
PROPOSED OPENGL GPU ARCHITECTURE AND
IMPLEMENTATION OF LINE RASTERIZATION

ALGORITHM

By

Ahmed Ibrahim Samir Khalil

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2015

PROPOSED OPENGL GPU ARCHITECTURE AND
IMPLEMENTATION OF LINE RASTERIZATION

ALGORITHM

By

Ahmed Ibrahim Samir Khalil

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

Under the Supervision of

Prof. Serag E. D. Habib Prof. Hossam A. H. Fahmy
Professor Professor

Electronics and Communications Engineering Electronics and Communications Engineering
Department Department

Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2015

PROPOSED OPENGL GPU ARCHITECTURE AND
IMPLEMENTATION OF LINE RASTERIZATION

ALGORITHM

By

Ahmed Ibrahim Samir Khalil

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE
in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Serag E. D. Habib, Thesis Main Advisor

Prof. Hossam A. H. Fahmy, Thesis Advisor

Assoc. Prof. Amr G. Wassal, Internal Examiner

Prof. Hussein Esmail Shaheen, External Examiner
(Faculty of Engineering, Ain-Shams University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2015

Engineer’s Name: Ahmed Ibrahim Samir Khalil
Date of Birth: 18/07/1989
Nationality: Egyptian
E-mail: a.ibrahim.samir@cu.edu.eg
Phone: 01003988145
Address: Electronics and Communications Engineering

Department, Cairo University,
Giza 12613, Egypt

Registration Date: 01/10/2011
Awarding Date:/..../....
Degree: Master of Science
Department: Electronics and Communications Engineering

Supervisors:
Prof. Serag E. D. Habib
Prof. Hossam A. H. Fahmy

Examiners:
Prof. Serag E. D. Habib (Thesis Main Advisor)
Prof. Hossam A. H. Fahmy (Thesis Advisor)
Assoc. Prof. Amr G. Wassal (Internal Examiner)
Prof. Hussein Esmail Shaheen (External Examiner)

(Faculty of
Engineering,
Ain-Shams University)

Title of Thesis:

Proposed OpenGL GPU Architecture and Implementation of
Line Rasterization Algorithm

Key Words:
GPU; OpenGL; Line Rasterization Algorithm; Line Drawing; Incremental Linear
Interpolation

Summary:
The GPU has become an essential block for the embedded system devices. This thesis
introduces a CUGPU, the Cairo University GPU, architecture based on the OpenGL
ES 1.1 CL profile. CUGPU supports the fixed-function 3D graphics pipeline. Also,
two designs of the line rasterization algorithm were implemented using VHDL code
and synthesized at the TSMC 65 nm low power technology node. The first design
scores a typical clock frequency of 270 MHz and an area of 0.088 mm2. The second
design scores a typical clock frequency of 200 MHz and an area of 0.052 mm2.

Acknowledgments

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord
of the Heavens and Earth and peace be upon Mohamed and his companions.

First and foremost I would like to express my indebtedness and gratefulness to my
academic advisors: Prof. Serag E. D. Habib and Assoc. Prof. Hossam A. H. Fahmy.
It has been a pleasure to work with them and learn from such extraordinary advisors.
They have always made themselves available for help and advice with their boundless
enthusiasm and positive thinking.

Special thanks to my colleagues at Cairo University; especially Mohamed Wagih,
Ahmed Adel, Amr Mahmoud, Khalid Yehia, Mamdouh Hassan, Mahmoud Essam,
Khaled Elmasry, Safaa Ahmed, and Ahmed Reda for their continuous support and the
great times we had together throughout my work as a teaching assistant at the Department
of Electronics and Electrical Communications Engineering at Cairo University. They
made the graduate school a very enjoyable experience.

Last but not least, I want to thank my family, especially my parents, for their invalu-
able support during my whole life; After Allah, without their help and support I would
not have accomplished anything in my life.

Ahmed I. S. Khalil

June, 2015.

i

To my family and all my friends

iii

Table of Contents

Acknowledgments i

Table of Contents v

List of Tables xi

List of Figures xiii

List of Symbols and Abbreviations xv

Abstract xvii

1 Introduction 1
1.1 Goal and Motivation . 1
1.2 Results . 1
1.3 Organization of the Thesis . 2

2 Graphics Pipeline 3
2.1 Common Graphics Pipeline . 4

2.1.1 Vertex Processing . 5
2.1.2 The Primitive Assembly . 6
2.1.3 The Clipping Unit . 6
2.1.4 The Rasterization Unit . 7
2.1.5 The Texture Mapping Unit . 8
2.1.6 The Lighting Unit . 10
2.1.7 The Fragment Tests Unit . 11

2.2 Application Programming Interface (API) 12
2.2.1 Desktop-Based APIs . 12

2.2.1.1 DirectX . 13
2.2.1.2 OpenGL . 13
2.2.1.3 OpenCL . 13

v

2.2.1.4 CUDA . 14
2.2.2 Embedded Systems APIs . 14

2.2.2.1 Direct Mobile . 14
2.2.2.2 OpenGL ES . 14
2.2.2.3 OpenVG . 15

2.3 OpenGL ES 1.1 . 15

3 GPU Literature Survey 17
3.1 Desktop-Based GPUs . 18

3.1.1 Graphics Accelerator . 18
3.1.2 Fixed Function GPU . 19
3.1.3 Programmable GPU with Fixed Shader 20
3.1.4 Programmable GPU with Unified Shader 21
3.1.5 General-Purpose Computational GPU (GPGPU) 22
3.1.6 Accelerated Processing Unit (APU) 23
3.1.7 Future Micro-polygon Rendering GPU 24

3.2 Embedded System GPUs . 24
3.2.1 QUALCOMM GPUs . 24
3.2.2 ARM GPUs . 25
3.2.3 NVIDIA GPUs . 26

3.3 ARM Mali-200 . 26

4 CUGPU Architecture 27
4.1 Data Fetch Unit . 31

4.1.1 Register File . 31
4.1.2 Algorithm . 32

4.2 Matrix Construction Unit . 32
4.2.1 Register File . 32
4.2.2 Architecture . 35

4.3 Vertex Processing Unit . 36
4.3.1 Register File . 36
4.3.2 Architecture . 37

4.4 Primitive Assembly Unit . 37
4.4.1 Register File . 39
4.4.2 Algorithm . 39

4.5 Lighting Unit . 39
4.5.1 Register File . 39

vi

4.5.2 Architecture . 42
4.6 Clipping Unit . 43

4.6.1 Register File . 44
4.6.2 Architecture . 44

4.7 Post-Clipping Unit . 49
4.7.1 Register File . 49
4.7.2 Architecture . 49

4.8 Rasterization Unit . 51
4.8.1 Register File . 51
4.8.2 Architecture . 55

4.8.2.1 Point Rasterization . 55
4.8.2.2 Line Rasterization . 59
4.8.2.3 Triangle Rasterization . 60

4.9 Texture Handling Unit . 61
4.9.1 Register File . 62
4.9.2 Architecture . 63

4.9.2.1 System Fetch Unit . 63
4.9.2.2 Graphics Fetch Unit . 65
4.9.2.3 Format Conversion Unit 65
4.9.2.4 Auto Mipmapping Unit . 66

4.10 Texture Mapping Unit . 69
4.10.1 Register file . 69
4.10.2Architecture . 69

4.10.2.1Wrapping unit . 70
4.10.2.2 Filtering unit . 70
4.10.2.3 Texture unit . 73

4.11 Final Color Adapting unit . 73
4.11.1 Register File . 73
4.11.2Architecture . 74

4.12 Fragment Processing Unit . 74
4.13Conclusion . 75

5 Diamond-Exit Rule Line Rasterization 77
5.1 Line Rasterization Algorithms . 79
5.2 Our Modified Bresenham Algorithm . 81
5.3 Initial and final Conditions Handling . 85

vii

5.4 Incremental Linear Interpolation . 85
5.4.1 Color Interpolation . 87
5.4.2 Depth Interpolation . 87
5.4.3 Texture Coordinates Interpolation 88

5.5 RTL Implementation . 89
5.5.1 Step Calculation Unit . 92
5.5.2 Octant Switch Unit . 92
5.5.3 Offset Calculation Unit . 93
5.5.4 Initial Distance Unit . 94
5.5.5 Fragments’ Coordinates Generation Unit 96

5.5.5.1 Redundant Binary Representation 97
5.5.5.2 Hybrid PPM Adder . 97
5.5.5.3 Distance Sign Detection 99

5.5.6 Data Interpolation Unit . 99
5.5.6.1 Division Look-up Tables 100
5.5.6.2 Color and Texture Preparation 100
5.5.6.3 Incremental Interpolation Steps 101
5.5.6.4 Associated Data Generation 101

6 Results 103
6.1 Color Interpolation Approximation . 103

6.1.1 Test Case 1 . 105
6.1.2 Test Case 2 . 106

6.2 Synthesis Results . 107

7 Conclusion and Future Work 109
7.1 Conclusion . 109
7.2 Future Work . 109

References 111

A OpenGL ES 1.1 Commands 117
A.1 Data Fetch Unit Commands . 117
A.2 Matrix Construction Unit Commands . 119
A.3 Vertex Processing Unit Commands . 120
A.4 Lighting Unit Commands . 120
A.5 Clipping Unit Commands . 121
A.6 Post-Clipping Unit Commands . 121

viii

A.7 Rasterization Unit Commands . 122
A.8 Texture Handling Unit . 122
A.9 Texture Mapping Unit . 124
A.10Final Color Adapting Unit . 124

Arabic Abstract ا

ix

List of Tables

2.1 Subset of OpenGL ES 1.1 Products . 15

4.2 Materials and light models parameters 41
4.1 Light source’s parameters . 42
4.3 Materials and light models parameters 62
4.4 Pixel size for all valid format and type combinations 64
4.5 Valid color buffer and texture internal formats combinations 64
4.6 Conversion from RGBA pixel components to internal texture components . 64
4.7 Texture properties set . 67
4.8 Texture function parameters . 68
4.9 Valid color buffer and texture internal formats combinations 71

5.1 The line octant encoding . 92
5.2 The octant vertices transformation . 93
5.3 Redundant binary representation . 97
5.4 PPM cell truth table . 98
5.5 The initial and incremental steps of the fragments’ associated data 99

6.1 Analysis of line lengths for different objects and scenes 104
6.2 Color errors for line with △x = 25 . 105
6.3 Color errors for line with △x = 50 . 106
6.4 The synthesis results of line rasterization algorithm 108

xi

List of Figures

2.1 The graphics pipeline. 4
2.2 The sequence of vertex transformations 5
2.3 illustration of clipping process . 6
2.4 Representation of different shapes using triangle primitives. 7
2.5 Primitive drawing example. 9
2.6 Triangle texture mapping example. 10
2.7 The functions of the coordinate’s modes. 10
2.8 the fragment tests block diagram. 11

3.1 Evolution of graphics hardware before 2000 19
3.2 Programmable GPU with fixed shader architecture 21
3.3 Programmable GPU with unified shader architecture 22

4.1 the overall SoC architecture . 28
4.2 CUGPU block diagram . 29
4.3 The matrix construction block diagram: 34
4.4 Vertex processing block diagram . 38
4.5 The lighting unit architecture . 41
4.6 The clipping unit architecture . 44
4.7 Post-clipping unit block diagram . 45
4.8 Point rasterization flow chart . 52
4.9 Point area for different rasterization algorithms 53
4.10 Line rasterization flow chart . 57
4.11 Line area for different rasterization algorithms 58
4.12 Triangle flow chart . 61
4.13 Texture handling unit block diagram . 63
4.14Unsigned short formats . 65
4.15 Texture Mapping Architecture . 67

xiii

5.1 Diamond area. 78
5.2 The mid-point algorithm Illustration . 79
5.3 Bresenham algorithm flow chart . 80
5.4 Line drawing examples . 82
5.5 The check point distance . 82
5.6 Our line drawing algorithm flow chart . 84
5.7 Line rasterization algorithm flow chart: 90
5.8 Line rasterization architecture . 91
5.9 The octant switch block diagram . 93
5.10 The offset calculation block diagram . 94
5.11 The reduction tree of the initial distance 95
5.12 The fragment generation block diagram 96
5.13 PPM adder block diagram . 97
5.14 The associated data generation block diagram 101

6.1 Distribution of line’s lengths . 104
6.2 Line rasterization example △x = 25 . 105
6.3 Line rasterization example △x = 50 . 106
6.4 Area distribution of line rasterization algorithm 108

xiv

List of Symbols and Abbreviations

Symbols Description

(α,β,γ) Baracentric coordinates of the produced fragment relative to tri-
angle vertices.

(R,G,B,A) The components of the RGBA color.

(S ,T,R,Q) 3D homogenous texture coordinates.

(x,y,z,w) 3D homogenous vertex coordinates in the object space .

(xw,yw) Vertex coordinates in the window space.

f Associated data of the primitive.

L Luminance color component.

M The model view matrix.

m The slope of the line.

P The projection matrix.

t The interpolation value.

V The viewport matrix.

z The depth value.

Abbreviations Description

2D Two Dimensional.

3D Three Dimensional.

API Application Programming Interface.

APU Accelerate Processing Unit.

CL Common Lite.

xv

CM Common Mode.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

CUGPU Cairo University GPU.

CUSPARC Cairo University SPARC.

DSP Digital Signal Processing.

FPGA Field Programmable Gate Array.

GFLOPS Giga FLoating-point Operations Per Second.

GP General Purpose.

GPU Graphics Processing Unit.

IEEE Institute of Electrical and Electronics Engineers.

IP Intellectual Property.

LoD Level of Details.

LP Low Power.

OpenCL Open Computing Language .

OpenGL Open Graphics Library.

OpenGL ES Open Graphics Library for Embedded Systems.

OpenVG Open Vector Graphics.

PGA Professional Graphics Adapter.

RTL Register Transfer Language.

SM Streaming Microprocessor.

SoC System On Chip.

SPARC Scalable Processor Architecture.

TSMC Taiwan Semiconductor Manufacturing Company.

VGA Video Graphics Array.

VHDL VHSIC Hardware Description Language.

xvi

Abstract

The Graphic Processing Unit (GPU) has become an essential block for the embedded
system devices. The GPU’s main purpose is to accelerate the rendering of images, anima-
tions and videos. This process is essential for many devices such as smart phones, tablets,
and gaming devices. These devices are quickly becoming our most valuable personal com-
puters. Nowadays, we use the mobile devices to read email, browse the Web, take photos,
or play games. With this rising demand of graphics applications such as games, the rapid
development of embedded systems, and the enhancement of the functionality of the inte-
grated circuits for the smaller technology nodes, GPUs are used for the general-purpose
computations in addition to the graphics computations. However, their main target is the
reasonable performance with low power since the embedded systems’ applications are
simpler and resolutions are smaller.

Our motivation is to design and implement the Cairo University GPU (CUGPU), the
first embedded GPU in Egypt. We propose the CUGPU architecture based on Common-
Lite (CL) profile of the Open Graphics Library for Embedded System 1.1 (OpenGL
ES 1.1). CUGPU provides high-performance support of the fixed-function 3D graphics
pipeline. Moreover, CUGPU can be integrated with the Cairo University SPARC (CUS-
PARC) processor into a complete embedded system. Such a complete embedded system
may be used in educational or commercial kits and devices.

As a starting point to implement the CUGPU and to have a clear vision about the
hardware cost and performance, we implemented line rasterization algorithm that satisfied
the diamond-exit rule. In order to satisfy the diamond-exit rule conditions for line drawing,
wemodified the Bresenham algorithm by adjusting the initial distance. We also simplified
theOpenGL interpolation equations and reformulated them to be performed incrementally
and hence they are adapted to Bresenham algorithm.

Because we do not know definitely the bottleneck unit of the CUGPU, we imple-
mented two designs of the line rasterization. The first design targeted the maximum

xvii

frequency while the second design minimized the area for a reasonable frequency. We
then synthesized it at TSMC 65nm low power technology node. The first design scores a
typical clock frequency of 270 MHz and an area of 0.088 mm2. The second design scores
a typical clock frequency of 200 MHz and an area of 0.052 mm2.

xviii

Chapter 1

Introduction

1.1 Goal and Motivation

With the rising demand of graphics applications such as games and the rapid develop-
ment of embedded systems, GPU has become an essential block for the embedded system
devices for different purposes. Our team had developed the CUSPARC processor [1–3],
the first Egyptian embedded processor. So, our motivation is to design and implement the
Cairo University GPU (CUGPU), the first embedded GPU in Egypt based on OpenGL
ES 1.1 CL profile. Moreover, CUGPU can be integrated with the CUSPARC processor
into a complete embedded system. Such a complete embedded system may be used in
educational or commercial kits and devices.

1.2 Results

We proposed the CUGPU architecture based on the OpenGL ES 1.1 CL profile. It
satisfied the mandatory specifications only to minimize the power and area without dete-
riorating its performance. We implemented two design of the line rasterization algorithm.
The implementation and verification of the line rasterization algorithm is carried out at
TSMC 65nm low power technology node. The first design scores a typical clock fre-
quency of 270 MHz and an area of 0.088 mm2. The second design scores a typical clock
frequency of 200 MHz and an area of 0.052 mm2.

1

1.3 Organization of the Thesis

The thesis is organized as follows: Chapter 2 discusses the graphics pipeline and gives
an overview of the GPU-related APIs and their usages. Chapter 3 presents the evolution
of GPUs, their architectures, and their products. Chapter 4 discusses our CUGPU archi-
tecture and specifications. It also presents the register file, architecture, and algorithms of
each block. In chapter 5, we present our line rasterization algorithm. Also, we discuss our
hardware implementation of this algorithm. In chapter 6, the line rasterization algorithm
is verified using line samples of popular scenes. In addition, we present the synthesis
result of our design. Finally, we conclude the thesis in chapter 7 with presenting some
future work ideas.

2

Chapter 2

Graphics Pipeline

The Graphics Processing Unit (GPU) is a programmable logic device that accelerates
the rendering of images and animations for display devices. Rendering [4–7] is the process
of drawing objects by calculating the pixels that are covered by this object and sending
them to the screen. This rendering process can be classified into two categories:

1. The ray tracing, pixel-order rendering, is the process of looping over pixels, one by
one, and finding the objects that influence it. The image quality is higher than ras-
terization since it calculates the relation between all objects that affect the pixel, but
it needs more computational resources and consumes more time because it iterates
over the number of pixels.

2. The rasterization, object-order rendering, is the process of drawing objects, one by
one, by calculating the pixels that are occupied by the object primitives. Rasteri-
zation is more efficient than ray-tracing, especially for large primitives, because it
iterates over the primitives. So, it is more suitable for the interactive applications
such as games. However, it produces lower quality images.

The graphics pipeline is the sequence of operations that are required to render the images
objects, beginning by receiving vertices and ending by sending pixels to the screen. It
mainly includes the operation of transformation, lighting, clipping, rasterization, texture
mapping, culling, and fragments testing. Availability, order, and the corresponding imple-
mentation of these operations are based on the corresponding API. The mandatory units
are the transformations and rasterization blocks. The blocks can be re-ordered based on
the desired cost, performance, and image quality. Each block can be implemented by
fixed hardware, programmable hardware, or software. API is a high level set of functions,

3

Figure 2.1: The graphics pipeline.

variables, and data structures that are provided by libraries to support writing and modi-
fying the graphics and computational applications in a simple and flexible way. It defines
the functions, data types, and operations that are independent of their corresponding im-
plementation. So, implementer is free to design their GPU architectures that satisfy their
desired API. In this chapter, we discuss, in details, the common 3-stages graphics pipeline
in section 2.1. Then, we present an overview of the GPU-related APIs and their usages in
section 2.2. Finally, we discuss briefly the OpenGL ES 1.1 API in section 2.3.

2.1 Common Graphics Pipeline

Figure 2.1 shows the basic stages of the graphics pipeline [6]. It receives vertex co-
ordinates, colors, normal, and texture coordinates of the object from the application and
generates the pixels’ colors for the display. It consists mainly of vertex transformation,
primitive assembly, clipping, rasterization, texture mapping, lighting, and fragment tests.
First, the vertex processing unit transforms the vertex coordinates from the object space
to the screen space and makes the required transformations on the texture coordinates.
Then, the primitive assembly assembles the primitives from their coordinates based on
the primitive’s type (point, line, and triangle) and vertices’ indices. Then, the assembled
primitive is checked against the view volume in the clipping unit. The clipping unit may
pass, discard, or generate new primitives to the rasterization unit. The rasterization unit
determines the fragments that are covered by the primitives and calculates the fragments’
colors, texture coordinates, and normal by interpolating the colors, texture coordinates,
and normal of the primitives’ vertices, respectively. If the texture mapping is enabled, the
texture unit replaces incoming fragment’s color by the texture color. This color is fetched

4

Figure 2.2: The sequence of vertex transformations

from the texture image by the texture coordinates. Then, the lighting unit calculates the
final color of the fragment by performing shading computations on each fragment. This
depends on the light sources and environment effects. Finally, some tests are performed
on the fragment to determine if the corresponding pixel, in the frame buffer, is updated or
not.

2.1.1 Vertex Processing

The vertex processing unit [6] maps the incoming vertices’ locations, represented as
(x,y,z) coordinates in the object space, to the coordinates in thewindow space, represented
as (xw,yw). This process is divided into consecutive transformations as shown in Figure
2.2. First, the incoming vertices’ locations are transformed from the object space to the
world space. This transformation depends on the location of the object in the world space.
Then, the vertices are transformed to the eye space. In this space, the camera is placed
at the origin. It depends on the camera position and direction. Then, the resulting object
is projected from the 3D camera space to the 2D clip space. All visible points fall in the
range -1 to 1. There are two types of projection:

1. The perspective projection is the process of representing the 3D object on a 2D
surface to be seen as the original image in the 3D space. In this space, rays converge at
the camera location. The object size varies inversely with distance to look realistic; the
far objects appear smaller than the near objects. The distance and angles between objects
are not reserved.

2. The parallel projection is the process of representing the 3D object on a 2D surface
to be seen as if you looked from the front view. In this space, rays converge at infinity.
Parallel lines remain parallel and relative proportions of objects are deserved. The images
have less realistic look; the far away objects do not get smaller.

5

Figure 2.3: illustration of clipping process

Finally, the 2D clip space is transformed to the screen space. It is just a scaling to a
window with the width and height of the space.

2.1.2 The Primitive Assembly

The primitive assembly unit [6] constructs the primitive from the consecutive incom-
ing vertices based on the primitive type. For a point primitive type, each incoming vertex
belongs to a new primitive. For a primitive with a line type, the line is constructed from
two vertices based on the line type: line segment or line strip. For a triangle type, the
triangle is assembled from three consecutive vertices based on the triangle type. They
may be separated triangles, triangle strips, or triangle fans.

2.1.3 The Clipping Unit

The clipping unit [7] removes the portions of objects that are outside the view volume
or behind the eye because it may lead to incorrect results during rasterization of these
primitives and consumes more delay and power. For a point type, the clipping unit dis-
cards the incoming point if it is located outside the view volume. Otherwise, it passes
the point to the rasterization unit. For a line type, it is discarded if the two vertices are
located outside the view window and the line does not intersect the view window. If the
line intersects the view window, a new line is produced based on the intersection points.

6

Figure 2.4: Representation of different shapes using triangle primitives.

Otherwise, the line is passed to the rasterization unit. For a triangle type, it is discarded
if its vertices are located outside the view window and the triangle does not intersect the
view window. If the triangle intersects the view window, new triangles are produced
based on the intersection points. Otherwise, the triangle is passed to the rasterization unit.
Figure 2.3 illustrate the clipping function by demonstrating different cases of point, line,
and triangle primitives.

2.1.4 The Rasterization Unit

The rasterization [6]is the main operation in the rendering process. The post-clipped
primitives are fed to the rasterization unit. For each primitive’s vertex, there are window
coordinates, associated color, associated texture coordinates, normal, and depth. First,
the rasterization determines the fragments that are covered by the incoming primitive.
Then, it calculates the associated color, texture coordinates, normal, and depth for each
produced fragment by interpolating the primitive associated colors, texture coordinates,
normal, and depth, respectively. The basic primitive’s types are the lines and triangles
since any complex shapes can be represented by them, as shown in Figure 2.4, and their
geometry simplifies the rasterization operation. However, it may support circle, rectangle,
and ellipse primitives.

For a line primitive, as shown in figure 2.5a, there are many drawing algorithms based
on the line equation and how to use the relation between the consecutive fragments. The
most popular algorithms are the incremental Direct Drawing Algorithm (DDA), the mid-
point algorithm, the Bresenham algorithm, and the double-step mid-point algorithm. We
discuss the line drawing, in particular, in chapter 5. For a triangle primitive, as shown in

7

figure 2.5b, it can be implemented based on the line drawing method. The most popular
method is the scan-conversion method. It is based on drawing the triangles’ lines first.
Then, it draws the fragments located in the area between these lines. The colors, texture
coordinates, normal, and depth of the produced fragments are calculated by interpolat-
ing the colors, texture coordinates, and normal of the primitive vertices by the equation
f = f0 ∗α+ f1 ∗β+ f2 ∗γ where (α,β,γ) are the barycentric coordinates of the produced
fragment relatively to the primitive vertices. And (f0, f1, f2) are the associated data for the
three vertices of the primitive.

2.1.5 The Texture Mapping Unit

Rasterization produces fragments with its initial color. However, if the texture map-
ping [7] is enabled, the fragment’s initial color is replaced by or combined with a texture
color that is fetched from the active texture. The texture is an image that is used to add
extra details to the fragment to look realistic, especially for the complex surfaces. The tex-
ture mapping unit uses the associated texture coordinate (s, t,r), with each fragment, to
address the texture image and calculate the fragment color. Figure 2.6 shows an example
of mapping part from the texture image to the triangle area. The texture mapping process
depends on

1. The dimensions of the texture images. The texture may be 3D or 2D images. For
a 3D image, it is addressed using the texture coordinates (s, t,r); otherwise, the
texture coordinates (s, t) only are used.

2. The texture is a complete procedural or a table look-up.

3. The Filtering mode. For a table look-up, the texture unit depends on the magni-
fication or minification filtering method. It may be linear, nearest, or average. It
specifies how to calculate the texture for a general address from the look-up table.

4. The texture coordinates’ mode.

The standard coordinates (u,v) of the images are located in the interval [0, 1]. So, the
texture coordinates have to be transformed to this bounded interval. The coordinates’
modes are clamping or repeated. Each of these modes is applied per component of a
texture. Figure 2.7 illustrates the texture coordinates’ modes by describing the relation
between the input texture coordinate (s) and the used texture coordinates f (s).

8

(a) Line drawing.

(b) Triangle drawing.

Figure 2.5: Primitive drawing example.

9

2.1.6 The Lighting Unit

The lighting unit [6, 7]calculates the final color of the fragment by applying the shad-
ing model. Shading is the process of finding the color of each pixel. In general, there are
three standard shading models:

1. Flat shading which uses the same color for all fragments that are produced from the
same primitive.

2. Gouraud shading performs the shading computations on the vertices based on the
light sources’ locations and colors before the rasterization. Then, the fragment color
is calculated by interpolating the lighted vertices’ colors.

3. Phong shading which calculates per-fragment normal by interpolating the associ-
ated normal with the vertices in the rasterization stage. Then, it calculates the shad-
ing computations on each fragment separately according to its location, its normal,

Figure 2.6: Triangle texture mapping example.

Figure 2.7: The functions of the coordinate’s modes.

10

the light sources’ location, and the light sources’ color. For a fixed-function graph-
ics pipeline, it supports the flat and Gouraud shading only. But a programmable
graphics pipeline may also support the Phong shading before it requires more com-
putations resources.

Also, the lighting effects are determined, based on type of the light source and the material
of the primitive. These materials give the object surface characteristics to represent that
the object may emit light beside the reflection. The standard types of light sources are

1. Directional lights that are located at infinity and the directions of the light rays are
parallel such as the sun.

2. Point lights that are located at finite locations and their light rays are in all direction.

3. Spotlights that are located at finite locations, but emit light only within a cone.

2.1.7 The Fragment Tests Unit

Finally, some tests are performed on the fragment before updating the fragment buffer.
The essential tests are scissor test, stencil test, depth buffer test, and blending test. Each
test checks conditions on the incoming fragment to decide whether to discard or pass the
fragment as shown in figure 2.8. First, the scissor test determines if the incoming frag-
ment lies within the scissor rectangle defined by four input values from the user. If the
fragment is located inside this window, the fragment is passed to the stencil test; other-
wise, the fragment is discarded. Then, the stencil test conditionally discards a fragment
based on the outcome of a comparison between the value in the stencil buffer at the frag-
ment location and a reference value defined by the user. Then, the depth test discards
the incoming fragment if a depth comparison fails. Generally, it checks if the incoming

Figure 2.8: the fragment tests block diagram.

11

fragment is closer than the stored fragment to the camera or not. If the incoming frag-
ment has less depth than the stored depth value, the stored fragment is replaced by the
incoming fragment; otherwise, the fragment is discarded. Finally, the blending combines
the incoming fragment color components (Red, Green, Blue) with the stored pixel color
according to the transparency value (Alpha) to generate the final color of the pixel and
update the frame buffer.

2.2 Application Programming Interface (API)

The Application Programming Interface (API) [8–10] is a set of functions, variables,
objects, and data structures for building the software application. It defines the tasks and
functions of a system, such as hardware driver or video card; regardless of its implemen-
tation in order to make the building of applications simpler and more flexible. It is often
provided by libraries that include the specification for routine, classes, and variables.

In the graphics case, the API defines the functions of the graphics pipelines regard-
less of the implementation of the graphics hardware. It may be designed as a dedicated
hardware such as GPU. Also, it may be implemented as a software library running on the
CPU. Or, it may be implemented using the CPU and GPU both. It defines the graphics
pipeline units such as vertex processing, rasterization, and lighting. For each unit, it de-
fines its function and its specifications. Also, it defines commands that are used to control
its function if applicable. There are many APIs that are defined for the desktop-based
and embedded systems’ graphics pipeline. For the desktop-based, the most popular APIs
are DirectX, CUDA, OpenGL, and OpenCL. For the embedded based, the corresponding
APIs are Open GL ES, OpenVG, and DirectMobile. Each API may have different ver-
sions; some for the fixed-function graphics pipeline and the other for the programmable
graphics pipeline. We discuss briefly the different APIs for the desktop and embedded
graphics pipelines.

2.2.1 Desktop-Based APIs

The Desktop-Based GPU have many APIs. Some APIs are related to the graphics
processing on the GPU and the others concern about the general computations on the GPU.
Most APIs are hardware independent. However, some APIs target a specific hardware
such as CUDA. The performance is the main target for these APIs.

12

2.2.1.1 DirectX

DirectX [11] is themost popular API group for supporting themultimedia applications
on the desktop PCs. It is a collection of APIs for handling graphics and sounds tasks, on
Microsoft platform, such as Direct3D, Direct2D, DirectCompute, DirectDraw, DirectMu-
sic, DirectPlay, DirectSound. It is included with window 95 and all subsequent releases.
The DirectX 7 is the last API support fixed-function graphics pipeline. The main APIs
that are related to the GPU are

1. Direct3D. It concerns about the rendering process of the three-dimensional graphics.
Its applications mainly target the high performance such as 3D-games. It discloses
the graphics capabilities of the 3D graphics hardware such as clipping, culling, and
texture mapping. Its C++ library is D3DX.

2. Direct2D. It concerns about the rendering of the 2D and vector graphics on the Mi-
crosoft platforms. It takes the advantage of existence of the hardware acceleration
units.

3. DirectCompute. It is an API that supports the execution of the general-purpose
computations on the graphics processing units. It is supported on DirectX 11 GPUs.

2.2.1.2 OpenGL

OpenGL [9, 12] is an open standard API for rendering the 2D and 3D graphics.
OpenGL is a cross-platformAPI, not a specific platform. So, GPUs often have anOpenGL
implementation. The graphics applications can be used on different types of graphics hard-
ware. OpenGL is supported onWindows 95 and the subsequent versions, Linux, and Mac
OSX. There are different generations for the OpenGL

1. OpenGL 1.x generation is an API for the fixed-function graphics pipeline.

2. OpenGL 2.x and 3.x generations supported both fixed and programmable graphics
pipeline functionality.

3. OpenGL 4.x generation supports the programmable function graphics pipeline only.

2.2.1.3 OpenCL

OpenCL [13] is open-standard, cross-platform, API to support the general-
computation execution on the programmable devices. It specifies APIs to execute the

13

application across the heterogeneous platforms consisting of CPUs, GPUs, DSPs, and
FPGAs. The OpenCL 1.1 was released in 2009.

2.2.1.4 CUDA

CUDA [14] is not just API. But, it is a parallel computing platform that is implemented
on the NVIDIA’s GPUs. NVIDIA intended to accelerate the execution of the general-
purpose computations on their GPUs. It provides two APIs

1. CUDA driver API, a low-level API

2. CUDA runtime API, a higher level API that is implemented over the CUDA driver
API.

2.2.2 Embedded Systems APIs

The APIs for Embedded Systems are driven from the Desktop-based APIs. But, the
main target is the reasonable performance with low power since the embedded systems’
applications are simpler and resolutions’ are smaller. The popular APIs are OpenGL ES,
OpenVG, and Direct Mobile.

2.2.2.1 Direct Mobile

Direct3D Mobile is the embedded systems’ API that supports for the 3-D graphics
application running on Windows CE-based platforms. It belongs to the DirectX family.

2.2.2.2 OpenGL ES

OpenGL ES [8, 9] is the embedded systems generation of the OpenGL. It is an open
standard API for rendering the 2D and 3D graphics. OpenGL is a cross-platform API, not
a specific platform. There are different versions for the OpenGL ES

1. OpenGL ES 1.1 is an ES API for the fixed-function graphics pipeline, derived from
the Open GL 1.5.

2. OpenGL ES 2.x and 3.x versions supports programmable graphics pipeline func-
tionality.

14

2.2.2.3 OpenVG

OpenVG [10]is an embedded systemAPI designed for hardware-accelerated 2D vector
graphics.

2.3 OpenGL ES 1.1

OpenGL ES 1.1 [8, 15] is embedded fixed-function hardware OpenGLAPI. It is based
on the OpenGL 1.5 graphics system, but is designed for graphics hardware running on
embedded devices. Its features are more adapted for the embedded devices and their com-
putational abilities. It is fully compatible with Open GL ES 1.0. It enhanced functionality
to improve the performance and save the power. OpenGL ES 1.1 is implemented in more
than 180 commercial products. It is supported by different operating systems such as An-
droid and iOS by enormous vendors as NVIDIA, Apple, ARM, QUALCOMM, and Intel.
Table 2.1 shows a subset of these products.

There are two profiles for OpenGL ES 1.1: Common mode (CM) and Common-Lite
(CL). The common-lite profile targets the systems of simpler graphics and it supports
the fixed-point operations only whereas the common profile targets a wider range of ap-
plications and supports the high performance floating-point formats. The Common-Lite
profile supports only commands taking fixed-point arguments, while the Common profile
also includes many equivalent commands taking floating-point arguments.

OpenGL ES 1.1 supports different features for the graphics pipeline

1. Draw arrays. It supports drawing the primitive from vertices, colors, and texture co-
ordinates that are stored in the system memory arrays. It can draw them as points,
line strips, line loops, separate lines, triangle strip, triangle fans, and separate trian-
gles.

Table 2.1: Subset of OpenGL ES 1.1 Products

Vendor Products Operating System
ARM Mali T720 Linux 3.4
Intel Processor Z3000 series Android 4.2.2
Apple Apple iPhone 4 iOS 7

QUALCOMM MSM 8610 Android 4.3
NVIDIA Tegra 3 Android 4.1

15

2. Buffer objects. User may choose to create buffer object and store the vertices and
their associated data in the fast graphics memory. Then, they can be rendered from
graphics memory directly. This improves the performance.

3. Point Sprites. It supports different sizes, fetch from size array, for the points instead
of the single size of the array’s points. Also, the texture coordinates are interpolated
across the point

4. User-defined clip planes. It allows the user to define clip-planes that may increase
performance and save power.

5. Texture processing. It enhances the texture mapping by supporting two texture units
at minimum. Also, it uses the texture combiner functionality for improving 3D
effects.

6. Direct Control. It provides a direct control over the 2D and 3D fundamental opera-
tions such as the lighting, antialiasing, and texture mapping.

16

Chapter 3

GPU Literature Survey

Over the last 35 years, the graphics hardware has evolved dramatically from a simple
frame buffer to an enormous heterogeneous system of hundreds of cores. Initially, only a
frame buffer was used to store the color values of pixels that can be displayed on the screen.
Then, the CPU was used to perform some operations to accelerate the rendering process
such as transforms and lighting. Then, a dedicated hardware, the Graphics Processing
Unit (GPU), was involved to perform the graphics operations. Currently, a heterogeneous
system that consists of CPUs, GPUs, and FPGAs programmable devices is used to perform
the graphics processing. Additionally, the graphics hardware is used to carry out massive
general-purpose computations.

To satisfy the requirements of graphics and general-purpose applications, GPU’s ar-
chitecture has been developed dramatically from fixed-function architecture to the unified-
shader programmable architecture. The NVIDIAGeForce 256, the first commercial GPU,
is a fixed-function architecture. Today, most GPUs are stream processors based on the
unified-shader architecture. GPUs evolved based on the rising demand of the graphics ap-
plications and the enhancement of speed, computational power, and functionality of the
integrated circuits for the smaller technology nodes. Nowadays, GPUs may be located in
a wide range of systems such as desktops, laptops, and mobile phones. Their hardware
units are used for the graphics and general-purpose computations.

In this chapter, we discuss the evolution of GPUs, their architectures, and their prod-
ucts. We start by a survey of the GPUs that are used in the Desktop-based systems in
section 3.1. Then, we discuss briefly the embedded GPUs in section 3.2. Finally, we
focus on ARM Mali-200 GPU as an example of GPUs that support the OpenGL ES 1.1
in section 3.3.

17

3.1 Desktop-Based GPUs

GPUs originally targeted the desktop-based systems. They were implemented to exe-
cute the graphics pipeline. The main corporations are NVIDIA and AMD. Before 1999,
the graphics operations were executed on the GPU and CPU. In 1999, the first stand-
alone GPU was introduced by NVIDIA. It was a fixed-function architecture. From this
time, all graphics operations could be performed on the GPU. In 2001, NVIDIA released
the GeForce 3 that was the first programmable GPU. In 2006, the GeForce 8800 is the
first unified-shader architecture. In 2010, the Fermi Architecture, released by NVIDIA,
was the first GPU architecture that allowed the execution of the general-purpose compu-
tation on the GPU. In 2011, AMD released Llano, the first Accelerated Processing Unit
(APU). APU is a single chip that contains the CPU and GPU on the same chip. In 2010,
Fatahalian [16–18] introduced a real-time graphics pipeline for micro-polygon rendering
as the next era graphics pipeline. His architecture targets the high-performance but its
cost is high.

3.1.1 Graphics Accelerator

The first GPU was introduced in 1999. Before 1999, the graphics hardware was just
supported hardware to accelerate the rendering process. Till 1980, the graphics hardware
[19] was just integrated frame buffer that is used to store the pixels’ colors. In 1984,
IBM released the Professional Graphics Adapter (PGA), the first video card for the PC. It
was responsible for all tasks that were related for drawing and coloring the polygons. It
was an important step in the evolution of the graphics hardware because this was the first
time to think about having a separated hardware for the graphics processing. But, it did
not achieve market success due to its high cost and lack of compatibility with non-IBM
applications.

In 1987, more features had to be supported with the graphics pipeline such as ver-
tex lighting, rasterization, and color blending. These operations were performed on the
CPU due to the computations limitations of graphics hardware at this time. In mid-1990s,
3DFX, NVIDIA, and AMD released their Voodoo, TNT, and Rage 3D graphics boards, re-
spectively. However, they still could not handle more than one triangle simultaneously. In
1996, 3DFX released a new Voodoo version that was considered the first actual 3D game
card. It only offered 3D acceleration. The CPU still did vertex transformations, light-
ing, and clipping while the graphics card performed texture mapping and rasterization.

18

With the increase of the computational power of the graphics hardware, it was responsi-
ble for more tasks such as lighting and clipping as shown in figure 3.1. In 1999, NVIDIA
GeForce 256, the first GPU took the full responsibility of the graphics tasks including
vertex transformations, lighting, clipping, rasterization, and blending.

3.1.2 Fixed Function GPU

In 1999, NVIDIA released GeForce 256 GPU [20], the first graphics hardware that did
the all graphics pipeline operations. It was a single chip GPU that performs vertex trans-
formation, lighting, clipping, primitive-assembly, rasterization, texture mapping, culling,
and blending. It was known as fixed-function pipeline because after the graphics data is
sent to the GPU’s pipeline, this could not be changed.

Each unit is controlled by some parameters to operate on the graphics data. For ex-
ample, the vertex transformation is loaded by the model-view and projection matrices to
control the transformation of the object’s vertices. The clipping unit is controlled by the
view volume that defines the drawing region. The lighting unit needed the locations and
directions of light sources, the shading model and so on. GeForce 256 series supports
DirectX 7.0 and OpenGL 1.2. Also, ATI releases Radeon R100 [21], the first ATI’s GPU
with the fixed-function pipeline. It was fully compliant with DirectX 7 and OpenGL 1.2.

Figure 3.1: Evolution of graphics hardware before 2000

19

The main drawback of the fixed function pipeline was the inflexibility of the GPU fea-
ture since the OpenGL and DirectX APIs were implemented in the hardware. That’s why
NVIDIA and ATI produced their programmable GPUs.

3.1.3 Programmable GPU with Fixed Shader

To overcome the inflexibility problems, NVIDIA and ATI modified their architec-
tures gradually [21]. They replaced parts of the fixed-function pipeline’s units by the
programmable ones. It allows the programmers to program parts of the graphics pipeline.
They wrote shaders that operate on the objects’ data. These shaders are programs that
are written in assembly-like shader languages to set each programmable unit. In 2001,
NVIDIA released the GeForce 3 series, the first GPUs that had some programmable parts.
The vertex processing unit is replaced by a vertex shader unit. They support the DirectX
8.0 and OpenGL 1.3. Then, ATI released a similar GPU, Radeon R200. It supports
OpenGL 1.4 and DirectX 8.1.

In 2002, the first fully programmable GPUs were introduced. NVIDIA and ATI re-
leased the GeForce 5 and Radeon R300 series, respectively. These GPUs had separate
vertex and fragment programmable processors as shown in figure 3.2. So, the programmer
can write two shaders: vertex shader and fragment shader. Vertex shader was responsi-
ble for transforming the vertices’ coordinates from the object space to the screen space.
Also, it produced the texture coordinates and lighted the vertices, while fragment shader
was responsible for calculating the final pixel color and performing the texture mapping.
GeForce FX and Radeon R300 both supported the DirectX 9.0 and OpenGL 2.0.

In 2004, NVIDIA and ATI released the GeForce 6 series [22]and Radeon R420 se-
ries, respectively. They were updated versions that enhanced the buses, the speed, and
the shader languages. They supported the DirectX 9.0 and OpenGL2.1. The graph-
ics pipeline, as shown in figure 3.2, contains programmable vertex processors, a fixed
clipping unit, a fixed rasterization unit, a programmable fragment processor, and fixed-
blending units. The main disadvantage is that the performance may be degraded based
on the fragment and vertex payloads ratio of the application. For some applications, the
vertex processors may be idle whereas the fragment processors are fully occupied and vice
versa.

20

Figure 3.2: Programmable GPU with fixed shader architecture

3.1.4 Programmable GPU with Unified Shader

In 2006, the GPUs were exposed as streaming processor [21]. NVIDIA released the
GeForce 8 GPUs series. GeForce 8 series was the first programmable GPUs with unified
processors. The unified processor, called the Streaming Microprocessor (SM), is a simple
core that can handle vertex, geometry, and fragment computations as shown in figure 3.3.
So, the vertex, geometry, and fragment shaders could be considered as threads. These
threads could be run on any SM and graphics pipeline become a software abstraction.
ATI released the TeraScale 1 family, its first unified programmable GPU family. Both
GeForce 8 and TeraScale 1 were fully-compliant with DirectX 10 and OpenGL 3.3.

Figure 3.3 demonstrates an example of unified GPU’s architecture; the GeForce 8800
[23] architecture. It is considered as a stream of programmable processors that can run the
vertex, geometry and fragment programs based on the application. So, the same processor
may execute the vertex thread on the input vertices, the geometry thread on the input
primitives, or the fragment thread on the input fragments.

21

Figure 3.3: Programmable GPU with unified shader architecture

3.1.5 General-Purpose Computational GPU (GPGPU)

With the rapid evolution of GPUs from a fixed graphics processor to a programmable
parallel processor, the GPUs become a many-core multiprocessor that carries out both
graphics and general-purpose computations applications [24]. Nowadays, GPUs use hun-
dreds of parallel processor cores to rapidly perform large amounts of parallel computa-
tions.

After the introduction of the fully programmable GPU in 2002, programmers looked
forward for performing the general purpose computations on this programmable hardware.
In 2003, a new era of GPU usage was started by introducing the DirectX 9. DirectX 9
allowed the programmers to carry out their non-graphics programs on the GPU by taking
advantage of the programmable hardware. In 2006, the unified-shader GPUs improved
the usage of GPU resources to carry out the non-graphics, general purpose computations.
The GeForce 8800 was the first unified GPU that supports graphics and general-purpose
computations. It could be programmed in C with CUDA for computing. From 2007 to
2009, NVIDIA released GeForce 8, 9, 100, 200, 300 series that were based on the Tesla
architecture [25]. For example, GeForce GTX 280 is a unified graphics and computing

22

GPU that featured IEEE single precision floating point arithmetic. It supports CUDA,
OpenGL, and DirectCompute.

From late 2009 to 2012, NVIDIA released the GeForce 300, 400, 500, and 600 series,
the first GPU designed for the GPGPU computations. It is based on the Fermi architecture
[26, 27]. Fermi’s capacity for general-purpose computations has delivered great improve-
ments in games and multimedia applications. However, Fermi architecture has delivered
all features that were required for the high performance applications. It is compliant with
IEEE 754-2008, the IEEE standard for floating point arithmetic that was released in 1985
and revised in 2008. Its addressing model is linear with caching at all levels. It supported
OpenCL, CUDA, and DirectCompute. Also, it could be programmed using C++, Java,
and MATLAB.

In 2013, NVIDIA released the GeForce 700 series based on the Kepler architecture.
Kepler architecture mainly focused on improving the energy efficiency. For example, two
Kepler cores consume 90% of one Fermi core power. NVIDIA presented Kepler GK110
as the most efficient high performance architecture ever built. Kepler GK110 achieved
great improvement in power efficiency with respect to performance. It delivered up to
3x the performance per watt of Fermi. It supported DirectX 11, OpenGL 4.5 and CUDA
3.5. It helps to solve difficult computing problems for different areas such as the signal
processing, biochemistry simulations, computer aided engineering and data analysis. In
2014, NVIDIA released the GeForce 900 series that were based on the Maxwell architec-
ture. Maxwell architecture [28] could be considered as an improved version of the Fermi
architecture. Finally, NVIDIA announced that Pascal GPU is the graphics architecture to
come after the Maxwell architecture and is due to appear in 2016.

3.1.6 Accelerated Processing Unit (APU)

Accelerated Processing Unit (APU) is a processing unit that includes additional com-
putational resources to accelerate the computations outside the CPU. Generally, it can
include any programmable unit such as GPU or FPGA. It is usually implemented on the
same die with the CPU. So, it improves the performance by speeding up the data transfer
rates. It significantly reduces the power consumption. It is mainly used in AMD APUs
[29], Intel HD Graphics, and Project Denver.

AMD released its first APU, named Brazos, in 2011. Brazos integrated the Bobcat
CPU cores, TeraScale 2 GPU, and unified video decoder. Then, it released Liano, Trinity,

23

Kaveri, and Carrizo, subsequently. These APUs are mainly used for Sony PlayStation 4
and Microsoft Xbox. In 2013, Intel released its Iris Graphics APUs that were integrated
with CPUs in the same die. In 2014, NVIDIA released Tegra K1 SoC pairing NVIDIA
GPUs and ARM CPUs.

3.1.7 Future Micro-polygon Rendering GPU

Future graphics systems are mainly targeted rendering complex geometries and film
quality images in real time. So, the GPUs have to deal with high-resolution surfaces repre-
sented by sub-pixel area micro-polygons. The current GPUs have two main limitations to
deal with micro-polygons. First, GPUs require additional computational resources. This
problem is overcome by the development of GPUs and the scaling of technology nodes.
Second, the graphics pipeline units execute inefficiently with micro-polygons. In 2010,
Fatahalian [16–18] introduced a real-time graphics pipeline to increase the efficiency of
rasterization, tessellation, and shading of micro-polygon objects. He claimed this pipeline
could satisfy the micro-polygon rendering in real time.

3.2 Embedded System GPUs

Mobile devices are quickly becoming our most valuable personal computers. Nowa-
days, we use the mobile devices to read email, browsing the Web, take photos, or play
games. With this raising demand of the graphics applications such as games, the rapid
development of embedded systems, and the enhancement of the functionality of the in-
tegrated circuits for the smaller technology nodes, the GPU become the essential part in
each embedded system. However, the main target is the reasonable performance with low
power since the embedded systems’ applications are simpler and resolutions are smaller.
For the embedded GPUs, the main corporations are QUALCOMM, NVIDIA, and ARM.

3.2.1 QUALCOMMGPUs

Qualcomm has over 42% of the total market for personal mobile devices [30]. Snap-
dragon [31] is its main family of mobile System-on-chip (SoC). It contains GPU, CPU,
wireless hardware, and communication modem on the same die. The main advantages of
the Snapdragon, over other embedded SoC, is the integration of the modem for cellular
communications, Wi-Fi, and Bluetooth on the same die. Most Snapdragon SoCs are based
on the Krait or Scropion CPU and Adreno GPU. Scropion and Krait are QUALCOMM’s

24

own design, but they are based on the ARMv7 instruction set and their features are similar
to ARM Cortex-A8 and ARM Cortex-A15 respectively. Adreno GPU is QUALCOMM’s
own IP.

In 2008, QUALCOMM released QSD8650, its first Snapdragon chip. It was based on
the Adreno 200 GPU and the Scropion CPU. It was supported OpenGL ES 2, OpenVG
1.1, and Direct3D 9.0c. In 2012, QUALCOMM released MSM8227. It was based on the
Adreno 305 GPU and Krait CPU. It supported OpenGL ES 1.1, OpenVG 1.1, and DirectX
11.1. In 2013, QUALCOMM released Snapdragon 200, 400, 600 and 800 series. They
were based on the Cortex A5 and A7 CPU. And they were based on Adreno 305 and 405
GPUs.

3.2.2 ARM GPUs

As the ARMCortex CPU, ARM produces the Mali GPUs [32] as IP core to be used in
ASIC design by ARM partners. So, it provides an optimized heterogeneous platform that
uses the Cortex CPU andMali GPU. Mali was used by various vendors such as MediaTek,
Samsung, and STMicroelectronics. Mali has two architectures: the Utgard and Midgard.
Utgard is a non-unified GPU. It has discrete fragment and vertex shaders while Midgard
is unified GPU.

Mali-55 is the first and smallest Mali GPU. It supports the OpenGL ES 1.1. In 2007,
ARM released the Mali-200 which was based on the Utgard architecture and it is fab-
ricated using the 65nm technology. It supports the OpenGL ES 1.1, OpenGL 2.0, and
OpenVG1. Then, ARM released theMali-300,Mali-400, andMali-450whichwere based
on the Utgard architecture and supports the OpenGL ES 1.1 and OpenGL ES 2.0. Then,
ARM released the Mali-604, the first Midgard architecture GPU. It supports the OpenGL
ES 3.0 and OpenCL 1.1. In 2012, ARM released the Mali-624 as the second generation
Midgard GPU. It was an embedded graphics and GPU Compute accelerator that enables
the development of gaming capabilities and GPU Compute applications. Then, ARM
released the Mali-T720 and Mali-T820 as third and fourth Midgard architecture GPUs,
respectively.

25

3.2.3 NVIDIA GPUs

In 2008, NVIDIA started to release its Tegra series SoC for mobile devices. NVIDIA
integrated ARM Cortex A9 and Cortex A15 with its GPUs. In 2008, it released the Tegra
APX 2500, the first SoC of the Tegra family. In 2010, NVIDIA released the Tegra 2
series. It integrated the ARM Cortex A9 CPU with ultra-low power GeForce GPU. It
supports the OpenGL ES 2.0 and OpenVG 1.1. In 2013, NVIDIA released Tegra 4 series.
It integrated the Cortex A15 CPU with the Tegra 4 processor. Tegra 4 [33] processor has
72 programmable cores and supports the main features of the OpenGL ES 3.0.

In 2014, NVIDIA released TegraK1 [34] series; its first series designed for the general-
purpose computing on the embedded SoC. NVIDIA integrated its Denver CPU with
Kelper GPUwhich has 204 cores. It supports the OpenGL ES 3.1, DirectX 11, and CUDA
6.5. Early 2015, NVIDIA released its Tegra X1 [35] series. It integrated the Cortex A57
processor and Maxell-based GPU that has 256 cores. It supports OpenGL 4.5, DirectX
12, and CUDA 6.0. It performs more than 500 GFLOPS for the 32-bit workloads.

3.3 ARMMali-200

ARM presented Mali-200 [36] as the popular GPU that supports the OpenGL ES 2.0
API. It is a fully programmable architecture that supports the 3D graphics using OpenGL
ES 2.0 and OpenGL ES 1.1 APIs. Also, it supports the 2D graphics using the OpenVG 1.1.
Mali-200 is used in many application areas such as mobile internet devices and navigation.

Mali-200 supports 4x and 16x multi-sampling. It uses the AMBA AXI which is com-
patible with many buses and peripheral IPs. It was implemented at the TSMC 65 nm
technology node. It scores post-layout area of 4.1 mm2including all memories. The max-
imum frequency is 230 MHz for the low power (LP) option and 380 MHz for the general
purpose (GP) option. Mali-200 throughput is 16 million triangles/second and 275 million
pixel/second at the operating frequency 275 MHz.

We consider Mali-200 results as a general relaxed guide for us because it was imple-
mented at 65 nm technology node. However, it supports the OpenGL ES 2.0, OpenGL
ES 1.1, and OpenVG whereas our CUGPU supports the Open GL ES 1.1 CL profile only
because our main targets are the minimum cost and simplicity of the design.

26

Chapter 4

CUGPU Architecture

We developed our CUGPU architecture that is based on OpenGL ES 1.1 [8, 15]
Common-Lite profile. We implemented the mandatory commands and specifications only
to minimize the power and area without deteriorating its performance. Our CUGPU spec-
ifications are:

1. It provides high-performance support of the fixed-function 3D graphics pipeline.
All graphics operations are performed in the graphics hardware.

2. It supports the Common-Lite (CL) profile only. So, all computations are performed
in fixed-point format.

3. It supports two texture units only. Model-view stack size is sixteen matrices while
projection and texture units stack sizes are two matrices each.

4. It supports 4x multisampling and eight light sources at maximum.

As we considered Mali-200 as a general relaxed guide for our design, CUGPU targets a
post-layout area of 2mm2 and a maximum frequency of 200 MHz at the TSMC 65nm LP
technology. It supports the VGA resolution,640 x480 with throughput of 12 M tri/sec and
200 M Pixel/sec at 200 MHz.

Figure 4.1 displays the overall system-on-chip architecture. The CPU communicates
with the CUGPU directly through the Wishbone bus. It sends commands to control the
graphics state and to supply the primitives’ data to draw. All graphics operations, in
our system, are performed on the GPU. It has access to the system memory to fetch the
primitives’ data and to copy the texture (images) from the system memory to the graphics
memory. Also, it has a dedicated fast memory (graphics memory) to supply the CUGPU

27

units with their data, to store the texture data and frame buffer arrays. In addition, it has
direct access to the display through the memory arbitration.

Figure 4.2 shows the architecture of CUGPU block diagram. Our methodology Fo-
cuses on:

1. CUGPU performs as much as possible operations out of the graphics pipeline crit-
ical path. The matrix construction, texture handling, and data fetch units carry out
some operations outside the critical path. The matrix construction constructs the
matrices for the vertex processing, clipping, and lighting offline. The texture han-
dling creates the mipmapping copies while the objects are processed. Also, the data
fetch unit create the buffer objects and copy their data from the vertex arrays.

2. CUGPU performs graphics operations as soon as possible. For example, the light-
ing unit applies the shading model on the vertices’ colors regardless of the clipping
outcome. Then, the post-clipping unit calculates the final color based on the clip-
ping outcome.

3. Each CUGPU unit carries out operations that have the same nature and it has its
distributed register file. So, we can optimize this hardware.

Figure 4.1: the overall SoC architecture

28

Figure 4.2: CUGPU block diagram

29

Instructions that are received by the graphics hardware are processed by the host interface
and are then placed on internal Wishbone bus to the targeted sub-component. Also, there
is a direct connection between pipeline stages and host interface for receiving configura-
tion instructions. One sub-component on the internal Wishbone bus is a data fetch com-
ponent which is responsible for fetching data from the system memory and the graphics
memory, creating the buffer objects, and controlling the vertex arrays and buffer objects.
The texture handling unit is used for creating texture copies and controlling them within
the graphics memory space.

The data fetch unit sends primitive data to the vertex processing unit which performs
vertex model-view and projection transformation, normal transformation, and texture co-
ordinates transformation on the fly. The matrix construction is used to construct the trans-
formation matrices offline. The output from the vertex processing unit is fed to the prim-
itive assembly and lighting units. The lighting calculates the vertex color based on the
given light sources when the primitive assembly constructs the primitives from the sup-
plied vertices based on the drawing mode (point, line…etc.). Then, the primitive vertices
are fed to the clipping unit which checks them against the user-defined planes. If a new ver-
tex is introduced, the post-clip operations unit calculates its associated data (color, depth,
texture coordinates) according to its location.

Then, the vertices and their associated data are fed to the rasterization unit which is
the main block in the graphics pipeline. It determines the fragments that intersect with
the drawing primitive and interpolates their associated data. Then, if the texture mapping
is enabled, the texture mapping unit calculates the final color of the fragment based on
the incoming color and the corresponding texture color. Then, final color adapting unit
performs the fog, anti-aliasing, and multisampling operations to obtain the final fragment
colors. Finally, the fragment processor performs blending, stencil test, depth test, and
other tests on the incoming fragments and updates the frame buffer. In the following
subsections, each unit is explained in particular. We describe its function, its register
file, and the detailed proposed architecture and algorithms. Appendix A summarizes the
supported OpenGL ES 1.1 commands for each unit. These commands are divided into
groups based on the corresponding units.

30

4.1 Data Fetch Unit

The data fetch unit is responsible for fetching primitive vertices and their associated
data from the vertex arrays in the client memory (system memory) and from the buffer
objects in the server memory (graphics memory). Also, it creates the buffer objects to
store the vertex arrays and element indices data and bind them to the corresponding arrays.
In addition, it is used to store the current color, normal, and the texture coordinates values
to be used when the corresponding array is disabled. There are 17 commands that affect
this unit operation. These commands are divided into three categories: vertex arrays
commands, drawing commands, and buffer objects creation and binding commands. This
unit handles the required functions set by OpenGL ES 1.1 [8], sections 2.7, 2.8, and 2.9.

4.1.1 Register File

1. Array buffer table: it contains buffer’s name, size, location at graphics memory, and
usage. It also contains the name of the bounded array to array buffer.

2. Element array buffer table: it contains element buffer’s name, size, location at graph-
ics memory, and usage. It also contains the name of the bounded array to element
array buffer.

3. Color table: it contains color array enable bit and the RGBA current color. Also,
it contains the color array’s type, size, stride, pointer, and color array bounded
buffer name. The color array enable is initially false and the initial current color
is (1,1,1,1). The initial array type is fixed-point and the initial size is 4. The initial
stride is zero and the initial pointer is Null. The initial bounded buffer is buffer 0.

4. Normal table: it contains normal array enable bit and the current normal. Also, it
contains the normal array’s type, stride, pointer, and normal array bounded buffer
name. The normal array enable is initially false and the initial current normal
(nx,ny,nz) is (0,0,1). The initial array type is fixed-point and the initial stride is
zero. The initial pointer is Null. The initial bounded buffer is buffer 0.

5. Point size table: it contains point array enable bit and the current point size. Also,
it contains the point size array’s type, stride, pointer, and point array buffer binding
name. The point array enable is initially false and the initial point size is 1.0. The
initial array type is fixed-point and the initial stride is zero. The initial pointer is
Null and the initial bounded buffer is buffer 0.

31

6. Texture array table: it contains texture array enable bits, 1-bit for each texture unit,
and two-valued integer represents the active texture. It includes the current texture
coordinates (s, t,r,q). Also, it contains, for each texture unit, the texture array’s
type, stride, size, pointer, and texture array bounded buffer name. The texture array
enable is initially false for all texture units, the active texture value is initially 0, and
the initial current texture coordinates is (0,0,0,1). The initial array type is fixed-
point, the initial stride is zero, and the initial size is 4. The initial pointer is Null
and the initial bounded buffer is buffer 0.

7. Vertex array table: it contains the vertex array’s type, stride, size, pointer, and vertex
array bounded buffer name. The initial array type is fixed-point, the initial stride
is zero, and the initial size is 0. The initial pointer is Null and the initial bounded
buffer is buffer 0.

8. Drawing parameters: it contains 8-valued integer represents the drawing mode, the
first integer refers to the location of the first element to be drawn, the count rep-
resents the object size, indices pointer refers to the locations of drawn sub-array
elements, and indices type.

4.1.2 Algorithm

Data fetch unit handles the input commands according the algorithm 4.1.

4.2 Matrix Construction Unit

The matrix construction unit is responsible to construct the model view matrix M,
projection P and view-port matrix V for transforming the vertices coordinates. Also, it
constructs the normal matrix M−1

u , the inverse of the upper left (3x3) part of the M matrix
for transforming the normal. Also, it constructs M−1and P−1 for transforming the clipping-
planes coefficients. In addition, it handles Load, Mult, Rotate, Scale, Frustum, Ortho,
Push, and Pop commands. There are 14 GL commands that affect this unit operation.
This unit handles the required functions set by OpenGL ES 1.1 [8], section 2.10.

4.2.1 Register File

1. Active texture unit selector: 2-valued integer, initially texture0 is selected.

32

2. Current matrix mode selector: 4-valued integer, initially model view matrix is se-
lected.

3. Current model view matrix: one 4x4 fixed-point matrix and Model-view stack
pointer. Themodel view stack size is 16matrices and the current model viewmatrix
is initially the identity matrix.

4. Current projection matrix: one 4x4 fixed-point matrix and projection stack pointer.
The projection stack size is 2 matrices and the projection matrix is initially the
identity matrix.

5. Current texture matrix: for each texture unit, there is one 4x4 fixed-point matrix for
and texture stack pointer. The texture stack size is 2 matrices for each texture unit
and the texture matrix is initially the identity matrix.

6. Current viewport matrix: four-integer values represent the origin (Ox,Oy) and the
viewport’s width and height (Px,Py) and two clamped fixed-point values represent
the factor and offset (n, f) applied to the depth value. Initially (Ox = w/2,Oy =

Algorithm 4.1 Data fetch algorithm
If (command ∈ [Color4, Normal3, MultiTexCoord4, PointSizeX]) Then

→Update the corresponding current value.
ElseIF (command ∈ [ClientaActiveTexture, EnableClientState, DisableClientState]) Then

→Update the corresponding control bit.
ElseIF (command = BindBuffer) Then

If (buffer name = 0) Then
→Unbind the bounded buffer

ElseIF (buffer name exists) Then
→Bind this buffer.

Else
→Create a new buffer entry and bind it.

ElseIF (command ∈ [BufferData, BufferSubData]) Then
If (the bounded buffer name ~= 0)

→Update the bounded buffer by transferring data from
the system memory to the graphics (GL) memory.

ElseIF (command ∈ [VertexPointer, NormalPointer, ColorPointer, PointSizePointerOES, TexCoord-
Pointer]) Then

→Update the corresponding array table parameters
If (the bounded buffer name ~= 0)

→Bind the bounded buffer object to its relative array.
ElseIF (command ∈ [DrawArrays, DrawElements]) Then

→Fetch the vertices coordinates, colors, texture coordinates,
point size, normal from their corresponding arrays and their
bounded buffer objects if these arrays are enabled.

→Supply the pipeline by these data, element by element, if these
arrays are enabled; or by the current values otherwise.

33

h/2,Px = w,Py = h) where w and h are the width and height of the screen respec-
tively.

Figure 4.3: The matrix construction block diagram:

34

4.2.2 Architecture

Figure 4.3 shows the whole matrix construction unit architecture. This is responsible
for constructing the matrices (V,M,P,T0,T1,M−1

u) for the vertex processing and lighting
units; and the matrix (M−1,P−1) for the clipping unit. These matrices are constructed by
9 different ways based on the input command. The current matrix is loaded directly by the
identity matrix I, load matrix L, translate matrix T , and scale matrix S if the command
is LoadIdentity, LoadMatrixx, Translatex, and Scalex respectively. If the command is
Pop, the current matrix is loaded by the second matrix in this current matrix stack. Also,
if the command is MultMatrixx, the current matrix is multiplied by the matrix M. If the
command is Frustumx, the current matrix is loaded by the matrix f from the frustum unit:

f =


2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 − f+n
f−n −2 f .n

f−n

0 0 −1 0


(4.1)

If the command is Orthox, the current matrix is loaded by the matrix o from the ortho
unit:

O =


2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b

0 0 − 2
f−n − f+n

f−n

0 0 0 1


(4.2)

where r, l, t, b, n, and f are the right, left, top, bottom, near, and far boundaries of the
view volume, respectively. If the command is Rotatex by (⊖, x,y,z), the current matrix is
loaded by the matrix R4 from the rotate unit:

R4 =


R3

0

0

0

0 0 0 1


(4.3)

R3 = U ∗UT +Cos(⊖)∗ (I−U ∗UT)+S in(⊖)∗S (4.4)

35

S =


0 −z‘ y‘

z‘ 0 −x‘

−y‘ x‘ 0

 (4.5)

U = v/||v|| =


x‘

y‘

z‘

 (4.6)

v =


x

y

z

 (4.7)

The normal unit constructs the M−1
u matrix to transform the normal to the eye space.

Also, the clip unit constructs the (M−1,P−1) for transforming the clip-plane coefficient to
the clip-space. The viewport constructs the viewport matrix V

V =



px
2 0 0 ox

0 py
2 0 oy

0 0 f−n
2 − f+n

2

0 0 0 1


(4.8)

where n and f are the factor and offset applied to the depth (Z), respectively.

4.3 Vertex Processing Unit

The vertex processing unit is responsible for transforming the vertices coordinates
(x,y,z), the texture coordinates (s, t,r,q), and the normal (nx,ny,nz). The incoming vertices
coordinates are transformed from the world space to the eye space to be used in lighting
unit. Also, they are transformed to the clip space to feed the clipping unit. The normal
is transformed to eye space to be used in lighting unit. For each texture unit, the texture
coordinates are multiplied by the corresponding texture matrix. This unit handles the
required functions set by OpenGL ES 1.1 [8], section 2.10.

4.3.1 Register File

1. Normal mode: 2-bits to select between OFF, RESCALE_NORMAL, NORMAL-
IZE, or RESCALE&Normalize.

36

2. Current normal: 3 fixed-point values (nx,ny,nz) that stored the current normal.

3. Current texture coordinates: 4 fixed-point values (s, t,r,q) for each texture unit.

4. Current values enable: 3-bits; one for the current normal and one for each current
texture coordinates.

4.3.2 Architecture

Figure 4.4 shows thewhole vertex processing unit architecture. The vertex coordinates
v, normal n, and texture coordinates (t1, t2) are supplied from the data fetch unit. The ma-
trix construction unit feed the vertex processing unit with the matrices (M,P,T0,T1,M−1

u).
The vertex coordinates (v) are transformed to the eye space by multiplying by the model
view matrix M. Then, they are transformed to the clip space by multiplying by the pro-
jection matrix P. If the current texture is disabled, the texture coordinates (t0, t1) are
multiplied by the texture matrices T0and T1, respectively. Otherwise, the current texture
coordinates are used instead. If the current normal is disabled, the normal (nx,ny,nz) is
transformed to the eye-space by multiplying by the inverse of the model view matrix M−1

u .
If the current normal is enabled, the current normal is used instead. Then, the resulting
normal (nx‘,ny‘,nz‘) is modified according the normal algorithm 4.2.

4.4 Primitive Assembly Unit

The primitive assembly unit constructs primitives from the incoming vertices accord-
ing to the mode argument which is set by the DrawArray or DrawElements commands.
This unit handles the required functions set by OpenGL ES 1.1 [8], section 2.6.1.

Algorithm 4.2 Normal algorithm
If (Rescale =1)

(nx”,ny”,nz”)=(nx’,ny’,nz’)* 1√
m2

31+m2
32+m2

33

Else
(nx”,ny”,nz”)=(nx’,ny’,nz’)

If (Normalize =1)
(nx”’,ny”’,nz”’)=(nx”,ny”,nz”)* 1√

n2
31+n2

32+n2
33

Else
(nx”’,ny”’,nz”’)=(nx”,ny”,nz”)

37

Figure 4.4: Vertex processing block diagram

38

4.4.1 Register File

1. Draw-mode: 7-valued integer that specifies the primitive type: points, line strips,
line loops, lines, triangle strips, triangle fans, and separate triangle.

2. First vertex flag: 1-bit that indicates if the incoming vertex is the first vertex in the
object or not. Initially, the first-vertex-flag is 1.

3. Vertex index: 1-bit that indicates if the incoming vertex order is odd or even vertex.
Initially, this flag is odd.

4. First Triangle flag: 1-bit that indicates if the first triangle is completed or not.

5. Triangle vertices counter: 2-bits that determine the triangle vertices order. This
counter initial value is 1.

6. Registers A, B: two temporary registers to store the incomplete triangle vertices.

7. Replacement pointer: 1-bit that refers to the register to be replaced by the incoming
vertex if the draw-mode is triangle strips. Initially, this refers to register A.

4.4.2 Algorithm

Data fetch unit handles the input commands according to algorithm 4.3.

4.5 Lighting Unit

The lighting unit is responsible for calculating the pre-clipping front and back colors
for all vertices. All lighting operations should be performed in the eye-space. So, the
light sources location and direction are transformed to the eye-space first. All lighting
computations are performed in the fixed-point format. So, all vertices colors, normal, and
coordinates are transformed to the fixed point format. Our design supports 8 light sources.
This unit handles the required functions set by OpenGL ES 1.1 [8], section 2.12.

4.5.1 Register File

1. Lighting enable: 1-bit to enable/disable the lighting. Initially, it is disabled.

2. Color tracking: 1-bit to enable/disable the material color tracking of the incoming
vertex color. Initially, the color tracking is disabled.

39

Algorithm 4.3 Primitive assembly algorithm
If (Draw_mode = points)

→ The incoming vertex (v) belongs to new primitive.
ElseIF (Draw mode = Line Strips)

→ If (first vertex flag =1)
- First vertex flag = 0
- Register A = incoming vertex.

Else
- Assemble line from the incoming vertex and register A vertex.
- Register A = incoming vertex.

ElseIF (Draw mode = Line Loops)
If (first vertex flag =1)

- First vertex flag = 0
- Register A = incoming vertex.

Else - Assemble line from register A vertex and the incoming vertex.
ElseIF (Draw mode = Lines)

If (vertex index = odd)
- Register A = incoming vertex.

Else
- Assemble line from register A vertex and the incoming vertex.

ElseIF (Draw mode =Triangle strips)
If (first triangle = 1)

If (Triangle vertices counter =1)
- Register A = incoming vertex.

ElseIF (Triangle vertices counter =2)
- Register B = incoming vertex.
- first triangle = 0.

Else
- Assemble triangle from register A vertex, registerB
vertex and the incoming vertex.
- Store the incoming vertex in the register which the
pointer is referred to.
- Toggle the pointer.

ElseIF (Draw mode =Triangle fans)
If (first triangle = 1)

If (Triangle vertices counter =1)
- Register A = incoming vertex.

ElseIF (Triangle vertices counter =2)
- Register B = incoming vertex.
- first triangle = 0.

Else
- Assemble triangle from register A
vertex, register B vertex and the incoming vertex.
- Store the incoming vertex in the register B.

ElseIF (Draw mode = Separate Triangle)
If (first triangle = 1)

If (Triangle vertices counter =1)
- Register A = incoming vertex.

ElseIF (Triangle vertices counter =2)
- Register B = incoming vertex.

Else
- Assemble triangle from register A vertex, register B vertex and the
incoming vertex.

40

3. Current-Color: RGBA value used as a vertex color if the current color is enabled.

4. Material & Light Model parameters: table 4.2 summarizes the material parameters.

5. Light sources parameters: table 4.1 summarizes the light sources parameters and
their initial values for each light source i where i ∈ [0,7].

6. Current-Color Enable: 1-bit to enable the current-color.

Figure 4.5: The lighting unit architecture

Parameter Type Initial value Description
Acm color (0.2,0.2,0.2,1) ambient color of material
Dcm color (0.8,0.8,0.8,1) diffuse color of material
S cm color (0,0,0,1) specular color of material
Ecm color (0,0,0,1) emissive color of material
S rm real 0 specular exponent
Acs color (0.2,0.2,0.2,1) ambient color of scene
Tbs Boolean FALSE two-sided lighting mode enable

Table 4.2: Materials and light models parameters

41

Parameter Type Initial value Description
Acli color (0,0,0,1) ambient intensity of light i

Dcli(i = 0) color (1,1,1,1) diffuse intensity of light 0
Dcli(i > 0) color (0,0,0,1) diffuse intensity of light i
S cli(i = 0) color (1,1,1,1) specular intensity of light 0
S cli(i > 0) color (0,0,0,1) specular intensity of light i

Ppli position (0,0,1,0) position of lighti
S dli direction (0,0,−1) direction of spotlight for lighti
S rli real 0 spotlight exponent for lighti
Crli real 180 spotlight cutoff angle for lighti

K0i, K1i, K2i real (1,0,0) attenuation factors for lighti

Table 4.1: Light source’s parameters

4.5.2 Architecture

Figure 4-5 shows the whole lighting unit architecture. The vertex coordinates v and
normal n, in the eye-space, are supplied from the vertex processing unit. The matrix
construction unit feed the lighting unit with the model view matrix M that is used to
transform the light sources positions and directions to the eye-space. The current color
signal selects the associated color to the incoming vertex. If the current color is enabled,
the current color is assigned to the incoming vertices. Otherwise, the color supplied form
the data fetch unit is used instead. All lighting operations should be performed in the fixed-
point format. So, the color conversion unit converts the color to the fixed point format if it
is encoded in the unsigned binary format. Also, the lighting operations are performed in
the eye-space. So, the light source conversion block transforms the light sources position
pi to the eye space by multiplying by the model view matrix M. In addition, it transforms
the light sources directions by multiplying by the upper left 3x3 matrix of the model view
matrix. Then, the front color is calculated by the lighting calculation block using the
normal n. The lighting produces a color c by the following equation

C = Ecm+Acm ∗Acs

+

7∑
i=0

(atti)∗ (spoti)∗ [Acm ∗Adi

+(n⊙−−−−→VPpli)∗Dcm ∗Dcli+ fi ∗ (n⊙ ĥi)S rm ∗S cm ∗S cli] (4.9)

42

atti =


1

K0i+K1i||VPpli||+K1i||VPpli||2

1.0

i f P′plisw , 0

otherwise
(4.10)

spoti =


(
−−−−→
PpliV ⊙ Ŝ dli)S rli

0

1

Crli , 180,
−−−−→
PpliV ⊙ Ŝ dli ≥Cos(Crli)

Crli , 180,
−−−−→
PpliV ⊙ Ŝ dli <Cos(Crli)

Crli = 180

(4.11)

f i =

 1

0

i f n⊙−−−−→VPpli , 0

otherwise
(4.12)

hi =
−−−−→
VPpli+ (0 0 1)T (4.13)

Another color (temp_color) is calculated using the normal −n. The two-sided lighting
mode Tbs determines if the back color is calculated using the normal n or the normal −n.
If Tbs is0, the back color is the same as the front color. Otherwise, the back color is the
temp_color. Finally, the front and back colors are sent to the clipping and the post-clipping
operations units.

4.6 Clipping Unit

The clipping unit is responsible for checking the incoming primitives against the view
volume and against the user-defined clip planes. Our design is implemented based on the
Cohen-Sutherland [37] or Kodituwakku [38] line clipping algorithms.

It determines whatever this primitive is discarded, this primitive is passed to the ras-
terization block without any modification, or new primitives are produced based on the
intersection between the incoming primitive and the view volume and the user-defined
clip planes. If a new primitive is produced, an interpolation value t is calculated for each
new vertex. This is used to compute the associated data, color and texture coordinates, for
this new vertex from the incoming vertices associated data. This unit handles the required
functions set by OpenGL ES 1.1 [8], sections 2.11 and 2.12.7.

43

4.6.1 Register File

1. Clip-planes table: for each clip plane, it stores its name, its coefficient (P1, P2, P3,
P4), and its enable bit. Initially, this table is empty.

2. Draw mode: - 2-bits to specify the incoming primitive type (triangle, line, point).

4.6.2 Architecture

Figure 2.3 presents the clipping unit architecture. First, the incoming primitive’s co-
ordinates are fed to the view volume clipping unit. It applies the Cohen view-volume
algorithm 4.5 to check this primitive coordinates (Xc,Yc,Zc) against the view volume that
is defined by:

−Wc≤Xc≤Wc

−Wc≤Yc≤Wc

−Wc≤Zc≤Wc

(4.14)

Then, the view volume clipping unit sends the resulting primitives to the user-defined
clipping unit. The user-defined clipping unit checks the primitives against each enabled
clip plane by the user clipping algorithm 4.7. This clip planes coefficients (P1P2P3P4)

Figure 4.6: The clipping unit architecture

44

stored in the world space. So, the coefficients, of the enabled clip planes, should be trans-
formed to the clip space by multiplying by the clipping matrix M−1P−1 that is received
from the matrix construction unit

(P‘
1P‘

2P‘
3P‘

4) = (P1P2P3P4)∗M−1P−1 (4.15)

Finally, the associated data unit calculates the colors and texture coordinates of the
introduced vertices based on the locations of these vertices. For a new point Pr which
lies on the line with end-points P0 and P1, the associated data f is calculated from the
associated data f0and f1of the two end-points:

f = (1− t)∗ f0+ (t)∗ f1

t =
(Pr −P0)• (P1−P0)
∥ P1−P0 ∥2

(4.16)

Figure 4.7: Post-clipping unit block diagram

45

Algorithm 4.4 Cohen-Sutherland Point-Check algorithm
Point-Check (X0, Y0, Z0, Wc)

IF (Zc > Wc)
Front = 1

Else
Front = 0

IF (Zc < -Wc)
Back = 1

Else
Back = 0

IF (Yc > Wc)
Top = 1

Else
Top = 0

IF (Yc < -Wc)
Bottom = 1

Else
Bottom = 0

IF (Xc > Wc)
Right = 1

Else
Right = 0

IF (Xc < -Wc)
Left = 1

Else
Left = 0

return (front, back, top, bottom, right, left)

Algorithm 4.5 View volume clipping algorithm
If (Draw mode = points)

→If (Check-Point (X0, Y0, Z0, Wc) = 000000)
Pass this point to the clip plane clipping unit

Else
Discard it and terminate.

ElseIF (Draw mode = Line)
→DrawLine (P0, P1)

ElseIF (Draw mode = Triangle)
→DrawLine (P0, P1)
→DrawLine (P1, P2)
→DrawLine (P2, P10)
→Construct Triangles from the resulted line

46

Algorithm 4.6 Cohen-Sutherland line-drawing algorithm
Draw-Line (P0, P1)

→ OUT0 = Point-Check (X0, Y0, Z0, Wc)
→ OUT1 = Point-Check (X1, Y1, Z1, Wc)
Repeat
→If ((Out0 = 000000) AND (Out1 = 000000)) then

Pass this line to the clip plane clipping unit
ElseIF ((Out0 AND Out1) != 000000)

Discard it and terminate.
Else

If (Front) then
→Znew = Wc
→t = Znew−Z1

Z0−Z1
→ Xnew = t X0 + (1-t) X1
→ Ynew = t Y0 + (1-t) Y1

ElseIF (Back)
→ Znew = -Wc
→t = Znew−Z1

Z0−Z1
→ Xnew = t X0 + (1-t) X1
→ Ynew = t Y0 + (1-t) Y1

ElseIF (Top)
→ Ynew = Wc
→t = Ynew−Y1

Y0−Y1
→ Xnew = t X0 + (1-t) X1
→ Znew = t Z0 + (1-t) Z1

ElseIF (Bottom)
→ Ynew = -Wc
→t = Ynew−Y1

Y0−Y1
→ Xnew = t X0 + (1-t) X1
→ Znew = t Z0 + (1-t) Z1

ElseIF (Right)
→ Xnew = Wc
→t = Xnew−X1

X0−X1
→ Ynew = t Y0 + (1-t) Y1
→ Znew = t Z0 + (1-t) Z1

ElseIF (Left)
→ Xnew = -Wc
→t = Xnew−X1

X0−X1
→ Ynew = t Y0 + (1-t) Y1
→ Znew = t Z0 + (1-t) Z1

End
→If (P0 is the outer point) then

P0 = Pnew,
Point-Check (X0, Y0, Z0, Wc)

Else
P1 = Pnew,
Point-Check (X1, Y1, Z1, Wc)

Until done
47

Algorithm 4.7 User clipping algorithm
For each clip plane CLIP_PLANEi with coefficients

(P1′ P2′ P3′ P4′) = (P1 P2 P3 P4)∗M−1 P−1

IF (CLIP_PLANEi enable = 1)
If (Draw_mode = points)

→If((P1′ P2′ P3′ P4′)∗ (XC YC ZC WC)T > 0)
If (CLIP_PLANEi = last clip plane)

Pass this point to the rasterization block.
Else

Discard it and terminate.
ElseIF (Draw mode = Line)

→If((P1′P2′P3′P4′)∗ (XC YC ZC WC)T > 0 for the two vertices)
If (CLIP_PLANEi = last clip plane)

Pass this line to the rasterization block.
Else((P1′ P2′ P3′ P4′)∗ (XC YC ZC WC)T < 0)

Discard it and terminate.
Else

- Calculate the intersection ratio (t) by solving the equations
1) P = (P1-P2)*t + P2 where P1& P2 are the line end points
2) (P1‘ P2‘ P3‘ P4‘) *P = 0.

- generate two lines. The first one has the end points (P1, P) and
the second one has the end points (P1, P2).

ElseIF (Draw mode = triangle)
→If ((P1′ P2′ P3′ P4′)∗ (XC YC ZC WC)T ≥ 0 for all vertices)

If (CLIP_PLANEi = last clip plane)
Pass this line to the rasterization block.

ElseIF((P1′P2′P3′P4′)∗ (XC YC ZC WC)T < 0 for all vertices)
Discard it and terminate.

Else
- Calculate the intersection ratios (t1, t2) for the two intersected
lines by solving the equations

1) P = (P1-P2)*t + P2where P1& P2 are the line end points.
2) (P1‘ P2‘ P3‘ P4‘) *P = 0.

- calculate the intersection points Px and Py.
- If (only one point (P0) lies in the half-space defined by the plane)

Generate one triangle with vertices (P0, Px, Py).
ElseIF (two point (P0, P1) lies in the half-space defined by the plane)

Generate two triangles with vertices (P0, P1, Px) and
(P0, P1, Py).

48

4.7 Post-Clipping Unit

The post-clipping unit performs the final processing on the vertices coordinates and
colors before sending them to the rasterization process. It transforms the coordinates from
the clip space to the window space. Also, it performs the culling check and calculates the
final vertices colors based on the shade model. This unit handles the required functions
set by OpenGL ES 1.1 [8], sections 2.10.1, 2.12.5, 2.12.6 and 2.12.8.

4.7.1 Register File

1. Shade model: 1-bit to specify the shade model; initially, the shade model is
SMOOTH.

2. Cull Face mode: 2-bits to specify the cull face; initially, the cull face is BACK.

3. Cull Face enable: 1-bit to enable/disable the cull face; initially, it is disabled.

4. Front Face direction: 1-bit to specify the front face direction; initially, it is CCW.

4.7.2 Architecture

Figure 4.7 shows the post clipping unit architecture. The clipping unit sends the
primitive, in the clipping space (Xc,Yc,Zc,Wc), vertices and their corresponding col-
ors. First, the perspective division unit normalizes the coordinates. The normalized
vertices(Xc,Yc,Zc) are calculated by:


Xnc

Ync

Znc

 =


Xc
Wc
Yc
Wc
Zc
Wc

 (4.17)

Then, they are transformed to thewindow space bymultiplying by the view port matrix
V . Then, the signed area a is calculated from the window coordinates (Xw,Yw):

a =

n−1∑
i=0

Xi
w ∗Y (i+1)mod n

w −X(i+1)mod n
w ∗Y i

w (4.18)

49

Where xi
w and yi

w are the window coordinates of the ith vertex of the n-vertex polygon;
vertices are numbered starting from zero . Finally, the culling block decides either to cull
or pass the primitive according the culling algorithm 4.8:

In parallel, the front and back colors are clamped to [0, 1] range. Then, if the shading
model is smooth, the shading block passes these colors without any modification; other-
wise, the primitive colors are assigned to same color based on the drawing mode. If the
primitive is a line, the flat color is the color of the second vertex. If it is a triangle, the flat
color is the color of the last vertex color. Then final color selection unit selects, for each
vertex, the front color or the back color according to the final color algorithm 4.9.

Algorithm 4.8 Culling algorithm
If (front face polygon a > 0)

If (culling mode = FRONT or FRONT&BACK)
Polygon is discarded

Else
Polygon is rasterized

If (back face polygon a < 0)
If (culling mode = BACK or FRONT&BACK)

Polygon is discarded
Else

Polygon is rasterized

Algorithm 4.9 Final color algorithm
If (Primitive is a line or a point)

Final color = front color
ElseIF (Primitive is a triangle)

If (signed area a > 0)
If (Front face direction is CCW)

Final color = front color
Else

Final color = back color
Else

If (Front face direction is CCW)
Final color = back color

Else
Final color = front color

50

4.8 Rasterization Unit

The rasterization unit is the main block in the graphics pipeline. Our architecture sup-
ports three primitive: triangle, line, and point. For the triangle, it produces the fragments
that are intersected with the primitive and calculates its data by interpolating the associ-
ated data of the three vertices. For the line, it supports unity-width rasterization, wide
line rasterization, and line smoothing rasterization. For the point, it supports point raster-
ization, point smoothing rasterization, and point sprite rasterization. It also support the
4x multisampling for all primitives. It receives the coordinates, color component, depth
value, and texture coordinates of each vertex. Also, it may receive the point width if the
point array is enabled. It produces the screen coordinates (Xw,Yw) and the associated data
(color, texture coordinates, depth) of each fragment that is intersected with the primitive.
Also, it calculates the coverage samples if the multisampling is enabled. This unit handles
the required functions set by OpenGL ES 1.1 [8], sections 3.3, 3.4, 3.5, and 3.6.

4.8.1 Register File

1. Control bits: 6-bits to enable or disable the rasterization options. These options are
the multisampling, point smoothing, point sprite, line smooth, polygon offset fill,
and point coordinates replace. Initially, all these options are disabled.

2. Draw mode: 2-bits to specify the incoming primitive type (triangle, line, point).

3. Point data. They are 7 fixed-point variables that control the point rasterization: one
variable for the current point width which is used if the point size array is disabled,
one variable for the point-fade threshold size, two variables for the point maximum
and minimum sizes, and three variables for the point attenuation factors (a,b,c).
Initially, the point width is one.

4. Line width: one fixed-point value to specify the line width. Initially, the line width
is one.

5. Polygon variable: two fixed-point variables to store the factor and units.

6. Sample buffers: integer value that controls the multisampling operation.

7. Point fade threshold size: fixed-point value is used instead of the derived point
width if it go below this threshold.

51

Figure 4.8: Point rasterization flow chart

52

Figure 4.9: Point area for different rasterization algorithms

53

Algorithm 4.10 Width algorithm
→Derived-Size = Implementation_Clamp (point−size√

a+b∗d+c∗d2
) where d is the eye coordinate

distance from the eye location (0,0,0,1).
→If (multisampling is enabled)

If (derived-size ≥ point-fade-threshold-size)
width = derived-size

Else
width = point-fade-threshold-size

Else
width = derived-size

→Clamp width to [point-size-min, point-size-max] range.

Algorithm 4.11 Point multisampling algorithm
If (Point Sprite = false)

If (sample points lies in a circle with a center (Xw,Yw) and a diameter of the point width)
→ Sample coverage bit = 1.
→ Sample point’s color, depth, and texture coordinates are
the associated data of the point.

Else
If (sample points lies in a square with a center (Xw,Yw) and a side length of the point width)

→ Sample coverage bit = 1.
→ Sample point’s color and depth are the associated data of the

point.
→ For each texture unit, if (point coordinates replace = True)

Texture coordinates is calculated for each sample point:
S = 0.5+ X f+.05−Xw

Point Width , T = 0.5+ Y f+.05−Yw
Point Width

R = 0, Q = 1
where (X f ,Y f) is the sample point coordinates in the win-

dow space.

Algorithm 4.12 Point sprite algorithm
If (fragment center lies in a square with a center (Xw,Yw) and a side length of the point
width)

→ fragment is drawn.
→ fragment’s color and depth are the associated data of the point.
→ For each texture unit, if (point coordinates replace = True)

Texture coordinates is calculated for each fragment:
S = 0.5+ X f+.05−Xw

Point Width , T = 0.5+ Y f+.05−Yw
Point Width

R = 0, Q = 1
where (X f ,Y f) is the fragment coordinates in the window space.

54

Algorithm 4.13 Point smooth algorithm
If (fragment’s square area intersects with a circle with a center (Xw,Yw) and a diameter of the point width)

→ Fragment is drawn.
→ Fragment’s color, depth, and texture coordinates are the associated data of
the point.

→ Coverage area is calculated and is used to adapt the final alpha value of the
fragment.

→ The coverage area is the area of the intersection of the point’s circular
region

with the fragment’s square area.

Algorithm 4.14 Wide point algorithm
→ square width = NRE (point width)
→ If (square width = 0)

square width = 1.
→ If (square width is an odd number)

→ square center (x,y) = (f loor(Xw)+0.5, f loor(Yw)+0.5)
→ draw a square grid with this odd width.

Else
→ square center (x,y) = (f loor(Xw+0.5), f loor(Yw+0.5))
→ draw a square grid with this even width.

4.8.2 Architecture

The rasterization unit is divided into three units: point rasterization, line rasterization,
and triangle rasterization. We discuss the algorithms of each unit in the following sections.

4.8.2.1 Point Rasterization

As shown in figure 4.8, multiple algorithms deal with the point according to the con-
trol bits and the sample buffers variable. Initially, the derived width is calculated by the
width calculation algorithm. Then, the multisampling, unity-width, point sprite, point
smoothing, or wide line algorithm is applied. For unity-width, point sprite, point smooth-
ing, or wide point algorithms, if the multisampling is enabled, the coverage bits for the
covered fragment’s samples are 1’s and their data is the calculated fragment data.

55

The Width Calculation Algorithm

The width calculation algorithm 4.10 compute the final point width based on the input
point width and the attenuation factors.

The Multisampling Algorithm

Our CUGPU supports the 4x multisampling. So, the multisampling algorithm 4.11
produces a fragment for each pixel with one or more sample points that intersect a region
with a center (Xw,Yw), the point coordinates in the window space. It calculates the color,
depth, and texture coordinates for each sample point. If the point sprite is enabled, the
point area is an square with line length equals the point width as shown in figure 4.9(e);
otherwise, the point area is a circle with a diameter equals the point width as shown in
figure 4.9(f).

The Unity Width Algorithm

For a point with unity width, the fragment with coordinates (int(Xw)+ .5, int(Yw)+0.5)

is drawn. The fragment color, depth, and texture coordinates are the associated data with
the point vertex.

The Point Sprite Algorithm

The point sprite algorithm 4.12 produces fragments which their centers lay in a square
with a center (Xw,Yw) and a side length of the point width as shown in figure 4.9(a).

The Point Smooth Algorithm

The point smooth algorithm 4.13 produces fragments which their square area inter-
sects with a circle with a center (Xw,Yw) and a diameter of the point width as shown in
figure 4.9(b).

The Wide Point Algorithm

The wide point algorithm 4.14 produces an odd or even square of fragments based on
the point width. For a point with an odd width, figure 4.9(c), the square center is laying

56

on the half-grid. For a point with an even width, figure 4.9(d), the square center is laying
on the integer grid.

Figure 4.10: Line rasterization flow chart

Algorithm 4.15 Wide line algorithm
If (x-major line)

→ Calculate the coordinates of parallel line end points (X1,Y1) and (X2,Y2).
(X1,Y1) = (Xa,Ya− w−1

2) and (X2,Y2) = (Xb,Yb− w−1
2).

→ Draw the unity-width line with end points (X1,Y1) and (X2,Y2).
→ Produce a column of fragments of height w at each x location with the same

associated data.
Else

→ Calculate the coordinates of parallel line end points (X1,Y1) and (X2,Y2):
(X1,Y1) = (Xa− w−1

2 ,Ya) and (X2,Y2) = (Xb− w−1
2 ,Yb).

→ Draw the unity-width line with end points (X1,Y1) and (X2,Y2).
→ Produce a row of fragments of width w at each y location with the same

associated data.

57

Figure 4.11: Line area for different rasterization algorithms

58

4.8.2.2 Line Rasterization

As shown in figure 4.10, multiple algorithms are applied on line according to the con-
trol bits and the sample buffers variable: line multisampling, line smoothing, unity-width,
or wide line algorithm. The incoming line is defined by the two end points Pa(Xa,Ya) and
Pb(Xb,Yb) and their associated color, depth, and texture coordinates. For line smoothing,
unity-width, or wide line algorithms, if the multisampling is enabled, the coverage bits
for the covered fragment’s samples are 1’s and their data is the calculated fragment data.

Line Multisampling Algorithm

The multisampling algorithm produces a fragment with one or more sample points
that intersect a rectangle region with line’s length and width as shown in figure 4.11 (d).
The texture coordinates, color, and depth of the produced sample points are computed by
interpolating the two end-points texture coordinates, color, and depth, respectively. The
interpolation is performed according the OpenGL equations 5.3,5.4, and 5.2.

Line Smoothing Algorithm

smoothing algorithm produces a fragment that intersects a rectangle region with line’s
length and width as shown in figure 4.11(c). For each pixel, a coverage value is computed
and used for modifying the alpha value. This coverage value equals the intersection area
between the fragment and the rectangle region. The texture coordinates, color, and depth
of the produced sample points are computed by interpolating the two end-points texture
coordinates, color, and depth, respectively. The interpolation is performed according the
OpenGL equations 5.3,5.4, and 5.2.

Actual Line Calculation

The line width is rounded to the nearest integer above. If this rounded width is 0, the
actual width will be 1.

Unity Width Algorithm

The unity width algorithm produces a fragment that intersects a line with a width
of 1 fragment in the minor direction as shown in figure 4.11(a). For x-major lines, no

59

two fragments may be produced that lay in same column. For y-major line, no two frag-
ments may be produced that lay in same row. The texture coordinates, color, and depth
of the produced sample points are computed by interpolating the two end-points texture
coordinates, color, and depth, respectively. The interpolation is performed according the
OpenGL equations 5.3,5.4, and 5.2. In Chapter 5, we discussed briefly our implementa-
tion of the unity width algorithm.

Wide Line Algorithm

Thewide line algorithm 4.15 is as same as the unity width algorithm except it produces
width fragments in the minor direction as shown in figure 4.11(b). For an input line with
end pointsPa(Xa,Ya) and Pb(Xb,Yb) and a width w, we apply the unity width algorithm
for a parallel line to the input line. Then, a column of fragments of height w is produced at
each x location for x-major lines. Otherwise, a row of fragments of length w is produced
at each y for y-major lines.

4.8.2.3 Triangle Rasterization

As shown in figure 4.12, the triangle rasterization has two modes: the basic raster-
ization and the multisampling rasterization modes. In the basic rasterization mode, it
produces the fragments that its center lies within the input triangle using the triangle scan
conversion method. It also interpolates color, depth, and texture coordinates of the three
vertices to compute the color, depth, and texture coordinates of the produced fragment,
respectively.

The multisampling rasterization is as same as the basic rasterization except it calcu-
lates the color, depth, and texture coordinates for each sample point that lay inside the
input triangle. If the multisampling is enabled and the sample buffer is not one, the basic
algorithm is applied, the coverage bits for the covered fragment’s samples are 1’s, and
their data is the calculated fragment data. Finally, the depth values are modified, accord-
ing to algorithm 4.16, by adding an offset value if the polygon offset fill is enabled.

60

Figure 4.12: Triangle flow chart

Algorithm 4.16 Depth adjustment algorithm
Offset (O) = m∗ f actor+ r ∗units
where r is implementation-dependent constant represents
minimum resolvable difference and m is the maximum depth slope:
m = max{| dZw

dXw
|, |dZw

dYw
|}

If (Polygon offset fill is enabled)
Depth (Z) = Depth (Z)+O

Clamp the depth value to [0,1]

4.9 Texture Handling Unit

The texture handling unit creates texture objects in the graphics memory and copies
their data from images stored in the system memory or from the frame buffer. Also. it
converts the color from the type and format of images in system memory to the internal
format of texture images in graphics memory. In addition, it performs auto mipmapping
of the texture image’s arrays if auto mipmapping is enabled. Moreover, it specifies the
bounded texture object that is used in texture mapping operation for the active texture unit.
Initially, the bounded texture buffer is Texture0.

The texture handling unit creates or modifies the bounded texture object by four com-
mands:

61

1. TexImage2D: it specifies an image, in the system memory, to be copied to the
bounded texture object, in the graphics memory.

2. CopyTexImage2D: it specifies part of the frame buffer, in the graphics memory, to
be copied to the bounded texture object, in the graphics memory.

3. TexSubImage2D: it specifies an image, in the system memory, to be copied to a
rectangular sub-region of the bounded texture object, in the graphics memory.

4. CopyTexSubImage2D: it updates a rectangle sub-region of the bounded texture ob-
ject from a rectangle part of the frame buffer, in the graphics memory.

This unit handles the required functions set by OpenGL ES 1.1 [8], sections 3.6, 3.7.1,
3.7.2, 3.7.9, 3.7.10, and 3.7.11.

4.9.1 Register File

1. Texture objects data: each texture object has an integer number represents the object
name, an integer represents the number of mipmap sets for these objects, and a
mipmap table that stored the details of each mipmap array. Table 4.3 demonstrates
the structure of the mipmap table. Initially, only texture0 object is defined.

2. Pixel store alignment: 4-valued integer that specifies the alignment, in byte unit, for
the start4.13 of each pixel row in the system memory.

3. Texture units table: it specifies state of each texture unit and defines the bounded
texture object for each texture unit. Initially, all texture units are disabled.

4. Current bounded texture object: an integer number that defines the bounded tex-
ture object. All texture handling operations are performed on this bounded texture
object.

Array
number
(LoD)

Width Height Internal
format

Resolution
(R,G,B,A,Luminance,Intensity)

Address

0 initially(0) initially(0) initially(1) resolution of the color component graphics
memory

1

Table 4.3: Materials and light models parameters

62

Figure 4.13: Texture handling unit block diagram

4.9.2 Architecture

Figure 4.13 presents the block diagram of the texture handling unit. The system fetch
unit fetches pixels data from the system memory if command is TexImage2D or Tex-
SubImage2D.Whereas the graphics fetch unit fetches the pixels data from the frame buffer
(graphics memory) if command is CopyTexImage2D or CopySubTexImage2D. Then, the
format conversion unit converts the pixel from the storage format, in the system memory,
or the frame buffer format to texture internal format and updates the texture images. In
parallel, the auto mipmapping unit generates different LoD texture image arrays from the
zero-level texture array.

4.9.2.1 System Fetch Unit

The system fetch unit reads a rectangle of pixels from the systemmemory if command
is TexImage2D or TexSubImage2D. The data pointer is the location of the first pixel in
the system memory. Number of pixels per column equals the width parameter whereas
number of rows is the height parameter. Table 4.4demonstrates number of bytes per pixel
for all valid pixel f ormat and type combinations. It feds the format conversion unit by
streams of pixels.

63

Format Type Pixel Size (in bytes)
RGBA ubyte 4
RGB ubyte 3
RGBA short_4_4_4_4 2
RGBA ushort_5_5_5_1 2
RGB ushort_5_6_5 2

Luminance-Alpha ubyte 2
Luminance ubyte 1

Alpha ubyte 1

Table 4.4: Pixel size for all valid format and type combinations

Color buffer format Texture internal format
A L LA RGB RGBA

Alpha (A) yes no no no no
Luminance (L) no yes no no no

LA yes yes yes no no
RGB no yes no yes no
RGBA yes yes yes yes yes

Table 4.5: Valid color buffer and texture internal formats combinations

Internal texture format RGBA pixel components
Alpha (A) A

Luminance (L) R
Luminance_Alpha (LA) R, A

RGB R, G, B
RGBA R, G, B, A

Table 4.6: Conversion from RGBA pixel components to internal texture
components

64

Figure 4.14: Unsigned short formats

4.9.2.2 Graphics Fetch Unit

The graphics fetch unit reads a rectangle of pixels from the frame buffer in the graph-
ics memory if command is CopyTexImage2D or CopyTexSubImage2D. The (x,y) coordi-
nates define the left lower corner of the frame buffer region to be copied. Number of pixels
per column equals the width parameter whereas number of rows is the height parameter.
It feds the format conversion unit by streams of pixels in color buffer format.

4.9.2.3 Format Conversion Unit

The format conversion unit converts the format of the incoming pixel to the texture’s
internal format to be stored according to algorithm 4.17. It receives pixels, stored in
system image’s format, from the system fetch unit or pixels, stored in the frame buffer’s
format, from the graphics memory.

For pixels that are received from the system fetch unit, it unpacks pixels if they are en-
coded in ushort_4_4_4_4, ushort_5_5_5_1, or ushort_5_6_5 type as shown in figure 4.14.
Then, it converts the pixel to RGBA format. Then, it clamps each color components to
[0,1] range and selects the color components to be stored in the texture object array based
on the internal format. Table 4.6summarizes the conversions from the RGBA formats to
the texture internal formats.

For pixels that are received from the graphics fetch unit, they are received in color
buffer format. Then, the format conversion unit clamps color components to[0,1] range

65

and converts them to the internal format if this is an applicable transformation. Table
4.5summarizes the available transformations from the color buffer formats to the texture
internal formats. Finally, it updates the zero-LoD texture array.

4.9.2.4 Auto Mipmapping Unit

The auto mipmapping unit creates higher ordered set of arrays that represents the
same texture image. This set of arrays are derived from the Zero-LoD texture array. These
contents are computed by using 2x2 box filter reduction method: each 2x2 box filter pixels
are averaged to compute a pixel of a higher LoD texture array.

Algorithm 4.17 Format conversion algorithm
→ If (Command ∈TexImage2D or TexSubImage2D)

→ Receive pixel colors from the system fetch unit.
→ Unpack the pixel color if pixel type is unsigned short, figure 4.14.
→ If (pixel format = luminance (L) or luminance alpha (LA))

Red (R), Green (G), and Blue (B) color components = L.
→ If (R,G, and B do not exist)

Red (R), Green (G), and Blue (B) color components = 0.0.
ElseIF (Alpha (A) does not exist)

Alpha (A) color component = 1.0.
→ Clamp the color components to [0,1]range.
→ Select the color component from the RGBA format based on the texture
internal format, table 4.6.

ElseIF (Command ∈CopyTexImage2D or CopyTexSubImage2D)
→ Clamp the color components to [0,1]range.
→Converts the color components to the internal format if this is an applicable
transformation, table 4.5.

→ If (Command ∈TexImage2D or CopyTexImage2D)
→ Update the whole bounded texture zero-LoD array, started from the lower
left corner (0,0).

ElseIF (Command ∈TexSubImage2D or CopyTexSubImage2D)
→Update a rectangle sub-region of the bounded texture zero-LoD array. This

rectangle sub-region is defined by its lower left corner
(xo f f set,yo f f set), width, and height.

66

Figure 4.15: Texture Mapping Architecture

Property Type Options Initial
value

Texture_Minification_Filter 6-valued integer Nearest, Linear, Near-
est_Mipmap_Nearest
Linear_Mipmap_Nearest
Nearest_Mipmap_Linear
Linear_Mipmap_Linear

Nearest_
Mipmap_
Linear

Texture_Magnification_Filter 2-valued integer Nearest, Linear Linear
Texture_wrap_S 2-valued integer Repeat,

Clamp_to_Edge
Repeat

Texture_wrap_T 2-valued integer Repeat,
Clamp_to_Edge

Repeat

Table 4.7: Texture properties set

67

Parameter Type Options Initial
value

Texture mode 6-valued
integer

Replace, Modulate, Decal,
Blend, Add, Combine

Modulate

Combine_RGB 8-valued
integer

Replace, Modulate, Add,
Add_signed, Interpolate,
Subtract, Dot3_RGB,

Dot3_RGBA

Modulate

Combine_Alpha 6-valued
integer

Replace, Modulate, Add,
Add_signed, Interpolate,

Subtract

Modulate

SRC0_RGB,
SRC0_Alpha

4-valued
integer

Texture, Constant,
primary_color, previous

Texture

SRC1_RGB,
SRC1_Alpha

4-valued
integer

Texture, Constant,
primary_color, previous

Previous

SRC2_RGB,
SRC2_Alpha

4-valued
integer

Texture, Constant,
primary_color, previous

Constant

Operand0_RGB,
Operand1_RGB

4-valued
integer

SRC_Color,
One_minus_SRC_Color,

SRC_Alpha,
One_minus_SRC_Alpha

SRC_Color

Operand2_RGB 4-valued
integer

SRC_Color,
One_minus_SRC_Color,

SRC_Alpha,
One_minus_SRC_Alpha

SRC_Alpha

Operand0_Alpha,
Operand1_Alpha,
Operand2_Alpha,

2-valued
integer

SRC_Alpha,
One_minus_SRC_Alpha

SRC_Alpha

RGB_Scale,
Alpha_Scale

3-valued
integer

(1.0, 2.0, 4.0) 1.0

Texture
Environment

Color

4 fixed-point
values

RGB (Cc) and Alpha (Ac) (0,0,0,0)

Texture0unit_enable
Texture1unit_enable

Boolean (True, False) False

Table 4.8: Texture function parameters

68

4.10 Texture Mapping Unit

The texture mapping unit receives fragment’s texture coordinates (S ,T) and their pri-
mary colors (C f ,A f) that are resulted from rasterization unit. It uses fragment’s texture
coordinates for addressing the texture object array and computing the fragment’s texture
source colors (Cs,As). Then, it produces the final color of the fragment by applying the
texture function such as modulate and replace on the fragment’s primary color, fragment’s
texture source colors, and texture environment color (Cc,Ac). Texture mapping process
is divided into three steps:

1. compute the texture address by wrapping and filtering the fragment’s texture coor-
dinates.

2. fetch the fragment’s texel from the bounded texture object array.

3. compute the final fragment’s color by applying the texture functions on the frag-
ment’s primary color, fragment’s texture source colors, and texture environment
color.

This unit handles the required functions set by OpenGL ES 1.1 [8], sections 3.7.5, 3.7.6,
3.7.7, 3.7.10, 3.7.12, and 3.7.13.

4.10.1 Register file

1. Texture properties set: texture properties control the filtering and wrapping func-
tions that are applied on the texture coordinates. Our architecture has two sets: one
for each texture coordinates. Table 4.7 summarizes the texture properties and their
initial values.

2. Texture function parameters: for each texture unit, the texture function parameters
control the execution of the texture function on the fragment’s primary color, frag-
ment’s texture source colors, and texture environment color. Table 4.8 summarizes
the texture function parameters and their initial values.

4.10.2 Architecture

As shown in figure 4.15, the texture mapping unit receives fragment’s texture coordi-
nates (S 0,T0) for texture unit 0, texture coordinates (S 1,T1) for texture unit 1, and their

69

primary colors. First, the wrapping blocks modify the texture coordinates (S 0,T0) and
(S 1,T1) based on the texture wrap mode: repeat or clamp_to_edge. Then, the filtering
unit calculates texel’s address and fetches the texel’s color components from the graphics
memory (texture cache). Also, it computes the final texel color and converts it from the
texture internal format to the RGBA format.

Finally, if texture unit 1 is disabled, texture unit 0 produces the final color of the frag-
ment by applying the texture function such as modulate and replace on the fragment’s
primary color (C f ,A f), fragment’s texture source colors (Cs0,As0), and texture environ-
ment color (Cc,Ac); otherwise, texture unit 1 calculates the final color by applying the
texture function on the fragment’s primary color (C f ,A f), fragment’s texture source col-
ors (Cs1,As1), texture environment color (Cc,Ac) and the resulted color from texture unit
0 (Cp,Ap) as a primary color component.

4.10.2.1 Wrapping unit

The wrapping units modify the texture coordinates (S 0,T0) and (S 1,T1) based on the
texture wrap mode: repeat or clamp_to_edge according to algorithm

4.10.2.2 Filtering unit

First, the filtering unit determines the filtering mode (magnification or minification)
by calculating the level of details (LoD) parameter λ(x,y) for the given primitive accord-
ing to algorithm 4.19. Then, it calculates texel’s addresses, fetches them, and computes
the filtered texture components from the graphics memory based on the filtering mode ac-
cording to algorithm 4.20. Then, it maps the color components from the internal format

Algorithm 4.18 Format conversion algorithm
If (Texture_wrap_S =repeat)

S ‘ = S − f loor(S).
Else

Clamp S to [1
2∗TextureWidth ,1−

1
2∗TextureWidth].

If (Texture_wrap_T =repeat)
T ‘ = T − f loor(T).

Else
Clamp T to [1

2∗Texture Height ,1−
1

2∗Texture Height].

70

of the filtered texture components to the texture source components (Cs,As) as shown in
table 4.9.

Algorithm 4.19 Filtering mode algorithm
u(x,y) = 2log2(texturewidth) ∗S (x,y)

v(x,y) = 2log2(textureheight) ∗T (x,y)

If (primitive =triangle)
ρ = max{

√
(δuδx)2+ (δvδx)2,

√
(δuδy)2+ (δvδy)2}.

ElseIF(primitive =line)

ρ =

√
(δuδx ∗△x+ δuδy ∗△y)2+(δvδx ∗△x+ δvδy ∗△y)2

√
△x2+△y2

.
else

ρ = 1.

λ(x,y) = log2[ρ(x,y)]

If (Texture_Magnification_Filter =linear) AND (Texture_Minification_Filter =Nearest_Mipmap_Nearest
or Nearest_Mipmap_Linear)

C = 0.5.
else

C = 0.

Ifλ(x,y) ≤C
filtering mode = magnification.

else
filtering mode = minification.

Texture Base
Internal Format

Texture source color
Cs (R,G,B) As (A)

Alpha (A) (0,0,0) At
Luminance (L) (Lt,Lt,Lt) 1
Luminance_Alpha(LA)(Lt,Lt,Lt) At
RGB (Rt,Gt,Bt) 1
RGBA (Rt,Gt,Bt) At

Table 4.9: Valid color buffer and texture internal formats combinations

71

Algorithm 4.20 Filtering algorithm
Filtering (u, v, filtering mode, texture_mag_filter, texture_min_filter, texture_wrap_S, tex-
ture_wrap_T, LoD (λ))

If (filtering mode = magnification)
If (texture_mag_filter = nearest)

texel (τ) =Single_fetch (u, v, 0)
ElseIF (texture_mag_filter = linear)

texel (τ) =Box_fetch (u, v, 0)
ElseIF (filtering mode = minification)

If (texture_min_filter = nearest)
texel (τ) =Single_fetch (u, v, 0)

ElseIF (texture_min_filter = linear)
texel (τ) =Box_fetch (u, v, 0)

ElseIF (texture_min_filter = nearest_mipmap_nearest or linear_mipmap_nearest)

d =


0 λ ≤ 0.5

⌈λ+0.5⌉−1 0.5 < λ ≤ q+0.5
λ > q


where q = max{n = log2(imagewidth) ,m = log2(imagewidth)}
if (texture_min_filter = nearest_mipmap_nearest)

texel (τ) =Single_fetch (u, v, d)
ElseIF (texture_min_filter = linear_mipmap_nearest)

texel (τ) =Box_fetch (u, v, d)
ElseIF (texture_min_filter = nearest_mipmap_linear or linear_mipmap_linear)

d1 =
{

q q ≤ λ
⌊λ⌋ otherwise

}
d2 =

{
q q ≤ λ

d1+1 otherwise

}
If (texture_min_filter = nearest_mipmap_linear)

texel (τ1) =Single_fetch (u, v, d1)
texel (τ2) =Single_fetch (u, v, d2)

ElseIF (texture_min_filter = linear_mipmap_linear)
texel (τ1) =Box_fetch (u, v, d1)
texel (τ2) =Box_fetch (u, v, d2)

τ = [1− f rac(λ)]∗τ1+ f rac(λ)]∗τ2
return τ

Single_fetch (u, v, mipmap array(d))
i =
{
⌊u⌋ S < 1

2n−1 S = 1

}
j =
{
⌊v⌋ T < 1

2m−1 T = 1

}
return τ = τ(i, j) of mipmap array (d)

Box_fetch (u, v, mipmap array(d))
i0 =
{
⌊u−0.5⌋mod2n TexturewrapS isrepeated
⌊u−0.5⌋ otherwise

}
j0 =
{
⌊v−0.5⌋mod2m TexturewrapT isrepeated
⌊v−0.5⌋ otherwise

}
i1 =
{

(i0+1)mod2n TexturewrapS isrepeated
(i0+1) otherwise

}
j1 =
{

(j0+1)mod2m TexturewrapT isrepeated
(j0+1) otherwise

}
α = f rac(u−0.5) ,β = f rac(v−0.5)
return τ = (1−α)(1−β)∗τ(i0, j0)+ (α)(1−β)∗τ(i1, j0)
+(1−α)(β)∗τ(i0, j1)+ (α)(β)∗τ(i1, j1)

72

4.10.2.3 Texture unit

The texture unit applies the texture function on its input colors to produce the frag-
ment’s final color. Texture function is determined based on the texture base internal for-
mat and the texture function parameters, table 4.8. Each texture unit receives four colors
components:

1. Fragment’s primary color (C f ,A f) that is resulted from the rasterization unit.

2. Texture source color (Cs,As) that is fetched by the texture coordinates from the
texture image.

3. Texture environment color (Cc,Ac) that is specified by the TexEnv command.

4. Primary color component (Cp,Ap) that is resulted from the previous texture unit.
For texture unit 0, primary color component (Cp,Ap) equals fragment’s primary
color (C f ,A f).

Then, it computes the primary color components(Cv,Av) by applying the texture function
as specified in the OpenGL ES 1.1 [8], tables 3.15, 3.16, and 3.17. Finally, it scales and
clamps the primary color components (Cv,Av) to calculate the output color component
(Cr,Ar):

Cr = Clamp (Cv ∗RGB−S cale) to [0,1]

Ar = Clamp (Av ∗Alpha−S cale) to [0,1] (4.19)

4.11 Final Color Adapting unit

The final color adapting unit computes the final pixel color by blending the fragment’s
post-texturing color (Cr,Ar)with the fog color (C f ,A f)with a user-defined blending factor
f . Then. it adjusts the fragment’s alpha value using the coverage value. This unit handles
the required functions set by OpenGL ES 1.1 [8], section 3.8.

4.11.1 Register File

1. Fog mode: 3-valued integer to choose the fog mode (exp, exp2, linear). Initially,
the fog mode is exp.

73

2. Fog parameters: 3 fixed-point values to specify the fog density (d), fog start (s), and
fog end (e).Initially, fog density d = 1.0 , fog start s = 1.0, and fog end s = 0.0.

3. Fog color (C f ,A f): 4 fixed-point values that stores the RGBA values of the fog
color. Initially, the fog color is (0,0,0,0).

4. Control flags: 4-bits to enable or disable the fog, the multisampling, line smooth-
ing, and point smoothing. Initially, fog, line smoothing, and point smoothing are
disabled whereas the multisampling is enabled.

5. Coverage value: a fixed-point value that is computed in the rasterization unit to
modify the alpha value.

4.11.2 Architecture

The post-textured color (Cr,Ar) produces the final color (C,A) according to algorithm
4.21.

4.12 Fragment Processing Unit

Our fragment processing unit is exactly as same as the OpenGL ES 1.1 fragment unit:
same pipeline order and operations. It performs blending, stencil test, depth test, and
other tests on the incoming fragments and updates the frame buffer. This unit handles the
required functions set by OpenGL ES 1.1 [8], chapter 4.

Algorithm 4.21 Final color adapting algorithm
→ If (Fog is enabled)

→ If (Fog mode = exp)
f = exp (−d ∗ c)

ElseIF (Fog mode = exp2)
f = exp (−(d ∗ c)2)

ElseIF (Fog mode = linear)
f = e−c

e−s where c is the eye-coordinate distance from the eye to the
fragment center.

→ Final RGB colorC =Cr ∗ f +C f ∗ (1− f)
Else

→ Final RGB colorC =Cr

→ If (Primitive is point AND point smoothing is enabled) OR (Primitive is line AND line smooth-
ing is enabled)

→ Final Alpha valueA = Ar ∗Coveragevalue

74

4.13 Conclusion

Our CUGPU architecture supports more than 90% of the OpenGL ES CL profile com-
mands and their corresponding operations. It supports the graphics operations such as
vertex processing, lighting, clipping, rasterization, and texture mapping. However, it does
not support the get commands, error handling, and compressed texture images. Among
all CUGPU units, some units such as rasterization, texture mapping, and clipping units
need more research on their architectures and algorithms whereas other units can be im-
plemented directly such as vertex processing and fragment processing units. For example,
the rasterization unit need more investigation and optimization of point smoothing, point
sprite, and line smoothing algorithms to be designed incrementally. Also, the triangle
rasterization and line rasterization hardware may be combined to save hardware cost. The
clipping algorithm may be modified to check the view volume and the user-defined clip-
ping planes in parallel. The texture mapping and data fetch units needmore research about
management their memory requests to avoid memory congestion. In addition, we need
more analysis to determine the required bandwidth between the CUGPU and CUSPARC
and between the CUGPU and graphics memory. Also, we need more investigation about
the performance and limitations of the Wishbone bus if it is used as off-chip data bus.

75

Chapter 5

Diamond-Exit Rule Line Rasterization

Line rasterization algorithms are very important in the design of computer graphics
hardware, where many images are mostly composed of line segments. Moreover, the scan-
line conversion is used for triangle rasterization. This identifies the set of those fragments
that approximate the appearance of lines. OpenGL ES 1.1 ideally uses the diamond-exit
rule to determine the fragments that are produced by drawing a line segment. As shown
in figure 5.1, for each fragment, OpenGL define a diamond-shaped region:

R f =

{
(x,y) |

∣∣∣x− x f
∣∣∣+ ∣∣∣y− y f

∣∣∣ < 1
2

}
(5.1)

wherex f and y f are the fragment f coordinates in the window-space. A line segment,
starting at Pa and ending at Pb, produces a fragment if the line intersects the diamond-
shaped region R f of the fragment except if the end point Pb is located in R f . Figure
5.1 shows the diamond area for the x-major and y-major lines. For x-major lines (−1 ≤
slope (m)≤ 1) the diamond includes the higher left edge, higher right edge, and top corner
of the diamond; it excludes the remaining corners and edges. For y-major lines (–∞ <
slope < −1or 1 < slope < ∞), the diamond includes the higher left edge, higher right
edge, top corner, and right corner; it excludes the remaining corners and edges.

For a line segment, starting at Pa and ending at Pb, the fragments may be divided
into three parts. The starting-point fragment, fragment contains the Pa; it is produced if
Pa is located on the diamond area and the line intersects the diamond boundaries. The
end-point fragment, one contains the Pb; it is produced if the line intersects and exits the
diamond boundaries. The remaining fragments; each is drawn if the line intersects its
diamond boundary.

77

Figure 5.1: Diamond area.

The initial and final conditions of the diamond-exit rule are difficult to implement. So,
the GL implementer is free to choose the line segment rasterization algorithm, subject to
the following rules:

1. The resulting fragment coordinates do not deviate more than one fragment from the
corresponding fragment produced by the diamond-exit rule algorithm.

2. The error, in the number of fragments, is less or equal to one fragment.

3. For an x-major line, no two fragments may be produced that lie in the same column
(for a y-major line, no two fragments may appear in the same row).

Then, the color, depth, and texture coordinates are determined for the produced fragment
by interpolating the end-points, Pa and Pb, associated data. A fragment with center Pr =

(Xr,Yr) is at a distance t

t =
(Pr −Pa)• (Pb−Pa)
∥ Pb−Pa ∥2

(5.2)

on the line from point Pa. This distance t is used as the interpolation value for any
associated data f for the fragment, which may be the color components (R,G,B,A), the
depth value(Z), or the texture coordinates (S ,T), based on the value of data at the start-
ing point Pa and the ending point Pb. If the associated data f is the color components
(R,G,B,A) or the depth value(Z), it is calculated as:

78

Figure 5.2: The mid-point algorithm Illustration

f = (1− t)∗ fa+ (t)∗ fb (5.3)

If the associated data f is the texture coordinates (S ,T), it is calculated as:

f =
(1− t)∗ fa

wa
+ (t)∗ fb

wb

(1− t)∗ Qa
wa
+ (t)∗ Qb

wb

(5.4)

where Wa and Wb are the clip w coordinates of the starting and ending endpoints of
the segments, respectively; Qa and Qb are the texture Q coordinates of the starting and
ending endpoints of the segments, respectively.

We divided the line rasterization that satisfied the diamond-exit rules into three main
problems. First, we implemented the line drawing without considering the initial and
final conditions of the first and last fragments. We modified Bresenham algorithm [39]
to satisfy the diamond-exit rule. This might generate the first and last fragment correctly.
Second, we checked the first and last fragments usingMoreton [40] rasterization technique.
It depends on calculating the Manhattan distances for the starting and ending vertices
from the diamond edges. Finally, we adapted the line interpolation algorithm to use the
incremental linear interpolation method [41, 42].

5.1 Line Rasterization Algorithms

The line rasterization is based on the line equation and how to use the relation between
the consecutive fragments. We discuss the line drawing in the first octant(0 ≤ S lope(m) ≤
1) and the lines, in the others octants, are switched to the first octant before drawing. For
x-major line, the line is moving faster in x than in y. So, x is incremented in each step and y

79

Figure 5.3: Bresenham algorithm flow chart

may be incremented or not based on the line slope. The basic line equation y=m∗ x+c can
be implemented directly by moving from the starting-point x coordinate (xa) to the end-
point (xb) and substituting in this equation. But, this algorithm performs a multiplication
for every step in x.

The direct implementation of the line equation is expensive. So, some algorithms
[41, 43, 44] were developed to overcome this algorithm such as mid-point algorithm and
Bresenham algorithm. These algorithms have the same visualization of the line, but area
and delay of Bresenham algorithm is less than the area and delay of mid-point algorithm,
respectively. Also, Bresenham algorithm can be modified to satisfy the OpenGL rules
easily.

The basic mid-point algorithm depends on the relation between the consecutive frag-
ments for the different slopes. For a line with the two end-pointsPa(xa,ya) and Pb(xb,yb),
the line equation can be written as

80

f (x,y) = (yb− ya)∗ x+ (xa− xb)∗ y+ ((ya− yb)∗ xa+ (xb− xa)∗ ya)

= A∗ x+B∗ y+C (5.5)

Where A = (yb−ya), B = (xa− xb), and C = ((ya−yb)∗ xa+ (xb− xa)∗ya). For x-major
lines, if we draw a fragment f where (x f ,y f) is the pixel center, the next eligible pixel
would be (x f + 1,y f) or (x f + 1,y f + 1). So, they used the midpoint (x f + 1,y f + 0.5)to
determine the next drawn fragment. Figure 5.2 illustrates the two cases of the mid-point
algorithm. In the left, f (x f +1,y f +0.5)= −ve value since the line passes above the mid-
point; in the right, f (x f + 1,y f + 0.5)= +ve value because the line passes below the mid-
point. It will be very difficult to substitute in it for each point, so they used the incremental
method based on the incremental relations between the subsequent mid-points.

Bresenham modified this algorithm for the special case when the starting point
Pa(xa,ya) located exactly at the fragment center. In this case, the initial distance d is
given by

d = f (xa+1,ya+0.5) = f (xa,ya)+A+
B
2

= A+
B
2

(5.6)

Because this algorithm concerned with the sign of the distance only, this equation is
multiplied by 2 to avoid the division

d = f (xa+1,ya+0.5) = 2A+B (5.7)

Figure 5.3 shows the flow chart of the Bresenham algorithm. Also, the candidates’
fragments have some patterns, based on the line slope m. So, this method was extended
for the double step, triple, and quadratic line drawing [45–47].

5.2 Our Modified Bresenham Algorithm

The Bresenham algorithm assumes that the end-points’ coordinates are located at the
fragments centers. But the OpenGL coordinates could be any 32 bits fixed point value:
OpenGL uses 16 bits for the integer part and 16 bits for the fraction part. So, we adapted
this algorithm to satisfy the diamond-exit rule line. These modifications concerned about

81

Figure 5.4: Line drawing examples

how to specify the first candidate fragment for the Bresenham algorithm and the calcula-
tion of the initial distance d, the substitution of the first check point in the line equation
f (x,y). Figure 5.4 demonstrates different lines’ starting points and their resulting first
drawn fragment. This shows that, in cases (b,c,d), the first drawn fragment is not the
fragment of the starting point Pa. For a x-major line with the starting vertex (xa,ya) that
is located inside the fragment with center (x1,y1), the center of the first drawn fragment
could be (x1,y1), (x1,y1+1), (x1+1,y1), or (x1+1,y1+1) as shown in the figure 5.4.

Figure 5.5: The check point distance

82

To apply the Bresenham algorithm on the given line, we need to choose the start
fragment center. We chose the center x coordinate to be x1 because this does not affect
the correctness of Bresenham algorithm. However, this might draw one extra fragment,
the starting-point fragment as shown in cases (c) and (d) in figure 5.4. This error is handled
by the Moreton [40] algorithm. So, the two candidate fragments’ centers are (x1,y1) or
(x1,y1+1). To distinguish between them, we check the initial mid-point (xc,yc) = (x1,y1+

0.5) versus the line equation. If the line passes above it, then the first drawn fragment’s
center is (x1,y1+1); otherwise, the first drawn fragment’s center is (x1,y1). So, the initial
distance is d = f (xc,yc)

d = f (xc,yc) = f (x1,y1+0.5)

= A∗ xc+B∗ yc+C

= A∗ (xa+ xo f f)+B∗ (ya+ yo f f)+C

= [A∗ (xa)+B∗ (ya)+C]+ [A∗ (xo f f)+B∗ (yo f f)]

= A∗ (xo f f)+B∗ (yo f f) (5.8)

Where xo f f and yo f f are the distance from the starting point (xa,ya) of the line to the
check point (xc,yc) as shown in figure 5.5

xo f f = xc− xa

= 0.5− f rac(xa) ∈]−0.5,0.5] (5.9)
yo f f = yc− ya

= 1− f rac(ya) ∈ [0,1[(5.10)

If distance (d) is less than or equal 0, the output fragment’s center is (x1,y1), the next
check point is (xc+1,yc), and the incremental distance step (△d1) is

△d1 = f (xc+1,yc)− f (xc,yc)

= A (5.11)

Otherwise, the output fragment’s center is (x1,y1 + 1), the next check point is (xc +

1,yc+1), and the incremental distance step (△d2) is

83

Figure 5.6: Our line drawing algorithm flow chart

△d2 = f (xc+1,yc+1)− f (xc,yc)

= A+B (5.12)

This is recursively repeated until xc reaches xb. Figure 5.6 shows our algorithm for a
given x-major line with the end-points Pa(xa,ya) and Pb(xb,yb).

84

5.3 Initial and final Conditions Handling

The initial and final conditions of the diamond-exit are difficult to implement. So, we
trade them separately. The initial and final conditions specify the rules for drawing the
fragments which include the starting point and ending point, respectively. These frag-
ments are drawn if the line intersects the fragment diamond area and the end point of this
line does not fall inside their diamond’s areas. Taylor [48] and Brown [49] algorithms’
ideas, for drawing the anti-aliasing lines, could be modified to check the initial the final
fragments. This depends on checking the starting and ending points against the equations
of their diamonds’ edges. Also, Moreton [40] developed an algorithm to check the initial
and final conditions and to cull the short lines.

Moreton algorithm checks the initial the final conditions by calculating the distances
from these points to the fragments’ centers. We implemented the Moreton algorithm, in
parallel to the Bresenham algorithm, to check the initial and final conditions because our
modified Bresenham algorithm may produce the first and last fragments incorrectly if
the starting point locates outside the diamond area of the fragment, as shown in figure
5.4(c,d). So, the first and last fragments and their associated data that are produced from
the Bresenham algorithm are stored in a buffer and do not send to the texture mapping
unit until the Moreton algorithm solves the initial and final conditions. However, we
could implement the initial condition only since OpenGL allows generating one incorrect
fragment.

5.4 Incremental Linear Interpolation

The associated color, texture coordinates, and depth with the produced fragment is cal-
culated by interpolating the associated data with the starting and final fragments. Since
the Bresenham algorithm generates the fragments incrementally, it is useful to adapt the
interpolation equations to interpolate the associated data incrementally. Bresenham [41]
and Field [42] interpolated the associated data incrementally. For example, the equation
f = fa+ t ∗ (fb− fa), where t is the interpolation ratio and f is the associated data, can be
implemented by using fa as initial value and (∆t)∗ (f b− f a) as an incremental step. More-
over, Wu [47] and Bao [45] proposed the double step and quadratic line generation. And
Graham [46] implemented the double and triple step line interpolation. We implement
the single-step incremental linear interpolation because the double, triple, and quadratic

85

steps incremental interpolation require more hardware which may be unsuitable for the
embedded systems’ GPUs.

We adapt the OpenGL interpolation equations to use the incremental linear interpola-
tion. For a line with the two end-points Pa(xa,ya) and Pb(xb,yb), the interpolation valuet1,
for a produced fragment center Pr(xr,yr), is calculated by

t1 =
(Pr −Pa)• (Pb−Pa)
∥ Pb−Pa ∥2

=
[(xr − xa), (yr − ya)].[(xb− xa), (yb− ya)]

[(xb− xa)+ (yb− ya)]2

=
(xb− xa)

[(xb− xa)+ (yb− ya)]2 xr +
(yb− ya)

[(xb− xa)+ (yb− ya)]2 yr

+
−xa(xb− xa)− ya(yb− ya)

[(xb− xa)+ (yb− ya)]2

= A1 ∗ xr +B1 ∗ yr +C1 (5.13)

Where A1 =
(xb−xa)

[(xb−xa)+(yb−ya)]2 , B1 =
(yb−ya)

[(xb−xa)+(yb−ya)]2 , andC1 =
−xa(xb−xa)−ya(yb−ya)

[(xb−xa)+(yb−ya)]2 . How-
ever, we can interpolate some associated data with respect to the x-coordinates only and
neglect the y-coordinates effect because we deal with first-octant lines only. These lines’
angle ϴ is in the range from 0◦ to 45◦. For a line with slope near 0◦, there is a small change
in y-coordinates over the line produced fragments’ coordinates. Also, for a line with slope
near 45◦, the line moves with the same speed in the x-direction and y-direction. So, if we
interpolate versus the x-coordinates, the resulted value t2(equation 5.14) is approximately
equal the exact t1 (equation 5.13). Moreover, if the line angle is near 23°, the error is still
accepted for the color components because their range is from 0 to 1. The interpolation
value t2 is calculated by

t2 =
(xr − xa)
(xb− xa)

=
1

(xb− xa)
xr +

−xa

(xb− xa)
= A2 ∗ xr +C2 (5.14)

Where A2 =
1

(xb−xa) andC2 =
−xa

(xb−xa) . We used the interpolation value t1(equation 5.13)
for interpolating the texture coordinates (S ,T,Q) and depth (Z). However, we used the
interpolation value t2(equation 5.14) for interpolating the color components (R,G,B,A)

since its error, as we discuss in chapter 6, is accepted for the color range [0,1].

86

5.4.1 Color Interpolation

The color components (R,G,B,A) are interpolated using the interpolation equation

f = fa ∗ (1− t)+ fb ∗ t

= fa+ (t)∗ (fb− fa) (5.15)

Since t equals 0 at the starting point, the initial color value, which is assigned to the
first drawn fragment, fini = fa. By substituting by the interpolation value t25.14into the
interpolation equation

f = fa+ (t)∗ (fb− fa)

= fa+ (A2 ∗ xr +C2)∗ (fb− fa)

= [A2 ∗ (fb− fa)]∗ xr + [fa+C2 ∗ (fb− fa)] (5.16)

If the drawn fragment is(xi,yi), the next drawn fragment is (xi+1,yi) or (xi+1,yi+1). So,
the difference of x (∆x) for two consecutive fragments is 1 and the difference of the color
components are∆ f = A2 ∗ (fb− fa).

5.4.2 Depth Interpolation

The depth (Z) is interpolated is interpolated using the interpolation equation 5.15 with
fini = fa. But, it used the interpolation value t15.13

f = fa+ (t)∗ (fb− fa)

= fa+ (A1 ∗ xr +B1 ∗ yr +C1)∗ (fb− fa)

= [A1 ∗ (fb− fa)]∗ xr + [B1 ∗ (fb− fa)]∗ yr

+[fa+C1 ∗ (fb− fa)] (5.17)

For a drawn fragment (xi,yi); if the next drawn fragment is (xi+1,yi), than∆x = 1 and
∆y = 0 . So, the difference of the depth component △ f1 = A1 ∗ (fb− fa). Otherwise,∆x = 1,
∆y = 1 , and the difference of the depth component is △ f2 = (A1+B1)∗ (fb− fa).

87

5.4.3 Texture Coordinates Interpolation

The rasterization unit receives the texture coordinates in the format (S ,T,R,Q) which
represent the 3D-texture address (S

Q ,
T
Q ,

R
Q). However, the OpenGL ES 1.1 supports the

2D-texture images only. So, we calculated (S
Q ,

T
Q) only. For generating these coordinates,

we had to apply the OpenGL interpolation equation

f =
(1− t)∗ fa

wa
+ (t)∗ fb

wb

(1− t)∗ Qa
wa
+ (t)∗ Qb

wb

(5.18)

Where fa and fb are the texture coordinates (S ,T) associated with the starting and
ending endpoints of the segment, respectively; Wa and Wb are the clip w coordinates of
the starting and ending points of the segments, respectively; Qa and Qb are the texture
Q coordinates of the starting and ending endpoints of the segments, respectively. It is
hard to implement this equation per produced fragment in the hardware. So, we tried to
simplify this equation by two methods.

The first method is that we interpolate for each coordinate (S ‘,T ‘,Q‘) independently
where (S ‘,T ‘,Q‘) is a modified texture coordinates that is used to replace the division
operations by multiplications. Then, texture mapping unit determined (S

Q ,
T
Q) = (S ‘

Q‘ ,
T ‘
Q‘)

using look-up tables.

f ‘
Q‘
=

(1− t)∗ fa
wa
+ (t)∗ fb

wb

(1− t)∗ Qa
wa
+ (t)∗ Qb

wb

=

fa
wa
+ (t)∗ (fb

wb
− fa

wa
)

Qa
wa
+ (t)∗ (Qb

wb
− Qa

wa
)
∗Wa ∗Wb

Wa ∗Wb

=
(fa ∗Wb)+ (t)∗ (fb ∗Wa− fa ∗Wb)

(Qa ∗Wb)+ (t)∗ (Qb ∗Wa−Qa ∗Wb)

=
K + (t)∗L
M+ (t)∗N

(5.19)

WhereK = (fa ∗Wb),L = (fb ∗Wa− fa ∗Wb),M = (Qa ∗Wb), and N = (Qb ∗Wa−Qa ∗Wb).
Then, we calculate the f “ and Q‘ separately by the same incremental methodology that is
used for the depth interpolation

fint‘ = K = (fa ∗Wb)

△ f1 = A1 ∗L = A1 ∗ (fb ∗Wa− fa ∗Wb)

88

△ f2 = (A1+B1)∗L = (A1+B1)∗ (fb ∗Wa− fa ∗Wb) (5.20)

Qint‘ = M = (Qa ∗Wb)

△Q1 = A1 ∗N = A1 ∗ (Qb ∗Wa−Qa ∗Wb)

△Q2 = (A1+B1)∗N = (A1+B1)∗ (Qb ∗Wa−Qa ∗Wb) (5.21)

The second method implementes the incremental linear interpolation procedure di-
rectly on the texture interpolation equation with some assumptions. First, we use the
interpolation value t2(equation 5.14). Also, we substitute with xr =

(xa+xb)
2 in the final

expression of ∆ f .

f =
f ‘
Q‘
=

K + (t)∗L
M+ (t)∗N

=
K + (A2 ∗ xr +C2)∗L
M+ (A2 ∗ xr +C2)∗N

=
(A2 ∗L)∗ xr + (K +C2 ∗L)

(A2 ∗N)∗ xr + (M+C2 ∗N)

=
G ∗ xr +E
J ∗ xr + I

(5.22)

WhereG = (A2∗L),E = (K+C2∗L), J = (A2∗N), and N = (M+C2∗N). The initial texture
coordinates fini and the incremental step ∆ f are calculated by

fini =
K
M
=

fa
Qa

(5.23)
△ f = f2− f1

=
(G ∗ I−E ∗ J)

(I+ J ∗ xavg)∗ (I+ (J+1)∗ xavg)
(5.24)

Where f1 and f2 are the associated produced data of two consecutive fragments with x-
coordinates x1 and x1 + 1, respectively. This equation produces errors due to our two
approximations; especially for the long lines. So, we interpolate the texture coordinates
with the first method (equation 5.19).

5.5 RTL Implementation

Figure 5.7 shows the complete line rasterization algorithm. We implement it using
the VHDL language to have a clear vision about its cost and speed. Figure 5.8shows
the line rasterization block diagram. It receives the starting vertices Pa(xa,ya) and the

89

ending vertices Pb(xb,yb) in the window space. Also, it receives a color (R,G,B,A), depth
(Z), and texture coordinates (S ,T,Q) of each vertex. It produces the drawn fragment
coordinates with their associated data.

The architecture can be divided into two main blocks: line drawing and line interpo-
lation. For the line drawing, the step calculation block determines the Bresenham steps
(A,B,A+ B) and the octant number. Then, the octant switch blocks transforms the line
to the first octant. The offset calculation unit calculates the xo f f ,and yo f f . The initial
distance block calculates the initial distance D = A∗ xo f f +B∗yo f f . The fragment genera-
tion unit produces the coordinates of the drawn fragments sequentially. For the line inter-
polation, the incremental interpolation unit calculates the interpolation steps (A1,B1,A2)

using look-up tables. The texture and color units calculates the initial color components

Figure 5.7: Line rasterization algorithm flow chart:

90

Figure 5.8: Line rasterization architecture

91

Octant Z2 = sign(∆y) Z1 = sign(slope) Z0 = (slope ≥ 1)
0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 0 0
5 1 0 1
6 1 1 1
7 1 1 0

Table 5.1: The line octant encoding

(Rini,Gini,Bini,Aini), texture coordinates (S ini,Tini,Qini), and depth values (Zini). Also, it
calculates some parts of the incremental steps. Then, incremental interpolation steps
calculates the incremental steps for the color (△R,△G,△B,△A), the texture coordinates
(△S ,△T,△Q), and the depth (△Z). Then the data generation block produces the associ-
ated data of the generated fragments sequentially.

5.5.1 Step Calculation Unit

The Bresenham algorithm deals with lines in the first octant only; slope m ∈ [0,1] and
(xb > xa). So, the given line must be transformed to the first octant. Then, the Bresen-
ham algorithm is applied on the transformed line. Finally, the produced fragments are
transformed back to its initial octant. Step calculation unit encodes the eight octants by
the octant number (Z2,Z1,Z0) as a function of ∆y sign, slope m sign, and (∆y−∆x) sign,
where ∆y = yb− ya and ∆x = xb− xa, as shown in table 5.1.

Also, it calculates the Bresenham incremental steps A = (yb − ya),B = (xa − xb), and
AplusB = (yb− ya)+ (xa− xb). It feeds the initial distance unit with A and B to determine
the initial distance dini = A ∗ xo f f + B ∗ yo f f . Also, it feeds the fragment generation unit
with A and AplusB that are used as Bresenham incremental steps.

5.5.2 Octant Switch Unit

The line starting and ending points are transformed according the octant number. Ta-
ble 5.2 demonstrates the produced vertex coordinates(xo,yo) for a given vertex (xi,yi).
Figure 5.9 presented the block diagram of the octant switch unit.

92

Octant Produced Vertex
(xo,yo)

0 (xi,yi)
1 (yi, xi)
2 (yi,−xi)
3 (−xi,yi)
4 (−xi,−yi)
5 (−yi,−xi)
6 (−yi, xi)
7 (xi,−yi)

Table 5.2: The octant vertices transformation

Figure 5.9: The octant switch block diagram

5.5.3 Offset Calculation Unit

It calculates the offset from the starting vertex of a line to the mid-point as shown in
figure 5.5. For a line with a starting vertex (xa,ya) that is located in a fragment with center
(xi,yi), the mid-point coordinates are (xi,yi+0.5). So, the initial offset (xo f f ,yo f f)

xo f f = 0.5− f rac(xa)

yo f f = 1− f rac(ya) (5.25)

93

For a fixed-point input (xa,ya), the xo f f and yo f f are a 17-bit 2’s complement
number.xo f f range is from−0.5 to 0.5 and yo f f range is from 0 to1. Figure 5.10 demon-
strates the block diagram of the offset calculation unit. It are implemented by two 16-bit
2’s complement units.

5.5.4 Initial Distance Unit

To determine the first drawn fragment coordinates, (xi,yi) or (xi,yi + 1), we have to
substitute in the line equation by the mid-point (xi,yi+ .5) in the line equation Initial. So,
the initial distance diniis calculated by

dini = A∗ (xo f f)+B∗ (yo f f) (5.26)

If the initial distance is equal or less than 0, the drawn fragment coordinates are (xi,yi).
Otherwise, the drawn fragment coordinates are (xi,yi + 1). We need only to check if the
distance is greater than 0. So, we produce the distance in a redundant form, two vectors,
to save the final stage adder delay. The A and B are 32-bit 2’s complement number. And,
xo f f andyo f f are 17 bits 2’s complement number. We produce the output as two 33-bit
vectors by ignoring the least 16-bit. First, 17-partial products are produced from A∗ xo f f .
Another 17-partial products are generated from B∗yo f f . Then, the 34-partial products are
reduced to two vectors using the Carry-Save adders.

Figure 5.10: The offset calculation block diagram

94

Figure 5.11: The reduction tree of the initial distance

95

Figure 5.12: The fragment generation block diagram

Figure 5.11 shows the partial product array before the reduction. We ignore the partial
products bits that have a weight less than 2−16. So, the reduction tree is 34 partial products,
in the black lines’ box, with elements have aweight between 2−16 and 215. We reduce them
to 2 redundant vectors by eight levels Wallace tree [50].

5.5.5 Fragments’ Coordinates Generation Unit

Figure 5.12 shows the block diagram of the fragment generation unit. It produces the
drawn fragments sequentially from the first fragment to the last one. It mainly applies the
modified Bresenham algorithm. It receives the initial fragment’s coordinates (xi,yi) and
the final fragment’s coordinates (x f ,y f). Also, it receives the initial distance dini and the
incremental stepsA and AplusB. As we mentioned before, we need the Distance sign only.
So, we encode the distance in the binary redundant format [51] using a modified Plus Plus
Minus (PPM) adder [52]. Then, we check the distance sign in each step. If this sign is

96

Digit Value x+ x−

0 0 0
-1 0 1
1 1 0
0 1 1

Table 5.3: Redundant binary representation

Figure 5.13: PPM adder block diagram

greater than zero, the step AplusB is added to the old distance using the PPM adder and
the generated fragment center is (xi+1,yi+1); Otherwise, the new distance equals the old
distance plus the step A and the generated fragment center is (xi,yi+1).

5.5.5.1 Redundant Binary Representation

We used the redundant binary representation with digits di ∈ {−1,0,1} to represent the
distance. Each digit di is represented by two bits x+ and x− as shown in table 5-3. This
representation simplifies the addition and subtraction. The addition can be performed
directly with a 2’s complement signed number using the Plus Plus Minus (PPM) hybrid
adder [52]. Also, the subtraction with a 2’s complement signed number is calculated
directly using the Plus Minus Minus (PMM) hybrid adder [52].

5.5.5.2 Hybrid PPM Adder

The hybrid PPM adder is used to add a redundant number (x+, x−) with a 2’s comple-
ment number y. The addition is carried out in two steps. First, for each bit location i, an
intermediate sum pi ∈ [−1,2] is computed

97

yi x+i x−i ti ui

0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 1 0
1 1 1 1 1

Table 5.4: PPM cell truth table

pi = x+i − x−i + yi

= 2ti−ui (5.27)

Then, the sum digits (s+i , s
−
i), for each bit i, are formed as

s+i = ti−1

s−i = ui (5.28)

Figure 5.13 demonstrates the block diagram of the hybrid PPM adder. Each PPM cell
computes the expression pi according to the table 5.4. So, ti and ui bits are computed by

ti = x+i (yi+ x−i)+ yix−i
ui = x+i xor x+i xor yi (5.29)

For encoding the distance two vectors (d1,d2) by the redundant binary form, we could use
the PPM adder with d1,0,and d2 as x+, x−,and y inputs respectively. So, we optimized
the PPM adder given these inputs. The ti and ui bits expressions of the modified PPM
adder are

ti = x+i + yi

ui = x+i xor yi (5.30)

98

Associated Data InitialValue
fini

InitialValue
△ f1

InitialValue
△ f2

Color (R) Ra A2 ∗ (Rb−Ra)
Color (B) Ba A2 ∗ (Bb−Ba)
Color (G) Ga A2 ∗ (Gb−Ga)
Color (A) Aa A2 ∗ (Ab−Aa)
Depth (Z) Za A1 ∗ (Zb−Za) (A1+B1)∗ (Zb−Za)

Texture Coor. (S‘) S a ∗Wb A1 ∗ (S b ∗Wa−S a ∗Wb) (A1+B1)∗ (S b ∗Wa−S a ∗Wb)
Texture Coor. (T‘) Ta ∗Wb A1 ∗ (Tb ∗Wa−Ta ∗Wb) (A1+B1)∗ (Tb ∗Wa−Ta ∗Wb)
Texture Coor. (Q‘) Qa ∗Wb A1 ∗ (Qb ∗Wa−Qa ∗Wb) (A1+B1)∗ (Qb ∗Wa−Qa ∗Wb)

Table 5.5: The initial and incremental steps of the fragments’ associated data

5.5.5.3 Distance Sign Detection

We could not detect if the distance is greater than 0 or not directly since it was encoded
in the redundant binary representation. So, we use the carry look ahead tree [53] to check
the sign instead. For each digit, we define the propagate signal Pi = 1 if the digit equal
zero and the generate signal Gi = 1 if the digit is greater than one.

Pi = x+i xnor x−i

Gi = x+i and x−i (5.31)

Then, we implement a three-level tree by grouping each four consecutive propagate and
generate into a higher level propagate and generate.

5.5.6 Data Interpolation Unit

In order to interpolate the associated data incrementally, we calculate the initial values
fini and the incremental steps △ f for the colors, depth, and texture coordinates before
calculating the associated data with the produced fragments. For the color components
(R,G,B,A), the initial value and the incremental steps are

fini = fa

∆ f = A2 ∗ (fb− fa) (5.32)

For the depth (z), the initial value and the incremental steps are

99

fini = fa

∆ f1 = (A1)∗ (fb− fa)

△ f2 = (A1+B1)∗ (fb− fa) (5.33)

For the texture coordinates (S ‘,T ‘,Q‘), the initial value and the incremental steps are

fint‘ = (fa ∗Wb)

△ f1 = A1 ∗ (fb ∗Wa− fa ∗Wb)

△ f2 = (A1+B1)∗ (fb ∗Wa− fa ∗Wb) (5.34)

Where A1 =
(xb−xa)

[(xb−xa)+(yb−ya)]2 , B1 =
(yb−ya)

[(xb−xa)+(yb−ya)]2 , andA2 =
1

(xb−xa) .△ f1and △ f2are the in-
cremental steps for the two cases of the distance: distance (d ≤ 0) and (d > 0) respectively.
Table 5.5summarizes the initial and incremental steps for each component.

5.5.6.1 Division Look-up Tables

The A1,A2, and A1plusB1 variables are shared for all associated data steps and required
dividers that consume more area and introduce long delay. However, they depend only on
the differences ∆x and ∆y coordinates. For a screen resolution 640*480, the maximum
∆x coordinate is 640 and the maximum ∆y coordinate is 480. Also, after we made statics
about the line’s lengths, we found that, for the simple objects, the average line length is 21
pixels and more than 90 % of lines have lengths less than 60 pixels. Also, for the complex
scenes, the average line length is 5 pixels and more than 95 % of lines have lengths less
than 20 pixels. So, we implemented them using three look-up tables by representing ∆x

and ∆y by 6-bit each.

5.5.6.2 Color and Texture Preparation

These blocks prepare the step coefficients for the color, depth, and textures compo-
nents. For the color, they calculate (Rb–Ra), (Gb–Ga), (Bb–Ba), and (Ab–Aa). For the
depth, they calculate (Zb–Za). For the texture coordinates, they calculate (S b ∗Wa–S a ∗
Wb), (Tb ∗Wa–Ta ∗Wb), and (Qb ∗Wa–Qa ∗Wb).

100

5.5.6.3 Incremental Interpolation Steps

This block calculates the final steps ∆ f1 and ∆ f2 for the color, texture, and depth com-
ponents as mentioned in table 5.5. It multiplies the step coefficients by the interpolation
coefficients A1,A2, and A1plusB1.

5.5.6.4 Associated Data Generation

The initial associated data are assigned to the first drawn fragment. Then, the consec-
utive fragment data are calculated according the distance sign as shown in figure .

Figure 5.14: The associated data generation block diagram

101

Chapter 6

Results

We verified our line drawing algorithm using line samples from different scenes:

1. McGuire Graphics Data[54].

2. Physically Based Rendering Scene [55].

3. ORSoC Graphics Accelerator Model [56].

Also, we analyzed these data sets and made statistics about line lengths using different
simple objects and complex scenes for a screen resolution 640 ∗ 480. For the simple ob-
jects, the average line length is 21 pixels, as shown in table 6.1a, and more than 90 %
of lines have lengths less than 60 pixels as shown in figure 6.1a. Also, for the complex
scenes, the average line length is 5 pixels, as shown in table 6.1b, and more than 95 % of
lines have lengths less than 20 pixels as shown in figure 6.1b. So, we implemented our
look-up tables by representing △x and △y addresses by 6-bits each.

6.1 Color Interpolation Approximation

For the color component, we compare between the resulted fragment’s colors of our
approximated interpolation equation 5.14 versus the resulted fragment’s colors of the ex-
act interpolation equation 5.13. We test lines for three different slopes m ∈ [0,0.5,1] and
check the maximum and average errors. The maximum error is the maximum difference
between the color of the approximated interpolation equation and the color of the exact in-
terpolation equation for a single fragment. And, the average error is the summation of the
difference between resulted colors of all fragments, divided by the number of fragments
per line. From results, we conclud these error are negligible for all slopes.

103

Object Number of lines Average
(△x, △y)

Maximum
(△x, △y)

Average length

Bird 275 (8.9, 6.1) (25.58, 21.4) 10.8
Dude 94 (32.72,

16.8)
(129.88,
69.35)

36.72

Funny 100 (28.78,
17.3)

(86, 60.6) 33.57

(a) Lines of simple objects

Object Number of lines Average
(△x, △y)

Maximum
(△x, △y)

Average length

Conference
Room

300000 (1.1, 2.67) (640, 480) 2.8746

Sibenik
Cathedral

225117 (2.9, 3.66) (125.29,
242.3)

4.7

Dabrovic
Sponza

151632 (3.25, 7.1) (301, 133) 8

(b) Lines of complex objects

Table 6.1: Analysis of line lengths for different objects and scenes

(a) Lines of simple objects (b) Lines of complex scenes

Figure 6.1: Distribution of line’s lengths

104

6.1.1 Test Case 1

We tested lines with △x = 25 for different slopes m ∈ [0,0.5,1]. Table 6.2 summarizes
themaximum and average errors for each line. Also, figure 6.2 shows the output fragments
that are resulted by drawing these lines using the two interpolation equations.

slope (m) average error maximum error
m = 0 0 0

m = 0.5 0.0037 0.0075
m = 1 0 0

Table 6.2: Color errors for line with △x = 25

(a) slope m = 0 (b) slope m = 1

(c) slope m = 0.5

Figure 6.2: Line rasterization example △x = 25

105

6.1.2 Test Case 2

We tested lines with △x = 50 for different slopes m ∈ [0,0.5,1]. Table 6.3 summa-
rizes the the maximum error and the average error for each line. Also, figure 6.3 shows
the output fragments that are resulted by drawing these lines using the two interpolation
equations.

slope (m) average error maximum error
m = 0 0 0

m = 0.5 0.002 0.004
m = 1 0 0

Table 6.3: Color errors for line with △x = 50

(a) slope m = 0 (b) slope m = 1

(c) slope m = 0.5

Figure 6.3: Line rasterization example △x = 50

106

6.2 Synthesis Results

we implement three designs with different area and delay constraints and target
throughput because we did not have a solid information about the area and delay of in-
dividual CUGPU units and we have two implementation parameters that affected the
throughput of line rasterization unit:

1. number of clock cycles required for the initial calculations.

2. number of produced fragments per iteration (clock cycle).

Our designs are

1. Design a computes the initial calculation on one clock cycle. Also, it produces one
fragment per clock cycle tomaximize the frequency. This design has the largest area
because it has multiple adders and multipliers to calculate the initial and incremen-
tal step values of distance (d), color components (R,G,B,A), texture coordinates
(S ,T,Q), and depth (Z) in one clock. These preparation units consumed 76% of de-
sign a area as shown in figure 6.4. So, we shared adders and multipliers resources
in designs b and c to overcome this problem.

2. Design b computes the initial and incremental steps on three clock cycle to share the
hardware resources and minimize the total area of our design. So, the area of these
preparation units is reduced to 30−33% . However, it still produces one fragment
per clock cycle to maximize the frequency. This design saves 46% of design a area.

3. Design c is the same as design b, but it balances between the area and the maximum
frequency. It is optimized for a maximum frequency of 200 MHz. It saves 40% of
design b area. Also, it can be modified to produce two fragment per clock cycle
since the iteration period equals half of the minimum clock period.

Table 6.4 summarizes the synthesis results of the three designs. Design b scores a maxi-
mum frequency of 270 MHz with a suitable area of 0.088mm2, but it can produces only
one fragment per clock. Whereas, Design b scores a maximum frequency of 200 MHz
with a minimum area of 0.052mm2, but it can be modified to produce two fragment per
clock. We can not select the suitable design, design b or design c, for the CUGPU until
we implement the other units and know the bottleneck of our CUGPU.

107

Design a Design b Design c
minimum clock period 3.7 ns 3.7 ns 5 ns

iteration period 2.5 ns 2.5 ns 2.5 ns
maximum frequency 270 MHz 270 MHz 200 MHz

area .162 mm2 .088 mm2 .052 mm2

Table 6.4: The synthesis results of line rasterization algorithm

(a) design a (b) design b

(c) design c

Figure 6.4: Area distribution of line rasterization algorithm

108

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, our main goal was to introduce the CUGPU, the first embedded GPU in
Egypt and to make a clear vision about the cost of implementation. Our contribution is
as follows:

1. CUGPU architecture based on the OpenGL ES 1.1 CL profile was proposed.
CUGPU provides high-performance support of the fixed-function 3D graphics
pipeline. It satisfied the mandatory specifications only to minimize the power and
area without deteriorating its performance.

2. AMATLABmodel implementing the line rasterization algorithm, that satisfied the
OpenGL ES 1.1 rules, is introduced. This model is verified using line samples from
popular scenes.

3. Two designs of the line rasterization algorithm were implemented using VHDL
code and synthesized on the TSMC 65 nm low power technology. The first design
scores a typical clock frequency of 270 MHz and an area of 0.088 mm2. The second
design scores a typical clock frequency of 200 MHz and an area of 0.052 mm2.

7.2 Future Work

There are several future work to be done for our CUGPU:

1. Implement the smooth and multisampling line drawing algorithms.

109

2. Implement the triangle rasterization algorithm and share the hardware resources
with the line rasterization resources.

3. Implement the other blocks of the CUGPU such as vertex processing, lighting, and
texture mapping.

4. Design the hardware driver and our own instruction set.

5. Integrate the whole CUGPU units and verify the complete GPU functionality.

110

References

[1] E. Hussein, S. Shams, M. Ali, A. Suleiman, K. ElWazeer, E. Sobhy, A. Ibrahim,
A. Ibrahim, M. Khairy, M. Fouda, et al., “CUSPARC IP processor: design, char-
acterization and applications,” inMicroelectronics (ICM), 2010 International Con-
ference on, IEEE, 2010, pp. 435–438.

[2] A. A. Suleiman, A. F. Khedr, and S. Habib, “ASIC implementation of Cairo Univer-
sity SPARC “CUSPARC” embedded processor,” inMicroelectronics (ICM), 2010
International Conference on, IEEE, 2010, pp. 439–442.

[3] M. R. Soliman, H. Fahmy, S. Habib, et al., “NoC-based many-core processor us-
ing CUSPARC architecture,” in Microelectronics (ICM), 2014 26th International
Conference on, IEEE, 2014, pp. 84–87.

[4] J. Blinn, Jim Blinn’s corner: a trip down the graphics pipeline. Morgan Kaufmann,
1996.

[5] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-time rendering. CRC Press,
2008.

[6] P. Shirley, M. Ashikhmin, and S. Marschner, Fundamentals of computer graphics.
CRC Press, 2009.

[7] D. H. Eberly, 3D game engine design. San Francisco: Morgan Kaufmann Publish-
ers, Inc, 2001.

[8] D. Blythe, A.Munshi, and J. Leech, “OpenGLES common and common-lite profile
specification version 1.1. 12 (full specification),” The Khronos Group Inc, 2008.

[9] K. Group. (2015). OpenGL, [Online]. Available: https://www.opengl.org/ (visited
on 05/25/2015).

[10] K. Group. (2015). OpenVG, [Online]. Available: https : / / www . khronos . org /
openvg/ (visited on 06/01/2015).

111

https://www.opengl.org/
https://www.khronos.org/openvg/
https://www.khronos.org/openvg/

[11] Microsoft. (2015). DirectX graphics and gaming, [Online]. Available: https://msdn.
microsoft.com/en-us/library/windows/desktop/ee663274(v=vs.85).aspx (visited
on 06/01/2015).

[12] K. Group. (2015). OpenGL, [Online]. Available: https://www.khronos.org/opengl/
(visited on 06/01/2015).

[13] ——, (2015). OpenCL, [Online]. Available: https : / /www.khronos .org /opencl/
(visited on 06/01/2015).

[14] NVidia. (2015). CUDA, [Online]. Available: http://www.nvidia.com/object/cuda_
home_new.html (visited on 06/01/2015).

[15] D. Blythe and A. Munshi, “OpenGL ES common/common-lite profile specifica-
tion,” The Khronos Group Inc, 2008.

[16] K. Fatahalian, E. Luong, S. Boulos, K. Akeley, W. R. Mark, and P. Hanrahan,
“Data-parallel rasterization of micropolygons with defocus and motion blur,” in
Proceedings of the Conference on High Performance Graphics 2009, ACM, 2009,
pp. 59–68.

[17] M. Fisher, K. Fatahalian, S. Boulos, K. Akeley, W. R. Mark, and P. Hanrahan, “Di-
agsplit: parallel, crack-free, adaptive tessellation for micropolygon rendering,” in
ACM Transactions on Graphics (TOG), ACM, vol. 28, 2009, p. 150.

[18] K. Fatahalian, “Evolving the real-time graphics pipeline for micropolygon render-
ing,” PhD thesis, Stanford University., 2011.

[19] T. S. Crow, “Evolution of the graphical processing unit,” PhD thesis, University of
Nevada Reno, 2004.

[20] NVidia. (1999). GeForce 256, [Online]. Available: http://www.nvidia.com/page/
geforce256.html (visited on 06/01/2015).

[21] C.McClanahan, “History and evolution of gpu architecture,” A Survey Paper, 2010.

[22] M. Pharr and R. Fernando, Gpu gems 2: programming techniques for high-
performance graphics and general-purpose computation. Addison-Wesley Profes-
sional, 2005.

[23] NVidia., “8800 GPU architecture overview,” 2006.

[24] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE micro, vol. 30, no. 2,
pp. 56–69, 2010.

[25] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia Tesla: a unified
graphics and computing architecture,” Ieee Micro, vol. 28, no. 2, pp. 39–55, 2008.

112

https://msdn.microsoft.com/en-us/library/windows/desktop/ee663274(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee663274(v=vs.85).aspx
https://www.khronos.org/opengl/
https://www.khronos.org/opencl/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/page/geforce256.html
http://www.nvidia.com/page/geforce256.html

[26] P. N. Glaskowsky, “Nvidia’s Fermi: the first complete GPU computing architecture.
white paper.,” 2009.

[27] NVidia., “Nvidia’s next generation cuda compute architecture,” 2009.

[28] ——, (2014). Whitepaper: NVIDIA GeForce GTX 980., [Online]. Available: http:
//international.download.nvidia.com/geforce-com/international/pdfs/GeForce_
GTX_980_Whitepaper_FINAL.PDF (visited on 06/01/2015).

[29] AMD. (2015). Amd accelerated processing units (apus), [Online]. Available: http:
/ / www . amd . com / en - us / innovations / software - technologies / apu (visited on
06/01/2015).

[30] J. Peddie. (2014). Mobile devices and the GPUs inside, [Online]. Available: http:
//jonpeddie.com/publications/mobile-devices-and- the-gpus- inside/ (visited on
06/01/2015).

[31] Snapdragon. (2011). Snapdragon S4 processors: system on chip solutions for a
new mobile age, [Online]. Available: https: / /www.qualcomm.com/documents /
snapdragon- s4-processors- system-chip- solutions-new-mobile- age (visited on
06/01/2015).

[32] ARM. (2015). ARM graphics, [Online]. Available: http://www.arm.com/products/
multimedia/mali-graphics-hardware/ (visited on 06/01/2015).

[33] NVidia. (2013). Whitepaper: NVIDIA Tegra 4 Family GPU architecture, [Online].
Available: http://www.nvidia.com/docs/IO/116757/Tegra_4_GPU_Whitepaper_
FINALv2.pdf (visited on 06/01/2015).

[34] ——, (2014). Whitepaper: NVIDIA Tegra K1: a new era in mobile computing.,
[Online]. Available: http: / /www.nvidia .com/content /pdf / tegra_white_papers/
tegra_k1_whitepaper_v1.0.pdf (visited on 06/01/2015).

[35] ——, (2015). Whitepaper: NVIDIA Tegra X1: NVIDIA’s new mobile superchip.,
[Online]. Available: http://international.download.nvidia.com/pdf/tegra/Tegra-
X1-whitepaper-v1.0.pdf (visited on 06/01/2015).

[36] ARM. (2007). ARM Mali-200 GPU, [Online]. Available: http://www.arm.com/
markets/mali-200.php (visited on 06/01/2015).

[37] D. Heare and M. P. Baker, Computer Graphics (C Version). New Jersey: Prentice
Hall International Inc, 1998.

[38] R. Kodituwakku, K. Wijeweera, and M. Chamikara, “An efficient line clipping al-
gorithm for 3d space,” International Journal, vol. 2, no. 5, 2012.

113

http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://www.amd.com/en-us/innovations/software-technologies/apu
http://www.amd.com/en-us/innovations/software-technologies/apu
http://jonpeddie.com/publications/mobile-devices-and-the-gpus-inside/
http://jonpeddie.com/publications/mobile-devices-and-the-gpus-inside/
https://www.qualcomm.com/documents/snapdragon-s4-processors-system-chip-solutions-new-mobile-age
https://www.qualcomm.com/documents/snapdragon-s4-processors-system-chip-solutions-new-mobile-age
http://www.arm.com/products/multimedia/mali-graphics-hardware/
http://www.arm.com/products/multimedia/mali-graphics-hardware/
http://www.nvidia.com/docs/IO/116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO/116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf
http://www.nvidia.com/content/pdf/tegra_white_papers/tegra_k1_whitepaper_v1.0.pdf
http://www.nvidia.com/content/pdf/tegra_white_papers/tegra_k1_whitepaper_v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://www.arm.com/markets/mali-200.php
http://www.arm.com/markets/mali-200.php

[39] J. E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems
journal, vol. 4, no. 1, pp. 25–30, 1965.

[40] H. P. Moreton and F. C. Crow, Line rasterization techniques, US Patent 8,482,567,
Jul. 2013.

[41] J. E. Bresenham, “Incremental line compaction,” The Computer Journal, vol. 25,
no. 1, pp. 116–120, 1982.

[42] D. Field, “Incremental linear interpolation,”ACMTransactions onGraphics (TOG),
vol. 4, no. 1, pp. 1–11, 1985.

[43] M. L. V. Pitteway and A. Green, “Bresenham’s algorithm with run line coding
shortcut,” The Computer Journal, vol. 25, no. 1, pp. 114–115, 1982.

[44] J. Van Aken and M. Novak, “Curve-drawing algorithms for raster displays,” ACM
Transactions on Graphics (TOG), vol. 4, no. 2, pp. 147–169, 1985.

[45] P. G. Bao and J. G. Rokne, “Quadruple-step line generation,” Computers And
Graphics, vol. 13, no. 4, pp. 461–469, 1989.

[46] P. Graham and S. S. Iyengar, “Double-and triple-step incremental linear interpola-
tion,” in Proceedings of the 1993 ACM/SIGAPP symposium on Applied computing:
states of the art and practice, ACM, 1993, pp. 368–372.

[47] X. Wu and J. G. Rokne, “Double-step incremental generation of lines and circles,”
Computer Vision, Graphics, and Image Processing, vol. 37, no. 3, pp. 331–344,
1987.

[48] R. C. Taylor, D. B. Clifton, D. Gotwalt, M. A. Mang, T. A. Piazza, and J. D. Potter,
Methods and systems for rendering line and point features for display, US Patent
6,433,790, Aug. 2002.

[49] P. R. Brown, Arrangements for antialiasing coverage computation, US Patent
6,985,159, Jan. 2006.

[50] C. S.Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Electronic
Computers, no. 1, pp. 14–17, 1964.

[51] A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,”
Electronic Computers, IRE Transactions on, no. 3, pp. 389–400, 1961.

[52] H. Srinivas and K. K. Parhi, “A fast VLSI adder architecture,” Solid-State Circuits,
IEEE Journal of, vol. 27, no. 5, pp. 761–767, 1992.

[53] A. Weinberger and J. Smith, “A one-microsecond adder using one-megacycle cir-
cuitry,” Electronic Computers, IRE Transactions on, no. 2, pp. 65–73, 1956.

114

[54] M. McGuire. (2015). Mcguire graphics data, [Online]. Available: http://graphics.
cs.williams.edu/data/meshes.xml (visited on 06/01/2015).

[55] M. P. G̃. Humphreys. (2015). Physically based rendering scene, [Online]. Available:
http://www.pbrt.org/scenes.php (visited on 06/01/2015).

[56] OpenCores. (2012). Open core ORSoC graphics accelerator model, [Online]. Avail-
able: http : / / opencores . org / project , orsoc _ graphics _ accelerator (visited on
06/01/2015).

115

http://graphics.cs.williams.edu/data/meshes.xml
http://graphics.cs.williams.edu/data/meshes.xml
http://www.pbrt.org/scenes.php
http://opencores.org/project,orsoc_graphics_accelerator

Appendix A

OpenGL ES 1.1 Commands

A.1 Data Fetch Unit Commands
1. Void Color4{x,ub}(T red, T green, T blue, T alpha). It specifies the current

color components (R,G,B,A) which is used as vertex associated color when the
color array is disabled. The argument types, T , are fixed point x or unsigned byte
ub.

2. VoidNormal3x (T nx,T ny,T nz). It specifies the current normal (nx,ny,nz)which is
used as vertex associated normal when the normal array is disabled. The argument
type, T, is fixed point only.

3. Void MultiTexCoord4x (enum texture, T s,T t,T r,T q). It specifies the current
texture coordinates for the texture units. These coordinates are used as vertex asso-
ciated texture coordinates for the corresponding texture unit when this texture array
is disabled. The argument type, T , is fixed point only. The texture argument is a
symbolic constant of Texture0 for texture unit 0 or Texture1 for texture unit 1.

4. Void PointSizex (fixed size). It specifies the current point sprite size that is used if
the point size array is disabled. The default value is 1.0.

5. Void ClientActiveTexture (enum texture). It is used to select the vertex array
client state parameters to be modified by the TexCoordPointer command and
the array affected by EnableClientS tate and DisableClientS tate with parameter
TEXTURE_COORD_ARRAY. The texture argument is a symbolic constant of
Texture0 for texture unit 0 or Texture1 for texture unit 1.

6. Void EnableClientState/DisableClientState (enum array). It is used to enable
or disable the corresponding array as vertices or colors. The array argument is a

117

symbolic constant of Point_size_array_OES, Texture_Coord_array, Vertex_Array,
Normal_Array, or Color_Array. If the corresponding array is disabled, the current
value is used instead.

7. Void VertexPointer (int size, enum type, sizei stride, void *pointer). It describes
the vertex array location and organization. The argument Pointer is the address of
the first element in the client memory if Vertex_Array_Buffer_Binding is 0 or offset
of the first element in the graphics memory otherwise. Stride specifies the distance
between the two consequences elements in unsigned bytes unit. Type is byte, short,
or fixed point. The vertex coordinates are (X,Y,Z,W) and Size is 2, 3, or 4. If the
size equals 2, the (Z,W) coordinates are (0, 1) implicitly and if the size equals 3, the
W is 1 implicitly.

8. Void TexCoordPointer (int size, enum type, sizei stride, void *pointer). It de-
scribes the texture coordinates array’s location and organization. Type is byte, short,
or fixed point. The texture coordinates are (u,v,r,q) and size is 2, 3, or 4. If the size
equals 2, the (r,q) coordinates are (0, 1). If the size equals 3, the q is 1 implicitly.

9. Void NormalPointer (enum type, sizei stride, void *pointer). It describes the
normal array location and organization. Size is 3 by default.

10. Void PointSizePointerOES (enum type, sizei stride, void *pointer). It describes
the point size array location and organization. Size is 1 by default.

11. Void ColorPointer (int size, enum type, sizei stride, void *pointer). It describes
the color array’s location and organization for the corresponding vertices. Argu-
ment Size is 3 only. Type is unsigned byte or fixed point only.

12. Void BindBuffer (enum target, uint buffer). It Creates and binds buffer object
in the graphics memory by binding buffer unused name to target Array_Buffer or
Element_Array_Buffer. Also, it is used to bind existing buffer object by binding
buffer used name to target Array_Buffer or Element_Array_Buffer. The argument
target is Array_Buffer or Element_Array_Buffer and the argument buffer is an inte-
ger name. In the initial state the reserved name zero is bound to ARRAY BUFFER
and Element_Array_Buffer. There is no buffer object corresponding to the name
zero. This used to de-bind the bounded buffers.

13. Void BufferData (enum target, sizeiptr size, const void *data, enum usage). It
transfers the array data from the systemmemory to the bounded target Array_Buffer
or Element_Array_Buffer in the graphics memory.

118

14. Void BufferSubData (enum target, intptr offset, sizeiptr size, const void *data).
It modifies part of the bounded target Array_Buffer or Element_Array_Buffer in
the graphics memory by transferring the array data from the system memory.

15. Void DeleteBuffers (sizei n, const uint * buffers). It deletes n names of buffer
objects.

16. Void DrawArrays (enum mode, int first, sizei count). It draws primitives which
are formed from the elements first through first+count-1 of each enabled array.
Mode specifies the primitive type: points, line strips, line loops, lines, triangles
strips, triangle fans, and separate triangle.

17. Void DrawElements(enum mode, sizei count, enum type, void * indices). It
draws primitives which are formed from the elements defined by indices of each
enabled array. Mode specifies the primitive type: points, line strips, line loops,
lines, triangles strips, triangle fans, and separate triangle.

A.2 Matrix Construction Unit Commands
1. Void MatrixMode (enum mode). It specifies the current matrix that will be af-

fected by the subsequent Load, Mult, Push, and Pop commands. Mode parameter
is Texture, Model-view, or Projection.

2. Void LoadMatrixx (Tm[16]) / LoadIdentity (void). They load the current matrix
by matrix at memory location specified by 4x4 pointer m or by the identity matrix.

3. VoidMultMatrixx (Tm[16]). It multiplies the current matrix by matrix at memory
location specified by 4x4 pointer m.

4. Void Rotatex (T ϴ,T x,T y,T z) / Translatex(T x,T y,T z) / Scalex (T x,T y,T z).
They load the current matrix by the rotation of v = (x, y, z)T by an angle ϴ, the
translation matrix (T), or the scale matrix (S).

5. Void Frustumx (T l,T r,T b,T t,T n,T f) / Orthox (T l,T r,T b,T t,T n,T f). It
loads the current matrix by the perspective or parallel projection matrix.

6. Void ActiveTexture (enum texture). It specifies the active texture unit that will be
affected by the subsequent matrix commands.

119

7. Void PushMatrix (void). It duplicates the current matrix, the matrix at the top of
the stack, in the location below it.

8. Void PopMatrix (void). It replaces the current matrix, the matrix at the top of the
stack, with the matrix below it.

9. Void Viewport (int x, int y, sizei w, sizei h). It specifies the viewport space: it’s
left-lower point location (x, y), height (h), and width (w).

10. VoidDepthRangeX (clampx n, clampx f). It specifies the factor and offset applied
to the depth (Zd) in the final viewport transformation.

A.3 Vertex Processing Unit Commands
1. Void Enable/Disable (enum Target). It specifies the scaling mode for the normal

(nx, ny, nz). The normal target are either RESCLAE_NORMAL or NORMALIZE.
2)

2. Void EnableClientState/DisableClientState (enum array). It is used to enable
or disable the corresponding array as vertices or colors. If the normal, color, or
the texture arrays are disabled, the corresponding current value is used. The array
argument is a symbolic constant of Texture_Coord_array, or Normal_Array.

A.4 Lighting Unit Commands
1. Void Enable/Disable (enum Target); Target is lighting. It enables/disables the

lighting operation when the target is lighting. If the lighting is disabled, the incom-
ing vertex color is passed to the post-clipping unit without any modification.

2. VoidMaterialx (v) (enum face, enum pname, T param (s)). It specifies the mate-
rial properties for front and back face. In the OpenGLES, the samematerial must be
set for the front and back faces. So, the face value must be FRONT_AND_BACK.
Table 4.2 summarizes the material parameters and their initial values.

3. Void LightModelx (v) (enum pname, T param (s)). It specifies the light model
color and the normal direction that is used in the front and back face calculations.
The parameter is Light_Model_Ambient (aLS) or Light_Model_two_side. The
front color calculation is always performed using the normal (n). If the light model

120

two side is false, the back color calculation is performed using the normal (-n). Oth-
erwise, the normal (n) is used for the back color calculation.

4. Void Lightx (v) (enum Light, enum pname, T param (s)). It specifies the light
sources parameters. The light argument is lighti for the light source i ∈[0,7]. Table
4.1 summarizes the light sources parameters and their initial values.

5. Void Enable/Disable (enumTarget); Target = Color_Material. It enables/disables
the color tracking. If the color tracking is enabled, the ambient color (acm) and
diffuse color (dcm) properties of the front and back material are set to the incoming
vertex color.

A.5 Clipping Unit Commands
1. Void Clipplanex (enum P, const T eqn[4]). It defines a new clip plane in the world

space. The argument P is CLIP_PLANEi where i is the number of clip plane, i ϵ [0,
n-1]. The eqn parameters are the clip plane equation coefficients (P1, P2, P3, P4).

2. Void Enable/Disable (enum target); target = CLIP_PLANEi. It enables/disables
the clip plane i.

A.6 Post-Clipping Unit Commands
1. Void ShadeModel (enumMode). It specifies the shade model. The mode is either

SMOOTHor FLAT. If themode is SMOOTH, the vertices colors are passedwithout
any modification; otherwise, colors of the primitive vertices are assigned to same
color based on the drawing mode. If the primitive is a line, the flat color is the color
of the second vertex. If it is a triangle, the flat color is the color of the last vertex
color. Initially, the shade model is SMOOTH.

2. Void Enable/Disable (enum target); target = CULL_FACE. It enables/disables
the culling operation. Initially, the culling is disabled.

3. Void CullFace (enum mode). It specifies the cull face. It may be Front, Back, or
Front&Back. Initially, the cull face is back.

4. Void FrontFace (enum dir). It specifies the front face direction. It may be CW or
CCW. Initially, this direction is CCW.

121

A.7 Rasterization Unit Commands
1. Void Enable/Disable (enum target); target =MultiSample. It enables/disables the

multisampling operation for points, lines, and triangles. Initially, the multisampling
is disabled.

2. Void Enable/Disable (enum target); target = PointSmooth. It enables/disables the
point smooth operation. Initially, point smooth is disabled.

3. Void Enable/Disable (enum target); target = Point_Sprite_OES. It enables/dis-
ables the point sprite operation. Initially, the point sprite is disabled.

4. Void PointSize (fixed size). It specifies the point size. Initially, the point size is 1.0

5. Void PointParameterX (enum pname, T param(s)); pname = {Point_Size_min,
Point_Size_max, Point_Distance_Attenuation, Point_Fade_Threshold_Size}. It
specifies the point parameters that are required to compute the actual width.

6. VoidTexEnvX (enumTarget, enumPname, T param); target = Point_Sprite_OES,
pname=Coord_replace_OES, param= {false, true}. It enables/disables the texture
coordinates replacement for the active texture unit. Initially, the texture coordinates
replacement is disabled.

7. Void Enable/Disable (enum target); target = LineSmooth. It enables/disables the
line smooth operation. Initially, the line smooth is disabled.

8. Void LineWidthX (fixedwidth). It specifies the line width. Initially, the line width
is 1.0.

9. Void Enable/Disable (enum target); target = Polygon_Offset_Fill. It enables/dis-
ables the polygon offset fill. Initially, polygon offset fill is disabled.

10. Void PolygonOffsetX (fixed factor, fixed units). It specifies the factor and units
for computing the polygon offset. Initially, the polygon factor and units are 1.0.

A.8 Texture Handling Unit
1. Void PixelStorei (enum pname, T param); pname = Unpack_Alignment, param

is1,2,4,8. It specifies the alignment, in byte unit, for the start of each pixel row in
the system memory. For example, if param is 1, the pixels are byte-alignment.

122

2. Void TexImage2D (enum target, int level, enum internal format, sizei width,
sizei height, int border, enum format, enum type, void *data); target = TEX-
TURE_2D, format and internal format = {RGB, RGBA, Alpha, Luminance, Lumi-
nance_Alpha}, type = {UNSIGNED_BYTE, UNSIGNED_SHORT_5_6_5, UN-
SIGNED SHORT_4_4_4_4, UNSIGNED_SHORT_5_5_5_1}. It specifies an im-
age, in the system memory, to be copied to the bounded texture object, in the graph-
ics memory. Level is the level of details of the image. Internal format is the
transformed texture format in the graphics memory after conversion. Width and
height are the image size. Border should be zero. Format and type specifies the
image in the system memory. Data is an address pointer of the start of the image
in the system memory.

3. Void CopyTexImage2D (enum target, int level, enum internal format, int x, int
y,sizei width, sizei height, int border); target = TEXTURE_2D. It specifies part
of the frame buffer, in the graphics memory, to be copied to the bounded texture
object, in the graphics memory. This part is defined by its lower left corner (x,y),
width and height.

4. Void TexSubImage2D (enum target, int level, int xoffset, int yoffset, sizei width,
sizei height, enum format, enum type, void *data); target = TEXTURE_2D. It
specifies an image, in the system memory, to be copied to a rectangular subregion
of the bounded texture object, in the graphics memory. This rectangle subregion is
defined by its lower left corner (xo f f set,yo f f set), width, and height.

5. Void CopyTexSubImage2D (enum target, int level, int xoffset, int yoffset, int
x, int y, sizei width, sizei height); target = TEXTURE_2D. It updates a rectangle
subregion of the bounded texture object from a rectangle part of the frame buffer,
in the graphics memory. The rectangle subregion of the bounded texture object is
defined by its lower left corner (xo f f set,yo f f set), width, and height whereas the
frame buffer rectangle is defined by its lower left corner (x,y), width, and height.

6. Void BindTexture (enum target, uint texture); target = TEXTURE_2D, texture =
unused name. It binds the input texture object to the TEXTURE_2D. This texture
object is used to direct the texture mapping operation. Also, it creates a texture
object if texture is unused name.

7. Void DeleteTextures (sizei n, uint *textures). It deletes n texture objects.
*Texture is an address pointer to the names of texture objects to be deleted.

123

8. Void ActiveTexture (enum texture); texture is Texture0 or Texture1. It specifies
the active texture unit. Initially, the texture object 0 is binded to the two texture
units.

9. Void TexParameterxv (enum target, enum pname, T param); target = TEX-
TURE_2D, pname = Generate_mipmap, param = {true, false}. It enabled the au-
tomatic mipmap generation. So, if any change occurs on the texels of the zero level
of a mipmap, a complete set of mipmap arrays will be computed again.

A.9 Texture Mapping Unit
1. Void TexParameterix (enum target, enum pname, T param); target = TEX-

TURE_2D, pname= {Texture_wrap_S, Texture_wrap_T, Texture_Min_Filter, Tex-
ture_Mag_Filter}. It specifies texture properties to control the filtering and wrap-
ping functions that are applied on the texture coordinates. Table 4.7 summarizes
the texture properities and their initial values.

2. Void TexEnvix (enum target, enum pname, T param); target = TEX-
TURE_ENV, pname = {Texture_env_mode, Texture_env_color, RGB_Scale,
Alpha_Scale, Combine_RGB, Combine_Alpha}. It specifies the texture func-
tion parameters to control the execution of the texture function on the fragment’s
primary color, fragment’s texture source colors, and texture environment color for
the active texture units. Table 4.8 summarizes the texture function parameters and
their initial values.

3. Void ClientActiveTexture (enum Texture); texture = { texture0, texture1}. It
specifies the active texture unit that is modified by the TexEnv command.

A.10 Final Color Adapting Unit
1. Void Enable/Disable (enum target); target = Fog, MultiSample, LineSmooth, and

PointSmooth. It enables/disables the fog, multisampling, line smoothing, and point
smoothing. Initially, fog, line smoothing, and point smoothing are disabled whereas
the multisampling is enabled.

124

2. Void Fogx (enum pname, T param); pname = {Fog_Mode, Fog_Density,
Fog_Start, Fog_End}. It specifies the fog parameters to control the blending op-
eration. Initially, the fog mode is exp, fog density d = 1.0 , fog start s = 1.0, and
fog end s = 0.0.

3. Void Fogxv (enum pname, T params); pname = Fog_Color. It specifies the fog
color. Initially, the fog color is (0,0,0,0).

125

الرسالة ملخص
المدمجة الأنظمة أجهزة كل فى أساسیة وحدة الرسومیات معالجة وحدة أصبحت لقد
لأجهزة مهمة العملیة هذه سریع. بشكل والفیدیوهات الصور إنشاء عملیة فى لإستخدامها
لقراءة الأجهزة تلك نستخدم نحن حالیا, اللوحیة. الألعاب وأجهزة الذكیة الهواتف مثل عدیدة
الطلب تزاید مع الألعاب. وتشغیل والتصویر الأنترنت صفحات وتصفح الألكترونیة الرسائل
معالجة وحدات حالیا تستخدم المدمجة, للأنظمة المتسارع والتطور الألعاب تطبیقات على

الجرافیكس. حسابات إلى بالأضافة الأغراض متعددة الحسابات لتنفیذ الرسومیات

معالجة وحدة كأول CUGPUالقاهرة جامعة رسومیات معالجة وحدة وتنفید تصمیم هدفنا
بالأنظمة الخاصة المفتوحة الرسومیات لمكتبة وفقا مصر فى المدمجة للأنظمة رسومیات
أیضا, الثابتة. الوظائف ذو الأبعاد ثلاثیة الرسومیات خط تدعم الوحدة هذة .١.١ المدمجة
لجامعة المركزیة المعالجة وحدة مع CUGPU القاهرة جامعة رسومیات معالجة وحدة دمج یمكن

التعلیمیة. الأغراض فى لأستخدامه متكامل مدمج نظام لتكوین CUSPARC القاهرة

القاهرة جامعة رسومیات معالجة وحدة لبنیة مقترح تصمیم بتقدیم نقوم الرسالة هذة فى
لقوانین وفقا VHDLلغة بإستخدام الخط تنقیط خوارزمیة بتصمیم إیضا قمنا لقد .CUGPU
بتبسیط أیضا قمنا كما الخط. لرسم Bresenham خوارزمیة تعدیل طریق عن الماسة خروج
مما تزایدیة خطیة لتصبح والأحداثیات الألوان لأستكمال المفتوحة الرسومیات مكتبة قوانین

.Bresenham خوارزمیة مع متلائمین جعلهم
كانت .TSMC65nmLP بإستخدام الخط تنقیط لخوارزمیة تصمیمین بتنفیذ قمنا لقد إیضا,
التصمیم حقق بینما 0.088mm2 ومساحة 270 MHZ تردد الأول التصمیم حقق كالتالي: النتائج

.0.052mm2 ومساحة 200 MHZ تردد التانى

ا

خلیل سمیر ابراهیم احمد مهندس:
١٩٨٩/٠٧/١٨ المیلاد: تاریخ

مصري الجنسیة:
٢٠١١/١٠/٠١ التسجیل: تاریخ
..../..../.... المنح: تاریخ
العلوم ماجستیر الدرجة:

الكهربیة والإتصالات الإلكترونیات هندسة القسم:

المشرفون:
حبیب السید الدین سراج أ.د.

فهمي علي حسام أ.د.
الممتحنون:

الرئیسي) (المشرف حبیب السید الدین سراج أ.د.
(مشرف) فهمي علي حسام أ.د.

الداخلي) (الممتحن وصال الدین جلال عمرو أ.م.د.
الخارجي) (الممتحن شاهین إسماعیل حسین أ.د.

عین جامعة - الهندسة (كلیة
شمس)

الرسالة: عنوان
الرسومیات لمكتبة وفقا الرسومیات معالجة لوحدة مقترحة بنیة

الخط تنقیط خوارزمیة وتنفیذ المفتوحة
الدالة: الكلمات

رسم الخط، تنقیط خوارزمیة المفتوحة، الرسومیات مكتبة الرسومیات، معالجة وحدة
التزایدى الخطى الإستكمال الخط،

الرسالة: ملخص
المدمجة. الأنظمة أجهزة كل فى أساسیة وحدة الرسومیات معالجة وحدة أصبحت لقد
القاهرة جامعة رسومیات معالجة لوحدة مقترحة بنیة بتقدیم نقوم الرسالة هذه في
إیضا نقدم نحن .١.١ المدمجة للأنظمة المفتوحة الرسومیات لمكتبة وفقا CUGPU
بإستخدام الوحدة هذه تنفیذ تم .VHDL لغة بإستخدام الخط تنقیط لوحدة تصمیمین
270MHz تردد الأول التصمیم حقق كالتالي: النتائج وكانت TSMC 65nm LP
0.052mm2 ومساحة 200MHz تردد الثانى التصمیم حقق بینما 0.088mm2 ومساحة

الرسومیات لمكتبة وفقا الرسومیات معالجة لوحدة مقترحة بنیة
الخط تنقیط خوارزمیة وتنفیذ المفتوحة

إعداد

خلیل سمیر ابراهیم احمد

إلي مقدمة رسالة
القاهرة جامعة - الهندسة كلیة

درجة علي الحصول متطلبات من كجزء
العلوم ماجستیر

في
الكهربیة والإتصالات الإلكترونیات هندسة

الممتحنین: لجنة من یعتمد

الرئیسي المشرف - حبیب السید الدین سراج أ.د.

مشرف - فهمي علي حسام أ.د.

الداخلي الممتحن - وصال الدین جلال عمرو أ.م.د.

الخارجي الممتحن - شاهین إسماعیل حسین أ.د.
شمس) عین جامعة - الهندسة (كلیة

القاهرة جامعة - الهندسة كلیة
العربیة مصر جمهوریة - الجیزة

٢٠١٥

الرسومیات لمكتبة وفقا الرسومیات معالجة لوحدة مقترحة بنیة
الخط تنقیط خوارزمیة وتنفیذ المفتوحة

إعداد

خلیل سمیر ابراهیم احمد

إلي مقدمة رسالة
القاهرة جامعة - الهندسة كلیة

درجة علي الحصول متطلبات من كجزء
العلوم ماجستیر

في
الكهربیة والإتصالات الإلكترونیات هندسة

إشراف تحت
فهمي علي حسام أ.د. حبیب السید الدین سراج أ.د.

أستاذ أستاذ
الكهربیة والإتصالات الإلكترونیات هندسة قسم الكهربیة والإتصالات الإلكترونیات هندسة قسم

القاهرة جامعة - الهندسة كلیة القاهرة جامعة - الهندسة كلیة

القاهرة جامعة - الهندسة كلیة
العربیة مصر جمهوریة - الجیزة

٢٠١٥

الرسومیات لمكتبة وفقا الرسومیات معالجة لوحدة مقترحة بنیة
الخط تنقیط خوارزمیة وتنفیذ المفتوحة

إعداد

خلیل سمیر ابراهیم احمد

إلي مقدمة رسالة
القاهرة جامعة - الهندسة كلیة

درجة علي الحصول متطلبات من كجزء
العلوم ماجستیر

في
الكهربیة والإتصالات الإلكترونیات هندسة

القاهرة جامعة - الهندسة كلیة
العربیة مصر جمهوریة - الجیزة

٢٠١٥

	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	Abstract
	1 Introduction
	1.1 Goal and Motivation
	1.2 Results
	1.3 Organization of the Thesis

	2 Graphics Pipeline
	2.1 Common Graphics Pipeline
	2.1.1 Vertex Processing
	2.1.2 The Primitive Assembly
	2.1.3 The Clipping Unit
	2.1.4 The Rasterization Unit
	2.1.5 The Texture Mapping Unit
	2.1.6 The Lighting Unit
	2.1.7 The Fragment Tests Unit

	2.2 Application Programming Interface (API)
	2.2.1 Desktop-Based APIs
	2.2.1.1 DirectX
	2.2.1.2 OpenGL
	2.2.1.3 OpenCL
	2.2.1.4 CUDA

	2.2.2 Embedded Systems APIs
	2.2.2.1 Direct Mobile
	2.2.2.2 OpenGL ES
	2.2.2.3 OpenVG

	2.3 OpenGL ES 1.1

	3 GPU Literature Survey
	3.1 Desktop-Based GPUs
	3.1.1 Graphics Accelerator
	3.1.2 Fixed Function GPU
	3.1.3 Programmable GPU with Fixed Shader
	3.1.4 Programmable GPU with Unified Shader
	3.1.5 General-Purpose Computational GPU (GPGPU)
	3.1.6 Accelerated Processing Unit (APU)
	3.1.7 Future Micro-polygon Rendering GPU

	3.2 Embedded System GPUs
	3.2.1 QUALCOMM GPUs
	3.2.2 ARM GPUs
	3.2.3 NVIDIA GPUs

	3.3 ARM Mali-200

	4 CUGPU Architecture
	4.1 Data Fetch Unit
	4.1.1 Register File
	4.1.2 Algorithm

	4.2 Matrix Construction Unit
	4.2.1 Register File
	4.2.2 Architecture

	4.3 Vertex Processing Unit
	4.3.1 Register File
	4.3.2 Architecture

	4.4 Primitive Assembly Unit
	4.4.1 Register File
	4.4.2 Algorithm

	4.5 Lighting Unit
	4.5.1 Register File
	4.5.2 Architecture

	4.6 Clipping Unit
	4.6.1 Register File
	4.6.2 Architecture

	4.7 Post-Clipping Unit
	4.7.1 Register File
	4.7.2 Architecture

	4.8 Rasterization Unit
	4.8.1 Register File
	4.8.2 Architecture
	4.8.2.1 Point Rasterization
	4.8.2.2 Line Rasterization
	4.8.2.3 Triangle Rasterization

	4.9 Texture Handling Unit
	4.9.1 Register File
	4.9.2 Architecture
	4.9.2.1 System Fetch Unit
	4.9.2.2 Graphics Fetch Unit
	4.9.2.3 Format Conversion Unit
	4.9.2.4 Auto Mipmapping Unit

	4.10 Texture Mapping Unit
	4.10.1 Register file
	4.10.2 Architecture
	4.10.2.1 Wrapping unit
	4.10.2.2 Filtering unit
	4.10.2.3 Texture unit

	4.11 Final Color Adapting unit
	4.11.1 Register File
	4.11.2 Architecture

	4.12 Fragment Processing Unit
	4.13 Conclusion

	5 Diamond-Exit Rule Line Rasterization
	5.1 Line Rasterization Algorithms
	5.2 Our Modified Bresenham Algorithm
	5.3 Initial and final Conditions Handling
	5.4 Incremental Linear Interpolation
	5.4.1 Color Interpolation
	5.4.2 Depth Interpolation
	5.4.3 Texture Coordinates Interpolation

	5.5 RTL Implementation
	5.5.1 Step Calculation Unit
	5.5.2 Octant Switch Unit
	5.5.3 Offset Calculation Unit
	5.5.4 Initial Distance Unit
	5.5.5 Fragments’ Coordinates Generation Unit
	5.5.5.1 Redundant Binary Representation
	5.5.5.2 Hybrid PPM Adder
	5.5.5.3 Distance Sign Detection

	5.5.6 Data Interpolation Unit
	5.5.6.1 Division Look-up Tables
	5.5.6.2 Color and Texture Preparation
	5.5.6.3 Incremental Interpolation Steps
	5.5.6.4 Associated Data Generation

	6 Results
	6.1 Color Interpolation Approximation
	6.1.1 Test Case 1
	6.1.2 Test Case 2

	6.2 Synthesis Results

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	References
	A OpenGL ES 1.1 Commands
	A.1 Data Fetch Unit Commands
	A.2 Matrix Construction Unit Commands
	A.3 Vertex Processing Unit Commands
	A.4 Lighting Unit Commands
	A.5 Clipping Unit Commands
	A.6 Post-Clipping Unit Commands
	A.7 Rasterization Unit Commands
	A.8 Texture Handling Unit
	A.9 Texture Mapping Unit
	A.10 Final Color Adapting Unit

	Arabic Abstract

