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Summary:
In this thesis, we aim to bridge the gap between mathematical analysis of
generalized one-dimensional discrete chaotic maps and their implementation
on digital platforms. We propose several variations and generalizations on the
logistic and tent maps and employ the power function in a general map that
could yield each of them and other new maps. We present negative control
parameter maps that provide wider alternating-sign output ranges which are
controllable by scaling parameters. Moreover, the proposed general powering
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projections in three planes, and (g) Rössler attractor and one of its projections 10

2.2 Maximum Lyapunov exponent versus the system parameter (a) Logistic
map and (b) Tent map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Existence of bifurcation diagram for negative system parameter (a) Logis-
tic map and (b) Tent map . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Algebraic completion of the real numbers according to IEEE 754-2008 . . 30
2.5 Double precision floating-point binary representation . . . . . . . . . . . 30

3.1 Bifurcation diagrams and graphs for the proposed unity scaling logistic maps 37
3.2 Bifurcation diagrams and graphs for the proposed unity scaling tent

maps (a) f1(x) = µmin(x,1− x), (b) f2(x) = −µmin(x,1− x), (c) f3(x) =

−µmin(−x,1 + x), and (d) f4(x) = µmin(−x,1 + x) . . . . . . . . . . . . . 38
3.3 Maximum value of λ for mostly positive logistic map (a) λ = 1.6, (b) λ = 2,

and (c) λ = 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Domain and range of f (x) = −λmaxx(1− x) . . . . . . . . . . . . . . . . . 39
3.5 Sensitive dependence on initial point for mostly positive logistic map at

λ = 2 (a) Time waveform x0 = 0.05, (b) Time waveform x0 = 0.06, and (c)
Initial point effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Domain and range of f (x) = −µmax min(x,1− x) . . . . . . . . . . . . . . 42
3.7 Bifurcation diagram vs. λ for independent scaling positive logistic map at

(a) b = 2 and a = {0.25,0.5, . . . ,2} and (b) a = 4 and b = {0.25,0.5, . . . ,2} . 45
3.8 Bifurcation diagram vs. λ for independent scaling mostly positive logistic

map at (a) b = 2 and a = {0.25,0.5, . . . ,2} and (b) a = 4 and b = {0.25,0.5, . . . ,2} 46
3.9 MLE of independent scaling positive logistic map as a function of (a) λ

and a at b = 2, (b) λ and b at a = 4, (c) a and b at λmax, and (d) Full-range
chaotic output versus a and b . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 MLE of independent scaling mostly positive logistic map as a function
of (a) λ and a at b = 2, (b) λ and b at a = 4, (c) a and b at λmax, and (d)
Full-range chaotic output versus a and b . . . . . . . . . . . . . . . . . . 48

3.11 Function iterations of vertical scaling positive logistic map f m(x,λ,b) at
b = 2 for m = {1,2,4,6} . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 (a) Bifurcation diagram versus λ for different values of b = {0.2,0.5,5} and
Cobweb plot at λ = 4,b = 10, (b) Steady state solutions of x versus b for
different values of λ = {2,3.3,3.83,4} for vertical scaling positive logistic
map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.13 (a) Bifurcation diagram versus λ for different values of b = {0.2,0.5,5} and
Cobweb plot at λ = 2,b = 10, (b) Steady state solutions of x versus b for
different values of λ = {1.3,1.5,1.83,2} for vertical scaling mostly positive
logistic map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.14 Ten different snapshots of the bifurcation diagram versus λ for vertical
scaling (a) positive and (b) mostly positive maps at b = {0.1,0.2, . . . ,1} . . 50

viii



3.15 MLE as a function of both λ and b for vertical scaling (a) positive and (b)
mostly positive logistic maps . . . . . . . . . . . . . . . . . . . . . . . . 51

3.16 (a) Bifurcation diagram versus λ for different values of a = {0.2,0.5,2} and
Cobweb plot at a = 4,λ = 1, (b) Bifurcation diagram versus a for different
values of λ = {0.5,2,4,8} for zooming positive logistic map . . . . . . . . 52

3.17 (a) Bifurcation diagram versus λ for different values of a = {0.2,0.5,2}
and Cobweb plot at a = 4,λ = 0.5, (b) Bifurcation diagram versus a for
different values of λ = {0.5,1,2,4} for zooming mostly positive logistic map 53

3.18 Ten different snapshots of the bifurcation diagram versus λ for zooming
(a) positive map and (b) mostly positive map at a = {0.2,0.4, . . . ,2} . . . . 53

3.19 Ten different snapshots of the bifurcation diagram versus a for zooming
(a) positive map and (b) mostly positive map at λ = {0.2,0.4, . . . ,2} . . . . 54

3.20 MLE as a function of both λ and a for zooming (a) positive logistic map
and (b) mostly positive logistic map . . . . . . . . . . . . . . . . . . . . 54

3.21 General bifurcation diagrams of independent scaling positive logistic map
(a) versus λ and (b) versus a . . . . . . . . . . . . . . . . . . . . . . . . 55

3.22 General bifurcation diagrams of independent scaling mostly positive logis-
tic map (a) versus λ and (b) versus a . . . . . . . . . . . . . . . . . . . . 56

3.23 Simple text encryption system (a) Encryption scheme and (b) Decryption
scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.24 System key used in the encryption scheme . . . . . . . . . . . . . . . . . 60
3.25 Bifurcation diagram vs. µ for independent scaling positive tent map at (a)

b = 0.5 and a = {0.25,0.5, . . . ,2}, (b) a = 4 and b = {0.2,0.3, . . . ,0.8}, (c)
b = 2 and a = {0.25,0.5, . . . ,2}, and (d) a = 4 and b = {2,3, . . . ,8} . . . . . . 62

3.26 Bifurcation diagram vs. µ for independent scaling mostly positive tent map
at (a) b = 0.5 and a = {0.25,0.5, . . . ,2}, (b) a = 2 and b = {0.2,0.3, . . . ,0.8},
(c) b = 2 and a = {0.25,0.5, . . . ,2}, and (d) a = 4 and b = {2,3, . . . ,8} . . . . 64

3.27 MLE of independent scaling positive tent map as a function of (a) µ and
a at b = 2, (b) µ and b at a = 4, (c) a and b at µmax, and (d) Full-range
chaotic output versus a and b . . . . . . . . . . . . . . . . . . . . . . . . 65

3.28 MLE of independent scaling mostly positive tent map as a function of (a)
µ and a at b = 2, (b) µ and b at a = 4, (c) a and b at µmax, and (d) Full-range
chaotic output versus a and b . . . . . . . . . . . . . . . . . . . . . . . . 65

3.29 General schematic of the bifurcation diagram vs. µ of independent scaling
positive tent map (a) b ≤ 1 and (b) b > 1 . . . . . . . . . . . . . . . . . . 66

3.30 General schematic of the bifurcation diagram vs. µ of independent scaling
mostly positive tent map (a) b ≤ 1 and (b) b > 1 . . . . . . . . . . . . . . 66

4.1 Bifurcation diagrams of general powering map for various values of α and
β starting at initial point x0 = 0.01 (a) (α,β) = (1,0), (b) (α,β) = (1,1), and
(c) (α,β) = (1,0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Domain and range of the proposed map with arbitrarily chosen parameters 71
4.3 Curves of transition map f (x,β) and their fixed points at β = {0,0.1, . . . ,1}

(a) at r = (2)β+1 and (b) at r = −1.9 . . . . . . . . . . . . . . . . . . . . . 72
4.4 Surface plot of transition map f (x,β) (a) at r = (1.999)β+1 and (b) at r = −1.9 72
4.5 Bifurcation diagrams of the transition map for various values of β starting

at initial point x0 = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



4.6 Cobweb plots of the proposed map at α = 1 and various values of β and r
starting at initial point x0 = 0.0005 . . . . . . . . . . . . . . . . . . . . . 73

4.7 Key-points of bifurcation diagrams versus β at α = 1 starting at x0 = 0.01
(a) r ≥ 0 and (b) r < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Eleven snapshots of the bifurcation diagrams of the proposed map at α = 1
and β = {0,0.1, . . . ,1} starting at initial point x0 = 0.01 (a) r ≥ 0 and (b) r < 0 76

4.9 MLE as a function of both r and β for transition map (a) r ≥ 0 and (b) r < 0 78
4.10 Real bifurcation diagrams of the sub-tent map for various values of β

starting at initial point x0 = 0.05 . . . . . . . . . . . . . . . . . . . . . . 79
4.11 (a) Curves of sub-tent map f (x,β) and their fixed points at β= {0.1,0.2, . . . ,1}

at r = (2)β and (b) its surface plot at r = (1.999)β . . . . . . . . . . . . . . 79
4.12 Real bifurcation diagrams of the sub-logistic map for various values of α

starting at initial point x0 = 0.05 . . . . . . . . . . . . . . . . . . . . . . 80
4.13 (a) Curves of the sub-logistic map f (x,α) and their fixed points at α =

{0.1,0.2, . . . ,1} at r = (2)2α and (b) its surface plot at r = (1.999)2α . . . . 80
4.14 Bifurcation diagrams of higher order map for various values of β starting

at initial point x0 = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.15 (a) Curves of higher order map f (x,β) and their fixed points at β =

{1,1.5, . . . ,5} at r = (2)β+1 and (b) its surface plot at r = (1.999)β+1 . . . . 81
4.16 Bifurcation diagrams of super-logistic map for various values of α starting

at initial point x0 = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.17 (a) Curves of super-logistic map f (x,α) and their fixed points at α =

{1,1.5, . . . ,5} at r = (2)2α and (b) its surface plot at r = (1.999)2α . . . . . 83
4.18 Bifurcation diagrams versus the parameter β for different values of the

parameter r > 0 starting at initial point x0 = 0.5 . . . . . . . . . . . . . . 83
4.19 The minimum value of β for which the bifurcation diagram exists (βmin)

as a function of the system parameter r such that r > 0 . . . . . . . . . . . 84
4.20 Snap shots of the bifurcation diagram versus β starting at initial point

x0 = 0.5 for (a) r = {2,3, . . . ,7} and (b) r = {−7,−6, . . . ,−1} . . . . . . . . . 85

5.1 Bifurcation diagram versus the control parameter λ for the six maps
starting at x0 = 0.5 at p = 9 . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Bifurcation diagram versus the control parameter λ for the six maps
starting at x0 = 0.125 at p = 9 . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Bifurcation diagram of f3(x) versus the control parameter λ for different
values of bus width starting at x0 = 0.5 . . . . . . . . . . . . . . . . . . . 91

5.4 Bifurcation diagram of f6(x) versus the control parameter λ for different
values of bus width starting at x0 = 0.5 . . . . . . . . . . . . . . . . . . . 92

5.5 The key-points of the bifurcation diagram for both positive control param-
eter maps at different precisions (a) The first bifurcation point and (b) The
average maximum value . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 The key-points of the bifurcation diagram for both negative control param-
eter maps at different precisions (a) The first bifurcation point, (b) The
average minimum value, and (c) The average maximum value . . . . . . . 94

5.7 Time waveforms of f3(x) at λ = 3.9375 starting at different initial condi-
tions and various precisions . . . . . . . . . . . . . . . . . . . . . . . . . 95

x



5.8 Time waveforms of f6(x) at λ = 3.9375 starting at different initial condi-
tions and various precisions . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Cobweb plots of f6(x) starting at different initial conditions (a)x0 = 0.125,
(b)x0 = 0.25, (c)x0 = 0.375, and (d)x0 = 0.5 . . . . . . . . . . . . . . . . 97

5.10 Time waveforms of f3(x) at λ = 3.984375 starting at different initial condi-
tions and various precisions . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.11 Time waveforms of f6(x) at λ = 3.984375 starting at different initial condi-
tions and various precisions . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.12 Time waveforms of f3(x) at λ = −1.9375 starting at different initial condi-
tions and various precisions . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.13 Time waveforms of f6(x) at λ = −1.9375 starting at different initial condi-
tions and various precisions . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.14 Time waveforms of f3(x) at λ = −1.984375 starting at different initial
conditions and various precisions . . . . . . . . . . . . . . . . . . . . . . 102

5.15 Time waveforms of f6(x) at λ = −1.984375 starting at different initial
conditions and various precisions . . . . . . . . . . . . . . . . . . . . . . 103

5.16 Maximum period obtained with different orders of execution plotted versus
precision p = 8→ 13 for (a) λ > 0 and (b) λ < 0 . . . . . . . . . . . . . . 103

5.17 MLE evaluation in two different methods using f3(x) starting at x0 = 0.125
at (a) λ = 3.984375 and (b) λ = −1.984375 . . . . . . . . . . . . . . . . . 105

5.18 MLE evaluation in two different methods using f6(x) starting at x0 = 0.125
at (a) λ = 3.984375 and (b) λ = −1.984375 . . . . . . . . . . . . . . . . . 105

xi



List of Symbols and Abbreviations

FPGA Field Programmable Gate Array

ASIC Application-Specific Integrated Circuit

PWLCM Piece-Wise Linear Chaotic Maps

1D One-Dimensional

2D Two-Dimensional

LFSR Linear Feedback Shift Register

FOMs Figures of Merit

PRNG Pseudo-Random Number Generator

ODE Ordinary Differential Equation

IEEE Institute of Electrical and Electronics Engineers

NaN Not a Number

MLE Maximum Lyapunov Exponent

λ System parameter of logistic map

µ System parameter of tent map

r System parameter of general powering map

xii



Abstract
Chaotic maps and elementary functions are highly required for scientific computation

and utilized in many widely spread applications. For example, one-dimensional discrete
chaotic maps are used for modeling and pseudo-random number generation and the power
function z = xy is highly required for financial computations. Moreover, we utilize the
power function in some of our proposed novel chaotic maps. Yet, the increased sensitivity
of these functions makes them more subject to errors than most of the existing digitally
implemented mathematical relations. In this thesis, we aim to bridge the gap between
mathematical analysis of the conventional and generalized forms of these two sets of
problems on one hand, and their implementation on digital platforms on the other hand.

First, we propose variations on the signs of parameters in the most famous one-
dimensional discrete chaotic maps: the logistic and tent maps. Four different variations
on each of the logistic and tent maps are proposed which allow output ranges to have
single sign or alternating signs utilizing roughly the same equation with varied signs for
the parameters. The new ranges allow modeling of additional phenomena and exhibit
wider output ranges with longer sequences. Scaling parameters (a,b) are added that can
be used to control the ranges of output responses and one of the most important properties
of chaotic maps: the bifurcation diagram. Special cases of the proposed scaling technique
are also discussed. Then, we introduce a general powering map with shaping parameters
(α,β) employed as arbitrary powers that add the capability of controlling the shape of the
map response and bifurcation diagram. The powers could be adjusted to obtain the tent
map response, the logistic map response, and novel chaotic responses in between which
we called “Transition map”. Other ranges of the powering parameters are studied as well.

On the implementation side, we analyze the behavior of logistic map, with either
positive or negative parameter, in finite precision implementations and emphasize the
impact of finitude on dynamical properties of the map while varying the used precision.
Our approach in this study is novel as it uses the fixed-point toolbox of MATLAB to
simulate FPGA hardware realizations in which the operations are executed individually in
a sequential manner with the truncation step implemented between them, and the order of
execution and its effects are discussed for the first time to the best of our knowledge. Ac-
cordingly, a precision threshold is recommended, in addition to indicating the advantages
of our proposed map with negative control parameter over the conventional one.

For the power function, we propose a mathematically justified definition for its results
on the occurrence of special values of the operands and test how different standards
and software implementations deal with them. We present inconsistencies between the
implementations and the standards and discuss incompatibilities between different versions
of the same software. This study could aid in releasing implementations that guarantee
reproducible programs, i.e., producing the same result in all implementations of a language.
In addition, combining this study with the previous part could provide a framework for
analyzing finite precision implementation impacts on the behavior of the newly proposed
general powering map, after deciding the best way to implement it.

xiii



Chapter 1: Introduction
1.1 Motivation
The area of intersection between mathematics and computers is very rich in studies and
explorations as it bridges the gap between two well-established fields. Mathematics and
computer science are in fact complementary for each other in handling many problems. It
is not surprising that many educational institutes contain departments that hold the name
of mathematics and computer science. In addition, many researchers in either academic
disciplines have a background somehow related to the other discipline and many others
work in an interdisciplinary of both sciences. On the other hand, industrial research,
mainly utilizing programmable methods of problem solving, indeed requires engineers
with solid background in mathematics. In this thesis, we focus on a set of mathematical
problems and handle them from two different, but highly related, aspects. First, we do our
best to define the complete picture of the problem through widening the lens by which
we view it and exploring areas or ranges that have not been encountered before. Then,
possible methods of numerically representing these problems are surveyed and evaluated,
whether on general purpose digital computers or specific purpose digital realizations. It
is more common that researchers focus either on problem formulation and the proposed
solution(s) and may be their implementations accompanied by a quick validation, or on
verification techniques of various designs such as debugging/testing. Although computer
simulations are used throughout the thesis to illustrate the general behavior of the studied
problems, we do not blindly accept the results yielded by computer simulations and devote
complete chapters to analyze and criticize some aspects of these results. Among all
mathematical problems with calculations performed through software or hardware digital
realizations, we select two sets of problems to study. In addition to the increased sensitivity
of the selected problems relative to other digitally computed examples that are subject to
errors, they are practically more important. Consequently, our selection criteria is practical
need; namely the presence of widely utilized applications that massively employ these
computations. The two sets of problems discussed in this thesis are:

1. Chaotic maps with the most widely utilized discrete one-dimensional (1D) examples
in modeling and pseudo-random number generation: non-linear quadratic maps (the
logistic map) and piece-wise linear maps (the tent map).

2. Elementary functions with the most complicated, yet highly required in financial
computations: the power function z = xy.

Another perspective of choosing these two sets of problems is that they represent examples
on different classifications of functions: algebraic and transcendental functions. The
studied discrete chaotic maps iterate a polynomial, i.e., they are classified as algebraic
functions. On the other hand, elementary functions are transcendental functions which
can not be fully represented in the form of a polynomial or cannot be defined as the root
of a polynomial equation, i.e., they cannot be expressed in terms of a finite sequence
of the basic operations: addition, subtraction, multiplication, division, and extraction of
roots. Both sets of problems have been considered for implementation in many researches
confined to the integer domain only, and even more positive values only. The reason behind
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these limits was either to avoid the many questions that could arise when attempting to
implement them in the domain of real numbers, or because their behavior for negative
values was not explored before. In the analysis part of the thesis, we provide a framework
for analyzing modifications or generalizations of 1D chaotic maps starting from variations
on the signs of the included parameters, introducing extra degrees of freedom using
scaling parameters, and proposing a completely new general map with arbitrary powers
that could implement various 1D maps with different behavior utilizing the same resources.
In addition, we propose a mathematical definition for the power function for special
values of the operands. The proposed definition could pave the way towards more robust
requirements, not just recommendations, to be added to programming standards that
define correct results that implementations should yield. Moreover, we do not confine our
analysis to the real domain as both sets of problems could yield complex results for some
range(s) of the included parameters/operands.

1.1.1 Chaotic Maps and Numerical Computation
After the invention of personal computers with screens capable of displaying graphs,
scientists and engineers have been able to see that important equations which interest them
in their own fields had rather strange solutions, at least for some ranges of parameters that
appear in the equations. This can be observed in experiments and in computer models of
behavior in many fields that extend massively to include nearly all branches of science
such as: mathematics, physics, chemistry, biology, microbiology, geology, engineering,
computer science, robotics, population dynamics, finance, economics, algorithmic trading,
and meteorology. Chaotic behavior is reported when observations or measurements of
an explored system vary unpredictably with no discernible regularity or order. A chaotic
system could exhibit an infinite number of periodic orbits, some of which could be of
arbitrarily long period. This can be partially attributed to the presence of a kind of non-
linearity associated with an iterative system. Such behavior was formerly explained as
experimental error or noise before the evolution of the definition of “chaos”. Chaos
is identified with non-periodicity and sensitive dependence on parameters and initial
conditions and it is characterized by its complicated dynamics. A dynamical system
consists of a set of possible states (represented by one or more real variables), in addition
to a deterministic rule that determines the present state in terms of past states. A dynamical
system displaying sensitive dependence on initial conditions on a closed invariant set
(which consists of more than one orbit) is called chaotic [112]. Examples on both chaotic
and non-chaotic iterative systems are given in Chapter 2 Subsubsection 2.1.2.1.

Owing to the continuous need for novel and more unpredictable chaotic generators,
modified and generalized versions of many chaotic maps have been suggested through
various ways. For 1D maps, a generalization could be achieved through adding an extra
space dimension converting it to two-dimensional (2D) map, or increasing the operations
count in the map equation. We think that it is always better to maintain simplicity and
target modifications with the least, or even no extra software complexity or hardware
resources needed. Keeping this principle in mind, we aimed at proposing generalizations
along with considering implementation issues. The proposed modifications start from
trying various variations for the signs of the included parameters. Then, a generalization
based on introducing extra scaling parameters which are classified according to their direct
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impact on the resulting behavior in a sense that has not been presented before to the best
of our knowledge. The final generalization introduces a map with parameters that would
determine its behavior. These parameters appear as powers in the map equation which
imposed studying the power operation separately. They are not scaling parameters but
“shaping” parameters that specify the type of the map where the shape of the defining
function and the system response versus different parameters are not scaled but completely
changed. The proposed general map with both the shaping and the scaling parameters
could utilize the same implementation or resources to generate a huge amount of unique
sequences, with different properties, according to the values of five different parameters
(r, a, b, α, and β). For all the proposed maps, comprehensive mathematical analysis is
presented and measures of different properties, that are characteristics of chaos theory
which define every map, are provided.

Mathematically, it is possible to analyze the behavior of a chaotic system and define
its response using the equations describing it. However, mapping these systems to digital
software or hardware and solving them numerically would yield results that inevitably
deviate from the expected analytical solutions. Many methods for pseudo-random number
generation have been suggested as efficient and random-like based on simulations without
specifying the utilized precision, or even based on mathematical analysis assuming infinite
precision. These reasons are insufficient or cannot be considered an evidence for their
efficiency or security when employed in digital chaotic ciphers. On the other hand, other
methods have been claimed to be inefficient with no sufficient reasons or without attempt-
ing to enhance them on both formulation and implementation levels. After analyzing the
behavior of the studied chaotic maps in new ranges and for different modifications and
generalizations, we criticize limited precision implementations of these maps presenting
a framework for studying the effect of finitude on the maps’ dynamical properties. The
framework that gathers deteriorations in the behavior of the maps in fixed-point arithmetic
can be extended to floating-point arithmetic as well.

Most existing numerical implementations, whatever robust, yield odd or strange results
on the occurrence of certain computations. Errors that would be associated with numerical
computation can be subdivided into different types according to the reason why they would
occur

• Representational Errors: Errors in decimal-binary conversions or vice versa.

• Approximation Errors: Errors resulting from bad numerical quality of mathematical
functions computed using approximations, e.g., polynomial approximations.

• Rounding Errors: On a computer, the infinite set of real numbers needs to be
represented by a finite set of numbers called machine numbers. The error caused
by rounding (round-off error), i.e., mapping the real result to a machine number is
called rounding error. Truncation is one of the simplest rounding methods from
the viewpoint of implementation, yet it could cause complete deviation from the
expected properties especially in low precisions as in Chapter 5.

• Definitional Errors: These errors could arise when results of certain expressions
are pre-substituted by certain values chosen by definition such as in the case of
indeterminate expressions or special cases of the power function as in Chapter 6.
These results are probably fetched by table-lookup and should be well-defined for
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expressions such as those arising when passing a special value as an argument to
the power function, which represents a difficulty in reaching an agreement that
minimizes definitional errors.

• Computational Errors: Even if all terms constituting the mathematical expression
were correctly rounded, there remains the errors arising from the cancellation
due to finite precision, or the numerical computation method used to evaluate the
function. This could also be viewed as an accumulation of numerical round-off. For
complicated functions, there will probably be a long sequence of calculations each
of which introducing some error.

1.1.2 Power Function and Floating-Point Representation
Chaos is not the only example on exchangeable suggestions between mathematicians
and implementation engineers. Many other computational problems exist that involve
endless arguments on how to do them in “exact real arithmetic.” These problems start
from the basic operations: addition, subtraction, multiplication, division, and extraction
of roots performed on the field of real numbers. They extend to be concerned with more
complicated operations, e.g., elementary functions such as trigonometric, hyperbolic, and
power functions. Nearly all the basic and the other operations can be extended to complex
arithmetic though. Floating-point representation of numbers is very important on digital
computers because nearly all the calculations involving fractions use it. The floating-
point representation is similar to scientific notation; that is: fraction× (radix)exponent.
Having implementations that yield correct and consistent results for arithmetic functions
according to clearly defined standards is an important topic in floating-point arithmetic.
Yet, there are numerous bugs in the history of floating-point arithmetic designs that we can
point to in order to show the frequent presence of deviations from correctness in various
designs. Moreover, some strange behaviors can sometimes arise from difficult numerical
problems (instable, ill-conditioned, . . . etc.) even when the arithmetic is not flawed. The
presence of these bugs is not surprising because mapping the continuous real numbers
on a finite structure (the floating-point numbers or machine numbers) cannot be done
without any trouble. Some famous bugs and their massive economic cost have been widely
discussed; we recall some of them below in addition to other bugs that we report in various
software implementations of the power function in both binary and decimal floating-point
in Chapter 6 and throughout the rest of the thesis. For more examples and samples of user
programs, refer to [79].

• The floating-point unit (FPU) of the Intel P5 Pentium processor may return incorrect
decimal results due to the well-known Pentium FDIV bug (FDIV is the x86 assembly
language mnemonic for floating-point division). Approximately $475M were set
aside by Intel in 1994 to cover costs arising from this issue [31].

• Some strange behavior of some versions of the Excel spreadsheet was reported
in [57], in addition to the effects of a compiler’s optimization upon a program, e.g.,
in MATLAB and LAPACK. The effects of roundoff were reported too in MATLAB
and FORTRAN.

• Bugs in the computer algebra system Maple releases 6.0 and 7.0 [82].
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• The blast of the Ariane V space shuttle1 in 1996 was caused by an overflow of a
conversion from a floating-point to integer operation. That system was based on the
ADA language which was designed to abort on the occurrence of any “arithmetic
error”. The overflow that happened was not a serious error, but the system aborted
and equipments that cost millions of dollars were completely lost [67].

• Some bugs do not require any programming error; they are due to poor specifications
or misuse of units. For example, the Mars Climate Orbiter probe crash on Mars in
September 1999, a space shuttle positioned itself to receive a laser beamed from the
top of a mountain in June 1985, and a bridge between Germany and Switzerland
did not fit at the border in January 2004 because the two countries use a different
definition of the sea level [82].

1.2 Main Contributions
In this thesis, we attempt to answer the following questions: how much are well-established
problems completely defined in all the possible ranges accompanied with a robust, unan-
imous mathematical analysis? How much does representation on digital platforms de-
teriorate the properties of a system or process/procedure and in what sense is deviation
reported from its analytical expected results? Hence or otherwise, what is the best way
and sufficient precision in which a specific class of problems can be correctly, or even
fairly, represented? The main contributions of this work are:

1. Proposing variations on the signs of parameters in the most famous 1D discrete
chaotic maps: the logistic and tent maps. New properties are discovered in the
negative range(s) of parameters which are mathematically analyzed in detail. Scaling
parameters are added that affect the ranges of output responses and one of the most
important properties of chaotic maps: the bifurcation diagram.

2. Introducing a general map with shaping parameters employed as arbitrary powers
that could be adjusted to obtain the tent map response or the logistic map response,
and novel chaotic responses in between as well as the other ranges of the powering
parameters. This map adds the capability of modifying the shape of the map
response and bifurcation diagram. The capability of scaling is also maintained
through adding extra scaling parameters to the general map.

3. Analyzing the behavior of conventional logistic map in finite precision implementa-
tions and emphasizing the impact of finitude on dynamical properties of the map.
The effect of varying precision on several properties of the logistic map is studied
and the differences from the analytical model are discussed. Our approach in this
study is novel as it uses the fixed-point toolbox of MATLAB to simulate FPGA
hardware realizations in which the operations are executed individually in a sequen-
tial manner with the truncation step implemented between them, and the order of
execution is discussed for the first time to the best of our knowledge.

4. Proposing a mathematically justified definition for the correct results of the power
function z = xy on the occurrence of the special values ±0, ±1, ± infinity, and NaN
as its operands, testing how different standards and software implementations for
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the power function deal with these special values, and classifying the behavior of
different programming languages from the viewpoint of how much they conform
to the current standards and our proposed mathematical definition. We present
inconsistencies between the implementations and the standards and we discuss in-
compatibilities between different versions of the same software. The study could aid
in releasing implementations that guarantee reproducible programs, i.e., producing
the same result in all implementations of a language.

1.3 Publications out of This Work
The following international journal and conference papers have been accepted for publica-
tion out of this work.

1. Sayed, W. S., Radwan, A. G., and Fahmy, H. A. H. Design of positive, negative,
and alternating sign generalized logistic maps. Discrete Dynamics in Nature and
Society (DDNS), ARTICLE ID 586783, 2015.

2. Sayed, W. S. and Fahmy, H. A. H. What are the correct results for the special
values of the operands of the power operation? ACM Transactions on Mathematical
Software (TOMS), accepted and to appear soon.

3. Sayed, W. S., Radwan, A. G., Fahmy, H. A. H., and Hussein, A. E. Scaling parame-
ters and chaos in generalized 1D discrete time maps. International Symposium on
Nonlinear Theory and its Applications (NOLTA 2015), accepted and to appear soon.

1.4 Organization of the Thesis
The remainder of this thesis is organized as follows. First, Chapter 2 provides the mathe-
matical background about non-linear dynamics and chaos theory, namely conventional 1D
logistic and tent discrete maps; as well as elementary functions, namely the power func-
tion. In addition, basics and main definitions of fixed-point and floating-point arithmetic
implementations are reviewed. Previous studies in mathematical analysis of the studied
set of problems: chaotic maps and the power function are detailed. Moreover, a survey of
previous attempts to come up with generalizations of chaotic maps is presented. A review
on attempts to study finite precision logistic map is also included. In addition, previous
implementations of the power function are presented and discussed.

Then, Chapter 3 provides four possible variations on the conventional logistic map
with two parameters λ and x through varying their signs. The proposed maps are called:
positive logistic map, mostly positive logistic map, negative logistic map, and mostly
negative logistic map according to the maximum chaotic range of the output. These
variations do not confine the output to a restricted range of fractions between 0 and 1 as
the conventional map. The new range would be beneficial for many applications such
as quantitative financial modeling, traffic, weather forecasting, and others. Moreover, a
general design procedure is proposed utilizing two extra parameters (a,b) which may
take one of three cases: (a,b), a, b ∈ R+ called the independent scaling case, (1,b) called
the vertical scaling case, and (a,1) called the zooming case. The proposed maps are
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analyzed from the viewpoint of iteration effect, ranges of parameters, the fixed points, the
bifurcation diagrams, and the maximum Lyapunov exponent (MLE) with respect to all
system parameters. The general schematic of the bifurcation diagrams with respect to λ,
in addition to a new bifurcation diagram with respect to a are provided. Four different
design examples are presented to validate the proposed design procedure in addition to
testing their efficiency in a simple text encryption application.

Then, Chapter 4 provides a new map with arbitrary powers α, β that could be considered
a general form for 1D discrete maps with the tent and logistic maps as special cases. The
effect of the presence of an elementary function in the proposed map is studied. The general
map would utilize the same hardware resources to yield various shapes of the response
and bifurcation diagram. A framework for analyzing the proposed map mathematically
and predicting its behavior for various combinations of its parameters is introduced. In
addition, the transition from tent map case to logistic map case is presented and explained.
The possibility of generating real and imaginary bifurcations in this transition region in
addition to the sub-tent region is checked. The map would be suitable even for maps whose
iterative relations are not based on polynomials. Moreover, higher degree polynomials, as
well as various combinations of the parameters, are investigated.

Then, Chapter 5 discusses how the conventional 1D logistic map can be represented in
digital hardware realizations and the assumptions required to simulate this representation
in software environments. Six different versions of the map are proposed based on the
order of execution of the operations constituting its expression. Two of these versions are
chosen primarily to conduct various experiments on them. The results obtained for the
two chosen map versions are demonstrated which include: the bifurcation diagram, its
key-points, time waveforms, periodicity of the generated sequence, and MLE.

Then, Chapter 6 provides a mathematical analysis of the power floating-point arith-
metic operation that we utilized in the proposed general map. This chapter also includes
testing the behavior of different implementations of the power functions when special
values are encountered in its operands, compared to the behavior recommended by IEEE
Standard for floating-point arithmetic 754-2008, and attempting to explain strange results.

Finally, Chapter 7 provides the main contributions of this work, our conclusions based
upon the results that we have reached, and suggestions for future work.
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Chapter 2: Review About the Studied
Problems
This chapter provides a review about the mathematical problems studied throughout the
thesis. First, the remarkable importance of chaos theory and its applications is indicated
with more emphasis on the 1D discrete logistic and tent maps. The properties of the
conventional form of these two maps are analyzed along with presenting the mathematical
approach to studying non-linear dynamical systems and chaos. This introduction paves
the way towards mathematically analyzing generalized maps that are proposed in the
subsequent chapters. The simplest, yet one of the most efficient, generalization that
we propose is allowing negative values for the system parameter. The motivation and
suggested applications for this generalization is presented. Previous work in generalized
maps is reviewed in order that we later on propose our generalizations in the light of
this survey. Then, we move to the effect of digitally implementing chaotic maps on
their dynamical properties. Several methods of digitization could come to mind such as:
software implementations in floating-point arithmetic formats, simulations in fixed-point
formats, hardware realizations either in ASIC or FPGAs, and other digital implementations.
A literature survey on previous works in this field is presented. The last subsection of this
chapter explains the complexity of evaluating the power function z = xy, reviews previous
implementations, and provides the main definitions of IEEE standard for floating-point
arithmetic.

2.1 Chaos: Motivation and Mathematical Analysis
Chaos theory is a branch of mathematics, which is still in the process of development,
classified under the category “applied mathematics to physical sciences”. Strange attrac-
tors, deterministic models, sensitivity to initial conditions, and fractals are all inherent
to the development of this theory. All categories of applied mathematics are always in
a state of continuous development in order to find their way towards formulating recent
applications either theoretically or practically. However, the history of chaos theory goes
back to the 17th century when there have been many arguments and debates whether every
effect that is noted on a certain experiment or when observing natural phenomena can be
precisely owed to a given reason or perhaps a list of reasons. Many of these experiments
and phenomena can be described by dynamical systems, i.e., their modeling equations
relate a quantity to its rate of change, and these are studied as differential equations. As a
result, calculus that is classified under the category of pure mathematics is employed as
a powerful tool used in investigating, understanding, and describing “change” in natural
sciences and phenomena. The study of chaos enables mathematicians and physicists to
describe various phenomena in the field of dynamics by the aid of equations and models.
Chaos theory precisely describes many of the dynamical systems which exhibit unpre-
dictable, yet deterministic, behavior. Chaotic generators can be classified into discrete
time maps and continuous time differential equations. Table 2.1 shows a classification
of some of the well-known real chaotic generators. We focus on discrete time maps,
however, the most well-known continuous time chaotic Lorenz attractor must be included
when handling chaos theory. Other continuous time differential equations that exhibit
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chaotic behavior exist such as: Rössler attractor, Duffing equation, and forced Van der Pol.
For each generator included in Table 2.1, the number of space dimensions, the popular
parameter values used to generate chaotic behavior, as well as the characterizing plot that
describes the system response are shown in Fig. 2.1. For 1D maps, the plot presents the
map equation or the current iteration xn+1 as a function of the previous iteration xn, in
addition to the orbit diagram which shows how the steady state solution varies with respect
to the system parameter. Examples for 1D maps are: the logistic, tent, and gauss maps.
For two dimensional maps, such as Hénon map and Duffing map, the graph shows one of
the involved space dimensions as a function of the other in addition to the orbit diagram.
Finally, the solutions of Lorenz and Rössler systems are shown in Fig. 2.1(f) and (g)
respectively. In our study, we concentrate on 1D discrete maps, specifically the logistic
and tent maps whose properties are closely related since they are conjugate maps [7]. But
at first, a historical background about the development of chaos theory is presented.

Table 2.1: Classification of chaotic generators

(a) Discrete time maps

Map Space Equation(s) Parameter values Plot
dimensions

Logistic map 1 xn+1 = λxn(1− xn) λ = 4 Fig. 2.1(a)
Tent map 1 xn+1 = µmin(xn,1− xn) µ = 2 Fig. 2.1(b)
Gauss map 1 xn+1 = e−αx2

n +β α = 6.2, β = −0.5 Fig. 2.1(c)
Hénon map 2 xn+1 = 1−ax2

n + yn a = 1.4 Fig. 2.1(d)
yn+1 = bxn b = 0.3

Duffing map 2 xn+1 = yn a = 2.75 Fig. 2.1(e)
yn+1 = −bxn + ayn− y3

n b = 0.2

(b) Continuous time differential equations

Equation Space Equation(s) parameter values Plot
dimensions

Lorenz attractor 3 ẋ = σ(y− x) σ = 10 Fig. 2.1(f)
ẏ = x(ρ− z)− y ρ = 28
ż = xy−βz β = 8/3

Rössler attractor 3 ẋ = −y− z a = 0.2 Fig. 2.1(g)
ẏ = x + ay b = 0.2
ż = b + z(x− c) c = 5.7

2.1.1 Historical Background
The causality principle is the most basic principle of physics derived from the philosophy
of René Descartes, it states that “Every effect has a cause.” In 1687, Isaac Newton
applied this principle in order to calculate the planets’ trajectories, demonstrating that the
observed motion of planets could be explained by the presence of a force of gravitational
attraction among them. A force that is present between every two bodies which is directly
proportional to the product of their masses and inversely proportional to the square of the
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Figure 2.1: Attractor and orbit diagram of (a) Logistic map, (b) Tent map, (c) Gauss
map, (d) Hénon map, and (e) Duffing map, (f) Lorenz attractor and its projections in three
planes, and (g) Rössler attractor and one of its projections

distance between them. Simplifying the model to a two-body-problem considering the
gravitational force of the sun on the earth, his calculations were consistent with the three
laws of planetary motion that have been published by Johannes Kepler in 1609 and 1618.
This research involved the invention of many calculus theories since fundamental equations
of motion involve velocities and accelerations, which are derivatives of position. It is
worth mentioning that similar ideas in the field of differential calculus have been developed
concurrently by Leibniz. Later on, many other scientists extended and developed methods
of using differential equations to describe the behavior of physical systems.

Throughout these years, there have been two well-known types of solutions for dif-
ferential equations that describe motion: steady state solutions and oscillatory periodic
or quasi-periodic solutions. However, physical variations cause real systems to be un-
predictable such as friction and air resistance. Several systems with more complicated
dynamics have been pointed out such as a pot of boiling water, or the molecules of air
colliding in a room. For example, Maxwell suggested that the motion of gas molecules
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could lead to progressive amplification of small changes due to an immense number of
interacting particles and yield microscopic randomness. The phenomenon of sensitivity
to initial conditions and long-term unpredictability were discovered by Poincaré in 1890.
He wondered if the laws of nature and the state of the universe are exactly known at the
initial moment, could we accurately predict the state of the same universe at a subsequent
moment? or even just predict it approximately? Knowing that small differences in the
initial conditions may generate very large differences in the final state and the error is enor-
mously amplified, prediction then becomes impossible in such a “random” phenomenon.
This was the birth of chaos theory. The work of Poincaré has been revisited and enriched
by other scientists later on such as Kolmogorov whose contributions to mathematics are
too numerous to be listed in our discussion. In some states of many dynamical systems,
sensitive dependence on initial conditions is realized which means that points that start off

close together can be widely separated at a later time.
Edward Lorenz is the official discoverer of chaos theory which he defined in the 1960s

as [71]:

“Chaos: When the present determines the future, but the
approximate present does not approximately determine the future.”

which means that there is chaos when no formula can tell us the value of the system
output at a certain iteration n, even if we know the initial point, except by carrying out
the successive iterations. Lorenz’s contributions are much related to the invention of high
speed computers which allowed the conduction of simulations and numerical experiments
on multiple non-linear differential equations as one way of discovering their complicated
behavior. Lorenz was first working on weather prediction when he accidentally came
across strange behaviors in which he became interested in. He developed the Lorenz
system as a simplified mathematical model for weather prediction. The Lorenz attractor
is a set of chaotic solutions of the Lorenz system. Plotting the solution of this system
resembles figure eight as shown in Fig. 2.1(f). A few years later, the butterfly effect has
been discussed in a meeting titled “Predictability: Does the Flap of a Butterfly’s Wings in
Brazil Set Off a Tornado in Texas?” [108]. It has been wondered whether two particular
weather situations differing as little as the immediate influence of a single butterfly will
generally after sufficient time evolve into two situations differing as much as the presence
of a tornado? In more technical language, is the behavior of the atmosphere unstable with
respect to perturbations of small amplitude? Since then, numerical weather prediction has
made enormous progress.

Later on, various laboratory experiments have been carried out in which very familiar
settings exhibit unusual nonlinear effects and chaotic behavior. The concepts of dynamical
systems became no longer confined to the microscopic world as proposed by Maxwell
and others. They extended to include macroscopic systems such as: mechanism of fluids,
some common electronic circuits and several types of low-energy lasers. All these are
systems which were previously thought to be fairly well understood using the classical
models. In this sense, chaos theory is applicable for both microscopic and macroscopic
models. The outstanding work of Lorenz paved the way for the evolution of many studies
in the field of chaos theory and discovering properties of various equations. Some of
which have been thought to be well understood, while others exhibit unusual behaviors but
with no supporting mathematical evidence. Subsequent researches have been conducted
that constitute the base for all applications employing chaos in the present days. For
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example, works of Robert M. May [78] and Mitchell J. Feigenbaum [37] on the logistic
map, Mandelbrot on fractals [73], Ruelle and strange attractors [99], and many others. We
shall highlight the contributions of various scientists in the fine field of discrete 1D maps
throughout the rest of our discussion.

2.1.2 Conventional Logistic Map xn+1 = λxn(1− xn)

The conventional logistic map is a famous iterative map based on first order nonlinear
difference equation which can model growth rate to study either reproduction or starvation
phenomena, and is given by:

xn+1 = f (xn,λ) = λxn(1− xn), λ ∈ R+, xn ∈ [0,1] (2.1)

where λ is the population growth rate or fertility coefficient, and xn is the relative population
size at a discrete time instant n. Detailed analytical studies of logistic maps began
in the 1950s. There had been a lot of arguments that such maps exhibit complicated
properties beyond the simple oscillatory behavior that had been widely noted before.
Yet, these studies had not been collectively demonstrated in a mature way until the map
was popularized in a seminal 1976 paper by the biologist Robert May, [78] in part as
a discrete-time demographic model analogous to the logistic equation first created by
Pierre François Verhulst [110, 111]. A detailed mathematical analysis of the map and its
properties has also been presented in [37]. Inspite of the simplicity of the mathematical
relation with which the logistic map is defined that uses simple and computationally fast
operators, it is highly rich in information and indications that are very useful in the field of
chaos theory and chaotic systems. Its properties as a smooth map constitute a large portion
of the basic study of chaos theory. In addition, it is the most popular example in textbooks
and elementary courses on chaotic dynamical systems. Specifically, the applications of
the logistic map have increased during the last few decades. For example, in fields as
biology, chemistry, physics [70, 101, 105], secure data and image transfer [87], pseudo-
random number generation for chaos based communication [59, 61, 88, 90, 104], circuit
applications [106], traffic [42], financial modeling, and business cycle theory [10, 52].

2.1.2.1 Exponential Versus Logistic Growth Models

Population growth as time progresses can be modeled by various relations, some of which
are predictable ones with analytical solutions and others are not. We are concerned with
two relations, the first relation is called the exponential growth model and is given by:

g(x,λ) = λx, λ, x ∈ R+ (2.2)

which is a linear system that is easy to understand, whereas the second relation is called
the logistic growth model and is given by:

f (x,λ) = λx(1− x), λ ∈ R+, x ∈ [0,1] (2.3)

where λ is a system parameter known as the fertility coefficient, and x is the relative
population expressed as the ratio of existing population to the maximum possible popula-
tion. This model describes the behavior of a population with limited resources which may
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increase, but saturation is achieved as the relative population x approaches one forcing
the rate of growth λ to be upper bounded. The population at the next time instant is not
only proportional to the existing relative population x, but also the remaining capacity
(1− x). It should be noted that this equation provides no model for negative population
as divergence occurs for negative values. Instead, the lower bound on x is zero which
represents extinction. For a recursive relation, an initial value x0 is needed, the resulting
value will be the next input and so on. For instance, a relation h(x) can be represented in a
recursive form which is given by:

xn+1 = h(xn), (2.4)

where n is a non-negative integer that stands for discrete time instants and xn is the nth

iteration of x0.
Another method of expressing the iterative property is through defining the composite

function hn(x) such that

x1 = h(x0),
x2 = h(x1) = h (h(x0)) = h2(x0),
...

xn = h(xn−1) = hn(x0),
xn+1 = h(xn) = hn+1(x0).

The set of all the iterations of a function h(x) given an initial point x0 is called the map of
h(x) or alternatively the orbit of x0. By iterating these relations, the discrete dynamics of
the population that they model can be observed. In the former model, if the initial value of
x (x0) is greater than zero, the population will grow without bound. Although this might
be correct for a certain range of populations, it may lose its applicability in other ranges.
On the other hand, the latter model can have a finite limit where the population approaches
an eventual limiting size, called steady state population. Reaching such a steady state
with one fixed value, more than one value that follow a periodic exchange among them, or
aperiodic behavior is controlled by the value of the system parameter λ. In the upcoming
discussion, we are concerned with the logistic growth model.

2.1.2.2 Operands’ Ranges

The logistic growth model could be given by the recursive formula (2.1), or by the bivariate
function f (x,λ), alternatively written as f (x)|λ or simply f (x). To guarantee bounded
output, the resulting value xn+1 or f (x) should be included in the range 0 ≤ xn ≤ 1. This
range is also owed to the definition of x as the ratio of existing population to the maximum
possible population, and the application of the logistic model to concepts in biology,
cryptography, traffic, finance and others related to probability theory. The critical point xc
of f (x) is obtained by solving

f ′(xc) = 0→ xc =
1
2

(2.5)

at which the value of the function is given by:

f (xc) =
λ

4
. (2.6)
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Thus, 0 ≤ λ
4 ≤ 1 and the system parameter λ has the range 0 ≤ λ ≤ 4. The map curve with

the largest possible maximum value in the boundedness range is illustrated in Figure 2.1(a)
that shows the graph of f (x) at λ = 4 or maximum chaotic behavior. Briefly, for the logistic
map, x ∈ [0,1] and λ ∈ [0,4]. The map has an extremum at xc = 1

2 with a corresponding
value of the function f (xc) = λ

4 that is upper-bounded by 1.

2.1.2.3 Main Definitions: Fixed Points and Periodic Points

For the logistic growth model, fixed points are defined as the values of x = x∗ for which
f (x∗) = x∗. For example, consider the map f (x)|λ=1.5 = 1.5x(1− x), the map converges
to a fixed point at x∗ = 1

3 = 0.333 as shown in Table 2.2, where f (0.333) = 0.333. The
same value results for any initial point x0 ∈ (0,1). It should be noted that all the values
are recorded in Table 2.2 to four decimal places. The eventual behavior of a map when it
settles at a fixed value, for any initial point, is called an attractor. Let x = x∗ be a fixed
point of the logistic map f (x) at a specific value for λ, the stability conditions of the point
x∗ can be classified as follows.

• If | f ′(x∗)| < 1, x = x∗ is a stable fixed point and it is called a sink (node).

• If | f ′(x∗)| > 1, x = x∗ is a saddle fixed point and it is called a source.

The term f ′(x∗) is called the multiplier, its role in determining the stability of a fixed
point can be explained using the limit definition of the first derivative and the forward
difference formula. If a fixed point x∗ = f (x∗) is perturbed by a small quantity δxn−1, the
perturbation δxn at the next iteration is given by:

δxn = f (x∗+δxn−1)− x∗ = f ′(x∗)δxn−1 +O(δxn−1). (2.7)

Starting with an infinitesimally small δx0, the perturbation after n iterations is thus δxn ≈

(µ)nδx0, where µ, the multiplier of the fixed point, is given by the map derivative at x = x∗,
f ′(x∗). A fixed point is thus stable (unstable) when the absolute value of its multiplier is
smaller (greater) than unity as previously proposed. The case | f ′(x∗)| = 1 will be explained
in the next subsection.

The points at which f k(xp) = xp are called periodic points of period-k, where k
is the smallest positive integer satisfying the equation. For example, consider the map
f (x)|λ=3.3 = 3.3x(1− x), the map approaches a period-2 orbit such that f 2(x) = x as shown in
Table 2.2, where f (0.8236) = 0.4794 and f (0.4794) = 0.8236. Thus, f 2(0.8236) = 0.8236
and f 2(0.4794) = 0.4794. The same values result for any initial point x0 ∈ (0,1). In this
example, due to the different value of λ in the map, we do not have a stable fixed point
(sink). Instead, a period-2 sink exists. The stability of periodic points depends on the
absolute value of the first derivative of the composite map |( f k)′(x)| in a similar manner to
how the stability of the fixed points depends on the first derivative of the map itself. Other
values for periodic points are shown in Table 2.2.

2.1.2.4 Bifurcation Diagram

As previously defined, successive values of x evaluated using the recurrence (2.1) are
called the orbit of x. This can also be viewed as applying the function f (x) = λx(1− x) and
its composite functions f k(x) on x . The value at which the recurrence settles, alternatively
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Table 2.2: Orbits of the logistic map f (x) at different values for λ

n f (x)|λ=1.5 f (x)|λ=3.3 f (x)|λ=3.83 f (x)|λ=3.5
(fixed-point) (period-2) (period-3) (period-4)

0 0.5000 0.5000 0.5000 0.5000
1 0.3750 0.8250 0.9575 0.8750
2 0.3516 0.4764 0.1559 0.3828
3 0.3419 0.8232 0.5039 0.8269
4 0.3375 0.4804 0.9574 0.5009
5 0.3354 0.8237 0.1561 0.8750
6 0.3344 0.4792 0.5044 0.3828
7 0.3338 0.8236 0.9574 0.8269
8 0.3336 0.4795 0.1561 0.5009
9 0.3335 0.8236 0.5046 0.8750
10 0.3334 0.4794 0.9574 0.3828
11 0.3334 0.8236 0.1561 0.8269
12 0.3333 0.4794 0.5046 0.5009
13 0.3333 0.8236 0.9574 0.8750
14 0.3333 0.4794 0.1561 0.3828
...

...
...

...
...

called the limit of the sequence or its steady state given by limn→∞ f n(x), is plotted for
each value of λ as shown in Fig. 2.1(a). The sudden appearance of a qualitatively different
solution for a system as some parameter is varied is called bifurcation. This appears in the
form of fixed point, followed by a period doubling, quadrupling, etc., that accompanies
the onset of chaos in what is called “Bifurcation diagram”. From the bifurcation diagrams
of logistic and tent maps shown in Fig. 2.1(a) and (b) respectively, it is clear that they
exhibit period doubling as a route to chaos that are characterized by certain numbers
that do not depend on the nature of the map. For example, the ratio of the spacings
between consecutive values of the system parameter at the bifurcation points approaches
the universal “Feigenbaum” constant given by [37]

δ = lim
k→∞

λk+1−λk

λk+2−λk+1
= 4.6692 . . . (2.8)

Figure 2.1(a) shows the bifurcation diagram of logistic map, where different ranges for
the system parameter λ cause the logistic map to exhibit different phases of behavior. At
first, a steady state (sink) at the fixed point x = 0. Then, the non-trivial solution begins
to appear once λ exceeds 1, where we may metaphorically call the point λ = 1 the first
bifurcation point. The first non-trivial bifurcation point, alternatively called the second
bifurcation point λ = 3 at which period-2 orbits begin to appear, followed by periodic
orbits with multi-periods and so on till finally a chaotic behavior, where values cover the
complete range ∈ [0,1] at λ = 4. This bifurcation effect appears gradually as λ increases.

Solving the equation | f ′(x∗)| = 1 and getting the corresponding value(s) for λ deter-
mines the points at which bifurcation firstly occurs. Solving |( f k)′(xp)| = 1 and getting the
corresponding value(s) for λ determines the points at which higher bifurcations occurs.
These points are numbered as the first, second, third, . . . bifurcation points and so on in
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an ascending order with the corresponding values of λ. A detailed explanation of the
resulting curve and the change in behavior in different ranges for λ can be carried out on
the basis of the following discussion.

2.1.2.4.1 Fixed and Periodic Points and Their Stability The fixed points of the
conventional discrete logistic map are given by

λx∗(1− x∗) = x∗. (2.9)

which yields the two solutions

x∗1 = 0 and x∗2 = 1−
1
λ
. (2.10)

The first derivative of f (x) is given by

f ′(x) = λ(1−2x), (2.11)

in order to study the bifurcation points, we solve | f ′(x∗)| = 1. For x∗1 = 0,

f ′(x∗1) = λ→ λb1 = 1. (2.12)

Therefore x∗1 = 0 is a sink for λ < 1. Hence, the trivial solution x = 0 prevails over the
range 0 ≤ λ < 1. For x∗2 = 1− 1

λ ,

f ′(x∗) = 2−λ→ λb1 = 1, λb2 = 3. (2.13)

Therefore both λ = 1 and λ = 3 are bifurcation points. Just after λ = 1, the output reaches a
steady state with only one fixed point at each value for λ. Moreover, at λ = 3, the solution
is f (x) = 1− 1

3 = 2
3 . Just after λ = 3, the output bifurcates to a period-2 solution according

to the following analysis.
The next step is solving f 2(x) = x and equating the absolute value of the first derivative

of f 2(x), |( f 2)′(x)|, at the resulting point to 1. We get the period-2 orbit which is stable for
3 < λ < 1 +

√
6, and the next bifurcation point is λ = 1 +

√
6. The next periodic points and

bifurcation points can be obtained following the same procedure.

2.1.2.4.2 Different Phases on the Diagram The remarkable indication of having a
period-3 orbit is that it implies the existence of periodic orbits of all other periods. In
addition, it implies sensitivity to initial data, i.e., the presence of chaos according to
Sharkovskiis Theorem [7]. Observations on the change in behavior in different ranges for
λ can be expanded as follows [111].

• In the range 0 ≤ λ ≤ 1, the trivial solution prevails.

• In the range 1 ≤ λ ≤ 3, a non-trivial fixed solution that depends on the value of the
parameter λ starts to appear.

• In the range 3 ≤ λ ≤ 1 +
√

6, the recurrence converges to a period-2 orbit.

• In the range 3.44949 ≤ λ ≤ 3.54409 (approximately), the recurrence converges to a
period-4 orbit.

16



• In the range 3.54409 ≤ λ ≤ 3.56995 (approximately), the recurrence converges to a
period-8 orbit.

• Starting at the value λ = 3.56995, the recurrence starts to exhibit chaotic behavior
and sensitive dependence on initial conditions.

• In this range, there are still certain isolated ranges of λ that show non-chaotic
behavior; these are sometimes called “islands of stability”. For instance, beginning
at 1 +

√
8 (approximately 3.82843), the recurrence converges to a period-3 orbit.

For slightly higher values of λ, period-6 then period-12 exist and so on.

• Beyond the studied range, i.e., when λ > 4, the recurrence diverges for almost all
initial values.

2.1.2.4.3 Key-points of the Bifurcation Diagram The key-points of the bifurcation
diagram for the conventional 1D logistic map can be summarized as follows.

• The first bifurcation point λb1 = 1. This is the point at which the first non-zero value
for x appears.

• The second bifurcation point λb2 = 3.

• The solution at λb2 that equals to xλb2 = 2/3.

• The maximum value that the solution could reach xmax = 1.

2.1.3 Conventional Tent Map xn+1 = µmin(xn,1− xn)

The tent (or triangular) map is a piecewise linear chaotic map whose conventional form is
given by either of the following forms [7]:

xn+1 = µmin(xn,1− xn) , µ ∈ R+, xn ∈ [0,1] (2.14a)

xn+1 =

{
µxn x ≤ xk
µ(1− xn) xk < x , (2.14b)

where xk is the point of intersection of the two straight lines that equals 0.5 as shown in
Fig. 2.1(b). It could be also be regarded as

f (x) = µmin(x,1− x) , µ ∈ R+, x ∈ [0,1] (2.15)

Piecewise linear maps are perhaps the simplest kind of chaotic maps from the viewpoint
of realization. Specifically, analog and digital realizations for the tent map have been
proposed as in [29, 50]. Applications of the tent map include: cryptography [44, 114, 115],
communication systems: channel coding and error correction [17], radar imaging [40],
financial modeling [52] and others.
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2.1.3.1 Operands’ Ranges

The intersection point xk is obtained by equating the left and right curves to get

xk =
1
2
, (2.16)

at which the value of the function is given by:

f (xk) =
µ

2
. (2.17)

The map has an extrema at xk = 1
2 with a corresponding value of the function f (xk) =

µ
2

that is upper-bounded by 1. Thus, for the tent map, x ∈ [0,1] and µ ∈ [0,2].

2.1.3.2 Bifurcation Diagram

As previously mentioned, the tent map and the logistic map are conjugate [7] and thus
their behaviors are identical under the effect of successive iterations. Depending on the
value of the system parameter µ, the tent map demonstrates different dynamics that range
from fixed and periodic predictable behaviors to chaotic behavior as shown in Fig. 2.1(b).
The fixed points can be obtained as follows. Similarly to the analysis carried out for the
logistic map:

x∗1 = 0 and x∗2 = µ/(1 +µ), (2.18)

f ′(x∗) =

{
−µ x ≤ xk
+µ xk < x , (2.19)

| f ′(x∗)| = 1→ µb = 1, (2.20a)

xb = 0. (2.20b)

For x∗1 = 0, f ′(x∗) = µ, therefore x∗1 = 0 is a sink for µ < 1. Hence, the trivial solution x = 0
prevails over the range 0 ≤ µ < 1. Maximum chaotic behavior is obtained at µ = 2.

2.1.4 Maximum Lyapunov Exponent
Since chaos also represents rapid divergence of nearby points, a quantity that measures
the rate of this divergence would be quite useful. For a discrete map f of the real line R,
the Lyapunov number L(x0) of the orbit x0, x1, x2, . . . is defined to be

L(x0) = lim
n→∞

(| f ′(x0)| . . . | f ′(xn−1)|)1/n, (2.21)

which represents an average expanding rate. The maximum Lyapunov exponent (MLE) is
given by

MLE = ln L(x0). (2.22)

Hence,

MLE = lim
n→∞

(
1
n

n−1∑
i=0

ln | f ′(xi)|), (2.23)
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Figure 2.2: Maximum Lyapunov exponent versus the system parameter (a) Logistic map
and (b) Tent map

where ln is the natural logarithm and MLE is an indication whether the system exhibits
chaotic behavior or not. Theoretically, a positive value for MLE proves chaotic behavior.
Methods of MLE calculation in numerical simulations are further explained in Chapter 5,
subsection 5.2.4. Figure 2.2(a) shows the maximum Lyapunov exponent MLE for the
logistic map versus the system parameter λ, where positive values start to appear after
the point of onset of chaos that occurs approximately at λ = 3.56995 accompanied with
zero crossings and some negative values in between. The maximum chaotic behavior is
recorded at λ = 4 where MLE equals ln2. For tent map, MLE is shown in Fig.2.2(b) versus
the system parameter µ. The maximum chaotic behavior is recorded at µ = 2 where MLE
equals ln2 too. This value could be proved for tent map and by conjugacy for logistic
map [7].

Proof. The maximum Lyapunov exponent for the chaotic tent map f (x) = 2min(x,1− x)
equals ln2.

In this case, f ′(x) equals either 2 or −2. Thus, | f ′(xi)| = 2 which is constant value.
From (2.23), we get MLE= limn→∞(1

nn ln2) = ln2. �

Thus, according to this proof the plot of MLE for tent map is the same as ln function
as shown in Fig. 2.2(b) as if lnµ is plotted versus µ.

2.2 Negative Operands: How and Why?
Recalling the equations of the conventional logistic (2.3) and tent maps (2.15), there has
been a constraint on the value of λ to be positive real. Moreover, this constraint has been
applied in the calculation of the bifurcation points, where at some step it was claimed that
the solution of |λ| = 1 (or |µ| = 1) is λ or µ equals positive one. Yet, if this constraint is
removed, we could proceed with the negative solution and reach surprising results.

2.2.1 The Negative Parameter Case First Visited
Conducting a simple computer simulation that calculates the steady state solutions sweep-
ing a range of the system parameter, we get the bifurcation diagrams shown in Fig. 2.3 for
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Figure 2.3: Existence of bifurcation diagram for negative system parameter (a) Logistic
map and (b) Tent map

both logistic and tent maps. The diagrams are obtained through allowing negative values
for the system parameter and exploring the behavior in this region. The system response
in the negative side constructs an arrangement that could be described as a new bifurcation
diagram. It is clear that they exhibit period doubling as a route to chaos similar to their
positive parameter corresponding maps. This is an indication that Feigenbaum universal
constant does not only occur for maps that have a global maximum, but also those that
have a global minimum. The diagram of the proposed map with negative system parameter
exhibits different values for the key-points and the range of outputs. The first difference is
that the first bifurcation represents a change from trivial solution to period-2 without a
non-trivial fixed-point unlike the case of positive system parameter. Another important
difference is that the output range has a minimum negative value instead of zero, and a
maximum positive value greater than one. For the logistic map [xmin, xmax] = [−1/2,3/2],
while for the tent map it is [xmin, xmax] = [−1,2]. A detailed analysis of this new region
(negative system parameter) in both maps and methods of getting the solutions and predict-
ing the behavior mathematically is presented in the next Chapter 3 and discussed in [100].
Negative and alternating sign maps are presented which have not been mathematically
covered before in the literature to the best of our knowledge in addition to a study of their
main properties. Negative parameter range has been quickly tackled as in [8,15] without a
detailed mathematical analysis and it was claimed to have no real world applications. A
detailed analysis of three different parameterized versions for each of the proposed maps
is also provided. But first, we devote the rest of this section to present a quick, but not
exhaustive, review of related real world applications. The merits of the proposed maps for
both pseudo-random number generation and modeling applications are discussed.

2.2.2 Enhancement of Randomness Measures
The wider output range and the asymmetry recognized in the resulting bifurcation diagrams
of these maps could also be added to their advantages as they imply more unpredictability,
in addition to the earlier onset of chaos for negative parameter compared to the case of
positive parameter. We proceed in proving the enhancement of the dynamical properties
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induced by the map with negative parameter in Chapter 5, specifically for limited precision
implementations. Yet, the added value of the proposed map could be viewed from another
aspect where their presence means the capability of operating the same hardware to get
completely different responses. Many possibilities of “chaos” could be generated through
varying the sign and magnitude of the system parameter too not only changing the seed. It
is worth mentioning that the proposed map provides a wider range of seeds, i.e., initial
points that enhance the system security for chaos-based cryptography and communication
where the possibility of hacking the system through a pattern of seeds or randomly selected
ones decreases, increasing the system’s robustness. Moreover, further generalizations
proposed in Chapter 3 and Chapter 4 introduce new parameters that increase the degrees
of freedom of the map and allow the construction of more efficient encryption keys with
extra parameters. In conclusion, proposed generalizations on existing maps enhance their
unpredictability and increase their reliability in secure communication and encryption.

2.2.3 Wider Domain of Modeling With Improved Efficiency
The output ranges of the proposed maps allow more flexibility in chaotic modeling of
finance [10, 52], traffic, weather forecasting [86, 108], and many other fields. For instance,
measures of relative humidity can exceed 100% in case of “supersaturation” such as
nuclear physics experiments in Wilson cloud chamber [43]. Further enhancements are
added in Chapter 3 and Chapter 4 that allow more control of the properties of each map and
its bifurcation diagram. Various experiments have shown that some phenomena exhibit
dynamical behaviors which could only be modeled with generalized maps with modulated
parameters as conventional maps are not sufficient to model [24,26]. We believe that there
is still a gap which needs to be filled between areas of research in which some biologists,
physicists, and economists propose new models and the field of non-linear dynamics and
chaos in which researchers could come up with chaotic systems suitable for predicting the
behavior of these models. Examples of models that could employ the proposed maps are
discussed below.

Axioms of Kolmogorov’s probability theory [62] have the rule 0 ≤ P(A) ≤ 1 since
P(A) describes the probability of occurrence of event A, or the probability of the outcome
of an experiment, which must be a positive real number. However, these axioms do not
provide the complete picture of stochastic reality as emphasized by Kolmogorov himself.
Although his model, the measure-theoretic model with probability space or sample space
of probability one, is a successful one for many domains of sciences, no model can be
ever described as completely valid for all domains. The widely-spread Kolmogorov’s
model has neglected the context of carrying out experiments. Moreover, the setup of many
experiments has been prepared and observed with a prior hypothesis that probabilities
are only confined to the range [0,1]. Possibilities to extend the probability theory to
describe numerous physical models with negative probabilities, and even probabilities
more than one, have been mathematically discussed based on frequency probability model
of Von Mesis, as in [60]. The frequency probability model starts with random sequences,
collectives rather than directly with probabilities where probabilities are defined as limits
of relative frequencies for results of observations.

Negative probabilities have been used in solving several problems [23, 45, 51], and
paradoxes, e.g., Einstein-Podolsky-Rosen paradox [103]. These out of the expected range
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probabilities are allowed by quasi-probability distributions that may apply to unobservable
events or conditional probabilities. The idea of negative probabilities first arised in physics
and particularly in quantum mechanics based on ideas of E. Wigner [113], P. Dirac [27,80],
and R. Feynman [39]. Later on, many physicists and scientists [38, 41, 80, 97] have argued
for the necessity of extended probabilities in quantum theories and that its appearance
is one of the main differences between classical and quantum theories. For instance, the
probabilities of existence of positive and negative-energy photons, or the emissions and
absorptions of photons, equal to 2 and −2 respectively [28,80]. The strong relation between
these discoveries and the chaos theory could be understood better through reviewing further
details on chaotic properties of electric transport in a semiconductor, those could be found
in [101]. In this book, the applications of bifurcation theory and Hopf bifurcation, that
was first realized in biochemical systems, in semi-classical and quantum physics are
explained. Instabilities due to nonlinear processes of generation and recombination of
carriers (electrons or holes) in semiconductors and their ionization across the bandgap or
from localized levels are discussed. Chaotic behavior of semiconductors, lasers, current
filaments, and others are presented.

Unsurprisingly, such extended probabilities exhibited by several physical phenomena
and environmental processes found their way to commercial manufacturing. The pre-
viously raised concept of “supersaturation” relevant to meteorological and atmospheric
studies is defined as a state of a solution in which the dissolved material is more than
the amount that could be dissolved by the solvent under normal conditions. The higher
energy state of supersaturated solutions lead to crystallization under specific circumstances.
Several examples on commercial products, especially foodstuff, utilize this concept such
as: honey, rock candy, sodas, and seltzer water.

Negative probabilities have more recently been applied to mathematical finance. In
quantitative finance, most probabilities are not real probabilities but theoretical ones
called pseudo-probabilities. The concept of risk-neutral or pseudo-probabilities is a
popular concept in finance which has been numerously applied as in [30, 53]. It has been
shown how negative probabilities can be applied to financial option pricing. For example,
calculating the probability of a price going up or down could be simplified by allowing
such pseudo-probabilities to be negative in certain cases as pointed out by Haug [48].
A generalized version of the well-known Cox, Ross, and Rubinstein [21] binomial tree
(CRR tree) has been considered. The tree is often used to price a variety of derivatives
instruments where different probabilities could be yielded which might lie outside the
interval [0,1]. For example, one can get a risk-neutral up probability of 1.3689 and a down
probability of −0.3689. A rigorous mathematical definition of negative probabilities in
finance and their properties has been recently derived by Burgin and Meissner [16]. The
authors provide several situations in which negative probabilities occurred in finance, as
well as negative interest rates: over-generated electricity in Norway that resulted in its
price going negative a few hours during the night, the lender paying the bank interest rate
in addition to the money in the 1970s in Switzerland, ‘repos’, i.e., repurchase agreements
traded at negative interest rates which took place in Japan and USA in 2003, and negative
nominal interest rates that occurred in the worldwide 2008/2009 financial crisis.

In conclusion, the new behavior of 1D maps allowing negative system parameter could
permit their usage as discretized models for many applications even those that have been
confined to the continuous domain. Combining these models along with considering quasi-
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probability distributions which have been used for solving many problems as previously
mentioned could be such a breakthrough.

2.3 Generalized Chaotic Maps
Conventional chaotic systems, especially discrete 1D maps, are highly rich in information
and indications that constitute a large portion of the basic study of chaos theory. However,
modeling dynamics in natural phenomena and stochastic processes, as well as demand on
pseudo-random number generation for multiple purposes, requires novel chaotic systems.
Consequently, generalized maps have been proposed in previous researches [32,68,77,109].
Although the starting equation is mostly generic, the subsequent analysis forces the
parameters to some fixed values. For instance, the parameters of generalized chaotic
function proposed in [77] have been adapted to fit a specific encryption algorithm. The
proposed generalized map is given by:

g(λ,α,β, x) = λx(α− x)β, λ, α, β ∈ R+ (2.24)

Matthews [77] solved the proposed map for the critical value given by

g′(xc) = 0→ xc =
α

β+ 1
, (2.25)

and the first non-trivial fixed point that equals

x∗ = g(x∗)→ x∗ = α−
1

λ
1
β

. (2.26)

To guarantee bounded closed set responses for the map in the interval x ∈ [0,α], there is
an upper bound on the value of λ. However, the author did not proceed in the general
analysis deeper than this. Instead, the parameter α has been set to 1 to avoid extremely
low responses, while the parameter λ has been set to its maximum corresponding value
that equals (β+ 1)(1 + 1/β)β. Thus, two parameters only remained (x and β) and the map
has not been mathematically analyzed in a generic way. The different chaotic properties
of the proposed map had not been illustrated.

Another type of the listed research work depends on rather complicated equations that
are classified as 2D maps. An example is the map presented in [32] which is given by:

xn+1 = axn(1− xn), yn+1 = (b + cxn)yn(1− yn). (2.27)

The parameters’ ranges allowed by the map and their classification into fixed, periodic
solution, or chaotic behavior have been detailed. The resulting bifurcation diagrams
exhibit either different shape in the same range of output response of the conventional
map x ∈ [0,1], or even different ranges. One of the diagrams for 0 ≤ a ≤ 4, b = −2, and
c = 2 generates output responses in the range x ∈ [−0.5,1.5].

Other generalized logistic, tent, and sine maps have been recently investigated in [91–
93] where effects of generalized parameters on the behavior of the logistic map have
been thoroughly studied. In [91], three different generalizations of the logistic map with
arbitrary powers α and β have been proposed which are given by:

xn+1 = λxαn (1− xβn), (2.28)
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where (α,β) can equal one of three cases (α,α), (α,1), or (1,α). The main factors, aspects,
and properties of the proposed maps have been compared. For each map, the fixed
points and their critical values, ranges, the bifurcation diagrams with respect to the two
parameters α and λ, the effect of the function iterations, the iterated outputs, the cobweb
plot, and the time evolution of the MLE have been discussed. The generic case is given
by:

xn+1 = λxαn (1− xαn ), λ, α ∈ R+ (2.29)

with properties which provide extra degrees of freedom than the conventional logistic map.
Its properties are summarized in Table 2.3.

Table 2.3: The properties of generalized logistic map with arbitrary power (2.29)

Property Value
Critical Point f ′(xc) = 0→ xc =

α√0.5
Fixed Points λ(x∗)2α−λ(x∗)α+ x∗ = 0
Bifurcation Points λb = 1

α(x∗)α−1(1−2(x∗)α)
Bifurcation Diagram vs. λ (α < 1)

Bifurcation Diagram vs. λ (α > 1)

One of the other special cases given by

xn+1 = λxαn (1− xn), λ, α ∈ R+ (2.30)

is similar to one of the modified maps presented in [68] but Levinsohn has been confining
α to positive integers greater than one only. The map was suggested for use in analyzing a
different ecological system. The analyses, although implying different steps, are consistent
in their results for parameters’ ranges. However, in [91] further properties have been
studied such as the bifurcation diagram versus the new parameter α and allowing fractional
values of this parameter.

A similar generalization for the tent map has been introduced in [92], which is given
by either of the following forms.

xn+1 = min
(
µxαn ,µ

(
1− xαn

))
, µ, α ∈ R+ (2.31a)

xn+1 =

{
µxαn x ≤ xk
µ(1− xαn ) xk < x , (2.31b)
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Table 2.4: The properties of generalized tent map with arbitray power (2.31)

Property Value
Intersection Point xk = (0.5)

1
α

Fixed Points x∗1 = 0, x∗2 = (1/µ)
1
α−1 , and x∗3 +µx∗3

α−µ = 0
Bifurcation Points (µb, xb) = (( 1

α )(α+ 1)1−1/α, ( 1
α+1 )1/α)

Bifurcation Diagram vs. µ

where xk = (0.5)
1
α . The properties of the map proposed in [92] are summarized in

Table 2.4.
Another generalization for the tent map has been proposed in [92] too that employs

other parameters in a different sense which is scaling instead of powering. A generalized
version with two extra parameters has been introduced in [92] which is given by

xn+1 =

{
µxn x ≤ xk
µ(a−bxn) xk < x , (2.32)

where xk = a
1+b . The properties of the map proposed in [92] are summarized in Table 2.5.

See also [98], [84], and [49] for other generalizations and/or modifications on the tent
map.

Table 2.5: The properties of the generalized scaled tent map (2.32)

Property Value
Intersection Point xk = a

1+b
Fixed Points x∗1 = 0 and x∗2 = aµ/(1 + bµ)
Bifurcation Points (µb1, xb1) = (1,0)

(µb2, xb2) = (1/b,a/(2b)) for b < 1 only
Parameters’ Ranges (µmax, xmax) = (1 + 1/b,a/b)

Further generalizations have been utilized in [93] to build an image encryption scheme,
such as the generalized sine map given by

xn+1 = f (xn,r,α,β,γ) = r sinγ(απxβn) (2.33)

The paper summarizes the properties of the proposed generalized maps and utilizes the
added degrees of freedom through the extra parameters in constructing an effective and
sensitive encryption key.

2.4 Digital Chaotic Maps
The remarkable importance of chaotic iterated maps in both modeling and information pro-
cessing in many fields explains the need for their hardware analog and digital realizations,
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e.g., [9, 22, 72, 94–96, 117, 118]. Since we are concerned with digital implementations,
we present a review of several studies [6, 13, 19, 69, 89] that have been conducted on the
effect of finite-precision on the properties of chaotic systems and are much related to our
proposed work. The problem of simulating or implementing digital chaos is composed
of two parts: finite time and finite precision. This implementation is done probably in
some sort of digital calculations on computers. In this case, sentences like steady state
or the limit as the number of discrete time steps approaches infinity no longer carry the
same meaning. Practically, we can only record the behavior of a limited number of time
samples: hundreds, thousands, or even millions, but there is no “infinite” time. The same
applies to precision, there is nothing practical that is equivalent to infinite precision. It is
either multiple or fixed precision as explained in the next subsection.

2.4.1 Multiple Precision Versus Fixed Precision
Multiple precision or arbitrary precision arithmetic means performing calculations on
numbers whose length is limited only by the available memory of the system. This allows
the user to choose the precision of each calculation. On the other hand, fixed-precision
arithmetic, which is significantly faster, is the arithmetic upon which most arithmetic
logic unit (ALU) hardware, e.g., FPGAs is based. Such hardware buses typically offer
between 8 and 64 bits of precision. The IEEE compliant software implementations and
hardware designs follow a fixed-precision system. In some applications, accumulated
round-off errors that result due to using fixed-precision arithmetic could be catastrophic,
and the use of arbitrary-precision arithmetic becomes useful. For example, floating-point
programs dedicated to electronic control units of aircrafts, astronomical applications, or in
nuclear reactors. Multiple precision calculators can be subdivided into three types. First,
languages with built-in support for multiple precision in which arbitrary precision is a
part of the standard library of the language. Second, languages that have the capability of
linking with an external library that performs arbitrary precision calculations. Examples
on arbitrary precision libraries include: CRlibm [83], MPFR [46], and SOLLYA [18].
The third type of multiple precision calculators is stand-alone application software tools;
in particular most computer algebra systems such as Mathematica and Maple. Other
arbitrary precision tools may be based on decimal arithmetic such as: basic calculator
(bc) [85]. The rest of our discussion focuses on computationally efficient fixed-precision
implementations of chaos, specifically 1D maps. In the next section, previous work on
analyzing the effect of this finitude on the dynamical properties of chaotic generators is
reviewed.

2.4.2 Previous Work
R. M. Corless in [19] discusses numerical simulations of chaotic dynamical systems
and how much they should be trusted. He suggests that the computed orbit and the
accompanied value for maximum Lyapunov exponent (MLE) obtained through finite time
and finite precision simulations could be falsely interpreted as chaotic, or non-chaotic.
This could be owed to the ill-conditioned nature of chaotic dynamical systems such that
small errors in initial conditions or involved operations are exponentially amplified with
time. Consequently, no measure exists of how much the actual response obtained shall
deviate from the expected behavior, and this deviation cannot be tracked as time progresses.
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Many of these claims, even those not aided by sufficient simulations, could be noticed to be
true from our simulations in Chapter 5 and for different maps. To overcome the possibility
of misinterpretation, Corless recommends using backward error analysis techniques to
uncover the real properties of the digitally implemented chaos. For this purpose, the
problem is sub-divided into levels as follows: actual physical system, continuous time
mathematical model (this level is skipped for discrete maps), discretized model, and finally
finite-precision results. The latter results are mostly surprising in how they deviate from
the previous levels.

Li, Chen and Mou in [69] present a quite comprehensive study on degradation of
digitized chaos and ways to reduce its negative effect in chaos-based digital implementa-
tions. Their work is mainly concentrated on 1D piece-wise linear chaotic maps (PWLCM)
such as the asymmetric tent map. There are two aspects of regarding digitally imple-
mented chaos, either redefining the equation in a digital form and confining outputs to
the integer domain [13] or digitally implementing it in finite-precision. Our interest is in
the latter aspect, especially fixed-point representations. The reason why pseudo-random
number chaotic generators are suggested frequently without paying attention to the effect
of finite precision could be owed to the β-shadowing lemma. This lemma ensures that
there exists an exact chaotic orbit close to the pseudo-orbit with only a small error [14].
However, there is an argument with strong evidences that this lemma can be applied to
digital chaos. Previous research efforts have been reported whether attempting to come
up with a theoretical formulation of the problem and its consequences, or experimentally
obtaining results and analyzing them in the aim of acquiring full understanding of the
problem. In this experimental approach, several properties of chaotic systems are used
as indicators that can be used to uncover security weakness hidden inside some digital
chaotic ciphers. The effect of rounding direction has also been considered. Suggested
ways to reduce dynamical degradation of digital PWLCM include: using higher finite
precision, cascading multiple chaotic systems, and pseudo-random perturbation for either
the system parameter or its iterated variable with different configurations. Developing a
robust theoretical analysis of digital chaotic maps, specifying error bounds on different
arithmetic functions employed in chaotic maps iterations calculations, and formulating
the relationship between the digital versions of traditional chaotic properties (such as
Lyapunov exponent) and the system parameters in a digital chaotic system still remain
open topics in this interesting field.

Performance analysis of digital tent map has been presented in [6]. Its behavior as
a pseudo-random number generator has been compared to that of linear feedback shift
registers (LFSR). In this paper, software simulations of digital chaotic maps are criticized
for being unsuitable for direct application to hardware FPGAs which imply specific
assumptions. In our work in Chapter 5, we overcome this viewpoint of criticism. The
map equation has been re-written to describe the map in fixed-point representation, and
the allowed ranges of parameters have been proved. A judgment of the behavior of the
map considers different figures of merit (FOMs): minimum period length, isolated sets
of seed that should be avoided, and statistical characteristics of the generated sequences.
Hardware complexity has also been considered.

In the field of chaos based communication and for practical considerations, a design
guide of a computationally efficient pseudo-random number generator (PRNG) using the
logistic map with finite precision is needed. For this purpose, the effect of finite precision
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on the periodicity of a PRNG based on the logistic map has been explored in [89]. A
comparison has been made with some conventional methods of generating pseudo-random
numbers. The cyclic properties of the sequence generated by the logistic map have been
discussed in terms of the number, delay, and period of the orbits at varying degrees of
precision (3 to 23 bits). It has been shown that PRNG based on the logistic map performs
exponentially worse than conventional PRNGs for such precisions in terms of pathological
seeds and effective bit length. A finite precision period calculation (FPPC) approach has
been introduced to provide a general method for analyzing the period lengths of recurrence
relations implemented in finite precision. For 4-bit precision, the results of each seed have
been calculated including the sequence up to the first duplicate, the length of the periodic
cycle, how many numbers are generated before the cycle (delay), and the total length of
the sequence before the generator starts to repeat terms. The maximum period obtained
was 5 which is less than the ideal of 15. Moreover, many of the periods were even shorter
which represents an extremely inefficient use of the available seed space. A generalized
algorithm has been used to calculate these results for all precisions in the studied range
using parallel computing, keeping memory requirements in mind. The algorithm employs
truncation in a single-precision floating-point environment after converting the binary32
format to a denormalized binary fraction. Results have been demonstrated in multiple
curves that show: total period length versus precision, frequency of occurrence of periods
with different lengths, occurrence of each delay versus total cycle length, parameter space
utilization, i.e, the total sequence lengths normalized to the maximum possible length
versus precision, and effective precision, i.e., the number of bits utilized by the logistic map
PRNG versus actual precision. A question arises here: is it correct to consider the effect
of truncation only after the execution of the whole expression takes place, considering the
subtraction followed by two multiplication operations in the logistic map equation as a
single operation?

Moreover, several studies for the effect of limited precision on the properties of other
digitally implemented maps have been conducted. For example, in [75], fully digital
implementation of a 3rd order ODE-based chaotic oscillator with signum nonlinearity has
been proposed and the effect of precision (bus width) on its properties has been studied.
The system output has been investigated for periodicity through viewing the oscilloscope
output of digital X-Y attractors. Maximum Lyapunov exponent has been calculated
using 250,000 iterations for all precisions up to 64 bits. The threshold minimum precision
required for chaos has been decided to be 12 bits (8 fractional bits), below which the output
is periodic. Furthermore, this threshold yields a positive value for maximum Lyapunov
exponent (MLE); indicating chaotic behavior. Similar analysis has been conducted on
fully digital implementations of four different systems in the 3rd order jerk-equation based
chaotic family using Euler approximation [74]. Experimental results have shown that the
minimum fractional bits needed for chaotic behavior are 10, 8, 10, and 11 bits respectively
for the four proposed systems. However, it is expected in advance that the system based
on the 1D discrete logistic map needs a higher minimum threshold precision. The logistic
map is governed by a much simpler relation and exhibits less dynamics. The response
variation is expected to be slower varying the used precision.
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2.5 Elementary Functions: The Power Operation
Some of the proposed generalizations of 1D discrete chaotic maps utilize other arithmetic
operations rather than the basic addition/subtraction, and multiplication operations. One
of these is the power operation (z = xy) which has always been somewhat problematic
in modern computation. For the proposed generalized maps, simulations are performed
by MATLAB for their different behaviors. Software implementations such as MATLAB
are supposed to execute floating-point arithmetic according to well-defined standards.
Floating-point arithmetic in general provides fairly accurate results and rapid execution
for many numerically intensive applications. Almost all modern computers and languages
follow the IEEE 754 standard for floating point arithmetic in its current version released
in 2008 that includes nearly all of the original IEEE 754-1985 standard for binary floating-
point arithmetic and the IEEE 854-1987 standard for radix-independent floating-point
arithmetic. Since then, there have been many studies on improving the efficiency and
enhancing the performance of IEEE-compliant floating-point computations [34, 35]. Pick-
ing the power function among the elementary functions recommended by IEEE standard
for floating-point arithmetic (IEEE Std 754-2008 [2]) represents a challenge due to the
difficulty in introducing an unanimous mathematical definition for the various cases of this
transcendental function. Computation-wise, returning correct results for non-special inputs
is rather hard, because of numerous sensitivities based on values of both operands x and y.
Moreover, it has a wide domain since both operands have a very wide interval of values
[−∞,+∞]× [−∞,+∞]. Among all the standard elementary functions, the power function
is the only one with two arguments that causes difficulty, because of the problem of error
magnification (sensitivity of z to small changes in either x or y - specially the base x). The
other functions with two arguments are either various forms of power functions such as
compound(x,n), rootn(x,n), pown(x,n) and powr(x,y) whose differences from pow will be
discussed later on. The rest of the functions with two arguments which are atan2(y, x) (and
atan2Pi(y, x)) and hypot(x,y) functions generally require only careful attention to the sign
and finite/infinite value of the ratio y/x, as well as avoidance of underflow and overflow.

Ten is the base or radix that humans use in calculations in a decimal number system
while a binary system with radix two is more related to computers. Interest in decimal
arithmetic increased considerably in recent years especially decimal floating-point im-
plementations. They have many advantages over binary floating-point in financial and
commercial applications whether as software or hardware implementations. Decimal is
used extensively in banking, billing, and other financial applications. Simple decimal
fractions such as 1/10, representing a tax amount or a sales discount, have an infinite
number of bits in their binary representation and can not be accurately represented in
a binary number system. In a large billing application, such an error may be up to $5
million per year [36]. Using decimal floating-point could be a solution for some source of
representational error, or inexactness. Several researches have been conducted on decimal
floating-point units that perform the basic operations. The proposed designs have been
validated and tested indicating their various figures of merit as in [33, 36]. Previous work
on the evaluation of elementary functions on computers is to be reviewed. But first, in
the next subsection, we review some of the definitions of IEEE standard for floating-point
arithmetic that are also encountered later on in Chapter 6.
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2.5.1 IEEE Standard Definitions
The IEEE standard for floating-point arithmetic 754-2008 [2] specifies formats and meth-
ods for binary and decimal floating-point arithmetic, in addition to handling the special
values and exception conditions. The standard’s floating-point numbers approximate
the familiar field of real numbers R algebraically completed by defining the signed zero
±0 and the adjunction of ±∞ and NaN as shown in Fig. 2.4. The standard defines both

±0
+∞−∞

+ NaN

Figure 2.4: Algebraic completion of the real numbers according to IEEE 754-2008

basic formats (for computations) and interchange formats (to exchange data between
different implementations). There are five basic formats: binary32, binary64, binary128,
decimal64 and decimal128. For the floating-point simulations throughout the thesis, the
default MATLAB binary64 or double precision representation is used. A number in this
representation shown in Fig. 2.5 equals (−1)s×1. f ×2e−1023, where s is the sign, f is the
fractional significand with an implicit integer bit of value 1, and e is the biased exponent
where the bias equals 1023. On the other hand, the special cases handled in Chapter 6 are
usually defined irrespective of the precision for either binary or decimal implementations.

2.5.1.1 Special Values

The importance of the special values defined in IEEE Std. 754-2008 is that they conserve
the closure property of the real field as discussed and shown in Fig. 2.4. They were
proposed mainly to have well-defined results on encountering some computations which
could be considered erroneous. Thus, on some systems, they might lead to aborting the
execution unless a well-defined result is agreed upon for all systems to follow.

2.5.1.1.1 Signed Zero A zero result on a computer might not be an exact zero, but an
infinitesimal value rounded to zero. The definition of the number zero associated with a
sign resembles the mathematical concept of limits; whether this tiny value approaches
zero from below(left) x→ 0− or above(right) x→ 0+. Generally +0 = −0, except for some
special cases such as: when they are operands of the logarithm function or divisors in
a division operation with a finite dividend. This notation becomes significant for some
scientific uses too, e.g., a “−0” measure of temperature on a Celsius scale means below
freezing.

2.5.1.1.2 Infinities IEEE infinities are similar to their mathematical concept and are
encountered in case of overflow as discussed in subsection 2.5.1.4.

s
(1 bit)

e
(11 bits)

f
(52 bits)

Figure 2.5: Double precision floating-point binary representation
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2.5.1.1.3 NaN In floating-point computing, NaN, standing for not a number, is a
numeric data type representing an undefined or unrepresentable value. For example, 0/0 is
undefined as a real number, thus represented by NaN; the square root of a negative number
is imaginary which is not representable as a real floating-point number, thus represented
by NaN (other examples are discussed in Chapter 6 in section 6.3). NaNs may be used
to represent missing values in computations in order to obtain a mathematically closed
system under the defined arithmetic operations. The standard states that two different
kinds of NaN, signaling NaN (SNaN) and quiet NaN (QNaN), should be supported
in all floating-point operations. Quiet NaNs either mean errors resulting from invalid
operations, or they mean invalid or unavailable data and results. Signaling NaNs provide
the representation for uninitialized variables and values that are not in the scope of the
standard such as complex-affine infinities. The problem with forcing a result into this
special value is that a NaN result might cause exceptions in the consequent operations,
e.g., an “order-comparison with NaN” exception. This leads to having unordered number
system by adding a fourth case to the trichotomy (three cases of comparison): less than,
greater than, and equal.

2.5.1.2 Operations

The standard proposes definitions for the correct results of the basic operations (addi-
tion/subtraction, multiplication, division and square root, in addition to fused multiply-add)
implemented in both binary and decimal formats, in addition to some other recommended
functions. The recommended functions almost cover the most common mathematical
functions (simple algebraic functions such as 1/

√
x in addition to transcendental functions

such as sine, cosine, exponentials and logarithms of radices e, 2, and 10, and power . . . etc.).
These elementary functions appear everywhere in scientific computing and are impor-
tant for many applications. A conforming implementation for a basic operation should
return results correctly rounded for the applicable rounding direction for all operands
in its domain. Correct rounding means returning a floating-point result rounded (as if)
infinite intermediate precision was used to evaluate the result. The general definition for
correct rounding is to be within ±0.5 ulp for rounding to nearest modes and 1 ulp for
directed rounding modes. “ulp” stands for unit in the last place, i.e., the weight of the
last bit/digit (bits in the case of binary floating-point and digits in the case of decimal
floating-point) in a fixed precision floating-point representation. On the other hand, for
recommended functions, the standard does not specify a given accuracy, i.e., it is left to be
language-defined or platform-dependent.

2.5.1.3 Operations Generating NaN (QNaN)

The following are some examples of operations that can return NaN (QNaN):

1. Operations with a NaN as at least one operand.

2. Indeterminate forms:

(a) The divisions ±0
±0 and ±∞

±∞
.

(b) The multiplications ±0×±∞ and ±∞×±0.

(c) The additions∞+ (−∞), (−∞) +∞ and equivalent subtractions.
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(d) The standard has alternative functions for powers:

i. The standard pow function and the integer exponent pown function define
00, 1∞, and∞0 as 1.

ii. The powr 1function defines all three indeterminate forms as invalid opera-
tions and so returns NaN.

3. Real operations with complex results, for example:

(a) The square root of a negative number.

(b) The logarithm of a negative number.

(c) pow (x,y) for finite x < 0 and finite non-integer y.

4. Attempts to evaluate an operation outside its domain.

2.5.1.4 Exceptions and Pre-Substitutions

• Invalid operation: This exception is signaled when an operand of any function is
a signaling NaN. In addition, attempts to evaluate a function outside its domain
signals the invalid operation exception too. The returned result is a quiet NaN by
default.

• DivideByZero: This exception is signaled when a function has a simple pole for
finite operand(s). An infinity, with the correct sign, is returned by default.

• Inexact: This exception is signaled when a function returns an inexact result, i.e.,
different from the exact real result. Inexact means that not all its bits/digits are
represented in the used precision; some least significant data is not visible in the
given format.

• Overflow: This exception is signaled when a too large result is detected, that cannot
be represented as a machine number. An infinity, with the correct sign, is returned
by default.

• Underflow: This exception is signaled when an infinitesimally tiny non-zero result
is detected, that cannot be represented in a normal form, i.e., with the hidden “1”.
The returned result is called “denormalized number”.

2.5.1.5 Rounding

In the following, tie case is that when the number is exactly in the middle of two consecu-
tive machine numbers, both exactly representable in the finite floating-point system. The
types of rounding defined by the standard on a real number w are:

1) Rounding to nearest

a. RNE(w) = Unbiased rounding to nearest (in case of a tie round to even).

1domain of pow(x,y) is [−∞,+∞]× [−∞,+∞], domain of pown(x,n) is [−∞,+∞]×Z(the set of all
integers) while that of powr(x,y) = ey log x is [0,+∞]× [−∞,+∞]
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b. RNA(w) = Biased rounding to nearest (in case of a tie round away from zero).

2) Directed rounding

a. RP(w) = Round toward plus infinity. RP(w) is the smallest machine number greater
than or equal to w.

b. RM(w) = Round toward minus infinity. RM(w) is the largest machine number less
than or equal to w.

c. RZ(w) = Round toward zero (sometimes called chop or truncate due to the way it
is implemented in sign and magnitude representation). RZ(w) is equal to RM(w)
if w > 0, and to RP(w) if w ≤ 0. Hence, the rounded result is keeping the part of w
that fits into the significand precision and the extra part is chopped.

2.5.2 Previous Implementations
The reason why xy cannot be rounded according to the general definition of correct round-
ing explained in the previous subsection is that nobody knows how much computation it
would cost to resolve “The Table-Maker’s Dilemma”. The Table-Maker’s Dilemma is the
term used for the problem of always getting exactly rounded results when computing the
elementary functions. Kahan in [56] wondered if log10 x and 10x could be implemented so
well that they are always rounded correctly? In his answer to this question he highlighted
speed penalties of at least about 20% on average and perhaps 800% or more occasionally
that correct rounding for these functions would impose on us. In fact, the amount of error
analysis and/or exhaustive tests involved to reach such a boundary could represent more
severe penalties and losses. The Table-Maker’s Dilemma problem and several develop-
ments for its solution have been discussed in [66, 102] and others. In our discussion, we
concentrate on special values of the operands as they could be considered a main source
of catastrophic errors such as those reviewed in Chapter 1.

For the power function floating-point implementation (pow), computing worst-case
bounds for correct rounding would take extremely long time theoretically, and it is rather
unrealizable practically. This claim allowed several researches that handle pow in binary
floating-point representations, not on its whole definition domain, but for a subset of it.
For instance, the subset that contains xn for small integers n and (x2−F

)n of small 2F − th
roots of x raised to some very small integer power n in [64]. Another example is [63] in
which the subset contains binary floating-point power function xn with positive integer
exponents 3 ≤ n ≤ 626.

Jean-Michel Muller’s book(Elementary functions: Algorithms and implementation) [81]
has been devoted to the elementary functions topic. Another book for Muller and oth-
ers [82] covers the topic of elementary functions in part IV. In [82], similar topics were
covered in a more concise way and the authors’ view of the current limits and perspectives
has been presented. Peter Markstein’s book(IA-64 and elementary functions: speed and
precision) [76] is more concerned with the elementary functions implementation in IA-64
processor at Intel. The following mentioned chapters of this book match our concern.
Chapter 7 presents an overview of the different types of polynomials which can be used
to approximate a desired function over a given interval within a finite tolerance. These
polynomial approximations include: Taylor series, Chebyshev approximation, and Remez
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approximation. Markstein proposes algorithms for both the exponential and the logarith-
mic functions in chapters 10 and 11, and combines them to come up with a routine for the
power function in chapter 12. Discussions of the implementation method used for each
function are provided detailing the approximation used for function evaluation, argument
reduction, and table construction method chosen. In this work, the special operands
of the power function are considered too and are handled following a C99-compatible
definition [1].

An algorithm for decimal powering and the corresponding hardware architecture have
been presented in [47] based on the mathematical identity:

xy = 10y log10 x, for x > 0 (2.34)

For x < 0 and finite non-integer y, the invalid operation exception is signaled. A powering
expression involving x< 0 and an odd integer y yields a negative result, while one involving
x < 0 and an even integer y yields a positive result.

We provide further discussions of the special cases in Chapter 6. The purpose of
our discussion is to cover the special cases which are usually not handled separately in
the discussion of floating-point designs. Designers just utilize a previously proposed
definition to decide their results following the current standards. Although in most cases
designs handling the special cases are just similar to a table lookup, conformance with the
standards is not always guaranteed for most implementations.
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Chapter 3: Scaled Positive, Negative,
and Alternating Sign Maps
The state-of-the-art of generalized maps has been reviewed in Chapter 2. In this chapter,
a set of generalized maps where the conventional map is a special case is discussed for
both logistic and tent maps. The proposed maps have extra degrees of freedom which
provide different chaotic characteristics that increase the design flexibility and could be
adapted to fit certain specifications required for many applications as previously explained.
Yet, the advantage of simple mathematical relation using 1D maps only is still maintained.
Requirements on the key-points of the resulting bifurcation diagram or the range of the
system output could be achieved directly and simply through controlling the values of
the parameters which are governed by simple relations. The simplest of which does not
require any modifications from the viewpoint of implementation other than using a signed
register for both the system parameter λ (or µ) and the output x. However, for a legible
comprehensive analysis, we define the sign of the parameter explicitly confining its value
to the set of positive reals R+.

Based on the maximum chaotic range of the output, the proposed maps can be classi-
fied as: positive, mostly positive, negative, and mostly negative maps. Moreover, further
generalizations are proposed that allow scaling of the bifurcation diagrams. Independent,
vertical, and horizontal scales of the bifurcation diagram are discussed for each general-
ized map as well as a new bifurcation diagram related to one of the added parameters.
Mathematical analysis for each generalized map includes: bifurcation diagrams relative to
all parameters, effective range of parameters, bifurcation points, as well as the maximum
Lyapunov exponent (MLE) versus all parameters. As a simple application, a systematic
procedure to design two-constraints logistic map is discussed and validated through four
different examples.

3.1 Generalizations of One-Dimensional Maps
Properties of the conventional discrete 1D maps and their applications were extensively
discussed in the literature. Recent models of stochastic behaviors represent a great
challenge and strong motivation to devise a method for designing generalized maps.
Requirements on the key-points of the resulting bifurcation diagram or the range of the
system output could be achieved in many ways.

3.1.1 The Proposed Maps
In this section, we propose a simple and efficient way of designing logistic and tent maps
generating outputs with various signs through controlling the signs of multiple parameters
governed by simple relations.
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3.1.1.1 Variations on Logistic Map

We define the following parameterized maps as variations on the conventional logistic
map equation (2.1) in its general form given by

xn+1 = ±λxn(a±bxn); λ, a, b ∈ R+ (3.1)

where the proposed maps are furthermore controlled by the set of parameters (a,b,λ)
such that a,b,λ ∈ R+. The names of the maps have been chosen carefully to represent the
maximum chaotic range of the output.

Definition 3.1.1. Variations on the sign of the generalized logistic map represented by (3.1)
can be subdivided into two types according to the maximum chaotic range of the output:

1. Single sign maps

(a) Positive logistic map given by:

f1(xn) = xn+1 = λxn(a−bxn). (3.2)

(b) Negative logistic map given by:

f3(xn) = xn+1 = λxn(a + bxn). (3.3)

where f3(x) = − f1(−x). The bifurcation diagram of this map is the reflected
image of f1(x) about the horizontal axis (λ), yielding exactly the same range
of output magnitude, but with opposite sign.

2. Alternating sign maps

(a) Mostly positive logistic map given by:

f2(xn) = xn+1 = −λxn(a−bxn). (3.4)

(b) Mostly negative logistic map given by:

f4(xn) = xn+1 = −λxn(a + bxn). (3.5)

where f4(x) = − f2(−x). Thus, the relation between the two maps is similar to
that between f1 and f3.

Figure 3.1 shows the bifurcation diagrams for the four logistic maps in the case of
unity scaling (a = b = 1), and the graphs of their equations at maximum λ. Table 3.1
illustrates the main differences between the proposed logistic maps in the case of unity
scaling.

36



(a) f1(x) = λx(1− x) (b) f2(x) = −λx(1− x) (c) f3(x) = λx(1 + x) (d) f4(x) = −λx(1 + x)

Figure 3.1: Bifurcation diagrams and graphs for the proposed unity scaling logistic maps

Table 3.1: Main differences between the proposed unity scaling logistic maps

Map Range of λ Range of x
λx(1− x) [0,4] [0,1]
−λx(1− x) [0,2] [−0.5,1.5]
λx(1 + x) [0,4] [−1,0]
−λx(1 + x) [0,2] [−1.5,0.5]

3.1.1.2 Variations on Tent Map

For generalized tent map, the sign of bxn in the term a±bxn cannot be positive at the same
time with the term xn since the two straight lines x and a + bx are non-intersecting and
cannot construct a closed set region with bounded responses. Instead, we could control
the sign of the term ±xn along with a±bxn such that they always posses opposite signs.
So, the set of all alternatives is given by

xn+1 = ±µmin(±xn,a∓bxn) ; µ, a, b ∈ R+ (3.6)

Definition 3.1.2. Variations on the sign of the generalized tent map represented by (3.6)
can be subdivided into two types according to the maximum chaotic range of the output:

1. Single sign maps

(a) Positive tent map given by:

f1(xn) = xn+1 = µmin(xn,a−bxn) . (3.7)

(b) Negative tent map given by:

f3(xn) = xn+1 = −µmin(−xn,a + bxn) . (3.8)

2. Alternating sign maps

(a) Mostly positive tent map given by:

f2(xn) = xn+1 = −µmin(xn,a−bxn) . (3.9)

(b) Mostly negative tent map given by:

f4(xn) = xn+1 = µmin(−xn,a + bxn) . (3.10)
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Figure 3.2 shows the bifurcation diagrams for the four tent maps in the case of unity
scaling (a = b = 1), and the graphs of their equations at maximum µ. Table 3.2 illustrates
the main differences between the proposed tent maps in the case of unity scaling.

(a) (b) (c) (d)

Figure 3.2: Bifurcation diagrams and graphs for the proposed unity scaling tent maps (a)
f1(x) = µmin(x,1− x), (b) f2(x) = −µmin(x,1− x), (c) f3(x) = −µmin(−x,1 + x), and (d)
f4(x) = µmin(−x,1 + x)

Table 3.2: Main differences between the proposed unity scaling tent maps

Map Range of µ Range of x
µmin(x,1− x) [0,2] [0,1]
−µmin(x,1− x) [0,2] [−1,2]
−µmin(−x,1 + x) [0,2] [−1,0]
µmin(−x,1 + x) [0,2] [−2,1]

3.1.2 Alternating Sign Maps
In this subsection, we concentrate on mostly positive maps. The other two proposed maps:
negative map and mostly negative map are related to positive and mostly positive maps
respectively as previously mentioned. Thus, even for parameterized maps, we analyze
both positive and mostly positive maps because the results for the other two maps could
be deduced similarly.

3.1.2.1 Mostly Positive Logistic Map

A study of the properties of the logistic map with negative control parameter λ ∈ [−2,0],
that is quite similar to our mostly positive logistic map, has been conducted in [8].

3.1.2.1.1 Parameters’ Ranges Consider the recurrence xn+1 = −λxn(1− xn), graphi-
cally represented by the parabola f (x) = −λx(1− x); the critical point of the parabola is xc
such that

f ′(xc) = 0→ xc = 0.5 and f (xc) = fmin = −
λ

4
. (3.11)
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For stable steady state response, all the outputs of the recurrence relation should be limited
within a closed set. This closure property could be guaranteed by setting a maximum
value for λ. From the symmetry of the curve, this value can be obtained by forcing

| fmin| = xc→
λmax

4
= 0.5→ λmax = 2. (3.12)

A more formal way of defining the parameter’s range is as follows.

Definition 3.1.3. Consider the map given by f (x) = −λx(1− x), the point u1 is the one
whose coordinates equal the map minimum value fmin, and u2 is the non trivial fixed point
or the intersection of the curve y = f (x) and y = x. The map is stable if and only if the
image of u1 ( f (u1)) is less than or equal to u2, such that x ∈ [u1,u2]. This is achieved as
λ ∈ [0,2].
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Figure 3.3: Maximum value of λ for mostly positive logistic map (a) λ = 1.6, (b) λ = 2,
and (c) λ = 2.5

Figure 3.4: Domain and range of f (x) = −λmaxx(1− x)

Figure 3.3 shows the graph of the equation for different values of λ = 1.6,2, and 2.5,
where the map exhibits bounded output if and only if λ ∈ [0,2] as expected before. For
λ = 2, the values of x at u1 and u2 are −0.5 and 1.5 respectively, i.e., closed set responses
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are yielded as x ∈ [−0.5,1.5]. Figure 3.3 also shows the values of x carrying out 10,000
iterations of the recurrence. The time waveforms indicate the stability of the recurrence
for 0 ≤ λ ≤ 2 as it exhibits a bounded solution. On the other hand, the range λ > 2 shows
complete instability of the solution as it diverges to +∞ starting the fifteenth iteration.

The previous method for calculation and verification of the range of values λ and x that
guarantee bounded responses has not been conducted in [8]. Instead, the value λmax = 2
and the interval x ∈ [−0.5,1.5] were used directly in addition to a computer aided plot of
the bifurcation diagram that ensures those values. However, our previous method that
requires iterating several values of λ and/or an initial assumption. That’s why we propose
a more generic procedure of specifying the parameters’ ranges that could be detailed as
follows with the aid of Fig. 3.4 where a map is defined as a function whose domain (input)
space and range (output) space are the same [7].

1. The lower bound on the range of the map is fmin = f (xc) which is the same as the
lower bound on the domain xmin.

f (xc) = −
λmax

4
, (3.13)

where λmax here is generally different from the positive control parameter case.

2. The upper bound on the range is f (xmin), i.e., f ( f (xc)). So, the upper bound is equal
to

f ( f (xc)) = (−λmax)
(
−
λmax

4

) (
1 +

λmax

4

)
, (3.14)

which is a function of λmax.

3. Then, we equate this value to the map equation to get the corresponding solutions
for the values of x: xmin and xmax respectively.

λ2
max

4
+
λ3

max

16
= −λmaxx(1− x). (3.15)

Rename the left hand side of the previous equation to λmaxC, it reduces to

C = −x + x2, (3.16)

Thus,

xmin = −
λmax

4
, (3.17a)

xmax = 1 +
λmax

4
. (3.17b)

4. The domain of the map is D = [xmin, xmax], while its range is R = [ f (xc), f ( f (xc))].
We equate the lower and upper bounds of both intervals respectively to get λmax.

1 +
λmax

4
=
λ2

max

4
+
λ3

max

16
. (3.18)

This equation could be solved to get three values among which one value is positive
which is λmax = 2.
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5. Hence, we get xmin and xmax by substitution for λmax as follows.

xmin = −
1
2
, (3.19a)

xmax =
3
2
. (3.19b)

Thus, the parameters’ ranges for mostly positive logistic map are

(λmax, xmin, xmax) =

(
2,−

1
2
,
3
2

)
. (3.20)

(a) (b) (c)

Figure 3.5: Sensitive dependence on initial point for mostly positive logistic map at λ = 2
(a) Time waveform x0 = 0.05, (b) Time waveform x0 = 0.06, and (c) Initial point effect

The mathematical analysis of the fixed and periodic points of mostly positive logistic
map in the case of unity scaling is quite similar to that of the conventional logistic map.
For 1 < λ <

√
6−1, the recurrence converges to a period-2 orbit, followed by a sequence

of periodic doubling. Starting at λ =
√

8−1, the recurrence converges to a period-3 orbit.
The output continues bifurcation until λ reaches the value 2 which exhibits the maximum
chaotic behavior. This indicates that mostly positive logistic map exhibits period doubling
as a route to chaos with the same characteristic Feigenbaum universal constant. In addition
to the bifurcation diagram shown in Fig. 3.1(b) and the graph of the equation shown in
Fig. 3.3, the time waveforms starting at different initial points x0 = 0.05 and x0 = 0.06 are
shown in Fig. 3.5. These responses demonstrate the maximum chaotic behavior of the
map at λ = 2. Figure 3.5(c) shows the difference between these two responses, the large
number of non zero points indicate the sensitive dependence on initial conditions which is
a main property of chaotic systems.

3.1.2.1.2 Fixed Points and Their Stability Solving x∗ = f (λ, x∗) yields

x∗1 = 0 and x∗2 = 1 +
1
λ
, (3.21)

f ′(x∗) = −λ(1−2x∗), (3.22)

| f ′(x∗)| = 1→ λb = 1. (3.23)

The other fixed point yields λ = 3 which is greater than λmax. Hence, this solution is
refused and the first bifurcation point and the corresponding function value are

(xb,λb) = (0,1). (3.24)
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3.1.2.2 Mostly Positive Tent Map

The recurrence representing mostly positive tent map is given by

xn+1 = −µmin(xn,1− xn) , (3.25a)

xn+1 =

{
−µxn x ≤ xk
−µ(1− xn) xk < x , (3.25b)

where
xk = 0.5 (3.26)

is the point of intersection of the two lines.

3.1.2.2.1 Parameters’ Ranges Similar to the analysis conducted for mostly positive
logistic map, we get the following parameters’ ranges with the aid of Fig. 3.6.

(µmax, xmin, xmax) = (2,−1,2). (3.27)

Figure 3.6: Domain and range of f (x) = −µmax min(x,1− x)

3.1.2.2.2 Fixed Points and Their Stability Similarly,

x∗1 = 0 and x∗2 = −
µ

1−µ
, (3.28)

f ′(x∗) =

{
−µ x∗ ≤ xk
+µ xk < x∗ , (3.29)

| f ′(x∗)| = 1→ µb = 1. (3.30)

The first bifurcation point is
(xb1,µb1) = (0,1). (3.31)
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3.1.2.2.3 Periodic Points and Their Stability The composite function f 2(x) = f ( f (x))
is given by

f 2(x) =


−µ(1 +µx) x ≤ xk1
µ2x xk1 ≤ x ≤ xk
µ2(1− x) xk ≤ x ≤ xk2
−µ(1 +µ(1− x)) xk2 ≤ x

, (3.32)

where xk1 = −0.25, xk = 0.5, and xk2 = 1.25. To get the periodic points of period-2, equate
xp = f 2(xp) 

xp = −
µ

1+µ2 xp ≤ xk1

xp = 0 xk1 ≤ xp ≤ xk

xp =
µ2

1+µ2 xk ≤ xp ≤ xk2

xp =
−µ−µ2

1−µ2 xk2 ≤ xp

. (3.33)

To get the bifurcation point, |( f 2)′(xp)| = 1

( f 2)
′
(x) =


−µ2 x ≤ xk1
µ2 xk1 ≤ x ≤ xk
−µ2 xk ≤ x ≤ xk2
µ2 xk2 ≤ x

. (3.34)

Consequently,

(xb2,µb2) =

({
−

1
2
,
1
2

}
,1

)
. (3.35)

3.2 Scaled Logistic Map: Analysis and Results
For each map of those presented in the previous section, the resulting bifurcation diagram
can be designed with the desired key-points using (a,b) as scaling parameters. The
parameterized cases studied are: (a,b), such that a, b ∈ R+, (1,b), (a,a) and (a,1). The
following subsections provide the analysis and results of these parameterized cases for
positive and mostly positive logistic maps.

3.2.1 Independent Scaling xn+1 = ±λxn(a±bxn)

In this map, two parameters a and b are added to be capable of scaling both the horizontal
and the vertical axes of the bifurcation diagram independently. The analysis presented
in this subsection is used later on in section 3.4 to design any logistic map with specific
characteristics.

3.2.1.1 Positive Logistic Map f (x,λ,a,b) = λx(a−bx)

3.2.1.1.1 Range of λ To ensure bounded output for all iterations, the value of x should
be limited to x ∈ [0,a/b]. The roots of the map, its critical point xc, and its maximum
value xmax are given by:

f (x) = 0 for x = 0,
a
b
, (3.36a)
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xc =
a

2b
, f (xc,λmax,a,b) =

a2λmax

4b
≤

a
b
→ λmax ≤

4
a
. (3.36b)

This inequality not only provides us with information on the maximum value of the
parameter λ, but also that of the parameter a. Therefore, the maximum values for the
parameters of the map are:

(λmax, xmax) =

(
4
a
,
a
b

)
, (3.37a)

a ∈ (0,amax] where amax =
4
λ
. (3.37b)

3.2.1.1.2 Fixed Points and Stability Condition The fixed points are given by x∗ =

f (x∗,λ,a,b), then
x∗ = λx∗(a−bx∗), (3.38a)

x1
∗ = 0 and x2

∗ =
1
b

(
a−

1
λ

)
. (3.38b)

The study of the stability of the fixed points is based on the calculation of the absolute
value of the first derivative w.r.t x at these points | f ′(x∗,λ,a,b)| = λ(a−2bx∗). They are
either stable or unstable depending on whether this value is less or greater than “one”
respectively. Otherwise, if the absolute value equals “one”, then it is called a bifurcation
point. The derivative of this map at the fixed points is given by:

f ′(x1
∗,λ,b) = λ and f ′(x2

∗,λ,b) = 2−aλ. (3.39)

Therefore, the values of λ at which the system bifurcates and their function values are

| f ′(x∗,λb,a)| = 1→ λb =
1
a
,
3
a
, (3.40a)

f (x1
∗,λb1,a,b) = 0 and f (x2

∗,λb2,a,b) =
2a
3b
, (3.40b)

(xb,λb) =

{(
0,

1
a

)
,

(
2a
3b
,
3
a

)}
. (3.40c)

Figures 3.7(a) and (b) show snapshots of the bifurcation diagrams versus the main
parameter λ at different values of a and b fixed, and different values of b and a fixed
respectively. The diagrams indicate that the value of λmax depends on the parameter a
only irrespective of b, while both parameters have an impact on the output range which is
consistent with the previous analysis. The diagrams ae analyzed in details in subsequent
sections.

3.2.1.2 Mostly Positive Logistic Map f (x,λ,a,b) = −λx(a−bx)

3.2.1.2.1 Range of λ Similarly, for mostly positive logistic map, the solution should
be limited to x ∈ [−a/(2b),3a/(2b)].

xc =
a

2b
, f (xc,λmax,a,b) = −

a2λmax

4b
≥ −

a
2b
, (3.41a)
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(λmax, xmin, xmax) =

(
2
a
,−

a
2b
,
3a
2b

)
, (3.41b)

a ∈ (0,amax] where amax =
2
λ
. (3.41c)

3.2.1.2.2 Fixed Points and Stability Condition Similarly, for mostly positive logistic
map, the value of λ at which the system bifurcates and the corresponding function value
are

(xb,λb) =

(
0,

1
a

)
. (3.42)

Figure 3.8 shows that the dependence of the independent scaling mostly positive
logistic map on the parameters a and b could be described in a similar way to that of
independent scaling positive logistic map.

(a) (b)

Figure 3.7: Bifurcation diagram vs. λ for independent scaling positive logistic map at (a)
b = 2 and a = {0.25,0.5, . . . ,2} and (b) a = 4 and b = {0.25,0.5, . . . ,2}

3.2.1.3 Maximum Lyapunov Exponent

Figure 3.9(a) shows 3D plot of MLE as a function of both λ and a at b = 2 for independent
scaling positive logistic map. This continuous surface plot illustrates the dependence of
the allowed range of λ on the value of a according to equation (3.37a). However, the value
of MLE approaches the same steady state value of ln2 for maximum chaotic behavior, or
at λmax. Figure 3.9(b) indicates that the parameter b has no impact on the range of the
main system parameter λ as λmax is independent of b. Figure 3.9(c) shows the values of
MLE at λmax in the a−b plane indicating that setting the main system parameter to λmax
corresponding to a achieves maximum chaotic behavior irrespective of b. Figure 3.9(d)
shows this maximum chaotic output in the a−b plane where generally the lower and upper
bounds on the range are constrained by the values of a and b according to equation (3.37a).
In order to get a wider output range, we could increase a and/or decrease b.

Figure 3.10 shows the impact of both a and b on MLE and chaotic output that could
be described similar to independent scaling positive logistic map.
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(a) (b)

Figure 3.8: Bifurcation diagram vs. λ for independent scaling mostly positive logistic map
at (a) b = 2 and a = {0.25,0.5, . . . ,2} and (b) a = 4 and b = {0.25,0.5, . . . ,2}

3.2.2 Vertical Scaling xn+1 = ±λxn(1±bxn)

In this map, an extra parameter b is added which affects the vertical scaling of the
bifurcation diagram, i.e., it is a special case of the independent scaling map in which
a = 1. This map could be used to control the vertical axis, i.e., the values of the output,
not the bifurcation points. In this subsection, the range of λ, fixed points and their stability
analysis, and behavior dependence on different system parameters for the proposed maps
are discussed.

3.2.2.1 Positive Logistic Map f (x,λ,b) = λx(1−bx)

3.2.2.1.1 Range of λ Substituting a = 1 in (3.37a) yields:

(λmax, xmax) =

(
4,

1
b

)
. (3.43)

The function iterations f m(x,λ,b) at b = 2 are shown in Fig. 3.11, where the maximum
value of the output xmax = 1/b = 0.5 and the parameter b affects the vertical axis only.
The number of peaks increases as m increases and as λ approaches its maximum value
λmax = 4 which exhibits maximum chaotic behavior. On the other hand, for λ < 3, no
peaks could be noticed even in higher iterations.

3.2.2.1.2 Fixed Points and Stability Condition Substituting a = 1 in (3.40c) yields:

(xb,λb) =

{
(0,1) ,

(
2

3b
,3

)}
. (3.44)

3.2.2.1.3 Steady State Solutions Versus System Parameters Figure 3.12 shows the
steady state solutions versus both the system parameters b and λ for vertical scaling
positive logistic map. The bifurcation diagram versus λ exhibits similar behavior to the
conventional case but with vertical scaling by the factor (1/b) as shown in Fig. 3.12(a).
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(a) (b)

(c) (d)

Figure 3.9: MLE of independent scaling positive logistic map as a function of (a) λ and a
at b = 2, (b) λ and b at a = 4, (c) a and b at λmax, and (d) Full-range chaotic output versus
a and b

The nontrivial solution appears once λ exceeds the first bifurcation point λb1 = 1, while
the second bifurcation point is λb2 = 3 with corresponding steady state value xb2 = 2/(3b).
Figure 3.12(a) also shows the cobweb plot of the map at λmax = 4 and b = 10, which differs
as the parameters change. The cobweb is a rough plot for an orbit of x, where the graph of
the map function is sketched together with the diagonal line y = x. The plot shows that the
map exhibits chaotic behavior, since the orbit has a non-periodic sequence and generates
multiple outputs that cover the whole range of x.

Figure 3.12(b) shows the behavior dependence on b for a fixed value of λ. Theoretically,
the only condition on b is to be positive. It should be noted that for larger values of b,
extremely small initial points are needed such that they belong to the allowable range.
Disregarding this note would yield results that might be falsely interpreted as a case of
instability. Plotting starts at b = 0.1 to avoid larger values of x that decrease the clarity of
the figure. The range of output results x depends on b, i.e., x ∈ (0,1/b) as proposed by our
previous analysis. The type of solution is either fixed, period-2, multi-periods, or chaos
depending on the value of λ. As λ increases, the response covers more values belonging
to the allowable range until it covers the whole range x ∈ (0,1/b) at λmax = 4.
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(a) (b)

(c) (d)

Figure 3.10: MLE of independent scaling mostly positive logistic map as a function of (a)
λ and a at b = 2, (b) λ and b at a = 4, (c) a and b at λmax, and (d) Full-range chaotic output
versus a and b

3.2.2.2 Mostly Positive Logistic Map f (x,λ,b) = −λx(1−bx)

3.2.2.2.1 Range of λ Substituting a = 1 in (3.41b) yields:

(λmax, xmin, xmax) =

(
2,−

1
2b
,

3
2b

)
. (3.45)

3.2.2.2.2 Fixed Points and Stability Condition Substituting a = 1 in (3.42) yields:

(xb,λb) = (0,1) . (3.46)

3.2.2.2.3 Steady State Solutions Versus System Parameters Figure 3.13 shows the
steady state solutions versus both the system parameters b and λ, and the cobweb plot
at λmax = 2 and b = 10 for mostly positive logistic map. The results could be interpreted
and proved to be conforming to our analysis. Ten different snapshots of the bifurcation
diagram versus the system parameter λ for both maps are shown in Fig. 3.14, where the
idea of vertical scaling is quite clear.
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Figure 3.11: Function iterations of vertical scaling positive logistic map f m(x,λ,b) at b = 2
for m = {1,2,4,6}
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Figure 3.12: (a) Bifurcation diagram versus λ for different values of b = {0.2,0.5,5} and
Cobweb plot at λ = 4,b = 10, (b) Steady state solutions of x versus b for different values
of λ = {2,3.3,3.83,4} for vertical scaling positive logistic map

3.2.2.3 Maximum Lyapunov Exponent

For both vertical scaling maps, the time evolution of MLE for different values of b
roughly reaches the same steady state value. This constant value is the same as that of
the conventional map MLE = ln2. Besides, all map variations exhibit the same value at
λmax representing maximum chaotic behavior. This value has been proved for almost all
orbits of chaotic maps, starting from the tent map, and extending to the logistic map and
others by conjugacy of maps [7]. Figure 3.15(a) shows 3D and contour plots of MLE as
a function of both λ and b for vertical scaling positive logistic map, while Fig. 3.15(b)
shows it for vertical scaling mostly positive logistic map.

A horizontal scaling map xn+1 = ±λaxn(1± xn) could also be designed with an extra
parameter a. It affects the horizontal scaling of the bifurcation diagram, i.e., the parameter
could be used to control the bifurcation points not the values of the output.
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Figure 3.13: (a) Bifurcation diagram versus λ for different values of b = {0.2,0.5,5} and
Cobweb plot at λ = 2,b = 10, (b) Steady state solutions of x versus b for different values
of λ = {1.3,1.5,1.83,2} for vertical scaling mostly positive logistic map

(a) (b)

Figure 3.14: Ten different snapshots of the bifurcation diagram versus λ for vertical scaling
(a) positive and (b) mostly positive maps at b = {0.1,0.2, . . . ,1}

3.2.3 Zooming xn+1 = ±λxn(a± xn)

In this map, an extra parameter a is added which affects the zooming of the bifurcation
diagram, i.e., it is a special case of the independent scaling map in which b = 1. Moreover,
there is a new bifurcation diagram presented with respect to the system parameter a that
will be generalized later on. This map is richer in analysis and could be used for controlling
both axes, i.e., the bifurcation points in addition to the corresponding output values. This
control can be achieved only in a dependent way, such that the area of the bifurcation
diagram versus λ remains constant. In this subsection, the range of λ, fixed points and
their stability analysis, and two different bifurcation diagrams are discussed.
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(a) (b)

Figure 3.15: MLE as a function of both λ and b for vertical scaling (a) positive and (b)
mostly positive logistic maps

3.2.3.1 Positive Logistic Map f (x,λ,a) = λx(a− x)

3.2.3.1.1 Range of λ Substituting b = 1 in (3.37a) yields:

(λmax, xmax) =

(
4
a
,a

)
, (3.47a)

a ∈ (0,amax] where amax =
4
λ
. (3.47b)

3.2.3.1.2 Fixed Points and Stability Condition Substituting b = 1 in (3.40c) yields:

(xb,λb) =

{(
0,

1
a

)
,

(
2a
3
,
3
a

)}
. (3.48)

3.2.3.1.3 Steady State Solutions Versus System Parameters Figure 3.16(a) shows
the bifurcation diagram versus λ for different values of a for zooming positive logistic
map. The horizontal and vertical axes corresponding to the values of the parameter λ and
the solution x are scaled by (1/a) and a respectively so that the total area is still the same
and equals to a constant value of a(4/a) = 4 square units. Figure 3.16(a) also shows the
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cobweb plot at a = 4 and λ = 1, which shows chaotic behavior where the whole range of x
is covered.

Figure 3.16(b) shows the bifurcation diagram versus a for different values of λ, where
the diagram has equal axes lengths which we shall call a square-axis, and its area is a
function of λ. The unity area square results in the case of λ = 4 which corresponds to
the maximum value of λ in the unity scaling case (a = 1). Recalling that amax = (4/λ) as
given by (3.47b), then the values of a are scaled by (4/λ). Accordingly, the values of x
undergo the same scaling and x ∈ [0,4/λ]. Thus, for positive logistic map, the horizontal
and vertical axes are scaled together by the same ratio which equals (4/λ).
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Figure 3.16: (a) Bifurcation diagram versus λ for different values of a = {0.2,0.5,2} and
Cobweb plot at a = 4,λ = 1, (b) Bifurcation diagram versus a for different values of
λ = {0.5,2,4,8} for zooming positive logistic map

3.2.3.2 Mostly Positive Logistic Map f (x,λ,a) = −λx(a− x)

3.2.3.2.1 Range of λ Substituting b = 1 in (3.41b) yields:

(λmax, xmin, xmax) =

(
2
a
,−

a
2
,
3a
2

)
, (3.49a)

a ∈ (0,amax] where amax =
2
λ
. (3.49b)

3.2.3.2.2 Fixed Points and Stability Condition Substituting b = 1 in (3.42) yields:

(xb,λb) =

(
0,

1
a

)
. (3.50)

3.2.3.2.3 Steady State Solutions Versus System Parameters Figure 3.17(a) shows
the bifurcation diagram versus λ for different values of a for zooming mostly positive
logistic map. The diagrams are quite similar to those in the case of zooming positive
logistic map in having constant area axes. Figure 3.17(a) also shows the cobweb plot at
a = 4 and λ = 0.5, which shows chaotic behavior where the whole range of x is covered.
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Figure 3.17(b) shows the bifurcation diagram versus a for different values of λ for
mostly positive map. Similar to positive map, the horizontal and vertical axes are scaled
together by the same ratio which equals (2/λ) for mostly positive map. Yet, they donot
form a square-axis due to its alternating sign nature where x ∈ [−1/λ,3/λ]. Instead, the
length of the vertical axis is double that of the horizontal one, but extending to the negative
part asymmetrically. Therefore, the bifurcation diagrams with respect to λ are of equal
area for both zooming maps. However, the bifurcation diagrams with respect to a are of
equal axes for the positive map, and a vertical axis double the horizontal for the mostly
positive map. This enriches the map characteristics and raises its degrees of freedom to be
used in control applications according to the required constraints.

Figure 3.18 shows snapshots of the bifurcation diagrams versus λ at different values of
a for both zooming maps. Figure 3.19 shows the other type of bifurcation diagram which
is plotted versus a at different values of λ for both maps. The snapshots reflect the inverse
proportionality relation between λ and a, where as a increases, the value of λmax decreases
and vice versa. Similarly, as λ increases, the value of amax decreases and vice versa.
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Figure 3.17: (a) Bifurcation diagram versus λ for different values of a = {0.2,0.5,2} and
Cobweb plot at a = 4,λ = 0.5, (b) Bifurcation diagram versus a for different values of
λ = {0.5,1,2,4} for zooming mostly positive logistic map

(a) (b)

Figure 3.18: Ten different snapshots of the bifurcation diagram versus λ for zooming (a)
positive map and (b) mostly positive map at a = {0.2,0.4, . . . ,2}
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(a) (b)

Figure 3.19: Ten different snapshots of the bifurcation diagram versus a for zooming (a)
positive map and (b) mostly positive map at λ = {0.2,0.4, . . . ,2}

3.2.3.3 Maximum Lyapunov Exponent

Figure 3.20(a) shows 3D plots of MLE as a function of both λ and a for zooming positive
logistic map, while Fig. 3.20(b) shows them for zooming mostly positive logistic map.
This continuous surface plot illustrates the dependence of the allowed range of λ on the
value of a for both zooming positive, and mostly positive logistic maps. This fact is
further indicated by discrete snapshots of MLE as a function of λ for different values of a.
However, the value of MLE remains the same for maximum chaotic behavior, or at λmax.
The same steady state value MLE = ln2 is obtained which equals that of the conventional
logistic map as previously explained.
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Figure 3.20: MLE as a function of both λ and a for zooming (a) positive logistic map and
(b) mostly positive logistic map
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3.3 General Schematic of Logistic Bifurcation Diagrams
Recalling the analyses and discussions throughout this paper and combining them with
the results obtained in the last section, we can sketch a generalized schematic for the
bifurcation diagrams. The key-points of the two different bifurcation diagrams versus
the system parameters λ and a for both independent scaling positive, and mostly positive
maps can be summarized as follows.

3.3.1 Positive Logistic Map xn+1 = λxn(a−bxn)

3.3.1.1 Bifurcation Diagram Versus λ

The values of λb for the first and second bifurcation points are (1/4) and (3/4) of λmax
respectively, where λmax = 4/a. Moreover, the value of the first nontrivial bifurcation point
xb2 equals (2/3) of the maximum value xmax, where xmax = a/b. Figure 3.21(a) shows the
key-points of the bifurcation diagram versus λ in terms of a and b which conform to the
results expected by our analysis.

3.3.1.2 Bifurcation Diagram Versus a

From another point of view, we can design the bifurcation diagram with respect to the
parameter a where the bifurcation points and maximum values are shown in Fig. 3.21(b)
in terms of the other parameters b and λ. The values of a at which bifurcation occurs ab
are (1/4) and (3/4) of amax, where amax = 4/λ. Moreover, the value of the first nontrivial
bifurcation point xb2 equals (1/2) the maximum value xmax, where xmax = 4/(λb).

(a) (b)

Figure 3.21: General bifurcation diagrams of independent scaling positive logistic map (a)
versus λ and (b) versus a
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3.3.2 Mostly Positive Logistic Map xn+1 = −λxn(a−bxn)

3.3.2.1 Bifurcation Diagram Versus λ

Figure 3.22(a) shows the key-points of the bifurcation diagram versus λ in terms of a
and b. The value of λb is (1/2) of λmax, where λmax = 2/a. The minimum and maximum
values of x are xmin = −a/(2b) and xmax = (3a)/(2b) respectively.

3.3.2.2 Bifurcation Diagram Versus a

Figure 3.22(b) shows the key-points of the bifurcation diagram versus a in terms of b
and λ. The value of ab is (1/2) of amax, where amax = 2/λ. The minimum and maximum
values of x are xmin = −1/(λb) and xmax = 3/(λb) respectively.

(a) (b)

Figure 3.22: General bifurcation diagrams of independent scaling mostly positive logistic
map (a) versus λ and (b) versus a

3.4 Logistic Map Design Procedure
Table 3.3 summarizes the results of independent scaling positive and mostly positive
logistic maps. As previously detailed, the other two maps exhibit the same properties
except for values of x that have the same magnitude, but opposite sign. Consequently, any
required scaling can be achieved using the two extra parameters a and b, for bifurcation
diagram versus λ. The horizontal scaling can be controlled by the parameter a, while
the vertical scaling depends on the value (a/b). To achieve horizontal scaling only while
keeping the vertical axis with the values corresponding to the unity scaling case, the value
of a should equal that of b. The bifurcation diagram versus a could be similarly designed
and controlled by the values of λ and b. The remarkable advantage in the proposed
variations on the discrete 1D logistic map, is not only about scaling or shifting, but also the
increased complexity of the output that makes it more unpredictable, i.e., more convenient
for applications that employ chaos.
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Table 3.3: Comparison between the main aspects of the proposed generalized logistic
maps

Map
f1(x) = λx(a−bx) f2(x) = −λx(a−bx)
a ∈ (0, 4

λ ],b ∈ R+ a ∈ (0, 2
λ ],b ∈ R+

Roots x = 0, a
b

Critical points xc = a
2b

Range of λ [0, 4
a ] [0, 2

a ]
Range of x [0, a

b ] [− a
(2b) ,

(3a)
(2b) ]

Bifurcation vs. λ
λb1 = 1

a , xb1 = 0
λb2 = 3

a , xb2 = 2a
3b −

Bifurcation vs. a
ab1 = 1

λ , xb1 = 0
ab2 = 3

λ , xb2 = 2
λb −

3.4.1 Design Examples
The required specifications on the bifurcation diagram could be realized with respect to
one of the parameters λ or a. Both realizations are considered, we denote the value of the
parameter at which first, or second, bifurcation occurs as parb1 and parb2 respectively,
and the maximum value of the parameter as parmax; where par could be λ or a. Let us
also define extrema(x) such that:

extrema(x) =

{
xmax, for positive logistic map
xmin, for negative logistic map (3.51)

The design problem involves constraints which are: the values of parb1 and parmax, in
addition to parb2 if exist, i.e., in the case of positive or negative logistic maps, are related.
For single sign maps, parmax = 4parb1 and parb2 = 3parb1, while for alternating sign
maps parmax = 2parb1. In addition, the values of xmin and xmax, in the case of alternating
sign maps, are related. For the bifurcation diagram with respect to λ, xmax− xmin = 2a/b,
while for the bifurcation diagram with respect to a, xmax − xmin = 4/(λb). For mostly
positive map, xmax = −3xmin, while for mostly negative map, xmax = −(1/3)xmin. Table 3.4
summarizes these constraints.

Table 3.4: Constraints of the design problem

Single sign maps Alternating sign maps
Constraints on parameter parmax = 4parb1 parmax = 2parb1

parb2 = 3parb1 -
Constraints on output λ-bifurcation |extrema(x)| = a/b xmax− xmin = 2a/b

a-bifurcation |extrema(x)| = 4/(λb) xmax− xmin = 4/(λb)

Four different cases of designing a map with certain specifications on the bifurcation
diagram versus either parameter are provided. The design examples have been chosen
such that they cover the cases of horizontal and independent scaling, since vertical scaling
and zooming maps have been discussed thoroughly. First, the suitable map is chosen
according to the required range of output: positive only, negative only, or alternating sign.
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Then, the design equations are solved simultaneously to get the corresponding values
of the other parameters. The bifurcation diagrams, their main key-points, and the map
equation are shown in Table 3.5.

One of the applications of chaotic maps is generation of sequences of random numbers
which are useful in many applications. These are called pseudo-random sequences,
i.e., although the output appears to be random, it is actually generated deterministically
based on a seed value. Seeds are useful when re-producible sequences are desired,
e.g., debugging a simulation or encrypting/decrypting a message. Mixing the message
with the chaotic sequence achieves desirable cryptographic properties of diffusion and
confusion due to the high sensitivity of this sequence to changes in initial conditions. The
output pattern after mixing is called the ciphertext which is an encrypted combination
of the map selected by the key and the plaintext, where the key is a secret and the
plaintext is the message. Moreover, successive iterations of a chaotic system reduce the
statistical dependency of the ciphertext on the plaintext. Such applications require certain
specifications on the bifurcation diagram in terms of the parameter’s range, in addition
to the output range. The encryption system used to validate our designs is explained as
follows.

3.4.2 Encryption System
The encryption scheme used is based on simple xor operation between the output sequence
of the map and the characters constituting the plain text as shown in Fig. 3.23. Moreover,

+

System key Designed map

Plaintext Ciphertext

(a)

+

System key Designed map

Ciphertext Decoded text

(b)

Figure 3.23: Simple text encryption system (a) Encryption scheme and (b) Decryption
scheme

the extra parameters a and b in addition to the system parameter λ and the initial condition
x0 can be used to construct a more efficient encryption key. The key consists of four
parameters each represented in 32 bits, i.e., a total of 128 bits as shown in Fig. 3.24. The
calculation of each parameter S and initial value x0 are given by:

S = S f ix−S key×10−12 (3.52a)

x0 = ±xkey×10−10 (3.52b)

where S f ix is the fixed part of this parameter, S key is the decimal value of the corresponding
32 bits shown in Fig. 3.24 and xkey is the decimal value given in the key. The scaling factors
10−12 ' 2−40 and 10−10 ' 2−34 are used after converting to double precision floating-point
to ensure that the value of S key does not affect the digits of S f ix. The sign of x0 is chosen
to limit the initial values within the allowable range according to the map characteristics
(single or alternating sign map). In order to enhance the characteristics of the system, the
double precision floating-point representation of each map output is subdivided into eight
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Table 3.5: Four design cases of the logistic map

(a)

Example Specifications Suitable Map λ-bifurcation a-bifurcation
Design Design

(a) x ≥ 0, xmax = 1 Positive a = 5, b = 5 λ = 5, b = 4
5

parb1 = 0.2
(b) x ≤ 0, xmin = −3/2 Negative a = 3, b = 2 λ = 3, b = 8

9
parmax = 4/3

(c) xmin = −0.25, | xmax
xmin
| > 1 Mostly Positive a = 2, b = 4 λ = 2, b = 2

parmax = 1
(d) xmax = 1, | xmax

xmin
| < 1 Mostly Negative a = 2

3 , b = 1
3 λ = 2

3 , b = 3
2

parb1 = 1.5

(b)

Bifurcation Diagram w.r.t. λ Bifurcation Diagram w.r.t. a
(a) f (x) = λx(5−5x)

λb1 = 0.2
λb2 = 0.6
λmax = 0.8
xb2 = 2

3
xmax = 1
Horizontal Scaling

f (x) = 5x(a− 4
5 x)

ab1 = 0.2
ab2 = 0.6
amax = 0.8
xb2 = 0.5
xmax = 1
Horizontal Scaling

(b) f (x) = λx(3 + 2x)
λb1 = 1

3
λb2 = 1
λmax = 4

3
xb2 = −1
xmin = −1.5
Independent Scaling

f (x) = 3x(a + 8
9 x)

ab1 = 1
3

ab2 = 1
amax = 4

3
xb2 = −0.75
xmin = −1.5
Independent Scaling

(c) f (x) = −λx(2−4x)
λb1 = 0.5
λmax = 1
xmin = −0.25
xmax = 0.75
Independent Scaling

f (x) = −2x(a−2x)
ab1 = 0.5
amax = 1
xmin = −0.25
xmax = 0.75
Independent Scaling

(d) f (x) = −λx(2
3 + 1

3 x)
λb1 = 1.5
λmax = 3
xmin = −3
xmax = 1
Independent Scaling

f (x) = −2
3 x(a + 3

2 x)
ab1 = 1.5
amax = 3
xmin = −3
xmax = 1
Independent Scaling

blocks which are xored at first, then the output is xored with a character from the plain text,
and so on till the last character. Table 3.6 shows the encrypted HEX code corresponding
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xkey

32 bits
akey

32 bits
bkey

32 bits
λkey

32 bits

Figure 3.24: System key used in the encryption scheme

to each designed map, i.e., the fixed values of the 3 parameters are set to the values given
in Table 3.5 with λmax or amax corresponding to maximum chaotic behavior. We use the
famous quote by Ghandi: “You must be the change you wish to see in the world.” as the
plaintext. The encryption key is chosen as “B93E61A2A2F49CB58EA37B51C49A5E68”.
Encryption schemes that offer better performance utilizing such simple maps usually use
innovative combinations of them. Such combinations could be even suitable for more
complicated image encryption applications, e.g., the encryption techniques presented
in [93, 116].

Table 3.6: Encrypted HEX code for each design given (λ f ix,a f ix,b f ix)

Plaintext You must be the change you wish to see in the world.
HEX Code 596F75206D75737420626520746865206368616E676520796F75

207769736820746F2073656520696E2074686520776F726C642E

Encrypted
HEX code
Design (a) w.r.t. λ 8F3B4F398DF8F5E61E20E1EC2879EFF53C1F0F04AF90FEB6292F

(4/a,5,5) 06CBA9A1C2B13C942A84D28CDA033A15373587775A5675008032

Design (a) w.r.t. a 8FBF3C41C6BD1FD8D4C269F8A0D731CA8DB0AD0E79D6D7FE5140

(5,0.8,4/λ) 9E9B62B5A32F8747504B940DF967B99E45BFAE0EA1576A6EC3EB

Design (b) w.r.t. λ 0F0B2C34DCEE02A639B528B5D3D78305A3C0F4B6A7E5F0B1157E

(4/a,3,2) 8134C06EF6E6C1250BA656916741DB0011D86C69E5F1C1A564F6

Design (b) w.r.t. a 0FEC095719D3625223CD7941B2571AFEBE7E2B649BE901F76D81

(3,4/3,4/λ) DC77ADBEE5450129D9FF0D0B71B963F64C2FEED57AEDF3DCC2A3

Design (c) w.r.t. λ 8FEC4A6CBDFC371B4183EA5FBE09B81217CAEAFF015332F7CB87

(2/a,2,4) E34E3B7F1F9287AEC651E015876E9BAD40BBC222BEC2A63803C3

Design (c) w.r.t. a 8F919CFC52131AA8E987F7D4DC75133A1E81DD58317886F57EBB

(2,1,2/λ) 5553A8AD90B643E204628793FC095E895248EF8452E8CFD8D1D4

Design (d) w.r.t. λ 0F9A0D7FB4449B8F590E88D8248AF929CEC7EDAA7C1274AB83D1

(2/a,2/3,1/3) C4A36A5C24B3A8B938984DE2B6D9B26251FF0F1B6D26A8FD13FE

Design (d) w.r.t. a 0F710918D640BD50302A1ADE60BC4F0BFAC536C2811122A31BB6

(2/3,3,2/λ) B6A37A7C1DB5ADCFA7F31BAE0FA9F1B9F93F2CB127B9862841CF

3.5 Scaled Tent Map: Analysis and Results

3.5.1 Independent Scaling xn+1 = ±µmin(xn,a−bxn)

3.5.1.1 Positive Tent Map

The independent scaling positive tent map proposed in [92] preserves the linearity of the
two intersecting lines providing the possibility of designing an asymmetric scalable tent
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shape and is given by:

xn+1 = f (xn,µ,a,b) = µmin(xn,a−bxn), µ, a, b ∈ R+ (3.53a)

xn+1 =

{
µxn xn ≤ xk
µ(a−bxn) xk < xn

, (3.53b)

where
xk =

a
1 + b

(3.54)

is the point of intersection of the two lines. We present here the general forms of the
bifurcation diagrams of independent scaling positive tent map versus the main system
parameter µ, in addition to the corresponding diagram for mostly positive tent map. Special
scaling cases and system response versus the other parameters can also be studied similar
to the case of logistic map.

3.5.1.1.1 Parameters’ Ranges The solution should belong to the interval x ∈ [0,a/b]
to guarantee boundedness.

(µmax, xmax) =

(
1 +

1
b
,
a
b

)
, (3.55a)

b ∈ (0,bmax] where bmax =
1

µ−1
. (3.55b)

3.5.1.1.2 Fixed Points and Their Stability The fixed points are given by

x∗1 = 0 and x∗2 =
aµ

1 + bµ
. (3.56)

The value of µ at which the system bifurcates and the region of trivial fixed point ends, in
addition to its corresponding function value are

(µb1, xb1) = (1,0). (3.57)

For 0< b< 1, a region of non-trivial fixed point appears after which the response bifurcates
to a period-2 solution given by

(µb2, xb2) =

(
1
b
,

a
2b

)
. (3.58)

Figure 3.25 shows that the impact of parameters is reversed in the case of independent
scaling positive tent map compared to logistic map(s). The value of µmax depends only
on the parameter b. For µ > 0, as b < 1 there exists a nontrivial fixed-point solution for a
range of µ before other types of solutions start. This phase does not exist for b > 1.
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(a) (b)

(c) (d)

Figure 3.25: Bifurcation diagram vs. µ for independent scaling positive tent map at
(a) b = 0.5 and a = {0.25,0.5, . . . ,2}, (b) a = 4 and b = {0.2,0.3, . . . ,0.8}, (c) b = 2 and
a = {0.25,0.5, . . . ,2}, and (d) a = 4 and b = {2,3, . . . ,8}

3.5.1.2 Mostly Positive Tent Map

The proposed generalized mostly positive tent map is given by

xn+1 = f (xn,µ,a,b) = −µmin(xn,a−bxn), µ, a, b ∈ R+ (3.59a)

xn+1 =

{
−µxn xn ≤ xk
−µ(a−bxn) xk < xn

, (3.59b)

where
xk =

a
1 + b

(3.60)

is the point of intersection of the two lines.

3.5.1.2.1 Parameters’ Ranges A similar analysis to that conducted for mostly positive
logistic and tent maps yields the following parameters’ ranges

(µmax, xmin, xmax) =

(
1 +

1
b
,−

a
b
,
a
b

(
1 +

1
b

))
. (3.61)
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3.5.1.2.2 Fixed Points and Their Stability

x∗1 = 0 and x∗2 = −
aµ

1−bµ
, (3.62)

f ′(x∗) =

{
−µ x∗ ≤ xk
+µb xk < x∗ , (3.63)

| f ′(x∗)| = 1→ µb = 1, (3.64)

(xb,µb) = (0,1). (3.65)

3.5.1.2.3 Periodic Points and Their Stability

f 2(x) =


−µ(a + bµx) x ≤ xk1
µ2x xk1 ≤ x ≤ xk
µ2(a−bx) xk ≤ x ≤ xk2
−µ(a + bµ(a−bx)) xk2 ≤ x

, (3.66)

where xk1 = − ab
(1+b)2 , xk = a

1+b , and xk2 = a
b

(
1 + 1

(1+b)2

)
.

Equating xp = f 2(xp) 

xp = −
aµ

1+bµ2 xp ≤ xk1

xp = 0 xk1 ≤ xp ≤ xk

xp =
aµ2

1+bµ2 xk ≤ xp ≤ xk2

xp =
−aµ−abµ2

1−b2µ2 xk2 ≤ xp

. (3.67)

To get the bifurcation point, |( f 2)′(xp)| = 1

( f 2)
′
(x) =


−bµ2 x ≤ xk1
µ2 xk1 ≤ x ≤ xk
−bµ2 xk ≤ x ≤ xk2
b2µ2 xk2 ≤ x

. (3.68)

Consequently, µb2 = 1√
b
, the corresponding values of xb are xb2 = − a

2
√

b
and xb2 = a

2b .

(xb2,µb2) =

({
−

a

2
√

b
,

a
2b

}
,

1
√

b

)
. (3.69)

Figure 3.26 shows the impact of parameters in the case of independent scaling mostly
positive tent map. The value of µmax depends only on the parameter b. Yet, the value of
xmax also depends on µmax not only the ratio a/b as in the case of independent scaling
positive tent map. For µ < 0, as b < 1 there exists a period-2 solution for a range of µ
before orbits of longer lengths start. This phase does not exist for b > 1.
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(a) (b)

(c) (d)

Figure 3.26: Bifurcation diagram vs. µ for independent scaling mostly positive tent map
at (a) b = 0.5 and a = {0.25,0.5, . . . ,2}, (b) a = 2 and b = {0.2,0.3, . . . ,0.8}, (c) b = 2 and
a = {0.25,0.5, . . . ,2}, and (d) a = 4 and b = {2,3, . . . ,8}

3.5.1.3 Maximum Lyapunov Exponent

For independent scaling positive tent map, unlike logistic map(s), the allowed range of µ
depends on the value of the parameter b only irrespective of a. Figure 3.27(c) shows the
values of MLE at µmax in the a−b plane where the largest value for MLE is obtained at
b = 1 irrespective of the value of a, and equals ln2. Although this value slightly decreases
for other values of b, it is still within the same positive range indicating chaotic behavior.
Yet, the full range at maximum chaos depends on a/b similar to logistic map(s) as shown
in Fig. 3.27(d).

For independent scaling mostly positive tent map, Fig. 3.28 shows similar measures.
The lower bound on the full range at maximum chaos depends on a/b while the upper
bound is directly proportional to both a/b and µmax.
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(a) (b)

(c) (d)

Figure 3.27: MLE of independent scaling positive tent map as a function of (a) µ and a at
b = 2, (b) µ and b at a = 4, (c) a and b at µmax, and (d) Full-range chaotic output versus a
and b

(a) (b)

(c) (d)

Figure 3.28: MLE of independent scaling mostly positive tent map as a function of (a) µ
and a at b = 2, (b) µ and b at a = 4, (c) a and b at µmax, and (d) Full-range chaotic output
versus a and b
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3.6 General Schematic of Tent Bifurcation Diagrams
Figure 3.29(a) shows the key-points of the bifurcation diagram versus µ in terms of a
and b such that b <= 1 for positive tent map which conform to the results expected by
our analysis, while Fig. 3.29(b) shows them for b > 1. Figure 3.30 shows the general
bifurcation diagrams for mostly positive tent map where µmax = 1 + 1/b. Setting b = 1
yields vertical scaling only.

(a) (b)

Figure 3.29: General schematic of the bifurcation diagram vs. µ of independent scaling
positive tent map (a) b ≤ 1 and (b) b > 1

(a) (b)

Figure 3.30: General schematic of the bifurcation diagram vs. µ of independent scaling
mostly positive tent map (a) b ≤ 1 and (b) b > 1
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Chapter 4: General Powering Map
In the previous chapter, various generalizations were proposed on the mathematical
relations representing the logistic and tent maps. Both are examples of conventional 1D
discrete chaotic maps where the tent map is a piece-wise linear map, and the logistic map
is a quadratic non-linear map. The generalizations allow multiple forms of bifurcation
diagrams two-dimensional scaling. Special cases of one-dimensional scaling have also
been illustrated. In addition, we have explored the behavior of these maps in a newly
visited range of parameter which has not been investigated before; negatively controlled
maps.

In this chapter, we propose a new map that could be considered a general form for 1D
discrete maps employing the power function with the tent and logistic maps as special cases.
It would be suitable even for maps whose iterative relations are not based on polynomials.
A framework for analyzing the proposed map mathematically and predicting its behavior
for various combinations of its parameters is introduced. In addition, the transition from
tent map case to logistic map case is presented and explained. The possibility of generating
real and imaginary bifurcations in this transition region in addition to the other regions is
checked.

4.1 Motivation
The conjugacy between piecewise linear tent map and quadratic logistic map, the period
doubling that both exhibit as a route to chaos, and the presence of bifurcation diagram for
the newly explored range: negative parameter in both of them inspired us to propose a
unifying map for 1D chaos generated by polynomials. Investigating the main differences
between the equations defining both tent and logistic maps, we could notice:

• Logistic map is defined by a single relation, while tent map is defined by the
minimum of two relations.

• The relation defining the logistic map is of degree-2, while those defining the tent
map are of degree-1.

To get a unified relation that fits both maps, the first point could be overcome through
redefining logistic map as follows:

xn+1 = λmin(xn (1− xn) , xn (1− xn)) . (4.1)

The second point is the key indicating that powering needs to be employed to get such
unified relation. The tent map could be redefined as follows:

xn+1 = µmin
(
xn (1− xn)0 , x0

n (1− xn)
)
. (4.2)

Consequently, an exponent should appear for both terms xn and 1− xn to get an adaptable
form suitable for both tent and logistic maps. The iterative form of the proposed map is
given by

xn+1 = r min
(
xαn (1− xn)β , xβn (1− xn)α

)
, (4.3)
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where α, β ∈ R+. The main control parameter of the map r, alternatively called the system
parameter, replaces λ or µ and it could have either positive or negative sign. Starting from
this chapter, the sign of the main system parameter is no longer explicitly defined, and the
bifurcation diagrams are plotted on the same figure for both positive and negative control
parameter cases. The function plots for both r positive and negative at various values of α
and β are shown in Fig. 4.1. Another way of defining the map could be as follows

f (x,r,α,β) = r min
(
xα (1− x)β , xβ (1− x)α

)
. (4.4)

For (α,β) = (1,0) or (0,1), the relation representing tent map is yielded as shown in
Fig. 4.1(a). While for (α,β) = (1,1), the relation representing the logistic map is yielded
as shown in Fig. 4.1(b). This equation not only represents both tent and logistic maps,
but it also provides the possibility of designing various new maps at different values of
the powering parameters α and β, an example is shown in Fig. 4.1(c). These are called
shaping parameters as they determine the shape of the map (triangular, parabolic, . . . , etc.),
in addition to the corresponding bifurcation diagram. Moreover, two scaling parameters a
and b could be added to maintain the scaling capability introduced in the previous chapter.

(a) (b) (c)

Figure 4.1: Bifurcation diagrams of general powering map for various values of α and β
starting at initial point x0 = 0.01 (a) (α,β) = (1,0), (b) (α,β) = (1,1), and (c) (α,β) = (1,0.5)

4.2 Proposed Map xn+1 = r min
(
xαn (a−bxn)β , xβn (a−bxn)α

)
4.2.1 Mathematical Analysis
A mathematical analysis for the general map with added scaling parameters a and b could
be started as follows.

f (x,r,a,b,α,β) = r min
(
xα (a−bx)β , xβ (a−bx)α

)
, (4.5)

where a, b, α, and β ∈ R+.
The map is defined as selecting the minimum of the two functions, i.e., it could be

plotted as two intersecting curves. To get the intersection point, we equate the equations
of the two curves yielding

xk =
a

b + 1
(4.6)
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It is worth mentioning that in cases other than b = 1 another intersection point could exist
in the case of |α−β| is an even number and equals a

b−1 . Yet, this value lies outside the
region of bounded solution in which we are interested as will be illustrated later on. It
would be quite beneficial to redefine the map according to the obtained intersection point
as follows:

For α ≥ β f (x,r,a,b,α,β) =

{
rxα (a−bx)β x ≤ xk
rxβ (a−bx)α xk < x

, (4.7a)

For α < β f (x,r,a,b,α,β) =

{
rxβ (a−bx)α x ≤ xk
rxα (a−bx)β xk < x

. (4.7b)

The value xk = a
b+1 is always true irrespective of the sign of the control parameter r or

the values of α and β. However, equation (4.5) actually represents two cases according to
the sign of the system parameter r. The rest of the analysis requires studying each case
separately r ≥ 0 and r < 0.

4.2.1.1 Positive Control Parameter Case r ≥ 0

4.2.1.1.1 Parameters’ Ranges For positive parameter case, substituting in either
curves, the maximum allowable value of xn+1 is

f (xk) = rmax

( a
b + 1

)α+β

. (4.8)

The value of the output in the positive control parameter case is confined to the set
[0,a/b] to guarantee closed set responses. Hence, the maximum value of r that guarantees
boundedness is

rmax =
a
b

(
b + 1

a

)α+β

. (4.9)

Thus, defining

(rmax, xmax) =

a
b

(
b + 1

a

)α+β

,
a
b

 . (4.10)

The latter equation means that the maximum output value in positive parameter case
depends only on the values of the scaling parameters a and b and is independent of the
shaping parameters α and β. The lower bound is always zero, while the upper bound equals
a/b. Full range chaotic response could be increased through increasing a or decreasing
b. In unity scaling case, the maximum allowable chaotic range, corresponding to rmax
is x ∈ [0,1]. On the other hand, the value of rmax itself depends on all parameters. It
increases as the values of α or β increase, while its dependence on a and b is also related
to the values of α and β.

4.2.1.1.2 Fixed Points and Their Stability The fixed points could be obtained through
solving

For α ≥ β x∗ =

{
rx∗α(a−bx∗)β x∗ ≤ xk
rx∗β(a−bx∗)α xk < x∗

, (4.11a)

For α < β x∗ =

{
rx∗β(a−bx∗)α x∗ ≤ xk
rx∗α(a−bx∗)β xk < x∗

. (4.11b)
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which can be solved numerically when the values of the parameters α, β, a, and b are
known to get the value of x∗ at a given value of r. Hence, the bifurcation points and their
stability could be studied from the first derivative equation given by

For α ≥ β f ′(x∗) =

{
rαx∗α−1(a−bx∗)β− rbβx∗α(a−bx∗)β−1 x∗ ≤ xk

rβx∗β−1(a−bx∗)α− rbαx∗β(a−bx∗)α−1 xk < x∗
, (4.12a)

For α < β f ′(x∗) =

{
rβx∗β−1(a−bx∗)α− rbαx∗β(a−bx∗)α−1 x∗ ≤ xk

rαx∗α−1(a−bx∗)β− rbβx∗α(a−bx∗)β−1 xk < x∗
, (4.12b)

4.2.1.2 Negative Control Parameter Case r < 0

To determine the lower and upper bounds of the solution, we follow the same steps used
for the case of logistic and tent maps with negative control parameter. Our analysis is
based on the definition of the map in non-linear dynamics as a function whose domain
and range are the same, where the proposed map could be plotted as shown in Fig. 4.2.
The steps are detailed as follows, keeping in mind that xk = a

b+1

1. The lower bound on the range of the map is f (xk) which is the same as the lower
bound on the domain xmin.

f (xk) = rmin(xk)α+β. (4.13)

2. The upper bound on the range is f (xmin), i.e., f ( f (xk)) which can be obtained by
substitution in the left branch of the curve. So, the upper bound is equal to one of
the following according to the values of the parameters

For α ≥ β f ( f (xk)) = rmin(rmin)α(xk)α(α+β)[a−brmin(xk)α+β]β, (4.14a)

For α < β f ( f (xk)) = rmin(rmin)β(xk)β(α+β)[a−brmin(xk)α+β]α, (4.14b)

which is a function of the parameters a,b,α,β in addition to rmin.

3. Then, we equate this value to the map equation given by (4.5) to get the correspond-
ing solutions for the values of x: xmin and xmax.

4. The domain of the map is D = [xmin, xmax], while its range is R = [ f (xk), f ( f (xk))].
We equate the lower and upper bounds of both intervals respectively to get rmin.

xmin = f (xk), (4.15a)

xmax = f ( f (xk)). (4.15b)

5. Hence, we get the final values for xmin and xmax by substitution for rmin in their
equations. Sometimes, we need to solve numerically to get their approximated
values.

Fixed points and their stability could be calculated in a similar manner to that shown in
the positive control parameter case.

The proposed 1D discrete map does not confine the powers α and β to be integers. They
could belong to the fractional domain; in general α,β ∈ R, i.e., they could take any value
belonging to the real field, but here we consider their values in R+ only. The possibility of
chaos generation in these various cases of the parameters values shall be investigated later
on. The analysis starts by the following map which represents the transition from the tent
map to the logistic map.
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Figure 4.2: Domain and range of the proposed map with arbitrarily chosen parameters

4.3 Transition Map (α,β) = (1,0)→ (1,1)

In this section, we go back to equation (4.4), i.e., unity scaling case. Setting either α
or β to 1 while the other parameter equals zero yields the well-known equation of the
conventional tent map. Similarly, setting α = β = 1 yields the conventional logistic map.
Assume (α,β) = (1,0) corresponds to the tent map, the behavior as β increases from 0 to
1, till (α,β) = (1,1) corresponding to the logistic map is investigated. The proposed 1D
discrete map is given by

f (x,r,β) = r min
(
x (1− x)β , xβ (1− x)

)
, 0 < β < 1 (4.16)

and could be called transition map as it represents the transition from tent map to logistic
map, or alternatively called super-tent map. Figure 4.3(a) shows the curves of the map
at different values of beta for r > 0 such that r = rmax, while Fig. 4.3(b) shows them for
r < 0 such that r = −1.9. The curves show that every case for the transition map exhibits a
single non-trivial fixed point. Figure 4.4(a) shows the continuous surface plot of the map
equation f (x,β) as a function of both x and β for β ∈ [0,1] at r = (1.999)β+1 (a close value
to rmax), while Fig. 4.4(b) shows it at r = −1.9 (a close value to rmin). Figure 4.4 illustrates
how the behavior of the map changes gradually from tent map response to logistic map
response. Figure 4.5 shows samples of the bifurcation diagrams for both positive and
negative r for a set of values of the parameter β. The plots show how the bifurcation
diagrams change gradually from the viewpoint of shapes and different key-points, from
tent map response to logistic map response. The key-points include: rmax, rb1, and xmax
for r ≥ 0 and rmin, rb1, xmin, and xmax for r < 0.

4.3.1 Behavior From the Tent Map to the Logistic Map
It could come up to mind that complex values might be encountered when attempting
to raise some expression, that may be negative for r < 0, to a fractional power. Yet, this
is not the case in the transition region (α,β) = (1,0)→ (1,1), i.e., α = 1 and 0 ≤ β ≤ 1 as
indicated by Fig. 4.3. We prove this property for the scaled transition map with the aid of
equation 4.5 where two separate cases are discussed as follows

Proof. No complex results could be generated in the transition region (α,β) = (1,0)→
(1,1), i.e., α = 1 and 0 ≤ β ≤ 1.
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(a) (b)

Figure 4.3: Curves of transition map f (x,β) and their fixed points at β = {0,0.1, . . . ,1} (a)
at r = (2)β+1 and (b) at r = −1.9

(a) (b)

Figure 4.4: Surface plot of transition map f (x,β) (a) at r = (1.999)β+1 and (b) at r = −1.9

Case 1: xmin ≤ xn < 0. The minimum curve is xαn (a− bxn)β where α = 1, i.e., the
negative number is raised to the power of one.

Case 2: a
b < xn ≤ xmax. The minimum curve is xβn(a− bxn)α where α = 1, i.e., the

negative number is raised to the power of one. �

Figure 4.6 shows the map and the cobweb plot at maximum chaotic behavior for
various values of β and the corresponding rmax for r ≥ 0 or rmin for r < 0. The plot shows
that the map exhibits chaotic behavior, since the orbit has a non-periodic sequence and
generates multiple outputs that cover the whole range of x. This range is the same for r > 0
and equals [0,1] in unity scaling case while it differs as the parameters change for r < 0.

4.3.2 Boundary Analysis
In this subsection, the results obtained through our general mathematical analysis are
validated for the conventional tent and logistic maps in order to show their reliability.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Bifurcation diagrams of the transition map for various values of β starting at
initial point x0 = 0.01
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Figure 4.6: Cobweb plots of the proposed map at α = 1 and various values of β and r
starting at initial point x0 = 0.0005
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4.3.2.1 Tent Map

4.3.2.1.1 Positive Control Parameter Case r ≥ 0 For the conventional tent map with
positive control parameter, (α,β,a,b) = (1,0,1,1). Thus, substituting in (4.10) we get

(rmax, xmax) = (2,1) , (4.17)

which matches the correct values of parameters’ range.

4.3.2.1.2 Negative Control Parameter Case r < 0 For the tent map with negative
control parameter, (α,β,a,b) = (1,0,1,1). Thus, from (4.6)

xk =
1
2
. (4.18)

Substituting in (4.14a) we get

f ( f (xk)) = rmin (rmin)1
(
1
2

)1

. (4.19)

Solving to get xmin and xmax

r2
min

2
=

{
rminx x ≤ xk
rmin (1− x) xk < x . (4.20)

Consequently,
xmin =

rmin

2
, (4.21a)

xmax = 1−
rmin

2
. (4.21b)

The domain of the map D =
[

rmin
2 ,1− rmin

2

]
, while its range R =

[
rmin

2 ,
r2

min
2

]
. Coinciding the

two intervals yields

1−
rmin

2
=

r2
min

2
. (4.22)

Solving for rmin, two values are yielded. Yet, rmin must be negative. Thus,

rmin = −2, (4.23a)

(rmin, xmin, xmax) = (−2,−1,2) , (4.23b)

which matches the correct values of parameters’ range.

4.3.2.2 Logistic Map

4.3.2.2.1 Positive Control Parameter Case r ≥ 0 For the conventional logistic map
with positive control parameter, (α,β,a,b) = (1,1,1,1). Thus, substituting in (4.10) we get

(rmax, xmax) = (4,1) , (4.24)

which matches the correct values of parameters’ range.
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4.3.2.2.2 Negative Control Parameter Case r < 0 For the logistic map with negative
control parameter, (α,β,a,b) = (1,1,1,1). Thus, from (4.6)

xk =
1
2
. (4.25)

The logistic map is a special case at which α = β where there is no difference between the
left and right parts of the curve and it can be represented by a single parabolic equation.
Substituting in either (4.14a) or (4.14b) we get

f ( f (xk)) = rmin (rmin)1
(
1
2

)2 1− rmin

(
1
2

)2 . (4.26)

Solving to get xmin and xmax

r2
min

4

(
1−

rmin

4

)
= rminx (1− x) . (4.27)

Consequently,
xmin =

rmin

4
, (4.28a)

xmax = 1−
rmin

4
. (4.28b)

The domain of the map D =
[

rmin
4 ,1− rmin

4

]
, while its range R =

[
rmin

4 ,
r2

min
4 (1− rmin

4 )
]
. Coin-

ciding the two intervals yields

1−
rmin

4
=

r2
min

4
−

r3
min

16
. (4.29)

Solving for rmin, three values are yielded. Yet, rmin must be negative. Thus,

rmin = −2, (4.30a)

(rmin, xmin, xmax) =

(
−2,−

1
2
,
3
2

)
, (4.30b)

which matches the correct values of parameters’ range. The results for both tent and
logistic maps through substitution in the general equations of the proposed map with the
corresponding parameters values are summarized in Table 4.1. We define re as the ending
value for r after which divergence occurs such that:

re =

{
rmax r ≥ 0
rmin r < 0 . (4.31)

This analysis might give a key to discovering cases which do not exhibit a range in which
the solution is bounded, where no real value for r in the allowable range could be found.

4.3.3 Key-points of Bifurcation Diagram in the Transition Region
Figure 4.7 shows the variations of various key-points of the bifurcation diagrams of the
proposed map in the transition region from tent to logistic. It shows these values as
functions of β ∈ [0,1]. Both positive and negative control parameter cases are discussed
with the aid of Fig. 4.5 and the previous analysis. Furthermore, eleven snapshots of the
bifurcation diagrams are shown in Fig. 4.8 that illustrates the differences between them
which are explained in detail in the following subsections.
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Table 4.1: Parameters of tent and logistic maps

Parameter Tent Map Tent Map Logistic Map Logistic Map
r ≥ 0 r < 0 r ≥ 0 r < 0

re 2 −2 4 −2
xmin 0 −1 0 −0.5
xmax 1 2 1 1.5

(a) (b)

Figure 4.7: Key-points of bifurcation diagrams versus β at α = 1 starting at x0 = 0.01 (a)
r ≥ 0 and (b) r < 0

(a) (b)

Figure 4.8: Eleven snapshots of the bifurcation diagrams of the proposed map at α = 1
and β = {0,0.1, . . . ,1} starting at initial point x0 = 0.01 (a) r ≥ 0 and (b) r < 0

4.3.3.1 Positive Control Parameter Case r ≥ 0

The value of the keypoint rmax of the bifurcation diagram for r ≥ 0 as a function of β ∈ [0,1]
is shown in Fig. 4.7(a). It starts from 2 in the case of tent map and increases to 4 in the case
of logistic map. This could be explained by substitution with the corresponding values of
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parameters a = b = α = 1 in (4.9). Thus, rmax for the transition map is given by

rmax = (2)β+1 (4.32)

which increases as β increases. The other basic key-points rb1 and xmax do not differ
throughout this range of β (in addition to xmin = 0). However, the sudden change in the
solution that occurred in tent map (β = 0) converts into a gradual change. Increasing the
value of β, the sharp edge that exists in this range of r starts to get smoother until complete
smoothness in the case of logistic map (β = 1). It should be noted that this sharp edge is
neither the first nor the second bifurcation point that were obtained in our analysis in the
previous chapter. The value of rb1 = 1 is fixed fo all values of β ∈ [0,1], while rb2 value
increases such that it starts to appear from 1 in the case of tent map to 3 in the case of
logistic map.

4.3.3.2 Negative Control Parameter Case r < 0

The values of the key-points xmin and xmax of the bifurcation diagram for r < 0 as a function
of β ∈ [0,1] are shown in Fig. 4.7(b). The value of xmin increases gradually as it starts
from −1 in the case of tent map and increases to −0.5 in the case of logistic map. The
value of xmax decreases gradually as it starts from 2 in the case of tent map and decreases
to 1.5 in the case of logistic map. These values could be obtained numerically through
the procedure discussed before to get the parameters’ ranges for negative parameter case.
This means that the output range shrinks as β increases throughout the interval β ∈ [0,1] at
α = 1 for r < 0. The value of rb1 = −1 is fixed for all values of β ∈ [0,1]. For r < 0, rmin is
not fixed as illustrated in Fig. 4.7(b), it slightly increases than −2 in the transition region
preserving its analytical value rmin = −2 for both the tent and logistic maps.

4.3.4 Maximum Lyapunov Exponent (MLE)
For the transition map, the first derivative is given by

f ′(x∗) =

{
r(1− x∗)β− rβx∗(1− x∗)β−1 x ≤ xk

rβx∗β−1(1− x∗)− rx∗β xk < x
(4.33)

The latter equation could be used to calculate MLE numerically, otherwise it can be
calculated through forward difference formula that shall be introduced in Chapter 5
subsection 5.2.4 Figure 4.9(a) shows 3D plot of MLE as a function of both r and β for
r ≥ 0, while Fig. 4.9(b) shows it for r < 0. The surface plot shows that the value exhibited
at maximum chaos (rmax for r > 0 and rmin for r < 0) for all transition maps approaches
ln2 as the conventional case. This value occurs at rmax = 2 for tent map, rmax = 2β for
transition map, and rmax = 4 for logistic map. On the other hand, rmin is equal to or slightly
less than negative two.
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(a) (b)

Figure 4.9: MLE as a function of both r and β for transition map (a) r ≥ 0 and (b) r < 0

4.4 New Maps at Other Values for (α,β)

Several metrics have been used in the literature as indications of chaotic behavior. Among
which are Lyapunov Exponent, Feigenbaum constant, Sharkovskii’s Theorem, and others.
The possibility of chaos generation through the proposed map for various combinations of
α and β could be generally assessed through answering two main questions: is the response
bounded? do bifurcations occur? For other values of β other than the interval [0,1], the
case differs from the results in the previous sections where the bifurcation diagram might
disappear on either side. Choosing an initial point to start with that already belongs to
the bounded response interval should be considered too. In all the previous cases, the
resulting value x was confined to the real field. However, other combinations of (α,β)
yield complex results which can be viewed as two different bifurcation diagrams for the
real and imaginary parts. The case when one of the two parameters α or β equals 1 while
the other is in the range [0,1] has been discussed in the transition from tent to logistic map.
The other alternatives are discussed in the following subsections for positive parameter
case, where scaling parameters could be added for all cases.

4.4.1 Sub-Tent Map: (α,β) = (0,0)→ (0,1)

This map resembles tent map where one of the shaping parameters equals zero while the
other is less than one, so it is called sub-tent, i.e., below tent. Starting at (α,β) = (0,0),
the behavior as β increases from 0 to 1 till (α,β) = (0,1) corresponding to the tent map is
investigated. The proposed 1D discrete map is given by

f (x,r,β) = r min
(
xβ, (1− x)β

)
, 0 < β < 1 (4.34)

In this range, not all values of the parameters yield bifurcations. In addition, the responses
yielded are in general complex. Figure 4.10 shows samples of the real bifurcation diagrams
for r ≥ 0 for a set of values of the parameter β. It should be noted that the response is
present for higher values of r, but exhibits monotonic and divergent behavior. Different
initial points could cause the disappearance of some of the features of the bifurcation
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diagram. The rate by which the responses diverge is worth consideration too. Nearly the
same notes could describe the other cases discussed below.

(a) (b) (c)

Figure 4.10: Real bifurcation diagrams of the sub-tent map for various values of β starting
at initial point x0 = 0.05

Figure 4.11 shows how the response moves gradually from a constant to tent map
with curved surfaces in between. Figure 4.11(a) shows the curves of the sub-tent map
(α = 0) at different values of β for r > 0 such that r = rmax. The curves show that every
case for the sub-tent map exhibits a single non-trivial fixed point. Figure 4.11(b) shows
the continuous surface plot of the map equation f (x,β) as a function of both x and β for
β ∈ [0,1] at r = (1.999)β.
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Figure 4.11: (a) Curves of sub-tent map f (x,β) and their fixed points at β = {0.1,0.2, . . . ,1}
at r = (2)β and (b) its surface plot at r = (1.999)β

4.4.2 Sub-Logistic Map: β = α and α < 1

This map resembles logistic map where both shaping parameters are equal and less than
one, so it is called sub-logistic, i.e., below logistic and is given by

f (x,r,α) = r (x (1− x))α , 0 < α < 1 (4.35)
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(a) (b) (c)

Figure 4.12: Real bifurcation diagrams of the sub-logistic map for various values of α
starting at initial point x0 = 0.05

Figure 4.12 shows samples of the real bifurcation diagrams for both positive and negative
r for a set of values of the parameter α.

Figure 4.13(a) shows the curves of the sub-logistic map at different values of α for
r > 0 such that r = rmax. The curves show that every case for the sub-logistic map exhibits
a single non-trivial fixed point. Figure 4.13(b) shows the continuous surface plot of the
map equations f (x,α) as a function of both x and α for α ∈ [0,1] at r = (1.999)2α.
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Figure 4.13: (a) Curves of the sub-logistic map f (x,α) and their fixed points at α =

{0.1,0.2, . . . ,1} at r = (2)2α and (b) its surface plot at r = (1.999)2α

For r ≥ 0, the values of the key-points of the diagrams for both sub-tent and sub-
logistic maps are consistent with the expressions derived in subsection 4.2.1.1 according
to Table 4.2 where the values shown in the table are calculated by substitution in (4.10).

4.4.3 Higher Order Map: α = 1 and β > 1

The proposed map has a single parameter β which is greater than one and is given by

f (x,r,β) = r min
(
xβ (1− x) , x (1− x)β

)
, β > 1 (4.36)

Figure 4.14 shows samples of the bifurcation diagrams for r > 0 for a set of values of the
parameter β.
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Table 4.2: Key-points of the bifurcation diagram for sub-tent and sub-logistic maps

Map α β rmax
Sub-tent 0 0.25 1.1892
Sub-tent 0 0.5 1.4142
Sub-tent 0 0.75 1.6818
Sub-logistic 0.25 0.25 1.4142
Sub-logistic 0.5 0.5 2
Sub-logistic 0.75 0.75 2.8284

(a) (b) (c)

Figure 4.14: Bifurcation diagrams of higher order map for various values of β starting at
initial point x0 = 0.5

Figure 4.15(a) shows the curves of the higher order map at different values of β for
r > 0 such that r = rmax. For this map, there exist two non-trivial fixed points. The
appearance of either points in the bifurcation diagram is governed by their stability ranges.
Figure 4.15(b) shows the continuous surface plot of the map equations f (x,β) as a function
of both x and β for β ∈ [1,3] at r = (1.999)β+1.
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Figure 4.15: (a) Curves of higher order map f (x,β) and their fixed points at β =

{1,1.5, . . . ,5} at r = (2)β+1 and (b) its surface plot at r = (1.999)β+1
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4.4.4 Super-Logistic Map: β = α and α > 1

This map also resembles logistic map where both shaping parameters are equal but greater
than one, so it is called super-logistic, i.e., above logistic and is given by

f (x,r,α) = r (x (1− x))α , α > 1 (4.37)

Figure 4.16 shows samples of the bifurcation diagrams for both positive and negative r
for a set of values of the parameter α. Figure 4.16(a) indicates the continuity as values of
parameters near the logistic map yield bifurcations in both positive and negative parameter
cases. Yet, a portion of the bifurcation diagram is divided between real and imaginary
parts of the response.

(a) (b)

Figure 4.16: Bifurcation diagrams of super-logistic map for various values of α starting at
initial point x0 = 0.5

Figure 4.17(a) shows the curves of the higher order map at different values of α for r > 0
such that r = rmax. For this map, the appearance of either points in the bifurcation diagram
is governed by their stability ranges as in the case of higher order map. Figure 4.17(b)
shows the continuous surface plot of the map equations f (x,α) as a function of both x and
α for various values of α ∈ [1,3] at r = (1.999)2α where the curves become narrower.
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Figure 4.17: (a) Curves of super-logistic map f (x,α) and their fixed points at α =

{1,1.5, . . . ,5} at r = (2)2α and (b) its surface plot at r = (1.999)2α

4.5 A New Bifurcation Diagram
Figure 4.18 shows the new bifurcation diagram plotted against the parameter β at α = 1 and
various values of r for r > 0. The analysis of this diagram is presented in this subsection.
The diagrams behave in contrast to the bifurcation diagrams versus the parameter r, where
at lower values of β chaotic response is exhibited in the full range. The range of output
response x starts to shrink gradually followed by the appearance of periodic orbits that
end with period-4, then period-2, and finally fixed response that disappears at a certain
value of β.

(a) (b) (c) (d)

Figure 4.18: Bifurcation diagrams versus the parameter β for different values of the
parameter r > 0 starting at initial point x0 = 0.5

4.5.1 Positive Parameter r ≥ 0

4.5.1.1 Range of β

In the analysis of the bifurcation diagram versus the parameter r, we could specify ranges
of r for which bifurcations exist depending on the value of β as in (4.32). Similarly, for
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the bifurcation diagram versus β, we get:

βmin =
lnr
ln2
−1, (4.38)

where βmin is the minimum value of β for which the bifurcation diagram exists and could
be plotted as shown in Fig. 4.19. Figure 4.18 indicates that as r increases, the starting
point βmin shifts gradually according to its value given by (4.38).

Figure 4.19: The minimum value of β for which the bifurcation diagram exists (βmin) as a
function of the system parameter r such that r > 0

The upper bound of β at which the bifurcation diagram still exists represents a sudden
change from the presence of a non-trivial fixed point to no response at all (or divergent
response).

4.5.1.2 Corresponding Allowed Values of r

Starting at r = 2, bounded responses are confined to the range β > 0, the range in which we
are interested, as shown in Fig. 4.18. This is consistent with the expression for calculating
βmin given by (4.38), where for r < 2→ βmin < 0. Starting at r = 4, the bifurcation diagram
is re-shaped and translated to start at βmin = 1 at r = 4 (Fig. 4.18(d)) and this value for βmin
increases with increasing r according to (4.38). As r increases to be greater than 5, the
output responses range [xmin, xmax] shrinks than the interval [0,1] gradually. Figure 4.20(a)
shows snapshots for the bifurcation diagram versus the parameter β for different values
of r. The snapshots indicate the shifting of the starting point βmin as r increases and the
shrinking of the output responses starting at r > 5. It is worth mentioning that similar
diagrams exist for r < 2 but the corresponding range of β includes negative values.

4.5.2 Negative Parameter r < 0

For r < 0, no bounded responses exist in the range of β ∈ [0,1] as shown in Fig. 4.20(b).
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(a) (b)

Figure 4.20: Snap shots of the bifurcation diagram versus β starting at initial point x0 = 0.5
for (a) r = {2,3, . . . ,7} and (b) r = {−7,−6, . . . ,−1}

4.6 Implementation Issues
The proposed map in its general form represents a tradeoff between the possibility of
utilizing the same setup as various chaotic generators for multiple different sequences and
the complexity of executing the power operation. Designs that consider the studied special
cases of the map or others with the value of one of the parameters are known at design
time are also encouraged. All the previous bifurcation diagrams have been plotted using
MATLAB and the complex power operator (ˆ), where all operations are in the complex
plane plotting both the real and imaginary parts of the final steady state response(s). Some
maps exhibit real results only with zero imaginary parts, others have complex results but
with chaotic responses in real parts only, and some have chaotic responses in both real and
imaginary parts of the response. Would it be more convenient, at least for some cases, to
use an operator or a function that performs the power operation in real arithmetic instead
of complex? How much would the results differ in both fixed-point and floating-point
implementations?

In the regions of divergence, calculations on MATLAB do not yield the same result
when using the map equation given by (4.5) in which MATLAB selects the minimum using
the built-in function min(.) and (4.7) in which we compare according to the threshold
intersection point xk. Although the time waveforms and bifurcation diagrams for the real
part of x are the same, the imaginary parts calculated using the two methods differ. The
issue that the first method of calculation yields infinite imaginary part, while the second
method yields zero imaginary part could be owed to several inconsistencies in MATLAB.
Large values that could be considered infinity yielded for the real part explains the cutoff

that occurs in the bifurcation diagram for fractional β. Moreover, attempting to study the
previous behaviors and generate bifurcation diagrams of the proposed map at its different
special cases confined to the real plane, we used the function realpow(.). However, an
“Error” is yielded in some cases, using (4.5), that forces the program to stop. The function
realpow(.) has been designed to report an “Error” only when attempting to use it with an
expression that produces a complex result. However, in Chapter 6, we record and detail
that this does not always happen. Cases that yield “Error” in calculating the responses of
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the proposed map include:

• When the system parameter r is less than zero, even when a complete bifurcation
diagram till chaotic behavior has been reported using (ˆ), e.g., for the transition map.
This is due to raising negative values of x to the power of non-integers.

• When the system parameter r is greater than rmax, the value of x is no longer
confined to the interval [0,1] or [0,a/b]. Instead of complete divergence to −∞
that occurs when using (ˆ) keeping the results till rmax and plotting them, using
realpow(.) yields an “Error” and forces the program to stop.

A comprehensive study of various implementations for the power function is included
in Chapter 6. The study concentrates on negative values of the base raised to the power
of non integer, and limits as either base, exponent, or both approach infinitesimal tiny
or infinitely huge values. But at first fixed-point implementations of chaotic generators
are considered which are widely spread as explained in Chapter 2. These finite precision
implementations must have an impact on the properties of these generators that were
derived assuming infinite precision (and infinite time). However, this impact has not been
throughly studied before according to our survey in Chapter 2. Consequently, we devote the
next chapter to study finite precision logistic map in two cases: the conventional case, and
the negative control parameter case, or mostly positive logistic map, proposed in Chapter 3.
The next two chapters explore the differences from analytical expected behavior of any
mathematical problem imposed by implementation concentrating on the set of problems in
which we are interested, explain the difficulties facing the implementation of the proposed
map, and construct a base for determining the best way of implementing the proposed
general powering map.

86



Chapter 5: Finite-Precision Logistic
Map
Unseen behavior lying between the analytical study of chaos and its representation on
digital computers deserves further exploration. The studies presented in this chapter on
chaotic maps under fixed-point arithmetic can be extended to floating-point arithmetic
as well, where floating-point decimals are non-uniformly distributed over the discrete
domain. In this chapter, we demonstrate that executing the operations constituting the
discrete 1D logistic map, for either positive or negative control parameter, individually
in a sequential manner with the truncation step implemented between them would have
rather catastrophic effect on the properties of the logistic map. Moreover, the order of their
execution yields significantly different behaviors. The proposed finite precision logistic
map is similar to digital hardware designs in which the logistic map is realized using
limited precision implemented in fixed-point arithmetic. Throughout our discussion, four
main parameters of the finite precision logistic map are considered, two of them are not
new which are the system parameter λ and the initial point x0. The other two parameters
are introduced by the finite precision nature of the map which are the precision p and the
order of executing f (x).

The effect of varying precision on several properties of the logistic map and the
differences from the analytical model are discussed. These properties include the key-
points of the bifurcation diagram, periodicity of the generated sequence, and MLE as a
measure of the chaotic behavior of the system. Sensitive dependence on initial conditions
is also considered along with studying each property. First, we discuss how the 1D
logistic map can be represented in digital hardware realizations such that it can work for
either positive parameter or negative parameter cases and the assumptions required to
simulate this representation in software environments. Six different versions of the map
are proposed based on the order of execution of the operations constituting its expression.
Two of these versions are chosen primarily to conduct various experiments on them and the
results obtained for the two chosen map versions are demonstrated. These results include:
the bifurcation diagram, its key-points, time waveforms, periodicity of the generated
sequence, and two different calculation methods for MLE.

5.1 Digital Representation of the Logistic Map
Fixed-point representation uses integer hardware operations controlled by a given conven-
tion about the location of the fractional point, e.g., 6 bits (binary) or digits (decimal) from
the right. Fixed-point hardware is generally less expensive than an equivalent floating point
hardware implementation. Binary fixed point is usually used for special-purpose applica-
tions on embedded processors, but decimal fixed point is more common in commercial
applications.

5.1.1 Assumptions of Fixed-Point Binary Representation
Using finite precision fixed-point binary system, the evaluation of the logistic map func-
tion is carried out in a similar manner to a microprocessor instruction set, i.e., it is
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subdivided into a sequence of basic operations. MATLAB fixed-point toolbox is used
to simulate/mimic digital representation of the logistic map on FPGA. The ranges of x
and λ obtained in Chapter 2 for conventional logistic map (x ∈ [0,1] and λ ∈ [0,4]) and
in Chapter 3 for mostly positive logistic map (x ∈ [−0.5,1.5] and λ ∈ [−2,0]) mean that
the maximum number of integer bits needed is 4 bits. The included range (−2 ≤ λ ≤ 4) is
totally representable in 4 bits in two’s complement coding. In addition, it is guaranteed
that the resulting value is at most bounded by the relation −0.5 ≤ x ≤ 1.5, i.e., no extra bits
are needed for handling overflow conditions.

The total number of bits or bus width, alternatively called the word length, is denoted
by p for precision which is represented as pi integer bits and p f fractional bits such that
p = pi + p f . It is worth mentioning that the number of fractional bits controls the step
length that we can move by along λ values. The accuracy of λ can not exceed 2−p f as
listed in Table 5.1 which does not exceed two decimal places in our discussion. The

Table 5.1: Relation between number of fractional bits and step length

p f maximum step length
5 2−5 = 1/32
6 2−6 = 1/64
7 2−7 = 1/128
...

...

range of different number of fractional bits to be studied needs specification, so precisions
between 8 and 27 are selected. The suggested range is owed to the following reasons;
the lower bound p = 8 implies having the same number of bits in both the integer and
the fractional parts where both equal 4 bits. The upper bound p = 27 resembles the
equality of the number of fractional bits p f = 23 to the number of bits in the fractional
part f of the single-precision binary floating-point representation which is the smallest
precision among those used in most software implementations. Single-precision binary
floating-point represents a number as (−1)s×1. f × (2)e, where s ∈ {0,1} is the sign bit, f
is the fractional part (trailing significand) represented in 23 bits with an implicit leading
significand bit of 1, and e is the exponent represented in 8 bits. In addition, the following
assumptions are made in simulating digital representation of the logistic map:

• The values of x, λ, and the output of each basic operation are stored in finite length
registers, i.e., they are fixed-point variables.

• All operations are carried out assuming truncation (rounding towards zero).

• Numbers are represented in two’s complement coding.

5.1.2 Six Different Maps in Fixed-point Arithmetic
The result of the studied function

f (x,λ) = λx(1− x) (5.1)

can be calculated in multiple ways in fixed-point arithmetic. For instance, consider the
following expressions:
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• f1(x,λ) = λ(x(1− x))

• f2(x,λ) = (λx)(1− x)

• f3(x,λ) = (λ(1− x))x

Are they equivalent? Is the associativity property maintained in a fixed-point system?
Moreover, the operations could be grouped such that suboperations are performed in
different order as follows:

• f4(x,λ) = (λ(x− x.x))

• f5(x,λ) = (λx)− (λ(x.x))

• f6(x,λ) = (λx)− ((λx)x)

Throughout the rest of the discussion, all results are obtained by MATLAB starting
at initial point x0 = 0.5, discarding the first 1,000 iterations and plotting the next 500
ones, except where stated otherwise. Figure 5.1 shows the bifurcation diagram versus
the system parameter λ at p = 9, where it is supposed that different ranges for the control
parameter λ cause the logistic map to exhibit different phases of behavior. However, it
could be noticed that different orders of execution yield different bifurcation diagrams
that are not the same as those expected from mathematical analysis regarding: key-points,
output range, transition from a type of response to another, and density of points at ranges
that are supposed to exhibit chaotic behavior. Various properties that have been considered
as facts in analyzing the 1D discrete logistic map mathematically are violated in finite
precision environments. Several examples are detailed below.

• Initial points with perturbations only in the least significant bit, i.e., x0 = 2−p f could
cause the response to die out as if the orbit contained one of the zeros of (5.1), i.e.,
x = 0 or x = 1. This could be owed to getting a value in which the first p f bits
after the fractional point are zeros. Reviewing how the value at the next iteration is
calculated

x1 = λx0(1− x0)
= λ2−p f (1−2−p f )
= λ(2−p f −2−2p f )

For finite precision representation with p f fractional bits, (2−p f −2−2p f ) = 0 which
is not correct in the ideal infinite precision case. Moreover, any quantity less than
2−p f will be considered zero after truncation to only p f fractional bits.

• Analytically, it would be expected that initial points with difference equals 1 between
them yield the same steady state behavior (since the same orbit), i.e., the results
associated with any initial point x0 ∈ (0,1), for positive parameter case, are the
same as those associated with y0 ∈ (0,1) if x0 + y0 = 1. However, this property is
not always satisfied in finite precision case due to truncation effects as previously
discussed.
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• Although analytically the sensitive dependence on initial conditions dominates at
ranges of λ which exhibit chaotic behavior only, this property differs for finite
precision systems. The bifurcation diagram over the whole range of λ might alter
starting at different initial points. Figure 5.2 shows that the bifurcation diagram
differs from the previous case starting at different initial point x0 = 0.125.

From the bifurcation diagrams, f3(x) and f6(x) exhibit smoother maps and a behavior that
seems to be more similar to that analytically expected from the logistic map than the other
alternatives. Hence, the rest of the discussion will concentrate on these two versions of the
logistic map, the different properties that they exhibit, and how much they conform to the
behavior expected from the mathematical analysis of the map.

(a) f1(x) (b) f2(x) (c) f3(x)

(d) f4(x) (e) f5(x) (f) f6(x)

Figure 5.1: Bifurcation diagram versus the control parameter λ for the six maps starting at
x0 = 0.5 at p = 9

(a) f1(x) (b) f2(x) (c) f3(x)

(d) f4(x) (e) f5(x) (f) f6(x)

Figure 5.2: Bifurcation diagram versus the control parameter λ for the six maps starting at
x0 = 0.125 at p = 9
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5.2 Properties of the Selected Maps
In order to study the effect of increasing the number of fractional bits and the impact of
low precisions on the properties of logistic map, the bifurcation diagram of f3(x) versus
the control parameter λ is plotted for different precisions in Fig. 5.3, while that of f6(x) is
shown in Fig. 5.4, both starting at initial point x0 = 0.5. The resulting diagrams reveal that
the properties of the logistic map are so much affected by precision. It could be noticed
that the affected properties include: the key-points of the bifurcation diagram, the number
of levels or the sequence of values at a fixed value of λ, and how much chaotic is the
behavior at high values of λ, near λmax, or the degree of chaos.

(a) p = 8 (b) p = 10 (c) p = 12

(d) p = 14 (e) p = 16 (f) p = 18

(g) p = 20 (h) p = 22 (i) p = 24

Figure 5.3: Bifurcation diagram of f3(x) versus the control parameter λ for different values
of bus width starting at x0 = 0.5

5.2.1 Key-points of the Bifurcation Diagram
The key-points of the bifurcation diagram play an important role as design specifications
of the logistic map utilized as pseudo-random number generator (PRNG) in various
applications. This is true for the conventional one with single control parameter λ or
generalized maps with more parameters as those proposed in Chapter 3 and Chapter 4. We
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(a) p = 8 (b) p = 10 (c) p = 12

(d) p = 14 (e) p = 16 (f) p = 18

(g) p = 20 (h) p = 22 (i) p = 24

Figure 5.4: Bifurcation diagram of f6(x) versus the control parameter λ for different values
of bus width starting at x0 = 0.5

study the impact of finite precision implementations on the key-points of the bifurcation
diagram whose analytical values have been defined in Chapter 2. The values of these
key-points in finite precision case differ from the analytical expected behavior due to the
truncation caused by finite precision systems. Yet, this difference decreases as p increases
as discussed below.

5.2.1.1 Double-Precision Floating-Point

Using double-precision floating-point calculations, λb1p = 0.969, xmaxp = 0.999738909465984,
λb1n = −0.967, xminn = −0.49974730424707, and xmaxn = 1.5. Although these results
should be more accurate than those obtained using fixed-point calculations, they are still
not the same as those expected from the conducted mathematical analysis. The differences
between the results of double-precision floating-point calculations and the analytical ex-
pected results could be owed to their relative inaccuracy. They do not satisfy nether infinite
precision nor infinite time conditions assumed analytically. The values of λb1p and λb1n

are obtained by comparison with an optimum threshold chosen as eps which is defined
in MATLAB as the spacing of floating-point numbers. Using eps with no arguments
returns 2(−52) ' 10(−16), which corresponds to the value of this spacing in double-precision
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floating-point representation. In addition, these values are calculated using accuracy
0.001, i.e., rounded to the third decimal digit after the point. As previously mentioned,
floating-point arithmetic implementations of chaotic generators and their impact on their
various properties need to be studied.

5.2.1.2 Fixed-Point Implementation

Using fixed-point map versions f3(x) and f6(x), let us consider the positive control pa-
rameter side at first, Figure 5.5(a) shows the values of λb1p , obtained by comparing with
eps, at different precisions ranging between p = 8 and p = 26 for various initial points
(x0 = 0.125,0.25,0.375 and 0.5). For the map f3(x), Fig. 5.5(a) shows that λb1p starts at
values higher than its analytic value “1” at low precisions, then starts to decrease gradually
approaching “1”. On the other hand, f6(x) seems insensitive to/independent on precision
from the viewpoint of the value of λb1p . Although various values for initial point yield the
same plot, we cannot generalize it as a fact that the value of λb1p is independent on initial
conditions. Moreover, this result should also be tested for the other map versions if they
are to be used instead.

For lower and upper bounds on the output range, we calculate them at multiple initial
points then consider the average of these different results. Figure 5.5(b) shows the average
value xmaxpavg of upper bound on responses starting at multiple initial conditions versus
different precisions. For both maps, xmaxpavg starts at values lower than its analytic value
“1” at low precisions, then starts to increase gradually, with some fluctuations, approaching
“1”.

(a) (b)

Figure 5.5: The key-points of the bifurcation diagram for both positive control parameter
maps at different precisions (a) The first bifurcation point and (b) The average maximum
value

Similarly, the key-points of the bifurcation diagram in the negative control parameter
side are studied. Figure 5.6(a) shows the values of λb1n where similar comments to
the positive control parameter case could describe the plot but for the absolute value
|λb1n | instead. Figure 5.6(b) shows the values of xminnavg at different precisions , whereas
Fig. 5.6(c) shows the values of xmaxnavg . The map f6(x) seems to be less sensitive to
precision variation than f3(x). The average minimum value xminnavg starts at low precisions
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with absolute values which are lower than 0.5, whereas xmaxnavg starts with values which
are lower than 1.5. As precision increases, the keypoints approach their analytical values.

(a) (b) (c)

Figure 5.6: The key-points of the bifurcation diagram for both negative control parameter
maps at different precisions (a) The first bifurcation point, (b) The average minimum value,
and (c) The average maximum value

5.2.1.3 Sensitivity to Initial Conditions

From Figures 5.5(a) and 5.6(a), the values of λb1p and λb1n seem insensitive to the value
of initial point x0. On the other hand, the effect of initial point on the values of xmaxp ,
xminn , and xmaxn can not be avoided in finite precision implementations especially at low
precisions. The value xmaxp occurs at λ = 4, whereas xminn and xmaxn occur at λ = −2.
Both values of λ exhibit maximum chaotic behavior, where sensitivity to initial conditions
is a basic characteristic of the bifurcation diagram. Analytically, the “infinite” sequence
generated at maximum chaotic behavior has a lower and upper bounds which “must” be
reached. Yet, in finite precision implementations, the length of the generated sequence is
limited by both finite precision and time. Thus, it is not guaranteed whether its lower and
upper bounds shall coincide with the analytical values or not. The dependence of these
bounds on initial points is unavoidable in finite precision, especially at low precisions.

5.2.1.4 Precision Threshold

From Figures 5.5 and 5.6, it is clear that the values of the key-points derived through
mathematical analysis are the asymptotes that finite precision values approach as p→∞.
The thresholds for used precision could be selected as acceptable threshold or safer
threshold. An acceptable precision threshold could be set as the value of p at which the
key-point starts to exhibit fixed value. For instance, p = 14 for f3(x) and p = 12 for f6(x).
Moreover, the value of p at which the key-point approaches its analytical value more could
be considered as a safer threshold. For instance, p = 23 for f3(x) and p = 20 for f6(x).

5.2.2 Time Waveforms
Another important perspective that should be studied in the behavior of the logistic map is
the time waveforms in the ranges of λ that should exhibit chaotic behavior. Mathematically
speaking, the steady state response should be in the form of a new value generated at each
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discrete time instant such that no periodicity can be recognized. In this section, the time
waveforms at value of λ that are supposed to be chaotic are analyzed. The effect of varying
the used precision and the initial point at which the orbit starts are explained.

5.2.2.1 Precision and Initial Point Effects at λ = 3.9375

Figure 5.7 shows the time waveforms at λ = 3.9375 of the map f3(x) with positive control
parameter starting at different initial conditions for different precisions. Figure 5.8 shows
the time waveforms of the map f6(x) at the same λ. The reason behind choosing this value
is the interest in this range near λ = 4 as it exhibits the widest chaotic response which is
rich in applications as previously discussed. This specific value corresponds to an exactly
representable fixed-point number with four fractional bits; corresponding to p = 8 the
narrowest precision that is examined in our study. It should be noted that a value like this
for λ did not appear in the bifurcation diagrams as it was previously explained that the
accuracy, of the value of λ, does not exceed two decimal places. The waveforms show
that the versions of the map implemented in finite precision exhibit periodic behavior for
this value of λ which is supposed to be chaotic. The practical meaning of this periodic
behavior is that the sequence generated by the map is not efficiently random, instead it is a
finite length periodic sequence.

(a) p = 12 (b) p = 16

(c) p = 20 (d) p = 24

Figure 5.7: Time waveforms of f3(x) at λ = 3.9375 starting at different initial conditions
and various precisions
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(a) p = 12 (b) p = 16

(c) p = 20 (d) p = 24

Figure 5.8: Time waveforms of f6(x) at λ = 3.9375 starting at different initial conditions
and various precisions

In the following discussion, we attempt to study the reason behind the strange result
obtained in Fig. 5.8(c). In addition, other values of λ that are expected to yield chaotic
behavior from the mathematical analysis in infinite precision are not chaotic at all, instead
they yield periodic responses in the steady state. The cobweb plot shown in Fig. 5.9 is a
rough plot for the orbit of x starting at different initial points x0, where the graph of the
map function is sketched together with the diagonal line y = x. Although the four cobweb
plots seem different, the steady state, colored in red and blue, in case of x0 = 0.125 or
0.25 is the same as the plot in case of x0 = 0.5 which fluctuates between six different
values, i.e., period-6. The output states are as follows (these are the decimal equivalents
of the binary sequences represented in the used fixed-point representation at p = 20, i.e.,
16 fractional bits): 0.5→ 0.984375→ 0.0605621337890625→ 0.2240142822265625→
0.6844635009765625→ 0.85040283203125→ 0.5009307861328125→ 0.984375 . . . .
Any orbit including one of these six values, consequently the others, (for this order, p,
and λ) will converge to a sequence that consists only of them. On the other hand, the
case x0 = 0.375 exhibits chaotic behavior, since the orbit has a non-periodic sequence.
As previously mentioned, assuming infinite precision such a type of solution could be
mathematically identified through solving f 6(xp) = xp. This equation along with the
stability analysis of the periodic point; |( f 6)′(xp)| = 1 would yield value(s) for λ at which
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this solution starts to appear and the corresponding values for x. According to [111], the
value λ = 3.9375 is really close to one of the real roots of the yielded polynomial.
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Figure 5.9: Cobweb plots of f6(x) starting at different initial conditions (a)x0 = 0.125,
(b)x0 = 0.25, (c)x0 = 0.375, and (d)x0 = 0.5

The cases at which no chaotic behavior is obtained depend on several factors, e.g., the
values of λ, p, and x0. Any combination of these factors might drive us away from the
expected chaotic behavior yielding a periodic solution instead, which may sometimes be
of a significantly short period. General notes can describe the time waveforms at values of
the parameter that are analytically close to maximum chaotic response such as: very low
precisions exhibit undesirable periodic behavior for almost all initial conditions, and high
precisions exhibit chaotic behavior for some or most of the initial conditions. However,
the phenomena of deviation from chaotic behavior does not appear in a continuous manner
along with varying precision in the intermediate range. The solution could be chaotic at a
certain precision p, then become periodic at the next precision p + 1. The same note could
be used to describe the case fixing the used precision and varying the initial point.

5.2.2.2 Precision and Initial Point Effects at λ = 3.984375

For further illustration, Figure 5.10 shows the time waveforms of f3(x) for λ = 3.984375
which is closer to λmax = 4, while Fig. 5.11 shows them for f6(x). This value is repre-
sentable in at least six fractional bits corresponding to p = 10. Although the neighborhood
of this value for λ exhibits chaotic behavior and does not contain near values that generate
periodic sequences, Fig. 5.10 shows how some combinations of p, and x0 could also yield
faulty periodic response. Similar tracking of the calculations as that conducted for the
previous case could be used to illustrate how the recurrence settles to a specific periodic
sequence instead of the chaotic behavior expected from mathematical analysis.

5.2.2.3 Precision and Initial Point Effects at λ = −1.9375 and λ = −1.984375

Figures 5.12 and 5.13 show the time waveforms at λ = −1.9375 using f3(x) and f6(x)
respectively starting at different initial points. The figures show how some combinations
of p, and x0 could also yield faulty periodic response. Similar tracking of the calculations
could be performed to illustrate how the recurrence settles to a specific periodic sequence
instead of the chaotic behavior expected from mathematical analysis. Figures 5.14 and 5.15
could be described similarly and are included for further illustration on the impact of
finitude on behavior of both positive and mostly logistic maps. They could lose their
characteristic long periods at various combinations of p, λ, and x0. The possibility of
exhibiting short periods and getting these faulty undesired responses decreases alot along
with increasing the used precision.
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(a) p = 13 (b) p = 16

(c) p = 19 (d) p = 22

Figure 5.10: Time waveforms of f3(x) at λ= 3.984375 starting at different initial conditions
and various precisions

5.2.2.4 Precision Threshold

From the above discussion and further figures exhaustively covering the whole studied
range of precisions for different initial points, we could define the minimum threshold
precision, according to the time waveforms, as the precision at which the response is
chaotic irrespective of the initial point. This threshold precision could, for instance, be set
to p = 21 for f3(x) and p = 23 for f6(x) as acceptable thresholds but not very safe. The
requirements on time waveforms would lead us to prefer adhering to the safer precision
thresholds decided in the previous section handling key-points of the bifurcation diagram
instead of going for the acceptable threshold only.

5.2.3 Periodicity of the Generated Sequence
The sequences corresponding to different parameters (p, f (x), λ, and x0) which are
generated by the digitally implemented logistic map with finite precision do not follow
an identified, continuous manner as detailed in the previous subsection. It would be
quite useful to point out which combinations of the parameters yield responses other than
those expected through mathematical analysis. Reaching such combinations could be
described as an attempt to solve the inverse problem where the value of xi+1 is known
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(a) p = 13 (b) p = 16

(c) p = 19 (d) p = 22

Figure 5.11: Time waveforms of f6(x) at λ= 3.984375 starting at different initial conditions
and various precisions

and the question is: what is the value of xi that had yielded it?, for given values of p and
λ, as well as an order of execution f (x). The answer to such a question would not be
straight forward, because the register holding the successive values of x has a finite length.
Consequently, the real number, possibly irrational, yielded by solving the inverse problem
should be mapped to finite precision fixed-point arithmetic. However, the non-linearity
of the relation representing the logistic map makes it hard to decide whether the mapped
value should be lower or higher than the analytical solution. The number of steps above or
below in the used precision cannot be easily decided either.

The type of the response in the steady state of the recurrence is obtained in terms of the
length of the period formed by the successive solutions, i.e., a sequence of k unique values
is described as “period-k”. The factors that affect k include: the order of execution of the
operations ( f ), the value of the control parameter λ, the initial point at which the recurrence
starts x0, in addition to the precision p. For high precisions, parallel programming will
probably be considered to overcome long runtime. However, the following primarily
results have been obtained for rather low precisions.
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(a) p = 12 (b) p = 16

(c) p = 20 (d) p = 24

Figure 5.12: Time waveforms of f3(x) at λ = −1.9375 starting at different initial conditions
and various precisions

5.2.3.1 Positive Logistic Map (Positive Control Parameter Case)

Figure 5.16(a) shows the maximum period, or maximum k, obtained with different orders
of execution plotted versus precision. It seems that f3(x) = (λ(1− x))x yields relatively
higher periods, yet some other orders are not bad. The best are f2(x), f3(x), and f6(x) as
we had decided before from the bifurcation diagrams in section 5.1. It could be noticed
that higher precisions provide more levels among which the solution(s) could take their
values allowing higher values for k.

5.2.3.2 Mostly Positive Logistic Map (Negative Control Parameter Case)

Figure 5.16(b) shows how the logistic map with negative control parameter exhibits longer
periods than that with positive control parameter and at lower precisions. Moreover, as
precision increases, nearly all orders generate sequences with an acceptable maximum
period, i.e., the dependence of the results on the order of execution is no longer that much
important at higher precisions. This indicates the merits of the proposed logistic map
with negative control parameter over the conventional logistic map with positive control
parameter.
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(a) p = 12 (b) p = 16

(c) p = 20 (d) p = 24

Figure 5.13: Time waveforms of f6(x) at λ = −1.9375 starting at different initial conditions
and various precisions

5.2.4 Maximum Lyapunov Exponent
As previously mentioned in Chapter 2, MLE is an indication whether the system exhibits
chaotic behavior or not. Chaotic orbits are characterized by their sensitive dependence on
initial conditions, i.e., how orbits starting at close initial conditions differ as the iteration
index n→∞. Analytically, the largest value for MLE is obtained at λmax = 4, which
corresponds to maximum chaotic behavior. A chaotic orbit is a synonym for aperiodicity,
i.e., period→∞ under the impractical assumptions n→∞ and p→∞. On the other hand,
finite precision systems and finite time simulations do not allow this ideal case to happen.
Instead, both the number of iterations and the allowed set of different numbers that could
be generated are limited. Two methods for calculating MLE are explained in the next two
subsections.

5.2.4.1 Analytical Derivative Formula

Finite time calculations could be used to evaluate MLE with the previously proposed
formula

MLE = lim
n→∞

(
1
n

n−1∑
i=0

ln | f ′(xi)|) (5.2)
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(a) p = 13 (b) p = 16

(c) p = 19 (d) p = 22

Figure 5.14: Time waveforms of f3(x) at λ = −1.984375 starting at different initial
conditions and various precisions

choosing n large enough for MLE value to reach its steady state. In the analytical derivative
formula, we calculate MLE as follows

MLE =
1
n

n−1∑
i=0

ln |λ(1−2xi)| (5.3)

such that n = 100,000.

5.2.4.2 Numerical Approximation of First Derivative

Is the previous way used to evaluate f ′(xi) = λ(1− 2xi) not totally correct with finite
precisions? Shall we instead use the numerical approximations for first derivative which
are more compatible with a discrete map than continuous differentiation rules? These
questions are investigated in the following discussion. Several numerical approximations
were tried in our simulations: forward difference formula, backward difference formula,
central difference formula, and five point method. All of them yielded quite similar results,
yet the rest of the discussion handles forward difference formula for simplicity.

Consider the forward difference definition of the first derivative

f ′(xi) =
f (xi +∆)− f (xi)

∆
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(a) p = 13 (b) p = 16

(c) p = 19 (d) p = 22

Figure 5.15: Time waveforms of f6(x) at λ = −1.984375 starting at different initial
conditions and various precisions
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Figure 5.16: Maximum period obtained with different orders of execution plotted versus
precision p = 8→ 13 for (a) λ > 0 and (b) λ < 0

The logarithm for the absolute value of this quantity is

ln |
f (xi +∆)− f (xi)

∆
|
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since ∆ > 0, it yields
ln | f (xi +∆)− f (xi)| − ln∆

Substituting in the MLE equation

MLE =
1
n

n−1∑
i=0

[ln | f (xi +∆)− f (xi)| − ln∆]

=
1
n

n−1∑
i=0

ln | f (xi +∆)− f (xi)| −
1
n

n ln∆

= [
1
n

n−1∑
i=0

ln | f (xi +∆)− f (xi)|]− ln∆

where ∆ theoretically cannot be less than 2−p f which is the minimum representable value.
However, for practical issues and to avoid overflow, ∆ is set to quite higher value. Thus,

MLE =
1
n

n−1∑
i=0

ln
| f (xi +∆)− f (xi)|

∆
(5.4)

and

MLE = [
1
n

n−1∑
i=0

ln | f (xi +∆)− f (xi)|]− ln∆ (5.5)

both theoretically seem to be equivalent correct ways of evaluating MLE. In fact, they yield
equal results in double-precision. It is worth mentioning that both methods were tried in
double-precision floating-point precisions for λ= 3.9375 and both yielded MLE= 0.525998
after 100,000 iterations and MLE= 0.525981 with ∆ = 2(−35) in the second method.
On the other hand, λ = 3.96875 yielded MLE= 0.583946 and λ = 3.984375 yielded
MLE= 0.62966. This value for ∆ has been carefully chosen in order that it does not cause
overflow. However, results obtained in limited precisions do not match this theoretical
hypothesis that the two methods are equivalent. Some of the obtained results do not match
and others are so strange that they make us doubt the validity of both approaches for
calculating MLE in finite precision fixed-point arithmetic and the reliability of the numbers
computed through them in deciding how much chaotic a system is. Yet, the problems in
calculating MLE using both methods disappear completely at quite higher precisions and
dominate only at relatively low precisions less than p = 22. A safe precision threshold
from the viewpoint of MLE calculation could be set to p ≥ 22 as illustrated by Fig. 5.17
and 5.18.

We conclude that at rather low precisions, MLE cannot be used as a standalone
indicator of chaotic behavior without considering the corresponding sequence length. The
value of MLE calculated through either of the two methods could be falsely positive
while the output sequence is clearly periodic. This result come in accordance with the
discussion presented in [69]. The procedure presented in this chapter could be repeated
for generalized versions and other maps according to the allowed ranges of different
parameters in order to study the impact of finite precision fixed-point implementation on
their properties. It could also be extended to floating-point arithmetic implementations in
both real and complex plane.
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Figure 5.17: MLE evaluation in two different methods using f3(x) starting at x0 = 0.125 at
(a) λ = 3.984375 and (b) λ = −1.984375
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Figure 5.18: MLE evaluation in two different methods using f6(x) starting at x0 = 0.125 at
(a) λ = 3.984375 and (b) λ = −1.984375
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Chapter 6: Elementary Functions: The
Power Operation z = xy

Besides the basic arithmetic operations, IEEE Std 754-2008 specifies additional operations
which are recommended for all supported arithmetic formats as discussed in Chapter 2. In
a specific programming environment, these recommended operations might be represented
by operators or by functions whose names might differ from those in the standard. In
this chapter, we first highlight the remarkable importance of the power function in many
applications, besides our proposed general powering map. For normal and subnormal
floating-point numbers, reasons for the complexity of evaluating pow have been listed
in Chapter 2. Yet, when one or both of the arguments of pow is a special value (of
which there are numerous combinations), defining and constructing results that both
mathematically make sense and conform to various standards is a challenge. Many
indeterminate cases arise from passing these special values as arguments for pow. In our
study, we are concerned with the special values of the operands of the power function
z = xy. The most important special values are ±0, ±1, ± infinity, and NaN. Our study is
organized as follows.

• Studying how the IEEE Standard for Floating-Point Arithmetic 754-2008, C99
and C11 standards define the correct results of this operation when dealing with
the special values of the operands covering nine different single variable power
functions which are: (+1)y, (+0)y, (+∞)y, (NaN)y, (−1)y, (−0)y, (−∞)y, (x)(+∞), and
(x)(−∞). By (±∞)y and (x)±∞, we mean limn→±∞ ny and limn→±∞ xn respectively,
yet we use the former for simplicity.

• Proposing a mathematically justified definition for the correct results of the power
function over the real field on the occurrence of these special values as operands
for the function. The definition attempts to satisfy the continuity of the studied
function as we go from plane to plane (complex, real, integer and natural) without
violating other mathematical properties. The missing expressions in the standards
for complex power function are covered mathematically as well.

• Testing different software implementations of the binary floating-point power func-
tion for how they deal with these special values. Our tests include gcc compiler
version 4.5.2 along with math library and MathCW library, MATLAB versions 6.5,
R2012a, R2012b, and R2014b, Octave version 3.6.2, and Mathematica versions 8
and 9.

• Testing different software implementations of the decimal floating-point power
function for how they deal with these special values. Our tests include gcc compiler
version 4.5.2 along with DecNumber, Intel, and MathCW decimal libraries.

• Classifying the behavior of different programming languages from the point of view
of how much they conform to the current standards and whether they include any
form of inconsistency among them or incompatibility between different versions of
the same software.
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6.1 When do we Need to Perform the Calculation xy?
Equations that model the behavior of systems that are of significant importance to engineers
frequently involve the exponentiation operation xy. Real world applications that need
to calculate a certain value using an equation involving computing xy are numerous.
Exponentiation is used extensively in many fields with applications such as:

• Finance and economics: compound interest.

• Biology: bacterial decay and population growth.

• Chemistry: chemical reaction kinetics and radioactive decay.

• Electromagnetics and physics: wave behavior.

• Computer science: public-key cryptography.

• Our own example of utilizing it in a chaotic map proposed in Chapter 4.

6.2 Definitions Proposed by IEEE 754-2008, C99, and
C11 Standards

Language standards such as C99, C11, as well as the IEEE Standard for Floating-Point
Arithmetic 754 (IEEE Std 754-2008) specify the expected behavior of floating-point
arithmetic in computer programming environments and the handling of special values
and exception conditions. This section shows the correct results defined for the various
expressions formed by different combinations of the special values of the operands for
the power function. These standards are approximately consistent except for some points
which are not clearly declared in the IEEE standard.

6.2.1 IEEE 754-2008 Standard for Floating-Point Arithmetic (IEEE
Std 754-2008)

IEEE Std 754-2008 published in August 2008 [2] includes nearly all of the original IEEE
Std 754-1985 standard. Tables 6.1 and 6.2 show the results for pow(x,y) for the special
values of the operands x and y as defined in IEEE Std 754-2008. Those results show
that the standard does not propose a clear definition for the cells with ND (ND stands
for Not Defined cases in IEEE Std 754-2008) where the base x = ±∞ except for the
case (±∞)(±0) = +1 and where the exponent y = ±∞ except for the cases (±0)(+∞) = +0,
(±0)(−∞) = +∞, and (±1)(±∞) = +1. This can be overcome by considering pow(+∞,y)
= pow(+0,−y) and pow(−∞,y) = pow(−0,−y) as the function(+0)y is the reciprocal of
(+∞)y. Similarly, the function(−0)y is the reciprocal of (−∞)y. This would give the same
results as those defined in C99 and C11 standards as discussed in the following subsection.

The results show that the power function with the base equal to negative one is
considered a special case only with the exponent equal to ±0, ±∞, non integer, or NaN.
Other integer values for the exponent are not covered in the special cases section of
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Table 6.1: Results for xy for x = +∞, −∞, +0, −0, +1, −1 and NaN (QNaN) as defined
in IEEE Std 754-2008, the result is QNaN for SNaN operands

x

y

+0 −0 odd
int
> 0

even
int
> 0

non
int
> 0

odd
int
< 0

even
int
< 0

non
int
< 0

+∞ −∞ NaN

+∞ +1 +1 ND ND ND ND ND ND ND ND NaN
−∞ +1 +1 ND ND ND ND ND ND ND ND NaN
+0 +1 +1 +0 +0 +0 +∞ +∞ +∞ +0 +∞ NaN
−0 +1 +1 −0 +0 +0 −∞ +∞ +∞ +0 +∞ NaN
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
−1 +1 +1 −1 +1 NaN −1 +1 NaN +1 +1 NaN
NaN +1 +1 NaN NaN NaN NaN NaN NaN NaN NaN NaN

Table 6.2: Results for xy for y = +∞ and −∞ as defined in IEEE Std 754-2008 where
NaN(±∞) = NaN

y
x

x < −1 −1 < x < 0 0 < x < 1 1 < x +0 −0 +1 −1 +∞ −∞

+∞ ND ND ND ND +0 +0 +1 +1 ND ND
−∞ ND ND ND ND +∞ +∞ +1 +1 ND ND

the standard. These other integer exponents are treated normally as negative one raised
to the power of even integer which yields positive one and negative one raised to the
power of odd integer which yields negative one. It should be noted that the standard
specifies two types of NaN: signaling NaN (SNaN) and quiet NaN (QNaN) as detailed
in Chapter 2. An example where SNaN may arise in some environments is the presence
of uninitialized variable on the right hand side of an assignment. The standard further
specifies that attempts to evaluate a function outside its domain shall return a QNaN
and signal the invalid operation exception. Hence, for any SNaN operands, according to
IEEE Std 754-2008, the operation pow(x,y) is invalid and the result is a QNaN. In all our
tables and for the rest of our discussion, we only consider QNaN operands and present the
corresponding operation results. It might be assumed that pow(+1, NaN) and pow(NaN,
±0) should produce a NaN. However, many math libraries return +1 for pow(+1, y) for
any real number y, and even if y is ±∞. Similarly, they produce +1 for pow(x, ±0) even
when x is ±0 or ±∞. Another considerable case is pow(x,y) for finite x < 0 and finite
non-integer y, shall an implementation allow this case? What result shall it return then?
These cases are discussed in detail in section 6.3.

According to IEEE Std 754-2008, the domain of pow(x,y) is [−∞,+∞]× [−∞,+∞].
Two additional power functions are defined in the standard that provide a more strict
and limited domain alternatives. The first is powr(x,y) which restricts the base x to be
positive and returns a NaN when NaN operands or indeterminate expressions occur. The
second is pown(x,n) where the exponent n must be an integer. We are concerned with
pow(x,y) as it represents the widest domain among the three alternatives and it is provided
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by most of the implementations unlike the two other functions which are not implemented
in several libraries. Another considerable note is that a single mathematical expression
may result in different results according to different definitions of various functions in
IEEE Std 754-2008, e.g.,

√
−0 results in different values according to the chosen function

to perform this operation, sqrt(−0), (−0)0.5 and (−0)
1
2 are mathematically equivalent while

the standard defines them as follows:

1. sqrt(−0) = −0

2. pow(−0,y) = +0, for y > 0 and not an odd integer, i.e., pow(−0,0.5) = +0

3. rootn(−0,2) = (−0)
1
2 = +0

Interested readers may find more information about the peculiarities of the IEEE standard
in [54, 55, 58] and potential bugs in pow(x,y) in [65].

6.2.2 C99 and C11 Standards
C99 standard for the C language [1] and C11 [3] are versions of the International standard
concerned with and specifying form and interpretation of programs in the programming
language C. This specification does not define the behavior of signaling NaNs, where
it generally uses the term NaN to denote quiet NaNs. Functions with NaN operand(s)
return a NaN result with no floating-point exception raised except where stated otherwise.
Tables 6.3 and 6.4 show the results for pow(x,y) for the special values of the operands x
and y as defined in both C99 and C11 standards. It is worth mentioning that pow(±0,−∞)
was added to the special cases in C11 and defined to be equal to +∞. However, that was
implicitly included in pow(x,−∞) = +∞, for |x| < 1. Both versions propose the same
results as those in IEEE Std 754-2008 and add definitions for most of the cases which
were not defined in it [107].

6.3 Mathematical Discussion
Analyzing the possible mathematical definitions upon which the power function could
be defined, we first thought of defining the real power function pow r(x,y) for simpler
implementation as suggested in Chapter 4. The real power is the operation which the
standards define. However, even when we still assume real operands, complex values may
result from expressions in which the base is negative and the exponent is a non integer.
Thus, the need for the complex power function pow c(x,y) arose. A main reason for using
real numbers is that they contain all limits, i.e., in mathematical terminology the reals
are complete. Completeness implies that there are no gaps nor missing points in the real
number line. IEEE 754’s floating-point numbers approximate the familiar field of real
numbers R algebraically completed by defining the signed zero ±0 and the adjunction of
±∞ and NaN. NaNs mainly result when NaN operands or indeterminate expressions occur.

Indeterminate mathematical expressions are those which are not definitively or pre-
cisely determined. Examples on such expressions involve certain forms of limits are
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Table 6.3: Results for xy for x = +∞, −∞, +0, −0, +1, −1 and NaN as defined in C99
and C11 standards

x

y

+0 −0 odd
int
> 0

even
int
> 0

non
int
> 0

odd
int
< 0

even
int
< 0

non
int
< 0

+∞ −∞ NaN

+∞ +1 +1 +∞ +∞ +∞ +0 +0 +0 +∞ +0 NaN
−∞ +1 +1 −∞ +∞ +∞ −0 +0 +0 +∞ +0 NaN
+0 +1 +1 +0 +0 +0 +∞ +∞ +∞ +0 +∞ NaN
−0 +1 +1 −0 +0 +0 −∞ +∞ +∞ +0 +∞ NaN
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
−1 +1 +1 −1 +1 NaN −1 +1 NaN +1 +1 NaN
NaN +1 +1 NaN NaN NaN NaN NaN NaN NaN NaN NaN

Table 6.4: Results for xy for y = +∞ and −∞ as defined in C99 and C11 standards where
NaN(±∞) = NaN

y
x

x < −1 −1 < x < 0 0 < x < 1 1 < x +0 −0 +1 −1 +∞ −∞

+∞ +∞ +0 +0 +∞ +0 +0 +1 +1 +∞ +∞

−∞ +0 +∞ +∞ +0 +∞ +∞ +1 +1 +0 +0

said to be indeterminate when the limiting behavior of individual parts of the expres-
sion is not sufficient to determine the overall limit. For example, limx→0

f (x)
g(x) where

limx→0 f (x) = limx→0 g(x) = 0, represents an indeterminate limit of the form 0/0. The
value of the overall limit could vary according to the limiting behavior of the combination
of the two functions, e.g., limx→0

x
x2 =∞, limx→0

x
x = 1, while limx→0

x2

x = 0. There are
seven indeterminate forms involving the special values 0, 1, and∞:

0
0
,0×∞,

∞

∞
,∞−∞,00,∞0,1∞

Mathematically speaking, we can define each of the studied functions as follows.

6.3.1 The Base x = Positive One (+1y)

For the case when the base x = positive one, the result is +1 for any finite exponent. For
an infinite exponent the result can be considered +1 for discrete inputs (Base = +1 and
Exponent = +∞ or −∞) but other values may occur if originating from limits, e.g.,

lim
n→+∞

(1 +
1
n

)n = e (6.1)

lim
n→+∞

(1 +
b
n

)n = eb (6.2)

Another interesting point is the argument of whether we take the limit from right or left,
e.g., limx→(+1)+(x)+∞ = +∞, while limx→(+1)−(x)+∞ = +0.
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The number positive one is the multiplicative identity. If we consider the power opera-
tion as an extension of the multiplication operation, the result is positive one regardless
how many times one is multiplied by itself. Thus, the result of the power operation
when the base = +1 is +1 regardless of the exponent even if it is a NaN (QNaN), i.e.,
(+1y) = +1 ∀ y when considered as discrete inputs. Limits may yield different results as
shown above, but no way of such backward tracing or presubstitution for values originating
from limits exist in the state-of-the-art of programming to the best of our knowledge. This
definition for (+1y) matches the definition given by the standards in table 6.1 and 6.3.

6.3.2 The Base x = Positive Zero (+0y)

For the case when the base x = positive zero, the result is +0 when the exponent y is positive
finite (0 < y < +∞). The result is +∞ when the exponent is negative finite (−∞ < y < 0).
The other possibilities to study are infinite values of y, y = ±0, and y = NaN. In general, a
NaN operand should yield a NaN result except in the cases discussed in subsection 6.3.4.

For infinite exponent, (+0)+∞ = +0 which could be proved by induction. Another
proof depends on limn→+∞(1

n )n→ +0. Let

z = lim
n→+∞

(
1
n

)n.

The logarithm for both sides yields

lnz = ln lim
n→+∞

(
1
n

)n = lim
n→+∞

ln(
1
n

)n = lim
n→+∞

−n lnn,

where both n and lnn are monotonically increasing functions which approach infinity as n
tends to infinity. The product of these two functions is thus infinity which is then multiplied
by negative one to yield negative infinity. Therefore, lnz = −∞. Hence, z = e−∞ = +0

The case y = −∞ yields (+0)−∞ = +∞, where limn→+∞ (1
n )
−n
→ +0 following the same

limiting procedure as above.
Lastly, for the y = 0 case (+0)+0 can be considered +1 for direct (discrete) inputs.

However, if the values for the base x = +0 and the exponent y = +0 originate from limits,
the expression (+0)(+0) yields different values:

lim
n→+∞

(
1
n

)1/n = +1 (6.3)

lim
n→+∞

(
1
en )1/n =

1
e

(6.4)

lim
n→+∞

(
1
an )1/n =

1
a
, |a| > 1 (6.5)

lim
n→+∞

(
1

an2 )1/n = +0, |a| > 1 (6.6)

The value of (+0)(−0) can be studied in a similar manner. For such expressions, limit
operations are performed to justify particular choices for tiny, or huge arguments. However,
programmers have frequently disagreed on how those limits can be taken. The limiting
result depends on whether x or y approach its limit more rapidly. The increase in the
value of (+0)+0 that originates from limits when the base (+0) comes from e−∞ or a−∞
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(for a > 1) is due to the rapid decrease of e−n and a−n more than 1/n as n approaches
infinity. Thus, limn→+∞( 1

en )1/n and limn→+∞( 1
an )1/n (for a > 1) are positive and less

than one. Similarly, limn→+∞( 1
an )1/n (for a < −1) is negative and greater than negative

one. To detect bounds of (+0)+0, let us consider a = +∞ and dealing with the limit
limn→+∞( 1

an )1/n = limn→+∞ ((+0)n)1/n = +0. Similarly, a = −∞ and dealing with the limit
limn→+∞( 1

an )1/n = limn→+∞ ((−0)n)1/n = −0. Therefore, according to the origination of
operands in the expression (0)0 and their limiting behavior, we could get results z such
that |z| ≤ 1.

The overall result of (+0)y is

(+0)y =


+0, 0 < y (including y = +∞)
+∞, y < 0 (including y = −∞)
by definition (chosen as +1 for discrete inputs), y = ±0
NaN, y = NaN

(6.7)
This summary matches the definition given by the standards in table 6.1 and 6.3.

6.3.3 The Base x = Positive Infinity (+∞y)

For the case when the base x = positive infinity, the result is +∞ when the exponent y
is positive finite (0 < y < +∞). The result is +0 when the exponent is negative finite
(−∞ < y < 0). The other possibilities to study are infinite values of y, y = ±0, and y = NaN.

For infinite exponent, (+∞)+∞ = +∞, where limn→+∞ nn→ +∞ while (+∞)−∞ = +0,
where limn→+∞ n−n→ +0 following the same limiting procedure done for (+0)+∞.

For the y = 0 case, (+∞)+0 can be considered +1 for direct (discrete) inputs. However,
if the values for the base x = +∞ and the exponent y = +0 originate from limits, the
expression (+∞)+0 yields different values:

lim
n→+∞

n1/n = +1 (6.8)

lim
n→+∞

(en)1/n = e+1 = e (6.9)

lim
n→+∞

(an)1/n = a+1 = a, |a| > 1 (6.10)

lim
n→+∞

(an2
)1/n = +∞, |a| > 1 (6.11)

The value of (+∞)(−0) can be studied in a similar manner. Similar to the case (+0)+0,
the increase in the value of (+∞)+0 that originates from limits when the base = +∞

comes from e+∞ or a+∞ (for a > 1) is due to the rapid increase of en and an more than
n as n approaches infinity. Thus, limn→+∞(en)1/n and limn→+∞(an)1/n (for a > 1) are
greater than positive one. Similarly, limn→+∞(an)1/n (for a < −1) is less than negative
one. To detect bounds of (+∞)+0, let us consider a = +∞ and dealing with the limit
limn→+∞(an)1/n = limn→+∞ ((+∞)n)1/n = +∞. Similarly, a =−∞ and dealing with the limit
limn→+∞(an)1/n = limn→+∞ ((−∞)n)1/n = −∞. Therefore, according to the origination of
operands in the expression (+∞)0 and their limiting behavior, we could get results z such
that |z| ≥ 1.
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The overall result of (+∞)y is

(+∞)y =


+∞, 0 < y (including y = +∞)
+0, y < 0 (including y = −∞)
by definition (+1 for discrete inputs), y = ±0
NaN, y = NaN

(6.12)

This summary matches the definition given by the standards in table 6.1 and 6.3. It
also satisfies the mathematical reciprocity relation between +0 and +∞ where we expect
(+∞)y = 1/(+0)y.

6.3.4 The Base x = NaN (NaNy)

As stated earlier, we only discuss quiet NaN operands which result from indeterminate
expressions. Any expression involving a NaN operand results in a NaN except for
(+1)NaN = +1 (as discussed earlier) and NaN(±0) explained here. An indeterminate
expression, e.g., a limit in the form 0

0 has a value; a solution exists but its value is
unknown to us. We may need to perform further steps to evaluate its limit such as applying
l’Hôpital’s rule to get rid of this NaN. Another example is the form ∞−∞ which may
come from previous operations overflowing due to narrow precision, in this case we can
get rid of this NaN by using a wider precision. Thus, for QNaN case, NaN(±0) can be dealt
with as an indeterminate number raised to the power of ±0 which results in +1.

Considering a QNaN resulting from an indeterminate number,

NaN(±0) = +1 (6.13)
NaN(y) = NaN, y , ±0. (6.14)

This definition matches the definition given by the standards in table 6.1 and 6.3.

6.3.5 The Base x = Negative One (−1y)

For the case when the base x = negative one, the result is +1 for zero exponent and even
integer exponent. The result is −1 for odd integer exponent and is complex for a non
integer exponent. An example for this last condition is (−1)(0.5) for the case of positive
non integer exponent and (−1)(−0.5) for the case of negative non integer exponent. We may
propose several definitions for the result in the real plane.

Definition 6.3.1. Considering (−1)0.5 to be the square root of a negative number which is
not defined in the real plane, we may give the result as NaN. Thus (−1)(−0.5) = 1

(−1)0.5 =

NaN as it is a division operation that involves a NaN operand.

The problem with definition 6.3.1 is that a NaN result causes other NaN results to
appear in subsequent operations which leads to meaningless final outcomes in algorithms.
Furthermore, many exceptions in the following operations may occur, e.g., when compar-
ing with this NaN result.

Definition 6.3.2. Considering xy = |x|y, for any non-integer y. Hence (−1)0.5 = (+1)0.5 = +1
and (−1)(−0.5) = (+1)(−0.5) = +1.
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Obviously, this definition is wrong mathematically because, in the real plane, (−1)1/3 =

−1 while 11/3 = 1, hence (−1)1/3 , 11/3.

Definition 6.3.3. Considering xy = (signx)|x|y, we get (−1)0.5 =−(+1)0.5 =−1 and (−1)(−0.5) =

−(+1)(−0.5) = −1.

This definition is also wrong mathematically because if we raise the right hand side of
(−1)0.5 = −1 to the second power we get (−1)2 = +1 not −1 as expected from the left hand
side, and the equality does not hold.

Definition 6.3.4. Considering (−1)y = (−1)m/n, we may find the simplest form of m/n and
define

(−1)m/n =


+1, m even and n odd
−1, both m and n odd
NaN, n even

The problem with this definition is its discontinuity and the slightly higher complexity
than other definitions in order to find the simplest form m/n before making the decision. It
is important to note that odd roots of −1 such as (−1)1/3 have a solution in the real plane.
So, for a rational number in its simplest form m/n where m and n do not share common
factors, the value of (−1)m/n has a solution in the real plane for odd n and does not have a
solution for even n. The set of rational numbers is known to be infinitely dense (between
any two numbers belonging to the set there exist infinitely many numbers which belong
to the same set). This density makes (−1)m/n have a solution in infinitely many points
and stay undefined in infinitely many other points. This definition appears to be the most
sound mathematically within the real plane but the authors do not know of any current
computer system that applies it.

Definition 6.3.5. The expression (−1)y for y non integer has a sequence in producing
various complex results in the form +1eiθ, i.e., magnitude = +1 and various phase θ where
0 ≤ θ < 2π.

Considering (−1)y = (−1)m/n, we may find the simplest form of m/n and define

(−1)m/n = (eiπ)
m
n

= ei(π+2kπ)( m
n ), k = 0,1,2, . . . ,n−1

We only describe rational y = m/n because all the floating-point numbers are in fact
rational numbers. For binary floating-point numbers, the denominator n is always even.
An even root of −1 is not defined in the real numbers and only has a complex solution.
For example, if we concentrate on (−1)

y
2 where y is a positive odd integer

(−1)
y
2 =

{
+i, y = 1,5, . . .
−i, y = 3,7, . . .

while it yields their complex conjugates for (−1)
−y
2

(−1)
−y
2 =

{
−i, y = 1,5, . . .
+i, y = 3,7, . . .
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For decimal floating-point numbers, y = m/n in its simplest form may have an odd
denominator. For example, in the case of y = 0.6 = 3/5 there is a real solution for (−1)3/5

which is −1. Obviously this definition provides multiple solutions. In some cases, none
of them may be real. Hence, this definition is not suitable for the real power functions
defined in the standards that do not allow complex results and are confined to the real
plane.

Definition 6.3.6. Defining the real power pow r(x,y) as the real component of the complex
pow c(x,y).

The problem with this definition is that different expressions may have the same
real part but different imaginary parts. For example, (−1)1/2 = +i and (−1)3/2 = −i, it is
unreasonable to assign zero for both although they are different. The use of this definition
in all cases of negative base and non integer exponent makes the problem even worse.

The first definition (Definition 6.3.1, (−1)0.5 = NaN) is consistent with the standards
and with the historical mathematical definitions which state that even roots of negative
numbers are undefined. The NaN result here is used to propagate an error resulting from
the invalid operation pow r(x,y) for finite x < 0 and finite non-integer y/2 which produces
an invalid complex result not acceptable for the real power function. However, the first
definition produces the mathematically wrong NaN result for odd roots.

For future systems and standards, it might be useful to consider definition 6.3.4 for the
real power function and definition 6.3.5 for the complex power function, probably with a
way to return only one single solution out of the set of complex solutions.

For an infinite exponent, assuming integer, if originating from limits limn→+∞(−1)n

does not have a unique result because limn→+∞(−1)2n = +1 while limn→+∞(−1)2n+1 = −1.
For direct (discrete) inputs, we shall consider infinity as an unknown large even integer as
it can be expressed as a multiple of two. Thus, (−1)+∞ = +1 and (−1)−∞ = 1/(−1)+∞ = +1.

The overall result of (−1)y is (using definition 6.3.4)

(−1)y =



+1, y = ±0,±∞, or even integer
−1, yodd integer
+1, y = m/n with m even and n odd
−1, y = m/n with both m and n odd
NaN, y = m/n with n even
NaN, y = NaN

(6.15)

This summary matches the definition given by the standards in table 6.1 and 6.3 except for
the y = m/n cases where it provides more details.

6.3.6 The Base x = Negative Zero (−0y)

For the case when the base x = negative zero, the result is +0 when the exponent is a
positive even integer, −0 when it is a positive odd integer, +∞ when it is a negative even
integer, and −∞ when it is a negative odd integer (excluding y = 0). The other possibilities
to study are infinite values of y, y = ±0, and y non integer. Given the definitions of (+0)y

and (−1)y, the cases for (−0)y are easily derived.
For infinite exponent, (−0)+∞ = (−1)+∞× (+0)+∞ = +1×+0 = +0. Similarly, (−0)−∞ =

(−1)−∞× (+0)−∞ = +1×+∞ = +∞.
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For zero exponent, (−0)+0 = (−1)+0× (+0)+0 = +1× (+0)+0 = (+0)+0 which means that
(−0)+0 can take the same values as (+0)+0 according to how the base 0 and the exponent 0
originated and the same for (−0)−0.

For non integer y = m/n, the value (−0)(m/n) = (−1)m/n× (+0)m/n yields

(−0)(m/n) =


+0, 0 < m/n, m even and n odd
−0, 0 < m/n, both m and n odd
+∞, m/n < 0, m even and n odd
−∞, m/n < 0, both m and n odd
NaN, n even

The overall result of (−0)y is

(−0)y =



+0, 0 < y and y an even integer or y = +∞

−0, 0 < y and y an odd integer
+∞, y < 0 and y an even integer or y = −∞

−∞, y < 0 and y an odd integer
by definition (+1 for discrete inputs), y = ±0
+0, y = m/n, 0 < y, m even and n odd
−0, y = m/n, 0 < y, both m and n odd
+∞, y = m/n, y < 0, m even and n odd
−∞, y = m/n, y < 0, both m and n odd
NaN, y = m/n, n even
NaN, y = NaN

(6.16)
This summary matches the definition given by the standards in table 6.1 and 6.3 except for
the y = m/n cases where it provides more details.

6.3.7 The Base x = Negative Infinity (−∞y)

Similarly, the case (−∞y) = (−1)y× (+∞)y. Hence, the overall result of (−∞)y is

(−∞)y =



+∞, 0 < y and y an even integer or y = +∞

−∞, 0 < y and y an odd integer
+0, y < 0 and y an even integer or y = −∞

−0, y < 0 and y an odd integer
by definition (+1 for discrete inputs), y = ±0
+∞, y = m/n, 0 < y, m even and n odd
−∞, y = m/n, 0 < y, both m and n odd
+0, y = m/n, y < 0, m even and n odd
−0, y = m/n, y < 0, both m and n odd
NaN, y = m/n, n even
NaN, y = NaN

(6.17)
This summary matches the definition given by the standards in table 6.1 and 6.3 except for
the y = m/n cases where it provides more details. It is obvious that (−∞)y = 1/(−0)y, i.e.,
the reciprocity between −0 and −∞ remains valid under this definition. The definitions
of the current standard, which do not provide the details for y = m/n, fail to maintain the
mathematical relation (−∞y) = (−1)y× (+∞)y for a non-integer y.
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6.3.8 The Cases of y = ±∞

The last two single variable power functions to study are those with the exponent y = ±∞.
These two functions do not need detailed discussion as their results were discussed within
the previous cases just explained. They match the definition given by the standards in
table 6.2 and 6.4 such that

x+∞ =


+0, 0 ≤ |x| < 1
+1, 1 = |x|
+∞, 1 < |x| (including x = ±∞)
NaN, x = NaN

(6.18)

x−∞ =


+∞, 0 ≤ |x| < 1
+1, 1 = |x|
+0, 1 < |x| (including x = ±∞)
NaN, x = NaN

(6.19)

Tables 6.5 and 6.6 show the results of the floating point power operation defined over the
real field pow r(x,y) for the special values as proposed by our mathematical discussion
where BD stands for “by definition”. Different definitions may arise from operands
originating from limits, the tables provide the defined value = +1 used for discrete inputs.

Table 6.5: Results for xy for x = +∞, −∞, +0, −0, +1, −1 and NaN as proposed by our
mathematical discussion, the result is QNaN for SNaN operands

x

y

+0 −0 odd
int
> 0

even
int
> 0

non
int
> 0

odd
int
< 0

even
int
< 0

non
int
< 0

+∞ −∞ NaN

+∞ BD=

+1
BD=

+1
+∞ +∞ +∞ +0 +0 +0 +∞ +0 NaN

−∞ BD=

+1
BD=

+1
−∞ +∞ −∞,

+∞,
NaN

−0 +0 −0,
+0,
NaN

+∞ +0 NaN

+0 BD=

+1
BD=

+1
+0 +0 +0 +∞ +∞ +∞ +0 +∞ NaN

−0 BD=

+1
BD=

+1
−0 +0 −0,

+0,
NaN

−∞ +∞ −∞,
+∞,
NaN

+0 +∞ NaN

+1 +1 +1 +1 +1 +1 +1 +1 +1 BD=

+1
BD=

+1
+1

−1 +1 +1 −1 +1 −1,
+1,
NaN

−1 +1 −1,
+1,
NaN

BD=

+1
BD=

+1
NaN

NaN +1 +1 NaN NaN NaN NaN NaN NaN NaN NaN NaN

These cases were discussed in the hope that future implementations introduce a clear
method for the choice of the assigned value by definition, or they may find a way to include
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Table 6.6: Results for xy for y = +∞ and −∞ as proposed by our mathematical discussion

y
x x < −1 −1 < x < 0 0 < x < 1 1 < x ±0 +1 −1 ±∞ NaN

+∞ +∞ +0 +0 +∞ +0 BD= +1 BD= +1 +∞ NaN
−∞ +0 +∞ +∞ +0 +∞ BD= +1 BD= +1 +0 NaN

them in the process of evaluating the function. Moreover, a broader, more comprehensive
and mathematically sound definition is proposed for the case (−1)y for y non integer. It
was consequently extended to the cases (−0)y and (−∞)y. This definition was proposed in
the hope that future standards and implementations may consider it.

6.3.9 Complex Power Function
For the floating-point power operation defined over the complex field pow c(x,y), the
results are the same as those of pow r(x,y) for all the special values except the cases
(−1)y, (−0)y, (−∞)y, where y non integer, for which definition 6.3.5 is recommended, this
definition specifies the result of (−1)y. Consequently, (−0)y = +0× (−1)y and (−∞)y =

+∞× (−1)y. However, the standards define them differently because they confine the
function to the real plane. Complex results are allowable in our case. Hence, we discuss
these expressions separately.

By non integer, it is meant that |y| ∈ [0,1]. If an expression (−1)y occurs such that y
neither belong to the set of integer numbers nor the interval [0,1], it is treated differently.
In this case, y should be split into yint + y f rac where yint stands for the integer part of y and
y f rac stands for the fractional part of y. Hence,

(−1)y = (−1)yint+y f rac

∴ (−1)y = (−1)yint × (−1)y f rac

Attempting to evaluate (−1)y is equivalent to solving the polynomial of degree n of the
form

zn + 1 = 0

which has n solutions according to the fundamental theorem of algebra. Hence,

zn = −1
∴ z = (−1)(1/n)

In floating-point arithmetic, y non integer is a rational number in its simplest form m/n
where m and n do not share common factors. The nth root(s) of −1 are found first. Then,
each root is raised to power m.

Definition 6.3.7. Considering (−1)m/n, we may define

(−1)m/n = (eiπ)
m
n

= ei(π+2kπ)( m
n ), k = 0,1,2, . . . ,n−1
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Definition 6.3.8. Considering (−0)m/n = (−1)m/n×+0, we may define

(−0)m/n = +0(eiπ)
m
n

= +0ei(π+2kπ)( m
n ), k = 0,1,2, . . . ,n−1

Definition 6.3.9. Considering (−∞)y = (−1)m/n×+∞, we may define

(−∞)m/n = +∞(eiπ)
m
n

= +∞ei(π+2kπ)( m
n ), k = 0,1,2, . . . ,n−1

Definitions 6.3.7, 6.3.8 and 6.3.9 present the results of (−1)(m/n), (−0)(m/n) and (−∞)(m/n)

for m/n> 0. For m/n< 0, the results are the reciprocals of those presented in the definitions
such that 1

reiθ = 1
r e−iθ.

Definition 6.3.8 could be arguable because it might be said that all four zeros ±0± i0 are
arithmetically equal. Yet, we choose to preserve the phase of a complex zero to satisfy the
mathematical reciprocity relation between −0 and −∞ where we expect (−∞)y = 1/(−0)y.
For example, according to our definition 6.3.8 the expression (−0)1/2 = +0(eiπ)

1
2 has two

solutions, which are
at k = 0

(−0)1/2 = +0ei(π)( 1
2 ) = +0eiπ/2 = +i0

at k = 1
(−0)1/2 = +0ei(π+2π)( 1

2 ) = +0ei3π/2 = −i0

Its reciprocal is
1

(−0)1/2

and it has two solutions too, which are

1
+0eiπ/2 = +∞e−iπ/2 = +∞ei3π/2 = −i∞

1
+0ei3π/2 = +∞e−i3π/2 = +∞eiπ/2 = +i∞

that should equal to the two solutions of (−∞)1/2. According to definition 6.3.9

(−∞)1/2 = +∞(eiπ)
1
2

has two solutions, which are
at k = 0

(−∞)1/2 = +∞ei(π)( 1
2 ) = +∞eiπ/2 = +i∞

at k = 1
(−∞)1/2 = +∞ei(π+2π)( 1

2 ) = +∞ei3π/2 = −i∞

which means that the two solutions of each of the two equivalent expressions (−∞)1/2 and
1

(−0)1/2 are the same.
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On the other hand, someone who may propose that (−0)1/2 = +0 would handle (−∞)1/2

in two different ways. Either define a result similar to ours and get two complex results,
hence reciprocity property is no longer maintained; or evaluate (−∞)1/2 using reciprocity
to be +∞. The latter definition abusively disregards the phase of the infinite result;
consequently ignoring the signs of the real and imaginary parts of this complex infinity.
Whether all complex infinities should be arithmetically equal is a topological question [54].
Obviously the previous definitions provide multiple solutions for each expression. These
multiple solutions arise from the n solutions of the polynomial

zn + 1 = 0

Software implementations that allow answers belonging to the set of complex numbers
only provide one of these multiple solutions according to their own peculiarities. Testing
these implementations would open a wide discussion especially in the absence of standards
that specify their correct results. This requires developing a robust mathematical definition
of correct results before testing phase. For the rest of this chapter, we stick with the
definitions given by the current standards in our comparisons and classification for the
different programming languages.

6.4 Results of Different Programming Languages
This section demonstrates the results of the studied programming languages, emphasizing
which expressions yield results inconsistent with the standards. It is worth mentioning
that MATLAB honors the sign of zero and interprets it if further calculations are done,
although it is not displayed in the ordinary (standard) output. Yet, Mathematica considers
0 to be neither positive nor negative. We tried to cover the most widely used software
libraries in our study. Other implementations may have their own peculiarities, e.g., [25]
covers some of the special cases we studied such that they are tabulated with no detailed
analysis. However, the case of (−∞)y for y non integer is not covered.

6.4.1 Binary Real Power
Tables 6.7 and 6.8 show which binary real power software implementations yield incon-
sistent results with the standard and for which expressions. Blank cells indicate that this
expression yields the same result using various studied implementations and all conform
to the standards.

6.4.1.1 Gcc Compiler Version 4.5.2 Along With Math Library

Gcc compiler version 4.5.2 was released in December 2010. It was tested on operating
system Ubuntu 11.04-Desktop-i386 with kernel 2.6.38-8-generic using the math library. It
conforms to the standards except for (−1)noninteger = −NaN instead of NaN.

6.4.1.2 Gcc Compiler Version 4.5.2 Along With MathCW Library (Binary Format)

The MathCW Mathematical Function Library, released in 2010, [12] is a large portable
numerical library in C that provides a C99 math-function repertoire with many additional
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functions, support for extended data types, support for additional I/O formats, and support
for decimal, as well as binary, floating-point arithmetic [11]. The results of the MathCW
library (binary format) conform to the standards.

6.4.1.3 MATLAB 6.5 Using the Function “realpow”

MATLAB 6.5, released in July 2002, provides a power function defined over the real
field called (realpow) in addition to the ordinary power operator (ˆ) which allows com-
plex results. As shown in tables 6.7 and 6.8, the inconsistencies in the case of MAT-
LAB 6.5 produce either NaN or “Error”. It is expected that an “Error” is reported
when using realpow with an expression that produces a complex result. However,
some of the expressions that yield “Error” when using realpow produce real values
with the ordinary power operator (ˆ) which allows complex results. These expressions are
(−∞)(±∞), (−∞)(NaN), (−1)(±∞), (−1)(NaN), (NaN)(±∞), (NaN)(NaN) and (x)(±∞) for x
negative. Moreover, their results (using(ˆ)) conform to the standards except for (−1)(±∞).
It should be noted that, according to this conflict in its results, MATLAB 6.5 does not
satisfy the continuity of the power function as we go from the complex plane to the real
plane.

6.4.1.4 MATLAB R2012a, R2012b, and R2014b Using the Function “realpow”

The results of realpow in case of MATLAB R2012a, R2012b, and R2014b released in
March 2012, September 2012, and October 2014 respectively, are the same as those of
the ordinary power operator except for the expression (−1)y, for y non integer. Having the
same results for both the complex and the real power functions satisfies the continuity of
the studied function as we go from the complex plane to the real plane. The case (−1)y,
for y non integer gives an error when using realpow, because it has a complex result which
is not allowed for realpow. The significance of definition 6.3.4 in subsection 6.3.5 appears
here: not all non integer powers of −1 have only complex results but one of the multiple
solutions could be purely real. The fact that newer versions do not give the same results
as MATLAB 6.5 overcomes some forms of inconsistency that exist in MATLAB 6.5
using the function realpow. Yet, NaN(±0) yield NaN using newer versions instead of +1
while MATLAB 6.5 conforms to the standards. This is a form of incompatibility where a
question arises here why does an old version agree (in evaluating a certain expression)
with the standards more than the newer versions?

6.4.1.5 Octave 3.6.2 Using the Function “realpow”

Octave 3.6.2, released in May 2012, was tested on operating system Debian 6 with linux
kernel 2.6.32-5-686. The function realpow was added in Octave version 3.2.0, released
in June 2009, and it reports an error if any return value is complex. The expressions
that yield “Error” when using realpow produce complex values with the ordinary power
operator(ˆ) which allows complex results. Inconsistencies produce either NaN or “Error”
as in the case of MATLAB except for (−∞)y, for y negative non integer. On the other
hand, when Octave 3.6.2 was tested on operating system Windows XP, the results of the
expressions (+1)(±∞), (+1)NaN and NaN(±0) differ such that they yield NaN instead of +1.
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On operating system Windows 7, the same expressions yield NaN except (+1)(+∞) which
yields +1.

6.4.1.6 Mathematica 8 and 9

Both versions 8 and 9 of Mathematica, released in November 2010 and 2012 respectively,
do not provide a power function defined over the real field only. Thus, we compare
their results with the standards for the expressions that yield real results only. In Math-
ematica [5], Indeterminate (Built-in Mathematica Symbol) is a symbol that represents
a numerical quantity whose magnitude cannot be determined. Mathematica returns the
symbol Indeterminate upon encountering indeterminate expressions such as those ex-
plained in section 6.3 in evaluating an expression. Whenever an indeterminate result
should be returned from arithmetic computation, Mathematica prints a warning message.
If Indeterminate is used as operand in an arithmetic computation, the corresponding result
is also Indeterminate. The symbol Indeterminate plays a role in Mathematica similar to
“NaN” in the IEEE Floating-Point Standard. In Mathematica, NaN (Computer Arithmetic
Package Symbol) is the symbol used by the functions in the Computer Arithmetic Package
to represent a non representable number. It is clear that Mathematica, in contradiction
to the previous studied software implementations, differentiates between indeterminate
expressions (originating from limits) and expressions involving NaN operands. Complex
Infinity (Built-in Mathematica Symbol) represents a quantity with infinite magnitude, but
undetermined complex phase.

Mathematica yields similar results to those in definition 6.3.5 in subsection 6.3.5 for
expressions with negative base and non integer exponent. For example, (−1)y = +1eiθ,
where y non integer and consequently (−∞)y, where y positive non integer which is treated
as (−∞)y = (−1)y× (+∞)y = +∞eiθ, such that 0≤ θ < 2π. Mathematica yields a single result
for such an expression among the multiple solutions according to definition 6.3.5. The
expressions (±∞)(±0), (±0)(±0) and (±1)(±∞) are indeterminate values for Mathematica,
i.e., this tool does not provide an algebraically closed system.

6.4.2 Decimal Real Power
As previously detailed in Chapter 2, almost all major programming languages used for
commercial applications support decimal arithmetic either directly or through libraries.
Because of the increasing emphasis on decimal arithmetic, we include a study of the
decimal floating-point pow(x,y) for DecNumber, Intel and MathCW decimal libraries.

6.4.2.1 Gcc Compiler Version 4.5.2 Along With DecNumber Library (Version 3.68)

The DecNumber library [4] implements the General Decimal Arithmetic Specification
in ANSI C which defines a decimal arithmetic that is supposed to match the decimal
arithmetic in the IEEE 754 Standard for Floating-Point Arithmetic. However, the following
expressions yield NaN in inconsistency with the standards; (−∞)(±∞), (±0)(±0), (−1)(±∞),
(NaN)(±0), (+1)NaN, (+1)y, for y non integer, (−∞)y, for y non integer and (x)(±∞) for x
negative (excluding −0).
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Table 6.7: Results for xy for x = +∞, −∞, +0, −0, +1, −1 and NaN for different binary
real power implementations, two more inconsistencies for Mathematica are: (+∞)(±0)

yielding Indeterminate, (+∞)+∞ and (±0)−∞ yielding Complex Infinity

(a)

x
y
±0 non int > 0 non int < 0 int < 0

−∞ Indeterminate
(Mathematica)

Error
(MATLAB6.5,
Octave3.6.2),
Complex result
(Mathematica)

Error
(MATLAB6.5),
+0,−0.5 ≤ y
−0,
−1 ≤ y < −0.5
(Octave3.6.2)

±0 Indeterminate
(Mathematica)

Complex Infinity
(Mathematica)

Complex Infinity
(Mathematica)

−1 Error
(MATLAB6.5,
R2012, R2014,
Octave3.6.2),
Complex result
(Mathematica)

Error
(MATLAB6.5,
R2012, R2014,
Octave3.6.2),
Complex result
(Mathematica)

NaN NaN
(MATLABR2012,
R2014,
Mathematica)

Error
(MATLAB6.5)

Error
(MATLAB6.5)

(b)

x
y

+∞ −∞ NaN

−∞ Error
(MATLAB6.5,
Octave3.6.2),
Complex Infinity
(Mathematica)

Error
(MATLAB6.5,
Octave3.6.2)

Error
(MATLAB6.5,
Octave3.6.2)

+1 NaN
(MATLAB6.5, R2012,
R2014), Indeterminate
(Mathematica)

NaN
(MATLAB6.5, R2012,
R2014), Indeterminate
(Mathematica)

NaN
(MATLAB6.5, R2012,
R2014, Mathematica)

−1 NaN
(MATLABR2012,
R2014), Error
(MATLAB6.5,
Octave3.6.2),
Indeterminate
(Mathematica)

NaN
(MATLABR2012,
R2014), Error
(MATLAB6.5,
Octave3.6.2),
Indeterminate
(Mathematica)

Error
(MATLAB6.5,
Octave3.6.2)

NaN Error
(MATLAB6.5)

Error
(MATLAB6.5)

Error
(MATLAB6.5)
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6.4.2.2 Gcc Compiler Version 4.5.2 Along With Intel Decimal Library (Release 2.0
Update 1)

Intel decimal library [20] is a software implementation of the IEEE 754-2008 Decimal
Floating-Point Arithmetic specification. The expression (−∞)y, for y non integer, yields
NaN which is inconsistent with the standards.

6.4.2.3 Gcc Compiler Version 4.5.2 Along With MathCW Library (Decimal For-
mat)

MathCW library (decimal format) is consistent with the standards for the power function
for the special values of the operands.

Table 6.8: Results for xy for y = +∞ and −∞ for different binary real power implementa-
tions

(a)

y
x x < −1 −1 < x < 0 +1

+∞ Error
(MATLAB6.5,
Octave3.6.2),
Complex Infinity
(Mathematica)

Error
(MATLAB6.5,
Octave3.6.2)

NaN
(MATLAB6.5)

−∞ Error
(MATLAB6.5,
Octave3.6.2)

Error
(MATLAB6.5,
Octave3.6.2),
Complex Infinity
(Mathematica)

NaN
(MATLAB6.5)

(b)

y
x
−1 −∞ NaN

+∞ Error
(MATLAB6.5,
Octave3.6.2)

Error
(MATLAB6.5,
Octave3.6.2)

Error
(MATLAB6.5)

−∞ Error
(MATLAB6.5,
Octave3.6.2)

Error
(MATLAB6.5,
Octave3.6.2)

Error
(MATLAB6.5)
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6.5 Summary of the Results of the Studied Implementa-
tions Versus Current Standards

Tables 6.9, 6.10 and 6.11 provide a summary for the results of the studied implementations
of real power function and forms of inconsistency among them as well as incompatibility
between different versions. For binary floating-point, there are two tables. Table 6.9
provides the results of the studied programming languages. Table 6.10 compares these
results versus the results defined by the standards. For decimal floating-point, Table 6.11
compares the results of the studied libraries versus the results defined by the standards.
“Stds” is an abbreviation for the standards. Blank cells indicate that the implementation
conforms to the standards. The , marks indicate that some form of inconsistency or
incompatibility occurs. “Error” results in MATLAB realpow when using realpow with an
expression that produces a complex result. However, some of these expressions produced
real results in MATLAB 6.5 with the ordinary power operator. Similarly, for Octave,
realpow reports an error if any return value is complex.

Table 6.9: Summary for the binary real power function results

Expression
MATLAB Octave Mathematica

6.5 R2012a,b 3.6.2
R2014b

(±∞)(±0) Indeterminate
(+∞)(+∞) Complex Infinity

(−∞)(+ve non int) Error Error Complex result
(−∞)(-ve non int) Error ±0

(−∞)(+∞) Error Error Complex Infinity
(−∞)(−∞) Error Error

(−∞)(NaN) Error Error
(±0)(±0) Indeterminate

(±0)y,−∞ ≤ y < −0 Complex Infinity
(+1)(±∞) NaN NaN NaN Indeterminate

(+1)(NaN) NaN NaN NaN NaN
(−1)non int Error Error Error Complex result

(−1)(±∞) Error Error Indeterminate
(−1)(NaN) Error Error

(NaN)non int Error
(NaN)(±0) +1 NaN NaN NaN
(NaN)(±∞) Error

(NaN)(NaN) Error
(x)(+∞), x < −1 Error Error Complex Infinity

(x)(+∞), −1 < x < 0 Error Error
(x)(−∞), x < −1 Error Error

(x)(−∞), −1 < x < 0 Error Error Complex Infinity

125



Table 6.10: Summary for the binary real power function forms of inconsistency and
incompatibility

Expression Stds.
Inconsistency Incompatibility

MATLAB Octave Mathematica MATLAB
3.6.2

(±∞)(±0) +1 ,

(+∞)(+∞) +∞ ,

(−∞)y, +∞ ,(6.5) , , ,
y +ve non int

(−∞)y, +0 ,(6.5) , ,
y −ve non int

(−∞)(+∞) +∞ ,(6.5) , , ,

(−∞)(−∞) +0 ,(6.5) , ,

(−∞)(NaN) NaN ,(6.5) , ,

(±0)(±0) +1 ,

(±0)y, +∞ 1 ,
−∞ ≤ y < −0

(+1)(±∞) +1 , , ,

(+1)(NaN) +1 , , ,

(−1)non int NaN , , ,

(−1)(±∞) +1 ,(6.5) , , ,

(−1)(NaN) NaN ,(6.5) , ,

(NaN)non int NaN ,(6.5) ,

(NaN)(±0) +1 , (R2012a,b) , , ,
(R2014b)

(NaN)(±∞) NaN ,(6.5) ,

(NaN)(NaN) NaN ,(6.5) ,

(x)(+∞), +∞ ,(6.5) , , ,
x < −1
(x)(+∞), +0 ,(6.5) , ,
−1 < x < 0

(x)(−∞), +0 ,(6.5) , ,
x < −1
(x)(−∞), +∞ ,(6.5) , , ,
−1 < x < 0

1Standards define (±0)y = +∞, for −∞ ≤ y < −0 except (−0)(-ve odd int) = −∞
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Table 6.11: The decimal power function results and forms of inconsistency and incompati-
bility, where MathCW is completely consistent with the standards

Expression DecNumber Intel Stds.
Inconsistency

DecNumber Intel
(−∞)(+∞) NaN +∞ ,

(−∞)(−∞) NaN +0 ,

(±0)(±0) NaN +1 ,

(−1)(±∞) NaN +1 ,

(NaN)(±0) NaN +1 ,

(+1)NaN NaN +1 ,

(+1)non int NaN +1 ,

(−∞)(+ve non int) NaN NaN +∞ , ,

(−∞)(-ve non int) NaN NaN +0 , ,

(x)(+∞), x < −1 NaN +∞ ,

(x)(+∞), −1 < x < 0 NaN +0 ,

(x)(−∞), x < −1 NaN +0 ,

(x)(−∞), −1 < x < 0 NaN +∞ ,
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Chapter 7: Conclusions and
Suggestions for Future Work
Generalized cases of the 1D chaotic logistic and tent maps were proposed where the
control parameter can be either positive or negative, providing a detailed analysis of the
properties of each map in the two different cases. Moreover, the possible variations on the
relation representing the map according to the signs of different control parameters and
the resulting output ranges were presented. These variations differ in their characteristics
and do not confine the output to a restricted range of fractions between 0 and 1. Thus,
allowing more flexibility that fits the most recent applications such as quantitative financial
modeling, traffic, weather forecasting, and others. The generalized form of these variations
for the logistic map is given by:

xn+1 = ±λxn(a±bxn); λ, a, b ∈ R+ (7.1)

while for the tent map, it is given by

xn+1 = ±µmin(±xn,a∓bxn) ; µ, a, b ∈ R+ (7.2)

Based on the maximum chaotic range of the output, the proposed maps can be classified
as: positive map, mostly positive map, negative map, and mostly negative map. These
maps differ in the ranges of both the system parameter (λ or µ) and x, the symmetry, and
the key-points of the bifurcation diagram. The generalized maps were analyzed and a
study on how to design any of them to suit certain specifications was conducted, proposing
four scaling cases. For the logistic map, the parameters (a,b) may take one of four cases:
(a,b), a, b ∈ R+ called the independent scaling case, (1,b) called the vertical scaling case,
(a,a) called the horizontal scaling, and (a,1) called the zooming case. Similar scaling
cases with slight differences could be defined for the tent map. The choice of these names
depends on the effect of the added parameter(s) on the bifurcation diagram. The proposed
parameterized versions were analyzed for each map from the viewpoint of iteration effect,
ranges of λ and x, the fixed points, the bifurcation diagrams, and MLE with respect to all
system parameters. New bifurcation diagrams versus the new parameters were introduced
and the general schematic of the bifurcation diagram versus λ was plotted as a function
of the other system parameters, as well as the general schematic of the newly proposed
bifurcation diagrams. Different design examples were presented to verify the provided
design procedure according to the general schematic. The designed maps were validated
for usage in encryption applications through a simple text encryption scheme.

A chaotic map has been proposed that could be considered a general form for 1D
discrete maps employing the power function with the tent and logistic maps as special
cases, in addition to other various newly proposed cases. It would be suitable even for maps
whose iterative relations employ fractional powers instead of being based on polynomials.
The completely new general map with arbitrary powers that could implement various 1D
maps with different behavior utilizing the same resources is given by:

xn+1 = r min
(
xαn (a−bxn)β , xβn (a−bxn)α

)
, a, b, α, β ∈ R+ (7.3)

where α and β are shaping parameters that specify the shape of the resulting map response
and bifurcation diagrams versus different parameters. A framework for analyzing the
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proposed map mathematically and predicting its behavior for various combinations of its
parameters was introduced. In addition, the transition from tent map case to logistic map
case was presented and explained in detail. More special cases are presented with names
chosen according to their relation to the conventional maps.

Fixed-point hardware is generally less expensive than an equivalent floating-point
hardware implementation. A design guide of a computationally efficient pseudo-random
number generator (PRNG) with finite precision is needed for practical considerations
of chaos based communication and cryptography. Thus, a simulation for a digitally
implemented 1D logistic map was proposed that could operate in both modes: positive
control parameter and negative control parameter is suggested based on MATLAB fixed-
point toolbox. The proposed finite precision logistic map exhibits different properties
from the analytical properties that were reviewed for positive control parameter case
in Chapter 2 and mathematically derived for negative control parameter case in Chapter 3.
New factors must be taken into consideration besides the system parameter λ which are:
the used precision, equivalently the buswidth p, the order of execution of operations chosen
to implement the map f (x), and the initial point at which the iterations start x0. A slight
perturbation in any of these factors could yield massively different responses with varied
properties. A criteria for choosing the precision and specifying the number of integer
bits was set. An exhaustive simulation for the properties of the map over the available
precisions was carried out in the range p = 8 to p = 27. The properties include: the
bifurcation diagram, its key-points, time waveforms, periodicity of the generated sequence,
and MLE. These properties were compared with those obtained through mathematically
analyzing the map over the infinite real field. It has been decided that the precision
threshold should exceed p = 20 by a good enough safety margin that could guarantee
properties of the finite precision logistic map that are quite acceptable, given the cost
savings offered by such a choice. The impact of finite precision in floating-point arithmetic
implementations was also tackled briefly.

Back to the proposed general powering map and its implementation, whether in
floating-point or fixed-point. Multiple differences from the standards were found in the
various software implementations of the floating-point power operation in both binary and
decimal formats. We analyzed the results defined by the standards mathematically and
proposed a broader, more comprehensive and mathematically sound definition for the case
(−1)y. The definition consequently extended to the cases (−0)y and (−∞)y. We then pointed
out the deviations from the current standards for several implementations classifying them
into inconsistency with the standards and incompatibility among different versions of the
same software implementation. We hope that our study helps future implementations to
become consistent with the standards and that our mathematical proposal forms the base
for future standards and implementations.

We hope that this study helps in implementing the proposed maps without losing
much of their analytically studied properties. Future work may take further steps towards
analyzing and implementing powering maps, exploring 2D maps, in addition to the
continuous domain. The best way to implement the powering map at the parameters’
values required for a specific application needs to be decided. In addition, the possibility
of treating it as a 2D map in some cases could be considered such as those with a complex
valued response. Moreover, the performance of the proposed maps could be compared to
discretization of higher order chaotic systems such as Lorenz and Rössler attractors.
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 ملخصال

فى العديد من التطبيقات المنتشرة مليات الحسابية العلمية و خرائط الفوضى و الدوال الأولية بكثرة فى الع تستخدم
على نطاق واسع. على سبيل المثال، يتم استخدام خرائط الفوضى المنفصلة أحادية البعد فى النمذجة و توليد 

. علاوة على ذلك، فإننا بشدة z=xyالأعداد شبه العشوائية، كما تتطلب الحسابات المالية دالة القوى )الأس( 
ن خرائط الفوضى الجديدة المقترحة. و لكن الحساسية المفرطة لهذه الدوال تجعلها نستخدم دالة القوى فى بعض م

أكثر عرضة للأخطاء من العديد من العلاقات الرياضية المنفذة رقمياً حالياً. نهدف فى هذه الرسالة إلى سد 
ن ناحية، و تنفيذهما الفجوة بين التحليل الرياضى للصور التقليدية و العامة لهاتين المجموعتين من المشاكل م

 على الأنظمة و البرامج العددية من ناحية أخرى.

أولًا، نقترح تنويعات على إشارات المعاملات فى خرائط الفوضى المنفصلة أحادية البعد الأكثر شهرة: الخريطة 
أربعة أشكال مختلفة لكل من الخريطة اللوجستية و خريطة الخيمة تسمح  تم اقتراح اللوجستية و خريطة الخيمة.

لنطاق الناتج أن يكون له إشارة واحدة أو يتراوح بالتناوب بين إشارتين مستخدمين نفس العلاقة تقريباً بإشارات 
ع مع تسلسل متنوعة للمعاملات. تسمح النطاقات الجديدة بنمذجة ظواهر إضافية و تعطى نواتج لها نطاقات أوس

 و التى يمكن استخدامها فى التحكم فى نطاقات النواتج   (a,b)أطول. ثم نضيف معاملات مقياسية للتدريج

 تدريجال تقنية من خاصة حالات أيضا اقش. كما ننوواحد من أهم خصائص خرائط الفوضى: مخطط التشعب
 على القدرة تضيفل كأسس اختيارية ( تعمβα,. ثم نقدم خريطة أسية عامة لها معاملات تشكيل )المقترحة
مخطط التشعب. يمكن ضبط الأسس للحصول على خريطة الخيمة و و  الخريطة استجابة شكل في التحكم

الخريطة اللوجستية و خرائط فوضى جديدة فيما بينهما و التى أسميناها "الخريطة الانتقالية". كما نقوم بدراسة 
 نطاقات أخرى للمعاملات الأسية.

التنفيذ، نقوم بتحليل سلوك الخريطة اللوجستية، فى حالة المعامل الموجب و السالب، فى حالات التنفيذ  يةمن ناح
. المستخدمة الدقة تغيير مع للخريطة الديناميكية الخصائص على المحدودية تأثير على والتأكيدمحدود الدقة 

 من (Fixed-point toolbox) ثابتةال العلامة الكسرية أداة يستخدم نهلأ جديد الدراسة هذه في نهجنا
MATLAB التنفيذ على معدات  لمحاكاةFPGA  التى تقوم بتنفيذ العمليات منفردة بطريقة متسلسلة الواحدة تلو

الأخرى مع تنفيذ خطوة الاقتطاع بينهم، و نتناول ترتيب تنفيذ العمليات و تأثيره لأول مرة على حد علمنا. نوصى 
ن مثيلتها ع ذات المعامل السالب المقترحة خريطتنا مزايا إلى الإشارة إلى بالإضافةوفقاً لذلك بحد أدنى للدقة 

 .التقليدية
و  يةرياضمصحوباً بالمبررات ال تغيراتالم من الخاصة لقيمل بالنسبة لنتائجها اً تعريف نقترحأما عن دالة القوى، 

و  تطبيقاتال بين التضارب نقدمالمختلفة.  البرمجيات وتطبيقات المعايير نختبر كيف تتناولها و تتعامل معها
 في الدراسة هذه تساعد أن يمكن. نفسه البرنامج من المختلفة الإصدارات بين التوافق عدم ير و نناقشالمعاي
. لغةال مختلف طرق تنفيذ البرامج المبنية على نفس في النتيجة نفس عطاءإ  أي ،للتكرار قابلة تطبيقات إنتاج

التنفيذ محدود  آثار لتحليل إطارا وفري أن يمكن السابق الجزء و الدراسة هذه بين الجمعفإن  ذلك، إلى وبالإضافة
 .هالتنفيذ طريقة أفضل قررن أن بعد ،ةالمقترح الأسية العامة خريطةال سلوك على الدقة
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