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Abstract 

The Network on Chip (NoC) design paradigm is expected to replace shared buses 

and dedicated wires due to its scalability, modularity, and absence of global spanning 

wires problem. 

The NoC offers these advantages but still it requires larger area due to larger 

number of communication nodes (routers vs. bus). NoC is also expected to exhibit 

higher power consumption due to routing and arbitration logic inside each router. 

This thesis presents SoC (refers to shared buses medium) and NoC comparison on 

transaction level using Transaction Level Modeling for  AMBA AHB bus protocol and 

router implementing XY routing algorithm in mesh network with different sizes. 

The thesis used different traffic patterns and loads and presented detailed 

performance evaluation using different metrics such as throughput, latency, number of 

hops, and power consumption. 

The thesis showed the throughput advantage of NoC and its scalability as number 

of cores increase. The simulation results show that rate of throughput increase is higher 

than the rate of increase of power consumption as network size increases. 
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Chapter 1 : Introduction and Background 

This chapter provides an introduction to this research work. The introduction 

includes thesis contribution, thesis organization, NoC introduction, and routing 

algorithms survey. 

1.1. Introduction 

Dedicated wires offer poor reusability and flexibility. Global wires fail to achieve 

global synchronization as frequency and number of cores increase. The global wires do 

not scale with large systems leading to high parasitic resistance and capacitance at large 

distances. Wire delays increase as technology scales down. Adding more metal layers 

and repeaters increase the design complexity rather than reducing it.  

Shared bus medium on the other hand experiences a major shortcoming due to the 

limitations of multi access and the possibility of blocking in addition to its limited 

scalability. Due to the increasing need for larger systems on the same chip, 

performance, represented by throughput, is one of the most important metrics affecting 

System on Chip (SoC) evaluation. This enforces connecting Cores via global 

communication architecture known as Network on Chip (NoC). This pushes for a fully 

distributed communication pattern [1, 2]. Network-centric approach [3] allows 

decoupling the processing nodes from the communication fabric. The increasing 

complexity of SoCs makes NoC the best substitute for buses and dedicated wires as 

interconnection scheme [4]. 

The primary communication component in NoC is the router which handles all 

transactions. Routers can solve the multi-access problem as packets now can traverse to 

different destinations at the same time without waiting for another blocking transaction 

to complete. Throughput of SoC saturates rapidly as number of Cores increases. NoC is 

the only solution to maintain throughput of large SoCs within the desired targets. SoC 

bus is to be replaced with a network of switches and routers in the future large systems.  

In this thesis, a detailed performance analysis for large systems using SoC and 

NoC is carried out using high abstract models for router and bus. Transaction Level 

Modeling (TLM) is used to evaluate the system and compare several metrics such as 

throughput and latency while determining those metrics on circuit level is hard if even 

possible. 

Power consumption is the main trade-off in using NoC. Therefore, it is important 

while emphasizing NoC throughput gain to compare power consumption of multiple 

routers with single bus. Another important metric is the area of chip. Considering the 

routing, arbitration mechanism and even number of routers per chip, NoC consumes 

bigger area than SoC. 

1.2. Contribution 

This thesis can help determining when to use bus-based SoC rather than NoC and 

vice versa. This is based on the number of cores, traffic pattern, traffic load, and 
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frequency. Different comparisons are made for performance metrics such as 

throughput, latency, number of hops traversed by each packet in addition to power 

consumption. These comparisons are made for different traffic loads and with different 

number of cores. Building a TLM for router and comparing it with another bus model 

helps offering better evaluation based on transactions rather than pin level data. 

1.3. Organization of the thesis 

A brief summary on NoC architectures, switching techniques and components are 

provided in chapter 1. The routing algorithms are considered as the router model is the 

basic unit in this work. An introduction to transaction level modeling which is used 

throughout this thesis is presented. Both router and bus models and how time and 

power are modeled are presented in Chapter 2. Chapter 3 includes literature survey on 

traffic generation and also performance evaluation of NoCs. Simulation results and 

comparison between NoC and SoC models are described in Chapter 4. The chapter also 

includes summary of the results. Finally Chapter 5 includes conclusion and Chapter 6 

includes future work. Appendix A includes the router model code. Appendix B includes 

the CPU model code. Appendix C includes the traffic generation code. 

1.4. NoC Introduction 

This section includes a brief introduction to NoC architectures, flow control, 

switching techniques, router components, and NoC topologies. 

1.4.1. Interconnect Network Architectures 

Shared-medium bus is a simple interconnect architecture where all cores share the 

same communication medium and bandwidth [4]. These networks support broadcast 

and multicast which is an advantage in case the information is needed to be sent to 

many receivers [2]. Arbitration is needed if different masters need to access the bus. A 

disadvantage of shared bus is its limited scalability. 

Direct networks overcome the scalability problem where each node is connected to 

set of neighboring nodes [2]. The problem here is long global wires spanning around 

the design. 

Indirect networks are switch-based ones where nodes are connected through a set 

of switches. They solve both the scalability and long wires problems [2]. Hybrid 

networks also exist which include heterogeneous connections between bus and 

switches. 

1.4.2. Flow Control Units 

Memories and processing elements are connected to routers through network 

interfaces that manage connection and data fragmentation functions [3, 5]. Flow control 

deals with allocation of channel and buffer resources to packets as they traverse paths 

through the network. For packet-switched networks, the packet is the smallest unit that 

contains routing and sequencing information. Each packet is divided into data units 

called flits and buffers are defined as multiples of the flit-data unit. A flit is the smallest 

unit on which flow control is performed. Information flows on a physical channel as 
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physical transfer units called phits where a phit is the same size of a flit or smaller [6]. 

Input and output buffers of routers should store few flits only which decreases buffer 

space requirements in NoC routers [3]. 

1.4.3. Switching Techniques 

Switching techniques determine when and how internal switches connect inputs to 

outputs. Different switching techniques include [2, 3]: 

 

a- Circuit Switching: The transmission first sets a physical path from source to 

destination. This end-to-end reserved path causes unnecessary delay. This is 

used to guarantee throughput connections [4]. 

b- Packet Switching: The message is divided into fixed-size packets that are 

routed individually without resource reservation. This is advantageous for short 

and frequent packets leading to better utilization. 

c- Wormhole Switching: first flit is the header flit containing routing information 

that enables switch establishing path to destination. Subsequent flits flow in a 

pipelined fashion without need of any packet reordering. If any flit faces a busy 

channel, all subsequent flits wait. The path is released when the tail packet is 

received. Virtual channels increase channel utilization as flits can use other 

virtual channels if one of them is blocked. This is used in best effort 

connections [4]. 

1.4.4. Router Architecture 

The architecture of NoC router consists of several components [3]: 

 

a- Crossbar: The components connecting input buffers to output ones. 

b- Network Interface: Responsible for segmentation of packets and re-ordering 

them. Other related work in [7] introduces low power network interface for 

NoC. 

c- Routing and Arbitration: Routing defines the path for each packet from 

source to destination while arbitration selects one input port from different 

requests. 

d- Buffers: FIFO units storing flits, it is considered the dominant factor in area 

cost function for the router. Other work including [8-10] studies area 

optimization for buffers. 

 

A state diagram of router operation example is shown in Figure 1.1 where S0: type 

determination, S1: Routing, S2: Output virtual channel allocation, S3: router allocation, 

S4: physical channel allocation, S5: router traversal. 
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Figure 1.1: Router state diagram 

1.4.5. NoC Topologies 

The topology specifies how the routers and cores are connected to each other. 

Commonly used topologies are mentioned below [5] [11-13]: 

 

a- 2D Mesh: The 2D mesh topology is illustrated in Figure 1.2 (a) [5] and Figure 

1.3 (a) [13] where each router has 5 ports (north, east, south, west, and local) 

and connected to its four neighbors except for border routers. The router 

address is easily defined by its x-y coordinates. 

b- Ring: Low performance ring topology with low complexity is shown in Figure 

1.2 (b). 

c- Spidergon: The spidergon connection is shown in Figure 1.2 (c) where each 

router has three connections, one for left neighbor, right neighbor, and central 

connection. The benefit of this topology is that packets consume only two hops 

for any path. 

d- Torus: Just like mesh topology but connecting routers at the edge with routers 

at the opposite edge via wrap-around channels. Folded torus doubles the 

bandwidth by wrapping leftmost routers to rightmost ones and from top 

component to bottom. Torus and folded torus are shown in Figure 1.3 (b) and 

Figure 1.3 (c) respectively. 

e- Fat Tree: Both Fat Tree and Butterfly Fat Tree (BFT) topologies are illustrated 

in Figure 1.3 (d) and Figure 1.3 (e) respectively. Fat tree implementation puts 

routers and nodes while cores are located at leaves. Each node has four children 

and a parent. This is replicated four times at any level of the tree. 
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f- BFT: In Butterfly Fat Tree, each switch has six ports, four for child ports and 

two for parents. The intermediate nodes act as switches, four cores are 

connected to the children ports at the first level of switches. In the second level, 

parents are connected to two switches. The tree architecture has two benefits, 

component-level decomposition and congestion reduction. 

 

 

 

Figure 1.2: (a) 2D Mesh, (b) Ring, (c) Spidergon, (d) Crossbar 

 

Figure 1.3: NoC architectures 

The next sections include different routing algorithms and arbitration algorithms. 

1.5. Routing Algorithms 

Routing determines the path of each packet traversing the network till reaching its 

destination. Routing can be classified according to different criteria into the following 

classifications [11, 12]: 

1.5.1. Source and Distributed Routing 

In distributed routing, the routing decision is taken at each router. The router does 

not need global knowledge about network status as it computes the next hop according 

to the destination address of each packet [14]. 

Source routing stores routing tables which contain routing information for each 

packet. The header packet must be transmitted throughout the whole network as it 

contains the information for each hop in its path to destination. Source routing is not 
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considered in NoCs due to its large overhead to store entire path information in the 

header. Also it does not provide adaptive paths in case of congestion or link failure as 

the path is pre-computed. However, source routing has its own advantages especially in 

NoC with fixed size and regular topology like mesh. Also, it can fit irregular networks 

since it is topology independent. 

With efficient coding, the router design is significantly simplified. Also for 

application specific networks, the traffic profile can help determining paths for desired 

performance metrics. Still large size of routing tables results in performance overhead. 

1.5.2. Deterministic and Adaptive Routing 

Deterministic routing specifies a fixed output link for each destination at each hop. 

Thus, the routing information is determined statically and this leads to constant number 

of hops for each source-destination pair and may lead to congestion if many packets 

have the same destination. Deterministic routing is not dead-lock free due to reasons 

mentioned above; also routing fails if any link is broken. 

Adaptive routing makes the decision dynamic according to different specifications 

such as network load, deadlock, and broken links. For each source-destination pair, 

there are several paths leading to different number of hops each time a packet is 

transferred from the same source to the same destination. 

Centralized adaptive routing monitors global traffic load instead of local 

congestion signals, it modifies routing of packets in order to improve load balancing 

and outperform distributed adaptive routing [15]. Adaptive routing can be based on 

power model which adapts routing according to power conditions in order to optimize 

power distribution leading to a power-aware adaptive routing scheme [16]. 

1.5.3. Routing Algorithms Examples 

This section includes examples for the commonly used routing algorithms. 

 

a- XY Routing 

XY routing algorithm is a kind of deterministic distributed algorithm. Each router 

is identified by its coordinates Cx and Cy (2-dimension mesh topology) [17]. The 

algorithm compares router coordinates to destination coordinates Dx and Dy. When 

(Cx, Cy) match (Dx, Dy), the packet is transferred to local router port which means that 

packet reaches its destination core. Otherwise, horizontal addresses are compared first 

till the flit is horizontally aligned. Then the vertical address is compared till reaching 

the required destination. 

As XY algorithm is deterministic, if any port is busy the packet is blocked as there 

is no other routes to the destination so it cannot avoid deadlock. XY algorithm is 

illustrated below: 

 

Algorithm XY 

/*Source router: (Sx,Sy);destination router: (Dx,Dy); current 

router: (Cx,Cy).*/ 

begin 

if (Dx>Cx) //eastbound messages 

return E; 

else 
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if (Dx<Cx) //westbound messages 

return W; 

else 

if (Dx=Cx) { //currently in the same column as 

//destination 

if (Dy<Cy) //southbound messages 

return S; 

else 

if (Dy>Cy) //northbound messages 

return N; 

else 

if (Dy=Cy) //current router is the destination router 

return C; 

} 

End 

 

b- OE Routing 

Odd-even routing algorithm is a distributed adaptive algorithm based on odd-even 

turn model that avoids deadlock through some restrictions [17]. In this model, a column 

is called even if its horizontal dimension is an even numerical value and called odd if 

its horizontal dimension is an odd number. Since E, S, W, N indicate East, South, West, 

and North respectively, there are eight types of turns where a turn is a 90-degree change 

of travelling direction. ES turn involves change of direction from East to South. 

Similarly, there are EN, WS, WN, SE, SW, NE, and NW turns. 

Two main theorems define the OE algorithm: 

Theorem 1: NO packet is permitted to do EN turn in each node which is located on 

an even column. Also, No packet is permitted to do NW turn in each node that is 

located on an odd column. 

Theorem 2: NO packet is permitted to do ES turn in each node that is in an even 

column. Also, no packet is permitted to do SW turn in each node which is in an odd 

column. Where the OE algorithm is presented as: 

 

Algorithm OE 

/*Source router: (Sx,Sy);destination router: (Dx,Dy); current 

router: (Cx,Cy).*/ 

begin 

avail_dimension_set<-empty; 

Ex<-Dx-Cx; 

Ey<-Dy-Cy; 

if (Ex=0 && Ey=0) //current router is destination 

return C; 

if (Ex=0){ //current router in same column as //destination 

if (Ey<0) 

add S to avail_dimension_set; 

else 

add N to avail_dimension_set; 

} 

else{ 

if (Ex>0){ //eastbound messages 

if (Ey=0){ //current in same row as destination 
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add E to avail_demision_set; 

} 

else{ 

if(Cx % 2 != 0 or Cx=Sx) //N/S turn allowed only in odd 

//column. 

if(Ey < 0) 

add S to avail_dimension_set; 

else 

add N to avail_dimension_set; 

if(Dx% 2 != 0 or Ex != 1) { 

//allow to go E only if destination 

// is odd column 

add E to avail_dimension_set; 

//because N/S turn not allowed in 

//even column 

} 

} 

} 

else { // westbound messages 

add W to avail_dimension_set; 

if(Cx%2=0) //allow to go N/S only in even 

//column, because N->W and S->W 

//not allowed in odd column 

if(Ey<0) 

add S to avail_dimension_set; 

else 

add N to avail_dimension_set; 

} 

} 

Select a dimension from avail_dimension_set to forward the packet. 

end 

 

Providing a group of routing paths for each source-destination pair can prevent 

deadlock without using virtual channels. 

 

c- Segment-Based Routing 

Link failures lead to irregular topologies and these need routing algorithms that 

adapt to static and dynamic changes in irregular topologies [18]. Reconfiguration at the 

routing level allows topology changes that can be used in case of switch or link failure. 

Segment-based Routing (SR) methodology allows computation of different deadlock-

free routing algorithms by different segmentation processes and routing restriction 

policies. 

The straightforward routing algorithm used in irregular networks is Up*/Down* 

(UD) which selects a root node and performs breadth-first search (BFS) to build a 

spanning tree. The algorithm assigns links directions and turn restrictions where the 

packet can reach destination by traversing the tree upwards and then downwards. 

Therefore, cyclic dependency can be avoided by forbidding up link after a down one. 

This algorithm accumulates traffic near root node and the UD tree is fixed as long as 

the root node is selected. 
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The SR algorithm uses divide-and-conquer approach by partitioning the topology 

to subnets and segments. SR places bidirectional turn restrictions locally to each 

segment leading to much more flexibility compared with UD. The final step in SR is 

computing final path for each source-destination pair. 

SR is a partly adaptive routing algorithm which can be applied on networks that 

support deterministic or adaptive routing and on routers that support routing tables. SR 

is agnostic to the topology of the network as it is based on network segmentation and 

guaranteeing full connectivity between end nodes. However, many patterns for 

segments exist and each pattern can affect performance according to topology and 

traffic pattern. 

Unitary segments contain only one link. Any dependency using these segments 

should be forbidden in order to ensure deadlock-freedom. Smart selection during 

segmentation can limit unitary segments. 

 

d- Region-Based Routing 

Region-based routing (RBR) groups destinations into network regions in order to 

reduce number of entries in routing tables. RBR is a general mechanism that can be 

used along with any adaptive routing algorithm. RBR mainly targets reducing high area 

and power consumption of table-based routers especially in large networks by dividing 

network regions and allowing efficient implementation using logic blocks. RBR exhibit 

low and constant memory and area requirements regardless of network size [19]. 

 

 

 

Figure 1.4: Example of region definition 

2-D mesh topology networks has the property that the number of required regions 

is either constant or grows slowly as network size grows. Also the region computation 

is performed offline, downloaded to routers and then network is set into normal 

operation. This guarantees no impact on network performance. Regions should take 

into consideration restrictions applied by routing algorithm in order not to lead to a 

deadlock. 

The mechanism in brief starts by receiving network topology and routing 

restrictions. Then it computes possible set of routing paths between each pair of nodes. 
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The routing regions can be computed according to routing options at each router. 

Finally the algorithm packs all regions in order to bound maximum number of allowed 

regions. An example for region computation is shown in Figure 1.4. 

 

e- Application Specific Routing 

Application Specific Routing Algorithm (APSRA) processes the information of 

communicating pair of nodes and other pairs that never communicate and also analyze 

the concurrency of communication transactions across nodes. This can maximize 

communication adaptivity and performance and offer efficient, dead-lock free routing 

without the need for virtual channels. APSRA is topology agnostic that best fits NoCs 

that are specialized for a set of concurrent/non-concurrent applications. The general 

implementation of the routing function is table-based [20]. The ASPRA design 

methodology is shown in Figure 1.5. 

In the embedded systems domain, the designer has an idea about the set of 

applications that is mapped on the system. The routing algorithm does not have to 

guarantee that every pair of nodes can communicate. After the task mapping and 

scheduling, the designer has information about pairs of communicating nodes as well as 

concurrent/non-concurrent transactions. 

 

 

 

Figure 1.5: ASPRA Design Methodology 

1.6. Arbitration 

Routing can be defined by output port selection for input packets. Similarly, 

arbitration deals with input selection (i.e. selecting an input port from several 

simultaneous requests). Arbitration can be classified into centralized arbitration which 

deals with one request at a time and distributed arbitration which deals with a set of 

requests in parallel as shown in Figure 1.6 [21]. 
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Figure 1.6: (a) Centralized arbitration; (b) Distributed arbitration 

Distributed arbitration enhances performance but with more complex router design 

compared to centralized arbitration. Centralized arbitration contains one routing unit for 

which all input ports compete, while distributed arbitration complies that competition 

occurs only at output ports. This requires replication of routing and arbitration units at 

input and output ports. Usually, centralized arbitration uses round-robin algorithm 

while distributed arbitration uses First Come-First Serve (FCFS) algorithm. Three 

examples of centralized arbiters are described below. 

 

a- Fixed Priority Arbiter 

In fixed priority arbitration, each input request has a fixed priority level where the 

highest priority request is always granted access. This can lead to starvation when all 

low priority requests are blocked by higher priority ones. Therefore, fixed priority 

arbiter is unfair taking into consideration that fairness is a key property for any other 

arbiter [11]. 

 

b- Round-robin Arbiter 

Round-robin algorithm gives each request the highest priority for one turn where 

the granted request has the lowest priority on the next arbitration round. Therefore, the 

priority of each request decreases linearly after physical port is granted. 

 

c- Matrix Arbiter 

Matrix arbiter is considered the strongest fair arbiter. It contains a priority matrix 

and grant circuits which use least recently served priority scheme. The priority matrix is 

used to store priorities. The grant generation circuit grants resources to requesters. The 

priority matrix is updated after each clock cycle in order to update new request 

priorities. The matrix arbiter best fits small number of requests because it is fast and 

inexpensive to implement. 
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1.7. Related Work 

This section includes a literature survey on related work to compare between NoCs 

and shared buses medium. This thesis refers to buses with SoCs while NoCs are using 

routers. 

1.7.1. NoC Comparison 

Erno Salminen et al. [22] presented state-of-the-art paper in the field of NoC 

benchmarking and comparison. The paper gathered and analyzed a vast set of studies 

from literatures. The following basic NoC properties are considered: 

1- Offering scalability. 

2- Avoiding global wires spanning the chip. 

3- Supporting system testing. 

The paper summarizes network comparisons found in literature and analyzes them 

according to: 

1- Compared Topologies. 

2- Evaluation Type. 

3- Evaluation Criteria. 

The runtime and latency are the most popular metric in the studied literature. In 

general, achieving the same latency with less area and power is the evaluation criteria. 

The results from literature seem confusing as every study use tests with different 

characteristics and requirements and performance always depend on application. 

Finally, the paper proposes practical basic guidelines for simulation and benchmarking. 

These guidelines are divided into: 

1- Workload. 

2- System Model. 

3- Measurement. 

4- Concluding the Findings. 

The paper does not provide quantified results for throughput comparison. This thesis 

includes quantitative performance evaluation for NoC and SoC. 

1.7.2. Multi-synchronous vs. Asynchronous 

Sheibanyard et al. [1] presented a systematic comparison between fully 

asynchronous and multi-synchronous NoC architectures that are used in Globally 

Asynchronous Locally Synchronous (GALS) multi processors system on chip. The five 

relevant parameters which are used in the comparison are: 

 Silicon area. 

 Network saturation threshold. 

 Throughput. 

 Latency. 

 Power consumption. 

The first implementation is Distributed Scalable Predictable Interconnect Network 

(DSPIN) and the second implementation is Asynchronous Scalable Predictable 

Interconnect Network (ASPIN). Multi synchronous systems contain one or several 

synchronous subsystems clocked with independent clocks and connected with micro 

network as illustrated in Figure 1.7 [1]. 
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Figure 1.7: Multi-synchronous system 

Partitioning the SoC into isolated clusters allows timing closure independently for 

each cluster without any time constraints. This can solve the long wire issue in multi-

million gate SoCs. The research uses a long wire model and extracted SPICE model for 

DSPIN and ASPIN components in order to evaluate latency, throughput, and power 

consumption. 

For power consumption, the work focuses on instantaneous energy consumption 

during one short period of time using current integrator model. The asynchronous 

approach shows better saturation thresholds and better latency but with higher energy 

dissipation. The comparison does not include SoC to compare with which is considered 

in this thesis. 

1.7.3. QoS Communication Schemes 

Mehmet Derin Harmanci et al. [23] addressed quantitative comparison of 

connection-oriented and connectionless-oriented communication schemes. These 

communication schemes are used to guarantee Quality of Service (QoS). QoS is 

defined by several parameters such as availability, jitter, packet loss, and throughput. 

For QoS, it is necessary to have global predictability about the NoC. Virtual channel is 

an example of building connection-oriented communication on top of packet switched 

network where independent input channels are multiplexed over the same physical link. 

The main disadvantage of this scheme is in-efficient resources reservation and non-

scalability. 

Connectionless-oriented scheme can be applied by implementing additional 

services to meet predefined QoS parameters like prioritization of flows. This offers a 

better adaptation to the varying network traffic and better utilization of network 

resources. A SystemC model is built for both communication schemes as shown in 

Figure 1.8 [23]. The simulation considers only end-to-end delay by using nodes that run 

MPEG-2 algorithms along with random noise. This thesis considers performance 

metrics such as throughput, latency, number of hops, and power consumption. 
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Figure 1.8: (a) Connection-oriented router (b) Connectionless-oriented router 

1.7.4. NoC Router Architecture 

Sweta Sahu and Harish M. Kittur [24] implemented five-port router architecture 

for 2D mesh network that can handle five requests simultaneously. The router used two 

types of crossbars: multiplexer and tri-state buffer matrix. The study demonstrates that 

multiplexer design is both area and power efficient compared to matrix design. The 

router architecture is shown in Figure 1.9. 

 

 

Figure 1.9: Router Architecture 
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This work uses wormhole switching, XY deterministic routing algorithm, and 

simple round-robin arbiters. The five ports of the router allow dynamic placement of 

modules in NoC mesh network. Each port has its own decoding logic to increase the 

router performance. The power and area are analyzed and compared for 90nm and 

180nm technologies. Other performance metrics such as throughput and latency are not 

evaluated which is considered in this thesis. 

1.7.5. Comparison of Æthereal NoC and Bus 

Chris Bartels et al. [25] applied Æthereal NoC to bus based SoC and performed 

area comparison between the two architectures down to netlist level. Æthereal NoC 

offers Guaranteed Throughput (GT) aided with predictability and decoupling of the 

behavior of one core from other cores and interconnects. Therefore, the performance of 

core is not affected by the others. This work uses digital video terrestrial receiver 

design (DVB-T) and compares the original bus-based SoC with different NoC-based 

solutions. 

The main interconnect structure of the SoC is ARM AMBA High-speed Bus AHB 

which is replaced with NoC in order to perform the comparison. The NoC shows 60% 

area savings but with higher buffer cost. The comparison does not include throughput 

and latency metrics. 

The Best Effort (BE) service class guarantees reception of data without minimum 

bandwidth or maximum latency bounds. GT service class use Time Division Multiple 

Access (TDMA) to give worst-case guarantees on bandwidth and latency. Both GT and 

BE use source routing where the path to destination is determined at the source router.  

1.7.6. Bus Enhanced NoC 

NoCs are inefficient in multicast operations and its multi-hops operation is slow for 

latency sensitive signals [26]. This motivates adding a global, low latency, and low 

power shared bus as an integral part to the NoC. The customized bus (MetaBus) has 

predictable latency and can perform broadcast and multicast forming a Bus Enhanced 

NoC (BENoC). BENoC is shown in Figure 1.10. 

Latency sensitive signals include L2 cache read requests, cache coherence 

invalidation commands, and interrupt signals. The traffic volume of these operations is 

small but can affect system performance. 
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Figure 1.10: BENoC 

BENoC’s bus sends messages that are different than those delivered by the 

network such as control and multicast messages. This study compares area and latency 

of BENoC and that of pure NoC. The study showed that BENoC is more advantageous 

than classic NoC and the advantage increases as system size grows. The comparison 

does not include throughput or power metrics which are included in this thesis. 

1.7.7. Bus and NoC Comparison 

Ling Wang et al. [27] studied and compared the performance of Bus with NoC 

Spidernet and mesh topologies implemented in FPGA. Spidernet NoC is shown in 

Figure 1.11. The inner triangle of Spidernet topology forms the basic structure in the 

network and then spread to three directions to form the outer one. The masters are 

distributed within the inner triangle while slaves are distributed in the outer triangle. 

The work in this paper uses latency and area as evaluation metrics of the bus and 

NoC performance. It uses two types of emulation flow where the emulation system is 

implemented in Altera FPGA. This paper does not include other evaluation metrics 

such as throughput and power consumption. 

The results show that Spidernet offers better latency than that of Mesh-based NoC 

and that of shared bus. Throughput comparison is not illustrated in this paper. Other 

related work is found in [28] [33] [35-37]. Also [4] introduced state of the art in routers 

that use virtual channels. 
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Figure 1.11: Spidernet NoC 

1.8. Conclusion 

An introduction to NoC is introduced in this chapter along with related work in 

NoC performance evaluation. In this thesis, transaction level models enable applying 

different traffic loads and number of cores. The high level of abstraction enables 

analyzing packets and measuring metrics such as throughput in an easy way and 

integrating the measurements in different simulation runs that implement different 

traffic patterns. Next chapter includes brief introduction to Transaction Level Modeling 

(TLM) and includes description of TLM models for bus and router that are used in this 

thesis. 
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Chapter 2 : Router and Bus Models 

2.1. Introduction 

The basics of the modeling technique which is used in this thesis are introduced in 

this chapter. A brief introduction to TLM is presented and then detailed description for 

bus and router models which are used in SoC and NoC, respectively, is discussed. 

2.1.1. Modeling Levels 

Modeling accuracy can vary from very detailed implementation model to cycle-

accurate RTL model to more abstract model which increases simulation speed, protect 

more detailed intellectual property, and inject stimuli and check results quickly [29]. 

The several independent axes that can control model accuracy include structural 

accuracy, functional accuracy, and timing accuracy. Other axes may include data 

organization accuracy and communication protocol accuracy. Different time models 

can be classified into: 

 

 Untimed Functional Model: 

Direct translation of design specification without any time delays in the model. 

Communications between modules are point-to-point without any shared 

communication links. 

 

 Timed Functional Model: 

The module’s communication is still point-to-point but the model includes time 

delays that describe timing constraints of the specification and delay of particular target 

implementation. 

 

 Transaction-Level Model (TLM): 

Communications between modules are modeled by function calls that are 

implemented with functional and timing accuracy (sometimes even accurate to the 

clock-cycle level). Still the model is not structurally accurate. 

 

 Behavioral Hardware Model: 

Pin-accurate and functionally accurate but does not have internal structure that 

reflects target implementation. Usually these models are input to behavioral hardware 

synthesis tools. 

 

 Register Transfer Level (RTL) Model: 

Pin-accurate and cycle-accurate model with internal structure that reflects 

accurately registers and combinational logic of target implementation. 

 

This thesis focuses on transaction-level modeling which is a discrete-event model 

of computation where function calls represent transactions. Each transaction has a start 

time, end time and payload data. System synchronization scheme is needed in order to 

ensure predictable and deterministic system execution. This is implemented in this 
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thesis by means of interrupts. TLM designs are generally more concise and have shorter 

simulation time than corresponding RTL designs. 

2.1.2. Transaction Level Modeling 

Abstraction is a powerful technique for design and implementation of complex 

systems where unnecessary details can be hidden. TLM is a high-level approach to 

modeling systems. Buses and FIFOs are modeled as channels and presented using 

SystemC interface classes. Transactions take place by function calls to these interface 

classes. Transactions encapsulate low-level details of information exchange. Thus, 

TLM focus more on functionality rather than implementation. This approach is easier 

for system-level design [29]. 

Synchronization details in TLM are abstracted into blocking and non-blocking I/O 

where priorities are assigned to bus masters and centralized arbitration is modeled. 

TLM is used for timed and untimed functional modeling, platform modeling, and 

testbench construction. Taking bus modeling as an example, aspects such as contention, 

arbitration, interrupts, and cycle-accuracy can be modeled away from pin-accurate 

models. In general, TLMs are important as they are easy to develop and understand. 

TLM can be constructed at an early stage in system design process, and they are 

quickly simulated. 

SystemC “sc_fifo” is an example of untimed functional TLM for First In First Out 

(FIFO) channel, where the transaction interfaces are represented through the read and 

write methods of this channel. "sc_fifo” models the FIFO functionality typically but 

with much simpler implementation than actual hardware. TLM is not limited to buses 

and FIFOs as the same principles can be applied to any high-order communication 

mechanism. 

The TLM model needs to be cycle-accurate so that it can serve as an agreed-upon 

contract between software and hardware teams. This feature along with high simulation 

speed can allow meaningful amount of software code to be executed along with 

hardware model. 

For any model, the transaction interfaces are the starting point to understand how 

the design operates [30]. The interfaces are shown in Figure 2.1 and can be classified 

into: 

 

 Blocking Interfaces: 

In blocking interface, the communication methods return only after transaction 

completion. Typically for bus models where there is no multi-access, the masters use 

blocking transactions. 

 

 Non-blocking Interfaces: 

In non-blocking interface, the methods return immediately while the transaction 

takes at least one clock cycle to complete. The transaction may take more than one 

clock cycle if competing requests exist. This interface is commonly used by processor 

models which cannot be suspended. 
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Figure 2.1: Blocking and non-blocking interfaces [30] 

 Direct Interfaces: 

These operations are used to create a simulation monitor for the design and for 

debugging purposes. During these methods, SystemC scheduler does not intervene and 

simulation time does not advance. This interface should not be used as part of design 

implementation, but can be used as a part of the testbench for the design. 

2.1.3. Modeling for High Performance 

TLM uses some techniques for high performance simulation, as the model is not 

pin-accurate, the data within transaction can be bundled and passed more efficiently. 

Thus TLM relies on transaction rather than signals. Also high-level data types are used 

rather than low-level bit-vectors which are commonly used in HDLs [29]. Pointers to 

data are passed between modules through transactions which enable copying blocks of 

data efficiently. 

SystemC dynamic sensitivity feature is used to eliminate unnecessary activation of 

processes. RTL models must execute every clock edge even without any activity. This 

results in performance gain for TLM compared to RTL. 

2.1.4. The Scalable Model Approach 

The scalable TLM model is a property of Mentor Graphics’ Vista tool which is 

based on separation of functionality, communication, and architecture. The untimed 

functionality is captured in programmable view (PV) layer while timing and power are 

defined in the “T” layer. “PV” and “T” are combined in a single “PVT” model [30]. 

The PVT model is shown in Figure 2.2. 
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Figure 2.2: PVT model structure [30] 

Architectural impacts such as communication protocols, different burst sizes, and 

input-to-output latencies are captured in the “T” model without changing the “PV” one.  

This can allow software validation and virtual prototyping by just shutting down the 

“T” layer in order to run pure functional simulation. 

The behavior of the model is described by how it reacts to incoming transactions. 

This behavior is defined in salve port’s callback function; these reactive functions 

implement model’s functionality. Similar callback functions are defined for registers as 

it is a common modeling practice to program a model using a set of control registers. 

The register can trigger the callback function upon accessing the register. 

2.2. Router Features 

The router model used in this thesis contains 11 input and output ports (North, 

East, South, West, Local, and Initialize_Coordinates). Each port is 32 bit width except 

the coordinate ports which are 16 bit width each. The router uses XY deterministic 

routing protocol; Cx and Cy bits which denote each router address are used in the 

implementation of XY routing protocol. 

 

The inputs are composed of 16 bits incoming flit data per input port and 16 bits 

coordinate signal for the destination router. The outputs are composed of 16 bits 

outgoing flit data per output port and 16 bits coordinate signal for the destination router. 

The router model contains one 16 bits register storing the router coordinates and is 

accessed through Init_Cor port as shown in Figure 2.3. 

 

The model uses callback functions for all slave ports; this enables the model to 

react to incoming transactions. Master ports use convenient functions to initiate 

outgoing transactions. Thus, behavior is modeled by embedding convenient functions 

on callback ones. 

 

Timing model is defined by timing policies for each transaction through each port 

of the model. Other policies are used to define dynamic power and static power 
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consumption as well as clock tree power dissipation. Routing mechanism is 

implemented through C++ defined functions that parse coordinates bits for each 

transaction, and determine the next hop and outgoing port through XY routing 

algorithm. 

 

 

 

Figure 2.3: Router model 

A special CPU is used to initialize the coordinates of each router according to its 

location in the mesh network. After coordinates initialization, an interrupt request is 

sent to each core in order to start sending and receiving data packets. An example of the 

mesh network is illustrated in Figure 2.5. 

2.3. Modeling Timing for the Router: 

Timing in TLM is modeled by policies like Delay, Pipeline, and Split that use 

internal latencies and buffering. Transactions are executed using function calls and such 

abstraction increases simulation speed. Internal FIFOs and buffers break packets into 

smaller groups that are processed in parallel, these macro architectures are explored 

through timing policies. Timing policies are modeled using non-blocking transactions 

where each transaction is composed of several phases and each of which is executed 

with its own timing attributes. 

 

The router model uses the “Sequential Policy” to model timing attributes of 

transmitted packets. A latency is defined for master transactions and input/output 

trigger (the Cause) while different latencies can be defined to different triggers. The 

sequential policy is shown in Figure 2.4. 

 



 

11 
 

 

Figure 2.4: Sequential policy [30] 

2.4. Modeling Power 

The power is modeled by power consumed per transaction transfer along with the 

leakage and clock tree power consumption [30]. The power can be classified into: 

 

 Dynamic Power: Power per data during certain time interval. Each 

transaction adds the product (power * time interval) and this amount is 

accumulated for all the transactions during the simulation. Dividing this 

amount by simulation time defines average consumed power. 

 Static Power: Includes leakage power and accumulates when the model is 

in idle state. 

 Clock Tree: Models the power consumption of the clock tree distribution. 

 

The same estimated power values per transaction are used for both SoC and NoC 

designs in order to guarantee fair comparison. 
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Figure 2.5: 2x2 mesh network 

2.5. Bus Model 

A brief introduction on AHB bus protocol and how Vista library is used to 

implement TLM for AHB bus are presented in the following section. 

2.5.1. AMBA Introduction: 

The Advanced Microcontroller Bus Architecture (AMBA) specifications define an 

on chip communication standard for microcontrollers. The AMBA Advanced High-

performance Bus (AHB) is for high-performance and high clock frequency system 

modules. AHB is system backbone bus that supports connection of processors, on-chip 

memories and off-chip external memory [31]. 

The AMBA specifications satisfy microcontroller design facilitation and ensure 

reusable peripherals. AMBA improves processor independency as it encourages 

modular system design. An example for AMBA system is shown in Figure 2.6. 
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Figure 2.6: Typical AMBA system 

2.5.2. AMBA AHB 

AMBA AHB implements burst transfers and split transactions that may contain 

more than one bus master such as Direct Memory Access (DMA) or Digital Signal 

Processor (DSP) [31]. 

Typical AHB system contains the following components: 

 

 AHB Master: Initiates read and write operations. 

 AHB Slave: Responds to read and write operations. 

 AHB Arbiter: Ensures that only one master can access the bus at a time. 

 AHB Decoder: Decodes the address to provide select signal for the 

required slave. 

 

The AHB provides a high bandwidth solution. In addition, the single-clock-edge 

protocol offers smooth integration in ASIC environment. AHB Lite is a subset of high-

speed bus architecture AHB. AHB Lite allows only one master, requiring no arbitration 

and saving some signals (request, grant, split …etc.) Multi-layer AHB (ML-AHB) is an 

interconnect architecture that extends the AHB bus architecture that provides parallel 

accesses between multiple masters and slaves to increase overall bandwidth and 

performance. However, the interconnection matrix has higher cost compared to 

standard AHB [25]. An example for n-layer AHB system is shown in Figure 2.7. 

 

 



 

11 
 

 

Figure 2.7: N-layer AHB system [25] 

2.5.3. Modeling Timing for AHB Bus 

Pipeline timing policy is used to model the bus behavior; the pipeline policy is 

implemented by AHB bus in response to any initiated master transaction. Pipeline 

policy is illustrated in Figure 2.8. 

 

 

 

Figure 2.8: Pipeline policy [30] 

2.5.4. Bus Arbitration 

The bus model supports priority-based arbitration. A predefined priority parameter 

is defined so that different priorities can be specified per master [30] [32] [34]. Round-

robin arbitration is used in this design where all cores have the same priority. Changing 

the arbitration scheme directly affects simulation results as low priority masters take 

more time to complete their transactions which degrade latency and throughput. An 

example for bus model connection is shown in Figure 2.9. 
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Figure 2.9: Bus model [30] 

2.6. Conclusion 

A brief introduction to TLM is presented in this chapter. Detailed description for 

bus and router models is discussed where router model is implemented in NoC and bus 

model is implemented in SoC. In the next chapter, a literature survey for traffic 

generation is presented along with the traffic generation technique which is used for 

simulation in the thesis.  
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Chapter 3 : Traffic Generation 

3.1.1. Introduction 

This chapter includes a literature survey for related work to traffic generation in 

NoC simulation. The traffic generation technique which is used in this thesis is also 

discussed. Performance evaluation and design space exploration is very important for 

SoC development [38]. Traffic Generation (TG) should provide fast and effective 

simulation environment in addition to fast architectural exploration by trying 

interconnection alternatives. It has been estimated that NoC performance may vary up 

to 250% according to NoC design and up to 600% depending on communication traffic 

model [5]. This emphasizes the importance of accurate traffic modeling and generation 

for NoC evaluation. 

3.2. Traffic Kinds 

There are three commonly used types of traffic [39]: 

 

a- Application driven traffic: This models network and IPs simultaneously 

based on copying communication traces after real-time simulation. 

b- Synthetic traffic: Easier design and manipulation as it captures the salient 

aspects only of application driven traffic and that is why it is widely used for 

network evaluation. 

c- Application oriented traffic: It is between application-driven and synthetic 

traffic where time specifications and message size can be either synthetic or 

captured from execution traces [40]. 

3.3. Emulating IP Communication Behavior 

The IP emulating traffic generator model captures type and time stamp of 

communication events at the IP interface in a reference environment [38]. The TG 

captures the resulting reactiveness to access patterns and resource contention. Thus, the 

regenerated traffic represents realistic workload which is independent from the 

interconnect architecture. This TG model increases the speed of complete NoC 

simulation as the architectural exploration involves carrying out the same experiment 

with different architectures. Still this TG requires the presence of reference NoC 

design. The reference NoC includes either software compiled and executed by IPs or 

synthesized code into dedicated hardware. This reference model is used to collect traces 

of IP behavior. The IPs are then replaced with TGs emulating the IP communication at 

the network interface as shown in Figure 3.1 [38]. Therefore, only one reference 

simulation using bit and cycle accuracy is needed, and then subsequent simulations are 

carried out by the traffic generator replacements. 

At very basic level, collecting traces with timestamps from reference model and 

replaying is called “cloning”. This approach fails under consideration of network 

latency. When one transaction is delayed, subsequent transaction should be delayed as 

well. Thus another approach is used which is called “time-shifting” traffic generator 
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where adjacent transactions are tied to each other and the traffic generator collects the 

timestamps of processor-generated commands as well as network responses. However, 

this model faces problems with multi-cores systems where arbitration takes place. 

The reactive TG model generates; not just duplicates; traffic patterns across 

different networks. This TG mimics the IP behavior with some information about 

system architecture and application behavior. 

 

 

 

Figure 3.1: Emulating real traffic 

3.4. Traffic Generation Parameters 

Three parameters are used to define traffic generation [41]: 

 

a- Packet spatial distribution. 

b- Packet injection rate. 

c- Packet size. 

 

These traffic generation parameters are illustrated in Figure 3.2. 

 

 

 

Figure 3.2: Traffic configuration parameters [39] 
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Packet spatial distribution specifies the relation between sources and destinations. 

It can be classified into traffic pattern and channel-by-channel traffic [39]; with traffic 

pattern all channels share the same timing and size parameters while channel-by-

channel traffic specifies different parameters for each channel. In addition, source-

destination pairs are fixed throughout the whole simulation; this can be used to 

construct application-oriented workloads [40]. 

The most widely used patterns are Bit Reversal, Perfect Shuffle, Butterfly, Matrix 

Transpose, and Complement. An example for Complement traffic pattern is shown in 

Figure 3.3. Most of related work use only random patterns. Non-uniform traffic patterns 

are closer to real applications as they cause traffic concentrations and hot spots. 

Random patterns can take different distributions such as Normal, Uniform (all 

nodes have the same probability to be destinations), Exponential, and Poisson. 

Temporal distribution can be Static (Constant), Normal, and Random. The packet 

injection rate is a fraction of channel maximum bandwidth in bits per second. This 

thesis uses a Random traffic pattern with each source transmitting successive packets 

separated by a random number of clock cycles between zero and ten. 

 

 

 

Figure 3.3: Complement traffic pattern [41] 

3.5. Configurable Traffic Generator 

Due to the need for fast and effective generation environment for evaluating NoC 

performance, configurable traffic generators became widely used [40]. The traffic 

generation parameters which are discussed above are adjusted in order to save 

simulation time. 
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One disadvantage is that handling a different configuration needs stopping the 

current simulation, reconfiguring the generator, and running the system again which 

increases the simulation time. This can be solved by Online Configurable Traffic 

Generator (OCTG) which is used to restart communication immediately after 

completing configuration even when communication transactions are running. 

Configuring traffic generation at real-time is more flexible and convenient [40]. 

3.6. Literature Survey 

Related work to traffic generation from the literature is discussed in the following 

sections. As traffic generation is essential for NoC performance evaluation and 

architecture exploration, a lot of research work was conducted to discuss traffic 

generation. 

3.6.1. NoC Simulator 

Simulation environment allows early exploration of NoC performance and can 

handle arbitrary topologies and routing schemes. The level of abstraction for data 

exchange is very important from design point of view. There is a gap between RTL 

simulators and high-level transaction-based simulators [42]. This gap can be covered by 

a simulator using flit-level message-parsing mechanism without requiring very detailed 

representation of NoC under simulation. 

The major challenge when designing such simulator is to achieve balance between 

data level of abstraction, NoC representation, accuracy of results, and simulation speed. 

NoC simulators can be classified into two categories according to granularity of data 

and hardware representation. The first category uses low-level representation of NoC 

component like for example a VHDL model simulated using commercially available 

VHDL compilers. 

The second category uses high-level representation of both NoC hardware and data 

like the work presented in this thesis. In transaction level modeling, routers and 

interconnection links are modeled using SystemC channels. Transactions are modeled 

at packet level using function calls in a convenience layer. 

3.6.2. NoC Traffic Suite 

Weichen Liu et al. [43] introduced a traffic benchmark suite with realistic traffic 

patterns as well as synthetic traffic patterns. The traffic suite covers popular NoC 

architectures and also covers temporal dependencies between communication 

behaviors. Realistic traffic patterns are based on the behavior of real applications while 

random traffic patterns use probability distribution to randomize destination traffic. The 

realistic traffic provides more accurate performance evaluation and power 

consumption. 

Each traffic pattern has two versions, a recorded traffic pattern and a statistical one. 

The statistical traffic pattern accelerates NoC exploration at the cost of accuracy. In 

systematic traffic generation methodology shown in Figure 3.4, the process starts with 

application and architectural models.  Two types of traffic patterns are obtained through 

steps including application mapping, scheduling, cycle-accurate simulation, and 

statistical traffic generation. 
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Figure 3.4: Traffic generation methodology 

The application model is simply a task communication graph while the architecture 

model captures hardware resources including processing blocks and NoC. 

3.6.3. NoC Framework 

Luciano Ost et al. [44] introduced MAIA framework for NoC generation and 

verification. MAIA generates different traffic patterns based on HERMES NoC. MAIA 

automatically generates network interfaces using the OCP standard. The network is 

built from parameterized templates, the design flow includes: 

 

 NoC specification: Including topology, routing algorithm, flit width, buffer 

size, and flow control. 

 Traffic generation: Including network load, number of packets per IP, and 

target IP whether fixed or random. 

 Traffic analysis: A traffic analysis module reads the files generated during 

simulation and produces a report including average time to deliver packets 

and total simulation time. 

 

The NoC components in the model library can be described in RTL VHDL, RTL 

SystemC, and transaction level SystemC. Network interface is responsible for packet 

segmentation and reassembly. 
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3.6.4. Statistical Traffic Model 

Vassos Soteriou et al. [45] proposed NoC traffic model based on three statistical 

parameters that capture spatio-temporal characteristics of NoC traffic. The tree 

parameters are hop count, burstiness, and packet injection distribution. This model can 

analyze any of the statistical components of any NoC traffic and also generate synthetic 

network traffic. The model is validated against the real traffic traces of 30 applications 

gathered from full system simulations of three vastly used general purpose chip multi-

processors (CMP). The 3-tuple traffic model is shown in Figure 3.5. 

 

 

 

Figure 3.5: 3-tuple traffic model 

The proposed traffic model has useful insights from traffic modeling and 

generation in addition to synthetic traffic generation. The model captures spatio-

temporal characteristics with less than 5% error when compared actual NoC application 

traces. 

3.6.5. Effect of Traffic Localization: 

Partha Pratim Pande et al. [13] studied the effect of traffic localization on energy 

dissipation of different NoC architectures. Local communication reduces the need for 

global wires and thus lowering the energy dissipation without compromising network 

throughput. The modularity of NoC architecture allows a high degree of spatial locality 

regarding inter-block communication. The blocks that communicate more frequently 

are placed closer to each other. Thus reducing long global paths which tend to be the 

dominant factor for energy dissipation. This work quantifies the amount of energy 

saving by studying the effect of traffic localization on different NoC architectures. 
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The injected traffic follows self-similar distribution as it is found to be 

approximation to real-word scenarios. Efficiency of NoC architecture was evaluated by 

measuring energy versus throughput. The study proves decreasing the energy 

dissipation as level of traffic localization increases. 

3.6.6. Traffic Models for Benchmarking 

NoC benchmarks has been divided into four categories: a synthetic benchmark, 

algorithm-based kernels which focus on key algorithm isolated from the application, 

running actual application which is the best solution but not always available, and 

varying combinations of all the three benchmarks [46]. Esko Pekkarinen et al. [46] 

presented a set of nine application traffic models for benchmarking NoC designs. 

The common benchmarks allow fair comparison and accelerate NoC development. 

The models focus on multimedia and telecommunication applications derived from 

literature. The task graph for each application is captured into XML model representing 

traffic. Other related work in [47] introduces high performance traffic generator based 

on Intel Network Processor. 

3.7. Performance Evaluation 

Performance evaluation helps in computing latency and throughput at network 

channels and interfaces. Also performance evaluation identifies congestion and hot 

spots. There are two methods to evaluate performance in NoCs illustrated in Figure 3.6 

[41]: 

 

a- External evaluation: Where network is considered as black box and traffic 

results are obtained from external network interfaces. 

b- Internal evaluation: Where performance is computed at each network 

channel. 

 

 

Figure 3.6: (a) External evaluation; (b) Internal evaluation 
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Network optimization can be carried out first by identifying hot spots and critical 

paths (through traffic generation and performance evaluation). Then structural 

optimization can be carried out by inserting virtual channels, eliminate unused links, 

and change routing algorithm or network topology. It is preferable for the system to 

allow plug-and-play of alternative communication architectures for a given traffic 

configuration [48]. This can be made through network interfaces which are architecture 

-independent. 

3.7.1. Performance Metrics 

A standard set of metrics are used to compare and contrast NoC architectures and 

evaluate NoC against SoC using shared bus. 

 

a- Throughput: It is the rate of traffic transmitted through the system and can be 

defined by [13]: 

 

Throughput =
(𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑) × (𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ)

(Number of cores) × (𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒)
 

 

As number of cores is the same in case of SoC and NoC, it is omitted from 

throughput calculations in this work. 

Throughput of the network can also be defined by the data rate per second that the 

network can accept [49]. Maximum throughput is achieved when the network reaches 

saturation. Accepted traffic can be compared with offered traffic. 

 

b- Latency: It is the time elapsed since packet is injected from source node till the 

packet is fully received at destination [50]. Like throughput, the latency 

depends on topology and flow control as well as routing algorithm. Zero-load 

latency is considered ignoring latency due to contention. Latency can be 

compared with offered traffic as well. 

c- Power: Power dissipation includes dynamic power, static power, and clock tree 

dissipation. 

3.8. Conclusion 

This chapter includes traffic generation discussion and literature survey for traffic 

generation techniques. In the next chapter, simulation for NoC and SoC systems is 

discussed. The results of NoC and SoC performance evaluation are illustrated in next 

chapter.  
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Chapter 4 : Simulation and Results 

4.1. Introduction 

Simulation results of NoC and SoC are compared in this chapter. The simulation is 

carried out using Mentor Graphics Vista tools. Vista is a native Electronics System 

Level (ESL) tool for architecture design, verification analysis, and virtual prototyping 

for high-level TLM hardware platforms. Vista uses TLM Scalable Modeling 

Methodology relying on C/C++ market standards (gcc) [34]. It also includes TLM2.0 

genetic model library that offers fast models for various processors and peripherals 

from which AHB model for the bus SoC is used. Vista also offers a model builder with 

convenience functions that facilitates building any model by defining ports, timing, and 

power policies. And the tool creates SystemC templates based on TLM2.0 socket 

initiators and targets. 

The model builder offers models built on two completely separate layers: 

 

 Programmer View (PV) with pure functional behavior layer. 

 Timing (T) layer that captures power and timing information through some 

timing policies in a top-down flow. 

 

These separate models allow distinction between functionality and implementation. 

They allow pure functional simulation (PV) or comprehensive timing and power 

behavior simulation (PVT). Finally the tool offers schematic builder for system 

assembly, SystemC debugger, and analysis tool used for measuring different metrics 

such as throughput, latency, and power. 

4.2. NoC Simulation 

The same NoC router model is used throughout all simulations (2x2, 3x3, and 

4x4). The system design of 2x2 network is shown in Figure 4.1: 
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Figure 4.1: 2x2 NoC 

The cores are modeled using CPU models offered by Vista generic library; each 

CPU contains the following ports: 

 

1- master: master port initiates traffic packets through SystemC thread. 

2- slave: slave port receives packets and prints the received packet through 

callback function. 

3- irq: interrupt request is de-asserted by a special CPU (initialize coordinates) 

indicating that all routers’ coordinates are set correctly. Each master’s thread 

cannot start initiating transactions unless the “irq” is de-asserted. This is the 

synchronization pattern used for all active cores. 

4.2.1. NoC Simulation Phases 

The NoC simulation goes through the following phases: 

 

a- Asserting interrupts for all cores. 

b- Initializing coordinates for all routers. 

c- De-asserting interrupts for all cores. 

d- Each core starts initiating transactions. 
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There is a special CPU (Init_Cor) responsible for the setup phase by initializing the 

coordinates of each router. The routers’ coordinates are essential for XY routing 

algorithm. After initializing coordinates, Init_Cor sends interrupt signals to all cores in 

order to start sending traffic and starting the evaluation. Therefore, the Init_Cor acts as 

a synchronizer for the whole system. Init_Cor is not connected to the network and does 

not contribute in performance evaluation. The CPU models do not include any time or 

power policies in order not to affect throughput, latency, and power calculations of the 

system. The calculations represent only the NoC and the SoC. 

4.3. SoC Simulation 

The same bus model is used throughout all simulations (4 cores, 9 cores, and 16 

cores). The system design for 4 cores SoC is illustrated in Figure 4.2 (resembling 2x2 

NoC): 

 

 

 

Figure 4.2: 2x2 SoC 

The used cores are CPU models similar to that used for NoC but the master and 

slave ports for each CPU implements AHB bus protocol. The packets are routed to 

destinations using the AHB bus address space. 

4.4. Traffic Generation 

A separate C code is used for traffic generation aided by “random” library for 

random number generation according to Normal and Poisson distributions. The C code 
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generates random numbers in a text file for each core; the random numbers represent 

AHB bus addresses which are later converted to corresponding router coordinates. This 

guarantees the same traffic pattern is injected for NoC and SoC. The CPU thread of 

each core reads the traffic text file and generates packets to the required destinations 

respectively. There are some constraints added to traffic generation code in order not to 

generate addresses out of address space bounds and also to ensure that no core sends 

packets to itself. Another way to generate traffic that resembles real-life traffic is to use 

non-constant bit rate where cores send packets at different time instances. This is 

achieved by inserting random delay for each core; the random delay varies from zero to 

ten clock cycles. The delay randomness follows Uniform distribution (using the default 

”rand” C function). To summarize, the traffic pattern follows Uniform random traffic 

pattern along with Constant Bit Rate traffic. The spatial distribution of the traffic 

patterns follows Uniform, Normal, and Poisson distributions. The detailed traffic 

generator code is listed in appendix C. 

4.5. 2x2 Results 

The routers’ coordinates for 2x2 NoC are illustrated in Figure 4.3 

 

 

R1: 01 R3: 11 

R0: 00 R2: 10 

Figure 4.3: 2x2 Routers Coordinates 

The corresponding address space mapping for 2x2 SoC is defined below: 

 

CPU00: 0x00 (0 – 39) 

CPU01: 0x28 (40 – 79) 

CPU02: 0x50 (80 – 119) 

CPU03: 0x78 (120 – 159) 

 

The slave address size for each core is 0x28; the bus addresses are generated and 

then mapped to corresponding router coordinates. The same clock frequency (100 

MHz) is used for NoC and SoC simulations in order to guarantee fair comparisons. The 

router coordinates in 2x2 networks need only 2 bits for encoding, the packet length is 

fixed to 32 bits where 16 bits are used for payload and the rest are reserved for address. 

4.5.1. Throughput 

In Figure 4.4, the throughput of SoC and NoC are compared where each core sends 

10 packets with constant bit rate. It is noticed that when only one core is active, the SoC 

can over perform the NoC because of the multi access limitation. 
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Figure 4.4: Throughput for different active cores 

When more than one core is active, the bus arbitrates between different packets and 

some packets wait. The router can route packets targeting different addresses at the 

same time. The throughput drop between two and three active cores is due to traffic 

localization, where the traffic pattern in this experiment is uniformly distributed but 

with constraints that CPU02 sends packets to CPU03 and CPU04 and CPU03 sends 

packets to CPU04 only. This leads to a hot spot at CPU04 when three cores are active. 

The normalized throughput for another experiment is shown in Figure 4.5 where all 

cores are active and inject different traffic loads; the same traffic pattern is used with 

constant bit rate after modifying the localization constraints. It is noticed that the 

throughput slope for the NoC is increasing while the curve for SoC tends to saturate. 

The traffic loads vary from 10 packets/core to 320 packets/core as shown on the x-axis. 

The throughput percentage change is illustrated in Figure 4.6. 
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Figure 4.5: Normalized throughput for different traffic loads 

 

 

Figure 4.6: Throughput percentage change (Constant Bit Rate) 

Changing the traffic pattern to non-constant bit rate, and using Normal distribution 

for spatial traffic pattern, the throughput curve for NoC still has an increasing slope 

while the SoC throughput curve tends to saturate at high traffic loads as shown in 

Figure 4.7. Throughput percentage change is illustrated in Figure 4.8. 
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Figure 4.7: Normalized throughput for Normal distribution traffic pattern 

 

 

Figure 4.8: Throughput percentage change (Normal) 

The Poisson distribution caused some hot spots where traffic destination is 

centralized around CPU01 and CPU02 leading to some spikes in the throughput curves 

as shown in Figure 4.9. Throughput percentage change is illustrated in Figure 4.10. 
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Figure 4.9: Normalized throughput for Poisson distribution traffic pattern 

 

 

Figure 4.10: Throughput percentage change (Poisson) 

4.5.2. Latency 

The latency is measured by subtracting the time stamp of packet transmission from 

the time stamp of packet reception. A histogram for the latency distribution of NoC 

packets is shown in Figure 4.11 where the number of packets (frequency) is presented 

on the Y-axis. Average latency for NoC is shown in Figure 4.12. 
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Figure 4.11: Latency distribution for NoC with constant bit rate 

 

Figure 4.12: Average latency for NoC 

The minimum latency for NoC packet is 20 ns while most of packets suffer from 

30 ns latency. This is related to number of hops because the minimum number of hops 

in NoC is three. For SoC using constant bit rate, the AHB bus transactions are blocking 

leading to constant latency for all packets traversing the SoC as shown in Figure 4.13. 

The latency is affected by number of active cores as it affects the waiting time for each 

packet. The number of active cores is represented on the X-axis and distributed from 1 

active core to 4 active cores. The latency on Y-axis is presented in nano seconds. 
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Figure 4.13: SoC Latency 

The SoC cores do not transmit packets at the same time when non-constant bit rate 

is used. This leads to variable latencies for SoC as well as NoC. It is shown in Figure 

4.14, Figure 4.15, Figure 4.16, and Figure 4.17 that for different traffic distributions, 

most of NoC packets suffer from 20 ns latency while most of SoC packets suffer from 

10 ns latency. This demonstrates that latency sensitive packets are not suitable for NoC 

due to higher number of hops. Average latencies for NoC and SoC with different traffic 

patterns are illustrated in Figure 4.18, Figure 4.19, Figure 4.20, and Figure 4.21. 

 

 

 

Figure 4.14: SoC latency distribution (Normal) 
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Figure 4.15: NoC Latency distribution (Normal) 

 

Figure 4.16: SoC Latency distribution (Poisson) 
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Figure 4.17: NoC Latency distribution (Poisson) 

 

Figure 4.18: Average NoC latency (Normal) 
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Figure 4.19: Average SoC latency (Normal) 

 

 

Figure 4.20: Average NoC latency (Poisson) 
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Figure 4.21: Average SoC latency (Poisson) 

4.5.3. Number of Hops 

The number of hops is constant for SoC as there is only one AHB bus forming 

constant number of two hops. In case of 2x2 NoC, the number of hops is three or four 

in case of diagonal transmission. The numbers of hops for different traffic patterns are 

illustrated in Figure 4.22, Figure 4.23, and Figure 4.24. The number of packets that 

suffer from 3 or 4 hops is presented on the Y-axis. 

 

 

Figure 4.22: Number of hops for 2x2 NoC (Constant Bit Rate) 
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Figure 4.23: Number of hops for 2x2 NoC (Normal) 

 

Figure 4.24: Number of hops for 2x2 NoC (Poisson) 

4.5.4. Power 

Vista classifies power calculations into the following categories: 

 

 Dynamic Power: A power number is specified for each timing policy. That 

power is consumed from the time the word is transmitted during the latency 

parameter time length of the policy. 

 Static Power: A number is specified representing leakage power in mW. 

 Clock Tree Distribution: Note that all models used in this work are 

synchronous. 
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All power values are in mW and the nominal clock frequency is 100 MHz [30, 34]. 

These calculations ignore important aspects like length of wires which affects 

capacitance and patristic resistance and consequently the static leakage power. Also the 

dynamic power is more affected by number of transactions and for how long the 

transaction occurs, this is true only if each transaction inverts all bits leading to 

maximum dynamic power consumption. For these assumptions, the absolute power 

values are neglected and the rate of change of power consumption is considered. Our 

calculations focus on slope of power curve and compare it with the throughput curve 

since the throughput-power is the most important metric in this work as cost-

performance is to be considered in NoCs. The following figures show the power 

consumption in NoC and SoC for different traffic loads. Then a way to fit the non-

linear curves of power and throughput into linear regressions is discussed in order to 

compare the slopes for each curve. The power consumption for different traffic patterns 

is illustrated in Figure 4.25, Figure 4.26, and Figure 4.27. The curves of throughput and 

power for NoC and SoC are illustrated in Figure 4.28, Figure 4.29, and Figure 4.30. 

The power percentage increase for NoC vs. SoC is illustrated in Figure 4.31, Figure 

4.32, and Figure 4.33. 

 

 

Figure 4.25: Power comparison of NoC vs. SoC (Constant Bit Rate) 
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Figure 4.26: Power comparison of NoC vs. SoC (Normal) 

 

Figure 4.27: Power comparison of NoC vs. SoC (Poisson) 
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Figure 4.28: Normalized Throughput and Power (Constant Bit Rate) 

 

Figure 4.29: Normalized Throughput and Power (Normal) 
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Figure 4.30: Normalized Throughput and Power (Poisson) 

 

Figure 4.31: Power Percentage Change (Constant Bit Rate) 
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Figure 4.32: Power Percentage Change (Normal) 

 

 

Figure 4.33: Power Percentage Change (Poisson) 

In order to compare the slops of throughput and power curves, data should be fitted 

to linear regressions. Several plots such as Scatchard, Linewaver-Burk are used to 

analyze non-linear regressions but they are outdated and not recommended to use. 

Other tools like GraphPad Prism can fit data to linear regressions [51]. In this thesis, the 

line of best fit is used to estimate the slope for non-linear curves. Line of best fit is 

defined as a line centralized between the points of data in scatter plot. This function 

estimates the best correlation of data points. The normalized throughput curves for SoC 

and NoC is shown in Figure 4.34 which is plotted in scatter chart and line of best fit is 

centralized between data points. The slope can be calculated easily for this line. 
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Figure 4.34: Line of Best Fit Example 

The slopes for power and throughput of 2x2 results in different traffic patterns are 

shown in Table 4.1. The throughput curves show higher throughput slopes than power 

slopes across all traffic patterns. 

Table 4.1: Comparison of Throughput and Power Curves 

Traffic Pattern Throughput Power 

Constant Bit Rate 37.4% 15% 

Normal 5.16% 1.25% 

Poisson 5.48% 3.75% 

4.6. 3x3 Results: 

It is assumed that the 2x2 network does not use the whole chip size, and expanding 

the network size to 3x3 by adding 5 cores and 5 routers is using the same technology 

and clock frequency. Also the wires length between each core and router is assumed to 

be the same like 2x2 network. The router coordinates for 3x3 NoC are defined in Figure 

4.35. 

 

 

0010: R2 0110: R5 1010: R8 

0001: R1 0101: R4 1001: R7 

0000: R0 0100: R3 1000: R6 

Figure 4.35: 3x3 routers coordinates 
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The address requires 4 encoding bits. The corresponding AHB bus address space is 

defined as following: 

 

CPU00: 0x00 

CPU01: 0x28 

CPU02: 0x50 

CPU03: 0x78 

CPU04: 0xA0 

CPU05: 0xC8 

CPU06: 0xF0 

CPU07: 0x118 

CPU08: 0x140 

 

The same slave size is used for all simulations. The 3x3 NoC and SoC are 

illustrated in Figure 4.36 and Figure 4.37 respectively. 

 

 

 

Figure 4.36: 3x3 NoC 
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Figure 4.37: 3x3 SoC 

4.6.1. Throughput 

In 3x3 simulations, traffic using non-constant bit rate and Normal distribution are 

considered. That is because Poisson distribution shows inconsistent results and spikes 

in 2x2 charts. Normalized throughput for NoC and SoC is shown in Figure 4.38 while 

throughput percentage change between NoC and SoC is shown in Figure 4.39. 

 

 

 

Figure 4.38: Normalized throughput (Normal) 
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Figure 4.39: Throughput Percentage Change (Normal) 

4.6.2. Latency 

The latency histograms for 3x3 SoC and NoC are shown in Figure 4.40 and Figure 

4.41 respectively. 

 

 

 

Figure 4.40: SoC latency distribution 
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Figure 4.41: NoC latency distribution 

Note that, increasing number of cores connected to the SoC increases the waiting 

time and therefore the average latency increases. Therefore the latency sensitive 

packets are more suited to NoC when many cores are active. Average latencies for SoC 

and NoC are shown in Figure 4.42 and Figure 4.43 respectively. 

 

 

 

Figure 4.42: Average SoC Latency 
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Figure 4.43: Average NoC latency 

4.6.3. Number of Hops 

The number of hops for SoC is still fixed to two. While for 3x3 NoC, the packet 

can traverse 3, 4, 5, or 6 hops. The numbers of hops are illustrated in Figure 4.44 where 

number of packets is presented on the Y-axis. The average number of hops is illustrated 

in Figure 4.45. 

 

 

 

Figure 4.44: 3x3 NoC number of hops 
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Figure 4.45: Average number of hops for 3x3 NoC 

4.6.4. Power 

Normalized power results for NoC and SoC 3x3 systems are illustrated in Figure 

4.46, the power percentage change for NoC and SoC is illustrated in Figure 4.47, and 

throughput and power curves are illustrated together in Figure 4.48. 

 

Figure 4.46: Normalized Power for 3x3 NoC and SoC 
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Figure 4.47: Power percentage change 

 

Figure 4.48: Normalized Throughput and power 

The rate of change of throughput and power for SoC and NoC is shown in Table 

4.2 using line of best fit technique. The throughput curves show higher throughput 

slopes than power slopes like the case of 2x2 which proves that NoC scales as number 

of cores increases. 

 

 

 

 

 

 

 

 



 

11 
 

Table 4.2: Comparison of Throughput and Power Slopes 

SoC Throughput 0.0028% 

Power 0.12% 

NoC Throughput 0.039% 

Power 0.28% 

4.7. 4x4 Results: 

There are 16 cores in 4x4 system which is the maximum number of masters for 

single layer AHB bus SoC. The router coordinates for 4x4 NoC are defined in Figure 

4.49. 

 

R3: 0011 R7: 0111 R11: 1011 R15: 1111 

R2: 0010 R6: 0110 R10: 1010 R14: 1110 

R1: 0001 R5: 0101 R9: 1001 R13: 1101 

R0: 0000 R4: 0100 R8: 1000 R12: 1100 

Figure 4.49: 4x4 router coordinates 

The address requires 4 encoding bits. The corresponding AHB bus address space is 

defined as following: 

 

CPU00: 0x00 

CPU01: 0x28 

CPU02: 0x50 

CPU03: 0x78 

CPU04: 0xA0 

CPU05: 0xC8 

CPU06: 0xF0 

CPU07: 0x118 

CPU08: 0x140 

CPU09: 0x168 

CPU10: 0x190 

CPU11: 0x1B8 

CPU12: 0x1E0 

CPU13: 0x208 

CPU14: 0x230 

CPU15: 0x258 
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4.7.1. Throughput 

Normalized throughput results for 4x4 systems are illustrated in Figure 4.50. 

Throughput percentage change is illustrated Figure 4.51. Similar results are found in 

4x4 case and it is noticed that SoC throughput saturates earlier as number of cores 

increases. 

 

 

 

Figure 4.50: Normalized Throughput (Normal) 

 

Figure 4.51: Throughput Percentage Change (Normal) 
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4.7.2. Latency 

Latency histograms for 4x4 SoC and NoC are illustrated in Figure 4.52 and Figure 

4.53 respectively. 

 

 

Figure 4.52: SoC latency distribution 

 

 

 

Figure 4.53: NoC latency distribution 
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4.7.3. Number of Hops 

For 4x4 NoC, the packet can traverse 3 to 8 hops. The numbers of hops are shown 

in Figure 4.54 where number of packets is presented on Y-axis. The average number of 

hops for NoC is illustrated in Figure 4.55. 

 

 

 

Figure 4.54: 4x4 NoC number of hops 

 

Figure 4.55: Average number of hops for 4x4 NoC 
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4.7.4. Power 

The normalized power results for 4x4 systems are shown in Figure 4.56. Power 

percentage change is illustrated in Figure 4.57. Power and throughput curves are 

illustrated in Figure 4.58. 

 

Figure 4.56: Normalized Power for 4x4 SoC and NoC 

 

Figure 4.57: Power percentage change 



 

11 
 

 

Figure 4.58: Normalized Throughput and power 

The rate of change for throughput and power are shown in Table 4.3. Like 2x2 and 

3x3, the throughput slope is higher than power slope for NoC and SoC. 

Table 4.3: Comparison of Throughput and Power Slopes 

SoC Throughput 0.0032% 

Power 0.16% 

NoC Throughput 0.045% 

Power 0.31% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 
 

Discussion and Conclusions 

As number of Cores in SoC is increasing, NoC design paradigm dominates the SoC 

development. This thesis implements TLM models for NoC and SoC (using shared bus 

AHB protocol). TLM offers some capabilities like easy and fast development in 

addition to evaluation of performance metrics like throughput which is best calculated 

on transaction level. Different traffic patterns were examined such as constant bit rate, 

non-constant bit rate in addition to some random patterns such as uniform, normal, and 

Poisson. Different performance metrics are used for evaluation such as throughput, 

latency, number of hops, and power. The power-throughput is the best representation of 

cost performance problem for NoC design. The simulations examined different network 

sizes and traffic loads. The results show that NoC outperforms SoC as traffic load 

increases or number of cores increases. This is due to the multi-access shared buses 

limitations. On the other hand, NoC shows higher power consumption due to larger 

number of transactions but still the rate of change of throughput is higher than that of 

power. Regarding latency, the SoC offers lower latencies for small number of cores 

which is suitable for latency sensitive packets in system with limited number of cores. 

When number of cores increases, the NoC outperforms SoC with low average latency. 
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Future Work 

As network topology affects performance, the future work includes carrying the 

same experiments on different topologies rather than mesh. The same concept applies 

on routing algorithms; other adaptive routing algorithms can be tested. On the other 

hand, the tested SoC used shared buses implementing AHB protocol. The AXI protocol 

is another example for shared buses medium which is expected to show better results as 

it supports multi-access for different masters with the same priority. The future work 

also includes building RTL models for NoC and SoC and comparing RLT with TLM 

models. 
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Appendix A: SystemC Code for Router Model 

//Defined function for comparing coordinates of packet and current router 

char Router_pv::compare_coordinates (unsigned short coordinates) { 

        cout << name() << "@" << sc_time_stamp() << " Comparing Coordinates: 

" << coordinates << endl; 

 sc_uint<16> cord = coordinates; 

        unsigned short cordx = cord.range(3, 2); 

        unsigned short cordy = cord.range(1, 0); 

        cout << name() << "@" << sc_time_stamp() << " Router Coordinates: " 

<< Router_Coordinates << endl; 

        Cx_Cy = Router_Coordinates; 

        unsigned short Cx = Cx_Cy.range(3, 2); 

        unsigned short Cy = Cx_Cy.range(1, 0); 

 if (cordx > Cx) { 

  return 'E'; 

 } else if (cordx < Cx) { 

  return 'W'; 

 } else { 

  if (cordy < Cy) { 

   return 'S'; 

  } else if (cordy > Cy) { 

   return 'N'; 

  } else { 

   return 'C'; 

  } 

 } 

} 

 

// Defined function for sending data on any input port 

void Router_pv::send_data(unsigned int data) { 

        cout << name() << "@" << sc_time_stamp() << " Sending Data: " << data 

<< endl; 

 sc_uint<32> dat = data; 

 char dest_port; 

 unsigned short coordinates; 

 coordinates = dat.range(19, 16); 

 dest_port = compare_coordinates(coordinates); 

        cout << name() << "@" << sc_time_stamp() << " Destination port is: " << 

dest_port << endl; 

        unsigned int key = data; 

        ofstream hops_list; 

        ofstream data_list; 

        hops_list.open("hops_list.txt", std::ios::app); 

        data_list.open("data_list.txt", std::ios::app); 

 if (dest_port == 'N') { 

          N_Ip_write (0, data); 

          hops[key] += 1; 
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 } else if (dest_port == 'S') { 

          S_Ip_write (0, data); 

          hops[key] += 1; 

 } else if (dest_port == 'W') { 

          W_Ip_write (0, data); 

          hops[key] += 1; 

 } else if (dest_port == 'E') { 

          E_Ip_write (0, data); 

          hops[key] += 1; 

 } else if (dest_port == 'C') { 

          L_Ip_write (0, data); 

          hops[key] += 1; 

          hops_list << hops[key] << endl; 

          data_list << data << endl; 

 } 

         

} 
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Appendix B: SystemC Code for CPU Model 

void CPU_pv::thread() { 

 

  unsigned int size = 1000; 

  unsigned int wData [size]; 

 

  srand (5000); 

 

  wait(irq.negedge_event()); 

 

  string IP = string(name()); 

  string cpu0 = ("CPU0"); 

  string cpu1 = ("CPU1"); 

  string cpu2 = ("CPU2"); 

  string cpu3 = ("CPU3"); 

  string cpu4 = ("CPU4"); 

  string cpu5 = ("CPU5"); 

  string cpu6 = ("CPU6"); 

  string cpu7 = ("CPU7"); 

  string cpu8 = ("CPU8"); 

  unsigned int found0 = IP.find(cpu0); 

  unsigned int found1 = IP.find(cpu1); 

  unsigned int found2 = IP.find(cpu2); 

  unsigned int found3 = IP.find(cpu3); 

  unsigned int found4 = IP.find(cpu4); 

  unsigned int found5 = IP.find(cpu5); 

  unsigned int found6 = IP.find(cpu6); 

  unsigned int found7 = IP.find(cpu7); 

  unsigned int found8 = IP.find(cpu8); 

 

  if (found0 == 4) { 

  unsigned int i = 0; 

  string line; 

  sc_uint<16> coordinates0[size]; 

  ifstream traffic0 ("traffic_file0.txt"); 

  while (getline (traffic0, line)) { 

    coordinates0[i] = atoi(line.c_str()); 

    i++; 

  } 

  traffic0.close(); 

  for (unsigned int i = 0; i < size; i++) { 

    sc_uint<16> payload0 = rand(); 

    double idle = rand() % 10; 

    sc_uint<32> dat0 = (coordinates0[i], payload0); 

    wData[i] = dat0; 

    wait(idle*10, SC_NS); 

    latency[wData[i]] = sc_time_stamp(); 
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    cout << name() << "@" << sc_time_stamp() << "(" << dec << 

sc_delta_count() << ") Sending Data wData[" << i << "]" << wData[i] << endl; 

    master_write(0, wData[i]); 

    } 

  } 
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Appendix C: C Code for Traffic Generation 

#include <iostream> 

#include <fstream> 

#include <random> 

using namespace std; 

 

int main () { 

 

        int size = 2000; 

        std::default_random_engine generator; 

        std::normal_distribution<double> distribution(180,180); 

 

        ofstream traffic0; 

        traffic0.open("traffic_random0.txt"); 

        for (unsigned int i = 0; i < size; i++) { 

                unsigned int addr0 = distribution(generator); 

                if (addr0 > 359) addr0 = 359; 

                else if (addr0 < 40) addr0 = 40; 

                traffic0 << addr0 << endl; 

        } 

        traffic0.close(); 
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 ملخصال

تم عمل مقارنة بين أنظمة و شبكات الرقائق الالكترونية عن طريق نمذجة كل منهم على  
التوجيه فى عدة أمثلة لشبكات ذات احجام مختلفة. تم تنفيذ نموذج جهاز المستوى الاجرائى. 

ايضا تمت تجربة عدة أنماط و أحمال مختلفة للبيانات المرسلة عبر الشبكة. تم تقييم اداء النظم 
و الشبكات تفصيليا باستخدام عدة مقاييس مثل الانتاجية و معدل استهلاك الطاقة. أوضحت 

النسبة للانتاجية و بمعدل زيادة اعلى من معدل زيادة النتائج تفوق شبكات الرقائق الالكترونية ب
 استهلاك الطاقة كلما زاد حجم الشبكة.
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 1888\28\2 تاريخ التسجيل:

 ..........\....\.... تاريخ المنح:
 الالكترونيات و الاتصالات الكهربيةهندسة  القسم:
 العلوم ماجستير الدرجة:

  المشرفون:
 حسام على حسن فهمىد.  

معهد بحوث , , قسم الالكترونيات الدقيقةمجدى على على المرسىد. 
 الالكترونيات

  الممتحنون:
 فهمىحسام على حسن د.  

معهد بحوث , مجدى على على المرسى, قسم الالكترونيات الدقيقةد. 
 الالكترونيات

 د. تامر فريد البط
 . محمد أمين دسوقى, كلية الهندسة, جامعة عين شمسأ.د 
  
  

  عنوان الرسالة:
 نمذجة على المستوى الاجرائى لشبكات و نظم الرقائق الالكترونية                       

  
  الكلمات الدالة:

 نمذجة على المستوى الاجرائى, شبكات الرقائق الاكترونية, نظم الرقائق الالكترونية
  

  :رسالةملخـص ال
تم عمل مقارنة بين أنظمة و شبكات الرقائق الالكترونية عن طريق نمذجة كل منهم 

لشبكات ذات  على المستوى الاجرائى. تم تنفيذ نموذج جهاز التوجيه فى عدة أمثلة
احجام مختلفة. ايضا تمت تجربة عدة أنماط و أحمال مختلفة للبيانات المرسلة عبر 
الشبكة. تم تقييم اداء النظم و الشبكات تفصيليا باستخدام عدة مقاييس مثل الانتاجية و 
معدل استهلاك الطاقة. أوضحت النتائج تفوق شبكات الرقائق الالكترونية بالنسبة 

 معدل زيادة اعلى من معدل زيادة استهلاك الطاقة كلما زاد حجم الشبكة.للانتاجية و ب

 

 

 ضع صورتك هنا



 

 

 نمذجة على المستوى الاجرائى لشبكات و نظم الرقائق الالكترونية

 

 اعداد 

 عمرو أحمد هانى محمد

 

 

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 الالكترونيات و الاتصالات الكهربيةهندسة 

 

 

 :يعتمد من لجنة الممتحنين  

 

 الدكتور:  حسام على حسن فهمى                  المشرف الرئيسى

 

, قسم الالكترونيات الدكتور: مجدى على على المرسى                      عضو

 الدقيقة, معهد بحوث الالكترونيات

 

 الممتحن الداخلى                             البطتامر فريد الدكتور: 

 

, كلية الهندسة, خارجىالممتحن ال             دسوقى  محمد أمين الاستاذ الدكتور:

 جامعة عين شمس

 

 

 

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة
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 و نظم الرقائق الالكترونية نمذجة على المستوى الاجرائى لشبكات

 

 

 اعداد 

 عمرو أحمد هانى محمد

 

 

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 الالكترونيات و الاتصالات الكهربيةهندسة 

 

 

 

 تحت اشراف 

 

  د. حسام على حسن فهمى د. مجدى على على المرسى

استاذ مساعد بقسم الالكترونيات 

الدقيقة معهد بحوث الالكترونيات 

 بالقاهرة

استاذ مساعد بقسم الالكترونيات و 

الاتصالات كلية الهندسة جامعة 

 القاهرة

 

 

 

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة
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 الاجرائى لشبكات و نظم الرقائق الالكترونيةنمذجة على المستوى 

 

 

 اعداد 

 

  عمرو أحمد هانى محمد

 

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلومماجستير درجة على الحصول متطلبات من كجزء

 في

 الالكترونيات و الاتصالات الكهربيةهندسة  

 

 

 

 

 

 

 

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة
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