
TIME-BASED FAIRNESS-AWARE MEMORY
SCHEDULING FOR MULTICORE PROCESSORS

By

Amr Saleh AboBakr Khalil Elhelw

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

TIME-BASED FAIRNESS-AWARE MEMORY
SCHEDULING FOR MULTICORE PROCESSORS

By

Amr Saleh AboBakr Khalil Elhelw

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

Under the Supervision of

Assoc. Prof. Hossam A. H. Fahmy Assist. Prof. Ali A. El-Moursy

Electronics and Communications Computer and Systems

Faculty of Engineering, Cairo University Electronics Research Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

TIME-BASED FAIRNESS-AWARE MEMORY
SCHEDULING FOR MULTICORE PROCESSORS

By

Amr Saleh AboBakr Khalil Elhelw

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

Approved by the

Examining Committee

__

Associate Prof. Hossam A. H. Fahmy, Thesis advisor

__

Prof. Amin Mohamed Nassar, Internal member

__

Prof. Elsayed Mostafa Saad, External member

(Professor at Faculty of Engineering, Helwan University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

Engineer: Amr Saleh Abobakr Khalil Elhelw

Date of Birth: 22/6/1986

Nationality: Egyptian

E-mail: amrkhalil4@hotmail.com

Phone: 01111372223

Address: Mohamed Elsharawy street, behind Mena Palace Hotel, Haram, Giza

Registration Date: 1/10/2010

Awarding:

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Associate Prof. Hossam A. H. Fahmy

Dr. Ali A. El-Moursy (Researcher at Electronics Research Institute)

Examiners:

Associate Prof. Hossam A. H. Fahmy (Thesis advisor)

Prof. Amin Mohamed Nassar (Internal examiner)

Prof. Elsayed Mostafa Saad (External examiner)

Title of Thesis:

Time-Based Fairness-Aware Memory Scheduling for Multi-core Processors

Keywords:

Multi-core; Memory Controller; Shared Resources; Memory Interference

Summary:
In the modern chip-multiprocessor system, concurrently executing

applications/threads shares common resource such as main memory. Memory
scheduling algorithms are developed to resolve memory contention between
competing applications/threads so that throughput is high and fairness of the overall
multi-core systems is guaranteed. Time-based Least Memory Intensive (TB-LMI)
scheduling algorithm is a new memory scheduling algorithm introduced to improve
multi-core processor’s throughput and fairness.

i

Acknowledgements

First of all I must thank ALLAH for his great mercy supporting me all the way till the
end. If it weren’t for his help, I wouldn’t have reached this point.

I would like to thank my advisors, Dr. Ali El-Moursy, and Prof. Hossam A. H. Fahmy for
giving me the opportunity to work in a fruitful research environment and for their continuous
guidance and support, as well as for their successful discussions and encouragements.

Most importantly, I would like to thank my parents and my brother for their continuous
encouragement, and my colleges in Egyptian Financial Supervisory Authority (EFSA) for
their support.

To my parents

ii

Table of Contents

ACKNOWLEDGMENT ...ii

TABLE OF CONTENTS ..ii

LIST OF TABLES ..iv

LIST OF FIGURES ..v

LIST OF PUBLICATIONS ...vii

LIST OF ABBREVIATIONS ...viii

ABSTRACT...ix

CHAPTER 1 : INTRODUCTION..1

1.1 SIMULTANEOUS MULTITHREADING ...1

1.2 SYMMETRIC MULTIPROCESSING ...2

1.3 MULTI-CORE PROCESSORS ..2

1.4 SMT/MULTI-CORE THROUGHPUT ENHANCEMENT TECHNIQUES .4

1.5 THESIS CONTRIBUTION...6

1.6 THESIS OUTLINE ...7

CHAPTER 2 : MEMORY ACCESS SCHEDULING IN LITERATURE8

2.1 MAIN MEMORY OPERATION MECHANISM ..8

2.2 SCHEMES FOR SINGLE THREADED SINGLE CORE PROCESSORS .10

2.3 SCHEMES FOR SMT AND MULTI-CORE PROCESSORS11

2.4 SUMMARY ..20

CHAPTER 3 : TIME BASED LEAST MEMORY INTENSIVE (TB-LMI) ...22

3.1 MOTIVATION..22

3.2 TB-LMI OVERVIEW ...23

3.3 TB-LMI SCHEDULING ALGORITHM..23

3.4 IMPLEMENTATION AND HARDWARE COST28

3.5 TB-LMI OPERATION AND REQUEST SCENARIO29

CHAPTER 4 : SIMULATOR ...34

4.1 OVERVIEW..34

4.2 MULTI2SIM SIMULATOR...35

CHAPTER 5 : EVALUATION METRICS AND WORKLOADS38

5.1 METRICS..38

5.2 SIMULATION ENVIRONMENT..40

5.3 WORKLOADS..41

CHAPTER 6 : RESULTS ...55

iii

6.1 SENSITIVITY ANALYSIS..55

6.2 MAIN MEMORY EFFECTIVE LATENCY..57

6.3 PERFORMANCE ANALYSIS...60

6.3.1 4-CORE..60

6.3.2 8-CORE..68

CHAPTER 7 : CONCLUSION AND FUTURE WORK78

7.1 CONCLUSION ...78

7.2 FUTURE WORK ..78

REFERENCES...80

APPENDIX A : BENCHMARKS ..84

A.1 PARSEC ..84

A.2 MEDIABENCH...84

A.3 SPEC CPU 2006 ..84

iv

List of Tables

Table 3.1: Hardware required for each bank memory controller29
Table 3.2: Hardware required for Meta memory controller29
Table 5.1: CPU specifications ...40
Table 5.2: L1 specification ..40
Table 5.3: L2 specification ..40
Table 5.4: DRAM chip parameters..41
Table 5.5: 8-core system workloads ..42
Table 5.6: 4-core system workloads ..42
Table 5.7: 4-core system workloads memory characteristics........................44
Table 5.8: 8-core system workloads memory characteristics........................44
Table 5.9: 8mem1 detailed histogram for memory bank 0 \ unlimited memory
bank queue ...45
Table 5.10: Memory characteristics \ 8 entries bank queue52
Table 5.11: Memory characteristics \ 16 entries bank queue52
Table 5.12: Memory characteristics \ 24 entries bank queue52
Table 5.13: Memory characteristics \ 32 entries bank queue54
Table 6.1: Main memory effective latency characteristics............................59
Table 6.2: Detailed IPC of 4mem2 in case of TB-LMI and FR-LREQ61
Table A.1: PARSEC Benchmarks ...85
Table A.2: Mediabench Benchmarks ..85
Table A.3: SPECint CPU2006 Benchmarks..86
Table A.4: SPECfp CPU2006 Benchmarks...87
Table A.5: Single core processor parameters ..88
Table A.6: Benchmarks MPKI ..89

v

List of Figures

Figure 1.1: SMT architecture.. 2
Figure 1.2: SMP architecture .. 3
Figure 1.3: Multi-core processors... 4
Figure 1.4: Multiple cache copies... 5
Figure 1.5: MSHR entry ... 6
Figure 2.1: Memory bank ... 9
Figure 2.2: DRAM FSM... 9
Figure 2.3: FR-LREQ ... 14
Figure 2.4: FLRMR .. 15
Figure 2.5: Modified_ROB... 16
Figure 2.6: FIQMR ... 17
Figure 3.1: TB-LMI in case warm-up cycles.. 25
Figure 3.2: TB-LMI in case SQ cycles ... 26
Figure 3.3: Threads priorities calculation in Meta memory controller............... 27
Figure 3.4: End of warm-up cycle .. 31
Figure 3.5: Bank memory controllers during SQ cycles 32
Figure 3.6: Bank memory controllers at the end of SQ cycles........................... 33
Figure 5.1: 4-core workloads histogram \ unlimited memory queue 43
Figure 5.2: 8-core workloads histogram \ unlimited memory queue 43
Figure 5.3: 8mem1 histogram \ 8 entries bank queue... 46
Figure 5.4: 8mix1 histogram \ 8 entries bank queue .. 47
Figure 5.5: 8mix2 histogram \ 8 entries bank queue .. 47
Figure 5.6: 8mem1 histogram \ 16 entries bank queue....................................... 48
Figure 5.7: 8mix1 histogram \ 16 entries bank queue .. 49
Figure 5.8: 8mix2 histogram \ 16 entries bank queue .. 49
Figure 5.9: 8mem1 histogram \ 24 entries bank queue....................................... 50
Figure 5.10: 8mix1 histogram \ 24 entries bank queue 51
Figure 5.11: 8mix2 histogram \ 24 entries bank queue 51
Figure 5.12: 8mem1 histogram \ 32 entries bank queue..................................... 52
Figure 5.13: 8mix1 histogram \ 32 entries bank queue 53
Figure 5.14: 8mix2 histogram \ 32 entries bank queue 53
Figure 6.1: Weighted speedup versus Maximum slowdown 8-core \ 8 entries

memory bank queue (SQ sensitivity analysis) ... 55
Figure 6.2: Weighted speedup versus Maximum slowdown 8-core \ 8 entries

memory bank queue (FR sensitivity analysis).. 56
Figure 6.3: Weighted speedup versus Maximum slowdown 8-core \ 32 entries

memory bank queue (FR sensitivity analysis).. 57
Figure 6.4: Main Memory Effective Latency Histogram for 8mem1 58
Figure 6.5: Main Memory Effective Latency Histogram for 8mix1 58
Figure 6.6: Main Memory Effective Latency Histogram for 8mix2 59

vi

Figure 6.7: Weighted speedup 4-core \ 8 entries memory bank queue 61
Figure 6.8: ANTT 4-core \ 8 entries memory bank queue 62
Figure 6.9: Maximum Slowdown 4-core \ 8 entries memory bank queue 62
Figure 6.10: Weighted speedup versus Maximum slowdown for 4-core \ 8 entries

memory bank queue.. 63
Figure 6.11: Weighted speedup 4-core \ 16 entries memory bank queue64
Figure 6.12: ANTT 4-core \ 16 entries memory bank queue 64
Figure 6.13: Maximum Slowdown 4-core \ 16 entries memory bank queue 65
Figure 6.14: Weighted speedup 4-core \ 24 entries memory bank queue65
Figure 6.15: ANTT 4-core \ 24 entries memory bank queue 66
Figure 6.16: Maximum slowdown 4-core \ 24 entries memory bank queue...... 66
Figure 6.17: Weighted speedup 4-core \ 32 entries memory bank queue67
Figure 6.18: ANTT 4-core \ 32 entries memory bank queue 67
Figure 6.19: Maximum slowdown 4-core \ 32 entries memory bank queue...... 68
Figure 6.20: Weighted speedup 8-core \ 8 entries memory bank queue 69
Figure 6.21: ANTT 8-core \ 8 entries memory bank queue 69
Figure 6.22: Maximum slowdown 8-core \ 8 entries memory bank queue........ 70
Figure 6.23: Weighted speedup 8-core \ 16 entries memory bank queue 71
Figure 6.24: ANTT 8-core \ 16 entries memory bank queue 71
Figure 6.25: Maximum slowdown 8-core \ 16 entries memory bank queue...... 72
Figure 6.26: Weighted speedup 8-core \ 24 entries memory bank queue 72
Figure 6.27: ANTT 8-core \ 24 entries memory bank queue 73
Figure 6.28: Maximum slowdown 8-core \ 24 entries memory bank queue...... 73
Figure 6.29: Weighted speedup 8-core \ 32 entries memory bank queue 74
Figure 6.30: ANTT 8-core \ 32 entries memory bank queue 74
Figure 6.31: Maximum slowdown 8-core \ 32 entries memory bank queue...... 75
Figure 6.32: Average Weighted speedup\different memory bank queue sizes...76
Figure 6.33: Average ANTT \ different memory bank queue sizes.. 77
Figure 6.34: Average Maximum slowdown \ different memory bank queue sizes.

.. 77

vii

List of Publications

Amr Elhelw, Ali A. El-Moursy, and Hossam A. H. Fahmy. Time-based least memory
intensive scheduling. In The 8th IEEE International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC-14), Aizu-Wakamatsu, Japan, September
2014.

viii

List of Abbreviations

ATLAS Adaptive per-Thread Least-Attained-Service
BW Bandwidth
CMP Chip-level Multiprocessing
CPU Central Processing Unit
DRAM Dymanic Random Access Memory
FCFS First Come First Serve
FIQMR Fair Issue Queue Most Related
FLRMR Fair Least Request Most Related
FR First Ready
FR-FCFS First-Ready First Come First Serve
FR-LREQ First-Ready Least REQuest
FSM Finite State Machine
Id Identification number
ILP Instruction Level Parallelism
IPC Instruction Per Cycle
IQ-based Issue Queue based
LAS Least-Attained-Service
LREQ Least Request
ME Memory Efficiency
ME-LREQ Memory Efficiency with Least REQuest
Modified-ROB_PF Modified Reorder buffer Prioritization Factor
MPKI Misses Per Kilo Instructions
MSHR Miss Status Holding Register
MSU Memory Scheduling Unit
OS Operating System
PAR-BS Parallelism Aware Batch Scheduling
RAM Random Access Memory
ROB-based Reorder Buffer based
RR Round-Robin
SCHED Stall Time Fair Memory
SMP Symmetric Multiprocessing
SMT Simultaneous Multithreading
SQ Schedule Quantum
TB-LMI Time-Based Least Memory Intensive
TCM Thread Cluster Memory
TLP Thread Level Parallelism
TMA Total Memory Access
TMAPB Thread Memory Access Per Bank
TPSR Thread Priority Storage Register

ix

Abstract

In the modern chip-multiprocessor system, concurrently executing applications/threads
shares common resource such as main memory. Memory scheduling algorithms are
developed to resolve memory contention between competing applications so that throughput
is high and fairness of the overall multi-core systems is guaranteed. This emphasizes the
importance of the memory access scheduling to efficiently utilize memory bandwidth.
Although memory access scheduling techniques have been recently proposed for
performance improvement, most of them have overlooked the fairness among the running
applications.

In this thesis, we present Time-based Least Memory Intensive (TB-LMI) scheduling that
address both fairness and system performance. The main idea of TB-LMI is to prioritize
threads according to their memory contentions every pre-defined period of cycles to improve
system throughput and to guarantee fairness. We evaluate TB-LMI on a variety of multi-
programmed workloads with different queue sizes of memory controllers and compare its
performance to six previously proposed scheduling algorithms. TB-LMI achieves the best
system throughput and fairness. Previously proposed algorithms were First-Ready First Come
First Serve (FR-FCFS) scheduling, First-Ready Fair Least-Request Most Related (FR-
FLRMR) scheduling, First-Ready Fair Issue-Queue based Most Related (FR-FIQMR)
scheduling, First-Ready Modified Reorder Buffer based (FR-Modified_ROB-based)
scheduling, First-Ready Least REQuest (FR-LREQ) scheduling and Thread Cluster Memory
(TCM) scheduling. TCM, FR-LREQ, and FR-FLRMR showed competitive results against the
new scheduling TB-LMI. On 8-core system, TB-LMI improves system throughput and
fairness on average by 4.22% and 11.7% respectively compared to TCM which was the
previous work that provides the best system throughput and fairness.

1

Chapter 1. Introduction

A Central Processing Unit (CPU) is typically referred to as a processor. A processor
contains memory caches, decoders, and execution units. Memory caches may be separated to
a cache for instructions (Instruction cache) and another one for data (data cache) or unified
caches where one cache for both instruction and data. Execution units such as Arithmetic
Logic Unit (ALU) are used in performing arithmetic or logical operations. In order to
increase processor’s throughput, recent processors are tending now days towards parallel
architectures. In early days, Operating Systems (OS) were developed to support
multiprogramming. Multiprogramming is a kind of parallel processing in which several
applications can run at the same time. In case of single CPU, OS executes part of one
program, then part of another. All programs are appeared to be executed at the same time.
Recent processors contain more than one CPU (core), allowing different applications to
execute in parallel such as Simultaneous Multi Processing (SMP), Chip-Level Multi
Processing (CMP), and Simultaneous Multi Threading (SMT) (described later). In order to
get the highest benefit from recent processors, running applications must have a lot of
routines that can run simultaneously. As an example a user may use the desktop to surf the
web, watch a video and play a flash game at the same time. In general, hardware these days is
trending toward highly parallel architectures.

This move resulted in increasing the number of threads that execute in parallel. All these
threads are competing for shared resources. One of these most important resources is system
main memory. While execution, each thread sends requests to the main memory to serve the
cache misses. This introduces the need of memory access schedulers to decide which requests
should be served first to either improve throughput or fairness or both.

1.1 Simultaneous Multithreading

In processor design, there are two ways to increase the on-chip parallelism: the first is
superscalar technique which tries to make full use of Instruction Level Parallelism (ILP); the
second is Thread Level Parallelism (TLP). Superscalar means that a processor tries to execute
multiple instructions at the same time within a single processor core. TLP means that a
processor tries to execute instructions from multiple applications/threads at the same time.

Some core components are duplicated in SMT. For example; an SMT core might have
duplicate resources of thread scheduling, so that the core looks like two separate processors
although it has a single execution unit. One of the SMT processors implementations is Hyper-
threading processors which were introduced by Intel [1]. A processor with Hyper-Threading
Technology consists of two logical processors per core. Each logical processor has its process
state (logical registers and program counter). Each logical processor acts as a single processor
where it can be individually interrupted, stalled, or directed to execute a specific application
independently from the other logical processor. As shown in Figure 1 Hyper-threading
processors, logical processors share the instruction cache, fetch queue, decoder, and L2 cache
but they have different execution unit.

2

Figure 1.1: SMT architecture

1.2 Symmetric Multiprocessing

SMP stands for a symmetric multiprocessor system in hardware and software
architecture. SMP consists of two or more identical processors that share common resources
such as main memory interrupt system, and I/O devices. Each processor has its own
Instruction cache, data cache, fetch unit, decoder, execution unit, and L2 cache. These
identical processors are implemented on different chip. Each processor has its own chip and
they share the common resources through a bus or a crossbar. Figure 1.2 shows SMP
architecture. One of the first SMP processors is that what was introduced by IBM s/360 series
in 1960s [2]. One of the main advantages of SMP processors are that if one processor fails the
other can handle system requests. Also, if one application is multithreaded it can use more
than one processor. Multithreaded applications may arise data inconsistency problem where
data required may be obsolete (wrong). It is possible to have multiple copies of any
instruction from a running application. One copy is in the main memory and a copy in each
cache. Cache coherence guarantee that the changes in any shared data is updated to all caches
and main memory. SMP disadvantages are its waste in power, energy, and area.

1.3 Multi-core processors

Multi-core processors are kind of processor that contains more than one core in one chip.
These cores have their own instruction cache, Fetch stage, Decode stage, data cache, and
execute stage but they share the same main memory and L2 cache. Figure 1.3 shows the
architecture of multi-core processors. Multi-core processors are classified into homogenous
multi-core which includes identical cores and heterogeneous multi-core that have non-
identical cores [3].

2

Figure 1.1: SMT architecture

1.2 Symmetric Multiprocessing

SMP stands for a symmetric multiprocessor system in hardware and software
architecture. SMP consists of two or more identical processors that share common resources
such as main memory interrupt system, and I/O devices. Each processor has its own
Instruction cache, data cache, fetch unit, decoder, execution unit, and L2 cache. These
identical processors are implemented on different chip. Each processor has its own chip and
they share the common resources through a bus or a crossbar. Figure 1.2 shows SMP
architecture. One of the first SMP processors is that what was introduced by IBM s/360 series
in 1960s [2]. One of the main advantages of SMP processors are that if one processor fails the
other can handle system requests. Also, if one application is multithreaded it can use more
than one processor. Multithreaded applications may arise data inconsistency problem where
data required may be obsolete (wrong). It is possible to have multiple copies of any
instruction from a running application. One copy is in the main memory and a copy in each
cache. Cache coherence guarantee that the changes in any shared data is updated to all caches
and main memory. SMP disadvantages are its waste in power, energy, and area.

1.3 Multi-core processors

Multi-core processors are kind of processor that contains more than one core in one chip.
These cores have their own instruction cache, Fetch stage, Decode stage, data cache, and
execute stage but they share the same main memory and L2 cache. Figure 1.3 shows the
architecture of multi-core processors. Multi-core processors are classified into homogenous
multi-core which includes identical cores and heterogeneous multi-core that have non-
identical cores [3].

2

Figure 1.1: SMT architecture

1.2 Symmetric Multiprocessing

SMP stands for a symmetric multiprocessor system in hardware and software
architecture. SMP consists of two or more identical processors that share common resources
such as main memory interrupt system, and I/O devices. Each processor has its own
Instruction cache, data cache, fetch unit, decoder, execution unit, and L2 cache. These
identical processors are implemented on different chip. Each processor has its own chip and
they share the common resources through a bus or a crossbar. Figure 1.2 shows SMP
architecture. One of the first SMP processors is that what was introduced by IBM s/360 series
in 1960s [2]. One of the main advantages of SMP processors are that if one processor fails the
other can handle system requests. Also, if one application is multithreaded it can use more
than one processor. Multithreaded applications may arise data inconsistency problem where
data required may be obsolete (wrong). It is possible to have multiple copies of any
instruction from a running application. One copy is in the main memory and a copy in each
cache. Cache coherence guarantee that the changes in any shared data is updated to all caches
and main memory. SMP disadvantages are its waste in power, energy, and area.

1.3 Multi-core processors

Multi-core processors are kind of processor that contains more than one core in one chip.
These cores have their own instruction cache, Fetch stage, Decode stage, data cache, and
execute stage but they share the same main memory and L2 cache. Figure 1.3 shows the
architecture of multi-core processors. Multi-core processors are classified into homogenous
multi-core which includes identical cores and heterogeneous multi-core that have non-
identical cores [3].

3

Figure 1.2: SMP architecture

In early 2000s, multi-core processors were developed and introduced by Intel, AMD and
others. Multi-core processors may have two cores (for example Intel Core Duo and AMD
Phenom II X2), four cores (for example Intel’s i5 and i7), six cores (for example AMD
Phenom II X6), eight cores (for example Intel Xeon E7-2820), ten cores (for example Intel
XeonE7-2850), and more [4].

One of the advantages of multi-core processors is its die size. Multi-core processors
require less area than SMP. In addition, multi-core processors allow higher performance at
lower energy. It was discovered that the multi-core processor chip is more energy efficient
than single large monolithic SMP [5]. In order to maximize the utilization of the computing
resources provided by multi-core processors adjustments are required for both the OS support
and to existing application software. As an example the Valve cooperation’s (American video
game development and digital distribution) source engine [6] offers multi-core support and
Crytek [7] (German video game Company) has developed multi-core support for the game
engine (software framework) CryEngine 2 to power their game.

Bus

3

Figure 1.2: SMP architecture

In early 2000s, multi-core processors were developed and introduced by Intel, AMD and
others. Multi-core processors may have two cores (for example Intel Core Duo and AMD
Phenom II X2), four cores (for example Intel’s i5 and i7), six cores (for example AMD
Phenom II X6), eight cores (for example Intel Xeon E7-2820), ten cores (for example Intel
XeonE7-2850), and more [4].

One of the advantages of multi-core processors is its die size. Multi-core processors
require less area than SMP. In addition, multi-core processors allow higher performance at
lower energy. It was discovered that the multi-core processor chip is more energy efficient
than single large monolithic SMP [5]. In order to maximize the utilization of the computing
resources provided by multi-core processors adjustments are required for both the OS support
and to existing application software. As an example the Valve cooperation’s (American video
game development and digital distribution) source engine [6] offers multi-core support and
Crytek [7] (German video game Company) has developed multi-core support for the game
engine (software framework) CryEngine 2 to power their game.

Bus

3

Figure 1.2: SMP architecture

In early 2000s, multi-core processors were developed and introduced by Intel, AMD and
others. Multi-core processors may have two cores (for example Intel Core Duo and AMD
Phenom II X2), four cores (for example Intel’s i5 and i7), six cores (for example AMD
Phenom II X6), eight cores (for example Intel Xeon E7-2820), ten cores (for example Intel
XeonE7-2850), and more [4].

One of the advantages of multi-core processors is its die size. Multi-core processors
require less area than SMP. In addition, multi-core processors allow higher performance at
lower energy. It was discovered that the multi-core processor chip is more energy efficient
than single large monolithic SMP [5]. In order to maximize the utilization of the computing
resources provided by multi-core processors adjustments are required for both the OS support
and to existing application software. As an example the Valve cooperation’s (American video
game development and digital distribution) source engine [6] offers multi-core support and
Crytek [7] (German video game Company) has developed multi-core support for the game
engine (software framework) CryEngine 2 to power their game.

Bus

4

Figure 1.3: Multi-core processors

1.4 SMT/Multi-core throughput enhancement techniques

Multi-core, SMT, and SMP were new processor architecture developed to increase
system’s throughput. Also, different ideas were proposed in order to increase system’s
throughput.

 Increasing Cache sizes
Increasing the size of L1 and L2 caches is considered one of the simplest solutions to

increases SMT, multi-core, and even single threaded processors throughput. This solution
showed difficulties in implementation. First, increasing sizes of L1 or L2 or both leads to an
increase in the chip area, energy and power consumption. Second, increasing size does not
always guarantee increasing system’s throughput. At a certain threshold running application
are satisfied with the current cache resources available. Then any increase in cache sizes is
considered a resource waste. Experimentally, increasing cache sizes does not increase
system’s throughput as expected [8].

 Enabling high bandwidth

One of the suggested proposals to improve system’s throughput is to increase main
memory/cache bandwidth. This can be done through several methods:

 True multi-porting: where the number of ports of caches and main memory is
increased so that multiple accesses could be performed simultaneously. As an
example L1 cache may has 2 read ports and 1 write port. This means that L1 cache
can perform three requests simultaneously (2 load requests and 1 store request).
Hardware, area, inefficient usage of energy and increase in power consumptions
limits the increase in using this solution.

4

Figure 1.3: Multi-core processors

1.4 SMT/Multi-core throughput enhancement techniques

Multi-core, SMT, and SMP were new processor architecture developed to increase
system’s throughput. Also, different ideas were proposed in order to increase system’s
throughput.

 Increasing Cache sizes
Increasing the size of L1 and L2 caches is considered one of the simplest solutions to

increases SMT, multi-core, and even single threaded processors throughput. This solution
showed difficulties in implementation. First, increasing sizes of L1 or L2 or both leads to an
increase in the chip area, energy and power consumption. Second, increasing size does not
always guarantee increasing system’s throughput. At a certain threshold running application
are satisfied with the current cache resources available. Then any increase in cache sizes is
considered a resource waste. Experimentally, increasing cache sizes does not increase
system’s throughput as expected [8].

 Enabling high bandwidth

One of the suggested proposals to improve system’s throughput is to increase main
memory/cache bandwidth. This can be done through several methods:

 True multi-porting: where the number of ports of caches and main memory is
increased so that multiple accesses could be performed simultaneously. As an
example L1 cache may has 2 read ports and 1 write port. This means that L1 cache
can perform three requests simultaneously (2 load requests and 1 store request).
Hardware, area, inefficient usage of energy and increase in power consumptions
limits the increase in using this solution.

4

Figure 1.3: Multi-core processors

1.4 SMT/Multi-core throughput enhancement techniques

Multi-core, SMT, and SMP were new processor architecture developed to increase
system’s throughput. Also, different ideas were proposed in order to increase system’s
throughput.

 Increasing Cache sizes
Increasing the size of L1 and L2 caches is considered one of the simplest solutions to

increases SMT, multi-core, and even single threaded processors throughput. This solution
showed difficulties in implementation. First, increasing sizes of L1 or L2 or both leads to an
increase in the chip area, energy and power consumption. Second, increasing size does not
always guarantee increasing system’s throughput. At a certain threshold running application
are satisfied with the current cache resources available. Then any increase in cache sizes is
considered a resource waste. Experimentally, increasing cache sizes does not increase
system’s throughput as expected [8].

 Enabling high bandwidth

One of the suggested proposals to improve system’s throughput is to increase main
memory/cache bandwidth. This can be done through several methods:

 True multi-porting: where the number of ports of caches and main memory is
increased so that multiple accesses could be performed simultaneously. As an
example L1 cache may has 2 read ports and 1 write port. This means that L1 cache
can perform three requests simultaneously (2 load requests and 1 store request).
Hardware, area, inefficient usage of energy and increase in power consumptions
limits the increase in using this solution.

5

 Virtual multi-porting: which was introduced in IBM Power 2 and DEC 21264 [9]
where access ports in main memory and caches are time shared. Limitations on
maximum clock period and its scalability are disadvantages of this solution. It is
not scalable beyond 2 ports

 Multiple cache copies: where a cache have multiple copies and have the same data
stored. Multiple cache copies were used in DEC Alpha 21164 [10] and IBM Power
4. Load operations can be performed independently from caches while store
operations are performed on all the caches as shown in Figure 1.4. Area increase
and scalability are considered the main disadvantage of this design.

Figure 1.4: Multiple cache copies

 Miss Status Holding Register (MSHR): MSHR is implemented in cache
memories in order to track information about all the in-progress misses [11]. In
systems that support non-blocking loads (in which the thread can continue running
while it faced one or more load misses), there is a need for MSHR. After a load
miss occur, most probably there will be more instructions that address the same
line. Instead of generating new misses, MSHR handles these requests. When the
memory line becomes available, MSHR responds to all the loads pending on this
memory line. Each MSHR entry has the block address that is required, load/store
instructions waiting for this block, the part of the block address load/store
instructions are waiting for, and a valid bit. If all MSHR entries are valid, the cache
should be blocked because there are no more entries to track miss information.
Figure 1.5 shows the MSHR entry. Destination represents the destination register or
store buffer entry address.

5

 Virtual multi-porting: which was introduced in IBM Power 2 and DEC 21264 [9]
where access ports in main memory and caches are time shared. Limitations on
maximum clock period and its scalability are disadvantages of this solution. It is
not scalable beyond 2 ports

 Multiple cache copies: where a cache have multiple copies and have the same data
stored. Multiple cache copies were used in DEC Alpha 21164 [10] and IBM Power
4. Load operations can be performed independently from caches while store
operations are performed on all the caches as shown in Figure 1.4. Area increase
and scalability are considered the main disadvantage of this design.

Figure 1.4: Multiple cache copies

 Miss Status Holding Register (MSHR): MSHR is implemented in cache
memories in order to track information about all the in-progress misses [11]. In
systems that support non-blocking loads (in which the thread can continue running
while it faced one or more load misses), there is a need for MSHR. After a load
miss occur, most probably there will be more instructions that address the same
line. Instead of generating new misses, MSHR handles these requests. When the
memory line becomes available, MSHR responds to all the loads pending on this
memory line. Each MSHR entry has the block address that is required, load/store
instructions waiting for this block, the part of the block address load/store
instructions are waiting for, and a valid bit. If all MSHR entries are valid, the cache
should be blocked because there are no more entries to track miss information.
Figure 1.5 shows the MSHR entry. Destination represents the destination register or
store buffer entry address.

5

 Virtual multi-porting: which was introduced in IBM Power 2 and DEC 21264 [9]
where access ports in main memory and caches are time shared. Limitations on
maximum clock period and its scalability are disadvantages of this solution. It is
not scalable beyond 2 ports

 Multiple cache copies: where a cache have multiple copies and have the same data
stored. Multiple cache copies were used in DEC Alpha 21164 [10] and IBM Power
4. Load operations can be performed independently from caches while store
operations are performed on all the caches as shown in Figure 1.4. Area increase
and scalability are considered the main disadvantage of this design.

Figure 1.4: Multiple cache copies

 Miss Status Holding Register (MSHR): MSHR is implemented in cache
memories in order to track information about all the in-progress misses [11]. In
systems that support non-blocking loads (in which the thread can continue running
while it faced one or more load misses), there is a need for MSHR. After a load
miss occur, most probably there will be more instructions that address the same
line. Instead of generating new misses, MSHR handles these requests. When the
memory line becomes available, MSHR responds to all the loads pending on this
memory line. Each MSHR entry has the block address that is required, load/store
instructions waiting for this block, the part of the block address load/store
instructions are waiting for, and a valid bit. If all MSHR entries are valid, the cache
should be blocked because there are no more entries to track miss information.
Figure 1.5 shows the MSHR entry. Destination represents the destination register or
store buffer entry address.

6

Figure 1.5: MSHR entry

 Banking: which was used in Intel Pentium where the memories are divided into
banks and each bank can be accessed independently. Each bank does not depend on
other banks so that several requests can be performed simultaneously. Although
this design shows an increase in processor’s throughput but its complex design, and
difficulties in implementation reduced the usage of this solution. In addition,
banking requires routing network and it must deal with bank conflicts.

 Memory Access Scheduling

Due to the gap in speed between core and main memory, memory access scheduling is
considered one of the solutions to improve system’s throughput and fairness. Since the
number of cores integrated on-chip grows more rapidly than the off-chip pin bandwidth [12]
which leads to an increase in the contention for main memory. One of the problems faces
previous solutions is fairness when one or some applications are served at the expense of
other running applications. As memory access behavior of different applications are different
since some applications access main memory with high rate and others with low rate. This
behavior leads to starvation of some applications which resulted in decreasing the fairness.

Memory access scheduling orders waiting main memory requests and decide which one
shall be served first. Memory access scheduling has been developed for superscalar,
multithreaded, and multi-core processors to enhance their performance. The concept of
memory access scheduling is proposed for superscalar processors. However, in superscalar
processors memory access scheduling was just re-ordering memory requests making use of
memory hardware features to reduce memory access time. A good memory access scheduling
is the one that improves either processor’s throughput or fairness without degrading any of
them. Different Memory access scheduling, advantages, and disadvantages of each one is
introduced in Chapter 2 in details.

1.5 Thesis Contribution

In this thesis, we focus on the memory access scheduling for multi-core processors. We
have selected multi-core processors that have separate instruction and data caches for each
core, shared L2 cache and shared main memory as the micro architecture under investigation

6

Figure 1.5: MSHR entry

 Banking: which was used in Intel Pentium where the memories are divided into
banks and each bank can be accessed independently. Each bank does not depend on
other banks so that several requests can be performed simultaneously. Although
this design shows an increase in processor’s throughput but its complex design, and
difficulties in implementation reduced the usage of this solution. In addition,
banking requires routing network and it must deal with bank conflicts.

 Memory Access Scheduling

Due to the gap in speed between core and main memory, memory access scheduling is
considered one of the solutions to improve system’s throughput and fairness. Since the
number of cores integrated on-chip grows more rapidly than the off-chip pin bandwidth [12]
which leads to an increase in the contention for main memory. One of the problems faces
previous solutions is fairness when one or some applications are served at the expense of
other running applications. As memory access behavior of different applications are different
since some applications access main memory with high rate and others with low rate. This
behavior leads to starvation of some applications which resulted in decreasing the fairness.

Memory access scheduling orders waiting main memory requests and decide which one
shall be served first. Memory access scheduling has been developed for superscalar,
multithreaded, and multi-core processors to enhance their performance. The concept of
memory access scheduling is proposed for superscalar processors. However, in superscalar
processors memory access scheduling was just re-ordering memory requests making use of
memory hardware features to reduce memory access time. A good memory access scheduling
is the one that improves either processor’s throughput or fairness without degrading any of
them. Different Memory access scheduling, advantages, and disadvantages of each one is
introduced in Chapter 2 in details.

1.5 Thesis Contribution

In this thesis, we focus on the memory access scheduling for multi-core processors. We
have selected multi-core processors that have separate instruction and data caches for each
core, shared L2 cache and shared main memory as the micro architecture under investigation

6

Figure 1.5: MSHR entry

 Banking: which was used in Intel Pentium where the memories are divided into
banks and each bank can be accessed independently. Each bank does not depend on
other banks so that several requests can be performed simultaneously. Although
this design shows an increase in processor’s throughput but its complex design, and
difficulties in implementation reduced the usage of this solution. In addition,
banking requires routing network and it must deal with bank conflicts.

 Memory Access Scheduling

Due to the gap in speed between core and main memory, memory access scheduling is
considered one of the solutions to improve system’s throughput and fairness. Since the
number of cores integrated on-chip grows more rapidly than the off-chip pin bandwidth [12]
which leads to an increase in the contention for main memory. One of the problems faces
previous solutions is fairness when one or some applications are served at the expense of
other running applications. As memory access behavior of different applications are different
since some applications access main memory with high rate and others with low rate. This
behavior leads to starvation of some applications which resulted in decreasing the fairness.

Memory access scheduling orders waiting main memory requests and decide which one
shall be served first. Memory access scheduling has been developed for superscalar,
multithreaded, and multi-core processors to enhance their performance. The concept of
memory access scheduling is proposed for superscalar processors. However, in superscalar
processors memory access scheduling was just re-ordering memory requests making use of
memory hardware features to reduce memory access time. A good memory access scheduling
is the one that improves either processor’s throughput or fairness without degrading any of
them. Different Memory access scheduling, advantages, and disadvantages of each one is
introduced in Chapter 2 in details.

1.5 Thesis Contribution

In this thesis, we focus on the memory access scheduling for multi-core processors. We
have selected multi-core processors that have separate instruction and data caches for each
core, shared L2 cache and shared main memory as the micro architecture under investigation

7

since it is the common design for todays processors and it is projected to be the design for
years to come. We introduce a new memory scheduling algorithm called TB-LMI. TB-LMI
was compared against several previous suggested memory access scheduling.

1.6 Thesis Outline

Chapter 2 includes literature survey about memory access scheduling. Chapter 3 proposes
our new memory scheduling algorithm (TB-LMI) and how it works. Chapter 4 shows the
simulator that used in our evaluation and modifications that were applied. Chapter 5 discusses
the metrics, simulation parameters, and workloads used in evaluation. In chapter 6 we show
the results of TB-LMI versus previous memory scheduling algorithms and it also contains a
sensitivity analysis of TB-LMI. Chapter 7 summarizes the thesis and states our vision for the
future work.

8

Chapter 2. Memory Access Scheduling In Literature

Memory access scheduling has been developed for superscalar, multithreaded, and multi-
core processors to enhance/improve their performance. New memory scheduling algorithms
were introduced and other scheduling algorithms were changed/ enhanced when we moved
from single threaded processors to multithreaded and multi-core processors. Nowadays the
concept of memory access scheduling is not limited to re-ordering memory requests from the
same application/thread making use of memory hardware features. But it spans over
scheduling requests from different applications/threads to allow better utilization of processor
resources. In the following sections we will mention different memory access scheduling
algorithms. Before that let’s take a quick look on how main memory works.

2.1 Main memory operation mechanism

There are mainly two types of RAMs (SRAM and DRAM). SRAM is fast, more
expensive, and less dense than the DRAM. SRAM is not used for high capacity such as main
memory in personal computers. SRAM is typically used in the building of L1 and L2 caches
in order to increase CPU speed. DRAM is typically used in the building of main memory
[13].

Early, DRAM designs were implemented as one dimension buffer. This implementation
causes main memory high latency. Also, it demonstrated difficulties in hardware
implementation when the number of address lines are increased (i.e. main memory size is
increased). In order to decrease main memory latency and to simplify hardware
implementation, memory addresses were divided into row address and column address. In
addition, main memory has a row buffer register. Memory data in row buffer register is
usually available for other waiting requests with the minimum latency (described below).

Main memory is divided into banks in order to increase its bandwidth [14]. As main
memory bandwidth increases, unicore CPU throughput increases. Each memory bank mainly
consists of row address decoder, row buffer register, and a multiplexer as shown in Figure
2.1. When a memory request arrives to the memory bank, its address is divided to row
address and column address. The row address is required to get the specific row from the
bank storage and send it to the row buffer register. The column address is used through a
multiplexer in order to get the required data.

9

Figure 2.1: Memory bank

Figure 2.2: DRAM FSM

Modern DRAMs are three dimensions structure (bank, row, and column) [15]. Operations
of modern DRAM are divided into three sub-operations which are row activation, column
access, and bank precharge. A DRAM has two stable state, ACTIVE, and IDLE states as
shown in DRAM Finite State Machine (FSM) in Figure 2.2. In the IDLE state, the DRAM is
precharged and ready for row access. It will remain in this state until a row active operation is
issued to the bank. Address lines must be used to select the bank and the row is active when it
is sent to the row buffer register. Once the DRAM’s activation latency has passed, the bank
enters the ACTIVE state, where any number of column accesses (reads or writes) may be
performed on this row. DRAM state is changed to IDLE state once column operations on this
row are ended; bank precharge operation is issued to return the data back to its place.

Modern DRAM organization has divided the DRAM latency into three main categories,
row hit latency, row closed latency, and row conflict latency. Row hit latency where there is
data at the row buffer register and only column accesses are required. Row hit latency is the
minimum latency of the main memory. Row conflict latency occurs when the required row is
different from the current row in row buffer register. Row conflict requires bank precharge
and row activation in order to perform any column access. Row conflict latency is the

9

Figure 2.1: Memory bank

Figure 2.2: DRAM FSM

Modern DRAMs are three dimensions structure (bank, row, and column) [15]. Operations
of modern DRAM are divided into three sub-operations which are row activation, column
access, and bank precharge. A DRAM has two stable state, ACTIVE, and IDLE states as
shown in DRAM Finite State Machine (FSM) in Figure 2.2. In the IDLE state, the DRAM is
precharged and ready for row access. It will remain in this state until a row active operation is
issued to the bank. Address lines must be used to select the bank and the row is active when it
is sent to the row buffer register. Once the DRAM’s activation latency has passed, the bank
enters the ACTIVE state, where any number of column accesses (reads or writes) may be
performed on this row. DRAM state is changed to IDLE state once column operations on this
row are ended; bank precharge operation is issued to return the data back to its place.

Modern DRAM organization has divided the DRAM latency into three main categories,
row hit latency, row closed latency, and row conflict latency. Row hit latency where there is
data at the row buffer register and only column accesses are required. Row hit latency is the
minimum latency of the main memory. Row conflict latency occurs when the required row is
different from the current row in row buffer register. Row conflict requires bank precharge
and row activation in order to perform any column access. Row conflict latency is the

9

Figure 2.1: Memory bank

Figure 2.2: DRAM FSM

Modern DRAMs are three dimensions structure (bank, row, and column) [15]. Operations
of modern DRAM are divided into three sub-operations which are row activation, column
access, and bank precharge. A DRAM has two stable state, ACTIVE, and IDLE states as
shown in DRAM Finite State Machine (FSM) in Figure 2.2. In the IDLE state, the DRAM is
precharged and ready for row access. It will remain in this state until a row active operation is
issued to the bank. Address lines must be used to select the bank and the row is active when it
is sent to the row buffer register. Once the DRAM’s activation latency has passed, the bank
enters the ACTIVE state, where any number of column accesses (reads or writes) may be
performed on this row. DRAM state is changed to IDLE state once column operations on this
row are ended; bank precharge operation is issued to return the data back to its place.

Modern DRAM organization has divided the DRAM latency into three main categories,
row hit latency, row closed latency, and row conflict latency. Row hit latency where there is
data at the row buffer register and only column accesses are required. Row hit latency is the
minimum latency of the main memory. Row conflict latency occurs when the required row is
different from the current row in row buffer register. Row conflict requires bank precharge
and row activation in order to perform any column access. Row conflict latency is the

10

maximum latency of the main memory. Row closed latency occurs when row buffer register
is empty, where row activation must be performed. Row closed latency is between row
conflict and row hit latencies.

Modern processors have a main memory controller which is responsible of communication
between main memory and processor. A main memory may have more than one memory
controller to communicate with. Presence of main memory controller is mandatory as it
handles requests to meet main memory latencies (row buffer hit, row buffer conflict, and row
buffer closed latencies).

2.2 Schemes for Single Threaded Single Core processors

In single-threaded single-core processors, memory access scheduling focuses on re-
ordering memory requests to improve memory performance by reducing the gap between
processor speed and memory latency. Although main memory is a RAM device, its access
pattern is not random. In other words, the ordering of memory requests change the latency
time of memory access.

In [16] the authors focused on designing parallelized memory controller. They introduce
SCHED which is a memory access scheduler. It is responsible for ordering the read/write
requests, bank activates, precharges, and driving the SDRAM.

The Ph.D thesis [17] presented a compiler technology called access ordering. It tries to
solve the memory bandwidth problem for scalar processors by utilizing memory system
resources through memory accesses re-ordering.

In [18] the authors examined memory access ordering and tried to find the boundary for
performance improvement. In [19] the authors introduced Memory Scheduling Unit (MSU).
This unit is used to prefetch read requests, buffer write requests, and dynamically reorder the
memory accesses in order to maximize the effective memory bandwidth. The main problem
in the previously mentioned algorithms is that they are suitable for single-threaded processors
only. They are not made to handle the case of ordering requests from different
applications/threads.

There are some algorithms that were first proposed for single-threaded processors but
then they were used in SMT and multi-core processors as mentioned in [20]. These
algorithms are FCFS, hit-first algorithm, read-first algorithm, and age-based algorithm.

FCFS serves the request that arrives to the scheduler first regardless all other resources
and factors. Its advantage is that it is very simple. Its disadvantage is that it does not take into
account the criticality of resources or requests.

Hit-first algorithm gives row buffer hits more priority than row buffer misses. So, it gives
more priority to requests that take less time. This algorithm corresponds to the same category
of algorithms that exploits the memory hardware features to improve throughput.

11

Read-first algorithm gives memory read operations more priority than memory write
operations. The idea behind this algorithm is that write operations are not a bottle because of
the existence of write buffers.

Both hit-first and read-first algorithms can be used in collaboration with other algorithms.
For instance, in [20] the authors used hit-first and read-first algorithms on top of request-
based algorithm. In this case, read hit will always be scheduled before read miss, and read
requests in general will be scheduled before write requests. In addition, the same type of
requests is scheduled according to number of pending requests for each thread. i.e. the thread
with the fewest number of pending requests is scheduled first.

As processor architectures changed from single core processors to multi-core processors,
performance is not only the metric used to identify better processors. Multi-core processors
should not only take care of performance but they also have to make sure that there is no
application/thread suffers from starvation which reflects processor’s fairness. Memory
scheduling algorithms were introduced to guarantee the achievement of better performance,
fairness or both in multi-core processors.

2.3 Schemes for SMT and Multi-core processors

The concept of memory access scheduling is discussed for SMT processors in [20].
Moving to SMT and multi-core, generally, increases contention on DRAM as the number of
threads is increased. Improving multi-core processor’s throughput is not the only objective of
memory scheduling algorithms. Handling waiting main memory requests must be done
precisely in order to increase the overall multi-core processors throughput without severely
slowing down any running thread/application. That’s to say without the correct handle of
waiting memory requests, results may be devastating. Some of the running
applications/threads may not execute an instruction for a long period time (fairness decreases
or even suffer starvation). Processors that achieve high throughput in addition to high fairness
are considered better than other processors. Memory scheduling is classified into thread un-
aware memory scheduling and thread aware memory scheduling.

1. Thread un-aware memory scheduling

It is a type of memory scheduling where it has no information about the waiting memory
requests in the main memory queue. As an example memory scheduling does not know
which application/thread issued the waiting requests in the main memory queue and it does
not know the waiting requests for each application/thread. Memory scheduling algorithms
that were introduced for Single core processors are classified in this category.

First Come First Serve (FCFS) and First Ready First Come First Server (FR-FCFS) [21,
22] are considered the most popular thread un-aware memory scheduling for SMT and multi-
core processors. FCFS where requests are served depending on which request has arrived first
to the main memory. FR-FCFS is an algorithm that gives priority to requests with row buffer
hit. In addition, read requests have higher priority than write requests.

12

2. Thread aware memory scheduling

It applies to memory scheduling algorithms that have some information of requests waiting
in the main memory queue. As an example, scheduling knows the waiting requests that serve
each application/thread and how many requests are issued from each application/thread. A
large number of thread aware memory scheduling algorithms were introduced. We will
quickly do a brief survey on most of the introduced thread aware memory scheduling
algorithms.

 Age-based scheduling

Age-based scheduling [23] gives the highest priority to oldest request when
more than eight requests are presented to memory. This algorithm aims to improve
fairness but it does not aim to improve throughput. Fairness is guaranteed because
no thread will use the memory for large time alone.

 Least REQuest (LREQ) scheduling:

Request priority depends on what application/thread issued this request and
the total number of requests issued by this application/thread waiting in the main
memory queue. A request from an/a application/thread that has the minimum
number of waiting requests in the main memory queue has higher priority than
other requests. In case of the presence of more than one request with the same
priority, the oldest request has the highest priority. Although LREQ [24] scheduling
showed an improvement in performance but it also showed degradation in fairness
which is considered a disadvantage.

 FR-LREQ scheduling:

FR-LREQ [25] is a modification of LREQ scheduling. FR-LREQ is a two
level scheduling. First level that gives row buffer hit requests the highest priorities.
Second level is when LREQ scheduling is applied.

FR-LREQ may be classified in two ways in operation. First way, when row
buffer hit requests have the highest priorities. In case of the presence of more than
one request with row buffer hit, the oldest has the highest priority. FR-LREQ
switches from level 1 to level 2 in case of the absence of row buffer hit requests.
Second way, FR-LREQ starts to search for the application/thread that has the
minimum number of waiting requests. FR-LREQ searched for row buffer hit
requests from the application/thread with the minimum number of waiting requests
(level 1). In case of the absence of row buffer hit requests, FR-LREQ starts to
search for the application/thread that has the second minimum number of waiting
requests. Level 1 starts again. FR-LREQ continues looping until a request is found.
In case of the absence of level 1 request, level 2 starts alone. Figure 2.3 shows a
flowchart that describes that second way of FR-LREQ. FR-LREQ showed a better
performance than LREQ. FR-LREQ requires looping and checking the waiting
requests before each memory access which adds extra latency.

13

In order to show the difference between FR-LREQ ways, suppose that two
applications, application ‘A’ and application ‘B’ are running on a multi-core
processor. ‘A’ has waiting requests in the main memory queue less than ‘B’. But
‘B’ has a row buffer hit request older than a row buffer hit request from ‘A’. FR-
LREQ first way sets the highest priority to the row buffer hit request from ‘B’
although it has higher waiting requests in main memory queue than ‘A’. FR-LREQ
second way sets the highest priority to the row buffer hit request from ‘A’ although
it is not the oldest row buffer hit request in the main memory queue.

 Fair Least Request Most Related (FLRMR) scheduling:

FLRMR [24] targets both system’s performance and fairness. FLRMR uses
approximately the same technique used by LREQ but with a different definition.
FLRMR defines a threshold named FLRMR_PF that calculates waiting requests
priorities. Requests with FLRMR_PF equals to 0 means that these requests are
starving, they have higher priorities over others. In case FLRMR_PF of all waiting
requests is greater than 0 which indicates there is no request is starving, the request
with the minimum FLRMR_PF has the highest priority. In case more than one
request has the same priority, the oldest has the highest priority. FLRMR_PF
formula is shown in Eq. 2.1 where ‘i’ represents application/thread ID. Starvation
time is shown in Eq. 2.2. If a waiting memory request waited in the main memory
queue more than starvation time, under_starvation_threshold will be set to 0. This
drives FLRMR_PF to 0, which means that this request has the highest priority.
FLRMR scheduling flowchart is shown in Figure 2.4.

FLRMR was tested only on a single main memory bank (i.e. does not take the
benefit of increasing main memory bandwidth) which is considered to be its main
disadvantage. In addition, calculation of FLRMR_PF for each request must be
performed with every access to the main memory which increases algorithm
overhead.

14

Figure 2.3: FR-LREQ

1_#

__*_#
_

2

i

i

requestsrelated

thresholdstarvationunderrequestspending
PFFLRMR (2.1)

threadsofnumberlatencymemorytimeStarvation __*_*5.2_ ……... (2.2)

14

Figure 2.3: FR-LREQ

1_#

__*_#
_

2

i

i

requestsrelated

thresholdstarvationunderrequestspending
PFFLRMR (2.1)

threadsofnumberlatencymemorytimeStarvation __*_*5.2_ ……... (2.2)

14

Figure 2.3: FR-LREQ

1_#

__*_#
_

2

i

i

requestsrelated

thresholdstarvationunderrequestspending
PFFLRMR (2.1)

threadsofnumberlatencymemorytimeStarvation __*_*5.2_ ……... (2.2)

15

Figure 2.4: FLRMR

 Modified Re-Order Buffer (ROB) scheduling:

Modified_ROB [24] is a modified version of ROB scheduling. ROB is
implemented in processors that use algorithms to execute out-of-order instructions.
ROB allows instructions to be committed correctly through register renaming. ROB
scheduling gives the highest priorities to requests from the application/thread that has
the highest number of reorder buffer entries. The idea behind this algorithm is that
serving a request from the application/thread that has the highest number of reorder
buffer entries most probably will release more waiting instructions than serving a
request from other threads. Of course, this algorithm will help more in the cases when
there is contention on reorder buffer.

Modified_ROB scheduling used a formula named Modified_ROB_PF to
calculate priorities of waiting requests. The main target of this formula is to decrease
the probability of finding starved waiting requests in main memory queue.
Modified_ROB_PF formula is presented in Eq. 2.3 where i represents
application/thread ID. The larger this factor is, the higher priority requests from an/a
application/thread will have. If a waiting request is starved, under_starvation_time
will be 0. This sets Modified_ROB_PF to infinity that gives this request the highest
priority. Modified_ROB_PF flowchart is shown in Figure 2.5. Starvation time uses
the formula that was introduced in Eq. 2.2. The main disadvantage of Modified_ROB
scheduling is that it was tested only in a single bank memory. In addition, prioritizing
a thread with the highest number of requests in ROB entries does not always
guarantee the increase in overall processor’s throughput, or fairness, or both.

thresholdstarvationunder

requestsrelatedentriesROB
PFROBModified i

__

)1_(#*_#
__

2
 ….. (2.3)

16

Figure 2.5: Modified_ROB

16

Figure 2.5: Modified_ROB

16

Figure 2.5: Modified_ROB

17

Figure 2.6: FIQMR

 Fair Issue Queue Most Related (FIQMR) scheduling:

FIQMR [24] scheduling is a modified scheduling from IQ-based scheduling.
IQ-based algorithm gives highest priority to requests from application/thread that has
the highest number of issue queue entries. The idea behind this algorithm is that
serving a request from the application/thread that has the highest number of issue
queue entries most probably will release more waiting instructions than serving a
request from other applications/threads. It will help in case there is a contention on
issue queue.

FIQMR proposed a prioritization factor formula named FIQMR_PF to
calculate waiting memory requests priorities. FIQMR_PF formula is shown in Eq. 2.4
where i represents application/thread ID. The larger this factor, the higher priority a
waiting request will have. If a waiting request is starving (i.e. starvation time
threshold has passed since its arrival), under_starvation_threshold will be 0 which
means that FIQMR_PF of this request will be infinity. So, this request is starving as it
will have the largest FIQMR_PF, and it will be served first. If no requests are starved
then under_starvation_threshold will be 1, the oldest request with the highest
FIQMR_PF will have the highest priority and will be served first. FIQMR scheduling
flowchart is shown in Figure 2.6.

18

thresholdstarvationunder

requestsrelatedentriesIQ
PFFIQMR ii

i __

)1_(#*_#
_

2
 ……………. (2.4)

 Thread Clustering Memory (TCM) scheduling:

TCM [26] scheduling classifies running applications/threads into memory
intensive applications/threads and memory non-intensive application/threads
(discussed in chapter 5). Memory non-intensive application/threads are added in the
latency cluster. Memory intensive application/threads are inserted in the bandwidth
cluster. Applications/Threads classifications are changed every pre-defined number
of cycles called Quantum. TCM scheduling is divided into two algorithms
clustering algorithm and insertion shuffling algorithm.

Clustering algorithm is scheduled every quantum where TCM calculates the
total memory bandwidth (BW) and memory BW usage for each running
application/thread, and insert it in the correct cluster. Initially, TCM calculates the
total memory BW used by all threads through Eq. 2.5 where i indicate
application/thread ID. TCM uses the equation introduced in Eq. 2.6 to calculate the
memory BW usage of each application/thread. jusageBW is the memory BW of

application/thread j. Also, TCM uses the equation introduced in Eq. 2.7 to classify
applications/threads and sent it to the correct cluster. ClusterThresh is a predefined
threshold and it is set to any value between 2/N and 6/N where N stands for the total
number of applications/threads.

i ii BWusagegeTotalBWusa ………………………………………….. (2.5)

jusageBWSumBWSumBW …………………………………………… (2.6)

geTotalBWusaeshClusterThrSumBW . ……………………………….. (2.7)

Insertion shuffling algorithm runs within the quantum. The main purpose of
this algorithm is to increase fairness. Shuffling reduces memory interference by
exploiting heterogeneity in the bank-level parallelism and row buffer locality
among running applications/threads. TCM introduces the niceness metric shown in
Eq. 2.8, where i stands for application/thread ID, b stands for bank-level
parallelism, and r stands for row buffer locality. Every quantum, threads are sorted
based on their niceness value to yield a ranking. The nicest application/thread
receives the highest rank. TCM defines another pre-defined number of cycles less
than quantum called ShuffleInterval. Every ShuffleInterval, the insertion shuffle
algorithm perturbs nice ranking in a way that reduces the time during which the
least nice applications/threads are prioritized over the nicest applications/threads,
ultimately resulting in less interference. Implementation complexity and poor
efficiency for low core count (2-core, and 4core systems) are among the main
disadvantages of TCM.

iii rbNiceness ………………………………………………………... (2.8)

19

 Parallelism Aware Batch Scheduling (PAR-BS):

PAR-BS [27] scheduling is based on two main ideas (batch scheduling and
parallelism-aware scheduling). Batch scheduling idea aims to group some memory
requests into batches according to their arrival times and their requesting
applications/threads. The requests within the oldest batch will have the highest
priority. So, this algorithm is starvation-free. Parallelism-aware idea tries to make
use of bank-level parallelism within the same batch.

 Memory Efficiency (ME) LREQ scheduling:

ME-LREQ was introduced in [25]. ME-LREQ prioritizes memory requests
hitting on the row buffers and from cores that can utilize the memory more
efficiently and where pending memory requests are fewer. ME of an/a
application/thread is calculated from Eq. 2.9 where i represents application/thread
ID. ME-LREQ depends on either offline profiling or online profiling. In [25] they
used offline profiling due to the difficulties in implementation. They used lookup
tables that store every possible pending request of threads. Eq. 2.10 shows how
priorities are calculated. Applications/Threads with higher ME have higher priority.

i
gle

i
gle

i BW

IPC
ME

sin

sin ……………………………… (2.9)

i

i
i readpending

ME
iority

_
Pr ………………………... (2.10)

 Adaptive per-Thread Least-Attained-Service (ATLAS) scheduling:

ATLAS scheduling which is introduced in [28] is based on LAS, long-time
quantum, starvation free, and preserving single thread performance. LAS is used to
increase the throughput. Long-term quantum is used to provide scalability;
scalability does not need frequent and large information exchange. ATLAS is a
starvation free scheduling algorithm as it defines a threshold value. ATLAS
preserves single thread performance by preserving applications/threads bank-level
parallelism. ATLAS increases processor’s throughput at the cost of fairness
because the most memory intensive applications/threads receive the lowest priority
and incur very high slowdowns which is considered a disadvantage.

 Round Robin (RR) scheduling:

RR [29] loops on applications/threads that have pending memory requests and
serves a request from each application. RR targets fairness between
applications/threads. RR does not take aging (how long the requests are in main
memory queue) into consideration. RR scheduling is the best scheduling in fairness
but it does not show any progress in performance. RR targets fairness only which is
the main disadvantage.

20

 Stall Time Fair Memory (STFM) scheduling:

STFM [30] scheduling mainly aims to improve fairness. STFM estimates
two values (sharedT and aloneT). Memory stall-time experienced by an/a

application/thread is represented by Tshared when an/a application/thread runs
among other applications/threads in the memory system. aloneT represents the

memory stall-time experienced by the thread if it had been running alone in the
memory system. Estimating sharedT is done by incrementing a counter each time the

application/thread can not commit an instruction due to L2 cache miss. However,
estimating aloneT is not straightforward. It is calculated by Eq. 2.11 where erferenceTint

is the extra memory stall-time that an/a application/thread is suffering because
memory requests from other applications/threads are being scheduled before the
requests of the thread itself (if it has available waiting requests).

erferencesharedalone TTT int ……………………… (2.11)

After calculating aloneT and sharedT , the slowdown for each application/thread

should be calculated by the Eq. 2.12. Then the maximum slowdown and the
minimum slowdown of applications/threads that have at least one pending request
are calculated. The ratio shown in Eq. 2.13 is calculated, if this ratio exceeds a
predefined threshold, the next request scheduled is from the application/thread that
has the highest slowdown. If the ratio is less than the predefined threshold, FR-
FCFS scheduling is applied.

alone

shared

T

T …………………………………... (2.12)

slowdownMinimum

slowdownMaximum …………………………… (2.13)

2.4 Summary

In this thesis we are interested in SMT and multi-core architectures. Scheduling that was
developed and introduced for single threaded processors are out of our scope. We used in our
comparison different types of scheduling. FCFS and FR-FCFS were used from thread un-
aware memory scheduling. FR-LREQ, FR-FLRMR, FR-FIQMR, FR-Modified_ROB, and
TCM were used in our evaluation from thread aware memory scheduling.

FR-LREQ was used in our evaluation as it shows a competitive performance results
compared to other scheduling. Although FR-FLRMR, FR-FIQMR, and FR-Modified_ROB
were tested only for a single memory bank, but these scheduling showed competitive results
in performance and fairness. One of the main reasons to use these scheduling was to see their

21

effect when main memory bandwidth are increased. Also, TCM was used in our evaluation as
it is considered the newest introduced multi-core scheduling. TCM showed the best results in
performance and fairness against several previous scheduling such as PAR-BS.

The main purpose of this thesis is to introduce a new scheduling algorithm for multi-core
processors. This new scheduling aims to improve multi-core processor’s throughput without
causing a devastating results in fairness for any running application/thread.

22

Chapter 3. Time Based Least Memory Intensive
(TB-LMI)

3.1 Motivation

Some of memory scheduling algorithms discussed in chapter 2 address only scheduling in
case the main memory with one bank and with no row buffer register such as FLRMR,
Modified_ROB, and FIQMR. In addition, none of the previous memory scheduling
algorithms even those who were tested on 8-core and 4-core processors have used a realistic
main memory queue size. All of them used a main memory queue with 128 entries. These
factors were a motivation to introduce a new memory scheduling algorithm.

Some of the previously introduced memory scheduling algorithms were modified in order
to improve processor’s performance and fairness. These algorithms are:

 FR-FLRMR scheduling:

FR-FLRMR is a modified version of FLRMR. FR-FLRMR is presented in this
thesis in order to take the benefit of row buffer hits. It was experimentally proven that
FR-FLRMR showed a better improvement in processor’s throughput and fairness than
FLRMR as we will see in chapter 6.

FR-FLRMR prioritizes row buffer hit requests over any other waiting request.
If more than one row buffer hits are waiting, the oldest request has the highest
priority. In case of the absence of row buffer hit requests, FLRMR scheduling is
applied. FR-FLRMR has the same drawbacks of FLRMR.

 FR-Modified_ROB scheduling:

FR-Modified_ROB scheduling is a modified version of Modified_ROB
scheduling. It takes the advantage of row buffer hits. FR-Modified_ROB works in the
same way that FR-FLRMR works. Also, FR-Modified_ROB scheduling shows a
better processor’s performance than Modified_ROB as we will see in chapter 6.

 FR-FIQMR scheduling:

FR-FIQMR scheduling is a modified version of FIQMR scheduling. It takes the
advantage of row buffer hits. FR-FIQMR works in the same way that FR-
Modified_ROB works. Also, FR-FIQMR scheduling shows a better processor’s
performance than FIQMR as we will see in chapter 6.

Although these incremental enhancements show better processor’s performance and
fairness but those improvements are slim. Improvements in performance and fairness were
around 2% and they did not show competitive results with other previous memory scheduling

23

algorithms (TCM, and FR-LREQ). That is why a new memory scheduling algorithm is
required.

3.2 TB-LMI Overview

TB-LMI is memory scheduling designed for multi-core processors. TB-LMI depends on
online profiling of application/thread memory requests. TB-LMI is divided into two levels.
Level 1 is responsible of setting row buffer hit requests with the highest priority. Level 2 is
responsible for changing threads priorities every predefined cycle.

 Level 1:

Although prioritizing row buffer hit requests reflects an improvement in processors
performance but the main function of level 1 in TB-LMI is to guarantee fairness. No
application/thread suffers from starvation.

Applications/Threads are classified to memory non-intensive applications/threads
and memory intensive applications/threads (described in Chapter 5 and Appendix A).
Memory non-intensive threads have higher presence of row buffer hit requests than
memory intensive applications when they run on a single core processor [28]. But
when the main memory queue is decreased, the presence of row buffer hit requests
from memory intensive applications/threads became higher than row buffer hit
requests from memory non-intensive applications/threads (shown in Chapter 5).

 Level 2:

Level 2 is responsible of calculating the number of memory accesses for each
thread across all banks. Level 1 alone does not guarantee fairness and throughput. If
level 1 causes unfairness or causes throughput degradation, level 2 will stand up to
compensate the drawbacks of the priorities of applications/threads in level 1. Every
thread has a counter in each bank memory controller which is incremented every
access to a memory bank; this counter is reset every predefined cycle called Schedule-
Quantum (SQ).

3.3 TB-LMI scheduling algorithm

TB-LMI starts scheduling when any bank memory controller is ready to handle a memory
request and it ends once a request is scheduled. TB-LMI uses the profile calculated by itself
(as will be described later in this section) and FCFS scheduling to set threads priorities. TB-
LMI starts from level 1 where it searches for row buffer hit requests. If more than one row
buffer hit request is found, the oldest request has the highest priority. In case of the absence
of row buffer hit requests, TB-LMI switches to level 2. In level 2, TB-LMI sets the highest
priority to requests issued from applications/threads that has the minimum number of
scheduled memory access to the main memory. If an/a application/thread has more than one
waiting request, the oldest waiting request will have the highest priority.

24

Initially when an application/thread starts execution on the processor, multi-core processor
has no information about running applications/threads memory requests.
Application’s/Thread’s classifications are unknown, what thread is memory intensive and
what is memory non-intensive. TB-LMI defines a new quantum called warm-up quantum.
During warm-up quantum FCFS scheduling where the oldest request in the main memory
queue has the highest priority. FCFS is applied where an initial profile of running
applications/threads are created. Every memory access, the running scheduling algorithm
discovers which application/thread issued the scheduled request, and increment the number of
memory requests served by this thread. At the end of warm-up quantum,
application’s/thread’s priorities are calculated in Meta memory controller, and TB-LMI
scheduling starts. Every SQ thread’s priorities are calculated. Figure 3.1 shows a flowchart
that describes how TB-LMI performs in case of warm-up cycle.

At the end of SQ, every bank memory controller sends what it has collected about
applications/threads profile (the number of memory accesses for each application/thread) to
the Meta memory controller. The Meta memory controller accumulates the received profile
results from each bank memory controller of each application/thread together and with the
previous profile stored in the Meta memory controller. Meta memory controller starts to set
priorities to threads. Applications/Threads with lower memory accesses than others have
higher priorities. Meta memory controller broadcasts applications/threads priorities to all
bank memory controllers to be used in the next SQ. Figure 3.2 shows a flowchart that
describes how TB-LMI performs in case of SQ. Figure 3.3 shows how priorities are
calculated in Meta memory controller. An example will be discussed in section 3.5 to show
TB-LMI operation.

Applications/threads priorities are unified among all memory bank controllers as handling
requests from several banks from the same application/thread increases the performance as
introduced in [26, 27, 28]. In addition, every main memory bank acts as it is a separate main
memory. A bank memory controller does not need any information from other bank memory
controllers. It only exchanges information with Meta memory controller every SQ. At last,
bank memory controllers do not have to wait until new applications/threads priorities
received from the Meta memory controller. They can use the previous threads priorities.

25

Figure 3.1: TB-LMI in case warm-up cycles

25

Figure 3.1: TB-LMI in case warm-up cycles

25

Figure 3.1: TB-LMI in case warm-up cycles

26

Figure 3.2: TB-LMI in case SQ cycles

27

Figure 3.3: Threads priorities calculation in Meta memory controller

28

3.4 Implementation and Hardware cost

TB-LMI requires hardware support to 1) monitor application’s/thread’s memory access
behavior and 2) schedule memory requests as described before. Thread Memory Access Per
Bank (TMAPB) and Thread Priority Status Register (TPSR) are added to each bank memory
controller. TMAPB is a register that is reset after the warm-up quantum and every SQ.
TMAPB size was chosen to fulfill the worst case in memory bank accesses as stated in Eq.
3.1. The worst case is encountered when an/a application/thread always access a single
memory bank, a row buffer hit always occur, and only one application/thread is running in
the multi-core processor. TPSR is added to store information sent form Meta memory
controller as will be described in the next paragraph.

latencyhitbufferrow

Quantum
TMAPB 2log …………………… (3.1)

The presence of a Meta memory controller is required as it is responsible of collecting
information from all bank memory controllers to do the calculation required for
applications/threads priorities. Applications/Threads priorities are saved in Meta-TPSR which
is broadcasted to TPSR in all bank memory controllers. TPSR size equals to

threadsthreads NN 2log* . In case of 8-core system, TPSR is of 24-bit size where each 3 bits
represent an/a application/thread. TPSR register arranges application/thread priorities from
high to low. The most three significant bits in TPSR represents the highest priority
application/thread and the least three significant bits represents the lowest priority
application/thread. Also, SQ register is implemented in the Meta memory controller. SQ
register is incremented every clock cycle and it is reset when it reaches SQ value. As will be
discussed in chapter 5, SQ value is set to 1M cycles. This makes a 20-bit register is enough
for SQ register. In order to determine whether SQ is reset or not, an OR operation is
performed on all bits in SQ register. If OR operation result is zero then the SQ is reset. At
last, Total Memory Access (TMA) register is implemented in the Meta memory controller.
TMA is designed to keep the history of a application/thread memory accesses in a multi-core
processor for 100 million instructions of execution. TMA is designed to fulfill the worst case
of memory accesses. The worst case is when only one thread is running on a multi-core
processor and every instruction requires a memory access with row buffer conflict latency
(maximum main memory latency). TMA register size is calculated through equation stated in
Eq. 3.2.

)*(log2 NumbernInstructioMaxlatencyhitbufferrowTMA …………… (3.2)

29

Table 3.1: Hardware required for each bank memory controller

Memory Intensity
Storage Function Size (bits)
TMAPB A thread’s memory accesses per bank. Nthreads .TMAPB
Thread prioritization
Storage Function Size (bits)

TPSR
Rank the threads according to their memory

access
Nthreads.Log2 Nthreads

Table 3.2: Hardware required for Meta memory controller

Meta-Memory Controller
Storage Function Size (bits)
TMA A thread’s memory accesses. Nthreads .TMA

Additional bits are added to every memory request address to differentiate between

different threads. The added bits equals to threadsN2log . This adds 3 bits to every memory
request address in case of 8 core processors while 2 bits are added in case of 4 core
processors. In addition, First-Ready bit is added to determine requests with row buffer hits in
memory queue. If First-Ready bit is set then it is a row buffer hit request.

Calculations are performed on memory requests searching for the right request to
access the main memory does not require extra ALU. Calculations can be performed on any
core with an idle ALU when the main memory bank is busy. In case of the absence of any
idle ALU, calculations are not latency critical because the previous ranking can be used in the
controllers while the next ranking is being computed or transferred.

Table 3.1, and Table 3.2 summarizes the required resources for both TMAPB, and
TMA, for the whole multi-core processor. We can notice that the TMA, and TMAPB is
directly proportional to the number of applications/threads, banks, and number of
instructions. As the number of applications/threads and/or banks increases, the required
hardware needed increases which is considered a drawback. Experimentally, as will be
discussed in Chapter 5, applications profile store in Meta memory controller can be flushed
every 100 millions instructions without degrading multi-core processor’s throughput or
fairness.

3.5 TB-LMI operation and request scenario

To illustrate how TB-LMI works and to make the scheduling algorithm clear we
introduce a detailed example. Assume that we have a 4 core processor, a main memory with 2
banks, and a Meta memory controller. At processor’s startup there is no information about
running applications/threads. Warm-up quantum starts. At the end of the warm-up cycle,
application’s/thread’s profiles were performed. As shown in Figure 3.4, a bank memory
controller shows that cores 1, 2, 3, and 4 have 10, 2, 21, and 15 main memory requests have

30

been served respectively. The other memory bank controller shows that cores 1, 2, 3, and 4
have 2, 6, 10, and 12 main memory requests have been served respectively. This information
is sent from memory bank controllers to Meta memory controller where they are accumulated
in TMA register and threads priorities are calculated in Meta TPSR. Also, TMAPB registers
are reset. The Meta memory controller shows that the total number of main memory requests
served for cores 1, 2, 3, and 4 are 12, 8, 31, and 27 as shown in Figure 3.4. Also, it shows that
cores priorities from high to low are 2, 1, 4, and 3. Priorities are broadcasted and saved in
TPSR in all memory bank controllers.

Now, the SQ starts, and TB-LMI starts. Let’s consider 3 scenarios and show these
scenarios in one memory bank controller. The first scenario in case of the presence of row
buffer hit. As shown in Figure 3.5 (a), level 1 in TB-LMI starts and it searches for the oldest
row buffer hit request. A request from core 4 has this property (circled) and it is scheduled
before any other waiting request. The second scenario is when there are no row buffer hit
requests. Level 1 returns a null value. TB-LMI switches to level 2 and starts to search for the
highest priority requests. TPSR in the bank memory controller shows that requests from core
2 have the highest priorities. TB-LMI schedules the oldest request from core 2 (circled) in the
main memory queue as shown in Figure 3.5 (b). Third scenario where level 1 returns null and
there is no requests from core 2. Level 2 searches for the oldest request from core 1 (the
second highest priority among cores) and schedule it. This technique is also applied on the
other bank memory controllers.

At the end of SQ, a new profile is performed. As shown in Figure 3.6 a bank memory
controller shows that the total number of requests served for cores 1, 2, 3, and 4 are 5, 17, 3,
and 2 respectively. The other bank memory controller shows that the total number of requests
served for cores 1, 2, 3, and 4 are 7, 10, 11, and 1 respectively. This information is sent to the
Meta memory controller where they are accumulated with previous results and new priorities
are calculated. Figure 3.6 shows that the total number of requests served for cores 1, 2, 3, and
4 are 24, 35, 45, and 30 respectively. Also, it shows that core’s priorities from high to low are
1, 4, 2, and 3. This information is broadcasted to all bank memory controllers and the new
priorities are applied in the next SQ.

31

Figure 3.4: End of warm-up cycle

31

Figure 3.4: End of warm-up cycle

31

Figure 3.4: End of warm-up cycle

32

Figure 3.5: Bank memory controllers during SQ cycles

32

Figure 3.5: Bank memory controllers during SQ cycles

32

Figure 3.5: Bank memory controllers during SQ cycles

33

Figure 3.6: Bank memory controllers at the end of SQ cycles

33

Figure 3.6: Bank memory controllers at the end of SQ cycles

33

Figure 3.6: Bank memory controllers at the end of SQ cycles

34

Chapter 4. Simulator

4.1 Overview

Computer architecture simulators can be classified into functional simulators and cycle-
accurate simulators. Functional simulators implement what programmers see. Functional
simulators perform the actual execution so they keep track of the process state including
architecture, registers, program count (PC) and memory. Cycle-accurate simulators are also
called performance simulators. Cycle-accurate simulators implement the micro architecture,
models processor resources, measures time, and implements hardware structures. Another
simulator classification is according to its input; trace-based simulators and execution-driven
simulators. Trace-based simulators read a trace of instructions saved from previous execution
and then starts the simulation. Trace-based simulators are easier in implementation as they do
not require functional components. Execution-driven simulators execute the program from
scratch. Execution-driven simulators allow dynamic change of instructions to be executed
depending on different input data which is considered an advantage. Execution-driven
simulators give a wider area of simulation capabilities. Difficultly in implementation is
considered one of the most disadvantages of execution-driven simulation.

There are a lot of simulators that could be used in our evaluation but we will introduce
only two simulators 1) SimpleScalar simulator and 2) Multi2sim simulator. SimpleScalar and
Multi2sim are freeware simulators. Both SimpleScalar and Multi2sim simulator can be
classified as execution-driven simulators and they support both functional and cycle-accurate
simulations. They are very authentic, widely used, and trusted in the research community.

1. SimpleScalar simulator

It was developed by Todd Austin [31] while he was a PhD student at the
University of Wisconsin Madison. SimpleScalar [32] is an open source computer
architecture simulator written using ‘C’ programming language. SimpleScalar
models a complete computer system (CPU, Cache and Memory Hierarchy).
SimpleScalar was modified to support multithreaded and multi-core processors
[33]. Also, it was modified in [24] in order to support different scheduling
algorithms such as FLRMR, and LREQ. One of the main disadvantages of this
simulator is that it does not support banking in main memory. Only main
memories with one bank can be used.

2. Multi2Sim simulator

Multi2Sim [34] is a simulation framework for CPU-GPU heterogeneous
computing written in ‘C’ programming language. It includes models for
superscalar, multithreaded, and multi-core CPUs, as well as GPU architectures.
Multi2Sim is an open-source simulator and can be downloaded from the website in

35

[35]. Multi2Sim supports x86 CPU model, AMD Evergreen GPU, and AMD
Evergreen Southern Islands GPU model. Also, it supports both functional and cycle
accurate simulation. In addition, X86 binary files of SPEC2006, PARSEC 2.1,
Mediabench, and SPLASH-2 benchmarks are free to be downloaded from the
website in [35] and ready as inputs to Multi2sim. Multi2sim was used in our
evaluation as it supports banking in main memory.

Multi2Sim has a property called Fast-Forwarding. Fast-Forwarding is
functionally used to execute a program to a pre-defined number of instructions. A
lot of modifications were performed in Multi2sim so that it could be used in our
evaluation. These modifications are listed in the next section.

4.2 Multi2Sim simulator

Modifications that were performed on Multi2Sim simulator are:

1. Unpipelined memory

The default simulator uses a pipelined version of caches and main memory. A
pipelined memory is a type of memory ready to accept another request after 1 cycle
from the scheduled previous request. Pipelined memory makes all memory scheduling
algorithms has the same results as there are no waiting requests so that memory
scheduling algorithms could work on. Multi2Sim was modified to use a pipeline
caches only. Main memory locks its port until a scheduled request is served.

2. Same_Block_Store_First

Store instructions issued in the default simulator from a core to L1 have to wait
until all previous instructions are served whether they are load or store instructions. In
order to increase processor’s performance store instruction must not wait until
previous instructions are served by L1. But an/a application/thread may be executed
wrongly if a store instruction is performed before previous instructions accessing the
same cache block. Applications/threads will use wrong data. Multi2sim was modified
where store instructions wait only for any previous instruction only if they are
accessing the same block in L1 cache.

3. Load_Access_First

Load instructions issued from cores to L1 in the default simulator have to wait for
any previous store instructions whether they are accessing the same cache block or
not. Multi2sim was modified where load instructions wait only for any previous store
instructions only if they are accessing the same block in layer 1 cache.
Load_Access_Fist idea is close to a FCFS and Read-First (FCFS-RF) [25] memory
scheduling algorithm. FCFS-RF is an enhancement for FCFS. FCFS-RF serves read
requests before write requests as the read requests will cause the processors to stall.
Load_Access_First serves load instructions from L1 before store instructions to L1 to
improve processor’s performance.

36

4. Same_address_access_merge

Same_address_access_merge is an enhancement to Load_Access_First. Load
instructions that are accessing the same cache block of previous store instructions are
prioritized over any previous instructions. These load instructions do not access the
layer 1 cache. These instructions load their data from the store instruction
immediately.

5. Memory bank queue and row buffer register implementation

The default simulator uses no limitation on main memory queue. In addition, the
implementation of row buffer for main memory and setting timing for row buffer hit,
or row buffer conflict are not implemented (discussed in chapter 2).

Row buffer for main memory, limiting main memory queue, and main memory
timings were implemented. A queue for each memory bank is implemented and its
size can be controlled. In case a bank queue is full and a Layer 2 miss occurs, the
memory bank sends a request to Layer 2 to be stalled. If Layer 2 is stalled, it stalls
Layer 1 in case of the occurrence of Layer 1 miss which in return stalls the
corresponding core(s). The flow starts to work again only in case of the presence of at
least one free entry in the memory bank queue that caused stalling.

6. Implementing previously proposed memory scheduling algorithms

The default simulator uses FCFS when it accesses the main memory. FR-FCFS,
FLRMR, FR-FLRMR, FR-Modified_ROB, Modified_ROB, FIQMR, FR-FIQMR,
and TCM were implemented.

7. Multi2sim new options

New options were added in order to simplify the knowledge on how Multi2Sim
simulator works and to make sure that modifications work correctly. These options
are mini-debug, workload-histogram, main-memory-effective-latency, mem-
schedule-debug, and bank-parallelism-debug. These new functions can be shown at
Memory System Options by typing m2s --help in the terminal.

--mini-debug is responsible for discovering how Multi2Sim simulator works. It is
added at any place in the code when we require knowing the output of the simulator at
this part. It is recommended to be performed when a small number of instructions are
simulated.

--workload-histogram calculates the histogram of running workload. workload
histogram calculates the number of waiting main memory requests in every main
memory queue every clock cycle. It can, also calculates the histogram of one
benchmark as a workload can be only one benchmark.

--main-memory-effective-latency calculates the effective latency of the main
memory. It calculates the actual number of cycles required to serve a memory request.
It calculates the number of cycles of a memory request once it enters the main
memory queue until the request is served by the main memory.

37

--mem-schedule-debug shows how the applied memory scheduling algorithm works.
It is the same as mem-debug function introduced by Multi2Sim. But mem-schedule-
debug gives only enough information about handled requests to the main memory that
helps in troubleshooting.

--bank-parallelism-debug is the same as mem-schedule-debug. It is used to make
sure that banking in the main memory works correctly.

38

Chapter 5. Evaluation Metrics and Workloads

5.1 Metrics

For multi-core processors, metrics are classified into speedup metrics and fairness metrics.
Speedup metrics measures multi-core processor performance. Fairness metric measures the
immunity of a multi-core system in starving any working application. It is advisable to use
speedup metric and fairness metric when we differentiate between multi-core processors.
Using a single metric in comparison is not favored [27, 25, 36].

 Speedup metric
There are several ways in calculating the speedup of multi-core processors such as

geometric mean [24] shown in Eq. 5.1, weighted speedup [26] shown in Eq. 5.2, and
harmonic mean [26] shown in Eq. 5.3. ‘N’ stands for the number of cores. IPCnew is the
committed instructions per cycle in case of applying any memory scheduling. IPCbaseline is the
committed instructions per cycle in case of baseline scheduling is applied. Baseline
scheduling could be any previous introduced scheduling such as FCFS. Weighted speedup
measures multi-core processor’s throughput. Harmonic mean measures a balance of multi-
core processors fairness and throughput.

Geometric mean can be used alone in measuring multi-core processor’s speedup. One of
the main advantages of the geometric mean is that if there is a performance improvement in
one thread and an identical performance degradation in another running thread, both changes
in performance will be affecting the overall performance equally. On the contrary, neither the
weighted speedup nor the harmonic mean are advisable to be used alone in evaluating multi-
core processor’s speedup [36].

N

N baseline

new

IPC

IPC
meanGeometric ……………………………...… (5.1)

N

IPC

IPC

speedupWeighted N baseline

new
 ……………………………….. (5.2)

N new

baseline

IPC

IPC
N

meanHarmonic …………………………………. (5.3)

39

 Fairness metric
The same as speedup metrics, fairness metric has several formulas to calculate for multi-

core processors. One of the formulas used is to measure the unfairness in [24]. Unfairness for
a certain workload is defined as the ratio between the maximum slowdown to the minimum
slowdown among all the applications/threads running in this workload. Slowdown is defined
as the ratio between the application/thread stall time because of loads when it is running
among other applications/threads in the workload to its stall time when it is running alone.
Eq. 5.4 describes how to calculate unfairness, where ‘i’ represents application/thread ID. The

shared
itimestall term is the stall time faced by application/thread i when it runs with other

applications/threads. Also,
alone
itimestall term is the stall timed faced by application/thread i

when it runs alone.

Another fairness metric is introduced in [26] by measuring the maximum slowdown
caused to any running application as shown in Eq. 5.5. As the maximum slowdown increases,
unfairness increases.

alone
i

shared
i

i timeStall

timeStall
SlowdownMem ,

jj

ii

nMemSlowdow

nMemSlowdow
unfairness

min

max
 ………...….. (5.4)

shared
i

alone
i

i IPC

IPC
SlowdownMaximum max ……………………...…….. (5.5)

 Summary

In [36] the authors suggested to use the weighted speedup shown in (5.2), ANTT which is
the reciprocal of the harmonic mean shown in Eq. 5.6 with any fairness metric. In [36] the
authors proved that weighted speedup and ANTT are more accurate and more intuitive
conclusion than other metric. Fairness is also incorporated in the ANTT metric. In our
evaluation we used the metrics that was suggested in [36]. We used a modified version of the
fairness metric shown in Eq. 5.7 as it does not require further modification on Multi2sim. We
used FCFS as a baseline scheduling.

N

IPC

IPC

ANTT N
new
i

baseline
i

 …………………………………...… (5.6)

40

baseline

shared
i

alone
i

i

slowdownMaximum

IPC

IPC

SlowdownMaximum

max

 …………………… (5.7)

5.2 Simulation Environment

We have used the default CPU specification suggested by Multi2Sim. Table 5.1
summarizes the CPU specifications. Table 5.2 summarizes layer 1 cache specifications and
Table 5.3 summarizes layer 2 cache specifications. Table 5.4 shows DRAM chip parameters.

Table 5.1: CPU specifications

Core 4 and 8 cores
Threads 1 thread/core
L1 cache Separate instruction/data cache per core
Fast Forward 1 billion instructions
Fetch queue size 64 bytes
Re-order buffer size 64 Uops
Issue queue size 40 Uops
Load/store queue size 20 Uops
Branch predictor 2 level

Table 5.2: L1 specification

Size 64 KBytes
Sets 512
Associatively 2-way
Block size 64 bytes
Latency 2 clock cycles
Replacement policy LRU
Ports 2

Table 5.3: L2 specification

Size 4 MBytes
Sets 16384
Associatively 4-way
Block size 64 Bytes
Latency 11 clock cycles
Replacement policy LRU
Ports 4

41

Table 5.4: DRAM chip parameters

Number of Banks 4
Row buffer 256 row buffer/bank
Number of Controller 1 controller/bank
Row buffer hit latency 108 clock cycles
Row buffer conflict latency 216 clock cycles
Row buffer closed latency 140 clock cycles

5.3 Workloads

We have classified SPEC2006 benchmarks into memory intensive benchmarks and
memory non-intensive benchmarks. Benchmarks that have high miss rate in L2 are classified
as memory intensive benchmarks. Benchmarks that have low miss rate in L2 are classified as
memory non-intensive benchmarks. For more details refer to Appendix A.

Workloads are designed to be 100% memory intensive workloads or 50% memory
intensive workloads. 100% memory intensive workloads are workloads that have all
benchmarks are memory intensive benchmarks. 50% memory intensive workloads are
workloads that have half of the benchmarks are memory intensive benchmarks while the
other half are memory non-intensive benchmarks. We have used all the benchmarks
introduced in Table A.6 in Appendix A and all benchmarks are equally represented. Table 5.5
shows the workloads used in evaluation for 8-core processors. Table 5.6 shows the workloads
used in evaluation for 4-core processors. Workloads are named where the first number
represents the number of cores in a multi-core processor. The last number represents the
workload ID. Workloads are differentiated (whether it is 100% memory intensive, or 50%
memory intensive) through “mem”, and “mix” words between the first and the last numbers.
“mem” stands for 100% memory intensive workloads. “mix” stands for 50% memory
intensive workloads. As an example, 8mem1 is workload number 1 for an 8-core processor
and it is 100% memory intensive workload. 4mix3 is workload number 3 for a 4-core
processor and it is 50% memory intensive workload.

 Unlimited memory bank queue size analysis

Workloads histograms for memory requests were calculated for FCFS scheduling. We
have used the simulation parameters that were discussed in section 5.2. We used a cycle-
accurate simulation for 100 million instructions. We have calculated and measured the
histograms of workloads in each memory bank. Figure 5.1 and Figure 5.2 show the histogram
for 4-core and 8-core workloads on average per single memory bank respectively. Average
value is calculated where workloads histogram of memory banks are accumulated and
divided by the number of memory banks. X-axis represents the number of waiting requests in
main memory queue. Y-axis represents the number of cycles that the main memory queue has
been occupied by waiting requests. Also, Table 5.7 and Table 5.8 show the average value of
waiting requests in the main memory queue, how many cycles the main memory queue is
busy, and how many cycles the main memory queue is free (main memory queue
characteristics). It is observed from Figures 5.1 and 5.2 that the histograms of the workloads
are close to exponential distribution. In case of 4-core workloads the average number of

42

waiting requests does not exceed 4 waiting requests. 4-core workloads require at maximum a
26 entries memory bank queue. As the number of cores increases, memory requests increases,
so the average number of waiting requests increases and the busy time of main memory
queue increases. In case of 8-core workloads the average waiting requests does not exceed 6
requests. In addition, processor’s performance is not improved or decreased when memory
bank queue increases which is considered a waste of resources (will be discussed with further
details in the next chapter). As an example, Table 5.9 shows a detailed analysis of a memory
bank in case of 8mem1. Table 5.9 shows how many cycles a main memory queue entry was
occupied by a waiting request. 8mem1 requires at maximum 39 entries from the main
memory queue. Entry number 39 is only occupied by a waiting request for 155 cycles. Entry
39 in main memory queue is only busy for 2.51e-5% of the total number of 8-core processor
cycles.

Table 5.5: 8-core system workloads

Workloads Benchmarks Memory
intensity

8mem1 429.mcf, 462.libquantum, 483.xalancbmk, 401.bzip2,
471.omnetpp, 410.bwaves, 470.lbm, 436.cactusADM.

100%

8mix1 429.mcf, 462.libquantum, 483.xalancbmk, 401.bzip2,
473.astar, 464.h264ref, 403.gcc, 456.hmmer.

50%

8mix2 473.astar, 464.h264ref, 403.gcc, 456.hmmer, 471.omnetpp,
410.bwaves, 470.lbm, 436.cactusADM.

50%

Table 5.6: 4-core system workloads

Workloads Benchmarks Memory
intensity

4mem1 429.mcf, 483.xalancbmk, 471.omnetpp, 470.lbm. 100%
4mem2 462.libquantum, 401.bzip2, 410.bwaves, 436.cactusADM. 100%
4mix1 429.mcf, 462.libquantum, 473.astar, 464.h264ref. 50%
4mix2 483.xalancbmk, 401.bzip2, 403.gcc, 456.hmmer. 50%
4mix3 471.omnetpp, 410.bwaves, 473.astar, 456.hmmer. 50%
4mix4 470.lbm, 436.cactusADM, 403.gcc, 464.h264ref. 50%

43

Figure 5.1: 4-core workloads histogram \ unlimited memory queue

Figure 5.2: 8-core workloads histogram \ unlimited memory queue

0

100

200

300

400

500

600

0 1 2 3 4 5

N
um

be
r

of
 c

lo
ck

 c
yc

le
s M

ill
io

ns

4-core workloads histogram

4mem1

4mem2

4mix1

4mix2

4mix3

4mix4

Queue size

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 c

lo
ck

 c
yc

le
s M

ill
io

ns

8-core workloads histogram

8mem1

8mix1

8mix2

Queue size

44

Table 5.7: 4-core system workloads memory characteristics

Workload 4mem1 4mem2 4mix1 4mix2 4mix3 4mix4
Number
of cycles

947216758 715462985 582623277 550951502 490305643 611820969

Queue
free (%)

55.6033 65.1203 72.683 72.957 76.02 73.861

Queue
busy (%)

44.3967 34.88 27.3167 27.043 23.98 26.139

Queue
max (%)

0.11302 1.0944 0.0266 0.1333 0.467 0.171

Average
of waiting
requests

2.24 3.33 1.86 2.068 2.668 2.013

Table 5.8: 8-core system workloads memory characteristics

Workload 8mem1 8mix1 8mix2
Total number of cycles 1860148029 1835934804 2479952824
Queue free (%) 28.20484408 34.81306598 31.25208536
Queue busy (%) 71.79515592 65.18693402 68.74791464
Queue max (%) 2.08317E-06 1.79745E-06 2.4194E-06
Average of waiting requests 5.55 4.89 5.6266

45

TABLE 5.9: 8mem1 detailed histogram for memory bank 0 / unlimited memory bank

queue

Memory bank
queue entry

Number of clock
cycles

Memory bank
queue entry

Number of
cycles

1 166852771 21 1814744

2 158683505 22 1165538
3 150911127 23 741460
4 142158298 24 474154
5 132290187 25 301054
6 122031662 26 181880
7 110723887 27 109366
8 98132202 28 68279
9 84313993 29 44453
10 70233529 30 21812
11 56606103 31 9334
12 44059628 32 4903
13 33352896 33 3470
14 24681769 34 2988
15 17909201 35 1236
16 12724362 36 668
17 8873526 37 467
18 6098337 38 1003
19 4133808 39 512
20 2788130 40 155

 Limited size of memory bank queue analysis

We have put a limit to the main memory queue sizes to be 8, 16, 24, and 32 entries to
decrease area and to study its effect on multi-core processors. Figure 5.3 to Figure 5.14 show
8mem1, 8mix1, and 8mix2 workloads histograms for each memory bank when each memory
bank queue has 8, 16, 24, and 32 entries respectively. Table 5.10 to Table 5.13 show the main
memory queue characteristics in case each memory bank queue has 8, 16, 24, and 32 entries.

We can observe that the memory banks have the same histogram across workloads.
Workloads histogram in case of limited memory bank queue is different than unlimited
memory bank queue. Workloads histograms are close to X2 distribution in case of 8 entries
memory bank queue. Workloads histograms are changed to exponential distribution when
memory bank queue were increased to 16, 24, and 32 entries. Also, Workloads histograms
show that the latest entry in memory bank queue occupancy with waiting requests is
increased when we switch from unlimited memory bank queue size to limited size of memory
bank queue. As an example, in case of 8mem1 and memory bank 0, and 8 entries memory
bank queue, entry 8 occupancy with waiting requests is increased from 98 million cycles to
191 million cycles (doubled). This was expected as the main memory queue size was

46

decreased from 39 entries to 8 entries in case of 8-core workloads the occupancy of memory
bank queue with 8 waiting requests is increased.

The average number of occupied entries was increased from 4.7 waiting requests when
the bank memory queue has 8 entries to 5.74 waiting requests when the bank memory queue
has 32 entries in case of 8mem1. The same observation is seen on 8mix1 and 8mix2 but with
different numbers. Also, the main memory queue busy time increases as main memory queue
increases. This results in increasing processor’s power usage as more energy will be required
to save the data in memory bank queue. Thorough power analysis is not performed in thesis
but it is part of our future research directions. In case the memory bank queue size has 8
entries the main memory queues are fully occupied or has any number of entries (busy) for
61%, 56%, and 55% of the total number of executed cycles for 8mem1, 8mix1, and 8mix2
workloads respectively. When the memory bank queue is increased to 32 entries the main
memory queues are busy for 66%, 58%, and 56% from the total number of executed cycles
for 8mem1, 8mix1, and 8mix2 workloads respectively. When we compare the average
number of waiting requests and the busy time of memory bank queue in case it is 8 entries
and in case it is 32 entries. We can observe that the average value was increased by 20%,
5.05%, and 10.26% when we switch from 8 entries memory bank queue to 32 entries memory
bank queue in case of 8mem1, 8mix1, and 8mix2 respectively. Memory bank queue
occupancy was increased by 7.7%, 4.49%, and 2% when we switch from 8 entries memory
bank queue to 32 entries memory bank queue for 8mem1, 8mix1, and 8mix2 respectively. As
the memory bank queue busy time increases, more energy is consumed. This indicates an
increase in power dissipation of the multi-core processor and more complexity in design.

In summary, it is observed that the occupancy of large entries in the main memory queue
by memory requests is low. Limiting the main memory queue size does not affect processor’s
performance and/or fairness which will be observed in the next chapter. It is preferred to use
memory bank queue size with small number of entries to decrease multi-core processor’s area
and dissipation power.

Figure 5.3: 8mem1 histogram \ 8 entries bank queue

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mem1

Bank0

Bank1

Bank2

Bank3

Queue size

47

Figure 5.4: 8mix1 histogram \ 8 entries bank queue

Figure 5.5: 8mix2 histogram \ 8 entries bank queue

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mix1

Bank0

Bank1

Bank2

Bank3

Queue size

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8

N
um

be
r

of
 c

lo
ck

 c
yc

le
s M

ill
io

ns

8mix2

Bank0

Bank1

Bank2

Bank3

Queue size

48

Table 5.10: Memory characteristics \ 8 entries bank queue

Workload 8mem1 8mix1 8mix2
Total number of cycles 902836282 594418149 565075165
Queue free (%) 38.1204461 43.65324556 44.38336872
Queue busy (%) 61.8795539 56.34675444 55.61663128
Queue max (%) 19.51296547 9.322834833 11.58385128
Average of waiting requests 4.77 3.96 4.19

Figure 5.6: 8mem1 histogram \ 16 entries bank queue

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mem1

Bank0

Bank1

Bank2

Bank3

Queue size

49

Figure 5.7: 8mix1 histogram \ 16 entries bank queue

Figure 5.8: 8mix2 histogram \ 16 entries bank queue

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mix1

Bank0

Bank1

Bank2

Bank3

Queue size

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

nu
m

be
r

of
 c

lo
ck

 c
yc

le
s M

ill
io

ns

8mix2

Bank0

Bank1

Bank2

Bank3

Queue size

50

Table 5.11: Memory characteristics \ 16 entries bank queue

Workload 8mem1 8mix1 8mix2
Total number of cycles 841526803 575042081 535487308
Queue free (%) 34.01969275 41.21936243 43.19377122
Queue busy (%) 65.98016787 58.78034142 56.80579086
Queue max (%) 3.335152386 2.572413696 2.593555495
Average of waiting requests 5.71 4.14 4.63

Figure 5.9: 8mem1 histogram \ 24 entries bank queue

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mem1

Bank0

Bank1

Bank2

Bank3

Queue size

51

Figure 5.10: 8mix1 histogram \ 24 entries bank queue

Figure 5.11: 8mix2 histogram \ 24 entries bank queue

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mix1

Bank0

Bank1

Bank2

Bank3

Queue size

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mix2

Bank0

Bank1

Bank2

Bank3

Queue size

52

Table 5.12: Memory characteristics \ 24 entries bank queue

Workload 8mem1 8mix1 8mix2
Total number of cycles 836157743 584931450 527992043
Queue free (%) 33.29253772 41.20510455 43.07106495
Queue busy (%) 66.70714846 58.79471441 56.92879964
Queue max (%) 3.427846897 2.616898271 2.577793914
Average of waiting requests 5.74 4.17 4.62

Figure 5.12: 8mem1 histogram \ 32 entries bank queue

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mem1

Bank0

Bank1

Bank2

Bank3

Queue size

53

Figure 5.13: 8mix1 histogram \ 32 entries bank queue

Figure 5.14: 8mix2 histogram \ 32 entries bank queue

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mix1

Bank0

Bank1

Bank2

Bank3

Queue size

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

M
ill

io
ns

8mix2

Bank0

Bank1

Bank2

Bank3

Queue size

54

Table 5.13: Memory characteristics \ 32 entries bank queue

Workload 8mem1 8mix1 8mix2
Total number of cycles 836731377 581194292 528219397
Queue free (%) 33.31179921 41.12389704 43.26880048
Queue busy (%) 66.68795937 58.8758681 56.73094394
Queue max (%) 3.416528803 2.582664989 2.578615454
Average of waiting requests 5.74 4.16 4.62

55

Chapter 6. Results

In this chapter we will show the results of TB-LMI against previous memory scheduling
algorithms. TB-LMI was compared to FCFS, FR-FCFS, FR-LREQ, FR-FLRMR, FR-
Modified_ROB, FR-FIQMR, and TCM. We will show the results of memory scheduling
algorithms in case of 4-core/8-core processors. Figures will show the weighted speedup and
ANTT which reflects processor’s performance, and maximum slowdown which reflects
processor’s fairness among running applications/threads. FCFS is the baseline unless
otherwise mentioned.

6.1 Sensitivity analysis

Sensitivity analysis was performed on SQ and row buffer hit requests to measure their
effect on performance and fairness in case of TB-LMI. As shown in figure 6.1, SQ was set to
different values in case of 8-core processor and memory bank queue size has 8 entries. X-axis
represents the weighted speedup and Y-axis represents the maximum slowdown. SQ with
value at the bottom right of the figure has the highest speedup and the best fairness. It is
observed that TB-LMI with 1	Kcycles < 	 	 < 10	 has the highest weighted
speedup (best performance) and the lowest maximum slowdown (highest fairness).

Figure 6.1: Weighted speedup versus Maximum slowdown 8-core \ 8 entries memory
bank queue (SQ sensitivity analysis)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.05 1.1 1.15 1.2 1.25 1.3

M
ax

im
um

 S
lo

w
do

w
n

Weighted speedup

SQ = 1 cycle

SQ = 1K cycle

SQ = 1M cycle

SQ = 10M cycle

SQ = 200M cycle

SQ = 300M cycle

SQ = 500M cycle

SQ = 2G cycle

56

In addition, sensitivity analysis was performed to show the effect of row buffer hit requests
on performance and fairness in case of TB-LMI. A First-Ready Threshold (FRT) is defined to
limit successive row buffer hits that can occur in TB-LMI (level 1) before it switches to level
2. FRT is applied per memory bank. FRT = 0 means that there is no search for row buffer hit
requests. FRT = 2 means that TB-LMI can perform only 2 successive row buffer hits before it
switches to level 2. Figures 6.2 and 6.3 show the row buffer hit sensitivity analysis in case of
8-core processors when memory bank queue has 8 entries and 32 entries respectively. It is
observed that TB-LMI improves both processor’s performance and fairness as FRT increases.
TB-LMI with FRT ≥ 	2 has the highest performance and the best fairness. TB-LMI withFRT = 	∞ has improved performance by 5.5% and 5.2% than TB-LMI with FRT = 	0 when 8
entries and 32 entries memory bank queues were used respectively. Also, TB-LMI withFRT ≥ 2 has improved fairness by 6% and 10% than TB-LMI with FRT = 	0 when 8 entries
and 32 entries memory bank queue were used respectively. TB-LMI design was chosen to
use FRT = 	∞ as it does not need extra hardware implementation. TB-LMI with FRT ≤ 	∞
will require an extra register implementation per memory bank. An extra register counts the
number of successive row buffer hits per memory bank. The extra register is reset once its
value reaches the FRT and gives the highest priorities to row buffer conflict requests in the
memory bank queue. In addition, TB-LMI with FRT = 	∞ decreases the processing in any
multi-core system as there is no need to keep track of the number of successive row buffer
hits for any memory bank.

Figure 6.2: Weighted speedup versus Maximum slowdown 8-core \ 8 entries memory
bank queue (FR sensitivity analysis)

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

1.18 1.2 1.22 1.24 1.26 1.28

M
ax

im
um

 S
lo

w
do

w
n

Weighted speedup

FRT = 0

FRT = 1

FRT = 2

FRT = 3

FRT = 5

FRT = 6

FRT = Infinity

57

Figure 6.3: Weighted speedup versus Maximum slowdown 8-core \ 32 entries memory
bank queue (FR sensitivity analysis)

6.2 Main memory effective latency

Main memory effective latency of TB-LMI, TCM, FR-LREQ and FCFS were calculated.
Calculations were performed on 8-core processor when a memory bank queue has 8 entries.
Results show that the main memory effective latency is the same among different workloads.
Figure 6.4, Figure 6.5, and Figure 6.6 show the main memory effective latency characteristics
of 8mem1, 8mix1, and 8mix2 respectively. Table 6.1 summarizes average value, variance,
and standard deviation of main memory effective latency of different scheduling after
dividing it with the main memory effective latency in case of FCFS (baseline main memory
effective latency is FCFS).

It is observed that TB-LMI and TCM have the same average, variance, and standard
deviation in case of 8mem1 but TB-LMI aims to improve fairness at the expense of
performance. In case of 8mix1, TB-LMI has increased the average, variance, and standard
deviation memory latency by 3.9%, 9.3%, and 4.6% respectively. Although TB-LMI has
increased the average, variance, and standard deviation memory latency in 8mix1 but TB-
LMI technique used in prioritizing waiting requests from applications/threads is better than
TCM. In case of 8mix2, TB-LMI has decreased the average, variance, and standard deviation
memory latency by 3.5%, 6.6%, and 3.2%.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.22 1.24 1.26 1.28 1.3 1.32 1.34

M
ax

im
um

 S
lo

w
do

w
n

Weighted speedup

FRT = 0

FRT = 1

FRT = 2

FRT = 3

FRT = 5

FRT = 6

FRT = Infinity

58

Figure 6.4: Main Memory Effective Latency Histogram for 8mem1

Figure 6.5: Main Memory Effective Latency Histogram for 8mix1

58

Figure 6.4: Main Memory Effective Latency Histogram for 8mem1

Figure 6.5: Main Memory Effective Latency Histogram for 8mix1

58

Figure 6.4: Main Memory Effective Latency Histogram for 8mem1

Figure 6.5: Main Memory Effective Latency Histogram for 8mix1

59

Figure 6.6: Main Memory Effective Latency Histogram for 8mix2

Table 6.1: Main memory effective latency characteristics \ Baseline scheduling
algorithm is FCFS

8mem1
FCFS TB-LMI TCM FR-LREQ

Average 1 0.96363207 0.95079081 1.00534075
Variance 1 0.90640126 0.90482454 1.02078556
Standard deviation 1 0.9520511 0.95122267 1.01033935

8mix1
FCFS TB-LMI TCM FR-LREQ

Average 1 0.83185046 0.80077922 1.12936673
Variance 1 0.7007208 0.64532885 1.27857006
Standard deviation 1 0.83709068 0.80332363 1.13073872

8mix2
FCFS TB-LMI TCM FR-LREQ

Average 1 0.70086173 0.72578495 0.92127878
Variance 1 0.49760009 0.53076991 0.84989313

Standard deviation 1 0.70540775 0.72853958 0.92189649

59

Figure 6.6: Main Memory Effective Latency Histogram for 8mix2

Table 6.1: Main memory effective latency characteristics \ Baseline scheduling
algorithm is FCFS

8mem1
FCFS TB-LMI TCM FR-LREQ

Average 1 0.96363207 0.95079081 1.00534075
Variance 1 0.90640126 0.90482454 1.02078556
Standard deviation 1 0.9520511 0.95122267 1.01033935

8mix1
FCFS TB-LMI TCM FR-LREQ

Average 1 0.83185046 0.80077922 1.12936673
Variance 1 0.7007208 0.64532885 1.27857006
Standard deviation 1 0.83709068 0.80332363 1.13073872

8mix2
FCFS TB-LMI TCM FR-LREQ

Average 1 0.70086173 0.72578495 0.92127878
Variance 1 0.49760009 0.53076991 0.84989313

Standard deviation 1 0.70540775 0.72853958 0.92189649

59

Figure 6.6: Main Memory Effective Latency Histogram for 8mix2

Table 6.1: Main memory effective latency characteristics \ Baseline scheduling
algorithm is FCFS

8mem1
FCFS TB-LMI TCM FR-LREQ

Average 1 0.96363207 0.95079081 1.00534075
Variance 1 0.90640126 0.90482454 1.02078556
Standard deviation 1 0.9520511 0.95122267 1.01033935

8mix1
FCFS TB-LMI TCM FR-LREQ

Average 1 0.83185046 0.80077922 1.12936673
Variance 1 0.7007208 0.64532885 1.27857006
Standard deviation 1 0.83709068 0.80332363 1.13073872

8mix2
FCFS TB-LMI TCM FR-LREQ

Average 1 0.70086173 0.72578495 0.92127878
Variance 1 0.49760009 0.53076991 0.84989313

Standard deviation 1 0.70540775 0.72853958 0.92189649

60

6.3 Performance analysis

We have used TB-LMI when FRT = 	∞ in our analysis as it does not need extra hardware
implementation or CPU processing (discussed in section 1.1). In addition, we used memory
bank queue with 8, 16, 24, and 32 in our performance analysis. It is expected that increasing
memory bank queue size than 32 entries will not show a significant performance or fairness
improvement. As discussed in section 6.1 in case of 8-core system, TB-LMI when FRT = 	∞
has improved performance and fairness by 3.9% and 3% respectively when the memory bank
queue size is increased from 8 entries to 32 entries. This concludes that TB-LMI whenFRT = 	∞ shows a small improvement in performance and fairness when memory bank queue
size is increased from 8 entries to 16 entries and 24 entries (will be discussed in this chapter).

6.3.1 4-core

TCM, FR-LREQ, and FR-FLRMR showed competitive results against TB-LMI. Other
scheduling algorithms showed approximately the same performance and fairness
improvements. We will discuss and state memory scheduling algorithms that showed
competitive results.

Figure 6.7, Figure 6.8, and Figure 6.9 show the weighted speedup, ANTT, and maximum
slowdown when the memory bank queue has 8 entries. It is observed that TB-LMI, FR-
LREQ, and TCM achieve maximum performance and fairness in case of memory intensive
workloads (4mem1 and 4mem2). TB-LMI compared to FCFS achieves a maximum weighted
speedup improvement increase by 8.22%, ANTT decrease by 4%, and a decrease in
maximum slowdown by 19.7% in case of 4mem1. FR-LREQ compared to FCFS achieves a
maximum weighted speed increase by 8%, ANTT decrease by 5%, and a decrease in
maximum slowdown 17% in case of 8mem2. TCM compared to FCFS achieves a maximum
weighted speedup improvement increase by 5.9%, ANTT decrease by 4.5%, and a decrease
in maximum slowdown by 16.5% in case of 4mix5. TCM achieves the same results
approximately in case of 4mem1.

We can notice that TB-LMI is only in the second place after FR-LREQ in case of 4mem2.
In case of 4mem2, TB-LMI compared to FCFS increases weighted speedup by 6.2%, ANTT
decreases by 5%, and maximum slowdown decrease by 7.9%. In case 4mem1, FR-LREQ
compared to FCFS increases the weighted speedup by 6%, ANTT decrease by 4.7%, and a
decrease in maximum slowdown by 8%. 4mem2 has 462.libquantum benchmark.
462.libquantum is a memory intensive benchmark and has a high row buffer hit rate [26, 27,
28]. FR-LREQ targets memory requests from running applications/threads that has the
minimum number of waiting requests in memory bank queue. FR-LREQ assigns requests
462.libquantum with the highest priority as it is expected to have the minimum waiting
requests in the memory bank queue. This results in releasing more requests from
462.libquantum which in return improve processor’s performance. Table 6.2 shows IPC for
each benchmark in 4mem2. It is observed that FR-LREQ has increased 462.libquantum IPC
from 0.8331 in case of TB-LMI to 1.13. In return FR-LREQ has decreased IPC for
benchmarks 436.cactusADM and 410.bwaves. IPC in case of TB-LMI are closer to each
other than FR-LREQ. TB-LMI targets fairness firstly then it tries to improve the performance
which will be discovered in 8-core performance analysis.

61

TABLE 6.2: Detailed IPC of 4mem2 in case of TB-LMI and FR-LREQ

Benchmark IPC achieved in TB-LMI IPC achieved in FR-LREQ
436.cactusADM 0.9674 0.8354
410.bwaves 0.4971 0.4089
401.bzip2 0.7868 0.8555
462.libquantum 0.8331 1.13

At last, FR-FLRMR compared to FCFS achieves a maximum weighted speedup by 3%
increase, a decrease in ANTT by 3%, and a decrease in maximum slowdown by 2.7%. FR-
FLRMR does not show any decrease in performance or fairness on any of the workloads. At
least FR-FLRMR works as FCFS.

On average, TB-LMI is the best memory scheduling algorithm. FR-LREQ is in the second
place. TCM is in the third place. Figure 6.10 shows the average values of weighted speedup
versus maximum slowdown when memory bank queue has 8 entries. The memory scheduling
algorithm at the bottom right of figure 6.4 has the maximum performance and the best
fairness which is TB-LMI.TB-LMI compared to TCM has a better speedup by 4%, less
ANTT by 4.6%, and less maximum slowdown by 5.55%. FR-LREQ compared to TCM has
better speedup by 2.8%, less ANTT by 4.6%, and less maximum slowdown by 5.5% than
TCM. FR-FLRMR compared to TCM has the same speed up, less ANTT by 2.33%, and
same maximum slowdown when it is compared to TCM.

Figure 6.7: Weighted speedup 4-core \ 8 entries memory bank queue

0.8

0.85

0.9

0.95

1

1.05

1.1

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

Weighted speedup

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

62

Figure 6.8: ANTT 4-core \ 8 entries memory bank queue

Figure 6.9: Maximum slowdown 4-core \ 8 entries memory bank queue

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

ANTT

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

Maximum Slowdown

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

63

Figure 6.10: Weighted speedup versus Maximum slowdown 4-core \ 8 entries memory
bank queue

Figure 6.11, Figure 6.12, and Figure 6.13 show the weighted speedup, ANTT, and
maximum slowdown when the memory bank queue has 16 entries. Increasing the main
memory queue size from 8 entries to 16 entries does not show any performance or fairness
improvement. Also, it is observed that TB-LMI, FR-LREQ, and TCM achieve the maximum
performance and fairness in case of 100% memory intensive workloads (4mem1 and
4mem2). Again TB-LMI and FR-LREQ have the best performance, ANTT, and fairness
improvements across all workloads. FR-FLRMR is in the second place. TCM is in the third
place. TB-LMI compared to FCFS achieves a maximum weighted speedup by 8.8%, decrease
in ANTT by 4.6%, and a decrease in maximum slowdown by 20.7% in case of 4mem1. We
can notice that TB-LMI is only in the second place after FR-LREQ in case of 4mem2. At last,
FR-FLRMR does not show any decrease in performance or fairness on any of the workloads

We can conclude that there is neither performance nor fairness improvement when the
memory bank queue is increased from 8 entries to 16 entries. It is expected that neither
performance nor fairness improvement will be achieved when the memory bank queue size is
increased to 24 entries or 32 entries. Also, the maximum performance and fairness
improvement from TB-LMI will be achieved only in case of 100% memory intensive
workloads. In case of 100% memory intensive workloads, the average number of waiting
requests in memory bank queue is higher than 50% memory intensive workloads. This
increases the working time of TB-LMI. Also, we can notice that TCM compared to FCFS
showed a decrease in performance and fairness in some of the workloads which reflects the
disadvantage of TCM. TCM is not one of the best memory scheduling algorithms for low
core count processors (2-core and 4-core).

Figures 6.14 to Figure 6.19 show the results of memory scheduling algorithms in case of
24 entries and 32 entries memory bank queue. Memory scheduling algorithms achieve the
same results that were discussed in 8 entries and 16 entries memory bank queue.

0.9

0.92

0.94

0.96

0.98

1

1.02

1 1.01 1.02 1.03 1.04 1.05

M
ax

im
um

 s
lo

w
do

w
n

Weighted speedup

TB-LMI

TCM

FR-LREQ

FR-FLRMR

FR-Modified-ROB

FR-FIQMR

FR-FCFS

64

Figure 6.11: Weighted speedup 4-core \ 16 entries memory bank queue

Figure 6.12: ANTT 4-core \ 16 entries memory bank queue

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

Weighted speedup

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

ANTT

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

65

Figure 6.13: Maximum slowdown 4-core \ 16 entries memory bank queue

Figure 6.14: Weighted speedup 4-core \ 24 entries memory bank queue

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

Maximum Slowdown

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

0.8

0.85

0.9

0.95

1

1.05

1.1

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

Weighted speedup

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

66

Figure 6.15: ANTT 4-core \ 24 entries memory bank queue

Figure 6.16: Maximum slowdown 4-core \ 24 entries memory bank queue

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

ANTT

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

Maximum Slowdown

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

67

Figure 6.17: Weighted speedup 4-core \ 32 entries memory bank queue

Figure 6.18: ANTT 4-core \ 32 entries memory bank queue

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

Weighted speedup

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

ANTT

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

68

Figure 6.19: Maximum slowdown 4-core \ 32 entries memory bank queue

6.3.2 8-core

TCM, FR-LREQ, and FR-FLRMR showed competitive results versus TB-LMI. Our
discussion focuses on competitive memory scheduling algorithms.

Figure 6.20, Figure 6.21, and Figure 6.22 show the weighted speedup, ANTT, and
maximum slowdown when the memory bank queue has 8 entries. TB-LMI compared to TCM
has a maximum weighted speedup by 6%, less ANTT by 3.3%, and less maximum slowdown
by 42% in case of 8mix1. TB-LMI compared to TCM shows a decrease in weighted speedup
by 2.4%, increase in ANTT by 4.7% and less maximum slowdown by 5.6% than TCM in
case of 8mem1. In case of 8mix2, TB-LMI compared to TCM shows an increase in weighted
speedup by 8.8%, ANTT was decreased by 2.6%, but maximum slowdown was increased by
16.6%. These results confirm our conclusion in 4-core processors where TB-LMI targets
fairness in the first place and then the performance. TB-LMI targets fairness in case of 100%
memory intensive benchmarks as in 8mem1. TB-LMI targets performance and fairness in
case of 50% memory intensive workloads that contains high memory intensive benchmarks
(429.mcf, and 462.libquantum) as in 8mix1 (refer to appendix A for more details). TB-LMI
targets performance in case of 50% memory intensive workloads that has no high memory
intensive benchmarks as in 8mix2.

0.8

0.9

1

1.1

1.2

1.3

1.4

4mem1 4mem2 4mix1 4mix2 4mix3 4mix4

Maximum Slowdown

FCFS

FR-FCFS

TB-LMI

TCM

FR-LREQ

FR-FIQMR

FR-FLRMR

FR-Modified-ROB

69

Figure 6.20: Weighted speedup 8-core \ 8 entries memory bank queue

Figure 6.21: ANTT 8-core \ 8 entries memory bank queue

0.8

0.9

1

1.1

1.2

1.3

1.4

8mem1 8mix1 8mix2

Weighted Speedup

FCFS

FR-FCFS

FR-FIQMR

FR-Modified-ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

0.8

0.85

0.9

0.95

1

1.05

1.1

8mem1 8mix1 8mix2

ANTT

FCFS

FR-FCFS

FR-FIQMR

FR-Modified-ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

70

Figure 6.22: Maximum slowdown 8-core \ 8 entries memory bank queue

Figure 6.23, Figure 6.24, and Figure 6.25 show the weighted speedup, ANTT, and
maximum slowdown when the memory bank queue has 16 entries. TB-LMI has the best
performance in 8mix1 and 8mix2, but it showed a slight decrease compared to TCM in
performance by 1.4% in case of 8mem1. TB-LMI compared to TCM shows a maximum
weighted speedup by 8%, decrease in ANTT by 6.68%, and a decrease in maximum
slowdown by 27% in case of 8mix1. TB-LMI compared to TCM shows an improvement in
processor’s performance but fairness is decreased in case of 8mix2. TB-LMI compared to
TCM shows an increase in maximum slowdown by 5.87% in case of 8mix2. This confirms
our conclusion that was discussed in case memory bank queue has 8 entries where TB-LMI
targets performance in case of 50% memory intensive workloads that has no high memory
intensive benchmarks as in 8mix2.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

8mem1 8mix1 8mix2

Maximum Slowdown

FCFS

FR-FCFS

FR-FIQMR

FR-Modified_ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

71

Figure 6.23: Weighted speedup 8-core \ 16 entries memory bank queue

Figure 6.24: ANTT 8-core \ 16 entries memory bank queue

0.8

1

1.2

1.4

8mem1 8mix1 8mix2

Weighted Speedup

FCFS

FR-FCFS

FR-FIQMR

FR-Modified-ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

8mem1 8mix1 8mix2

ANTT

FCFS

FR-FCFS

FR-FIQMR

FR-Modified-ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

72

Figure 6.25: Maximum slowdown 8-core \ 16 entries memory bank queue

Figures 6.26 to Figure 6.31 show the results of memory scheduling algorithms in case of
24 entries and 32 entries memory bank queue. Memory scheduling algorithms achieve the
same results that were discussed in 8 entries and 16 entries memory bank queue.

Figure 6.26: Weighted speedup 8-core \ 24 entries memory bank queue

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

8mem1 8mix1 8mix2

Maximum Slowdown

FCFS

FR-FCFS

FR-FIQMR

FR-Modified_ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

0.8

0.9

1

1.1

1.2

1.3

1.4

8mem1 8mix1 8mix2

Weighted Speedup

FCFS

FR-FCFS

FR-FIQMR

FR-Modified-ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

73

Figure 6.27: ANTT 8-core \ 24 entries memory bank queue

Figure 6.28: Maximum slowdown 8-core \ 24 entries memory bank queue

0.8

0.85

0.9

0.95

1

1.05

1.1

8mem1 8mix1 8mix2

ANTT

FCFS

FR-FCFS

FR-FIQMR

FR-Modified-ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

8mem1 8mix1 8mix2

Maximum Slowdown

FCFS

FR-FCFS

FR-FIQMR

FR-Modified_ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

74

Figure 6.29: Weighted speedup 8-core \ 32 entries memory bank queue

Figure 6.30: ANTT 8-core \ 32 entries memory bank queue

0.8

0.9

1

1.1

1.2

1.3

1.4

8mem1 8mix1 8mix2

Weighted Speedup

FCFS

FR-FCFS

FR-FIQMR

FR-Modified-ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR_PF

0.8

0.85

0.9

0.95

1

1.05

1.1

8mem1 8mix1 8mix2

ANTT

FCFS

FR-FCFS

FR-FIQMR

FR-Modified-ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

75

Figure 6.31: Maximum slowdown 8-core \ 32 entries memory bank queue

Figure 6.32, Figure 6.33, and Figure 6.34 show the average values of weighted speedup,
ANTT and maximum slowdown respectively in case memory bank queue has different sizes.
In 4-core, processor’s performance and fairness are not affected when memory bank queue
size changes. On average all memory scheduling algorithms performance and fairness were
improved by 1% to 2 % when the memory bank queue size is increased from 8 entries to 16
entries. Memory scheduling algorithms showed no improvements in performance or fairness
when the memory bank queue size is increased to 24 entries or 32 entries. In case memory
bank queue has 16, 24, and 32 entries, TB-LMI and FR-LREQ have the best performance and
fairness improvements. FR-FLRMR is in the third place.

In 8-core, it is observed that when the memory bank queue size increases, TB-LMI targets
performance at the expense of fairness. In case memory bank queue has 8 entries. On average
TB-LMI compared to TCM increased weighted speedup by 4.2% has same ANTT and
decreased maximum slowdown by 11.7%. FR-LREQ compared to TCM decreased weighted
speedup by 13.3%, increased ANTT by 3%, and decreased maximum slowdown by 12.8%
than TCM. FR-FLRMR compared to TCM decreased weighted speedup by 18.4%, increased
ANTT by 2.5%, and decreased maximum slowdown by 3.7%. TB-LMI has the best
processor’s performance and fairness improvement. TCM is in the second place. FR-LREQ
and FR-FLRMR are in the third and fourth place respectively.

In case memory bank queue has 16 entries. On average TB-LMI has maximized the
weighted speedup by 4.05%, decreased ANTT by 3%, and decreased maximum slowdown by
8.08% than TCM. FR-LREQ has decreased the weighted speedup by 10.06%, increased
ANTT by 4%, and decreased maximum slowdown by 13.5% than TCM. FR-FLRMR has
decreased weighted speedup by 24%, increased ANTT by 3.08%, and increased maximum
slowdown by 3.2% than TCM.

In case memory bank queue has 24 entries. TB-LMI has the best performance across all
workloads. On average TB-LMI has maximized the speedup by 4.95%, decreased ANTT by

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

8mem1 8mix1 8mix2

Maximum Slowdown

FCFS

FR-FCFS

FR-FIQMR

FR-Modified_ROB

TB-LMI

TCM

FR-LREQ

FR-FLRMR

76

2.58%, and decreased maximum slowdown by 10.88% than TCM. FR-LREQ has decreased
speedup by 5.66%, increased ANTT by 2.75%, and decreased maximum slowdown by
17.29% than TCM. FR-FLRMR has decreased weighted speedup by 22.88%, increased
ANTT by 3.09%, and the same maximum slowdown when it is compared to TCM. On
average, TB-LMI lies in the first place among memory scheduling algorithms from
performance point of view but it is in the second place after FR-LREQ from fairness point of
view. The same results are obtained when the memory bank queue size is increased to 32
entries.

In summary, TB-LMI and FR-LREQ have the same performance and fairness
improvement in case of 4-core system across all memory bank queue sizes. FR-FLRMR is in
the third place. In 8-core, on average TB-LMI has the highest performance when the memory
bank queue has 8 entries. TCM is in the second place and FR-LREQ is in the third place. TB-
LMI shares the best fairness with FR-LREQ when the memory bank queue has 8 entries. As
the main memory queue size increases, TB-LMI increases processor’s performance at the
expense of fairness. On average TB-LMI compared to FR-LREQ has increased maximum
slowdown by 5%, 5.7%, and 7.9% when main memory queue sizes are with 16, 24, and 32
entries respectively. FR-LREQ has the best fairness in case memory bank queue has 16, 24,
32 entries but it is in the third place from performance point of view after TB-LMI and TCM.

Figure 6.32: Average Weighted speedup \ different memory bank queue sizes

76

2.58%, and decreased maximum slowdown by 10.88% than TCM. FR-LREQ has decreased
speedup by 5.66%, increased ANTT by 2.75%, and decreased maximum slowdown by
17.29% than TCM. FR-FLRMR has decreased weighted speedup by 22.88%, increased
ANTT by 3.09%, and the same maximum slowdown when it is compared to TCM. On
average, TB-LMI lies in the first place among memory scheduling algorithms from
performance point of view but it is in the second place after FR-LREQ from fairness point of
view. The same results are obtained when the memory bank queue size is increased to 32
entries.

In summary, TB-LMI and FR-LREQ have the same performance and fairness
improvement in case of 4-core system across all memory bank queue sizes. FR-FLRMR is in
the third place. In 8-core, on average TB-LMI has the highest performance when the memory
bank queue has 8 entries. TCM is in the second place and FR-LREQ is in the third place. TB-
LMI shares the best fairness with FR-LREQ when the memory bank queue has 8 entries. As
the main memory queue size increases, TB-LMI increases processor’s performance at the
expense of fairness. On average TB-LMI compared to FR-LREQ has increased maximum
slowdown by 5%, 5.7%, and 7.9% when main memory queue sizes are with 16, 24, and 32
entries respectively. FR-LREQ has the best fairness in case memory bank queue has 16, 24,
32 entries but it is in the third place from performance point of view after TB-LMI and TCM.

Figure 6.32: Average Weighted speedup \ different memory bank queue sizes

76

2.58%, and decreased maximum slowdown by 10.88% than TCM. FR-LREQ has decreased
speedup by 5.66%, increased ANTT by 2.75%, and decreased maximum slowdown by
17.29% than TCM. FR-FLRMR has decreased weighted speedup by 22.88%, increased
ANTT by 3.09%, and the same maximum slowdown when it is compared to TCM. On
average, TB-LMI lies in the first place among memory scheduling algorithms from
performance point of view but it is in the second place after FR-LREQ from fairness point of
view. The same results are obtained when the memory bank queue size is increased to 32
entries.

In summary, TB-LMI and FR-LREQ have the same performance and fairness
improvement in case of 4-core system across all memory bank queue sizes. FR-FLRMR is in
the third place. In 8-core, on average TB-LMI has the highest performance when the memory
bank queue has 8 entries. TCM is in the second place and FR-LREQ is in the third place. TB-
LMI shares the best fairness with FR-LREQ when the memory bank queue has 8 entries. As
the main memory queue size increases, TB-LMI increases processor’s performance at the
expense of fairness. On average TB-LMI compared to FR-LREQ has increased maximum
slowdown by 5%, 5.7%, and 7.9% when main memory queue sizes are with 16, 24, and 32
entries respectively. FR-LREQ has the best fairness in case memory bank queue has 16, 24,
32 entries but it is in the third place from performance point of view after TB-LMI and TCM.

Figure 6.32: Average Weighted speedup \ different memory bank queue sizes

77

Figure 6.33: Average ANTT \ different memory bank queue sizes

Figure 6.34: Average Maximum slowdown \ different memory bank queue sizes

77

Figure 6.33: Average ANTT \ different memory bank queue sizes

Figure 6.34: Average Maximum slowdown \ different memory bank queue sizes

77

Figure 6.33: Average ANTT \ different memory bank queue sizes

Figure 6.34: Average Maximum slowdown \ different memory bank queue sizes

78

Chapter 7. Conclusion and Future work

In this chapter we summarize the work done in this thesis. Also we write our plan for the
future work.

7.1 Conclusion

We presented the new memory scheduling Time-Based Least Memory Intensive
scheduling (TB-LMI) which provides the highest system throughput and the best fairness.
TB-LMI changes threads priority every a pre-defined quantum (SQ) to improve fairness.
Also, TB-LMI prioritizes row buffer hit requests over any waiting request to improve
throughput and prevent starvation of memory intensive threads within a schedule quantum
(improve fairness).

TB-LMI with memory bank queue size of 8 entries has the best fairness and throughput
compared to the best recently proposed memory scheduling algorithms across all workloads.
On average TB-LMI has the best weighted speedup by 4.22% than TCM (best performance
improvement scheduling from other scheduling algorithms) with no changes at ANTT, and
has the best fairness as FR-LREQ with an improvement by 7.74% than FR-FLRMR PF
(second best fairness scheduling of all scheduling algorithms). Unlike FR-LREQ, TB-LMI
targets processor’s at the expense of processor’s performance in case of 100% memory
intensive workloads. TB-LMI improves both processor’s performance and fairness in case of
50% memory non-intensive workloads. TB-LMI fairness was decreased compared to FR-
LREQ but its throughput was noticeably increased when memory bank queue sizes has 16,
24, and 32 entries. TB-LMI is an effective memory scheduling for both low-count and high
count cores in multi-core systems.

TB-LMI only requires hardware to support profiling of running applications/threads. TB-
LMI does not require extra ALU to calculate priorities of waiting requests in the memory
bank queue. Calculations can be performed on any core with an idle ALU when the main
memory bank is busy. TB-LMI extra hardware depends on the number of memory controller
used and the number of cores. Beyond first ready bit, and added bits to memory request
address, 728 bits and 196 bits are required for 8-core and 4-core system respectively. The
area of the added hardware storage and logic to implement TB-LMI are negligible compared
to TCM which requires approximately 1168 bits and 584 bits in case of 8-core and 4-core
system respectively.

7.2 Future work

In this section we propose our suggestion for future work in order to improve speedup,
fairness, and scalability of TB-LMI

79

 Dynamically set SQ

Setting the SQ dynamically is considered one of the main tasks to improve scalability of
TB-LMI. The idea is to change SQ value while the processor is working in order to improve
throughput, fairness, or both.

 L2 – Main memory connections and connectivity

TB-LMI was tested on 4-banks main memory and each bank has its own controller. L2 is
connected to all bank memory controllers. How will TB-LMI perform when 4-bank main
memory has only two controllers? How will TB-LMI perform when L2 is only connected to
only 1 controller? How will TB-LMI perform in case a multi-core processor is connected to
8-bank main memory?

Sensitivity analysis of TB-LMI must be performed to show the effect of these parameters.
In addition, a parameter that represents the number of main memory banks may be added.
TB-LMI uses this parameter in order to perform better multi-core processor throughput and
better fairness between running applications/threads.

 Power Usage and Energy Consumption

Power and energy analysis need to be performed for different scheduling. TB-LMI favor
decreases if it uses more power and consumes more energy than other scheduling even if it
has the best speedup and fairness. Also, applications/threads profiling storage must be
decreased or different applications/threads profiling are combined so that energy
consumption and power usage are decreased.

 Multithreaded processors and other benchmarks

TB-LMI was tested on multi-core processors and SPEC CPU2006 which reflects current
working applications. Multithreaded benchmarks such as PARSEC benchmarks need to be
simulated. PARSEC benchmarks need to be used in evaluation as it reflect the next
generation shared memory programs for CMP [37]. Also, Mediabench benchmarks need to
be used in evaluation as it stands for multimedia benchmarks. TB-LMI must target these
benchmarks and show competitive results against other memory scheduling algorithms.

80

References

1. Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, J.A., and Upton,
M., “Hyper-Threading Technology Architecture and Microarchitecture”, Intel
Technology Journal Q1, 2002.

2. Anderson, D.W., Sparacio, F.J., and Tomasulo, R.M., “The IBM System/360 Model
91: Machine Philosophy and Instruction-Handling”, IBM Journal of Research and
Development, vol. 11, pp. 8-24, January 1967.

3. Qayum, M.A., “Heterogeneous Chip Multiprocessors: A Survey”, ECEN 6253:
Advanced Topics in Computer architecture.

4. Blake, G., Dreslinski, R.G., Mudge, T., “A survey of multicore processors”, Signal
Processing Magazine, IEEE , vol.26, no.6, pp.26,37, November 2009
doi: 10.1109/MSP.2009.934110

5. Kumar, D., Chauhan A., “Multi-Core Processors and Where We’re Headed”,
International Journal of Innovation Research in Technology. Volume 1 Issue 5, ISSN
: 2349-6002

6. http://www.valvesoftware.com/

7. http://www.crytek.com/

8. Smith, A.J., Line (Block) Size Choice for CPU Caches, IEEE Trans. on Computers,
C-36, September 1987.

9. Kessler, R., McLellan, E., and Webb, D., “The Alpha 21264 microprocessor
architecture”, International Conference on Computer Design, October 1998.

10. Gwennap, L., “Digital Leads the Pack with the 21164”, Microprocessor Report, pp.
1,6-10, Sept. 12, 1994.

11. Kroft, D., “Lockup-Free Instruction Fetch/Prefetch Cache Organization”, In the
Proceedings of the 8th International Symposium on Computer Architecture, May
1981.

12. ITRS, International Technology Roadmap for Semiconductors, 2008 Update.
http://www.itrs.net/Links/2008ITRS/Update/ 2008Tables_FOCUS_B.xls.

13. Mogul, J.C., Argollo, E., Shah, M., Faraboschi, P., “Operating system support for
NVM+DRAM hybrid main memory”, Hot Topics in Operating Systems (HotOS)
(2009).

81

14. Koopman, P., "Main Memory Architecture", October 1998, Carnegie Mellon, pp. 3, 6.

15. Robinson, T., and Zuravleff, W.K., “Controller for a synchronous DRAM that
maximizes throughput by allowing memory requests and commands to be issued out
of order”, U.S. Patent No. 5,630,096. 13 May 1997.

16. Mathew, B.K., McKee, S.A., Carter, J.B., and Davis, A., “Design of a parallel
vector access unit for SDRAM memory systems”, in Proceedings of the Sixth
International Symposium on High-Performance Computer Architecture, pp. 39 –48,
Jan 2000.

17. Moyar, S.A., “Access ordering and effective memory bandwidth”, Technical Report
TR CS-93-18, April 1993.

18. McKee, S.A., and Wulf, W.A., “Access ordering and memory-conscious cache
utilization”, in Proceedings of the First International Symposium on High-
Performance Computer Architecture, pp. 253 –262, Jan 1995.

19. Hong, S.I., McKee, S.A., Salinas, M.H., Klenke, R.H., Aylor, J.H., and Wulf, W.A.,
“Access order and effective bandwidth for streams on a direct rambus memory”, in
Proceedings of the Fifth International Symposium on High-Performance Computer
Architecture, pp. 80 –89, Jan 1999.

20. Zhu, Z., and Zhang, Z., “A performance comparison of DRAM memory system
optimizations for SMT processors”, in Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, pp. 213 –224, 2005.

21. Rixner, S., “Memory controller optimizations for web servers”, Microarchitecture,
2004. MICRO-37 2004. 37th International Symposium on , vol., no., pp.355,366, 04-
08 Dec. 2004.

22. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., and Owens, J.D., “Memory access
scheduling”, Computer Architecture, International Symposium on, pp. 128-128. ACM
Press, 2000.

23. Lakshminarayana, N.B., Lee, J., and Kim, H., “Age based scheduling for asymmetric
multiprocessors”, in Proceedings of Supercomputing: the Conference on High
Performance Computing Networking, Storage and Analysis (SC), Nov.2009.

24. El-Reedy, W., El-Moursy, A., and Fahmy, H.A.H., ”High performance memory
requests scheduling technique for multicore processors”, High Performance
Computing and Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International
Conference on , vol., no., pp.127,134, 25-27 June 2012.

25. Zheng, H., Lin, J., Zhang, Z., and Zhu, Z., “Memory access scheduling schemes for
systems with multi-core processors”, The 37th International Conference on Parallel
Processing, 2008.

82

26. Kim, Y., Papamichael, M., Mutlu, O., and Harchol-Balter, M., “Thread Cluster
Memory Scheduling: Exploiting Differences in Memory Access Behavior”,
Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACMInternational Symposium
on, vol., no., pp.65,76, 4-8 Dec. 2010.

27. Mutlu, O., and Moscibroda, T., “Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems”, Computer Architecture,
2008. ISCA ’08. 35th International Symposium on, vol. 36, no. 3, pp.63,74, 21-25
June 2008.

28. Kim, Y., Han, D., Mutlu, O., and Harchol-Balter, M., “Atlas: A scalable and high-
performance scheduling algorithm for multiple memory controllers”, the 16th
International Symposium on High-Performance Computer Architecture, 2010.

29. Yadav, R.K., Mishra, A.K., Prakash, N., Sharma, H., “An Improved Round Robin
Scheduling Algorithm for CPU Scheduling”, (IJCSE) International Journal on
Computer Science and Engineering Vol. 02, No. 04, 1064-1066, 2010.

30. Mutlu, O., and Moscibroda, T., “Stall-time fair memory access scheduling for chip
multiprocessors”, in Proceedings of the 40th International Symposium on
Microarchitecture, pp. 208–222, Dec. 2007.

31. http://web.eecs.umich.edu/~taustin/

32. Burger, D., and Austin, T., “The simplescalar toolset, version 2.0.”, Technical Report
TR-97-1342, June 1997.

33. El-Moursy, A., Garg, R., Albonesi, D.H., and Dwarkadas, S., “Partitioning multi-
threaded processors with a large number of threads”, in International Symposium on
Performance Analysis of Systems and Software, pp. 112 – 123, March 2005.

34. Ubal, R., Jang, B., Mistry, P., Schaa, D., and Kaeli, D., Multi2Sim, “A simulation
framework for CPU-GPU computing”, in Proceedings of the 21st international
conference on Parallel architectures and compilation techniques, pp. 335-344. ACM,
2012.

35. https://www.multi2sim.org/

36. Eyerman, S., and Eeckhout, L., “Restating the Case for Weighted-IPC Metrics to
Evaluate Multiprogram Workload Performance”, IEEE Computer Architecture
Letters 99, no. 2 (2013): 1

37. http://parsec.cs.princeton.edu/

38. http://euler.slu.edu/~fritts/mediabench/.

39. Lee, C., Potkonjak, M., Mangione-Smith, W.H., "MediaBench: a tool for evaluating
and synthesizing multimedia and communications systems," Microarchitecture, 1997.

83

Proceedings., 3th Annual IEEE/ACM International Symposium on , vol., no.,
pp.330,335,1-3 Dec 1997doi: 10.1109/MICRO.1997.645830

40. http://www.spec.org/cpu2006/.

84

Appendix A. Benchmarks

There are several benchmarks that can be used in our evaluation. We are interested in the
benchmarks that are available in the Multi2Sim website [35].

A.1 PARSEC

PARSEC [27] stands for Princeton Application Repository for Shared-Memory
Computers. PARSEC is a benchmark suit composed of multithreaded programs. The suite
focuses on emerging workloads and was designed to be representative of next-generation
shared-memory programs for chip-multiprocessors. PARSEC consists of 13 benchmarks.
Table A.1 summarizes the PARSEC benchmarks.

A.2 Mediabench

Mediabench benchmarks targets multimedia and communication applications. It contains
video processing algorithms, audio encoding, and image compressing applications. Table A.2
summarizes benchmarks introduced in Mediabench. For more information refer to [38] and
[39].

A.3 SPEC CPU 2006

SPEC benchmarks suite is designed to provide a comparative measure of compute-
intensive performance across the widest practical range of hardware using workloads
developed from real user applications. SPEC2006 benchmark suite includes the SPECint
benchmarks (integer benchmarks) and the SPECfp benchmarks (floating point benchmarks).
SPECint 2006 benchmark contains 12 different benchmarks. SPECfp 2006 benchmark
contains 19 different benchmarks. Table A.3 and Table A.4 summarize the SPECint 2006 and
SPECfp 2006 benchmarks respectively. For more information refer to [40].

85

Table A.1: PARSEC Benchmarks

Benchmarks Description
blackscholes Option pricing with Black-Scholes Partial Differential Equation (PDE)
bodytrack Body tracking of a person
canneal Simulated cache-aware annealing to optimize routing cost of a chip

design
dedup Next-generation compression with data deduplication
facesim Simulates the motions of a human face
ferret Content similarity search server
fluidanimate Fluid dynamics for animation purposes with Smoothed Particle

Hydrodynamics (SPH) method
freqmine Frequent itemset mining
raytrace Real-time raytracing
streamcluster Online clustering of an input stream
swaptions Pricing of a portfolio of swaptions
vips Image processing
X264 H.264 video encoding

Table A.2: Mediabench Benchmarks

Benchmark Description
JPEG Implement JPEG image compression and decompression for full-color and

gray-scale images.
MPEG Standard for high quality digital video transmission. Used by mpeg2enc and

mpeg2dec.
GSM Implementation of the European GSM 06.10 provisional standard for full rate

speech transcoding.
PGP Use message digests to form signatures.
Pegwit A program for performing public key encryption and authentication.

Gostscript Interpreter for the PostScript language.
Mesa 3-D graphics library clone of OpenGL.
SPHERE A set of library functions and command-level programs which can be used to

read and modify NIST-formatted speech waveform files.
RESTA A program for speech recognition.
EPIC An experimental image data compression utility.
ADPCM Adaptive differential pulse code modulation.
G.721 The files in this package comprise ANSI-C language reference

implementations of the CCITT G.711, G.721 and G.723 voice compressions.

86

Table A.3: SPECint CPU2006 Benchmarks

Benchmark Language Application area Description
400.perlbench C Programming

Language
Derived from Perl V5.8.7. The
workload includes SpamAssassin,
MHonArc (an email indexer), and
specdiff (SPEC's tool that checks
benchmark outputs).

401.bzip2 C compression Julian Seward's bzip2 version 1.0.3,
modified to do most work in memory,
rather than doing I/O.

403.gcc C Compiler Based on gcc Version 3.2, generates
code for Opteron.

429.mcf C Combinatorial
Optimization

Vehicle scheduling. Uses a network
simplex algorithm (which is also used
in commercial products) to schedule
public transport.

445.gobmk C Artificial
Intelligence: Go

Plays the game of Go, a simply
described but deeply complex game.

456.hmmer C Search Gene
Sequence

Protein sequence analysis using profile
hidden Markov models (profile
HMMs)

458.sjeng C Artificial
Intelligence: chess

A highly-ranked chess program that
also plays several chess variants.

462.libquantum C Physics / Quantum
Computing

Simulates a quantum computer,
running Shor's polynomial-time
factorization algorithm.

464.h264ref C Video
Compression

A reference implementation of
H.264/AVC, encodes a videostream
using 2 parameter sets. The
H.264/AVC standard is expected to
replace MPEG2

471.omnetpp C++ Discrete Event
Simulation

Uses the OMNet++ discrete event
simulator to model a large Ethernet
campus network.

473.astar C++ Path-finding
Algorithms

Pathfinding library for 2D maps,
including the well known A*
algorithm.

483.xalancbmk C++ XML Processing A modified version of Xalan-C++,
which transforms XML documents to
other document types.

87

Table A.4: SPECfp CPU2006 Benchmarks

Benchmark Language Application
area

Description

410.bwaves Fortran Fluid Dynamics Computes 3D transonic transient
laminar viscous flow.

416.gamess Fortran Quantum
Chemistry.

Gamess implements a wide range of
quantum chemical computations. For
the SPEC workload, self-consistent field
calculations are performed using the
Restricted Hartree Fock method,
Restricted open-shell Hartree-Fock, and
Multi-Configuration Self-Consistent
Field

433.milc C Physics /
Quantum
Chromodynamics

A gauge field generating program for
lattice gauge theory programs with
dynamical quarks.

434.zeusmp Fortran Physics / CFD ZEUS-MP is a computational fluid
dynamics code developed at the
Laboratory for Computational
Astrophysics (NCSA, University of
Illinois at Urbana-Champaign) for the
simulation of astrophysical phenomena.

435.gromacs C, Fortran Biochemistry /
Molecular
Dynamics

Molecular dynamics, i.e. simulate
Newtonian equations of motion for
hundreds to millions of particles. The
test case simulates protein Lysozyme in
a solution.

436.cactusADM C, Fortran Physics / General
Relativity

Solves the Einstein evolution equations
using a staggered-leapfrog numerical
method

437.leslie3d Fortran Fluid Dynamics Computational Fluid Dynamics (CFD)
using Large-Eddy Simulations with
Linear-Eddy Model in 3D. Uses the
MacCormack Predictor-Corrector time
integration scheme.

444.namd C++ Biology /
Molecular
Dynamics

Simulates large biomolecular systems.
The test case has 92,224 atoms of
apolipoprotein A-I.

447.dealII C++ Finite Element
Analysis

It is a C++ program library targeted at
adaptive finite elements and error
estimation. The testcase solves a
Helmholtz-type equation with non-
constant coefficients.

450.soplex C++ Linear
Programming,
Optimization

Solves a linear program using a simplex
algorithm and sparse linear algebra. Test
cases include railroad planning and
military airlift models.

88

453.povray C++ Image Ray-
tracing

Image rendering. The testcase is a
1280x1024 anti-aliased image of a
landscape with some abstract objects
with textures using a Perlin noise
function.

454.calculix C, Fortran Structural
Mechanics

Finite element code for linear and
nonlinear 3D structural applications.
Uses the SPOOLES solver library.

459.GemsFDTD Fortran Computational
Electromagnetics

Solves the Maxwell equations in 3D
using the finite-difference time-domain
(FDTD) method.

465.tonto Fortran Quantum
Chemistry

An open source quantum chemistry
package, using an object-oriented design
in Fortran 95. The test case places a
constraint on a molecular Hartree-Fock
wavefunction calculation to better
match experimental X-ray diffraction
data.

470.lbm C Fluid Dynamics Implements the "Lattice-Boltzmann
Method" to simulate incompressible
fluids in 3D

481.wrf C, Fortran Weather Weather modeling from scales of meters
to thousands of kilometers. The test case
is from a 30km area over 2 days.

482.sphinx3 C Speech
recognition

A widely-known speech recognition
system from Carnegie Mellon
University

Table A.5: Single core processor parameters

Processor pipeline 2.33 GHz, x86 processor, 64-entry fetch queue size, 32-entry re-order
buffer, 40-entry issue queue size, and 20-entry load-store queue size

Fast-forwarding 1 billion instructions
Detailed simulation 25 million instructions
L1 cache 64 Kbytes, 2-way set associative, 2 cycles latency, Least recently used

replacement policy, 2 ports
L2 cache 4 Mbytes, 4-way set associative, 11 cycles latency, Least recently

used replacement policy, 4 ports, 64-byte block size
DRAM Chip
parameters

4-banks, 256-Bytes row-buffer per bank, 1 controller per bank, main
memory queue with 8 entries

Round-trip L2 miss
latency

For a 64-byte cache line, row-buffer hit: 46ns (108 cycles), closed:
60ns (140 cycles), conflict: 92ns (216 cycles)

89

SPEC2006 benchmarks were classified into memory intensive benchmarks and memory
non-intensive benchmarks. SPEC 2006 benchmarks were simulated alone in a multi-core
processor or simulated in a single core processor with the parameters shown in Table A.5.
MPKI for each benchmark was calculated. Benchmarks with MPKI less than 1 are classified
as memory non-intensive benchmarks; others are classified as memory intensive benchmarks.
Table A.6 shows the results of SPEC 2006 classification.

Table A.6: Benchmarks MPKI

Benchmarks L2 Misses Instructions MPKI
429.mcf 39257838 1752604973 22.399707
470.lbm 25794948 2644797371 9.7530905
462.libquantum 10988941 1571729331 6.9916243
410.bwaves 14608599 2357468772 6.1967307
483.xalancbmk 7216122 1876740841 3.8450285
471.omnetpp 3704776 1547116146 2.3946334
401.bzip2 3767772 1857054462 2.02889688
436.cactusADM 4561656 2968216881 1.53683379
403.gcc 1723496 1859262932 0.92697809
456.hmmer 748579 1758863030 0.42560392
473.astar 1298070 1847756712 0.70251132
464.h264ref 10226 3691915767 0.00276984

أ

الملخص

تعتبر الذاكرة الرئیسیة هي مورد مشترك بین عدة تطبیقات في نظام الرقاقة متعددة الأنویة
من خلال التحكم في الطلبات المرسلة الخلافلحلالذاكرةجدولةخوارزمیاتتطویریتم. الحدیثة

و الإنصاف بین التطبیقات فيمضمون، أداء عاليللذاكرة من التطبیقات المتنافسة للوصول إلي
الترددي النطاقعرضللإستفاده منطلبات الذاكرةجدولةأهمیةیؤكدوهذا. النواةمتعددةأنظمة
الأداء، و لتحسینمؤخرااقترحتقدالذاكرةأن تقنیات جدولة طلباتمنالرغمعلى. بكفاءةللذاكرة

.التطبیقاتبینالإنصافعنتغاضيمعظمهالكن
نقدم في هذه الرسالة نظام جدولة جدیدة و هي جدولة قائمة علي الوقت الأقل طلبات للذاكرة

لأولویة للتطبیقات وفقا لطلباتهم إلي الذاكرة الفكرة الرئیسیة لنظام الجدولة الجدید هي تحدید ا. الرئیسیة
الجدولة نقیم. الرئیسیة تحسب كل فترة زمنیة محدده سابقا لتحسین الأداء و الإنصاف بین التطبیقات

معالعملأعباءمنمتنوعةمجموعةالقائمة علي الوقت الأقل طلبات للذاكرة الرئیسیة من خلال
ستة منمعأدائهاومقارنةالذاكرة الرئیسیةتحكموحداتفيمختلفة من قائمة الإنتظارأحجام

یحققالجدولة قائمة علي الوقت الأقل طلبات للذاكرة الرئیسیة. سابقاً المقترحةالجدولةخوارزمیات
المقترحةالخوارزمیات.نظام الرقاقة متعددة الأنویة الحدیثةأداء وإنصاف بین التطبیقات فيأفضل

الأقل طلبات للذاكرة عدالةالجاهز أولاً جدولة،یخدمأولاً یأتيالأولجاهز أولاً السابقا هي جدولة
جدولة،صلةذاتالإنتظارقائمةالإصدارات فيعدالةالجاهز أولاً جدولة،صلةذاتالرئیسیة

الأقلالجاهز أولاً جدولة،بناء المعدلأساسعلىسجل التخزین المؤقتترتیبإعادةالجاهز أولاً
جدولة تقسیم التطبیقات إلي كتل ،أظهر. جدولة تقسیم التطبیقات إلي كتلوطلبات للذاكرة الرئیسیة

الأقل طلبات للذاكرة عدالةالجاهز أولاو جدولة،الطلبات للذاكرة الرئیسیةالأقلالجاهز أولاً جدولة
علي الوقت الأقل طلبات للذاكرة القائمة الجدیدةالجدولةضدتنافسیةصلة نتائجذاتالرئیسیة
القائمة علي الوقت الأقل طلبات للذاكرة الرئیسیة نواة، الجدولةفي نظم الرقاقة ذات الثماني. الرئیسیة
التواليالمتوسط علىفي٪ ١١,٧و٪ ٤,٢٢بنسبةوالإنصاف بین التطبیقاتالنظامإنتاجیةیحسن
وإنصاف بین التطبیقات من بین أداءأفضلیوفرذيالجدولة تقسیم التطبیقات إلي كتلمعمقارنة

.الخورزمات المقترحة سابقاً

عمرو صالح أبوبكر خلیل الحلو:مهندس
٢٢/٦/١٩٨٦:تاریخ المیلاد

مصري:الجنسیة
١/١٠/٢٠١٠:تاریخ التسجیل

:تاریخ المنح
ماجستیر العلوم:الدرجة
الكهربیةتصالات لكترونیات و الإهندسة الإ:القسم

:المشرفون
حسام علي حسن فهميد.م.أ
)معهد بحوث الإلكترونیاتباحث ب(علي علي المرسي. د

:الممتحنون
)مشرفال(حسام علي حسن فهمي د.م.أ
)داخليالممتحن ال(أمین محمد نصار .د.أ
)خارجيالممتحن ال(د السید مصطفي سعد.أ

:البحثعنوان
.نظام جدولة زمني مدرك للعدالة بین التطبیقات لطلبات الذاكرة في المعالجات متعددة الأنویة

:الكلمات الدالة
تداخل الطلبات في الذاكرة، موارد مشتركة، التحكم في الذاكرة، متعددة الأنویة

:ملخص البحث
. تعتبر الذاكرة الرئیسیة هي مورد مشترك بین عدة تطبیقات في نظام الرقاقة متعددة الأنویة الحدیثة

یتم تطویر خوارزمیات جدولة الذاكرة لحل الخلاف من خلال التحكم في الطلبات المرسلة للذاكرة من
لعدالة بین التطبیقات مع مراعاة نظام اإنتاجیة الرقاقة التطبیقات المتنافسة، مما یؤدي إلى ارتفاع

نظام جدولة زمني مدرك للعدالة بین التطبیقات لطلبات الذاكرة هو نظام جدولة جدید . المتنافسة
تم مقارنة نظام الجدولة الجدید مع عدة جدولة . لتحسین الإنتاجیة والعدالة للمعالجات متعددة الأنویة
.فسیةللذاكرة المقترحة سابقا وأظهر النظام الجدید نتائج تنا

لطلبات الذاكرة في المعالجات مدرك للعدالة بین التطبیقاتنظام جدولة زمني
متعددة الأنویة

عدادإ

عمرو صالح ابو بكر خلیل الحلو

جامعة القاهرة–رسالة مقدمة الي كلیة الهندسة
كجزء من متطلبات الحصول علي درجة ماجستیر العلوم

في
الكهربیةتصالات لكترونیات و الإهندسة الإ

:الممتحنینیعتمد من لجنة

مشرفالحسام علي حسن فهمي :الأستاذ المساعد

داخليالممتحن الأمین محمد نصار :الدكتورالأستاذ

خارجيالممتحن الالسید مصطفي سعد :كتوردالأستاذ ال
)أستاذ دكتور بهندسة حلوان(

جامعة القاهرة–كلیة الهندسة

جمهوریة مصر العربیة–الجیزة

٢٠١٥

لطلبات الذاكرة في المعالجات مدرك للعدالة بین التطبیقاتنظام جدولة زمني
متعددة الأنویة

إعداد

عمرو صالح ابو بكر خلیل الحلو

جامعة القاهرة–رسالة مقدمة الي كلیة الهندسة
كجزء من متطلبات الحصول علي درجة ماجستیر العلوم

في
تصالات الكهربیةلكترونیات و الإهندسة الإ

شرافإتحت

علي علي المرسي . دحسام علي حسن فهمي د.م.أ
معهد بحوث الإلكترونیاتهربیة تصالات الكقسم هندسة الإلكترونیات و الإ

جامعة القاهرة–كلیة الهندسة

جمهوریة مصر العربیة–الجیزة

٢٠١٥

لطلبات الذاكرة في المعالجات مدرك للعدالة بین التطبیقاتنظام جدولة زمني
متعددة الأنویة

عدادإ

عمرو صالح ابو بكر خلیل الحلو

جامعة القاهرة–رسالة مقدمة الي كلیة الهندسة
كجزء من متطلبات الحصول علي درجة ماجستیر العلوم

في
تصالات الكهربیةلكترونیات و الإهندسة الإ

جامعة القاهرة–كلیة الهندسة

جمهوریة مصر العربیة–الجیزة

٢٠١٥

