

TRANSACTION LEVEL MODELING FOR NOC AND SOC

By

Amr Ahmed Hany Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

TRANSACTION LEVEL MODELING FOR NOC AND SOC

By

Amr Ahmed Hany Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Dr. Hossam A. H. Fahmy

……………………………….

 Dr. Magdy A. El-Moursy

……………………………….

Associate Professor

Communications and Electronics

Department

Faculty of Engineering, Cairo University

 Associate Professor

Microelectronics Department

Electronics, Research Institute, Cairo, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

TRANSACTION LEVEL MODELING FOR NOC AND SOC

By

Amr Ahmed Hany Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications and Engineering

Approved by the

Examining Committee

Dr. Hossam A. H. Fahmy, Thesis Main Advisor

Dr. Magdy A. El-Moursy, Member, Microelectronics department,

Electronics Research Institute

Dr. Tamer Farid El-Batt, Internal Examiner

Prof. Dr. Mohamed Amin Dessouky, External Examiner, Faculty of

Engineering, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

Engineer’s Name: Amr Ahmed Hany Mohamed

Date of Birth: 21/08/1987

Nationality: Egyptian

E-mail: amr_hany@mentor.com

Phone: 01227406044

Address: 16 Gad Eid St., Dokki, Giza

Registration Date: 01/10/2009

Awarding Date: …./…./……..

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

 Dr. Hossam A. H. Fahmy

Dr. Magdy A. El-Moursy, Microelectronics department,

Electronics Research Institute

Examiners:

 Dr. Hossam A. H. Fahmy

Dr. Magdy A. El-Moursy, Microelectronics department,

Electronics Research Institute

Dr. Tamer Farid El-Batt

 Prof. Dr. Mohammed Amin Dessouky, Faculty of

Engineering, Ain Shams University

Title of Thesis:

Transaction Level Modeling for NoC and SoC

Key Words:

Transaction Level Modeling; Network on Chip; System on Chip; Traffic Generation

Summary:

Transaction level model for Network on Chip (NoC) router is used to implement NoC

and compare it to System on Chip (SoC) bus model. Performance evaluation is

presented for both systems using different traffic loads and patterns along with different

network sizes.

Insert photo here

mailto:amr_hany@mentor.com

i

Acknowledgments

I would like to thank my supervisors Dr. Magdy El-Moursy and Dr. Hossam

Fahmy for giving me the opportunity to work on my master thesis in their research

group. I want to thank them for their patient guide, from which I have learnt the

fundamental knowledge of how to research. I would also like to thank my parents and

my wife. Without them I would not be able neither to attend the master program nor to

finish the master thesis.

ii

Dedication

To my wife, my mother, my father, my sister, my grandmother, and my baby girl

Mariam.

iii

Table of Contents

ACKNOWLEDGMENTS ... I

DEDICATION ... II

TABLE OF CONTENTS .. III

LIST OF TABLES ...VI

LIST OF FIGURES ... VII

NOMENCLATURE ...IX

ABSTRACT ... X

CHAPTER 1 : INTRODUCTION AND BACKGROUND 11

1.1. INTRODUCTION .. 11

1.2. CONTRIBUTION .. 11

1.3. ORGANIZATION OF THE THESIS ... 12

1.4. NOC INTRODUCTION .. 12

1.4.1. Interconnect Network Architectures ... 12

1.4.2. Flow Control Units.. 12

1.4.3. Switching Techniques ... 13

1.4.4. Router Architecture ... 13

1.4.5. NoC Topologies .. 14

1.5. ROUTING ALGORITHMS .. 15

1.5.1. Source and Distributed Routing .. 15

1.5.2. Deterministic and Adaptive Routing ... 16

1.5.3. Routing Algorithms Examples .. 16

1.6. ARBITRATION .. 20

1.7. RELATED WORK .. 22

1.7.1. NoC Comparison... 22

1.7.2. Multi-synchronous vs. Asynchronous ... 22

1.7.3. QoS Communication Schemes .. 23

1.7.4. NoC Router Architecture .. 24

1.7.5. Comparison of Æthereal NoC and Bus ... 25

1.7.6. Bus Enhanced NoC ... 25

1.7.7. Bus and NoC Comparison ... 26

1.8. CONCLUSION .. 27

CHAPTER 2 : ROUTER AND BUS MODELS .. 28

2.1. INTRODUCTION .. 28

2.1.1. Modeling Levels ... 28

2.1.2. Transaction Level Modeling ... 29

2.1.3. Modeling for High Performance ... 30

2.1.4. The Scalable Model Approach .. 30

2.2. ROUTER FEATURES .. 31

iv

2.3. MODELING TIMING FOR THE ROUTER: ... 32

2.4. MODELING POWER ... 33

2.5. BUS MODEL ... 34

2.5.1. AMBA Introduction: ... 34

2.5.2. AMBA AHB ... 35

2.5.3. Modeling Timing for AHB Bus .. 36

2.5.4. Bus Arbitration .. 36

2.6. CONCLUSION .. 37

CHAPTER 3 : TRAFFIC GENERATION .. 38

3.1.1. Introduction ... 38

3.2. TRAFFIC KINDS .. 38

3.3. EMULATING IP COMMUNICATION BEHAVIOR 38

3.4. TRAFFIC GENERATION PARAMETERS ... 39

3.5. CONFIGURABLE TRAFFIC GENERATOR ... 40

3.6. LITERATURE SURVEY ... 41

3.6.1. NoC Simulator .. 41

3.6.2. NoC Traffic Suite .. 41

3.6.3. NoC Framework .. 42

3.6.4. Statistical Traffic Model ... 43

3.6.5. Effect of Traffic Localization: .. 43

3.6.6. Traffic Models for Benchmarking .. 44

3.7. PERFORMANCE EVALUATION ... 44

3.7.1. Performance Metrics ... 45

3.8. CONCLUSION .. 45

CHAPTER 4 : SIMULATION AND RESULTS ... 46

4.1. INTRODUCTION .. 46

4.2. NOC SIMULATION .. 46

4.2.1. NoC Simulation Phases ... 47

4.3. SOC SIMULATION .. 48

4.4. TRAFFIC GENERATION ... 48

4.5. 2X2 RESULTS ... 49

4.5.1. Throughput .. 49

4.5.2. Latency .. 53

4.5.3. Number of Hops .. 59

4.5.4. Power .. 60

4.6. 3X3 RESULTS: .. 66

4.6.1. Throughput .. 68

4.6.2. Latency .. 69

4.6.3. Number of Hops .. 71

4.6.4. Power .. 72

4.7. 4X4 RESULTS: .. 74

4.7.1. Throughput .. 75

4.7.2. Latency .. 76

4.7.3. Number of Hops .. 77

v

4.7.4. Power .. 78

DISCUSSION AND CONCLUSIONS ... 80

FUTURE WORK ... 81

REFERENCES ... 82

APPENDIX A: SYSTEMC CODE FOR ROUTER MODEL 86

APPENDIX B: SYSTEMC CODE FOR CPU MODEL... 88

APPENDIX C: C CODE FOR TRAFFIC GENERATION 94

PUBLICATION .. 95

vi

List of Tables

Table 4.1: Comparison of Throughput and Power Curves ... 66

Table 4.2: Comparison of Throughput and Power Slopes ... 74
Table 4.3: Comparison of Throughput and Power Slopes ... 79

vii

List of Figures

Figure 1.1: Router state diagram .. 14

Figure 1.2: (a) 2D Mesh, (b) Ring, (c) Spidergon, (d) Crossbar 15
Figure 1.3: NoC architectures... 15
Figure 1.4: Example of region definition ... 19
Figure 1.5: ASPRA Design Methodology .. 20
Figure 1.6: (a) Centralized arbitration; (b) Distributed arbitration................................. 21

Figure 1.7: Multi-synchronous system ... 23
Figure 1.8: (a) Connection-oriented router (b) Connectionless-oriented router 24

Figure 1.9: Router Architecture .. 24

Figure 1.10: BENoC ... 26
Figure 1.11: Spidernet NoC .. 27
Figure 2.1: Blocking and non-blocking interfaces [30].. 30
Figure 2.2: PVT model structure [30] .. 31
Figure 2.3: Router model .. 32

Figure 2.4: Sequential policy [30] .. 33

Figure 2.5: 2x2 mesh network .. 34
Figure 2.6: Typical AMBA system .. 35

Figure 2.7: N-layer AHB system [25] .. 36
Figure 2.8: Pipeline policy [30] .. 36
Figure 2.9: Bus model [30] ... 37

Figure 3.1: Emulating real traffic ... 39

Figure 3.2: Traffic configuration parameters [39] .. 39
Figure 3.3: Complement traffic pattern [41] .. 40
Figure 3.4: Traffic generation methodology .. 42

Figure 3.5: 3-tuple traffic model .. 43
Figure 3.6: (a) External evaluation; (b) Internal evaluation ... 44

Figure 4.1: 2x2 NoC ... 47
Figure 4.2: 2x2 SoC .. 48
Figure 4.3: 2x2 Routers Coordinates .. 49
Figure 4.4: Throughput for different active cores .. 50

Figure 4.5: Normalized throughput for different traffic loads 51
Figure 4.6: Throughput percentage change (Constant Bit Rate) 51

Figure 4.7: Normalized throughput for Normal distribution traffic pattern 52
Figure 4.8: Throughput percentage change (Normal) .. 52
Figure 4.9: Normalized throughput for Poisson distribution traffic pattern 53
Figure 4.10: Throughput percentage change (Poisson) .. 53
Figure 4.11: Latency distribution for NoC with constant bit rate 54

Figure 4.12: Average latency for NoC ... 54
Figure 4.13: SoC Latency ... 55
Figure 4.14: SoC latency distribution (Normal) ... 55
Figure 4.15: NoC Latency distribution (Normal) ... 56
Figure 4.16: SoC Latency distribution (Poisson) ... 56

Figure 4.17: NoC Latency distribution (Poisson)... 57
Figure 4.18: Average NoC latency (Normal) ... 57

Figure 4.19: Average SoC latency (Normal) .. 58
Figure 4.20: Average NoC latency (Poisson) ... 58

viii

Figure 4.21: Average SoC latency (Poisson) ... 59
Figure 4.22: Number of hops for 2x2 NoC (Constant Bit Rate) 59
Figure 4.23: Number of hops for 2x2 NoC (Normal) .. 60
Figure 4.24: Number of hops for 2x2 NoC (Poisson) .. 60
Figure 4.25: Power comparison of NoC vs. SoC (Constant Bit Rate) 61

Figure 4.26: Power comparison of NoC vs. SoC (Normal) ... 62
Figure 4.27: Power comparison of NoC vs. SoC (Poisson) ... 62
Figure 4.28: Normalized Throughput and Power (Constant Bit Rate) 63
Figure 4.29: Normalized Throughput and Power (Normal) ... 63
Figure 4.30: Normalized Throughput and Power (Poisson) ... 64

Figure 4.31: Power Percentage Change (Constant Bit Rate) ... 64
Figure 4.32: Power Percentage Change (Normal) .. 65

Figure 4.33: Power Percentage Change (Poisson) ... 65
Figure 4.34: Line of Best Fit Example ... 66
Figure 4.35: 3x3 routers coordinates .. 66
Figure 4.36: 3x3 NoC ... 67
Figure 4.37: 3x3 SoC .. 68

Figure 4.38: Normalized throughput (Normal) .. 68
Figure 4.39: Throughput Percentage Change (Normal) ... 69

Figure 4.40: SoC latency distribution ... 69
Figure 4.41: NoC latency distribution .. 70

Figure 4.42: Average SoC Latency .. 70
Figure 4.43: Average NoC latency ... 71
Figure 4.44: 3x3 NoC number of hops ... 71

Figure 4.45: Average number of hops for 3x3 NoC ... 72

Figure 4.46: Normalized Power for 3x3 NoC and SoC .. 72
Figure 4.47: Power percentage change ... 73
Figure 4.48: Normalized Throughput and power ... 73

Figure 4.49: 4x4 router coordinates.. 74
Figure 4.50: Normalized Throughput (Normal) ... 75

Figure 4.51: Throughput Percentage Change (Normal) ... 75
Figure 4.52: SoC latency distribution ... 76
Figure 4.53: NoC latency distribution .. 76

Figure 4.54: 4x4 NoC number of hops ... 77
Figure 4.55: Average number of hops for 4x4 NoC ... 77

Figure 4.56: Normalized Power for 4x4 SoC and NoC.. 78

Figure 4.57: Power percentage change ... 78

Figure 4.58: Normalized Throughput and power ... 79

ix

Nomenclature

IP Intellectual Property

NoC Network on Chip

SoC System on Chip

TLM Transaction Level Modeling

x

Abstract

The Network on Chip (NoC) design paradigm is expected to replace shared buses

and dedicated wires due to its scalability, modularity, and absence of global spanning

wires problem.

The NoC offers these advantages but still it requires larger area due to larger

number of communication nodes (routers vs. bus). NoC is also expected to exhibit

higher power consumption due to routing and arbitration logic inside each router.

This thesis presents SoC (refers to shared buses medium) and NoC comparison on

transaction level using Transaction Level Modeling for AMBA AHB bus protocol and

router implementing XY routing algorithm in mesh network with different sizes.

The thesis used different traffic patterns and loads and presented detailed

performance evaluation using different metrics such as throughput, latency, number of

hops, and power consumption.

The thesis showed the throughput advantage of NoC and its scalability as number

of cores increase. The simulation results show that rate of throughput increase is higher

than the rate of increase of power consumption as network size increases.

11

Chapter 1 : Introduction and Background

This chapter provides an introduction to this research work. The introduction

includes thesis contribution, thesis organization, NoC introduction, and routing

algorithms survey.

1.1. Introduction

Dedicated wires offer poor reusability and flexibility. Global wires fail to achieve

global synchronization as frequency and number of cores increase. The global wires do

not scale with large systems leading to high parasitic resistance and capacitance at large

distances. Wire delays increase as technology scales down. Adding more metal layers

and repeaters increase the design complexity rather than reducing it.

Shared bus medium on the other hand experiences a major shortcoming due to the

limitations of multi access and the possibility of blocking in addition to its limited

scalability. Due to the increasing need for larger systems on the same chip,

performance, represented by throughput, is one of the most important metrics affecting

System on Chip (SoC) evaluation. This enforces connecting Cores via global

communication architecture known as Network on Chip (NoC). This pushes for a fully

distributed communication pattern [1, 2]. Network-centric approach [3] allows

decoupling the processing nodes from the communication fabric. The increasing

complexity of SoCs makes NoC the best substitute for buses and dedicated wires as

interconnection scheme [4].

The primary communication component in NoC is the router which handles all

transactions. Routers can solve the multi-access problem as packets now can traverse to

different destinations at the same time without waiting for another blocking transaction

to complete. Throughput of SoC saturates rapidly as number of Cores increases. NoC is

the only solution to maintain throughput of large SoCs within the desired targets. SoC

bus is to be replaced with a network of switches and routers in the future large systems.

In this thesis, a detailed performance analysis for large systems using SoC and

NoC is carried out using high abstract models for router and bus. Transaction Level

Modeling (TLM) is used to evaluate the system and compare several metrics such as

throughput and latency while determining those metrics on circuit level is hard if even

possible.

Power consumption is the main trade-off in using NoC. Therefore, it is important

while emphasizing NoC throughput gain to compare power consumption of multiple

routers with single bus. Another important metric is the area of chip. Considering the

routing, arbitration mechanism and even number of routers per chip, NoC consumes

bigger area than SoC.

1.2. Contribution

This thesis can help determining when to use bus-based SoC rather than NoC and

vice versa. This is based on the number of cores, traffic pattern, traffic load, and

11

frequency. Different comparisons are made for performance metrics such as

throughput, latency, number of hops traversed by each packet in addition to power

consumption. These comparisons are made for different traffic loads and with different

number of cores. Building a TLM for router and comparing it with another bus model

helps offering better evaluation based on transactions rather than pin level data.

1.3. Organization of the thesis

A brief summary on NoC architectures, switching techniques and components are

provided in chapter 1. The routing algorithms are considered as the router model is the

basic unit in this work. An introduction to transaction level modeling which is used

throughout this thesis is presented. Both router and bus models and how time and

power are modeled are presented in Chapter 2. Chapter 3 includes literature survey on

traffic generation and also performance evaluation of NoCs. Simulation results and

comparison between NoC and SoC models are described in Chapter 4. The chapter also

includes summary of the results. Finally Chapter 5 includes conclusion and Chapter 6

includes future work. Appendix A includes the router model code. Appendix B includes

the CPU model code. Appendix C includes the traffic generation code.

1.4. NoC Introduction

This section includes a brief introduction to NoC architectures, flow control,

switching techniques, router components, and NoC topologies.

1.4.1. Interconnect Network Architectures

Shared-medium bus is a simple interconnect architecture where all cores share the

same communication medium and bandwidth [4]. These networks support broadcast

and multicast which is an advantage in case the information is needed to be sent to

many receivers [2]. Arbitration is needed if different masters need to access the bus. A

disadvantage of shared bus is its limited scalability.

Direct networks overcome the scalability problem where each node is connected to

set of neighboring nodes [2]. The problem here is long global wires spanning around

the design.

Indirect networks are switch-based ones where nodes are connected through a set

of switches. They solve both the scalability and long wires problems [2]. Hybrid

networks also exist which include heterogeneous connections between bus and

switches.

1.4.2. Flow Control Units

Memories and processing elements are connected to routers through network

interfaces that manage connection and data fragmentation functions [3, 5]. Flow control

deals with allocation of channel and buffer resources to packets as they traverse paths

through the network. For packet-switched networks, the packet is the smallest unit that

contains routing and sequencing information. Each packet is divided into data units

called flits and buffers are defined as multiples of the flit-data unit. A flit is the smallest

unit on which flow control is performed. Information flows on a physical channel as

11

physical transfer units called phits where a phit is the same size of a flit or smaller [6].

Input and output buffers of routers should store few flits only which decreases buffer

space requirements in NoC routers [3].

1.4.3. Switching Techniques

Switching techniques determine when and how internal switches connect inputs to

outputs. Different switching techniques include [2, 3]:

a- Circuit Switching: The transmission first sets a physical path from source to

destination. This end-to-end reserved path causes unnecessary delay. This is

used to guarantee throughput connections [4].

b- Packet Switching: The message is divided into fixed-size packets that are

routed individually without resource reservation. This is advantageous for short

and frequent packets leading to better utilization.

c- Wormhole Switching: first flit is the header flit containing routing information

that enables switch establishing path to destination. Subsequent flits flow in a

pipelined fashion without need of any packet reordering. If any flit faces a busy

channel, all subsequent flits wait. The path is released when the tail packet is

received. Virtual channels increase channel utilization as flits can use other

virtual channels if one of them is blocked. This is used in best effort

connections [4].

1.4.4. Router Architecture

The architecture of NoC router consists of several components [3]:

a- Crossbar: The components connecting input buffers to output ones.

b- Network Interface: Responsible for segmentation of packets and re-ordering

them. Other related work in [7] introduces low power network interface for

NoC.

c- Routing and Arbitration: Routing defines the path for each packet from

source to destination while arbitration selects one input port from different

requests.

d- Buffers: FIFO units storing flits, it is considered the dominant factor in area

cost function for the router. Other work including [8-10] studies area

optimization for buffers.

A state diagram of router operation example is shown in Figure 1.1 where S0: type

determination, S1: Routing, S2: Output virtual channel allocation, S3: router allocation,

S4: physical channel allocation, S5: router traversal.

11

Figure 1.1: Router state diagram

1.4.5. NoC Topologies

The topology specifies how the routers and cores are connected to each other.

Commonly used topologies are mentioned below [5] [11-13]:

a- 2D Mesh: The 2D mesh topology is illustrated in Figure 1.2 (a) [5] and Figure

1.3 (a) [13] where each router has 5 ports (north, east, south, west, and local)

and connected to its four neighbors except for border routers. The router

address is easily defined by its x-y coordinates.

b- Ring: Low performance ring topology with low complexity is shown in Figure

1.2 (b).

c- Spidergon: The spidergon connection is shown in Figure 1.2 (c) where each

router has three connections, one for left neighbor, right neighbor, and central

connection. The benefit of this topology is that packets consume only two hops

for any path.

d- Torus: Just like mesh topology but connecting routers at the edge with routers

at the opposite edge via wrap-around channels. Folded torus doubles the

bandwidth by wrapping leftmost routers to rightmost ones and from top

component to bottom. Torus and folded torus are shown in Figure 1.3 (b) and

Figure 1.3 (c) respectively.

e- Fat Tree: Both Fat Tree and Butterfly Fat Tree (BFT) topologies are illustrated

in Figure 1.3 (d) and Figure 1.3 (e) respectively. Fat tree implementation puts

routers and nodes while cores are located at leaves. Each node has four children

and a parent. This is replicated four times at any level of the tree.

11

f- BFT: In Butterfly Fat Tree, each switch has six ports, four for child ports and

two for parents. The intermediate nodes act as switches, four cores are

connected to the children ports at the first level of switches. In the second level,

parents are connected to two switches. The tree architecture has two benefits,

component-level decomposition and congestion reduction.

Figure 1.2: (a) 2D Mesh, (b) Ring, (c) Spidergon, (d) Crossbar

Figure 1.3: NoC architectures

The next sections include different routing algorithms and arbitration algorithms.

1.5. Routing Algorithms

Routing determines the path of each packet traversing the network till reaching its

destination. Routing can be classified according to different criteria into the following

classifications [11, 12]:

1.5.1. Source and Distributed Routing

In distributed routing, the routing decision is taken at each router. The router does

not need global knowledge about network status as it computes the next hop according

to the destination address of each packet [14].

Source routing stores routing tables which contain routing information for each

packet. The header packet must be transmitted throughout the whole network as it

contains the information for each hop in its path to destination. Source routing is not

11

considered in NoCs due to its large overhead to store entire path information in the

header. Also it does not provide adaptive paths in case of congestion or link failure as

the path is pre-computed. However, source routing has its own advantages especially in

NoC with fixed size and regular topology like mesh. Also, it can fit irregular networks

since it is topology independent.

With efficient coding, the router design is significantly simplified. Also for

application specific networks, the traffic profile can help determining paths for desired

performance metrics. Still large size of routing tables results in performance overhead.

1.5.2. Deterministic and Adaptive Routing

Deterministic routing specifies a fixed output link for each destination at each hop.

Thus, the routing information is determined statically and this leads to constant number

of hops for each source-destination pair and may lead to congestion if many packets

have the same destination. Deterministic routing is not dead-lock free due to reasons

mentioned above; also routing fails if any link is broken.

Adaptive routing makes the decision dynamic according to different specifications

such as network load, deadlock, and broken links. For each source-destination pair,

there are several paths leading to different number of hops each time a packet is

transferred from the same source to the same destination.

Centralized adaptive routing monitors global traffic load instead of local

congestion signals, it modifies routing of packets in order to improve load balancing

and outperform distributed adaptive routing [15]. Adaptive routing can be based on

power model which adapts routing according to power conditions in order to optimize

power distribution leading to a power-aware adaptive routing scheme [16].

1.5.3. Routing Algorithms Examples

This section includes examples for the commonly used routing algorithms.

a- XY Routing

XY routing algorithm is a kind of deterministic distributed algorithm. Each router

is identified by its coordinates Cx and Cy (2-dimension mesh topology) [17]. The

algorithm compares router coordinates to destination coordinates Dx and Dy. When

(Cx, Cy) match (Dx, Dy), the packet is transferred to local router port which means that

packet reaches its destination core. Otherwise, horizontal addresses are compared first

till the flit is horizontally aligned. Then the vertical address is compared till reaching

the required destination.

As XY algorithm is deterministic, if any port is busy the packet is blocked as there

is no other routes to the destination so it cannot avoid deadlock. XY algorithm is

illustrated below:

Algorithm XY

/*Source router: (Sx,Sy);destination router: (Dx,Dy); current

router: (Cx,Cy).*/

begin

if (Dx>Cx) //eastbound messages

return E;

else

11

if (Dx<Cx) //westbound messages

return W;

else

if (Dx=Cx) { //currently in the same column as

//destination

if (Dy<Cy) //southbound messages

return S;

else

if (Dy>Cy) //northbound messages

return N;

else

if (Dy=Cy) //current router is the destination router

return C;

}

End

b- OE Routing

Odd-even routing algorithm is a distributed adaptive algorithm based on odd-even

turn model that avoids deadlock through some restrictions [17]. In this model, a column

is called even if its horizontal dimension is an even numerical value and called odd if

its horizontal dimension is an odd number. Since E, S, W, N indicate East, South, West,

and North respectively, there are eight types of turns where a turn is a 90-degree change

of travelling direction. ES turn involves change of direction from East to South.

Similarly, there are EN, WS, WN, SE, SW, NE, and NW turns.

Two main theorems define the OE algorithm:

Theorem 1: NO packet is permitted to do EN turn in each node which is located on

an even column. Also, No packet is permitted to do NW turn in each node that is

located on an odd column.

Theorem 2: NO packet is permitted to do ES turn in each node that is in an even

column. Also, no packet is permitted to do SW turn in each node which is in an odd

column. Where the OE algorithm is presented as:

Algorithm OE

/*Source router: (Sx,Sy);destination router: (Dx,Dy); current

router: (Cx,Cy).*/

begin

avail_dimension_set<-empty;

Ex<-Dx-Cx;

Ey<-Dy-Cy;

if (Ex=0 && Ey=0) //current router is destination

return C;

if (Ex=0){ //current router in same column as //destination

if (Ey<0)

add S to avail_dimension_set;

else

add N to avail_dimension_set;

}

else{

if (Ex>0){ //eastbound messages

if (Ey=0){ //current in same row as destination

11

add E to avail_demision_set;

}

else{

if(Cx % 2 != 0 or Cx=Sx) //N/S turn allowed only in odd

//column.

if(Ey < 0)

add S to avail_dimension_set;

else

add N to avail_dimension_set;

if(Dx% 2 != 0 or Ex != 1) {

//allow to go E only if destination

// is odd column

add E to avail_dimension_set;

//because N/S turn not allowed in

//even column

}

}

}

else { // westbound messages

add W to avail_dimension_set;

if(Cx%2=0) //allow to go N/S only in even

//column, because N->W and S->W

//not allowed in odd column

if(Ey<0)

add S to avail_dimension_set;

else

add N to avail_dimension_set;

}

}

Select a dimension from avail_dimension_set to forward the packet.

end

Providing a group of routing paths for each source-destination pair can prevent

deadlock without using virtual channels.

c- Segment-Based Routing

Link failures lead to irregular topologies and these need routing algorithms that

adapt to static and dynamic changes in irregular topologies [18]. Reconfiguration at the

routing level allows topology changes that can be used in case of switch or link failure.

Segment-based Routing (SR) methodology allows computation of different deadlock-

free routing algorithms by different segmentation processes and routing restriction

policies.

The straightforward routing algorithm used in irregular networks is Up*/Down*

(UD) which selects a root node and performs breadth-first search (BFS) to build a

spanning tree. The algorithm assigns links directions and turn restrictions where the

packet can reach destination by traversing the tree upwards and then downwards.

Therefore, cyclic dependency can be avoided by forbidding up link after a down one.

This algorithm accumulates traffic near root node and the UD tree is fixed as long as

the root node is selected.

11

The SR algorithm uses divide-and-conquer approach by partitioning the topology

to subnets and segments. SR places bidirectional turn restrictions locally to each

segment leading to much more flexibility compared with UD. The final step in SR is

computing final path for each source-destination pair.

SR is a partly adaptive routing algorithm which can be applied on networks that

support deterministic or adaptive routing and on routers that support routing tables. SR

is agnostic to the topology of the network as it is based on network segmentation and

guaranteeing full connectivity between end nodes. However, many patterns for

segments exist and each pattern can affect performance according to topology and

traffic pattern.

Unitary segments contain only one link. Any dependency using these segments

should be forbidden in order to ensure deadlock-freedom. Smart selection during

segmentation can limit unitary segments.

d- Region-Based Routing

Region-based routing (RBR) groups destinations into network regions in order to

reduce number of entries in routing tables. RBR is a general mechanism that can be

used along with any adaptive routing algorithm. RBR mainly targets reducing high area

and power consumption of table-based routers especially in large networks by dividing

network regions and allowing efficient implementation using logic blocks. RBR exhibit

low and constant memory and area requirements regardless of network size [19].

Figure 1.4: Example of region definition

2-D mesh topology networks has the property that the number of required regions

is either constant or grows slowly as network size grows. Also the region computation

is performed offline, downloaded to routers and then network is set into normal

operation. This guarantees no impact on network performance. Regions should take

into consideration restrictions applied by routing algorithm in order not to lead to a

deadlock.

The mechanism in brief starts by receiving network topology and routing

restrictions. Then it computes possible set of routing paths between each pair of nodes.

12

The routing regions can be computed according to routing options at each router.

Finally the algorithm packs all regions in order to bound maximum number of allowed

regions. An example for region computation is shown in Figure 1.4.

e- Application Specific Routing

Application Specific Routing Algorithm (APSRA) processes the information of

communicating pair of nodes and other pairs that never communicate and also analyze

the concurrency of communication transactions across nodes. This can maximize

communication adaptivity and performance and offer efficient, dead-lock free routing

without the need for virtual channels. APSRA is topology agnostic that best fits NoCs

that are specialized for a set of concurrent/non-concurrent applications. The general

implementation of the routing function is table-based [20]. The ASPRA design

methodology is shown in Figure 1.5.

In the embedded systems domain, the designer has an idea about the set of

applications that is mapped on the system. The routing algorithm does not have to

guarantee that every pair of nodes can communicate. After the task mapping and

scheduling, the designer has information about pairs of communicating nodes as well as

concurrent/non-concurrent transactions.

Figure 1.5: ASPRA Design Methodology

1.6. Arbitration

Routing can be defined by output port selection for input packets. Similarly,

arbitration deals with input selection (i.e. selecting an input port from several

simultaneous requests). Arbitration can be classified into centralized arbitration which

deals with one request at a time and distributed arbitration which deals with a set of

requests in parallel as shown in Figure 1.6 [21].

11

Figure 1.6: (a) Centralized arbitration; (b) Distributed arbitration

Distributed arbitration enhances performance but with more complex router design

compared to centralized arbitration. Centralized arbitration contains one routing unit for

which all input ports compete, while distributed arbitration complies that competition

occurs only at output ports. This requires replication of routing and arbitration units at

input and output ports. Usually, centralized arbitration uses round-robin algorithm

while distributed arbitration uses First Come-First Serve (FCFS) algorithm. Three

examples of centralized arbiters are described below.

a- Fixed Priority Arbiter

In fixed priority arbitration, each input request has a fixed priority level where the

highest priority request is always granted access. This can lead to starvation when all

low priority requests are blocked by higher priority ones. Therefore, fixed priority

arbiter is unfair taking into consideration that fairness is a key property for any other

arbiter [11].

b- Round-robin Arbiter

Round-robin algorithm gives each request the highest priority for one turn where

the granted request has the lowest priority on the next arbitration round. Therefore, the

priority of each request decreases linearly after physical port is granted.

c- Matrix Arbiter

Matrix arbiter is considered the strongest fair arbiter. It contains a priority matrix

and grant circuits which use least recently served priority scheme. The priority matrix is

used to store priorities. The grant generation circuit grants resources to requesters. The

priority matrix is updated after each clock cycle in order to update new request

priorities. The matrix arbiter best fits small number of requests because it is fast and

inexpensive to implement.

11

1.7. Related Work

This section includes a literature survey on related work to compare between NoCs

and shared buses medium. This thesis refers to buses with SoCs while NoCs are using

routers.

1.7.1. NoC Comparison

Erno Salminen et al. [22] presented state-of-the-art paper in the field of NoC

benchmarking and comparison. The paper gathered and analyzed a vast set of studies

from literatures. The following basic NoC properties are considered:

1- Offering scalability.

2- Avoiding global wires spanning the chip.

3- Supporting system testing.

The paper summarizes network comparisons found in literature and analyzes them

according to:

1- Compared Topologies.

2- Evaluation Type.

3- Evaluation Criteria.

The runtime and latency are the most popular metric in the studied literature. In

general, achieving the same latency with less area and power is the evaluation criteria.

The results from literature seem confusing as every study use tests with different

characteristics and requirements and performance always depend on application.

Finally, the paper proposes practical basic guidelines for simulation and benchmarking.

These guidelines are divided into:

1- Workload.

2- System Model.

3- Measurement.

4- Concluding the Findings.

The paper does not provide quantified results for throughput comparison. This thesis

includes quantitative performance evaluation for NoC and SoC.

1.7.2. Multi-synchronous vs. Asynchronous

Sheibanyard et al. [1] presented a systematic comparison between fully

asynchronous and multi-synchronous NoC architectures that are used in Globally

Asynchronous Locally Synchronous (GALS) multi processors system on chip. The five

relevant parameters which are used in the comparison are:

 Silicon area.

 Network saturation threshold.

 Throughput.

 Latency.

 Power consumption.

The first implementation is Distributed Scalable Predictable Interconnect Network

(DSPIN) and the second implementation is Asynchronous Scalable Predictable

Interconnect Network (ASPIN). Multi synchronous systems contain one or several

synchronous subsystems clocked with independent clocks and connected with micro

network as illustrated in Figure 1.7 [1].

11

Figure 1.7: Multi-synchronous system

Partitioning the SoC into isolated clusters allows timing closure independently for

each cluster without any time constraints. This can solve the long wire issue in multi-

million gate SoCs. The research uses a long wire model and extracted SPICE model for

DSPIN and ASPIN components in order to evaluate latency, throughput, and power

consumption.

For power consumption, the work focuses on instantaneous energy consumption

during one short period of time using current integrator model. The asynchronous

approach shows better saturation thresholds and better latency but with higher energy

dissipation. The comparison does not include SoC to compare with which is considered

in this thesis.

1.7.3. QoS Communication Schemes

Mehmet Derin Harmanci et al. [23] addressed quantitative comparison of

connection-oriented and connectionless-oriented communication schemes. These

communication schemes are used to guarantee Quality of Service (QoS). QoS is

defined by several parameters such as availability, jitter, packet loss, and throughput.

For QoS, it is necessary to have global predictability about the NoC. Virtual channel is

an example of building connection-oriented communication on top of packet switched

network where independent input channels are multiplexed over the same physical link.

The main disadvantage of this scheme is in-efficient resources reservation and non-

scalability.

Connectionless-oriented scheme can be applied by implementing additional

services to meet predefined QoS parameters like prioritization of flows. This offers a

better adaptation to the varying network traffic and better utilization of network

resources. A SystemC model is built for both communication schemes as shown in

Figure 1.8 [23]. The simulation considers only end-to-end delay by using nodes that run

MPEG-2 algorithms along with random noise. This thesis considers performance

metrics such as throughput, latency, number of hops, and power consumption.

11

Figure 1.8: (a) Connection-oriented router (b) Connectionless-oriented router

1.7.4. NoC Router Architecture

Sweta Sahu and Harish M. Kittur [24] implemented five-port router architecture

for 2D mesh network that can handle five requests simultaneously. The router used two

types of crossbars: multiplexer and tri-state buffer matrix. The study demonstrates that

multiplexer design is both area and power efficient compared to matrix design. The

router architecture is shown in Figure 1.9.

Figure 1.9: Router Architecture

11

This work uses wormhole switching, XY deterministic routing algorithm, and

simple round-robin arbiters. The five ports of the router allow dynamic placement of

modules in NoC mesh network. Each port has its own decoding logic to increase the

router performance. The power and area are analyzed and compared for 90nm and

180nm technologies. Other performance metrics such as throughput and latency are not

evaluated which is considered in this thesis.

1.7.5. Comparison of Æthereal NoC and Bus

Chris Bartels et al. [25] applied Æthereal NoC to bus based SoC and performed

area comparison between the two architectures down to netlist level. Æthereal NoC

offers Guaranteed Throughput (GT) aided with predictability and decoupling of the

behavior of one core from other cores and interconnects. Therefore, the performance of

core is not affected by the others. This work uses digital video terrestrial receiver

design (DVB-T) and compares the original bus-based SoC with different NoC-based

solutions.

The main interconnect structure of the SoC is ARM AMBA High-speed Bus AHB

which is replaced with NoC in order to perform the comparison. The NoC shows 60%

area savings but with higher buffer cost. The comparison does not include throughput

and latency metrics.

The Best Effort (BE) service class guarantees reception of data without minimum

bandwidth or maximum latency bounds. GT service class use Time Division Multiple

Access (TDMA) to give worst-case guarantees on bandwidth and latency. Both GT and

BE use source routing where the path to destination is determined at the source router.

1.7.6. Bus Enhanced NoC

NoCs are inefficient in multicast operations and its multi-hops operation is slow for

latency sensitive signals [26]. This motivates adding a global, low latency, and low

power shared bus as an integral part to the NoC. The customized bus (MetaBus) has

predictable latency and can perform broadcast and multicast forming a Bus Enhanced

NoC (BENoC). BENoC is shown in Figure 1.10.

Latency sensitive signals include L2 cache read requests, cache coherence

invalidation commands, and interrupt signals. The traffic volume of these operations is

small but can affect system performance.

11

Figure 1.10: BENoC

BENoC’s bus sends messages that are different than those delivered by the

network such as control and multicast messages. This study compares area and latency

of BENoC and that of pure NoC. The study showed that BENoC is more advantageous

than classic NoC and the advantage increases as system size grows. The comparison

does not include throughput or power metrics which are included in this thesis.

1.7.7. Bus and NoC Comparison

Ling Wang et al. [27] studied and compared the performance of Bus with NoC

Spidernet and mesh topologies implemented in FPGA. Spidernet NoC is shown in

Figure 1.11. The inner triangle of Spidernet topology forms the basic structure in the

network and then spread to three directions to form the outer one. The masters are

distributed within the inner triangle while slaves are distributed in the outer triangle.

The work in this paper uses latency and area as evaluation metrics of the bus and

NoC performance. It uses two types of emulation flow where the emulation system is

implemented in Altera FPGA. This paper does not include other evaluation metrics

such as throughput and power consumption.

The results show that Spidernet offers better latency than that of Mesh-based NoC

and that of shared bus. Throughput comparison is not illustrated in this paper. Other

related work is found in [28] [33] [35-37]. Also [4] introduced state of the art in routers

that use virtual channels.

11

Figure 1.11: Spidernet NoC

1.8. Conclusion

An introduction to NoC is introduced in this chapter along with related work in

NoC performance evaluation. In this thesis, transaction level models enable applying

different traffic loads and number of cores. The high level of abstraction enables

analyzing packets and measuring metrics such as throughput in an easy way and

integrating the measurements in different simulation runs that implement different

traffic patterns. Next chapter includes brief introduction to Transaction Level Modeling

(TLM) and includes description of TLM models for bus and router that are used in this

thesis.

11

Chapter 2 : Router and Bus Models

2.1. Introduction

The basics of the modeling technique which is used in this thesis are introduced in

this chapter. A brief introduction to TLM is presented and then detailed description for

bus and router models which are used in SoC and NoC, respectively, is discussed.

2.1.1. Modeling Levels

Modeling accuracy can vary from very detailed implementation model to cycle-

accurate RTL model to more abstract model which increases simulation speed, protect

more detailed intellectual property, and inject stimuli and check results quickly [29].

The several independent axes that can control model accuracy include structural

accuracy, functional accuracy, and timing accuracy. Other axes may include data

organization accuracy and communication protocol accuracy. Different time models

can be classified into:

 Untimed Functional Model:

Direct translation of design specification without any time delays in the model.

Communications between modules are point-to-point without any shared

communication links.

 Timed Functional Model:

The module’s communication is still point-to-point but the model includes time

delays that describe timing constraints of the specification and delay of particular target

implementation.

 Transaction-Level Model (TLM):

Communications between modules are modeled by function calls that are

implemented with functional and timing accuracy (sometimes even accurate to the

clock-cycle level). Still the model is not structurally accurate.

 Behavioral Hardware Model:

Pin-accurate and functionally accurate but does not have internal structure that

reflects target implementation. Usually these models are input to behavioral hardware

synthesis tools.

 Register Transfer Level (RTL) Model:

Pin-accurate and cycle-accurate model with internal structure that reflects

accurately registers and combinational logic of target implementation.

This thesis focuses on transaction-level modeling which is a discrete-event model

of computation where function calls represent transactions. Each transaction has a start

time, end time and payload data. System synchronization scheme is needed in order to

ensure predictable and deterministic system execution. This is implemented in this

11

thesis by means of interrupts. TLM designs are generally more concise and have shorter

simulation time than corresponding RTL designs.

2.1.2. Transaction Level Modeling

Abstraction is a powerful technique for design and implementation of complex

systems where unnecessary details can be hidden. TLM is a high-level approach to

modeling systems. Buses and FIFOs are modeled as channels and presented using

SystemC interface classes. Transactions take place by function calls to these interface

classes. Transactions encapsulate low-level details of information exchange. Thus,

TLM focus more on functionality rather than implementation. This approach is easier

for system-level design [29].

Synchronization details in TLM are abstracted into blocking and non-blocking I/O

where priorities are assigned to bus masters and centralized arbitration is modeled.

TLM is used for timed and untimed functional modeling, platform modeling, and

testbench construction. Taking bus modeling as an example, aspects such as contention,

arbitration, interrupts, and cycle-accuracy can be modeled away from pin-accurate

models. In general, TLMs are important as they are easy to develop and understand.

TLM can be constructed at an early stage in system design process, and they are

quickly simulated.

SystemC “sc_fifo” is an example of untimed functional TLM for First In First Out

(FIFO) channel, where the transaction interfaces are represented through the read and

write methods of this channel. "sc_fifo” models the FIFO functionality typically but

with much simpler implementation than actual hardware. TLM is not limited to buses

and FIFOs as the same principles can be applied to any high-order communication

mechanism.

The TLM model needs to be cycle-accurate so that it can serve as an agreed-upon

contract between software and hardware teams. This feature along with high simulation

speed can allow meaningful amount of software code to be executed along with

hardware model.

For any model, the transaction interfaces are the starting point to understand how

the design operates [30]. The interfaces are shown in Figure 2.1 and can be classified

into:

 Blocking Interfaces:

In blocking interface, the communication methods return only after transaction

completion. Typically for bus models where there is no multi-access, the masters use

blocking transactions.

 Non-blocking Interfaces:

In non-blocking interface, the methods return immediately while the transaction

takes at least one clock cycle to complete. The transaction may take more than one

clock cycle if competing requests exist. This interface is commonly used by processor

models which cannot be suspended.

12

Figure 2.1: Blocking and non-blocking interfaces [30]

 Direct Interfaces:

These operations are used to create a simulation monitor for the design and for

debugging purposes. During these methods, SystemC scheduler does not intervene and

simulation time does not advance. This interface should not be used as part of design

implementation, but can be used as a part of the testbench for the design.

2.1.3. Modeling for High Performance

TLM uses some techniques for high performance simulation, as the model is not

pin-accurate, the data within transaction can be bundled and passed more efficiently.

Thus TLM relies on transaction rather than signals. Also high-level data types are used

rather than low-level bit-vectors which are commonly used in HDLs [29]. Pointers to

data are passed between modules through transactions which enable copying blocks of

data efficiently.

SystemC dynamic sensitivity feature is used to eliminate unnecessary activation of

processes. RTL models must execute every clock edge even without any activity. This

results in performance gain for TLM compared to RTL.

2.1.4. The Scalable Model Approach

The scalable TLM model is a property of Mentor Graphics’ Vista tool which is

based on separation of functionality, communication, and architecture. The untimed

functionality is captured in programmable view (PV) layer while timing and power are

defined in the “T” layer. “PV” and “T” are combined in a single “PVT” model [30].

The PVT model is shown in Figure 2.2.

11

Figure 2.2: PVT model structure [30]

Architectural impacts such as communication protocols, different burst sizes, and

input-to-output latencies are captured in the “T” model without changing the “PV” one.

This can allow software validation and virtual prototyping by just shutting down the

“T” layer in order to run pure functional simulation.

The behavior of the model is described by how it reacts to incoming transactions.

This behavior is defined in salve port’s callback function; these reactive functions

implement model’s functionality. Similar callback functions are defined for registers as

it is a common modeling practice to program a model using a set of control registers.

The register can trigger the callback function upon accessing the register.

2.2. Router Features

The router model used in this thesis contains 11 input and output ports (North,

East, South, West, Local, and Initialize_Coordinates). Each port is 32 bit width except

the coordinate ports which are 16 bit width each. The router uses XY deterministic

routing protocol; Cx and Cy bits which denote each router address are used in the

implementation of XY routing protocol.

The inputs are composed of 16 bits incoming flit data per input port and 16 bits

coordinate signal for the destination router. The outputs are composed of 16 bits

outgoing flit data per output port and 16 bits coordinate signal for the destination router.

The router model contains one 16 bits register storing the router coordinates and is

accessed through Init_Cor port as shown in Figure 2.3.

The model uses callback functions for all slave ports; this enables the model to

react to incoming transactions. Master ports use convenient functions to initiate

outgoing transactions. Thus, behavior is modeled by embedding convenient functions

on callback ones.

Timing model is defined by timing policies for each transaction through each port

of the model. Other policies are used to define dynamic power and static power

11

consumption as well as clock tree power dissipation. Routing mechanism is

implemented through C++ defined functions that parse coordinates bits for each

transaction, and determine the next hop and outgoing port through XY routing

algorithm.

Figure 2.3: Router model

A special CPU is used to initialize the coordinates of each router according to its

location in the mesh network. After coordinates initialization, an interrupt request is

sent to each core in order to start sending and receiving data packets. An example of the

mesh network is illustrated in Figure 2.5.

2.3. Modeling Timing for the Router:

Timing in TLM is modeled by policies like Delay, Pipeline, and Split that use

internal latencies and buffering. Transactions are executed using function calls and such

abstraction increases simulation speed. Internal FIFOs and buffers break packets into

smaller groups that are processed in parallel, these macro architectures are explored

through timing policies. Timing policies are modeled using non-blocking transactions

where each transaction is composed of several phases and each of which is executed

with its own timing attributes.

The router model uses the “Sequential Policy” to model timing attributes of

transmitted packets. A latency is defined for master transactions and input/output

trigger (the Cause) while different latencies can be defined to different triggers. The

sequential policy is shown in Figure 2.4.

11

Figure 2.4: Sequential policy [30]

2.4. Modeling Power

The power is modeled by power consumed per transaction transfer along with the

leakage and clock tree power consumption [30]. The power can be classified into:

 Dynamic Power: Power per data during certain time interval. Each

transaction adds the product (power * time interval) and this amount is

accumulated for all the transactions during the simulation. Dividing this

amount by simulation time defines average consumed power.

 Static Power: Includes leakage power and accumulates when the model is

in idle state.

 Clock Tree: Models the power consumption of the clock tree distribution.

The same estimated power values per transaction are used for both SoC and NoC

designs in order to guarantee fair comparison.

11

Figure 2.5: 2x2 mesh network

2.5. Bus Model

A brief introduction on AHB bus protocol and how Vista library is used to

implement TLM for AHB bus are presented in the following section.

2.5.1. AMBA Introduction:

The Advanced Microcontroller Bus Architecture (AMBA) specifications define an

on chip communication standard for microcontrollers. The AMBA Advanced High-

performance Bus (AHB) is for high-performance and high clock frequency system

modules. AHB is system backbone bus that supports connection of processors, on-chip

memories and off-chip external memory [31].

The AMBA specifications satisfy microcontroller design facilitation and ensure

reusable peripherals. AMBA improves processor independency as it encourages

modular system design. An example for AMBA system is shown in Figure 2.6.

11

Figure 2.6: Typical AMBA system

2.5.2. AMBA AHB

AMBA AHB implements burst transfers and split transactions that may contain

more than one bus master such as Direct Memory Access (DMA) or Digital Signal

Processor (DSP) [31].

Typical AHB system contains the following components:

 AHB Master: Initiates read and write operations.

 AHB Slave: Responds to read and write operations.

 AHB Arbiter: Ensures that only one master can access the bus at a time.

 AHB Decoder: Decodes the address to provide select signal for the

required slave.

The AHB provides a high bandwidth solution. In addition, the single-clock-edge

protocol offers smooth integration in ASIC environment. AHB Lite is a subset of high-

speed bus architecture AHB. AHB Lite allows only one master, requiring no arbitration

and saving some signals (request, grant, split …etc.) Multi-layer AHB (ML-AHB) is an

interconnect architecture that extends the AHB bus architecture that provides parallel

accesses between multiple masters and slaves to increase overall bandwidth and

performance. However, the interconnection matrix has higher cost compared to

standard AHB [25]. An example for n-layer AHB system is shown in Figure 2.7.

11

Figure 2.7: N-layer AHB system [25]

2.5.3. Modeling Timing for AHB Bus

Pipeline timing policy is used to model the bus behavior; the pipeline policy is

implemented by AHB bus in response to any initiated master transaction. Pipeline

policy is illustrated in Figure 2.8.

Figure 2.8: Pipeline policy [30]

2.5.4. Bus Arbitration

The bus model supports priority-based arbitration. A predefined priority parameter

is defined so that different priorities can be specified per master [30] [32] [34]. Round-

robin arbitration is used in this design where all cores have the same priority. Changing

the arbitration scheme directly affects simulation results as low priority masters take

more time to complete their transactions which degrade latency and throughput. An

example for bus model connection is shown in Figure 2.9.

11

Figure 2.9: Bus model [30]

2.6. Conclusion

A brief introduction to TLM is presented in this chapter. Detailed description for

bus and router models is discussed where router model is implemented in NoC and bus

model is implemented in SoC. In the next chapter, a literature survey for traffic

generation is presented along with the traffic generation technique which is used for

simulation in the thesis.

11

Chapter 3 : Traffic Generation

3.1.1. Introduction

This chapter includes a literature survey for related work to traffic generation in

NoC simulation. The traffic generation technique which is used in this thesis is also

discussed. Performance evaluation and design space exploration is very important for

SoC development [38]. Traffic Generation (TG) should provide fast and effective

simulation environment in addition to fast architectural exploration by trying

interconnection alternatives. It has been estimated that NoC performance may vary up

to 250% according to NoC design and up to 600% depending on communication traffic

model [5]. This emphasizes the importance of accurate traffic modeling and generation

for NoC evaluation.

3.2. Traffic Kinds

There are three commonly used types of traffic [39]:

a- Application driven traffic: This models network and IPs simultaneously

based on copying communication traces after real-time simulation.

b- Synthetic traffic: Easier design and manipulation as it captures the salient

aspects only of application driven traffic and that is why it is widely used for

network evaluation.

c- Application oriented traffic: It is between application-driven and synthetic

traffic where time specifications and message size can be either synthetic or

captured from execution traces [40].

3.3. Emulating IP Communication Behavior

The IP emulating traffic generator model captures type and time stamp of

communication events at the IP interface in a reference environment [38]. The TG

captures the resulting reactiveness to access patterns and resource contention. Thus, the

regenerated traffic represents realistic workload which is independent from the

interconnect architecture. This TG model increases the speed of complete NoC

simulation as the architectural exploration involves carrying out the same experiment

with different architectures. Still this TG requires the presence of reference NoC

design. The reference NoC includes either software compiled and executed by IPs or

synthesized code into dedicated hardware. This reference model is used to collect traces

of IP behavior. The IPs are then replaced with TGs emulating the IP communication at

the network interface as shown in Figure 3.1 [38]. Therefore, only one reference

simulation using bit and cycle accuracy is needed, and then subsequent simulations are

carried out by the traffic generator replacements.

At very basic level, collecting traces with timestamps from reference model and

replaying is called “cloning”. This approach fails under consideration of network

latency. When one transaction is delayed, subsequent transaction should be delayed as

well. Thus another approach is used which is called “time-shifting” traffic generator

11

where adjacent transactions are tied to each other and the traffic generator collects the

timestamps of processor-generated commands as well as network responses. However,

this model faces problems with multi-cores systems where arbitration takes place.

The reactive TG model generates; not just duplicates; traffic patterns across

different networks. This TG mimics the IP behavior with some information about

system architecture and application behavior.

Figure 3.1: Emulating real traffic

3.4. Traffic Generation Parameters

Three parameters are used to define traffic generation [41]:

a- Packet spatial distribution.

b- Packet injection rate.

c- Packet size.

These traffic generation parameters are illustrated in Figure 3.2.

Figure 3.2: Traffic configuration parameters [39]

12

Packet spatial distribution specifies the relation between sources and destinations.

It can be classified into traffic pattern and channel-by-channel traffic [39]; with traffic

pattern all channels share the same timing and size parameters while channel-by-

channel traffic specifies different parameters for each channel. In addition, source-

destination pairs are fixed throughout the whole simulation; this can be used to

construct application-oriented workloads [40].

The most widely used patterns are Bit Reversal, Perfect Shuffle, Butterfly, Matrix

Transpose, and Complement. An example for Complement traffic pattern is shown in

Figure 3.3. Most of related work use only random patterns. Non-uniform traffic patterns

are closer to real applications as they cause traffic concentrations and hot spots.

Random patterns can take different distributions such as Normal, Uniform (all

nodes have the same probability to be destinations), Exponential, and Poisson.

Temporal distribution can be Static (Constant), Normal, and Random. The packet

injection rate is a fraction of channel maximum bandwidth in bits per second. This

thesis uses a Random traffic pattern with each source transmitting successive packets

separated by a random number of clock cycles between zero and ten.

Figure 3.3: Complement traffic pattern [41]

3.5. Configurable Traffic Generator

Due to the need for fast and effective generation environment for evaluating NoC

performance, configurable traffic generators became widely used [40]. The traffic

generation parameters which are discussed above are adjusted in order to save

simulation time.

11

One disadvantage is that handling a different configuration needs stopping the

current simulation, reconfiguring the generator, and running the system again which

increases the simulation time. This can be solved by Online Configurable Traffic

Generator (OCTG) which is used to restart communication immediately after

completing configuration even when communication transactions are running.

Configuring traffic generation at real-time is more flexible and convenient [40].

3.6. Literature Survey

Related work to traffic generation from the literature is discussed in the following

sections. As traffic generation is essential for NoC performance evaluation and

architecture exploration, a lot of research work was conducted to discuss traffic

generation.

3.6.1. NoC Simulator

Simulation environment allows early exploration of NoC performance and can

handle arbitrary topologies and routing schemes. The level of abstraction for data

exchange is very important from design point of view. There is a gap between RTL

simulators and high-level transaction-based simulators [42]. This gap can be covered by

a simulator using flit-level message-parsing mechanism without requiring very detailed

representation of NoC under simulation.

The major challenge when designing such simulator is to achieve balance between

data level of abstraction, NoC representation, accuracy of results, and simulation speed.

NoC simulators can be classified into two categories according to granularity of data

and hardware representation. The first category uses low-level representation of NoC

component like for example a VHDL model simulated using commercially available

VHDL compilers.

The second category uses high-level representation of both NoC hardware and data

like the work presented in this thesis. In transaction level modeling, routers and

interconnection links are modeled using SystemC channels. Transactions are modeled

at packet level using function calls in a convenience layer.

3.6.2. NoC Traffic Suite

Weichen Liu et al. [43] introduced a traffic benchmark suite with realistic traffic

patterns as well as synthetic traffic patterns. The traffic suite covers popular NoC

architectures and also covers temporal dependencies between communication

behaviors. Realistic traffic patterns are based on the behavior of real applications while

random traffic patterns use probability distribution to randomize destination traffic. The

realistic traffic provides more accurate performance evaluation and power

consumption.

Each traffic pattern has two versions, a recorded traffic pattern and a statistical one.

The statistical traffic pattern accelerates NoC exploration at the cost of accuracy. In

systematic traffic generation methodology shown in Figure 3.4, the process starts with

application and architectural models. Two types of traffic patterns are obtained through

steps including application mapping, scheduling, cycle-accurate simulation, and

statistical traffic generation.

11

Figure 3.4: Traffic generation methodology

The application model is simply a task communication graph while the architecture

model captures hardware resources including processing blocks and NoC.

3.6.3. NoC Framework

Luciano Ost et al. [44] introduced MAIA framework for NoC generation and

verification. MAIA generates different traffic patterns based on HERMES NoC. MAIA

automatically generates network interfaces using the OCP standard. The network is

built from parameterized templates, the design flow includes:

 NoC specification: Including topology, routing algorithm, flit width, buffer

size, and flow control.

 Traffic generation: Including network load, number of packets per IP, and

target IP whether fixed or random.

 Traffic analysis: A traffic analysis module reads the files generated during

simulation and produces a report including average time to deliver packets

and total simulation time.

The NoC components in the model library can be described in RTL VHDL, RTL

SystemC, and transaction level SystemC. Network interface is responsible for packet

segmentation and reassembly.

11

3.6.4. Statistical Traffic Model

Vassos Soteriou et al. [45] proposed NoC traffic model based on three statistical

parameters that capture spatio-temporal characteristics of NoC traffic. The tree

parameters are hop count, burstiness, and packet injection distribution. This model can

analyze any of the statistical components of any NoC traffic and also generate synthetic

network traffic. The model is validated against the real traffic traces of 30 applications

gathered from full system simulations of three vastly used general purpose chip multi-

processors (CMP). The 3-tuple traffic model is shown in Figure 3.5.

Figure 3.5: 3-tuple traffic model

The proposed traffic model has useful insights from traffic modeling and

generation in addition to synthetic traffic generation. The model captures spatio-

temporal characteristics with less than 5% error when compared actual NoC application

traces.

3.6.5. Effect of Traffic Localization:

Partha Pratim Pande et al. [13] studied the effect of traffic localization on energy

dissipation of different NoC architectures. Local communication reduces the need for

global wires and thus lowering the energy dissipation without compromising network

throughput. The modularity of NoC architecture allows a high degree of spatial locality

regarding inter-block communication. The blocks that communicate more frequently

are placed closer to each other. Thus reducing long global paths which tend to be the

dominant factor for energy dissipation. This work quantifies the amount of energy

saving by studying the effect of traffic localization on different NoC architectures.

11

The injected traffic follows self-similar distribution as it is found to be

approximation to real-word scenarios. Efficiency of NoC architecture was evaluated by

measuring energy versus throughput. The study proves decreasing the energy

dissipation as level of traffic localization increases.

3.6.6. Traffic Models for Benchmarking

NoC benchmarks has been divided into four categories: a synthetic benchmark,

algorithm-based kernels which focus on key algorithm isolated from the application,

running actual application which is the best solution but not always available, and

varying combinations of all the three benchmarks [46]. Esko Pekkarinen et al. [46]

presented a set of nine application traffic models for benchmarking NoC designs.

The common benchmarks allow fair comparison and accelerate NoC development.

The models focus on multimedia and telecommunication applications derived from

literature. The task graph for each application is captured into XML model representing

traffic. Other related work in [47] introduces high performance traffic generator based

on Intel Network Processor.

3.7. Performance Evaluation

Performance evaluation helps in computing latency and throughput at network

channels and interfaces. Also performance evaluation identifies congestion and hot

spots. There are two methods to evaluate performance in NoCs illustrated in Figure 3.6

[41]:

a- External evaluation: Where network is considered as black box and traffic

results are obtained from external network interfaces.

b- Internal evaluation: Where performance is computed at each network

channel.

Figure 3.6: (a) External evaluation; (b) Internal evaluation

11

Network optimization can be carried out first by identifying hot spots and critical

paths (through traffic generation and performance evaluation). Then structural

optimization can be carried out by inserting virtual channels, eliminate unused links,

and change routing algorithm or network topology. It is preferable for the system to

allow plug-and-play of alternative communication architectures for a given traffic

configuration [48]. This can be made through network interfaces which are architecture

-independent.

3.7.1. Performance Metrics

A standard set of metrics are used to compare and contrast NoC architectures and

evaluate NoC against SoC using shared bus.

a- Throughput: It is the rate of traffic transmitted through the system and can be

defined by [13]:

Throughput =
(𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑) × (𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ)

(Number of cores) × (𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒)

As number of cores is the same in case of SoC and NoC, it is omitted from

throughput calculations in this work.

Throughput of the network can also be defined by the data rate per second that the

network can accept [49]. Maximum throughput is achieved when the network reaches

saturation. Accepted traffic can be compared with offered traffic.

b- Latency: It is the time elapsed since packet is injected from source node till the

packet is fully received at destination [50]. Like throughput, the latency

depends on topology and flow control as well as routing algorithm. Zero-load

latency is considered ignoring latency due to contention. Latency can be

compared with offered traffic as well.

c- Power: Power dissipation includes dynamic power, static power, and clock tree

dissipation.

3.8. Conclusion

This chapter includes traffic generation discussion and literature survey for traffic

generation techniques. In the next chapter, simulation for NoC and SoC systems is

discussed. The results of NoC and SoC performance evaluation are illustrated in next

chapter.

11

Chapter 4 : Simulation and Results

4.1. Introduction

Simulation results of NoC and SoC are compared in this chapter. The simulation is

carried out using Mentor Graphics Vista tools. Vista is a native Electronics System

Level (ESL) tool for architecture design, verification analysis, and virtual prototyping

for high-level TLM hardware platforms. Vista uses TLM Scalable Modeling

Methodology relying on C/C++ market standards (gcc) [34]. It also includes TLM2.0

genetic model library that offers fast models for various processors and peripherals

from which AHB model for the bus SoC is used. Vista also offers a model builder with

convenience functions that facilitates building any model by defining ports, timing, and

power policies. And the tool creates SystemC templates based on TLM2.0 socket

initiators and targets.

The model builder offers models built on two completely separate layers:

 Programmer View (PV) with pure functional behavior layer.

 Timing (T) layer that captures power and timing information through some

timing policies in a top-down flow.

These separate models allow distinction between functionality and implementation.

They allow pure functional simulation (PV) or comprehensive timing and power

behavior simulation (PVT). Finally the tool offers schematic builder for system

assembly, SystemC debugger, and analysis tool used for measuring different metrics

such as throughput, latency, and power.

4.2. NoC Simulation

The same NoC router model is used throughout all simulations (2x2, 3x3, and

4x4). The system design of 2x2 network is shown in Figure 4.1:

11

Figure 4.1: 2x2 NoC

The cores are modeled using CPU models offered by Vista generic library; each

CPU contains the following ports:

1- master: master port initiates traffic packets through SystemC thread.

2- slave: slave port receives packets and prints the received packet through

callback function.

3- irq: interrupt request is de-asserted by a special CPU (initialize coordinates)

indicating that all routers’ coordinates are set correctly. Each master’s thread

cannot start initiating transactions unless the “irq” is de-asserted. This is the

synchronization pattern used for all active cores.

4.2.1. NoC Simulation Phases

The NoC simulation goes through the following phases:

a- Asserting interrupts for all cores.

b- Initializing coordinates for all routers.

c- De-asserting interrupts for all cores.

d- Each core starts initiating transactions.

11

There is a special CPU (Init_Cor) responsible for the setup phase by initializing the

coordinates of each router. The routers’ coordinates are essential for XY routing

algorithm. After initializing coordinates, Init_Cor sends interrupt signals to all cores in

order to start sending traffic and starting the evaluation. Therefore, the Init_Cor acts as

a synchronizer for the whole system. Init_Cor is not connected to the network and does

not contribute in performance evaluation. The CPU models do not include any time or

power policies in order not to affect throughput, latency, and power calculations of the

system. The calculations represent only the NoC and the SoC.

4.3. SoC Simulation

The same bus model is used throughout all simulations (4 cores, 9 cores, and 16

cores). The system design for 4 cores SoC is illustrated in Figure 4.2 (resembling 2x2

NoC):

Figure 4.2: 2x2 SoC

The used cores are CPU models similar to that used for NoC but the master and

slave ports for each CPU implements AHB bus protocol. The packets are routed to

destinations using the AHB bus address space.

4.4. Traffic Generation

A separate C code is used for traffic generation aided by “random” library for

random number generation according to Normal and Poisson distributions. The C code

11

generates random numbers in a text file for each core; the random numbers represent

AHB bus addresses which are later converted to corresponding router coordinates. This

guarantees the same traffic pattern is injected for NoC and SoC. The CPU thread of

each core reads the traffic text file and generates packets to the required destinations

respectively. There are some constraints added to traffic generation code in order not to

generate addresses out of address space bounds and also to ensure that no core sends

packets to itself. Another way to generate traffic that resembles real-life traffic is to use

non-constant bit rate where cores send packets at different time instances. This is

achieved by inserting random delay for each core; the random delay varies from zero to

ten clock cycles. The delay randomness follows Uniform distribution (using the default

”rand” C function). To summarize, the traffic pattern follows Uniform random traffic

pattern along with Constant Bit Rate traffic. The spatial distribution of the traffic

patterns follows Uniform, Normal, and Poisson distributions. The detailed traffic

generator code is listed in appendix C.

4.5. 2x2 Results

The routers’ coordinates for 2x2 NoC are illustrated in Figure 4.3

R1: 01 R3: 11

R0: 00 R2: 10

Figure 4.3: 2x2 Routers Coordinates

The corresponding address space mapping for 2x2 SoC is defined below:

CPU00: 0x00 (0 – 39)

CPU01: 0x28 (40 – 79)

CPU02: 0x50 (80 – 119)

CPU03: 0x78 (120 – 159)

The slave address size for each core is 0x28; the bus addresses are generated and

then mapped to corresponding router coordinates. The same clock frequency (100

MHz) is used for NoC and SoC simulations in order to guarantee fair comparisons. The

router coordinates in 2x2 networks need only 2 bits for encoding, the packet length is

fixed to 32 bits where 16 bits are used for payload and the rest are reserved for address.

4.5.1. Throughput

In Figure 4.4, the throughput of SoC and NoC are compared where each core sends

10 packets with constant bit rate. It is noticed that when only one core is active, the SoC

can over perform the NoC because of the multi access limitation.

12

Figure 4.4: Throughput for different active cores

When more than one core is active, the bus arbitrates between different packets and

some packets wait. The router can route packets targeting different addresses at the

same time. The throughput drop between two and three active cores is due to traffic

localization, where the traffic pattern in this experiment is uniformly distributed but

with constraints that CPU02 sends packets to CPU03 and CPU04 and CPU03 sends

packets to CPU04 only. This leads to a hot spot at CPU04 when three cores are active.

The normalized throughput for another experiment is shown in Figure 4.5 where all

cores are active and inject different traffic loads; the same traffic pattern is used with

constant bit rate after modifying the localization constraints. It is noticed that the

throughput slope for the NoC is increasing while the curve for SoC tends to saturate.

The traffic loads vary from 10 packets/core to 320 packets/core as shown on the x-axis.

The throughput percentage change is illustrated in Figure 4.6.

11

Figure 4.5: Normalized throughput for different traffic loads

Figure 4.6: Throughput percentage change (Constant Bit Rate)

Changing the traffic pattern to non-constant bit rate, and using Normal distribution

for spatial traffic pattern, the throughput curve for NoC still has an increasing slope

while the SoC throughput curve tends to saturate at high traffic loads as shown in

Figure 4.7. Throughput percentage change is illustrated in Figure 4.8.

11

Figure 4.7: Normalized throughput for Normal distribution traffic pattern

Figure 4.8: Throughput percentage change (Normal)

The Poisson distribution caused some hot spots where traffic destination is

centralized around CPU01 and CPU02 leading to some spikes in the throughput curves

as shown in Figure 4.9. Throughput percentage change is illustrated in Figure 4.10.

11

Figure 4.9: Normalized throughput for Poisson distribution traffic pattern

Figure 4.10: Throughput percentage change (Poisson)

4.5.2. Latency

The latency is measured by subtracting the time stamp of packet transmission from

the time stamp of packet reception. A histogram for the latency distribution of NoC

packets is shown in Figure 4.11 where the number of packets (frequency) is presented

on the Y-axis. Average latency for NoC is shown in Figure 4.12.

11

Figure 4.11: Latency distribution for NoC with constant bit rate

Figure 4.12: Average latency for NoC

The minimum latency for NoC packet is 20 ns while most of packets suffer from

30 ns latency. This is related to number of hops because the minimum number of hops

in NoC is three. For SoC using constant bit rate, the AHB bus transactions are blocking

leading to constant latency for all packets traversing the SoC as shown in Figure 4.13.

The latency is affected by number of active cores as it affects the waiting time for each

packet. The number of active cores is represented on the X-axis and distributed from 1

active core to 4 active cores. The latency on Y-axis is presented in nano seconds.

0

50

100

150

200

250

Fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

p
ac

ke
ts

)

Latency (ns)

320 packets/Core

11

Figure 4.13: SoC Latency

The SoC cores do not transmit packets at the same time when non-constant bit rate

is used. This leads to variable latencies for SoC as well as NoC. It is shown in Figure

4.14, Figure 4.15, Figure 4.16, and Figure 4.17 that for different traffic distributions,

most of NoC packets suffer from 20 ns latency while most of SoC packets suffer from

10 ns latency. This demonstrates that latency sensitive packets are not suitable for NoC

due to higher number of hops. Average latencies for NoC and SoC with different traffic

patterns are illustrated in Figure 4.18, Figure 4.19, Figure 4.20, and Figure 4.21.

Figure 4.14: SoC latency distribution (Normal)

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 More

Fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

p
ac

ke
ts

)

Latency (ns)

320 Packets/Core

11

Figure 4.15: NoC Latency distribution (Normal)

Figure 4.16: SoC Latency distribution (Poisson)

0

100

200

300

400

500

600

700

800

900

1000

20 30 40 More

Fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

p
ac

ke
ts

)

Latency (ns)

320 Packets/Core

0

100

200

300

400

500

600

700

10 20 30 40 50 60 More

Fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

p
ac

ke
ts

)

Latency (ns)

320 Packets/Core

11

Figure 4.17: NoC Latency distribution (Poisson)

Figure 4.18: Average NoC latency (Normal)

0

100

200

300

400

500

600

700

800

900

20 30 40 50 More

Fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

p
ac

ke
ts

)

Latency (ns)

320 Packets/Core

11

Figure 4.19: Average SoC latency (Normal)

Figure 4.20: Average NoC latency (Poisson)

11

Figure 4.21: Average SoC latency (Poisson)

4.5.3. Number of Hops

The number of hops is constant for SoC as there is only one AHB bus forming

constant number of two hops. In case of 2x2 NoC, the number of hops is three or four

in case of diagonal transmission. The numbers of hops for different traffic patterns are

illustrated in Figure 4.22, Figure 4.23, and Figure 4.24. The number of packets that

suffer from 3 or 4 hops is presented on the Y-axis.

Figure 4.22: Number of hops for 2x2 NoC (Constant Bit Rate)

12

Figure 4.23: Number of hops for 2x2 NoC (Normal)

Figure 4.24: Number of hops for 2x2 NoC (Poisson)

4.5.4. Power

Vista classifies power calculations into the following categories:

 Dynamic Power: A power number is specified for each timing policy. That

power is consumed from the time the word is transmitted during the latency

parameter time length of the policy.

 Static Power: A number is specified representing leakage power in mW.

 Clock Tree Distribution: Note that all models used in this work are

synchronous.

11

All power values are in mW and the nominal clock frequency is 100 MHz [30, 34].

These calculations ignore important aspects like length of wires which affects

capacitance and patristic resistance and consequently the static leakage power. Also the

dynamic power is more affected by number of transactions and for how long the

transaction occurs, this is true only if each transaction inverts all bits leading to

maximum dynamic power consumption. For these assumptions, the absolute power

values are neglected and the rate of change of power consumption is considered. Our

calculations focus on slope of power curve and compare it with the throughput curve

since the throughput-power is the most important metric in this work as cost-

performance is to be considered in NoCs. The following figures show the power

consumption in NoC and SoC for different traffic loads. Then a way to fit the non-

linear curves of power and throughput into linear regressions is discussed in order to

compare the slopes for each curve. The power consumption for different traffic patterns

is illustrated in Figure 4.25, Figure 4.26, and Figure 4.27. The curves of throughput and

power for NoC and SoC are illustrated in Figure 4.28, Figure 4.29, and Figure 4.30.

The power percentage increase for NoC vs. SoC is illustrated in Figure 4.31, Figure

4.32, and Figure 4.33.

Figure 4.25: Power comparison of NoC vs. SoC (Constant Bit Rate)

11

Figure 4.26: Power comparison of NoC vs. SoC (Normal)

Figure 4.27: Power comparison of NoC vs. SoC (Poisson)

11

Figure 4.28: Normalized Throughput and Power (Constant Bit Rate)

Figure 4.29: Normalized Throughput and Power (Normal)

11

Figure 4.30: Normalized Throughput and Power (Poisson)

Figure 4.31: Power Percentage Change (Constant Bit Rate)

11

Figure 4.32: Power Percentage Change (Normal)

Figure 4.33: Power Percentage Change (Poisson)

In order to compare the slops of throughput and power curves, data should be fitted

to linear regressions. Several plots such as Scatchard, Linewaver-Burk are used to

analyze non-linear regressions but they are outdated and not recommended to use.

Other tools like GraphPad Prism can fit data to linear regressions [51]. In this thesis, the

line of best fit is used to estimate the slope for non-linear curves. Line of best fit is

defined as a line centralized between the points of data in scatter plot. This function

estimates the best correlation of data points. The normalized throughput curves for SoC

and NoC is shown in Figure 4.34 which is plotted in scatter chart and line of best fit is

centralized between data points. The slope can be calculated easily for this line.

11

Figure 4.34: Line of Best Fit Example

The slopes for power and throughput of 2x2 results in different traffic patterns are

shown in Table 4.1. The throughput curves show higher throughput slopes than power

slopes across all traffic patterns.

Table 4.1: Comparison of Throughput and Power Curves

Traffic Pattern Throughput Power

Constant Bit Rate 37.4% 15%

Normal 5.16% 1.25%

Poisson 5.48% 3.75%

4.6. 3x3 Results:

It is assumed that the 2x2 network does not use the whole chip size, and expanding

the network size to 3x3 by adding 5 cores and 5 routers is using the same technology

and clock frequency. Also the wires length between each core and router is assumed to

be the same like 2x2 network. The router coordinates for 3x3 NoC are defined in Figure

4.35.

0010: R2 0110: R5 1010: R8

0001: R1 0101: R4 1001: R7

0000: R0 0100: R3 1000: R6

Figure 4.35: 3x3 routers coordinates

11

The address requires 4 encoding bits. The corresponding AHB bus address space is

defined as following:

CPU00: 0x00

CPU01: 0x28

CPU02: 0x50

CPU03: 0x78

CPU04: 0xA0

CPU05: 0xC8

CPU06: 0xF0

CPU07: 0x118

CPU08: 0x140

The same slave size is used for all simulations. The 3x3 NoC and SoC are

illustrated in Figure 4.36 and Figure 4.37 respectively.

Figure 4.36: 3x3 NoC

11

Figure 4.37: 3x3 SoC

4.6.1. Throughput

In 3x3 simulations, traffic using non-constant bit rate and Normal distribution are

considered. That is because Poisson distribution shows inconsistent results and spikes

in 2x2 charts. Normalized throughput for NoC and SoC is shown in Figure 4.38 while

throughput percentage change between NoC and SoC is shown in Figure 4.39.

Figure 4.38: Normalized throughput (Normal)

11

Figure 4.39: Throughput Percentage Change (Normal)

4.6.2. Latency

The latency histograms for 3x3 SoC and NoC are shown in Figure 4.40 and Figure

4.41 respectively.

Figure 4.40: SoC latency distribution

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 More

Fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

p
ac

ke
ts

)

Latency (ns)

320 Packets/Core

12

Figure 4.41: NoC latency distribution

Note that, increasing number of cores connected to the SoC increases the waiting

time and therefore the average latency increases. Therefore the latency sensitive

packets are more suited to NoC when many cores are active. Average latencies for SoC

and NoC are shown in Figure 4.42 and Figure 4.43 respectively.

Figure 4.42: Average SoC Latency

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 More

Fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

p
ac

ke
ts

)

Latency (ns)

320 Packets/Core

11

Figure 4.43: Average NoC latency

4.6.3. Number of Hops

The number of hops for SoC is still fixed to two. While for 3x3 NoC, the packet

can traverse 3, 4, 5, or 6 hops. The numbers of hops are illustrated in Figure 4.44 where

number of packets is presented on the Y-axis. The average number of hops is illustrated

in Figure 4.45.

Figure 4.44: 3x3 NoC number of hops

11

Figure 4.45: Average number of hops for 3x3 NoC

4.6.4. Power

Normalized power results for NoC and SoC 3x3 systems are illustrated in Figure

4.46, the power percentage change for NoC and SoC is illustrated in Figure 4.47, and

throughput and power curves are illustrated together in Figure 4.48.

Figure 4.46: Normalized Power for 3x3 NoC and SoC

11

Figure 4.47: Power percentage change

Figure 4.48: Normalized Throughput and power

The rate of change of throughput and power for SoC and NoC is shown in Table

4.2 using line of best fit technique. The throughput curves show higher throughput

slopes than power slopes like the case of 2x2 which proves that NoC scales as number

of cores increases.

11

Table 4.2: Comparison of Throughput and Power Slopes

SoC Throughput 0.0028%

Power 0.12%

NoC Throughput 0.039%

Power 0.28%

4.7. 4x4 Results:

There are 16 cores in 4x4 system which is the maximum number of masters for

single layer AHB bus SoC. The router coordinates for 4x4 NoC are defined in Figure

4.49.

R3: 0011 R7: 0111 R11: 1011 R15: 1111

R2: 0010 R6: 0110 R10: 1010 R14: 1110

R1: 0001 R5: 0101 R9: 1001 R13: 1101

R0: 0000 R4: 0100 R8: 1000 R12: 1100

Figure 4.49: 4x4 router coordinates

The address requires 4 encoding bits. The corresponding AHB bus address space is

defined as following:

CPU00: 0x00

CPU01: 0x28

CPU02: 0x50

CPU03: 0x78

CPU04: 0xA0

CPU05: 0xC8

CPU06: 0xF0

CPU07: 0x118

CPU08: 0x140

CPU09: 0x168

CPU10: 0x190

CPU11: 0x1B8

CPU12: 0x1E0

CPU13: 0x208

CPU14: 0x230

CPU15: 0x258

11

4.7.1. Throughput

Normalized throughput results for 4x4 systems are illustrated in Figure 4.50.

Throughput percentage change is illustrated Figure 4.51. Similar results are found in

4x4 case and it is noticed that SoC throughput saturates earlier as number of cores

increases.

Figure 4.50: Normalized Throughput (Normal)

Figure 4.51: Throughput Percentage Change (Normal)

11

4.7.2. Latency

Latency histograms for 4x4 SoC and NoC are illustrated in Figure 4.52 and Figure

4.53 respectively.

Figure 4.52: SoC latency distribution

Figure 4.53: NoC latency distribution

0

200

400

600

800

1000
1

0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

M
o

re

Fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

p
ac

ke
ts

)

Latency (ns)

320 Packets/Core

0

200

400

600

800

1000

1200

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

Fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

p
ac

ke
ts

)

Latency (ns)

320 Packets/Core

11

4.7.3. Number of Hops

For 4x4 NoC, the packet can traverse 3 to 8 hops. The numbers of hops are shown

in Figure 4.54 where number of packets is presented on Y-axis. The average number of

hops for NoC is illustrated in Figure 4.55.

Figure 4.54: 4x4 NoC number of hops

Figure 4.55: Average number of hops for 4x4 NoC

11

4.7.4. Power

The normalized power results for 4x4 systems are shown in Figure 4.56. Power

percentage change is illustrated in Figure 4.57. Power and throughput curves are

illustrated in Figure 4.58.

Figure 4.56: Normalized Power for 4x4 SoC and NoC

Figure 4.57: Power percentage change

11

Figure 4.58: Normalized Throughput and power

The rate of change for throughput and power are shown in Table 4.3. Like 2x2 and

3x3, the throughput slope is higher than power slope for NoC and SoC.

Table 4.3: Comparison of Throughput and Power Slopes

SoC Throughput 0.0032%

Power 0.16%

NoC Throughput 0.045%

Power 0.31%

12

Discussion and Conclusions

As number of Cores in SoC is increasing, NoC design paradigm dominates the SoC

development. This thesis implements TLM models for NoC and SoC (using shared bus

AHB protocol). TLM offers some capabilities like easy and fast development in

addition to evaluation of performance metrics like throughput which is best calculated

on transaction level. Different traffic patterns were examined such as constant bit rate,

non-constant bit rate in addition to some random patterns such as uniform, normal, and

Poisson. Different performance metrics are used for evaluation such as throughput,

latency, number of hops, and power. The power-throughput is the best representation of

cost performance problem for NoC design. The simulations examined different network

sizes and traffic loads. The results show that NoC outperforms SoC as traffic load

increases or number of cores increases. This is due to the multi-access shared buses

limitations. On the other hand, NoC shows higher power consumption due to larger

number of transactions but still the rate of change of throughput is higher than that of

power. Regarding latency, the SoC offers lower latencies for small number of cores

which is suitable for latency sensitive packets in system with limited number of cores.

When number of cores increases, the NoC outperforms SoC with low average latency.

11

Future Work

As network topology affects performance, the future work includes carrying the

same experiments on different topologies rather than mesh. The same concept applies

on routing algorithms; other adaptive routing algorithms can be tested. On the other

hand, the tested SoC used shared buses implementing AHB protocol. The AXI protocol

is another example for shared buses medium which is expected to show better results as

it supports multi-access for different masters with the same priority. The future work

also includes building RTL models for NoC and SoC and comparing RLT with TLM

models.

11

References

1. Sheibanyrad, A; Miro Panades, I; Greiner, A, "Systematic Comparison between the

Asynchronous and the Multi-Synchronous Implementations of a Network on Chip

Architecture," Design, Automation & Test in Europe Conference & Exhibition,

2007. DATE '07 , vol., no., pp.1,6, 16-20 April 2007

2. Benini, L.; De Micheli, G., "Networks on chips: a new SoC paradigm," Computer ,

vol.35, no.1, pp.70,78, Jan 2002

3. Pande, P.P.; Grecu, C.; Ivanov, A; Saleh, R., "High-throughput switch-based

interconnect for future SoCs," System-on-Chip for Real-Time Applications, 2003.

Proceedings. The 3rd IEEE International Workshop on , vol., no., pp.304,310, 30

June-2 July 2003

4. Mello, A; Tedesco, L.; Calazans, N.; Moraes, F., "Virtual Channels in Networks on

Chip: Implementation and Evaluation on Hermes NoC," Integrated Circuits and

Systems Design, 18th Symposium on , vol., no., pp.178,183, 4-7 Sept. 2005

5. Bononi, L.; Concer, N.; Grammatikakis, M.; Coppola, M.; Locatelli, R., "NoC

Topologies Exploration based on Mapping and Simulation Models," Digital System

Design Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro

Conference on , vol., no., pp.543,546, 29-31 Aug. 2007

6. Dally, W.J., "Virtual-channel flow control," Computer Architecture, 1990.

Proceedings., 17th Annual International Symposium on , vol., no., pp.60,68, 28-31

May 1990

7. Chouchene, W.; Attia, B.; Zitouni, A; Abid, N.; Tourki, R., "A low power network

interface for network on chip," Systems, Signals and Devices (SSD), 2011 8th

International Multi-Conference on , vol., no., pp.1,6, 22-25 March 2011

8. Nan Ni; Pirvu, M.; Laxmi Bhuyan, "Circular buffered switch design with wormhole

routing and virtual channels," Computer Design: VLSI in Computers and

Processors, 1998. ICCD '98. Proceedings. International Conference on , vol., no.,

pp.466,473, 5-7 Oct 1998

9. Tamir Y.; Frazier G. L., “High-performance multi-queue buffers for VLSI

communications switches,” ISCA '88 Proceedings of the 15th Annual International

Symposium on Computer architecture, 1988.

10. Nicopoulos, C.A; Dongkook Park; Jongman Kim; Vijaykrishnan, N.; Yousif, M.S.;

Das, C.R., "ViChaR: A Dynamic Virtual Channel Regulator for Network-on-Chip

Routers," Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM

International Symposium on , vol., no., pp.333,346, 9-13 Dec. 2006

11. Rabab Ezz-Eldin Rabea, “HIGH-PERFORMANCE AND LOW-POWER

NETWORK ON CHIP SWITCH,” Master of Science thesis.

12. Sayed Taha Muhammed, “NOC SWITCH TRAFFIC SIMULATION AND

PERFORMANCE ENHANCEMENT,” Master of Science thesis

11

13. Pande, P.P.; Grecu, C.; Jones, M.; Ivanov, A; Saleh, R., "Effect of traffic

localization on energy dissipation in NoC-based interconnect," Circuits and

Systems, 2005. ISCAS 2005. IEEE International Symposium on , vol., no.,

pp.1774,1777 Vol. 2, 23-26 May 2005

14. Mubeen, S.; Kumar, S., "Designing Efficient Source Routing for Mesh Topology

Network on Chip Platforms," Digital System Design: Architectures, Methods and

Tools (DSD), 2010 13th Euromicro Conference on , vol., no., pp.181,188, 1-3 Sept.

2010

15. Manevich, R.; Cidon, I; Kolodny, A; Walter, I, "Centralized Adaptive Routing for

NoCs," Computer Architecture Letters , vol.9, no.2, pp.57,60, Feb. 2010

16. Sheng-guang Yang; Li Li; Yu-ang Zhang; Bing Zhang; Yi Xu, "A power-aware

adaptive routing scheme for network on a chip," ASIC, 2007. ASICON '07. 7th

International Conference on , vol., no., pp.1301,1304, 22-25 Oct. 2007

17. Wang Zhang; Ligang Hou; Jinhui Wang; Shuqin Geng; Wuchen Wu, "Comparison

Research between XY and Odd-Even Routing Algorithm of a 2-Dimension 3X3

Mesh Topology Network-on-Chip," Intelligent Systems, 2009. GCIS '09. WRI

Global Congress on , vol.3, no., pp.329,333, 19-21 May 2009

18. Mejia, A; Flich, J.; Duato, J., "On the Potentials of Segment-Based Routing for

NoCs," Parallel Processing, 2008. ICPP '08. 37th International Conference on , vol.,

no., pp.594,603, 9-12 Sept. 2008

19. Mejia, A; Palesi, M.; Flich, J.; Kumar, S.; Lopez, P.; Holsmark, R.; Duato, J.,

"Region-Based Routing: A Mechanism to Support Efficient Routing Algorithms in

NoCs," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on ,

vol.17, no.3, pp.356,369, March 2009

20. Palesi, M.; Holsmark, R.; Kumar, S.; Catania, V., "Application Specific Routing

Algorithms for Networks on Chip," Parallel and Distributed Systems, IEEE

Transactions on , vol.20, no.3, pp.316,330, March 2009

21. Moreno, E.I; Marcon, C.AM.; Calazans, N. L V; Moraes, F.G., "Arbitration and

routing impact on NoC design," Rapid System Prototyping (RSP), 2011 22nd IEEE

International Symposium on , vol., no., pp.193,198, 24-27 May 2011

22. Salminen, E.; Kulmala, A; Hamalainen, T.D., "On network-on-chip comparison,"

Digital System Design Architectures, Methods and Tools, 2007. DSD 2007. 10th

Euromicro Conference on , vol., no., pp.503,510, 29-31 Aug. 2007

23. Harmanci, M.D.; Escudero, N.P.; Leblebici, Y.; Ienne, P., "Quantitative modelling

and comparison of communication schemes to guarantee quality-of-service in

networks-on-chip," Circuits and Systems, 2005. ISCAS 2005. IEEE International

Symposium on , vol., no., pp.1782,1785 Vol. 2, 23-26 May 2005

24. Sahu, S.; Kittur, H.M., "Area and power efficient network on chip router

architecture," Information & Communication Technologies (ICT), 2013 IEEE

Conference on , vol., no., pp.855,859, 11-12 April 2013

25. Bartels, C.; Huisken, J.; Goossens, K.; Groeneveld, P.; van Meerbergen, J.,

"Comparison of An Ã†thereal Network on Chip and A Traditional Interconnect for

A Multi-Processor DVB-T System on Chip," Very Large Scale Integration, 2006

IFIP International Conference on , vol., no., pp.80,85, 16-18 Oct. 2006

11

26. Manevich, R.; Walter, I; Cidon, I; Kolodny, A, "Best of both worlds: A bus

enhanced NoC (BENoC)," Electrical and Electronics Engineers in Israel (IEEEI),

2010 IEEE 26th Convention of , vol., no., pp.000876,000880, 17-20 Nov. 2010

27. Ling Wang; Jianye Hao; Feixuan Wang, "Bus-Based and NoC Infrastructure

Performance Emulation and Comparison," Information Technology: New

Generations, 2009. ITNG '09. Sixth International Conference on , vol., no.,

pp.855,858, 27-29 April 2009

28. Vainbrand, D.; Ginosar, R., "Comparing NoC architectures for neural networks,"

Electrical and Electronics Engineers in Israel (IEEEI), 2010 IEEE 26th Convention

of , vol., no., pp.000660,000664, 17-20 Nov. 2010

29. Grötker, T.; Liao, S.; Martin, G.; Swan, S., “System Design with SystemC,”

Hingham, MA, USA: Kluwer Academic Publishers, 2002

30. Mentor Graphics Vista Modeling Guide

31. ARM AMBA Specification (Rev 2.0)

32. Mentor Graphics Vista Tutorial

33. Sungho Park, “A VERIOG-HDL IMPLEMENTATION OF VIRTUAL

CHANNELS IN A NETWORK-ON-CHIP ROUTER,” Master of Science thesis

34. Mentor Graphics Vista User’s Manual

35. Leary, G.; Chatha, K.S., "Design of NoC for SoC with Multiple Use Cases

Requiring Guaranteed Performance," VLSI Design, 2010. VLSID '10. 23rd

International Conference on , vol., no., pp.200,205, 3-7 Jan. 2010

36. Kangmin Lee; Se-Joong Lee; Hoi-Jun Yoo, "Low-power network-on-chip for high-

performance SoC design," Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on , vol.14, no.2, pp.148,160, Feb. 2006

37. Murali, S.; Atienza, D.; Meloni, P.; Carta, Salvatore; Benini, L.; De Micheli, G.;

Raffo, L., "Synthesis of Predictable Networks-on-Chip-Based Interconnect

Architectures for Chip Multiprocessors," Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on , vol.15, no.8, pp.869,880, Aug. 2007

38. Mahadevan, S.; Angiolini, F.; Storoaard, M.; Olsen, R.G.; Sparsoe, J.; Madsen, J.,

"Network traffic generator model for fast network-on-chip simulation," Design,

Automation and Test in Europe, 2005. Proceedings , vol., no., pp.780,785 Vol. 2, 7-

11 March 2005

39. Zhonghai Lu; Jantsch, A, "Traffic configuration for evaluating networks on chips,"

System-on-Chip for Real-Time Applications, 2005. Proceedings. Fifth International

Workshop on , vol., no., pp.535,540, 20-24 July 2005

40. Hai-Hua Wen; Gao-Ming Du; Duo-li Zhang; Luo-Feng Geng; Ming-Lun Gao;

Ying-Chun Chen, "Design of an on-line configurable traffic generator for NoC,"

Anti-counterfeiting, Security, and Identification in Communication, 2009. ASID

2009. 3rd International Conference on , vol., no., pp.556,559, 20-22 Aug. 2009

41. Tedesco, L.; Mello, A; Garibotti, D.; Calazans, N.; Moraes, F., "Traffic Generation

and Performance Evaluation for Mesh-based NoCs," Integrated Circuits and

Systems Design, 18th Symposium on , vol., no., pp.184,189, 4-7 Sept. 2005

11

42. Grecu, C.; Ivanov, A; Saleh, R.; Rusu, C.; Anghel, L.; Pande, P.P.; Nuca, V., "A

flexible network-on-chip simulator for early design space exploration,"

Microsystems and Nanoelectronics Research Conference, 2008. MNRC 2008. 1st ,

vol., no., pp.33,36, 15-15 Oct. 2008

43. Weichen Liu; Jiang Xu; Xiaowen Wu; Yaoyao Ye; Xuan Wang; Wei Zhang;

Nikdast, M.; Zhehui Wang, "A NoC Traffic Suite Based on Real Applications,"

VLSI (ISVLSI), 2011 IEEE Computer Society Annual Symposium on , vol., no.,

pp.66,71, 4-6 July 2011

44. Ost, L.; Mello, A; Palma, J.; Moraes, F.; Calazans, N., "MAIA - a framework for

networks on chip generation and verification," Design Automation Conference,

2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific , vol.1, no.,

pp.49,52 Vol. 1, 18-21 Jan. 2005

45. Soteriou, V.; Hangsheng Wang; Li-Shiuan Peh, "A Statistical Traffic Model for

On-Chip Interconnection Networks," Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, 2006. MASCOTS 2006. 14th IEEE

International Symposium on , vol., no., pp.104,116, 11-14 Sept. 2006

46. Pekkarinen, E.; Lehtonen, L.; Salminen, E.; Hamalainen, T.D., "A set of traffic

models for Network-on-Chip benchmarking," System on Chip (SoC), 2011

International Symposium on , vol., no., pp.78,81, Oct. 31 2011-Nov. 2 2011

47. Antichi, G.; Di Pietro, A; Ficara, D.; Giordano, S.; Procissi, G.; Vitucci, F.,

"Design of a High Performance Traffic Generator on Network Processor," Digital

System Design Architectures, Methods and Tools, 2008. DSD '08. 11th

EUROMICRO Conference on , vol., no., pp.438,441, 3-5 Sept. 2008

48. Lahiri, K.; Raghunathan, A; Dey, S., "Evaluation of the traffic-performance

characteristics of system-on-chip communication architectures," VLSI Design,

2001. Fourteenth International Conference on , vol., no., pp.29,35, 2001

49. William James Dally, Brian Towles, "Principles and Practices of Interconnection

Networks", Morgan Kaufmann, 2004

50. Pande, P.P.; Grecu, C.; Jones, M.; Ivanov, A; Saleh, R., "Performance evaluation

and design trade-offs for network-on-chip interconnect architectures," Computers,

IEEE Transactions on , vol.54, no.8, pp.1025,1040, Aug. 2005

51. Harvey Motulsky; Arthur Christopoulos, “Fitting Models to Biological Data using

Linear and Nonlinear Regression,” GraphPad PRISM, Version 4.0

11

Appendix A: SystemC Code for Router Model

//Defined function for comparing coordinates of packet and current router

char Router_pv::compare_coordinates (unsigned short coordinates) {

 cout << name() << "@" << sc_time_stamp() << " Comparing Coordinates:

" << coordinates << endl;

 sc_uint<16> cord = coordinates;

 unsigned short cordx = cord.range(3, 2);

 unsigned short cordy = cord.range(1, 0);

 cout << name() << "@" << sc_time_stamp() << " Router Coordinates: "

<< Router_Coordinates << endl;

 Cx_Cy = Router_Coordinates;

 unsigned short Cx = Cx_Cy.range(3, 2);

 unsigned short Cy = Cx_Cy.range(1, 0);

 if (cordx > Cx) {

 return 'E';

 } else if (cordx < Cx) {

 return 'W';

 } else {

 if (cordy < Cy) {

 return 'S';

 } else if (cordy > Cy) {

 return 'N';

 } else {

 return 'C';

 }

 }

}

// Defined function for sending data on any input port

void Router_pv::send_data(unsigned int data) {

 cout << name() << "@" << sc_time_stamp() << " Sending Data: " << data

<< endl;

 sc_uint<32> dat = data;

 char dest_port;

 unsigned short coordinates;

 coordinates = dat.range(19, 16);

 dest_port = compare_coordinates(coordinates);

 cout << name() << "@" << sc_time_stamp() << " Destination port is: " <<

dest_port << endl;

 unsigned int key = data;

 ofstream hops_list;

 ofstream data_list;

 hops_list.open("hops_list.txt", std::ios::app);

 data_list.open("data_list.txt", std::ios::app);

 if (dest_port == 'N') {

 N_Ip_write (0, data);

 hops[key] += 1;

11

 } else if (dest_port == 'S') {

 S_Ip_write (0, data);

 hops[key] += 1;

 } else if (dest_port == 'W') {

 W_Ip_write (0, data);

 hops[key] += 1;

 } else if (dest_port == 'E') {

 E_Ip_write (0, data);

 hops[key] += 1;

 } else if (dest_port == 'C') {

 L_Ip_write (0, data);

 hops[key] += 1;

 hops_list << hops[key] << endl;

 data_list << data << endl;

 }

}

11

Appendix B: SystemC Code for CPU Model

void CPU_pv::thread() {

 unsigned int size = 1000;

 unsigned int wData [size];

 srand (5000);

 wait(irq.negedge_event());

 string IP = string(name());

 string cpu0 = ("CPU0");

 string cpu1 = ("CPU1");

 string cpu2 = ("CPU2");

 string cpu3 = ("CPU3");

 string cpu4 = ("CPU4");

 string cpu5 = ("CPU5");

 string cpu6 = ("CPU6");

 string cpu7 = ("CPU7");

 string cpu8 = ("CPU8");

 unsigned int found0 = IP.find(cpu0);

 unsigned int found1 = IP.find(cpu1);

 unsigned int found2 = IP.find(cpu2);

 unsigned int found3 = IP.find(cpu3);

 unsigned int found4 = IP.find(cpu4);

 unsigned int found5 = IP.find(cpu5);

 unsigned int found6 = IP.find(cpu6);

 unsigned int found7 = IP.find(cpu7);

 unsigned int found8 = IP.find(cpu8);

 if (found0 == 4) {

 unsigned int i = 0;

 string line;

 sc_uint<16> coordinates0[size];

 ifstream traffic0 ("traffic_file0.txt");

 while (getline (traffic0, line)) {

 coordinates0[i] = atoi(line.c_str());

 i++;

 }

 traffic0.close();

 for (unsigned int i = 0; i < size; i++) {

 sc_uint<16> payload0 = rand();

 double idle = rand() % 10;

 sc_uint<32> dat0 = (coordinates0[i], payload0);

 wData[i] = dat0;

 wait(idle*10, SC_NS);

 latency[wData[i]] = sc_time_stamp();

11

 cout << name() << "@" << sc_time_stamp() << "(" << dec <<

sc_delta_count() << ") Sending Data wData[" << i << "]" << wData[i] << endl;

 master_write(0, wData[i]);

 }

 }

94

Appendix C: C Code for Traffic Generation

#include <iostream>

#include <fstream>

#include <random>

using namespace std;

int main () {

 int size = 2000;

 std::default_random_engine generator;

 std::normal_distribution<double> distribution(180,180);

 ofstream traffic0;

 traffic0.open("traffic_random0.txt");

 for (unsigned int i = 0; i < size; i++) {

 unsigned int addr0 = distribution(generator);

 if (addr0 > 359) addr0 = 359;

 else if (addr0 < 40) addr0 = 40;

 traffic0 << addr0 << endl;

 }

 traffic0.close();

94

Publication

Amr Hany, Magdy A. El-Moursy, Hossam A. H. Fahmy, “Network Of Cores For

Large Systems, ” In The Proceedings of IEEE International Conference on Computer

Engineering and Systems, December 2014.

94

 ملخصال

تم عمل مقارنة بين أنظمة و شبكات الرقائق الالكترونية عن طريق نمذجة كل منهم على
التوجيه فى عدة أمثلة لشبكات ذات احجام مختلفة. تم تنفيذ نموذج جهاز المستوى الاجرائى.

ايضا تمت تجربة عدة أنماط و أحمال مختلفة للبيانات المرسلة عبر الشبكة. تم تقييم اداء النظم
و الشبكات تفصيليا باستخدام عدة مقاييس مثل الانتاجية و معدل استهلاك الطاقة. أوضحت

النسبة للانتاجية و بمعدل زيادة اعلى من معدل زيادة النتائج تفوق شبكات الرقائق الالكترونية ب
 استهلاك الطاقة كلما زاد حجم الشبكة.

 عمرو أحمد هانى محمد عبد القادر أحمد سالم :دسـمهن
 2801\80\12 تاريخ الميلاد:

 مصرى الجنسية:
 1888\28\2 تاريخ التسجيل:

\....\.... تاريخ المنح:
 الالكترونيات و الاتصالات الكهربيةهندسة القسم:
 العلوم ماجستير الدرجة:

 المشرفون:
 حسام على حسن فهمىد.

معهد بحوث , , قسم الالكترونيات الدقيقةمجدى على على المرسىد.
 الالكترونيات

 الممتحنون:
 فهمىحسام على حسن د.

معهد بحوث , مجدى على على المرسى, قسم الالكترونيات الدقيقةد.
 الالكترونيات

 د. تامر فريد البط
 . محمد أمين دسوقى, كلية الهندسة, جامعة عين شمسأ.د

 عنوان الرسالة:
 نمذجة على المستوى الاجرائى لشبكات و نظم الرقائق الالكترونية

 الكلمات الدالة:

 نمذجة على المستوى الاجرائى, شبكات الرقائق الاكترونية, نظم الرقائق الالكترونية

 :رسالةملخـص ال
تم عمل مقارنة بين أنظمة و شبكات الرقائق الالكترونية عن طريق نمذجة كل منهم

لشبكات ذات على المستوى الاجرائى. تم تنفيذ نموذج جهاز التوجيه فى عدة أمثلة
احجام مختلفة. ايضا تمت تجربة عدة أنماط و أحمال مختلفة للبيانات المرسلة عبر
الشبكة. تم تقييم اداء النظم و الشبكات تفصيليا باستخدام عدة مقاييس مثل الانتاجية و
معدل استهلاك الطاقة. أوضحت النتائج تفوق شبكات الرقائق الالكترونية بالنسبة

 معدل زيادة اعلى من معدل زيادة استهلاك الطاقة كلما زاد حجم الشبكة.للانتاجية و ب

 ضع صورتك هنا

 نمذجة على المستوى الاجرائى لشبكات و نظم الرقائق الالكترونية

 اعداد

 عمرو أحمد هانى محمد

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 الالكترونيات و الاتصالات الكهربيةهندسة

 :يعتمد من لجنة الممتحنين

 الدكتور: حسام على حسن فهمى المشرف الرئيسى

, قسم الالكترونيات الدكتور: مجدى على على المرسى عضو

 الدقيقة, معهد بحوث الالكترونيات

 الممتحن الداخلى البطتامر فريد الدكتور:

, كلية الهندسة, خارجىالممتحن ال دسوقى محمد أمين الاستاذ الدكتور:

 جامعة عين شمس

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

1025

 و نظم الرقائق الالكترونية نمذجة على المستوى الاجرائى لشبكات

 اعداد

 عمرو أحمد هانى محمد

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلوم ماجستير درجة على الحصول متطلبات من كجزء

 في

 الالكترونيات و الاتصالات الكهربيةهندسة

 تحت اشراف

 د. حسام على حسن فهمى د. مجدى على على المرسى

استاذ مساعد بقسم الالكترونيات

الدقيقة معهد بحوث الالكترونيات

 بالقاهرة

استاذ مساعد بقسم الالكترونيات و

الاتصالات كلية الهندسة جامعة

 القاهرة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

1025

 الاجرائى لشبكات و نظم الرقائق الالكترونيةنمذجة على المستوى

 اعداد

 عمرو أحمد هانى محمد

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلومماجستير درجة على الحصول متطلبات من كجزء

 في

 الالكترونيات و الاتصالات الكهربيةهندسة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

1025

