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Abstract

Electronics circuits designers and manufactures work to get better performance and more

functionality for their chips. One way to achieve that is to scale the semiconductor de-

vices, which provides higher circuit density and faster devices. Variations affect circuit

behavior as more as device scaled down. Verification of circuit behavior under the uncer-

tainty arises from different variations is a challenge. Monte-Carlo statistical analysis and

corner case analysis are used to estimate the circuit behavior regards the variations. Inter-

val arithmetic presents a potential alternative to evaluate circuit designs under variations

uncertainties.

In this work, we present simulation flow that utilize using of existing designs by re-

placing statistical parameters variations by interval parameters, so it may replace or en-

hance the current conventional Monte-Carlo simulation flow. An interval-value based

circuit simulation engine is implemented, and library for interval models for sources, lin-

ear elements and non-linear elements.

Models library is tested for accuracy against Monte-Carlo simulations. Simulator is

tested using linear elements circuits, showing acceptable results for small circuits.
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Chapter 1

Introduction

In this introductory chapter we present the problem of process variation, which represents

the motive for this work. In section 1.2 current methods used to handle this problem are

presented. In the rest of the chapter we present our research scope and contributions,

then thesis organization is presented in section 1.4.

1.1 Process Variations

Electronics circuits designers and manufactures work to get better performance and more

functionality for their chips. One way to achieve that is to scale the semiconductor de-

vices, which provides higher circuit density and faster devices. Variations affect circuit

behavior as devices are scaled down.

For circuit design; Variation is the deviation from intended or designed values for a

structure or circuit parameter of concern [1]. Sources of variations can be environmental

or Physical. Environmental variations includes factors arising during the operation of the

circuit, as variations in power supply, switching activity, and temperature of the chip or

across the chip. Process variations are the physical factors during fabrication process.

Many processing steps can cause non-uniformity in the manufactured device properties.

Process variation results in permanent change in devices and interconnects attributes.

Process variations become particularly important as the devices are scaled down, as they

become a larger percentage of the device feature. Process variation results in random

deviations from designed characteristics which can be modeled in form of probability

density functions of the statistical parameters.

1.1.0.1 Process Variations Types

Process random variations can be classified into global and local variations. Global vari-

ations, inter-die, may be between lot of wafers (lot-to-lot), between two wafers (wafer-

to-wafer) or between two dies on the same wafer (die-to-die). An example for global

1



variations is the loading effects in etching or deposition that impact the geometry of all

the devices on awafer. One example of inter-die variations is the loading effects in etching

or deposition that impact the geometry of all the devices on a wafer [2]. Local variations,

intra-die, are variations affect each device individually; these variations started to appear

when transistors channels became less than 90 nanometers long. At these sizes transis-

tors electrical properties may be affected by the roughness of a transistor’s edges or the

granularity in the crystal of the metal electrode that turns a transistor on or off [3].

1.2 Account For Process Variations

Verification of circuit behavior under the uncertainty arising from different variations is

a challenge. Statistical analysis and corner case analysis are used to estimate the circuit

behavior regarding the variations. MC, corner simulations are commonly used techniques

to account for variations. Accuracy for MC depends on number of simulations runs [4],

while for corner case, the complexity of the analysis increase as the number of parameters

increase [5].

1.2.1 Corner Simulations

In order to account for process variability in circuit performance, typically, corner models

are used to set the lower and upper limits of process variation [6]. Corner analysis is a

traditional approach that ensures good yield, at the expense of a pessimistic design [7].

The corner case analysis works on the parameters bounds to provide the limits of the

circuit behavior. In conventional circuit design technique, process variability is modeled

by four worst-case corners: two for analog applications and two for digital. A standard

set of model parameters (e.g. Vth) is used to account for process variability and model

the worst-case corner performance of devices and circuits of the target CMOS technology

[6].

The major problem with the corner models are that to increase the efficiency of this

analysis, the model need to keep the correlations between the device parameters and the

models include pessimistic corner values. The complexity of this analysis would increase

to account for the increase in the number of parameters by adding more corners [5, 6].

The corner models offer the designers the capability to simulate the pass/fail results of a

typical design and are usually pessimistic [6].

1.2.2 Monte-Carlo Simulation

MC simulation is a statistical analysis which randomly samples different parameters ac-

cording to their statistical distribution [4]. MC is a direct method for evaluating statistical

circuit performance, where the sampling is done then the circuit is simulated. Statistics

on simulation results after several runs, sampling and simulation, can be done to find the

performance distributions.
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MC accuracy doesn’t depend on the number of parameters cause the variation, but on

the number of samples taken [4]. The cost of the MC is proportional to the number of

samples, for about 10 times reduction in estimation error it requires a 100 times increase
in the number of samples when estimating a Gaussian distribution [2]. For each sample

the runtime required for simulation, is on the order of O(n3), where n is the size of the

circuit [2]. So MC may need large time to obtain accurate results when the number of

samples required is large and the circuit size is large too.

1.3 Research Objective and Contribution

As seen; MC simulations may be time consuming. Approaches which use range arith-

metic in circuit simulation show good results [2, 8] . Through our work we study re-

placing the MC simulations with an interval based simulation flow, which may integrate

with or replace traditional MC simulation flow. Design aspects for an interval simulator

are discussed. We evaluate the usage of different range arithmetic models, Interval arith-

metic, modal interval arithmetic and affine arithmetic, to evaluate semiconductor device

models and to do circuit simulation. The results for linear circuits and non-linear models

are obtained.

A talk about this work has been presented on the 16th GAMM-IMACS International

Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics -

SCAN2014 [9]. A paper then has been submitted for the post-conference proceedings to

be published on Springer, Lecture Notes of Computer Science [10].

1.4 Thesis Organization

The thesis is organized after this introductory chapter as follows; chapter 2 provides a

brief background about the interval arithmetic. In chapter 3 we present the design aspects

for the interval simulator, and the simulator models library. Then in chapters 5 and 6;

results for interval simulations are presented, and we provide the conclusion of our work.
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Chapter 2

Interval Arithmetic Theories

In this chapter we introduce basic concepts for interval arithmetic computations. This is

covering the classical interval arithmetic, modal arithmetic and affine arithmetic.

2.1 Classical Interval Arithmetic

2.1.1 Historical Notes

Interval Arithmetic (IA) defines a set of operations on intervals. History of classical IA

backs to twentieth century fifties and sixties. Themotive behind this was to limit rounding

errors in numeric computations. Today; there are many algorithms that benefit from IA,

as well as many tools and software packages that utilize IA. More about classical IA can

be found in [11, 12], which are the main references for this section. In our work when we

refer to IA, we mean the classical IA.

2.1.2 Notation

Endpoint notation. Closed interval denoted by [a, b] is the set of real numbers given

by (2.1). Other types of intervals as open and half-open may appear through operations,

our work concentrates on closed intervals.

[a, b] = {x ∈ R : a ≤ x ≤ b} (2.1)

Through this work; capital letters are denoting intervals and their bounds. Upper and

lower bounds of an interval X will be denoted by X and X , respectively. So interval X
can be represented as (2.2). The set of real interval numbers is donated by IR.

5



X = [X,X] (2.2)

2.1.3 Definitions and Basic Concepts

Definition 2.1. Equal intervals. Two intervals X and Y are said to be equal if they are

the same sets. This holds when the corresponding intervals’ endpoints are equal.

X = Y ⇔ X = Y and X = Y (2.3)

Definition 2.2. Degenerate Interval. The interval X is degenerate if X = X .

A degenerate interval contains a single real number x, so degenerate interval [x, x] is
represented by the real number x. As example we write 0 = [0, 0].

Definition 2.3. Intervals intersection. Intersection of two intervals X and Y is defined

by (2.4).

X ∩ Y = {z : z ∈ X and z ∈ Y } (2.4)

The intersection of two intervals X and Y is empty, that is X and Y have no points

in common, if either Y < X or X < Y . Then X ∩ Y = φ. If intersection is not empty
(2.4) can be written as in (2.5).

X ∩ Y = [max{X,Y },min{X, Y }] (2.5)

Definition 2.4. Intervals union. Union of two intervals X and Y is defined by (2.6).

X ∪ Y = {z : z ∈ X or z ∈ Y } (2.6)

In general union of intervals is not represented by one interval, unless X ∩ Y 6= φ,
then union can be represented by (2.7).

X ∪ Y = [min{X,Y },max{X, Y }] (2.7)

Definition 2.5. Interval hull. The interval hull of two intervals X and Y is defined by

(2.8).

X∪Y = [min{X,Y },max{X, Y }] (2.8)

By this definition interval hull is always an interval. For any two intervals X and Y ,
we have:

X ∪ Y ⊂ X∪Y (2.9)

Definition 2.6. Interval mid-point. For interval X; interval mid-point m(X) is defined
as:

m(x) =
X +X

2
(2.10)
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Definition 2.7. Interval radius. For interval X; interval radius r(X) is defined as:

r(x) =
X −X

2
(2.11)

2.1.4 Order Relations on Intervals

For real numbers the order relation is defined by relation <, for intervalsX and Y ∈ IR,
we may define the order relation as:

X < Y ⇔ X < Y (2.12)

IntervalX then can be considered positive if 0 < X , and negative ifX < 0. Relation
(2.13) is valid for X , Y and Z ∈ IR, this relation is called transitive relation.

X < Y and Y < Z ⇔ X < Z (2.13)

Another ordered relation is defined as:

X ⊆ Y ⇔ Y ≤ X and X ≤ Y (2.14)

These relations are partial ordering relations, as not every pair of intervals is com-

parable under set inclusion. That is, if intervals X and Y are overlapped then, X is not

contained in Y , nor is Y contained in X .

2.1.5 Basic Operations of Interval Arithmetic

Basic arithmetic operations on intervals can be represented by the end point notations as

in (2.15) to (2.18).

X + Y = [X + Y ,X + Y ] (2.15)

X − Y = [X − Y ,X − Y ] (2.16)

X.Y = [minS,maxS], (2.17)

where S = {X.Y ,X.Y ,X.Y ,X.Y }.

X/Y = X.(1/Y ), (2.18)
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where 1/Y = [1/Y , 1/Y ] and 0 /∈ Y .

2.1.6 Algebraic Properties of Interval Arithmetic

2.1.6.1 Commutativity and Associativity

For any three intervals X , Y and Z ∈ IR, we have:

X + Y = Y +X (2.19)

X + (Y + Z) = (X + Y ) + Z (2.20)

X.Y = Y.X (2.21)

X(Y.Z) = (X.Y )Z (2.22)

2.1.6.2 Additive and Multiplicative Identity Elements

For any interval X , we have:

X + 0 = X (2.23)

1.X = X (2.24)

0.X = 0 (2.25)

2.1.6.3 Additive and Multiplicative Inverse

Interval arithmetic has neither additive nor multiplicative inverses. That is in general,

X + (−X) 6= 0,

X

X
6= 1.

2.1.6.4 Distributive Law

The distributive law for real numbers (2.26), is not valid for intervals sets in general. For

intervals the sub-distributivity law in (2.27) is held. When intervals have the same sign,

the distributive law is held (2.28).

x(y + z) = xy + xz (2.26)

X(Y + Z) ⊆ XY +XZ (2.27)

X(Y + Z) = XY +XZ , Y.Z > 0 (2.28)
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2.1.7 Interval Functions

We want to find the range of f(x), function on real value, when x is in interval X . This

mapping is defined by (2.29).

f(X) = {f(x) : x ∈ X} (2.29)

Elementary functions. When f(x) is a monotonic function on x over intervalX , then

the range of the function is simply calculated by getting the end point values of the func-

tion. By this; an interval version for elementary functions, like eX , ln(X) and
√
X , is

available.

f(X) = [f(X), f(X)] (2.30)

For other elementary functions that are not monotonic everywhere they could be de-

fined on regions like sin(X), cos(X) and abs(X).

General functions. A general function consists of set of basic arithmetic operations

and elementary functions. The range for these functions may be calculated directly by

replacing real valued variables with intervals. However this may produce unsatisfactory

results as we shows in section 2.1.8. A function F in this case is called interval extension.

Definition 2.8. Interval extension. A function F is called interval extension for f , if for
degenerate interval argument, F agrees with f , that is F ([x, x]) = f(x).

2.1.8 Interval Arithmetic Limitations

Interval arithmetic has limitations in sense of providing wider intervals in the functions

range than that of (2.29). This is due to lake of distributivity and additive and multiplica-

tive inverses in IA. Another issue with IA is the interval dependency, where it assumes

that the variables intervals are independent from each other while it may be correlated.

The following examples show some issues.

Example 2.1. In this example; we show the problem of interval dependency. Consider

the function f(x) = x2, we need to find the interval extension F (X) for X = [X,X].

F (X) = X2

= [X,X].[X,X]

ReplacingX2 withX.X doesn’t provide accurate results unlessX is positive or neg-

ative, i.e. monotonic on the domain ofX . For instance ifX = [−1, 1] the result is [−1, 1]
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while the most accurate results is [0, 1]. Note that we don’t consider [−1, 1] is wrong re-
sults as it already contains the desired range, however we can get more accurate results.

F (X) = X2 can be expressed as the definition on (2.29) be the following equation:

F (X) = X2 =


[X2, X

2
] , 0 ≤ X

[X
2
, X2] , 0 ≥ X

[0,max{X2, X
2}] , X < 0 < X

(2.31)

Example 2.2. In the following example, we show the lack of distributivity and the interval

dependency issues. Consider the function f(x) = x(1 − x). The interval extension of
this function can be expressed by the following equations.

F (X) = X(1−X)

G(X) = X −X2

H(X) =
1

4
− (X − 1

2
)2

When input interval is degenerate , the three formulas produce the same results. But

they may produce different output intervals otherwise. For example if X = [0, 1], then
F ([0, 1]) = [0, 1], G([0, 1]) = [−1, 1] and H([0, 1]) = [0, 1

4
].

Example 2.3. In this example we show that absence of additive inverse; may prevent

from solving simple equations. ConsiderA, C are constant intervals, then we fail to solve

simple equation as A + X = C, putting X = C − A doesn’t satisfy the equation. Let

A = [1, 4] and C = [3, 5], then X = [3, 5]− [1, 4] = [−1, 4]. But [1, 4] + [−1, 4] 6= [3, 5]

We can show the same example for A.X = C, where lack of multiplicative inverse
makes the problem.

2.1.9 Interval Arithmetic Tools

A list of tools and software packages that utilize IA can be found in [13]. In our work a

C++ class library for eXtended Scientific Computing (C-XSC) is used for interval arith-

metic computations [14, 15].

2.2 Modal Interval Arithmetic

Modal interval Arithmetic (MA) can be considered as extension for the classical IA. MA

solves some IA issues, which were shown in section 2.1. For this work; the main concern

about MA is its algebraic properties, so we briefly introduce MA in this section.
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2.2.1 Basics

MAhas better algebraic relations than IA, modal intervals are acompletion of the classical

intervals [16, 17]. MA is constructed from the set of numbers and a quantifier. Quantifiers

define opposite selection modalities for the interval. Then we don’t consider the interval

order set only, but the whole set. The quantifiers are ∃,∀.

2.2.1.1 Modal Interval Operators

For interval X = [a, b] where a, b ∈ R, we can define the following operators:

Dual(X) = [b, a] (2.32)

Opp(X) = [−a,−b] = Dual(−X) (2.33)

Impr(X) = [max{a, b},min{a, b}] (2.34)

Pro(X) = [min{a, b},max{a, b}] (2.35)

2.2.2 Basic Operations of Modal Arithmetic

For the basic arithmetic operations on modal intervals we can construct it the same way

as IA, and using the operators defined by (2.32) to (2.35) .

Note that the algebraic properties ofmodal arithmetic operations are similar toKaucher’s

completed interval arithmetic[18]. We will benefit from this in solving system of linear

interval equations as described in chapter 3.

2.2.2.1 Algebraic Properties of Modal Arithmetic

Additive and multiplicative inverses. By using the operatorDual(). The additive and
multiplicative inverses are found. For interval X = [a, b]:

X −Dual(X) = [a, b]− [b, a]

= [a− a, b− b]

= [0, 0],

X.
1

Dual(X)
= [a, b].

1

[b, a]

= [
a

a
,
b

b
]

= [1, 1].
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Distributive law. Distributive law is stronger inMA than that in classical IA. For modal

intervals X , Y and Z, we have:

Impr(X).Y +X.Z ⊆ X.(Y + Z) ⊆ Pro(X).Y +X.Z (2.36)

Example 2.4. Let X = [1, 3], Y = [1, 1] and Z = [−1,−1], then for MA we have:

X.(Y + Z) = [1, 3].([1, 1] + [−1,−1])

Impr(X).Y +X.Z = [3, 1].[1, 1] + [1, 3].[−1,−1]

= [3, 1] + [−3,−1]

= [0, 0]

Using IA:

X.(Y + Z) = [1, 3].([1, 1] + [−1,−1])

X.Y +X.Z = [1, 3].[1, 1] + [1, 3].[−1,−1]

= [1, 3] + [−3,−1]

= [−2, 2]

2.2.3 Modal Arithmetic Limitations

MA suffers from the dependency problem as the classical IA. Dependency problem is not

solved by using the modal intervals. HoweverMA in some cases produce tighter intervals

than the classical ones, as shown in example 2.4 for the case of the sub-distributive law.

2.2.4 Modal Arithmetic Tools

The library used for our work is the same C-XSC library used for IA. We have modified

the library to support the modal operators Dual(),Opp() , Pro() and Impr() to be used
for the modal calculations.

2.3 Affine Arithmetic

Affine Arithmetic (AA) is another kind of improvement over the classical IA. In AA

correlations of first order, are kept between input quantities and the computations. These

correlations are kept in the variable affine form itself, which result usually better results

than IA, and allow somehow to overcome the dependency problem.
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2.3.1 Basic Concepts

In AA a quantity x is represented by a central value x0, and the symbolic sum of terms xiεi
that represent the sources of uncertainty in the variable. Noise symbols εi are symbolic
arbitrary variables that don’t take a certain value, but lies in the interval [−1, 1]. The partial
deviations xi scale the noise symbols [19]. Then affine form is a first degree polynomial

on the noise symbols, affine form can be represented as in (2.37).

x̂ = x0 +
n∑

i=1

xiεi , εi ∈ [−1, 1] (2.37)

A key concept in the AA is that quantities can share noise symbols, that is the noise

symbol has a non-zero coefficient for these quantities. Quantities with no common sym-

bols are completely independent, while others sharing some symbols, have a partial de-

pendency for each noise symbol shared by their affine forms [19].

The radius r(x̂) of the affine form is defined by (2.38). This radius represent the total

deviation of x̂.

r(x̂) =
n∑

i=1

|xi| (2.38)

If a quantity x is represented with the affine form x̂, then x ∈ [x0 − r(x̂), x0 + r(x̂)].
Also, if x ∈ [a, b], then x can be represented with the affine form x̂ = x0 + xiεi, where
x0 = (b + a)/2 and x1 = (b−a)/2. We can see here that we can make AA algorithms to

input and output intervals.

2.3.2 Affine Arithmetic Operations

Addition and scalar multiplication. Linear arithmetic operations don’t produce more

noise terms in the output. Addition , subtraction and scalar multiplication are defined in

equations (2.39) and (2.40).

x̂± ŷ = (x0 ± y0) +
n∑

i=1

(xi ± yi)εi (2.39)

cx̂ = cx0 +
n∑

i=1

cxiεi (2.40)

Non-Linear functions. Extending non-affine operations requires that we use good affine

approximation of the exact result and append an extra term to bound the error of this

approximation. For example to compute a non-affine operation of two variables, z =
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f(x, y). Given affine forms x̂ and ŷ representing x and y respectively, we want to com-
pute an affine form ẑ. First, we see z as a function of the noise symbols in ε1, . . . , εn as
following.

z = f(x0 +
n∑

i=1

xiεi , y0 +
n∑

i=1

yiεi)

z = f ∗(ε1, . . . , εn),

where f ∗ is a function Un → R. In general, f ∗ is not an affine function of ε1, . . . , εn.
So, we approximate f ∗ over Un by an affine function fa with error bound δ:

|fa − f ∗| ≤ δ for all ε1, . . . , εn ∈ U. (2.41)

Writing

fa(ε1, . . . , εn) = z0 +
n∑

i=1

ziεi (2.42)

we obtain that z = f(x, y) is represented by the affine form

ẑ = z0 +
n∑

i=1

ziεi + zn+1εn+1, (2.43)

where zn+1 = δ and εn+1 is a new noise symbol. The challenge is to find an affine ap-

proximation fa that is easy to compute but which has a small approximation error δ. Note
that the introduction of the term zn+1εn+1 to represent the non-affine part of f

∗(ε1, . . . , εn)
implies a loss of information: from this point on, the noise symbol εn+1 will be implicitly

assumed to be independent from ε1, . . . , εn, when in fact it is a (non-affine) function of
them. Any subsequent operation that takes ẑ as input will not be aware of this constraint
between εn+1 and ε1, . . . , εn, and therefore may return an affine form that is less precise

than necessary.

Multiplication. We can define the multiplication as following, adding a new noise sym-

bol εn+1 to account for nonlinear operation.

x̂.ŷ := (x0.y0) +
n∑

i=1

(x0.yi + xi.y0)εi + r(x̂).r(ŷ).εn+1 (2.44)

Inversion and division. Inverse of x̂ can be represented using Taylor series expansion
as following:
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1

x̂
=

1

x0 +
n∑

i=1

xiεi

=
1

x0

− 1

x2
0

n∑
i=1

xiεi +
1

x3
0

(
n∑

i=1

xiεi

)2

Then the affine form for the inverse can be represented by (2.45). Division then can

be calculated as a multiplication by the inverse of the denominator [2].

1

x̂
=

1

x0

− 1

x2
0

n∑
i=1

xiεi + k0 + k1εn+1, (2.45)

k0 =
1

x0

+
1

x3
0

n∑
i=1

x2
i , (2.46)

k1 =
1

x3
0

√√√√5
n∑

i=1

x2
i − 3

n∑
i=1

x4
i . (2.47)

Arbitrary functions. we may combine the arithmetic operations and the elementary

functions to get affine representations for arbitrary functions.

2.3.2.1 Affine Arithmetic versus Interval Arithmetic Examples

Example 2.5. This example shows how the AA overcomes the dependency problem. For

three affine quantities x̂, ŷ and ẑ, and the corresponding intervals X , Y and Z. Results
are listed in table 2.1

Table 2.1: Affine Expressions and their interval counterparts

Affine arithmetic Interval arithmetic

Form Width Form Width

x̂ = 7 + 2ε1 4.0 X = [5, 9] 4.0
ŷ = 5 + 2ε1 4.0 Y = [3, 7] 4.0
ẑ = 5 + 2ε2 4.0 Z = [3, 7] 4.0
x̂− ŷ = 2 0.0 X − Y = [−2, 6] 8.0
x̂− ẑ = 2 + 2ε1 + 2ε2 8.0 X − Z = [−2, 6] 8.0

Example 2.6. An example to show the output range of a general function using classical

IA and AA is introduced here. Consider f(x) = (1+x)(1−x) for x ∈ [−2, 2]. The actual
range of this function is [−3, 1]. From the results below we can see that AA produces

15



narrower range than IA. AA doesn’t produce the exact range due to truncation of higher

order noise symbol.

Using interval arithmetic.

f([−2, 2]) = (1 + [−2, 2])(1− [−2, 2])

= ([−1, 3])([−1, 3])

= [−3, 9]

Using affine arithmetic. Let x̂ = 0 + 2ε, and note that ε ∈ [−1, 1]

f(x̂) = (1 + 2ε)(1− 2ε)

= 1− 4ε

f(x̂) ∈ [−3, 5]

2.3.3 Affine Arithmetic Limitations

Although AA provide better results than IA, It doesn’t solve dependency problem com-

pletely, due to ignorance of correlation between the symbols generated from non-linear

operations. Also the symbolic representations for the variables, may present a capacity

problem, due to the increasing number of terms while calculation.

2.3.4 Affine Arithmetic Tools

For our work; aaflib library is used for affine arithmetic calculations [20].
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Chapter 3

Interval Circuits Simulator Design

Through this chapter, we present interval simulator design requirements. A proposal for

modifications for the traditional simulation flow, with a flow using existing designs by

replacing statistical parameters variations by interval parameters. Simulator design as-

pects are presented in section 3.3, testing requirements are descried in section 3.4.

3.1 Introduction

In our work we try to put the guidelines for an intervals based simulator. The aim of the

interval simulator is to eliminate the need for multiple runs of MC simulations, or at least

reduce the number of runs. To keep the backward compatibility with currently used flows,

we introduce interval simulation flow that can coexist with the traditional MC simulation

flow. Interval simulation is used in [2, 8], in these simulators, the parameters causing

system variability are kept in mind along the simulation. In our work, the simulator work

on general intervals. We work to implement the simulator core and a set of models that

use interval calculations.

3.2 Simulation flow

The proposed simulation flow for our simulator is targeting benefit from current simula-

tion flows and already existing designs. As is known, many designs may be re-used from

technology node to another. The interval based simulation flow introduced here works

to keep the conventional front end without change. This flow can be coexisting with the

current traditional MC simulation flow; the flow is shown in figure 3.1.

Here instead of doingN timesMC simulations, it generatesN samples out of the input

design. Statistical parameters involved in the design are changed every time according to

the defined probability density functions in the design. Each change in the parameters is

recorded and then after N times, a new design is generated with the statistical parameters
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replaced by an interval parameters. A key point here is that the sampling N times is trivial

compared to sample and simulate N times.

In available circuit simulators, variations is usually defined by either Gauss, or uni-

form distributions. In uniform distribution, variation is given as number where parameter

value may change around the mean value by at most this number. Table 3.1 shows an

example for how a design with variations may be represented in equivalent interval de-

sign. In MC design, resistor nominal value is 1000Ω, while variation follows an uniform
distribution allowing a change by ±3% of the nominal value. The capacitor in the other

hand has a nominal of 1n F, and variation follows an Gaussian distribution with stranded
deviation (σ) equal to 5% of the nominal value. Resistor value is represented in the inter-

val design by an interval of [970, 1030], while capacitor value is represented by an interval
of [8.5× 10−10, 1.15× 10−9], which represent three times the stranded deviation around
the nominal value.

3.3 Simulator Parts

We can divide circuit simulator into four parts:

1. The front end that captures and processes the input circuit design and options.

2. The models library containing mathematical equations defining the characteristic

of each component in the design.

3. The solver formulates and solves the equations describing the design.

4. The back end, in which the results are processed and displayed in a proper way.

Designers mostly interact with front and back ends only, so it is important to keep

them as much as possible similar to the conventional ones. And for interval simulations,

we may add specified features and options.

3.3.1 Simulator Front-End

Simulator front-end has to have twomain capabilities to use both floating point parameters

and interval parameters, as well keeping backward compatibility for old designs, these

capabilities are:

• Alongwith the traditional parameters types as floating, integers and strings; interval

parameter is a new type to deal with.

• The ability of converting the traditional methods that represent and control variabil-

ity to interval based method. For example; it converts probability density functions,

describing parameter variation, to interval notation to be used in interval simulation.
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Figure 3.1: MC and interval based circuit simulation flow
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Table 3.1: Design with statistical parameters and its interval equivalence

Statistical design Interval design

*

.param

+ tPeriod= 1e-6

+ tStep = '1e-2*tPeriod'

+ tEnd = '5.0*tPeriod'

+ tDelay = '0.2e-6'

+ tRaise = '1e-9'

.option dump_mcinfo

.param rvalnom = 1000

.param cvalnom = 1e-9

.subckt rc in out

.param rval = 'rvalnom'

+ lot=3%

.param cval = 'cvalnom'

+ lot/gauss=5%

rr in out 'rval'

cc out 0 'cval'

.ends

x_s1 in out rc

vin in 0 0.0 pwl

+ 0.0 0.0

+ tDelay 0.0

+ 'tDelay+tRaise' 1.0

+ tEnd 1.0

.trantStep tEnd

.plot V(in) V(out)

.printV(in) V(out)

.mc 1000

.end

*

.param

+ tPeriod= 1e-6

+ tStep = '1e-2*tPeriod'

+ tEnd = '5.0*tPeriod'

+ tDelay = '0.2e-6'

+ tRaise = '1e-9'

.option dump_mcinfo

.param rvalnom = 1000

.param cvalnom = 1e-9

.subckt rc in out

.param rval = [970,1030]

.param cval = [8.5e-10,1.15e-9]

rr in out 'rval'

cc out 0 'cval'

.ends

x_s1 in out rc

vin in 0 0.0 pwl

+ 0.0 0.0

+ tDelay 0.0

+ 'tDelay+tRaise' 1.0

+ tEnd 1.0

.trantStep tEnd

.plot V(in) V(out)

.printV(in) V(out)

.end
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The second feature is key feature to keep backward compatibility with the current flows,

as shown in figure 3.1.

3.3.2 Simulator Back-End

The simulator back-end is responsible to process the simulation results, and present them

in a proper way. This can be done directly from the simulator code, or by external tools

and scripts. In our work we go for the second option for simplicity of implementation.

3.3.3 Simulator Kernel

Simulator kernel is the module where actual simulation is done. The system of equations

that describes the input design is formulated using interconnects stated in the inputs, with

the mathematical model for each device used.

Transient simulation for traditional and interval based simulation may be described by

figure 3.2, the difference is replacing conventional operations and algorithms with these

for interval arithmetic. To go through this flow we need to discuss two main parts of the

simulator kernel:

• Solving algorithm: linearization, matrix solving and convergence

• Models library, which are involved in equations evaluation and linearization.

Solution algorithm. Analog circuits are defined by nonlinear system of differential al-

gebraic equation. Nodes voltages and currents in branches are determined implicitly by

solving the system equations. To deal with non-linear equations, we apply an interval

version from Newton’s method for solving system of non-linear equations. Basics of the

method is introduced in appendix A and more details in [11]. For simplicity we use the

Back Euler integration method for solving the differential equations.

Matrix solver. Conventional simulator usually uses LU decomposition to solving the

system of linear equations comes out of Newton’s iterations. For interval solver we use an

interval version of Gauss-Seidel iterative method, algorithm is introduced in appendix A

and more details in [11]. A modification for the Gauss-Seidel method for modal intervals

is described in [21].

Models library. The basic set of elements in the models library consists of sources,

passive (linear) elements and active (non-linear) elements. Table 3.2 shows the elements

covered in this work.
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Figure 3.2: Traditional transient simulation flow
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Table 3.2: Models library

Sources Passive elements Active elements

Current source Resistor Simple diode

Voltage source Capacitor Simple MOSFET model

Inductor Advanced MOSFET model

3.4 Simulator Testing

To ensure good results from the interval simulator, testing should cover various aspects.

Testing should target individual parts and the integration between them. As time spent in

the simulation is the main concern for the interval simulator, timing reports versus MC

simulation should be recorded. In our work we compare against the time taken in 1000’s

MC runs. Testing is targeting mainly the kernel of the simulator, the models library and

the solver, front-end and back-end are not a concern for time being.

For accuracy concerns each individual model has to be characterized using degenerate

intervals test vectors on our simulator and a traditional circuit simulator, results in this

case should be almost the same. Any difference should be only due to rounding errors.

MC simulations results are then compared to normal intervals simulation, interval results

should include MC results.

Unit testing described above is used to test the models library, to test the solver we use

two types of circuits configurations. The first is the all passive elements circuits, this type

of circuits is linear and so we can discard the linearization step out of the simulation to

test only the linear matrix solver. The second configuration is done by adding non-linear

models (active) to the circuit, using simple circuits of the second configuration one can

test the algorithm used to solve the non-linear system of equations. For these testing types

we will compare the timing versus MC simulations as well. The true test for the speed of

the simulation would be a bigger circuit, this will measure the simulator efficiency and

capacity. Table 3.3 summarizes the testing required for the simulator.

Table 3.3: Simulator tests

Test Target

Unit testing Element wise testing, to compare interval results versus

floating point results.

Passive circuits testing 1 Test accuracy of different algorithms of solving interval

linear systems versus MC simulation.

Active elements circuits 1 Test accuracy of different algorithms of solving interval

non-linear systems versus MC simulation.

Big circuits 1 Test the reliability of the simulator (capacity and speed).
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3.5 Available Analysis

For time being only DC and transient analysis are available for our simulator.

1Time would be recorded for these types of testing
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Chapter 4

Models Library

In this chapter we present details about the models library implemented for the interval

simulator. We follow the Modified Nodal Analysis (MNA) way in constructing the system

of equations that represent the system network. MNA is a widely used technique in circuit

simulation [22]. Through the chapter we discuss issues and difficulties that arise from

converting floating point models to interval or affine form models.

4.1 Voltage and Current Sources

Our library contains independent current and voltage sources. Voltage and current sources

accept interval functions, the output may be constant DC value, sine wave, step wave and

Piecewise Linear (PWL) function. Examples of sources functions are in figure 4.1.

In MNA independent current source is straight forward implemented by contributing

the current value in the current vector, at the nodes connecting the source. Figure 4.2

shows the voltage source representation with MNA, where these numbers represent the

contribution to the system matrix and the right hand side.

4.2 Linear Elements

The library contains the ideal linear elements, resistor, capacitor and inductors. The inter-

val models for these ideal linear elements are just the same of these used for floating point

models only we replace the floating point numbers with intervals. Using MNA, resistor

contribution to the conductance matrix is illustrated by figure 4.3, where G = 1/R.

Capacitor implementation. for an ideal capacitor, equations (4.1) and (4.2) represent

differential relation between capacitor current and voltage. For backward Euler integra-

tion, capacitor current can be represented by (4.3), and it can be rewritten as (4.4). This
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Figure 4.1: Sources functions examples
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Figure 4.2: Voltage source representation with MNA
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Figure 4.3: Resistor representation with MNA

equation represent a current source and conductance, where h is the time step width, n is
the time step number, Ieq = −C/hn.V n

C and geq = C/hn. Figure 4.4 shows the capaci-

tor transient equivalent circuit, and the contribution in conductances matrix and currents

vector.
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IC(t) = C.
dVc

dt
(4.1)

IC(V, t)

C
=

dVc

dt
= f(x, t) (4.2)

In+1
C =

C

hn
V n+1
C − C

hn
V n
C (4.3)

In+1
C = geq.V

n+1
C + Ieq (4.4)

n1

C

n2

n1

Ieqgeq

n2

[
+geq −geq

−geq +geq

][
vn+1
n1

vn+1
n2

]
=

[
−Ieq
+Ieq

]

Figure 4.4: Capacitor model transient equivalent circuit

This representation for capacitor has an issue, that is the capacitor term appears in

both equation sides. This makes the voltage on the capacitor to increase as the simulator

iterations goes, which may produce bad results as we will see in chapter 5. To avoid this

issue we add new equations to the system to solve for the capacitor current.

Equation (4.3) is rewritten as (4.5). The matrix representation and the equivalent

circuit for this model are shown by the figure 4.5. Note that we reverse the direction of

the capacitor current.

V n+1
C = V n

C − hn

C
In+1
C (4.5)

= V n
C − reqI

n+1
C (4.6)

+ −

Vn
C

n1

req

In+1
C

n2

n1 n2


+0 +0 +1

+0 +0 −1

+1 −1 −req



vn+1
n1

vn+1
n2

In+1
C

 =


+0

+0

Vn
C


Figure 4.5: Another representation for capacitor model equivalent circuit
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Inductor implementation. The same as for capacitor, equations (4.7) to (4.10) and

figure 4.6 show the inductor transient equivalent circuit for back Euler integration.

VL(t) = L.
dIL
dt

(4.7)

VL(I, t)

C
=

dIL
dt

= f(x, t) (4.8)

V n+1
L =

L

hn
In+1
L − L

hn
InL (4.9)

V n+1
L = req.I

n+1
L + Veq (4.10)

n1 +−

Veq
req

InL
n2

n1 n2


+0 +0 +1

+0 +0 −1

+1 −1 −req



vn+1
n1

vn+1
n2

In+1
L

 =


+0

+0

Veq


Figure 4.6: Inductor transient equivalent circuit

4.3 Non-Linear Elements

With non-linear elements, we mean the circuit elements that have non-linear behavior

between the voltage applied on element terminals and the current output from these ter-

minals. Here we evaluate usage of affine arithmetic in implementing the interval version

of model used. We expect that the dependency problem , discussed in chapter 2, would

affect models accuracy as models contains more equations and more parameters to de-

scribe more effects. In the following we show first the technique used to implement the

interval version of the models used, then we present more details and specific issues per

model.

4.3.1 Techniques to Get Interval Models

As we discussed before, that getting the interval version of a function is not that simple

by replacing the floating point calculations with relevant interval version. That is due to

weak algebraic proprieties of IA, and due to the dependency problem.
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4.3.1.1 Convert “if-else” conditions to states.

It is a common case to write some equations on regions, where at each region there is

different formula, like the simple MOSFET equation (4.11). In general case we do not

limit the inputs to themodel such that branching conditions are confined to one region. For

example in condition (X > a), it happens that some points in the interval X may satisfy

the condition and others may not. In this case we split the interval to sub-intervals, where

each sub-interval satisfy part of the condition. if − else conditions are then converted to
separate if ’s. these if ’s represent states that may be exist at the same time. The output
intervals of the different states are combined to get the final result. Table 4.1 shows an

example code for getting the states.

Table 4.1: Changing if − else conditions to states

Conditions example States example

double x,z,a;

if (x > a)

z = f(x);

else

z = g(x);

return(z);

double a;

interval X, X_low, X_high;

interval Z, Z_low, Z_high;

// Initialization

X_low = X;

X_high = X;

if (sup(X_low) > a)

sup(X_low) = a;

if (inf(X_high) < a)

inf(X_high) = a;

// all points in the interval

// should satisfy the condition

if (X_low < a)

Z_low = G(X_low);

if(X_high > a)

Z_high = F(x_high);

// Z is the interval hull of

Z_low and Z_high

Z = Z_low | Z_high;

return(Z);

Where inf() is a function to get/set the lower limit of the interval, and sup() is a
function to get/set the upper limit of the interval.

We have to note here that the output interval may contain values that are not in the

output range. This happens when the function range is not continuous, and then the output

is an interval hull, as described by definition 2.5.
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4.3.1.2 Comparing two intervals.

We show in the introduction for the interval arithmetic; that operators like ’less than’ is

not fully defined between intervals. This leaving ambiguity about how to split the interval.

Here we use an assumption that the reference interval, the interval we compare with, is

narrow relative to the input interval. Then consider it a single point, it may be any point in

the reference interval. Then we can use the procedure described in section 4.3.1.1, figure

4.7 illustrate this comparison.

inf(X) a sup(X)

X

Xlow Xhigh

(a) Comparing interval to single point value

inf(X) a sup(X)

X

Xlow Xhigh

(b) Comparing interval to narrow interval

Figure 4.7: Interval comparing

4.3.1.3 Reduce dependency problem.

Whenever possible we re-write the equations to reduce the dependency problem. No spe-

cific rule here but reduce the appearance of the same variable in one function as possible.

For example replacing repeated multiplication with a power function.

4.3.1.4 Using affine arithmetic.

Using of affine arithmetic provides better results concerning the dependency problem,

but regarding the intervals comparisons we have the same issues described before. We

cannot use the same techniques used for IA, because splitting interval here produce new

variables, and so we lose the advantage of keeping correlation along the calculation. For

AA, we use an assumption that the variation to the parameters does not change the domain

of model equations. Then for conditions we compare the affine interval mean, interval

mid-point, to each other.
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4.3.2 Simple Diode Model

We begin our library for the non-linear elements, with a simple P-N junction diode model.

The model is simple and have a monotonic behavior between input voltage and output

current. The model parameters and model Verilog code, from [23], are in tables 4.2 and

4.3.

Code listed in table 4.3 defines the electrical characteristic diode current (Id) versus the
voltage difference across its terminals (Vd). As shown parameters involved in the equation

are almost un-repeated, so results obtained from IA calculations and AA calculations are

very close to each other as we would see in chapter 5.

Note that in C++ code function IsDual() is used to check if the interval is a proper

interval, that is ordered interval. This is a way to check that after splitting the interval the

corresponding condition applies to it. We may note that nested conditions are handled by

splitting the interval again.

Table 4.2: Diode model parameters

Name Description

area device area

is saturation current

n emission coefficient

cjo zero-bias junction capacitance

m grading coefficient

phi body potential

fc forward bias capacitance factor

tt transit time

bv reverse breakdown voltage

rs series resistance

Table 4.3: Verilog-a code for the diode model

1 module diode(anode,cathode);

2 inout anode,cathode;

3 electrical anode,cathode;

4

5 parameter real area = 1 from (0:inf);

6 parameter real is=1e−14 from (0:inf);

7 parameter real n=1 from (0:inf);

8 parameter real cjo=0 from [0:inf);

9 parameter real m=0.5 from [0:inf);

10 parameter real phi=0.7 exclude 0;

11 parameter real fc=0.5 from (0:1];

12 parameter real tt=1p from [0:inf);

13 parameter real bv=1.0e+100 from [0:inf);

14 parameter real rs=0 from [0:inf);

15

16 real Vd, Id, Qd;

17 real f1, f2, f3, fcp;

18 real ibv;

19
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20 analog

21 begin

22 @(initial_step)

23 begin

24 f1 = (phi/(1 − m))*(1 − pow((1 − fc), m));

25 f2 = pow((1 − fc), (1 + m));

26 f3 = 1 − fc*(1 + m);

27 fcp = fc*phi;

28 ibv = is*bv/vt();

29 end

30

31 Vd = V(anode,cathode);

32 Id = I(anode);

33

34 // intrinsic diode.

35 if (Vd < −5*n*vt())
36 begin

37 if (Vd == −bv)
38 I(anode,cathode) <+ −area*ibv;
39 else

40 if (Vd > −bv)
41 I(anode,cathode) <+ −area*is;
42 else

43 I(anode,cathode) <+ −area*is*(exp(−(bv + Vd)/vt())

44 − 1 + bv/vt());

45 end

46 else

47 I(anode,cathode) <+ area*is*(exp((Vd − rs*Id)/(n*vt())) − 1);

48

49 // capacitance (junction and diffusion).

50 if (Vd <= fcp)

51 Qd = tt*Id + area*cjo*phi

52 * (1 − pow((1 − Vd/phi), (1 − m)))/(1 − m);

53 else

54 Qd = tt*Id + area*cjo*(f1 + (1/f2)*(f3*(Vd − fcp) +

55 (0.5*m/phi)*(Vd*Vd − fcp*fcp)));

56 I(anode,cathode) <+ ddt(Qd);

57 end

58 endmodule

Table 4.4: C++ code for the diode model interval representation

1 #include <iostream>

2 #include <cmath>

3 #include <interval.hpp>

4 #include "diode.h"

5

6 using namespace cxsc;

7 using namespace std;

8

9 #define k 1.3806488E−23
10 #define q 1.602176565E−19
11

12 // Interval util

13 #define EMPTY(x) x=cxsc::interval(cxsc::MaxReal, −
cxsc::MaxReal)

14 #define INF(x) cxsc::_double(cxsc::Inf(x))

15 #define SET_INF(x,a) cxsc::SetInf(x,a)
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16 #define SUP(x) cxsc::_double(cxsc::Sup(x))

17 #define SET_SUP(x,a) cxsc::SetSup(x,a)

18

19 interval diode_interval(interval vAnode, interval vCathode)

20 {

21 interval area = interval(AREA);

22 interval is = interval(IS);

23 double n = (1);

24 interval cjo = interval(0);

25 interval m = interval(0.5);

26 interval phi = interval(PHI);

27 interval fc = interval(FC);

28 interval tt = interval(1.0e−12);
29 double bv = (1.0e+100);

30 interval rs = interval(0);

31 double temp = (25.0);

32

33 interval Vd, Id, Qd;

34 interval f1, f2, f3, fcp;

35 interval ibv;

36 double vt = (k * (temp + 273.15) / q);

37

38 // init

39 EMPTY(Id);

40 f1 = (phi/(1 − m))*(1 − pow((1 − fc), m));

41 f2 = pow((1 − fc), (1 + m));

42 f3 = 1 − fc*(1 + m);

43 fcp = fc*phi;

44 ibv = is*bv/vt;

45

46 Vd = vAnode − vCathode;

47

48 // intrinsic diode.

49 interval Vd_tmp = Vd;

50 if (SUP(Vd) > (−5*n*vt))
51 SET_SUP(Vd, (−5*n*vt));
52 if (! IsDual(Vd))

53 {

54 {

55 interval Vd_tmp = Vd;

56 if (INF(Vd) < −bv)
57 SET_INF(Vd, (−bv));
58 if (! IsDual(Vd))

59 {

60 Id |= −area*is;
61 }

62 Vd = Vd_tmp;

63

64 Vd_tmp = Vd;

65 if (SUP(Vd) > −bv)
66 SET_SUP(Vd, (−bv));
67 if (! IsDual(Vd))

68 {

69 Id |= −area*is*(exp(−(bv + Vd)/vt) − 1 + bv/vt);

70 }

71 Vd = Vd_tmp;

72 }

73 }
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74 Vd = Vd_tmp;

75

76 Vd_tmp = Vd;

77 if (INF(Vd) < (−5*n*vt))
78 SET_INF(Vd, (−5*n*vt));
79 if (! IsDual(Vd))

80 {

81 Id |= area*is*(exp((Vd)/(n*vt)) − 1);

82 }

83 Vd = Vd_tmp;

84 return (Id);

85 }

4.3.3 Simple MOSFET Model

The simple MOSFET model is implemented based on the basic equation (4.11) [24]. In-

terval and affine model codes are listed in tables 4.5 and 4.6. We can note that the affine

code is almost the same as the floating point code. We use sqr() function instead of

multiplication, to reduce the dependency problem.

Ids =


0 , Vgs < Vth

kp w
l
(VgsEff Vds − 0.5V 2

ds) (1 + λVds) , Vds ≤ VgsEff

0.5 kp w
l
V 2
gsEff (1 + λVds) , Vds ≥ VgsEff

(4.11)

Where VgsEff = Vgs − vto.

Table 4.5: C++ code for simple MOSFET model interval representation

1 interval mosfet_interval(interval vd, interval vg, interval vs)

2 {

3 interval w = interval(W);

4 interval l = interval(L);

5 interval kp = interval(KP);

6 interval vto = interval(VTO);

7 interval lamda = interval(LAMDA);

8

9 interval vgs = interval(vg − vs);

10 interval vds = interval(vd − vs);

11 interval vgsEff = vgs − vto;

12

13 interval ids;

14 EMPTY(ids);

15

16 interval tmpVgs = vgs;

17 if (SUP(vgs) > SUP(vto))

18 SET_SUP(vgs, SUP(vto));

19 if (! IsDual(vgs))

20 {

21 ids |= 0.0;

22 }

23 vgs = tmpVgs;

24

25 tmpVgs = vgs;

26 if (INF(vgs) < INF(vto))
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27 SET_INF(vgs, INF(vto));

28 if (! IsDual(vgs))

29 {

30 interval tmpVds = vds;

31 if (SUP(vds) > SUP(vgsEff))

32 SET_SUP(vds, SUP(vgsEff));

33 if (! IsDual(vds))

34 {

35 ids |= kp * (w / l) * ((vgsEff)*vds − 0.5 * sqr(vds)) * (1 +

lamda * vds);

36 }

37 vds = tmpVds;

38

39 tmpVds = vds;

40 if (INF(vds) < INF(vgsEff))

41 SET_INF(vds, INF(vgsEff));

42 if (! IsDual(vds))

43 {

44 ids |= 0.5 * kp * (w / l) * sqr(vgsEff) * (1 + lamda * vds);

45 }

46 vds = tmpVds;

47 }

48 vgs = tmpVgs;

49

50 return (ids);

51 }

Table 4.6: C++ code for simple MOSFET model affine representation

1 interval mosfet_affine(interval vd, interval vg, interval vs)

2 {

3 affine w = affine(W);

4 affine l = affine(L);

5 affine kp = affine(KP);

6 affine vto = affine(VTO);

7 affine lamda = affine(LAMDA);

8

9 affine vgs = affine(vg − vs);

10 affine vds = affine(vd − vs);

11 affine vgsEff = vgs − vto;

12

13 affine ids;

14

15 if (vgs < vto)

16 {

17 ids = 0.0;

18 }

19 else

20 {

21 if (vds <= vgsEff)

22 {

23 ids = kp * (w / l) * ((vgsEff)*vds − 0.5 * sqr(vds)) * (1 +

lamda * vds);

24 }

25 else

26 {

27 ids = 0.5 * kp * (w / l) * sqr(vgsEff) * (1 + lamda * vds);

28 }
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29 }

30

31 return (ids.convert()); // return interval value

32 }

4.3.4 Advanced MOSFET Models

4.3.4.1 MVS Model

The MIT Virtual Source (MVS) model is a semi-empirical compact model for nanoscale

transistors that accurately describes the physics of quasi-ballistic transistors with only a

few physical parameters [25]. The model code is about 300 lines only, which is consid-

ered small model. We implement an interval version form the model using affine form.

Conversion to affine version is somehow straight froward, using the techniques described

in this section. The affine code is listed in appendix B. Testing results are presented in

chapter 5.

4.3.4.2 BSIM4 Model

BSIM4 is an accurate compact model for MOSFET transistors [26], which is widely used

by electronic circuit industry. We implemented an interval version for BSIM4. However

due to themodel code complexity, 7500 lines of code, the results obtained were not correct

compared to the floating point model.
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Chapter 5

Results

Through this chapter we present the testing done to the simulator according to aspects

stated in section 3.4. Testing is limited to the actuality achieved work in the interval

simulator.

5.1 Unit Testing

Unit testing is aim to test the results of individual models, to ensure that interval results

we get, are accurate and reasonable compared to floating point results. In the section we

don’t cover sources and linear elements, because they are simple in themselves, and the

actual testing for them is hold in circuit testing. So next we show testing results for the

non-linear (active) elements models.

5.1.1 Capacitor Model

We test the Capacitor model by check the step response for an RC section as in figure

5.1. Figure 5.2 shows results for the interval version of the capacitor traditional MNA

model. Results in case of using degenerate intervals, that is no variation in R nor C

values, are correct. While when the resistor value by %3, it produces wrong results as
results do not include the nominal value. When varying both the resistor and capacitor

values, simulation does not converge.

Modified Model shows better results, figure 5.3 present this results compared to results

obtained from MC simulations

in
R = 1kΩ± 3%

out

C = 1nF± 5%

+
−V

Figure 5.1: RC section schematic
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Figure 5.2: Capacitor step response using traditional representation
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Figure 5.3: Capacitor step response using modified representation
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5.1.2 Diode Model

Diode model presented in table 4.3 is tested using the parameters values listed in table

5.1. Table 5.2 shows simulation results. We can notice that results obtained from IA

calculations and AA calculations are very near, that is because parameters involved in the

equation is almost unrepeated.

Table 5.1: Diode model parameters values

Parameter Value Parameter Value

area 1.0± 5% fc 0.5± 2%

phi 0.7± 3% is 1.0× 10−14 ± 2%

Table 5.2: Diode Id current model results

Vd Monte-Carlo Interval

Low High Low High

−1.0 −1.07× 10−14 −9.29× 10−15 −1.07× 10−14 −9.31× 10−15

−0.8 −1.07× 10−14 −9.29× 10−15 −1.07× 10−14 −9.31× 10−15

−0.6 −1.07× 10−14 −9.29× 10−15 −1.07× 10−14 −9.31× 10−15

−0.4 −1.07× 10−14 −9.29× 10−15 −1.07× 10−14 −9.31× 10−15

−0.2 −1.07× 10−14 −9.29× 10−15 −1.07× 10−14 −9.31× 10−15

0.0 0.00 0.00 0.00 0.00
0.2 2.24× 10−11 2.56× 10−11 2.24× 10−11 2.57× 10−11

0.4 5.38× 10−08 6.16× 10−08 5.37× 10−08 6.18× 10−08

0.6 1.29× 10−04 1.48× 10−04 1.29× 10−04 1.49× 10−04

0.8 3.11× 10−01 3.56× 10−01 3.10× 10−01 3.57× 10−01

1.0 7.47× 10+02 8.55× 10+02 7.46× 10+02 8.58× 10+02

1.2 1.79× 10+06 2.05× 10+06 1.79× 10+06 2.06× 10+06

Vd Affine

Low High

−1.0 −1.07× 10−14 −9.29× 10−15

−0.8 −1.07× 10−14 −9.29× 10−15

−0.6 −1.07× 10−14 −9.29× 10−15

−0.4 −1.07× 10−14 −9.29× 10−15

−0.2 −1.07× 10−14 −9.29× 10−15

0.0 0.00 0.00
0.2 2.23× 10−11 2.57× 10−11

0.4 5.36× 10−08 6.18× 10−08

0.6 1.29× 10−04 1.49× 10−04

0.8 3.10× 10−01 3.57× 10−01

1.0 7.44× 10+02 8.58× 10+02

1.2 1.79× 10+06 2.06× 10+06
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5.1.3 Simple MOSFET Model

Figure 5.4 shows results for MOSFET main current Ids versus drain-source terminals
voltage Vds at different gate-source terminals voltage Vgs. The results obtained for Monte-

Carlo, IA and AA simulations. Table 5.3 lists the parameters values used. The simplicity

of equations makes the results are almost identical for the three types of simulations.

Table 5.3: MOSFET model parameters values

Parameter Value

w 1.0× 10−6 ± 0.1%

l 2.0× 10−6 ± 0.1%

Kp 100.0× 10−6 ± 3%

vto 0.70± 2%

λ 5.0× 10−3 ± 0.5%
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· 10−3

Vds [V]

Ids [A]

IA

AA

MC

3.7 3.8 3.9 4 4.1 4.2 4.3

4.4

4.5

4.6

4.7

4.8

4.9

· 10−3

Figure 5.4: MOSFET simple model results

40



5.1.4 Advanced MOSFET Models

5.1.4.1 MVS MOSFET Model

The test for the model is for its terminal current Ids versus the terminal voltage Vds sweep.

This is a basic test for MOSFET model. Tables 5.4, 5.5 and 5.6 list the parameters values

used in testing, while figures 5.5, 5.6 and 5.7 show the results for each parameters set.

Those figures show Ids/Vds curve for Vgs terminal voltage sweep from 0.5V to 3.0V with

step of 0.5V.

Table 5.4: MVS Test 1 model parameters values

Parameter Value Parameter Value

type 1 gamma 0.1± 1%
Tjun 300.0 mc 0.2± 3%
beta 1.8 Rs0 100.
W 1× 10−4 ± 2% Rd0 100.
Lgdr 32× 10−7 ± 2% n0 1.68± 1%
dLg 9× 10−7 ± 2.5% nd 0.1± 2%
Cg 2.57× 10−6 ± 1% vxo 1.2× 107 ± 1%
alpha 3.5± 1% mu 200.± 3%
Cif 1.38× 10−12 ± 2% Vt0 0.4± 1%
Cof 1.47× 10−12 ± 2.5% delta 0.15± 2%
phib 1.2± 3%

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

· 10−2

Vds [V]

Ids [A]

IdsMC

Idsaffine

Figure 5.5: MVS Test 1 Idsresults
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Table 5.5: MVS Test 2 model parameters values

Parameter Value Parameter Value

type 1 gamma 0.
beta 1.8 mc 0.2± 2%
W 1× 10−4 ± 2% Rs0 100.
Lgdr 32× 10−7 ± 3% Rd0 100.
dLg 9× 10−7 ± 3% n0 1.68
Cg 2.57× 10−6 nd 0.1± 3%
alpha 3.5± 1% vxo 1.2× 107 ± 1%
etov 1.3× 10−3 ± 2% mu 200.± 3%
Cif 0. Vt0 0.4± 2%
Cof 0. delta 0.15± 1%
phib 1.2± 1%
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Figure 5.6: MVS Test 2 Idsresults
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Table 5.6: MVS Test 3 model parameters values

Parameter Value Parameter Value

type −1 gamma 0.1± 2%
Tjun 300.0 mc 0.2± 3%
beta 1.8 Rs0 100.
W 1.0× 10−4 ± 1% Rd0 100.
Lgdr 32× 10−7 ± 3% n0 1.68± 1%
dLg 8× 10−7 ± 2% nd 0.1± 1%
Cg 2.57× 10−6 ± 3% vxo 7542204.± 0.5%
alpha 3.5± 1% mu 165.± 2%
Cif 1.38× 10−12 ± 2% Vt0 0.5535± 1%
Cof 1.47× 10−12 ± 2% delta 0.15± 1%
phib 1.2± 3.5%
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Figure 5.7: MVS Test 3 Idsresults
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5.2 Passive circuits testing

Using passive circuits (combination of linear elements and sources), we can test thematrix

solver. As well we can test the integration between the linear elements.

5.2.1 Potential Divider

In this test a simple 2 resistors network works as potential divider. Each resistor has

percentage uncertainty in its value. Figures 5.8 and 5.9 show the circuit diagram, equiva-

lent system of equations and the output simulations results corresponding to the expected

output from hand calculations.

in
R1 = 1± 10%

out

R2 = 2± 5%V1

 g1 −g1 1
−g1 (g1 + g2) 0
1 0 0

 vin
vout
iV1

 =

 0
0
V1



Figure 5.8: Potential divider circuit diagram and equivalent system of equations

The question here, what makes such simple network doesn’t produce enough accurate

results. The simulation results show that output voltage varies between 0.555 to 0.803
of the input voltage. While for hand calculations, output voltage varies between 6.333
to 0.7 of the input voltage. The reason behind this difference is the interval arithmetic
limitations , dependency and the sub-distributivity, descried in section 2.1.8. Below we

show how hand calculations for real numbers and interval numbers are different, and

show that solving the matrix form representation of the system wide the output results

even more.

Real numbers hand calculations.

V(out)min =
R2min

R1max + R2min

V(in)min

=
1.9

1.1 + 1.9
V(in)min

= 0.6333V(in)min

V(out)max =
R2max

R1min + R2max

V(in)max

=
2.1

0.9 + 2.1
V(in)max

= 0.7000V(in)max
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Interval hand calculations. Here we note the dependency problem where R2 appears

in nominator and the dominator.

V(out) =
R2

R1 + R2

V(in)

=
[1.9, 2.1]

[0.9, 1.1] + [1.9, 2.1]
V(in)

=
[1.9, 2.1]

[2.8, 3.2]
V(in)

= [0.5937, 0.7501]V(in)

Matrix form representation. The systemmatrix form coming from theMNA is shown

in figure 5.8. We know that current flow through R1 can be calculated as (g1(vin− vout)).
For the matrix form the current is actually calculated as (g1vin − g1vout), which in the
interval form may produce wider interval results, as sub-distributivity relation (2.27)

g1(vin − vout) ⊆ g1vin − g1vout. This illustrates why we get wider results even com-
pared to interval calculations by hand.
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0.2

0.4

0.6

0.8

1

t [s]

[V] V(in)

V(out)

Expected

Figure 5.9: Resistor potential divider simulations results

5.2.2 R-2R Resistors Ladder

The R-2R resistors ladder network is an example for passive circuits, this network is used

as passive digital to analog converter. The resistor network causes the digital bits to be
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weighted in their contribution to the output voltage[?]. In this example we use an 8-bits

converter as shown in figure 5.10. Digital word is input to the bits a0 to a7, bits are
switched between logic 0 and logic 1 voltages. For this example Logic 0 is zero voltage
and logic 1 is one volt.
AMonte-Carlo simulation of 1000 runs is hold for this example, whereR takes the nomi-

nal value of 1Ω with a percentage uncertainty in the resistor value by 2%. So theR varies

between [0.98, 1.02] and 2R varies between [1.96, 2.04]. An interval simulation for this
example is hold as well, one using the interval Gauss-Seidel and the other using interval

Gauss-Seidel method for generalized solution sets. Results for some digital words and

simulations average elapsed time are in table 5.7. In this example modal algorithm gives

narrower results than interval algorithm, as well it converges faster. Interval simulation

is about 2 times faster than Monte-Carlo simulation and modal is about 19 times faster

although Monte-Carlo has more accurate results.

2R

a0

2R

2R

a1

R

2R

a2

R

2R

a6

2R

a7

R

Vout

Figure 5.10: 8-Bits digital to analog converter (R-2R resistors network)

Table 5.7: 8-Bits digital to analog converter (R-2R resistors network) simulation results

Word Monte-Carlo Interval

Low High Low High

00000000 0.00 0.00 −6.52× 10−11 6.52× 10−11

11111111 9.96× 10−01 9.96× 10−01 8.25× 10−01 1.18× 1000

00000001 3.86× 10−03 3.95× 10−03 1.30× 10−03 6.73× 10−03

01111111 4.91× 10−01 5.00× 10−01 3.73× 10−01 6.29× 10−01

10000000 4.97× 10−01 5.05× 10−01 4.52× 10−01 5.52× 10−01

Time (ms) 1530 840

Word Modal

Low High

00000000 −4.12× 10−11 3.98× 10−11

11111111 9.09× 10−01 1.06× 1000

00000001 1.81× 10−03 5.18× 10−03

01111111 4.17× 10−01 5.57× 10−01

10000000 4.92× 10−01 5.05× 10−01

Time (ms) 80

46



5.2.3 Transmission Line R-C Model

An example for passive circuits the transmission line (wire) R-C model, where wire

may be represented by successive RC sections as in figure 5.11. In this test we do

the simulations for n sections transmission line, n = {1, 2, 5}. With Rload = 50Ω,
C = 5/npF ± 2.5% and R = 20/nΩ ± 5%. Simulations time are recorded in table

5.8, where we use two settings for simulation time step, the first is 1−12s and other is

1−13s. The interval simulator fails to converge to solution using four sections or more.

This is noticed from results in figures 5.12, 5.13 and 5.14.

Vin

C

R

C

R

C C

R

Rload

Vout

Figure 5.11: Transmission line R-C model example

Table 5.8: Transmission line simulation time

Simulation 1-Section 2-Sections 3-Sections

1−13s 1−12s 1−13s 1−12s 1−13s 1−12s

Monte-Carlo time (s) 983 101 834 85 840 85
Interval time (s) 82.3 9.3 173.5 21.19 314.16 29.75
Ratio 11.94 10.86 4.81 4.01 2.67 2.86
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Figure 5.12: Transmission line one R-C section simulations results
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Figure 5.13: Transmission line two R-C section simulations results
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Figure 5.14: Transmission line three R-C section simulations results
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Chapter 6

Conclusion

6.1 Conclusion

In this thesis we introduce a new interval based simulation flow to enhance the time re-

quired for simulation circuits variations. This flow may replace or coexist with the tradi-

tional Monte-Carlo simulations. To achieve this flow we build a simulator platform that

uses interval arithmetic calculations. We provide models library for the simulator that

contains sources, linear elements, diode, and MOSFET models. We do a hybrid usage of

interval arithmetic and affine arithmetic to enhance the non-linear models accuracy.

Unit testing for the models show good accuracy for the models compared to the Monte-

Carlo. Small passive circuits are tested showing better simulation time compared to

Monte-Carlo simulation. Circuits with active elements fail to converge.

Some of this work results are presented in the 16th GAMM-IMACS International

Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics -

SCAN2014 [9]. A paper then has been submitted for the post-conference proceedings to

be published on Springer, Lecture Notes of Computer Science [10].

6.2 Future work

To enhance and complete this work, we suggest the following items:

• Enhance the algorithm used for solving the linear interval matrix.

• Fix implementation or use another algorithm for the non-linear interval equations.

• Complete the simulator front and back ends.

• Enhance BSIM4 results.

• Enable more analysis types other than the steady state ”DC” and time domain ”tran-

siant” analysis.

• Test usage affine arithmetic in solving the system matrix.

• In this work we use definite time steps in simulation, a point to research about, is

using interval time steps.
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Appendix A

Interval Algorithms

In this appendix we provide the interval algorithms that we use for the interval simulator

solver.

A.1 Interval Gauss–Seidel Method

Gauss–Seidel is one of the commonly used methods to solve system of interval linear

equations. The interval Gauss–Seidel method is the interval version of the famous Gauss-

Seidel method for solving system of algebraic linear equations. The following algorithm

define the method as descried by Hansen [27].

We want to bound the solution set for (A.1); let A be an interval matrix, B is an interval

vector.

AX = B (A.1)

We may use a preconditioner matrix Y , typically Y = (m(A))−1
, then we get:

GX = C, where G = Y A and C = Y B (A.2)

Algorithm A.1: Interval Gauss–Seidel algorithm

Data: AX = B

Y = (m(A))−1
;

G = Y.A;
C = Y.B;
k = 0;
d = ∞;

while (d ≥ ε) and (k < Iterations Limit) do

for i := 1 to n do

Xk+1
i = (G−1

ii )

(
Ci −

i−1∑
j=1

GijX
k+1
j −

n∑
j=i+1

GijX
k
j

)
;

Xk+1
i = Xk+1

i ∩Xk
i ;

end

k = k + 1;
d = distance between Xk+1 and Xk+1;

end

53



A.2 Interval Newton Method

The interval Newton method for solving a nonlinear equation has many similarities with

the traditional Newton method. Starting from an initial intervalX(0), the univariate inter-

val Newton method finds solution(s), if exist(s), of the equation,

f(x) = 0

where f is a continuously differentiable real-valued function of a real variable x. The
univariate interval Newton operator can be deduced, using the mean value theorem, to

be:

N(X) = y − f(y)

F ′(X)
, (A.3)

whereX is the interval in which the method searches for a solution, y is any real number
satisfying y ∈ X , and F ′(X) is an inclusion monotonic interval extension of f ′(X).
Usually, y is taken to be the mid of the interval. Hence, the univariate interval Newton
operator becomes:

N(X) = m(X)− f(m(X))

F ′(X)
(A.4)

finally, the interval Newton algorithm uses the following equation:

X(k+1) = X(k) ∩N
(
Xk
)

, k = 0, 1, 2, . . . (A.5)

to update the interval X at each step. The following theorem discusses the existence and

convergence of the algorithm.

Theorem A.1. If an interval X(0) contains zero x of f(x), then so does X(k) for all k =
0, 1, 2, . . ., defined by (A.5). Furthermore, the intervals X(k) form a nested sequence

converging to x if 0 /∈ F ′(X).

Lemma A.1. Given a real rational function f of a single real variable x with rational

extensions F , F ′ of f , f ′, respectively, such that f has a simple zero y in an interval

[x1, x2] for which F ([x1, x2]) is defined and F ′([x1, x2]) is defined and does not contain
zero, there is an interval x0 ⊆ [x1, x2] containing y and a positive real numberC such that

w
(
Xk+1

)
≤ C

(
w
(
Xk+1

))2
(A.6)

A.2.1 Multivariate Interval Newton Method

To solve the system of interval non-linear equations, described by (A.7), where X is a

vector of intervals.

F (X) = 0 (A.7)

N(X) = y− (F ′(X))
−1

f(y) (A.8)

Where y is a real contained in the interval vector X and F ′(X) is an element-wise interval
extension of the Jacobian matrix over some box X. To obtain the multivariate interval

Newton operator, we may use the following equation:
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N(X) = m(m)− (F ′(X))
−1

f(m(m)) (A.9)

which is analogue to (A.4). But in this case, we need to find inverse of an interval matrix

which is not an easy operation. Instead of doing such complex operation, the multivariate

Newton operator is redefined as:

N(X) = y+ V (A.10)

where V bounds the solution set to:

(F ′(X))V = −f(y) (A.11)

This equation can be solved using Gauss–Seidel Method descried in section A.1.
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Appendix B

MVS MOSFET Model Interval Code

Table B.1: C++ code for MVS MOSFET model

1 ////////////////////////////////////////////////////////////////////

2 //Copyright @ 2013 Massachusetts Institute of Technology (MIT)

3

4 //The terms under which the software and associated documentation (the

Software) is provided are as the following:

5

6 //The Software is provided "as is", without warranty of any kind,

express or implied, including but not limited to the warranties of

merchantability, fitness for a particular purpose and

noninfringement. In no event shall the authors or copyright holders

be liable for any claim, damages or other liability, whether in an

action of contract, tort or otherwise, arising from, out of or in

connection with the Software or the use or other dealings in the

Software.

7

8 //MIT grants, free of charge, to any users the right to modify, copy,

and redistribute the Software, both within the user's organization

and externally, subject to the following restrictions:

9

10 //1. The users agree not to charge for the MIT code itself but may

charge for additions, extensions, or support.

11

12 //2. In any product based on the Software, the users agree to

acknowledge the MIT VS Model Research Group that developed the

software. This acknowledgment shall appear in the product

documentation.

13

14 //3. The users agree to obey all U.S. Government restrictions

governing redistribution or export of the software.

15

16 //4. The users agree to reproduce any copyright notice which appears

on the software on any copy or modification of such made available

to others.

17

18 //Agreed to by

19 //Dimitri A. Antoniadis, MIT

20 //May 27 2013

21 ////////////////////////////////////////////////////////////////////

22

23 #ifndef MVS_H

24 #define MVS_H
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25 #include "aa.h"

26 #include "aa_interval.h"

27 #include "aa_aaf.h"

28

29 #define SMALL_VALUE (1e−10)
30 #define LARGE_VALUE (40)

31 #define KB 1.380648813E−23
32 #define P_Q 1.60217656535E−19
33 #define affine AAF

34

35 class MVS

36 {

37 public:

38 MVS();

39 void init_model_parameters();

40 void load_model();

41 void eval(double V[]);

42 double vt(double T) {return(KB * T / P_Q);}

43 void print(void);

44 affine param(double, double per=0.0);

45 affine Id(void) {return(Idi_si);}

46

47 private:

48 typedef enum {gnd=0, d, g, s, b, di, si} NODE_NAME;

49 // Model paramters

50 int type ; // type of transistor. nFET type=1;

pFET type=−1
51 int CTM_select; // If CTM_select = 1, then classic

DD−NVSAT model is used

52 double version ; // MVS model version = 1.0.1

53 double Tjun ; // Junction temperature [K]

54 double beta ; // Saturation factor. Typ. nFET=1.8,

pFET=1.6

55 affine W ; // Transistor width [cm]

56 affine Lgdr ; // Physical gate length [cm]. //

This is the designed gate length for litho printing.

57 affine dLg ; // Overlap length including both

source and drain sides [cm]

58 affine Cg ; // Gate−to−channel areal capacitance

at the virtual source [F/cm^2]

59 affine etov ; // Equivalent thickness of

dielectric at S/D−G overlap [cm]

60 affine delta ; // Drain−induced−barrier−lowering (

DIBL) [V/V]

61 affine n0 ; // Subthreshold swing factor [unit−
less] {typically between 1.0 and 2.0}

62 affine Rs0 ; // Access resistance on s−terminal [

Ohms−micron]
63 affine Rd0 ; // Access resistance on d−terminal [

Ohms−micron]
64 affine Cif ; // Inner fringing S or D capacitance

[F/cm]

65 affine Cof ; // Outer fringing S or D capacitance

[F/cm]

66 affine vxo ; // Virtual source injection velocity

[cm/s]

67 affine mu ; // Low−field mobility [cm^2/V.s]

68 affine phib ; // ~abs(2*phif)>0 [V]
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69 affine gamma ; // Body factor [sqrt(V)]

70 affine Vt0 ; // Strong inversion threshold

voltage [V]

71 affine alpha ; // Empirical parameter for threshold

voltage shift between strong and weak inversion.

72 affine mc ; // Choose an appropriate value

between 0.01 to 10

73 affine CC ; // Fitting parameter to adjust Vg−
dependent inner fringe capacitances(Not used in this version)

74 affine nd ; // Punch−through factor [1/V]

75 affine Idi_si,

76 Id_di,

77 Isi_s,

78 Qsi_b,

79 Qdi_b,

80 Qg_b;

81 };

82

83

84 #endif

Table B.2: C++ definitions for MVS MOSFET model

1 #include <iostream>

2 #include "mvs.h"

3

4 #define abs(x) fabs(x)

5 #define pow(x,a) affine_pow(x,a)

6

7 inline affine affine_pow(affine x, double a)

8 {

9 affine tmp;

10 // For zero width intervals

11 if (x.getcenter() == 0.0 && x.rad() == 0.0)

12 {

13 tmp=affine(0.0);

14 }

15 else

16 {

17 tmp = exp((a*log(x)));

18 }

19 return (tmp);

20 }

21

22 inline affine affine_pow(affine x, affine a)

23 {

24 return (aaf_pow(x,a));

25 }

26

27 affine MVS::param(double c, double per)

28 {

29 affine tmp = affine(0.0);

30 return(tmp);

31 }

32

33 affine MVS::param(double c, double per)

34 {

35 affine temp(c);
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36 if (per != 0.0)

37 {

38 temp = affine((c*(1−per/100.)),(c*(1+per/100.)));
39 }

40 return(temp);

41 }

42

43 MVS::MVS()

44 {

45 init_model_parameters();

46 load_model();

47 }

48

49 void MVS::init_model_parameters()

50 {

51 // Default values

52 type = 1; // from [−1 : 1] exclude 0;

53 CTM_select = 1; // from [1 : inf); (For

CTM_select other than 1,blended DD−NVSAT and ballistic charge

transport model is used)

54 version = 1.01;

55 Tjun = 298.; // from [173:inf);

56 beta = 1.7; // from (0:inf);

57 W = affine(1e−4); // from (0:inf);

58 Lgdr = affine(80e−7); // from (0:inf);

59 dLg = affine(10.5e−7); // from (0:inf);

60 Cg = affine(2.2e−6); // from (0:inf);

61 etov = affine(1.3e−3); // from (0:inf);

62 delta = affine(0.10); // from [0:inf);

63 n0 = affine(1.5); // from [0:inf);

64 Rs0 = affine(100); // from (0:inf);

65 Rd0 = affine(100); // from (0:inf);

66 Cif = affine(1e−12); // from [0:inf);

67 Cof = affine(2e−13); // from [0:inf);

68 vxo = affine(0.765e7); // from (0:inf);

69 mu = affine(200); // from (0:inf);

70 phib = affine(1.2); // ~abs(2*phif)>0 [V]

71 gamma = affine(0.0); // from [0:inf);

72 Vt0 = affine(0.486);

73 alpha = affine(3.5);

74 mc = affine(0.2); // from [0.01 : 10]; (For,

values outside of this range,convergence or accuracy of results is

not guaranteed)

75 CC = affine(0.); // from [0:inf);

76 nd = affine(0.); // from [0:inf);

77 }

78

79 void MVS::eval(affine V[])

80 {

81 int dir;

82 double MvsDtmp01;

83 affine Vds, Vgs, Vgsraw, Vgd, Vgdraw, Vbs, Vdsi, Vgsi, Vgdi, Vbsi;

84 affine Rs, Rd;

85 affine Leff, me, S, phit;

86 affine n, nphit, aphit, Vtpcorr, eVgpre, FFpre, ab, Vcorr, Vgscorr,

Vbscorr, Vt0bs, Vt0bs0, Vtp, Vtp0;

87 affine eVg, FF, eVg0, FF0, Qref, eta, eta0;

88 affine Qinv, Qinv_corr, vx0, Vdsats, Vdsat,Vdratio, Vdbeta,
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Vdbetabeta, Fsat, Id ;

89 affine Vgt, psis, Vgta, Vdsatq, Fsatq, x, den;

90 affine qsc, qdc, qi, kq, kq2, kq4, tol, qsb, qdb, qs, qd, Qs, Qd;

91 affine Qb, etai, Qinvi, dQinv, dibl_corr;

92 affine Qinvs, Qinvd, Qsov, Qdov, Vt0x, Vt0y, Fs_arg, Fs, Fd_arg, Fd,

FFx, FFy, Qsif, Qdif, Qg, a, Cofs, Cofd;

93 affine MvsTtmp01;

94

95 // analog

96 {

97 //Voltage definitions

98 Vgsraw = type * ( V[g] − V[si] );

99 Vgdraw = type * ( V[g] − V[di] );

100 if (Vgsraw >= Vgdraw)

101 {

102 Vds = type * ( V[d] − V[s] );

103 Vgs = type * ( V[g] − V[s] );

104 Vbs = type * ( V[b] − V[s] );

105 Vdsi = type * ( V[di] − V[si] );

106 Vgsi = Vgsraw;

107 Vbsi = type * ( V[b] − V[si] );

108 dir = 1;

109 }

110 else

111 {

112 Vds = type * ( V[s] − V[d] );

113 Vgs = type * ( V[g] − V[d] );

114 Vbs = type * ( V[b] − V[d] );

115 Vdsi = type * ( V[si] − V[di] );

116 Vgsi = Vgdraw;

117 Vbsi = type * ( V[b] − V[di] );

118 dir = −1;
119 }

120

121 //Parasitic element definition

122 Rs = 1e−4/ W * Rs0;

// s−terminal resistance [ohms]

123 Rd = Rs;

// d−terminal resistance [ohms] For symmetric source and drain Rd

= Rs.

124 //Rd = 1e−4/ W * Rd0;

// d−terminal resistance [ohms] {Uncomment for asymmetric source

and drain resistance.}

125 Cofs = ( 0.345e−12/ etov ) * dLg/ 2.0 + Cof; // s−
terminal outer fringing cap [F/cm]

126 Cofd = ( 0.345e−12/ etov ) * dLg/ 2.0 + Cof; // d−
terminal outer fringing cap [F/cm]

127 Leff = Lgdr − dLg;

// Effective channel length [cm]. After subtracting overlap

lengths on s and d side

128

129 phit = vt(Tjun);

// Thermal voltage, kT/q [V]

130 me = (9.1e−31) * mc;

// Carrier mass [Kg]

131 n = n0 + nd * Vds; //

Total subthreshold swing factor taking punchthrough into account

[unit−less]
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132 nphit = n * phit;

// Product of n and phit [used as one variable]

133 aphit = alpha * phit;

// Product of alpha and phit [used as one variable]

134

135

136 //Correct Vgsi and Vbsi

137 //Vcorr is computed using external Vbs and Vgs but internal Vdsi,

Qinv and Qinv_corr are computed with uncorrected Vgs, Vbs and

corrected Vgs, Vbs respectively.

138 Vtpcorr = Vt0 + gamma * (sqrt(abs(phib − Vbs))− sqrt(phib))−
Vdsi * delta;// Calculated from extrinsic Vbs

139 eVgpre = exp(( Vgs − Vtpcorr )/ ( aphit * 1.5 )); //

Calculated from extrinsic Vgs

140 FFpre = 1.0/ ( 1.0 + eVgpre ); // Only used to

compute the correction factor

141 ab = 2 * ( 1 − 0.99 * FFpre ) * phit;

142 Vcorr = ( 1.0 + 2.0 * delta ) * ( ab/ 2.0 ) * ( exp( −Vdsi/ ab )

); // Correction to intrinsic Vgs

143 Vgscorr = Vgsi + Vcorr; // Intrinsic Vgs

corrected (to be used for charge and current computation)

144 Vbscorr = Vbsi + Vcorr; // Intrinsic Vgs

corrected (to be used for charge and current computation)

145 Vt0bs = Vt0 + gamma * (sqrt( abs( phib − Vbscorr)) − sqrt( phib

)); // Computed from corrected intrinsic Vbs

146 Vt0bs0 = Vt0 + gamma * (sqrt( abs( phib − Vbsi)) − sqrt( phib )

); // Computed from uncorrected intrinsic Vbs

147 Vtp = Vt0bs − Vdsi * delta − 0.5 * aphit; // Computed

from corrected intrinsic Vbs and intrinsic Vds

148 Vtp0 = Vt0bs0 − Vdsi * delta − 0.5 * aphit; // Computed

from uncorrected intrinsic Vbs and intrinsic Vds

149 eVg = exp(( Vgscorr − Vtp )/ ( aphit )); // Compute eVg

factor from corrected intrinsic Vgs

150 FF = 1.0/ ( 1.0 + eVg );

151 eVg0 = exp(( Vgsi − Vtp0 )/ ( aphit )); // Compute eVg

factor from uncorrected intrinsic Vgs

152 FF0 = 1.0/ ( 1.0 + eVg0 );

153 Qref = Cg * nphit;

154 eta = ( Vgscorr − ( Vt0bs − Vdsi * delta − FF * aphit ))/ (

nphit ); // Compute eta factor from corrected intrinsic Vgs and

intrinsic Vds

155 eta0 = ( Vgsi − ( Vt0bs0 − Vdsi * delta − FFpre * aphit ))/ (

nphit ); // Compute eta0 factor from uncorrected intrinsic Vgs and

internal Vds.

156 // Using FF instead of FF0 in eta0 gives smoother capacitances.

157

158 //Charge at VS in saturation (Qinv)

159 if (eta <= LARGE_VALUE)

160 {

161 Qinv_corr = Qref * log( 1.0 + exp(eta) );

162 }

163 else

164 {

165 Qinv_corr = Qref * eta;

166 }

167 if (eta0 <= LARGE_VALUE)

168 {

169 Qinv = Qref * log( 1.0 + exp(eta0) ); // Compute
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charge w/ uncorrected intrinsic Vgs for use later on in charge

partitioning

170 }

171 else

172 {

173 Qinv = Qref * eta0;

174 }

175

176

177 //Transport equations

178 vx0 = vxo;

179 Vdsats = vx0 * Leff/ mu;

180 Vdsat = Vdsats * ( 1.0 − FF ) + phit * FF; //

Saturation drain voltage for current

181 Vdratio = abs( Vdsi/ Vdsat);

182 Vdbeta = pow( Vdratio, beta);

183 MvsTtmp01 = (1.0 + Vdbeta);

184 MvsDtmp01 = (1.0/ beta);

185 Vdbetabeta = pow(MvsTtmp01,MvsDtmp01);

186 Fsat = Vdratio / Vdbetabeta; // Transition function

from linear to saturation.

187 // Fsat = 1 when Vds>>Vdsat; Fsat= Vds when Vds<<Vdsat

188

189 //Total drain current

190 Id = Qinv_corr * vx0 * Fsat * W;

191

192 //Calculation of intrinsic charge partitioning factors (qs and qd)

193 Vgt = Qinv/ Cg; // Use charge computed from

uncorrected intrinsic Vgs

194

195 // Approximate solution for psis is weak inversion

196 if (gamma == 0)

197 {

198 a = 1.0;

199 if (eta0 <= LARGE_VALUE)

200 {

201 psis = phib + phit * ( 1.0 + log( log( 1.0 + SMALL_VALUE +

exp( eta0 ))));

202 }

203 else

204 {

205 psis = phib + phit * ( 1.0 + log( eta0 ));

206 }

207 }

208 else

209 {

210 if (eta0 <= LARGE_VALUE)

211 {

212 psis = phib + ( 1.0 − gamma )/ ( 1.0 + gamma ) * phit * ( 1.0 +

log( log( 1.0 + SMALL_VALUE + exp( eta0 ))));

213 }

214 else

215 {

216 psis = phib + ( 1.0 − gamma )/ ( 1.0 + gamma ) * phit * ( 1.0 +

log( eta0 ));

217 }

218 a = 1.0 + gamma/ ( 2.0 * sqrt( abs( psis − ( Vbsi ))));

219 }
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220 Vgta = Vgt/ a; // Vdsat in strong inversion

221 Vdsatq = sqrt( FF0 * aphit * aphit + Vgta * Vgta); //

Vdsat approx. to extend to weak inversion;

222 // The multiplier of phit has strong effect on Cgd discontinuity at

Vd=0.

223

224 // Modified Fsat for calculation of charge partitioning

225 //DD−NVSAT charge

226 Fsatq = abs( Vdsi/ Vdsatq )/ ( pow( 1.0 + pow( abs( Vdsi/ Vdsatq

), beta ), 1.0/ beta ));

227 x = 1.0 − Fsatq;

228 MvsTtmp01 = x + 1;

229 den = 15 * sqr(MvsTtmp01);

230 qsc = Qinv *(6 + 12 * x + 8 * sqr(x) + 4 * power(x,3))/ den;

231 qdc = Qinv *(4 + 8 * x + 12 * sqr(x) + 6 * power(x,3))/ den;

232 qi = qsc + qdc; // Charge in the channel

233

234

235 //QB charge

236 kq = 0.0;

237 tol = ( SMALL_VALUE * vxo/ 100.0 ) * ( SMALL_VALUE * vxo/

100.0 ) * me/ ( 2 * P_Q );

238 if (tol > Vdsi)/*(Vdsi <= tol)*/

239 {

240 kq2 = ( 2.0 * P_Q/ me * Vdsi )/ ( sqr(vx0) ) * 10000.0;

241 kq4 = sqr(kq2);

242 qsb = Qinv * ( 0.5 − kq2/ 24.0 + kq4/ 80.0 );

243 qdb = Qinv * ( 0.5 − 0.125 * kq2 + kq4/ 16.0 );

244 }

245 else

246 {

247 kq = sqrt( 2.0 * P_Q/ me * Vdsi )/ vx0 * 100.0;

248 kq2 = sqr(kq);

249 qsb = Qinv * ( asinh( kq )/ kq − ( sqrt( kq2 + 1.0 ) − 1.0 )/

kq2);

250 qdb = Qinv * (( sqrt( kq2 + 1.0 )− 1.0 )/ kq2);

251 }

252

253

254 // Flag for classic or ballistic charge partitioning:

255 if (CTM_select == 1) // Ballistic blended with

classic DD−NVSAT
256 {

257 qs = qsc; // Calculation of "ballistic" channel

charge partitioning factors, qsb and qdb.

258 qd = qdc; // Here it is assumed that the

potential increases parabolically from the

259 } // virtual source point, where Qinv_corr is

known to Vds−dvd at the drain.

260 else // Hence carrier velocity increases

linearly by kq (below) depending on the

261 {

262 qs = qsc * ( 1 − Fsatq * Fsatq ) + qsb * Fsatq * Fsatq; //

efecive ballistic mass of the carriers.

263 qd = qdc * ( 1 − Fsatq * Fsatq ) + qdb * Fsatq * Fsatq;

264 }

265

266

64



267 //Body charge based on approximate surface potential (psis)

calculation with delta=0 using psis=phib in Qb gives continuous Cgs

, Cgd, Cdd in SI, while Cdd is smooth anyway.

268 Qb = −type * W * Leff * ( Cg * gamma * sqrt( abs( psis − Vbsi )

) + ( a − 1.0 )/ ( 1.0 * a ) * Qinv * ( 1.0 − qi ));

269

270

271 //DIBL effect on drain charge calculation.

272 //Calculate dQinv at virtual source due to DIBL only. Then:Correct

the qd factor to reflect this channel charge change due to Vd

273 //Vt0bs0 and FF=FF0 causes least discontinuity in Cgs and Cgd but

produces a spike in Cdd at Vds=0 (in weak inversion. But bad in

strong inversion)

274 etai = ( Vgsi − ( Vt0bs0 − FF * aphit ))/ ( nphit );

275 if (etai <= LARGE_VALUE)

276 {

277 Qinvi = Qref * log( 1.0 + exp( etai ));

278 }

279 else

280 {

281 Qinvi = Qref * etai;

282 }

283 dQinv = Qinv − Qinvi;

284 dibl_corr = ( 1.0 − FF0 ) * ( 1.0 − Fsatq ) * qi * dQinv;

285 qd = qd − dibl_corr;

286

287

288 //Inversion charge partitioning to terminals s and d

289 Qinvs = type * Leff * (( 1 + dir ) * qs + ( 1 − dir ) * qd)/

2.0;

290 Qinvd = type * Leff * (( 1 − dir ) * qs + ( 1 + dir ) * qd)/

2.0;

291

292

293 //Outer fringing capacitance

294 Qsov = Cofs * ( V[g] − V[si] );

295 Qdov = Cofd * ( V[g] − V[di] );

296

297

298 //Inner fringing capacitance

299 Vt0x = Vt0 + gamma * ( sqrt( abs( phib − type * ( V[b] − V[si]

))) − sqrt(phib));

300 Vt0y = Vt0 + gamma * ( sqrt( abs( phib − type * ( V[b] − V[di]

))) − sqrt(phib));

301 Fs_arg = ( Vgsraw − ( Vt0x − Vdsi * delta * Fsat ) + aphit *

0.5 )/ ( 1.1 * nphit );

302 if (Fs_arg <= LARGE_VALUE)

303 {

304 Fs = 1.0 + exp( Fs_arg );

305 FFx = Vgsraw − nphit * log( Fs );

306 }

307 else

308 {

309 Fs = 0.0; // Not used

310 FFx = Vgsraw − nphit * Fs_arg;

311 }

312 Fd_arg = ( Vgdraw − ( Vt0y − Vdsi * delta * Fsat ) + aphit *

0.5 )/ ( 1.1 * nphit );
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313 if (Fd_arg <= LARGE_VALUE)

314 {

315 Fd = 1.0 + exp( Fd_arg );

316 FFy = Vgdraw − nphit * log( Fd );

317 }

318 else

319 {

320 Fd = 0.0; // Not used

321 FFy = Vgdraw − nphit * Fd_arg;

322 }

323 Qsif = type * ( Cif + CC * Vgsraw ) * FFx;

324 Qdif = type * ( Cif + CC * Vgdraw ) * FFy;

325

326

327 //Partitioned charge

328 Qs = −W * ( Qinvs + Qsov + Qsif ); // s−terminal charge

329 Qd = −W * ( Qinvd + Qdov + Qdif ); // d−terminal charge

330 Qg = −( Qs + Qd + Qb ); // g−terminal charge

331

332 //Sub−circuit initialization

333 Idi_si = type * dir * Id;

334 Id_di = ( V[d] − V[di] )/ Rd;

335 Isi_s = ( V[si] − V[s] )/ Rs;

336 Qsi_b = ( Qs ); // charge term: node si to node b

337 Qdi_b = ( Qd ); // charge term: node di to node b

338 Qg_b = ( Qg ); // charge term: node g to node b

339 }

340 }

341

342 void MVS::print(void )

343 {

344 std::cout << Idi_si << std::endl;

345 }

346

347 void MVS::load_model(void )

348 {

349 // Model card

350 #include "ptype_lib1.h"

351 }
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ثحبلاصخلم

مهقئاقرلرثكأفئاظوولضفأءادألوصحلاىلعةینورتكللإارئاودلايعنصمويممصملمعی

نكمیيذلا،تلاصوملاهابشأطئابنریغصتوهكلذىلعلوصحللقرطلاىدحإ.ةینورتكللإا

ةیلمعنألاإ.طئابنلاةعرسنمدیزیامك،ةحاسملاسفنىلعرئاودلانمربكأددععضونم

ىلعرثؤیاممعینصتلاةیلمعنعةجتانةیئاوشعلاتاریغتملايفةدایزاهبحاصتكلتریغصتلا

ایدحتلثمیحبصأةینورتكللإارئاودلانمبولطملاءادلأانمققحتلانإ.ةینورتكللإارئاودلاءادأ

لیلحتلالئاسومادختساىلعةداعلاترجقایسلااذهيف.عینصتلاةیلمعتاریغتمریثأتةدایزعم

لثمی.میمصتلاةلحرميفةینورتكللإارئاودلاءادأىلعتاریغتملاهذهرثأعقوتليئاصحلإا

تاریغتمدوجويفةینورتكللإارئاودلاءادأقیقحتيفةیدیلقتلالئاسوللعقوتملیدبةرتفلاباسح

.عینصتلاةیلمع

ةیئاصحلإاتاریغتملالادبتسم،ةیلاحلاتامیمصتلامادختسالعفیةكاحمماظنلمعلااذهيفمدقن

ءانبمتامك.ةداتعملاةیئاصحلإاةاكاحملامظننیسحتوألادبتسانمنكمیكلذبو.تارتفلاب

ةینورتكللإاطئابنللجذامنلانمةعومجماذكوةرتفلاباسحمادختسادمتعیةینورتكلإرئاوديكاحم

.ةمدختسملا

يكاحملامادختسامتو.ةیئاصحلإاةكاحملاىلعاسایقةمدختسملاجذامنللجئاتنلاةقدرابتخامت

.ةبیطجئاتناًجتنم،ةریغصةیطخرئاودرابتخلا

ب
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يصاحب  . الإلكترونية أداء أفضل و وظائف أكثر لرقائقعلى لحصول ل نبائط أشباه الموصلاتتصغير  يستخدم
زيادة في المتغيرات العشوائية ناتجة عن عملية التصنيع مما يؤثر على أداء الدوائر الإلكترونية.  عملية التصغير

بح يمثل تحديا مع زيادة تأثير متغيرات عملية التصنيع. إن التحقق من الأداء المطلوب من الدوائر الإلكترونية أص
لتوقع أثر هذه المتغيرات  -كارلومونت  – في هذا السياق جرت العادة على استخدام وسائل التحليل الإحصائي

على أداء الدوائر الإلكترونية في مرحلة التصميم. يمثل حساب الفترة بديل متوقع للوسائل التقليدية في تحقيق أداء 
 .ترونية في وجود متغيرات عملية التصنيعالدوائر الإلك

نقدم في هذا العمل نظام محاكة يفعل استخدام التصميمات الحالية، مستبدلا المتغيرات الإحصائية بالفترات. و 
بذلك يمكن من استبدال أو تحسين نظم المحاكاة الإحصائية المعتادة. كما تم بناء محاكي دوائر إلكترونية يعتمد 

 .الفترة و كذا مجموعة من النماذج للنبائط الإلكترونية المستخدمةاستخدام حساب 

تم اختبار دقة النماذج مقارنة بالمحاكاة الإحصائية، كما تم استخدام المحاكي لاختبار بعض الدوائر الخطية 
 مظهرا نتائج طيبة.
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