24], because its delay increases

with operand length.

Multiplication consists of a finite number of cells or building blocks. To perform one

multiplication, a finite number of building blocks are needed. let G be the number of building

blocks needed to perform one multiplication. In order to calculate the number of required building

blocks G, the following relation is used [23]

: = ;)< ×)>
?< × ?>

@, (3.1)

Where and ml and mc are the data width of the building block used. For example, using Ml = Mc =

12 and ml = mc = 4 will result in G = 9. Therefore, nine building blocks will construct one

multiplier, and each building block has two operands with data widths mc, ml respectively.

30

Figure 3-2: Structure of 4 x 4 multiplier using full adder cells

To complete the normalization, each building block is composed of finite number of 1-bit full

adder cell as shown in Figure 3-2. Hence, one multiplier building block is composed of [(ml - 1)

(mc) + 1] 1-bit full adder blocks. Therefore, the weight cost of multiplication Mscore can be

rewritten as

)��B>CDE = F$?< − 1* × ?> + 1 G × :. (3.2)

Equation (3.2) explains how to calculate the weight score of multiplication operation in terms of 1-

bit full adder cells. It can be observed that there exists an inverse proportional relation between the

data width of the building block and the number of building blocks G. As ml x mc increases, the

number of required building blocks G decreases as shown in Figure 3-3.

From complexity point of view, the weight score of multiplier is independent of the number of

used building blocks G. Intuitively it does not matter whether to use one large building block or

many small building blocks. In both situations the total number of 1-bit full adder cells are the

same as shown in Figure 3-3. However, from processing time point of view it is favored to use

smaller building blocks. This is due to the fact that the processing time to obtain a result is

proportional to the width of the building block [25].

31

It can be observed, from Figure 3-3, that using 3*3 building block generates an extra partial

product because the data width is not integer multiple of the building block data width. This extra

partial product will be zeros and may be skipped using a multiplexer [25]. In general, for any

Ml*Mc data width, and any ml*mc building block width the extra partial products will not affect

the final weight score. This is because the weight score is used for comparison based on the

number of used 1-bit full adder cells and not on the number of building blocks.

3.4 Division Using Series Expansion

In the literature of adaptive filtering such as [7] [20], the computational cost of DFE is reported as

the number of four basic mathematical operations in addition to the square root one. To reduce

complexity it is advised neither to use divisions nor square root, and as few multiplications as

possible [8]. In this work division will be permitted by reducing its weight score.

Division algorithms can be divided into two categories; the first category is based on iteration of

subtraction and the second is based on iteration of multiplication [9]. The first category is

performed as the normal pencil and paper division. For each iteration there is a remainder R,

divisor D, and quotient Q. The i
th

 bit of quotient qi can be calculated using the following equation

�$#* = �$# + 1* − HI × J × 10I . (3.3)

For example, the first iteration of division of 4000 over 3 will be 4000 − 1 × 3 × 1000, where R$i
+1* = 4000, q3 = 1, D = 3, and 10i = 103. Each iteration qi is chosen to be 0 or 1 according to the

negative or positive value of R$i* respectively. This method is considered slow because the delay

is proportional to the ratio between the divisor and the dividend. Therefore, we will consider

another category of division algorithms, which has less processing time. The second category of

division algorithms is based on the use of Maclaurin series expansion [23]. The division a/b will be

obtained as the multiplication of a and 1/b . Note that, according to the floating point standard [26],

mc

Figure 3-3: Compromise between number of blocks G and operands width ml, mc

G= 4 G= 5

mc

ml

ml

32

numbers are represented in either 32 or 64 bits with the format 1.x*radix
exponent

 where x is a

fraction. Therefore, one can use b = 1 + x and ignore higher orders of x, depending on the required

accuracy, in the familiar series expansion

1
N = 1

1 + O = $1 − O*$1 + O�*$1 + O2*$1 + OP*QRRRRRRRRRRSRRRRRRRRRRT
UEVCDW <C>XYICZ X[[DEBB

. (3.4)

All possible values of the reciprocal are stored in a memory element with its length proportional to

the data width. This would replace the need to true division with a simple memory allocation. The

memory score (Memoryscore) is the size of the table to store the values of 1/b. To estimate the table

size we recall that in typical communication systems [24] the data widths are in the range 8, 10, 12

or 14 bits. A memory block of size 2c is needed to store all values of a digital word with data width

c bits. Hence, the memory size is approximately 0.25, 1, 4 or 16 kbits.

One divider consists of a finite number of adders and multipliers to form the memory address. This

number varies according to the desired data accuracy. For 8-bit data accuracy, six multipliers and

four adders are needed to implement one divider and the calculation of the memory address is

shown in Figure 3-4. To locate the memory element address we need to calculate the powers x2;

x
4
; and x

8
 depending on the desired accuracy. For 8-bit accuracy, the weight score of one division

Dscore can be calculated according to the following relation

JB>CDE = 6 ∗)��B>CDE + 4 ∗ �^^B>CDE +)"?_��B>CDE . (3.5)

To increase the accuracy of the division operation, higher powers of x should be considered. For

increased accuracy, such as 12-bit, x
12

 can be calculated by multiplying x
4
 by x

8
, which have been

calculated earlier as shown in Figure 3-4. Consequently, one extra multiplier and two adders are

needed. The weight score can be modified accordingly such that

JB>CDE = 7 ∗)��B>CDE + 9 ∗ �^^B>CDE +)"?_��B>CDE . (3.6)

According to equations (3.5) and (3.6) the division is normalized into a finite number of 1-bit full

adder cells. In the following section results of weight score for different algorithms are presented.

33

3.5 Weight score simulation results

In this section, results obtained by computer simulation are presented. All equations are plotted

using Mathworks tool Simulink Matlab v7.12 [29]. The complexity weight score of different

algorithms is plotted against filter order N. First, the weight score of each operation is calculated

according to equations (3.2) and (3.5). For each algorithm the total computational cost is calculated

according to Table 3-1. Then the number of multiplications, and divisions in Table 3-1 is

multiplied by Mulscore and Dscore respectively. In this manner the computational cost is compared

fairly. The total weight score of each algorithm is the linear summation between the weight score

of additions, multiplications and divisions required for that algorithm. This procedure is repeated

for different values of equalizer order N as shown in Figure 3-5.

It can be observed from Figure 3-5 that the conventional RLS has much higher weight score

compared to all other graphs, which are located at the bottom of the y-axis. The weight score of

conventional RLS is almost 5,500 at N = 10. However, its complexity increases exponentially

afterwards until it reaches 20,000 at N = 20. It is observed that the LMS has the least weight score

over all values of N. This result was expected as was mentioned in Section 3.2. To be able to zoom

into different algorithms, the RLS graph will be removed as shown in Figure 3-6.

The ERLS-DCD-16 has slightly higher complexity than LMS. This result conforms with the

results in [5], which states that LMS complexity is proportional to 2N, while ERLS-DCD-16

complexity is proportional to 3N. Both FTF and FAEST have almost the same weight score over

N. It is important to observe that fast Kalman has higher weight score than FASET. This result is

not obvious without using the weight score metric because FAEST has 5 divisions while Fast

Kalman has 2 divisions only.

Figure 3-4: Division using series expansion for 8-bit accuracy

−

+ * *

+ * *

+ * *

1
X

1

1

X2

X4

X8
1
N

34

 By the end of this chapter, we will consider two FPGA experiments to verify the simulation

results experimentally. The two experiments are evidences of the real resource usage of the FPGA.

The first experiment is related to the new design process of Chapter 2, while the other is related to

channel equalization.

Figure 3-5: Complexity of DFE versus the total number of taps (with RLS)

Figure 3-6: Complexity of DFE versus the total number of taps (without RLS)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Conventional

FAEST

FTF

Fast Kalman

ERLS-DCD

LMS

35

Chapter 4 Experimental Results and

Guidelines

The proposed methods in Chapter 2, and Chapter 3 are validated by implementing their designs on

FPGA. The implementation results is collected and summarized in tables, to show the

effectiveness of the proposed methods. The implemented designs are simulated twice using

functional, and timing simulations. A functional simulation is performed on the input text files

only. The Integrated Development Environment (IDE) extracts the architecture and creates files

responsible to simulate the circuits, without mapping them into physical gates. On the contrary, a

timing simulation is performed on the design after it has been translated, placed, and routed into

physical gates.

Before the two Hardware Description Language (HDL) experiments are presented, implementation

guidelines are highlighted. These guidelines were discovered during the design time, and can be

used as general guidelines when one is programming for resource minimization.

4.1 Implementation Guidelines

4.1.1 Complex multiplication

In general, the baseband signal is represented in complex number notation. Therefore, the

correlation block has to be able to accept complex inputs and outputs. To achieve this, complex

multipliers should be implemented. This can be implemented using four real input multipliers as

shown in Equation (4.1).

�"$�* = �"$�*�"$N* − #?$�*#?$N*
#?$�* = �"$�*#?$N* + #?$�*�"$N*. (4.1)

To improve the resource usage one complex multiplier will be implemented using only three

multipliers as in Equation (4.2). This implementation will increase the number of used adders.

However, the resource usage of an adder is very small compared to one real multiplier.

�"$�* = F�"$�* − #?$�*G#?$N* + F�"$N* − #?$N*G�"$�*
#?$�* = F�"$�* − #?$�*G#?$N* + F�"$N* + #?$N*G#?$�*. (4.2)

36

4.1.2 Forming wide operands multipliers

To implement multipliers with MxM-bit operands, the built-in NxN-bit multiplier of the FPGA is

used. For instance, a 35x35 multiplier is composed of four 18x18-bit multipliers, as shown in

Figure 4-1. It should be noted that the optimization can be written manually, or automatically be

setting the proper synthesis options.

4.1.3 FIR Filters

The Systolic FIR is implemented using internal blocks of Spartan-3A DSP FPGA named DSP48A

blocks. Sixteen blocks are needed for the current software version of OpenBTS. This will be used

for correlation, and convolution operations.

It is worth mentioning that the 16 DSP48A blocks are programmed to have three groups as shown

in Figure 4-2. The first group is the bottom DSP48A block that accepts two external inputs, and its

output is shifted internally. The second group consists of the next 14 DSP48A blocks which

accepts only one external input, one internal input from the previous block, and one internal output

shifted to the next block. The third group consists of the last DSP48A block which is similar to the

previous group but with one external output. This is the actual final output of the correlation

process.

P[69:52] P[51:34] P[33:17] P[16:0]

BU = A[34:17] BL= 0,A[16:0]

BL * AL = 34 bits

[33:17] [16:0]

Sign Extend 36 Bits of '0'

Sign Extend 18

Bits of A[34]

 BL * AU = 35 bits

[34:17] [16:0]

17-bit Offset

Sign Extend 18

Bits of B[34]

 BU * AL = 35 bits

[34:17] [16:0]

34-bit Offset BU * AU = 36 bits

[35:18] [16:0]

AU = A[34:17] AL= 0,A[16:0]

Figure 4-1: 35x35-bit Multiplication from 18x18-bit Multipliers

37

Figure 4-2: Systolic FIR with Adder Cascade [2]

38

4.2 HDL implementation of Analyze Traffic Burst

4.2.1 Experiment Setup

In this experiment, the steps to move functions from the CPU to the FPGA are detailed. The

experiment is performed on USRP E110 device.

Step 1: Get the source files of the Universal Hardware Driver (UHD)

The UHD contains all software drivers that control the USRP device. The UHD enables to modify

the FPGA image, which comes as a pre-built binary in the OpenBTS. To download the latest UHD

release, use the "git" shell command

 git clone git://github.com/EttusResearch/uhd.git

The current version is of UHD is Mirror-release_003_007_001. The downloaded source files will

have the structure as shown in Figure 4-3. Following the arrows in Figure 4-3 starting from "fpga"

folder, any part of the FPGA code can be modified. In this experiment, we will modify the top

module of E110, which is located at the "top" folder. Strictly speaking, this file will be modified

"~/fpga/usrp2/top/E1x0/u1e_core.v", where "~" denotes the path where the UHD is installed.

Step 2: Locate the functions with the highest CPU utilization

Now we need to install OpenBTS project either on Windows or Linux Operating system. The

source code can be downloaded from the following web link "http://openbts.org/get-the-code/".

The functions with the highest execution time are shown in Table 4-1. The two functions

"equalizeBurst" and "convolve" will be moved according to software profiling. These two

functions are located in the file "~/ openbts/Transceiver52M/sigProcLib.cpp".

firmware

fpga

host

images

tools

usrp1

usrp2

usrp3

boot_cpld

control_lib

coregen

custom

extramfifo

fifo

gpif

gpmc

models

opencores

sdr_lib

serdes

simple_gemac

testbench

timing

top

udp

vrt

Figure 4-3: The folder structure of UHD code

39

Function Name Execution

time (us)

Comment

USRPifyVector 11.66 It cannot be moved because it is needed for interface.
equalizeBurst 7.9 It can be implemented
convolve 5.28 It consists the major part of "Analyze Traffic Burst"
unUSRPifyVector 1.81 It cannot be moved because it is needed for interface.

Table 4-1: Function execution times in OpenBTS project

Step 3: Determine the FPGA module to be modified

Before we determine where to place the moved function into the Verilog code, we need to

understand the general architecture of the FPGA code. Therefore, a low level block diagram was

constructed highlighting the main modules, and the connections between them as shown in

Figure 4-4. Each block indicates the file name where a function is defined, such as

"rx_frontend.v", and the instance name which uses that file such as "RxFrontEnd".

From the left of the diagram the signal is received from ADC and transmitted to the processor at

the right of the diagram. Data from ADC is concatenated with 4 zeros, then decimated through the

module ddc_chain0. Afterwards, the data is transmitted via VRT protocol [16], which is handled

by the block vita_rx_chain. Finally, the multiplexer is used to combine the two DDC chain data

(second chain is not drawn for simplicity) and forward them to the wishbone master (GPMC)

towards the processor.

wb_1master.v

GPIO Interface

GPMC Interface

rx_data_i[35:0]

From

ADC

To ARM

Processor

wb_clk

wb_rst

src0_rdy_i
dst0_rdy_o

rx_data_o[35:0]

dst0_rdy_o

src0_rdy_i

data_out[36:0]

data0_i[35:0]

mux_data_streams
fifo36_mux_ch.v

WishboneMaster0

src_rdy_o

dst_rdy_i

rx_frontend.v ddc_chain.v
ddc_chain0 RxFrontEnd

adc_a[15:0]

adc_b[15:0]

i_out[23:0]

q_out[23:0]

rx_fe_i[23:0]

rx_fe_q[23:0]

sample[31:0]
strobe

vita_rx_chain.v
vita_rx_chain0

rx_src_rdy_o

sample[31:0]

strobe

rx_i

rx_q

rx_dst_rdy_i

Figure 4-4: The code hiearchyinside the FPGA

40

Step 4: Check the FPGA project Hierarchy

After the code hierarchy has been explored, the new module can be added into the proper location.

The code snippet in Table 4-2 shows the added module "AnalyzeTrafficBurst". By observing the

clear mapping between the code hierarchy and the source code, the location to insert

"AnalyzeTrafficBurst" is determined. It is inserted before the last module in the receiver chain;

namely the VRT module,

///

// DSP RX 0

wire [31:0] sample_rx0;

wire strobe_rx0, clear_rx0;

wire [35:0] vita_rx_data0;

wire vita_rx_src_rdy0, vita_rx_dst_rdy0;

ddc_chain #(.BASE(SR_RX_DSP0), .DSPNO(0)) ddc_chain0

 (.clk(wb_clk), .rst(wb_rst), .clr(clear_rx0),

 .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),

 .set_stb_user(set_stb_user), .set_addr_user(set_addr_user), .set_data_user(set_data_user)

 .rx_fe_i(rx_fe_i),.rx_fe_q(rx_fe_q),

 .sample(sample_rx0), .run(run_rx0), .strobe(strobe_rx0),

 .debug());

AnalyzeTrafficBurst #(.WordWidth(16),.SamplesPerSymbol(1)) A0

 (.clk(wb_clk),.rst(wb_rst),.sampleIn(sample_rx0),.peakIndex(),.toa());

vita_rx_chain #(.BASE(SR_RX_CTRL0), .UNIT(0), .FIFOSIZE(10), .PROT_ENG_FLAGS(0),

.DSP_NUMBER(0)) vita_rx_chain0

 (.clk(wb_clk),.reset(wb_rst),

 .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),

 .set_stb_user(set_stb_user), .set_addr_user(set_addr_user), .set_data_user(set_data_user),

 .vita_time(vita_time), .overrun(rx_overrun_dsp0),

 .sample(sample_rx0), .run(run_rx0), .strobe(strobe_rx0), .clear_o(clear_rx0),

 .rx_data_o(vita_rx_data0), .rx_dst_rdy_i(vita_rx_dst_rdy0), .rx_src_rdy_o(vita_rx_src_rdy0),

 .debug());

Table 4-2: A code snippet illustrating the location of the added module

41

After "AnalyzeTrafficBurst" is added to the OpenBTS project, the Xilinx tools indicate the

instance among other modules. The instance is named A0 as show in Figure 4-5. Finally, generate

the FPGA image and report the resource usage in the next section.

Figure 4-5: The FPGA code hierachy from Xilinx tool

42

4.2.2 Analyze Traffic Burst FPGA Resource Report

The results of implementation are generated by Xilinx’s design tools v14.1; namely ISE, and ISIM.

The USRP is equipped with Xilinx’s FPGA named Spartan 3A-DSP 3400. The resource utilization

due to the mapped design is reported in Table 4-3.

When the design is implemented using floating point arithmetic, the synthesis operation fails to

map the design into the FPGA. This is expected because a floating point multiplier can consume

one, or more FPGA units [13] [31]. Therefore, we apply the two guidelines that were mentioned in

Section 4.1.1, and Section 4.1.2. The first guideline makes use of the internal DSP units in the

FPGA as shown in Figure 4-2, to implement the correlation. This results in saving the general

logic cells for the rest of the design. The second guideline eliminates the need to implement a wide

operand multiplier, in the order of O(35) bits. Alternatively, wide operand multipliers were built

based on internal FPGA 18x18-bit multipliers.

After applying the design process, the design can fit the function "Analyze Traffic Burst" into the

FPGA with resource usage less than 50%. The DSP48 blocks have relatively high utilization of

45%, because they are required to implement multiplication operation without using the logic

slices of FPGA [32]. Note that, the multipliers have 36 bits operands, and hence they can be used

for both cases of (iwl = 62, fwl = 4) and (iwl = 52, fwl = 2), with the same resource utilization.

Finally, the experimental results verify the validity of the proposed design process.

Resources

Used

iwl = 52

Available

%

Used

iwl = 62

Available

%

Slices 7538 23872 31% 9548 23872 40%

Flip Flops 9273 47744 19% 15278 47744 32%

4-LUTs 14074 47744 29% 18620 47744 39%

BRAMs 7 126 5% 7 126 5%

GCLKs 2 24 8% 2 24 8%

DSP48s 57 126 45% 57 126 45%

Table 4-3: Logic utilization for the function "Analyze Traffic Burst"

43

4.3 HDL implementation of RLS Equalizer

4.3.1 Experiment Setup

The test vectors for the channel equalization are extracted from the MATLAB system model that

was created in Chapter 2. Two input vectors are needed; namely received signal vector, and

training signal vector. One control input is needed to choose whether the equalizer works in

training mode or equalization mode. The simulation is run and the output vectors are stored in text

files. Finally, these vectors are compared to the output vectors from the MATLAB simulation.

4.3.2 RLS FPGA Resource Report

In order to verify the usage of the proposed division method experimentally, the resource

utilization for the Xilinx FPGA “Spartan3A-DSP1800” [27] is shown in Table III. Results are

obtained using Xilinx development suite ISE12:1.

Using the automatic synthesis procedure, the synthesizer fails to design the division process and

ends with error messages. This result was expected because the implementation of division

operation into FPGA is problematic [28].

To solve this synthesis failure, divisions are implemented as proposed using memory elements,

which is called Block RAM (BRAM). The synthesis process succeeded with chip utilization less

than 5%. In addition the guideline of Section 4.1.3 is applied, to make use of the internal DSP units

in the FPGA as shown in Figure 4-2. This will save the general logic cells for the rest of the

design, and will protect general logic cell from being digested by the multiplications and shift

registers in the tapped delay line.

Resources N = 8 N = 12 N = 16

Slice 127(1%) 177(1%) 206(1%)

D-FF 136(1%) 186(1%) 226(1%)

LUT-4 206(1%) 313(1%) 403(1%)

BRAM 1(1%) 2(2%) 4(4%)

DSP48 2(2%) 3(3%) 3(3%)
Table 4-4: FPGA resources utilization for channel equalizer

44

Chapter 5 Conclusions

SDR has a desirable nature of adding new features by reconfiguration. However, this will increase

the resource usage and may affect system performance. One solution was to implement algorithms

in fixed point number representation. In this work, a new design process was proposed to link

between system performance and computational accuracy using simulation. To validate the

proposed process a case study of the OpenBTS project was considered. It was not possible to

implement the case study into FPGA without applying the proposed process, while maintaining

system performance. Moreover, the system performance was relaxed to obtain more savings in

resource usage. Finally, the results were verified experimentally using FPGA implementation. It

was shown that the utilization of FPGA did not exceed 50 % of the available resources.

During our research, it was discovered that some system modules should be paid more attention

such as channel equalization. Choosing a channel equalization algorithm affects the total system

resources considerably. Therefore, a novel metric was developed to compare fairly between

channel equalization algorithms. In addition, a new method was presented to implement the

channel equalization algorithms that contain division operation. It was usually advised to include

division operation into FPGA designs. By using the proposed method, it was permitted to

implement division on FPGA.

The results here can be used by both academia and industry. For industry, the proposed model can

be deployed for different generations of mobile networks form 2G, 3G, and 4G. For academia, a

broad range of research areas can benefit from this work, such as design automation for SDR, and

open source networking.

This work was based on creating a simulation model for the system under improvement.

Therefore, we can extend this work by adding a library for common system modules such as

source coders and burst formatters. Another trend is to apply the same approach for recent mobile

networks such as the fourth generation mobile networking, and wireless fidelity. In addition,

instead of applying our work into base station only for OpenBTS, the concept of network in a box

can be achieved. Network in a box aims at collecting all mobile network elements into one device,

that can be programmed and operated with minimal installation effort.

45

References

[1] J. Bard, V. Kovarik “Software Defined Radio The Software Communications

Architecture”, First Edition, Wiley 2007, ISBN 978-0-470-86518-7

[2] G. Feng, C. J. Chiang, Y. M. Gottlieb, and R. Chadha “GNU Radio-based digital

communications: Computational analysis of a GMSK transceiver.” In Global

Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pp. 1-6. IEEE, 2011.

[3] H. Nguyen, D. Menard, and O. Sentieys, “Design of Optimized Fixed point WCDMA

Receiver”, European Signal Processing Conference, pp.993-997, 2009

[4] D. Novo, M. Li, B. Bougard, L. Perre, and F. Catthoor, “Finite Precision Processing in

Wireless Applications”, Design, Automation and Test in Europe (DATE), 978-3-9810801-

5-5, 2009

[5] D. Novo, B. Bougard, A. Lambrechts, L. Van der Perre, and F. Catthoor, “Scenario Based

Fixed-point Data Format Refinement to Enable Energy scalable Software Defined Radios”,

Design, Automation and Test in Europe (DATE), 978-3-9810801-3-1, 2008

[6] J. Cioffi and T. Kailath, “Fast, Recursive Least-Squares Transversal Filters for Adaptive

Filtering”, IEEE Transactions on Acoustics, Speech, and Signal processing, vol. 32, no. 2,

Apr. 1984, pp. 304-337

[7] N. Al-Dhahir, J. Cioffi, “Fast computation for Channel-Estimate based Equalizers in Packet

Data Transmission”, IEEE Transactions on Signal Processing, vol. 43, no. 11, Nov. 1995,

pp. 2462-2473

[8] Y. Zakharov, G. White, and J. Liu, “Low-Complexity RLS Algorithms Using Dichotomous

Coordinate Descent Iterations”, IEEE Transactions on Signal Processing, vol. 56, no. 7,

July. 2008, pp. 3150-3161

[9] F. Jondral, “Software Defined Radio Basics and Evolution to Cognitive Radio”, EURASIP

Journal on Wireless Communications and Networking, vol. 3, pp.275-283, 2005

[10] D. Menard, R. Serizel, R. Rocher, and O. Sentieys, “Accuracy Constraint Determination

in Fixed-Point System Design”, EURASIP Journal on Embedded Systems Volume 2008,

Article ID 242584

[11] H. Sayed, Fundamentals of Adaptive Filtering, 2
nd

 ed., New Jersey: Wiley-IEEE Press,

2003, pp. 600-620

[12] E. B. Hogenauer, ”An Economical Class of Digital Filters for Decimation and

Interpolation”, IEEE Transactions on Acoustics, Speech and Signal Processing(ASSP), vol.

29, no. 2, April 1981, pp. 155-162

[13] S. Yassin, and H. Tawfik,“Reduced Complexity Decision Feedback Channel Equalizer

using Series Expansion Division”, Advanced International Conference on

Telecommunications, June 2013, pp. 219-223.

[14] D. Burgess and S. Harvind, “The OpenBTS Project.”, http://openbts.org,Jan. 2014.

[15] L. Kashka , “Embedded software radio design with the E100 software radio peripheral”,

B.S. Thesis, Kansas State University, 2002

46

[16] P. Balister, “High Performance Interface between the OMAP3 and an FPGA”, Open SDR

April, 2011 <www.opensdr.com>

[17] M. Ettus, “Ettus Research Products and Roadmap”, ETTUS research, September 2011,

<www.ettus.com>

[18] J. Hennesy, and D. Patterson, ”Computer Architecture: A Quantitative Approach”, 2nd ed.,

pp. 18-29, 1996

[19] T. Rappaport, Wireless Communication: Priciples and Practices, 2nd ed., New Jersey:

Prentice Hall, 2001, pp. 308-318

[20] J. Proakis, “Adaptive Equalization for TDMA Mobile Radio”, IEEE Transactions on

Vehicular Technology, vol. 40, no. 2, May. 1991, pp. 333-341

[21] B. Bjerke, J. Proakis, K. Martin Lee, and Z. Zvonar, “A Comparison of GSM Receivers

for Fading Multipath Channels with Adjacent- and Co-Channel Interference”, IEEE Journal

on selected areas in communications, vol. 18, Nov. 2000, pp. 2211-2219

[22] Y. Yang, X. Gao, Z. Gao, and X. Wang, “An Classification-based Adaptive Decision

Feedback Equalizer for Rayleigh Multipath Channel”, Journal of Computational

Information Systems, vol. 8, no. 2, Jan. 2012, pp. 869-876

[23] M.J. Flynn, and S.F. Oberman, Advanced Computer Arithmetic Design”, 2
nd

 ed., New

York: John Wiley and Sons, 2001, pp. 113-125

[24] O. Dabeer, and U. Madhow “Channel Estimation with Low-Precision Analog-to-Digital

Conversion”, IEEE International Conference on Communications (ICC), vol. 2, May. 2010,

pp. 23-27

[25] R. Singh, P. Kumar, and B. Singh, “Performance Analysis of 32-Bit Array Multiplier with

a Carry Save Adder and with a Carry Look-Ahead Adder”, International Journal of Recent

Trends in Engineering, vol. 2, no. 6, Nov. 2009, pp. 83-86

[26] IEEE Standard for Floating-Point Arithmetic, “IEEE Std 754-2008”, pp.2-7, Aug. 2008,

doi: 10.1109/IEEESTD.2008.4610935.

[27] Xilinx Inc., “XtremeDSP DSP48A for Spartan-3A DSP FPGAs User Guide”, UG431

(v1.3), July. 2008, pp.32-34

[28] N. Sorokin, “Implementation of high-speed fixed-point dividers on FPGA”, Journal of

Computer Science and Technology, vol. 6 no. 1, May. 2006, pp. 8-11

[29] J. G. Proakis, M. Salehi, and G. Bauch, “Contemporary communication systems using

MATLAB”, 3rd edition, CengageBrain. com, 2012

[30] European Telecommunications Standards Institute, Digital cellular telecommunications

system (Phase 2+); Radio transmission and reception (GSM 05.05)

[31] A. Ramesh, A. Tilak, and A. Prasad, “An FPGA based high speed IEEE-754 double

precision floating point multiplier using Verilog”, International Conference on Emerging

Trends in VLSI, Embedded System, NanoElectronics, and Telecommunication System,

Jan. 2013, pp.1-5

[32] S. Yassin, I. R. Kamel, and H. Tawfik “A New Design Process to Reduce Resource Usage

in SDR Systems”, The Ninth International Conference on Systems, Feb. 2014, pp.1-5.

47

Appendix A: Software Profiling

What is profiling

The profiling process can determine the time spent by each function by a processor within any

software. In addition, it records the order of function calls during execution of the main program.

This information is vital to discover software functions that are slower than expected. Accordingly

the program can be modified to improve execution time. The profiling can also report the calling

frequency of all functions. The calling frequency is the number of function calls over a predefined

period of time. This may help spot bugs that had otherwise become unnoticed.

Profiling tools used

A software profiling tool can be classified according to its output as either flat, or call graph

profilers. A flat profiler computes the total execution time spent in each function and its percentage

of the total running time only. A call graph profiler shows the call times, and frequencies of the

functions, and also the call chains involved based on the caller function. As explained earlier

in Chapter 2, both execution time and calling frequency are needed to indicate the processor

utilization. In the following paragraph, famous call graph profilers are presented.

i. Gprof

The most commonly used profiler on Linux systems is the program gprof. Gprof comes bundled

with the open source GNU Compiler Collection (GCC). Profiling a program with Gprof involves

three steps:

1. Prepare for profiling by adding profiling options while compiling.

2. Execute the program under evaluation to collect data.

3. Run Gprof to analyze the results.

ii. Valgrind

Valgrind is a suite of tools for both debugging, and profiling. Valgrind is famous for its Memory

check tool which can be used to detect memory leaks and errors. However, Valgrind also includes

the Cachegrind, and Callgrind tools which can be used to construct a profile of a program.

Valgrind is basically a virtual machine or processor emulator. The program should be executed,

meaning that it is not a static profiler. Valgrind records information about the instructions the

program executes, and the memory accessed.

Since Valgrind is a processor emulator it does not need to augment a program to profile it. This

means that we don't need to prepare a special program for profiling. Therefore, special compilation

options such as the `-pg' can be removed. This also means that we can run Valgrind on programs

that we do not have the source code for. However, running a program through Valgrind will cause

the program to run around 50 times slower.

48

Differences between Gprof and Valgrind

Both techniques can be used to output flat profile, and call graph of the program under evaluation.

There are few differences between Gprof and Valgrind as shown in Table 5-1. Although Valgrind

output is much slower than Gprof, it will be used in our work because we don't need to compile the

source code. This is required to cope with the flexibility of a SDR system. The increased

execution time will not be a bottleneck, because the profiling is performed once at the start of the

design process.

 Gprof Valgrind

Speed relative to

original code

3x slower 50x slower

Result elaboration Less readable because results

are output to text files

More user friendly due to the

automatic creation of call graphs.

Static profiling Yes, the source code must be

compiled

No, it can be run without the source

code

Table 5-1: Comparison between two famous software profiling tools

 أ

 اا�مثل في أنظمة الراديو المعرفة برمجيً استخدام العتاد

 عدادإ

 سامح يس رشاد

 ليإرسالة مقدمة

 كلية الھندسة جامعة القاھرة

 كجزء من المتطلبات للحصول على درجة

 ماجستير في

 ا.لكترونيات و ا.تصا.ت الكھربية

 كلية الھندسة جامعة القاھرة

 العربية مصرجمھورية الجيزة،

٢٠١٤

 ب

 االعتاد ا�مثل في أنظمة الراديو المعرفة برمجيً استخدام

 عداد إ

 سامح يس رشاد

 ليإرسالة مقدمة

 كلية الھندسة جامعة القاھرة

 كجزء من المتطلبات للحصول على درجة

 ماجستير في

 ا.لكترونيات و ا.تصا.ت الكھربية

 تحت اشراف

 الدكتور ا�ستاذ الدكتور
 حسن فھميحسام علي محمد حازم توفيق

ا�ستاذ بقسم ا.لكترونيات وا.تصا.ت
 كلية الھندسة جامعة القاھرة

بقسم ا.لكترونيات المساعد ا�ستاذ
 وا.تصا.ت كلية الھندسة جامعة القاھرة

 كلية الھندسة جامعة القاھرة

 الجيزة، جمھورية مصر العربية

٢٠١٤

 ت

 ابرمجيً استخدام العتاد ا�مثل في أنظمة الراديو المعرفة

 عداد إ

 سامح يس رشاد

 ليإرسالة مقدمة

 كلية الھندسة جامعة القاھرة

 كجزء من المتطلبات للحصول على درجة

 ماجستير في

 ا.لكترونيات و ا.تصا.ت الكھربية

 :الممتحنين لجنة من يعتمد

 الخارجي الممتحن عوف أبو أحمد :الدكتور ا�ستاذ
 خلياالد الممتحن رجائي فكري مجدي :الدكتور ا�ستاذ
 الرئيسي المشرف توفيق حازم محمد :الدكتور ا�ستاذ
 المشرف فھمي حسن علي حسام :الدكتور

 كلية الھندسة جامعة القاھرة

 الجيزة، جمھورية مصر العربية

٢٠١٤

 ث

���� �� ��	
 �����:

�/
/�
�� �	
�� �
	���:

�
�� �	�����:

�/��/���� �	
�� �	�����:

�����
���� � ������ �����:

������ ��
���:

�.� .�� �� !"�# ��#�
� .$�% &�# $'(!��#

���
����:

�.� .)�(�*� ��#�
�.� .$+��
 �
� ����
�.� .�� �� !"�# ��#�
� .$�% &�# $'(!��#

���������:

 ����� ����
��:

 ,�-�� $./�0� ���1�� !��2�������
* ,
1��� ����
��
 ������� ������:

.����� 3��4 5� ��� 6.7#��* ,��
��� ����*�� , �8�� 6���1��
���� 9�8��� 6����
* ,
1��� ����
�� 3"%��
 � �� ����
��:

,�-��
1��� ����
��, :���
*� ������� ,�-�0 ,��
���
 �� .�(
�;� �< . ���1�� !��2��� ='(3
�7�� ,��
���* ��7�

 ,8'�2��� ����
�� ,�-�� &�*� ��
; &(���1�� �8�
��> �����
*�� ;7 .?'� ,��
��� ���� , �@� ,4�* &� ����2�� ��
/��

./� ,4�* .��1��� 6$����� 7��
�
�/A� 3��4 .����� B��.

�'�� ��" C';�� ='(3���" ��(
� .����� � 3���" !�# 6����'1��� ���"� ,��#�� $��
��;� 3"%�� ����
�� ,
1���

����
* .3�D(='(?�E &��� �%���2���
� ��� ����2
�1�A* ,@82�� &���F� ,�+���� ,�
�7�
�1�A* ?'� ����2�� $

&���� G
*��� .?�E� !�%� �����#�� � ���1�� &� ��%���
��;�� ����2 G
7�� � &���0� ,�+���� ��*;�* 3"%�� ����
��

,
1��� :���
6� ��7#�� ��� " ,���1��,��������."

 ID/ ����#� ����
* ,
1��� ����
�� ,�-�� J���� : E�8�� �4� � 6���1��
���� ?D%��� 6,�*
%��� ,4�;�� ?D%���

���'�1��. $ �E< .�1�� �
�� �
; ,8'�2� ,%����� ��#� ?D%���
���� ���1�� ,@��7� L� ���#&��� &�
2�� .��#'�

='(,�*	 .���� ='/� &� I�# ��(� 3��� ����2�� ,#����� $!�-��� �#�
��;��� .M+��� NE< ,��
��� !� �7#���

�%�� &(��
; 63���#��� � !��2��� !�-�
�%	 � �< "�����
* ����(, !�#�'� ����
��*."

 ج

� ����

,�-�� ����
��
1���, :���
*� �<
�;� .�(
 �� ,��
��� ,�-�0 ������� . ='(3
�7�� ,��
���* ��7�

 ����
�� ,�-�� &� ���1�� !��2��� ,8'�2���*�8� ���1�� ��
; &(�;7 �����
*��
��> . ���� ,��
��� ?'�

 ,4�* ./�
/�� �� ����2�� &� ,4�* , �@�B�� .����� 3��4
�/A�
�7� ,4�* 6$����� .��1��� . ,��<� $�A�

,�
��1�� ��7�*;��� � ,#��� ./� ,��< ��(�;4 $ �%��� ,��#�� &� �:���
* ,
1��� ����
�� ,�-��.

 3"%��
��;� $�� ,��#�� ���"� 6����'1��� !�# 3���" � .����� ��(
� 3���" ='(C';�� ��" ��'�

��� ����
������
* ,
1 . ,�+���� &���F� ,@82��
�1�A* ����2
� ��� �%���2��� &��� ?�E ='(3�D(

G
*��� &���� $ ����2�� ?'�
�1�A* ,�
�7� . ����2
��;�� ��%��� &� ���1�� � �����#�� !�%� ?�E�

 ��*� ��7#�� 6����
* ,
1��� ����
�� 3"%�� ��*;�* ,�+���� &���0� � G
7��"1��,�������� ,���."

����
* ,
1��� ����
�� ,�-�� J���� $��� ����#� ID/ :
���� ?D%��� 6,�*
%��� ,4�;�� ?D%���

���'�1�� E�8�� �4� � 6���1�� . NE< ='(C'>���* .����� ���*	 $.@ � 5��� ='(.��#�� &���

����#��� .

 ���1��
���� ?D%��� ��#� ,%����� ,8'�2� �
; �
�� .�1�� �E< $. ?D%��� .�'7� ��(��%��*

&�
2�� &���#���
/A�� �4
������ . &� ='/� .���� ,�*	 ='(.��#'� &�
2�� &������ O��7� ?�E�

��;��� �#� !�-��� $,#����� ����2�� 3��� � ��(I�# .� ,��
��� NE< M+��� �7#��� !� ,@��7���

 �< � ����
* ,
1��� ����
�� ,�-�� &�
�%	 ���(!��2��� � 6
���*����* 3���#��� ��
; &(�%��

"USRP" ��"�����
�� ����
��* !�#�'� $���(!�-�."

