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Abstract
This thesis presents a hardware-oriented method for computing correctly rounded

IEEE-754 single-precision floating-point elementary functions. The method presents a
table “lookup-less” approach using a minimax approximation polynomial of a high degree
within a single wide range as opposed to the currently dominant table-based designs that
have to use large look-up tables while maintaining low-degree piecewise polynomials
to achieve the accuracy required for correct rounding. The method is firstly applied to
trigonometric functions for argument values |x| < 253. Range reduction and polynomial
evaluation steps are carried out using a standard double-precision fused-multiply add
(FMA) with the help of a simple control unit and combinational logic to support the
range reduction, the implicit reconstruction and the final rounding steps. The method
uses a single low-cost range reduction algorithm for all arguments without penalizing
small and intermediate argument values. This approach makes computing correctly
rounded trigonometric functions for a very large range of arguments possible entirely at
the hardware level with reasonable logic resources and low memory requirements that can
be less than 700 bits. This memory is 3.5 to 5 times smaller than the state-of-the-art faithful
quadratic minimax table-based designs that cover a reduced range. Although the thesis
addresses the round-to-nearest mode, the method can be easily applied to the directed
rounding modes. Moreover, the method is applied for 2x and log2(x) within reduced
intervals. We also argue that the method can be extended to involve the double-precision
case for trigonometric functions.

vii



Chapter 1: Introduction
1.1 Overview and Motivation
High performance, accurate and IEEE-754 compliant elementary functions are required for
many applications such as scientific computing, high-performance computing and general-
purpose processors. Several accurate software libraries, such as MPFR [9] and CRlibm [5],
are capable of computing correctly rounded results for standard and arbitrary precisions.
However, hardware-based techniques still fall behind when it comes to producing correctly
rounded results especially for high precisions such as IEEE-754 standard single-precision
(SP). The situation becomes almost infeasible for double-precision (DP) and beyond
precisions due to the enormous memory requirements using the currently dominant table-
based methods.

The IEEE-754 standard requires correct rounding for the fundamental arithmetic
operations such as addition, multiplication and FMA. Thankfully, correct rounding for
these operations can be easily achieved by adding predetermined extra bits called guard
bits that can be obtained using analytic proofs. Unfortunately, such proofs do not exist for
elementary functions such as the trigonometric, exponential and logarithmic functions.
The hardness of obtaining correctly rounded results for such functions is known as the
Table Maker’s Dilemma or TMD [20]. This term was coined by William Kahan 1. He
says:

Why can’t YW be rounded within half a unit in the last place like SQRT?
Because nobody knows how much computation it would cost to resolve what
I long ago christened “The Table-Maker’s Dilemma".

Is it time to quit yet? That’s the Table-Maker’s Dilemma. No general way
exists to predict how many extra digits will have to be carried to compute a
transcendental expression and round it correctly to some preassigned number
of digits. Even the fact (if true) that a finite number of extra digits will
ultimately suffice may be a deep theorem.

Thus, correct rounding for these functions, as well as many other functions, such as
1/
√

x and xn, only became recommended in the last revision of the standard IEEE-754-
2008.

Correct rounding increases the result accuracy to the last bit and leads up to more ac-
curate computations for many algorithms. Furthermore, it preserves numerical portability
and other mathematical properties such as monotonicity and symmetry [18]. Monotonicity
can be simply described that for a function f , where f

(
x + ulp(x)

)
> f (x), the computed

function f̂ should maintain that f̂ (x + ulp(x)) ≥ f̂ (x).

1.2 Goal of the Thesis
The main goal of this thesis is to present a hardware-oriented method for computing
correctly rounded results for certain IEEE-754 SP elementary functions. The method is

1He is known as the father of floating-point. Kahan received the Turing Award for his fundamental
contributions to numerical analysis and floating-point computations.
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dedicated for computing correctly rounded sin(x) and cos(x) for argument values |x| < 253.
Moreover, the method was applied for computing 2x for x ∈ [0,1] and log2(x) for x ∈ [2,4].

The basic method uses a single minimax approximation polynomial of a large degree
valid over a single relatively wide interval. Thus, the method basically avoids using
look-up tables that are used in table-based methods, as all reduced arguments lie within
a single domain. A standard DP fused multiply-add (FMA) is assumed to evaluate the
approximation polynomial. For the case of trigonometric functions, the FMA additionally
carries out the range reduction using the FMA with the help of a simple control unit as well
as extra combinational logic to carry out the implicit reconstruction and final rounding.

Our method strictly seeks correct rounding for all SP arguments. Exhaustive tests show
that, we have only one faithful case (see Section 1.4.3) , i.e. having an error of 1 unit in the
last place (ulp), for sin(x) and two faithful cases for cos(x) for |x| ≤ 253 using degree-16
polynomial with a total memory, including the range reduction memory requirements, of
708 bits using a simple heuristic algorithm to reduce the memory; otherwise, all arguments
up to 253 are correctly rounded for the round-to-nearest mode (RN). Similar accuracy
results were obtained for 2x and log2(x) within the designated reduced intervals using
polynomial degrees of 10 and 15 with consuming memory of 492 and 858 bits respectively.
The design was modeled and exhaustively tested using a C program with the help of the
MPFR library.

Our method has several advantages over table-based techniques for the correct rounding
case:

• The method requires a very small amount of memory, usually hundreds of bits, which
is several times smaller compared even to the state-of-the-art faithfully rounded
designs that assume reduced arguments.

• As opposed to table-based designs which use specialized hardware such as ad-hoc
powering units and multi-operand adders, our method relies on a general-purpose
component, a standard DP FMA, which has been adopted by the major processor
manufacturers. Thus, with simple additional logic, the FMA can be adapted to apply
our method while being used for other purposes.

• Although we mainly address RN mode throughout this thesis for the sake of priority
and simplicity, the method can be easily applied for the directed rounding modes.

• The FMA can be shared to evaluate many elementary functions at lower memory
cost compared to table-based methods.

• We also argue that this method can be applied for the case of DP trigonometric
functions while using quadruple-precision (QP) FMA.

However, the apparent disadvantage of our method is the requirement for a higher
latency compared to table-based methods. To mitigate this problem, we propose a set of
a few piecewise polynomials, as will be discussed later, to reduce the average and worst
case latencies.

2



1.3 Thesis Layout
Chapter 1 discusses the motivation and the contribution of the thesis. A review for
floating-point arithmetic and IEEE-754 is presented. Chapter 2 presents the table maker’s
dilemma and the strategies adopted to produce correctly rounded elementary transcendental
functions. Chapter 3 discusses range reduction algorithms, approximation polynomials
and the Remez algorithm used for computing minimax polynomials. Chapter 4 presents
the table-based methods used in literature, their tradeoffs and limitations for the correct
rounding case. Chapter 5 presents a table lookup-less method for computing correctly
rounded IEEE-754 SP floating-point trigonometric functions. The method is also applied
for 2x and log2(x) functions within reduced ranges. Chapter 6 discusses the conclusions
and future work.

1.4 Floating-Point Representation
Floating-point is a system for representing real numbers, or more precisely, a subset
of their approximation, on computers. Floating-point was meant to be an alternative
for fixed-point systems to increase the dynamic range with using low storage and logic
requirements. The applications of floating-point extend from scientific computing and
simulation to graphics and digital signal processing.

The conventional non-redundant floating-point number (FPN) x is represented as
defined in [2]:

x = (−1)S x ×Mx×β
Ex (1.1)

where S x = {0,1} represents the sign, Mx ≥ 0 is called the significand or mantissa, β is
called the base or radix and Ex is called the exponent where Ex is an integer. FPNs
represent a subset of real numbers depending on the storage reserved for the designated
precision and the width tradeoff between mantissa and exponent sections.

Floating-point representation increases the dynamic range (the ratio between the largest
and the smallest represented numbers) in comparison with the fixed-point representation.
This advantage drastically mitigates the problem of the frequent occurrences of overflows
and underflows ingrained within fixed-point representations.

Nevertheless, the wide range advantage does not come for free. Floating-point reserves
some digits/bits for storing the exponent field. Furthermore, floating-point frequently
suffers from loss of accuracy due to round-off errors (see Section 1.4.3).

In order to develop a unique representation for each FPN and simplify the implementa-
tion, the FPN can be encoded to be normalized, i.e. the most significant digit becomes a
non-zero number. Thus, for β = 2, the most significant bit always becomes 1 and therefore
it is meaningless to store it. Subsequently, the most significant bit is called the hidden bit.

1.4.1 A Brief History of Floating-Point
The first known floating-point system was invented in 1914 by Leonardo Torres y Quevedo,
a Spanish inventor, who designed an electro-mechanical Charles Babbage’s machine with
support of floating-point [20]. In late 1930s and early 1940s, Konrad Zuse, a German

3



Name Base Size in bits Mantissa bits Exponent bits Decimal digits

PDP-11 2 32 23+hidden bit 8 7.2

CDC 6000 2 60 48+hidden bit 11 14.7

IBM 360 16 32 24 7 7.2

Zuse Z3 2 24 16 7 4.8

Table 1.1: Examples of memorable floating-point representations

engineer and inventor, built a series of complex mechanical computers (Z1, Z2, Z3 and
Z4) that used binary 22-bit floating-point systems.

Since the late 1940s until 1980s, many floating-point systems were developed. Major
manufacturers of the time, such as IBM, DEC and CDC, used different word-lengths,
different tradeoffs of exponent-mantissa lengths and different radices (2,8,10 and 16).
Table (1.1) shows some old memorable systems. Such differences made it more diffi-
cult to maintain and extend programs as every manufacturer used its own rules which
led to different accuracy results. Thus, a standardization for floating-point arithmetic
became a necessity. The standard for floating-point arithmetic is called IEEE-754 and was
established in 1985. The current revision of the standard was published in 2008.

1.4.2 Unit in the Last Place
Frequently, it becomes more convenient and expressive to represent the error relatively
rather than offering absolute values. That is usually needed to compute error bounds for
results where the absolute value of the error, in many cases, is meaningless. The unit in
the last place function is defined simply as the gap between two consecutive floating-point
representations. That is for argument x, the ulp function is calculated as:

ulp(x) = βEx−p+1 (1.2)

1.4.3 Rounding
While the representation of the operands and outputs must be encoded within a pre-defined
unified precision, the output of some operation may initially require a larger precision than
the target precision. In order to follow the canonical representation, the output must be
rounded to the target precision. The result is rounded according to some rounding mode.
IEEE-754 defines four rounding modes for binary floating-point systems. As shown in
Table 1.2, The first rounding mode is called rounding-to-nearest mode. The other three
rounding modes are called directed rounding modes.

The result is said to be exactly or correctly rounded if the final rounded result equals the
infinitely precise result rounded to the target precision. This is somewhat straightforward
for the fundamental arithmetic operations such as addition, subtraction, multiplication,
division and square root. Accordingly, correct rounding for these operations is mandatory
in IEEE-754.

4



Rounding Type Comment

Round to nearest, ties to
even (RN)

Round to the nearest floating-point representation; if
the result falls exactly at the midpoint between the two
consecutive floating-point numbers, it is rounded to
the even number.

Round toward 0 (RZ) Directly round towards zero, i.e. truncate the non-
redundant result.

Round toward +∞ (RU) Directly round up to +∞.

Round toward −∞ (RD) Directly round down to −∞.

Table 1.2: IEEE 754 rounding modes

0

FPN FPN FPN

RN(y)
RZ(y)
RD(y)

RU(y)

y

Faithfully
rounded result

Figure 1.1: Rounding modes
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The maximum error due to rounding can be deduced from Figure 1.1. Let y be the
pre-rounded result and R be the designated rounding mode to the target precision. Thus,
the following condition must be fulfilled:

|R(y)− y| ≤

1
2ulp(y) rounding-to-nearest mode
ulp(y) directed rounding modes

(1.3)

For transcendental functions such as trigonometric and exponential functions, correct
rounding is much more complex to obtain and usually requires much higher memory and
logic requirements.That is because the pre-rounded result is inevitably obtained within
some error (as will be discussed in Chapter 2). These requirements usually grow harder,
and may become infeasible for hardware algorithms, as the target precision increases.
Many hardware-based implementations may return faithfully rounded results, i.e. the
obtained result is one of two consecutive floating-point representations surrounding the
exact result (see Figure 1.1). Therefore, the maximum error due to faithful rounding is 1
ulp. Note that faithful rounding is not really a canonical rounding mode such as RN and
RZ.

1.5 IEEE 754 Standard
IEEE 754 is the standard that governs binary and decimal floating-point arithmetic. It
includes a set of regulations to enhance numerical portability and efficiency. IEEE 754
defines normalized binary FPN as follows:

x = (−1)S x ×1.Mx×2Ex (1.4)

where S x is the sign bit, Ex is the biased exponent (i.e. the exponent equals Ex− bias) and
Mx = m1m2 . . .mp−1 is the unsigned stored fraction. Thus the smallest and largest FPN
magnitudes are 2Emin and

(
2−2−(p−1)

)
×2Emax respectively.

1.5.1 Formats
The standard defines three binary formats: binary32 (SP), binary64 (DP) and binary128
(QP). Table 1.3 shows the number of reserved bits for mantissa (p−1) and exponent we,
the bias of the exponent, the minimum and maximum exponents for each format (see also
Figure 1.2). Furthermore, the standard allows for using extended precisions for each of
the above basic formats. Intel is known to have been using the 80-bit extended DP format
(1 bit for sign, 15 bits for exponent and 64 bits for mantissa) for its x87 series.

1.5.2 Rounding Modes
In addition to the four rounding modes defined in Table 1.2, another rounding to nearest
was added to the standard in the 2008 revision, called round to nearest, ties away from
zero, and is used for decimal formats.

6



Precision p−1 we bias = 2we−1−1 Emin Emax

SP 23 8 127 -126 127

DP 52 11 1023 -1022 1023

QP 112 15 16383 -16382 16383

Table 1.3: IEEE 754 binary formats

S x Ex Mx

31
63

SP
DP

30 23 22 0
62 52 51 0

we p−1

Figure 1.2: IEEE 754 SP and DP binary formats

1.5.3 Operations
IEEE 754 defines four types of operations as follows:

1. General-computational operations such as the addition, subtraction, multiplication,
division, square root, fused multiply–add and conversion operations.

2. Quiet-computational operations such as the copy and negate operations.

3. Signaling-computational operations such as the comparison operations.

4. Non-computational operations such as the isNaN, isFinite ans isZero operations.

1.5.4 Subnormals
Numbers below the smallest normalized FPN can be still represented with potential loss
of accuracy using the smallest exponent representation of the system, that is used also
to represent zeroes. This is often called gradual underflow. Such numbers are called
denormalized numbers or subnormals. Thus, the magnitudes of subnormals lie within[
2Emin−p+1,2Emin

)
.

1.5.5 Exceptions
1. Invalid: occurs for operations such as 0/0 and 0×∞ and the square root of negative

non-zero inputs. The default output is qNaN.

2. Division by zero: occurs when the result is infinite whereas the operation is applied
to finite operands (e.g. 1/0 and log2(+0)). The default output is ∞ while the
resulting sign depends on the operation and the sign of the operands.
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3. Overflow: occurs when the magnitude of the result is larger than
(
2−21−p

)
×2Emax .

The default output is infinity with the same sign of the pre-rounded result in case of
rounding to nearest.

4. Underflow: occurs when the magnitude of the result is less than 2Emin . The default
output is the resulting subnormal FPN.

5. Inexact: occurs when the result cannot be exactly represented and is rounded to the
target precision.
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Chapter 2: Correct Rounding and The
Table Maker’s Dilemma
2.1 Introduction
A number is said to be algebraic if it is a root of a polynomial having integer coefficients.
Thus, a number is said to be transcendental if it is not algebraic. A function f is said to be
algebraic if it satisfies the following condition:

P (x, f (x)) = 0 (2.1)

where P is a polynomial having integer coefficients. A function is said to be transcendental
if it is not algebraic [20].

Ferdinand von Lindemann, a German mathematician, proved in 1882 that ex is tran-
scendental if x is non-zero algebraic number as a corollary to a theorem that proves that π
is transcendental [21, 1]. This result is applicable for other elementary functions such as
trigonometric and logarithmic functions.

As previously mentioned in Chapter 1, correct rounding can be easily obtained for the
fundamental operations, such as addition and multiplication, by adding some guard bits
that can be determined analytically. That is, some extra bits for the pre-rounded result that
guarantee correct rounding. Algebraic functions, such as reciprocal and square root, have
some kind of analytic proofs [11, 13] that determine the upper bound of these extra bits for
correct rounding. Unfortunately, no proofs exist for the case of transcendental functions.

Thus, trigonometric, exponential and logarithmic functions cannot be exactly repre-
sented with a finite number of arithmetic operations and always produce, except for rare
known exceptions such as cos(0) and exp(0), transcendental number outputs whenever the
argument is algebraic which is the case for floating-point representations [16]. Therefore,
transcendental functions must be approximated to be computed.

2.2 The TMD Problem
Let us assume an IEEE-754 normalized floating-point argument x represented within
a target precision p as represented in Equation 1.4. If we seek to compute fp(x), the
correctly rounded floating-point representation of the transcendental function f (x) within
the target precision p, f (x) is approximated using a polynomial P(x) within a closed
interval C = [a,b]. This approximation, which is of minimax type for our case (see Section
3.2), induces an error called the approximation error εapprox:

εapprox = max
x∈C
| f (x)−P(x)| < 2−m (2.2)

where m is a positive integer and m > p. Thus, P(x) is obtained within an interval I of
width of 2×2−m centered around f (x). To obtain the correctly rounded value fp(x), the
following relation should be maintained:

fp(x) = Rp (P (x)) (2.3)
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1 x x . . .x x x 0 0 . . .0 0 0 0 0 0 0 1 x . . .
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Lp

Rounding
to nearest
mode

Directed
rounding
modes

Figure 2.1: The cases for closeness of f (x) to the breakpoint for the different rounding
types

FPN FPN FPN

Breakpoint Breakpoint

P(x)

I

Figure 2.2: An example where TMD occurs

where R ∈ {RN,RZ,RU,RD} is the rounding operator to the precision p, x ∈C and fp(x) =

Rp( f (x)).
However, since the known value is P(x) not f (x), we may inversely imagine that I is

now centered around P(x) and f (x) ∈ I. If m is not sufficiently large, the interval I may
be wide enough to contain the breakpoint, which is defined as the mid-point between
two consecutive floating-point representations for the case of RN and the floating-point
representation itself for the other three rounding modes, and therefore Equation 2.3 may
not be maintained and subsequently the TMD occurs.

Let us define the infinitely precise unsigned mantissa of the transcendental function
f (x) as

∑∞
i=0 mi2−i with m0 = 1. Figure 2.1 shows the cases of closeness of f (x) to the

breakpoint in the case of the nearest rounding mode (i.e. RN) and the directed rounding
modes (i.e. RZ, RU and RD). Assume that L is length of the chain with consecutive
ones or zeroes starting from the position p + 1 and ending at q−1 with having q ≥ p + 2.
Therefore, the higher the value of q, the higher the value of L, the closer the value of f (x)
to the breakpoint and subsequently the harder the case to be correctly rounded.

Let us discuss the case of RN. Having the pre-rounded value P(x) computed, we only
guarantee that f (x) ∈ I where I =

[
P(x)−2−m,P(x) + 2−m]

. Figure 2.2 shows the case
when m is not large enough to guarantee correct rounding. If f (x) actually lies on the
right of the breakpoint, we obtain an incorrectly rounded result. Thus, the Equation 2.3

10



FPN FPN FPN

Breakpoint Breakpoint

P(x)

I

Figure 2.3: An example where TMD does not occur

is not guaranteed to be always achieved and subsequently the TMD occurs. Now, let us
discuss the second case shown in Figure 2.3; no matter what the value of f (x) is, Equation
2.3 is always maintained and we obtain a correctly rounded result. Clearly, the sufficient
condition for the TMD to be solved is when the case shown in Figure 2.3 is achieved for
every x within the designated interval. The real problem is how to determine and produce
the required accuracy using feasible memory and logic cost to achieve such condition.

It should be noted that εapprox is not the sole source of errors, another kind of errors
called the round-off error stems from the fact that P(x) is evaluated within finite precision.
We call that precision, which may be much higher than the target precision p, the working
precision w. Round-off errors may also involve the rounding of P(x) coefficients in order
to be stored within reasonable width.

2.3 Solving The TMD
Two intuitive methodologies for solving the TMD problem have been adopted in the
literature. However, in real world implementations such as the CRlibm library (see Section
4.3), the two methodologies may be combined to improve the efficiency of the algorithms
used.

2.3.1 Ziv’s Multilevel Strategy
Ziv’s multilevel strategy [36] is a progressive paradigm for producing a correctly rounded
result. The method can be outlined as follows:

1. Set the index i = 1.

2. Evaluate the output Pi(x).

3. Test if Pi(x) is accurate enough such that Equation 2.3 is maintained. If so, return
Rp

(
Pi(x)

)
and terminate the loop. If not, increment i and go to step 2.

Note that the accuracy of Pi(x) increases as i gets incremented. Thus, Ziv’s multilevel
strategy aims at obtaining correct rounding for all arguments without penalizing the
easy-to-round cases and subsequently producing a competent average execution latency.
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Let us consider T as the average CPU time, Ti the CPU time for the iteration i, and pi,
the probability of x to be close enough to the breakpoint that it gets iterated until it reaches
the ith iteration. Therefore, T is calculated as follows:

T =

∞∑
j=1

1− i= j−1∑
i=1

pi

T j

= T1 + (1− p1)T2 + (1− p1− p2)T3 + · · ·

(2.4)

Depending on the design and architecture decisions for each iteration which depend
on the accuracy of Pi(x), one can tune the values of pi and Ti to reduce the value of T .
If P1(x) is designed such that p1 is close to 1, then T ≈ T1. Of course, as i increases,
the cost of Pi(x) implementation may greatly increase. Thus, we should make sure that
almost all cases should satisfied within the first few iterations. Thus, even if i can grow to
∞ in theory, it can be dealt with some sort of exception whenever i becomes very large.
However, this case remains very unlikely.

This methodology is somewhat inconvenient for hardware implementation as it may
require multi-precision computations as well as high memory requirements for storing the
minimax polynomial coefficients at all possible levels. Ziv’s methodology was used in
libultim library (now integrated in glibc [20]). A two-step evaluation technique is found in
the CRlibm library (see Section 4.3).

2.3.2 Search Algorithms
The second methodology is to determine the worst cases through exhaustive search within
the designated range a priori in order to estimate reasonable computing and memory
requirements for design implementation. Exhaustive search is feasible for low and inter-
mediate precisions (e.g SP or lower precisions). As for the case of SP (i.e. p = 24), the
main target precision throughout the thesis, exhaustive testing can be achieved within less
than an hour using a modern x86 processor for many elementary functions.

It should be noted that some intervals of floating-point representations do not require
polynomial approximation to be evaluated and the correctly rounded output can be directly
returned (e.g. very small arguments for sine, cosine and exponential functions). Search
algorithms or numerical analysis can be used to determine such intervals. For example,
we can, for the RN case, safely return sin(x) = x and cos(x) = 1 when |x| < 2−12 for SP and
the same outputs when |x| < 2−27 for DP.

Let us apply exhaustive search to find the hardest-to-round cases for some SP elemen-
tary functions within certain reduced intervals. Let L◦ be L with ◦ denoting the designated
function. Assume that Γ(L◦) is the number of occurrences of L◦ for the rounding mode
R. Table 2.1 shows the relation between L◦ and Γ(L◦) for ◦ ∈ {sin(x),cos(x), log2(x),2x}

within certain intervals for the case of RN. One can simply note that Γ decreases exponen-
tially as L◦ increases (Γ is roughly reduced by a factor of 2 when L◦ gets incremented).
Assume that L◦∗ is the largest value of L◦ within the designated interval. Table 2.2 shows
L◦∗ for ◦ ∈ {sin(x),cos(x)} with [x ∈ 2−12,21].

One may then estimate that

Γ(L◦) ≈ λ×2−(L◦+1)
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L◦
Γ
(
Lsin(x)

)
Γ
(
Lcos(x)

)
Γ
(
Llog2(x)

)
Γ
(
L2x)

x ∈ [2−12,21] x ∈ [2−12,21] x ∈ [2,4] x ∈ [2−24,20]

0 52863476 54411868 4191293 101863957

1 27318116 27275274 2099186 52732275

2 14454673 13669615 1048428 27562386

3 7207238 6842937 525044 13765947

4 3605298 3425081 262576 6895984

5 1801277 1713360 131080 3447106

6 901087 857143 65442 1723555

7 450415 428813 32970 861739

8 225280 213763 16482 431008

9 112412 107050 8177 215832

10 56309 53568 4015 107667

11 28090 26683 1969 53944

12 14090 13409 959 26882

13 7048 6698 487 13517

14 3492 3376 228 6629

15 1807 1614 126 3377

16 871 823 78 1697

17 473 420 41 846

18 230 195 16 442

19 113 109 6 207

20 57 51 1 103

21 29 25 0 55

22 11 15 3 19

23 5 4 0 14

24 4 5 0 6

25 1 2 0 2

26 2 1 1 2

27 0 1 0 1

28 0 1 0 0

29 0 0 0 1

Table 2.1: Γ(L◦) vs L◦ for ◦ ∈ {sin(x),cos(x), log2(x),2x} within certain intervals
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f x f (x)

sin 1.10011110101010110010111×2−4 1.100111011111010111110001000 . . .26 zeroes . . .000︸                       ︷︷                       ︸10 . . .×2−4

sin 1.11100111000001100001111×2−2 1.110101001101111010001010111 . . .26 ones . . .111︸                     ︷︷                     ︸01 . . .×2−2

cos 1.00100000111111111100110×2−7 1.111111111111101011100111000 . . .28 zeroes . . .000︸                       ︷︷                       ︸11 . . .×2−1

Table 2.2: The values of x and f ◦(x) having L◦∗ for ◦ ∈ {sin(x),cos(x)} and x ∈
[
2−12,21

]
f Interval Rounding Type L◦∗

sin(x)
[
2−25,π

) Nearest 59

Directed 72

cos(x)
[
2−17,22

) Nearest 58

Directed 58

tan(x)
[
2−25,π/2

) Nearest 78

Directed 72

log2(x)
[
2−1,21024

) Nearest 54

Directed 55

2x (−∞,+∞)
Nearest 59

Directed 59

ln(x)
[
2−1074,2−1

) Nearest 60

Directed 60

Table 2.3: DP worst-case results for some elementary functions within certain intervals

where λ is the total number of FPNs within the designated interval. Thus, one can expect
a rough estimation that L◦∗ ≈ log2(λ)− 1 when we substitute Γ(L◦∗) = 1. Assume that
m◦∗ is the largest value of m◦ within the designated interval, thus one can expect that
m◦∗ ≈ p + log2(λ). This rough estimation serves only as a guide for the required accuracy
of a certain function.

However, finding the worst cases using exhaustive testing for high precisions such as
DP is almost infeasible and for QP is entirely impossible for today’s computational power.
Advanced algorithms such as Lefèvre [15] and SLZ [31] algorithms were developed to
find the worst cases for DP. Table 2.3 shows the results obtained by the algorithms of L◦∗
for some DP elementary functions within certain intervals [20].
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2.4 Summary
A presentation of the TMD problem has been discussed. While a rigorous solution for
the TMD problem does not exist, two intuitive methodologies were developed. The
first methodology aims at gradually obtaining correct rounding and it is known as Ziv’s
multilevel strategy. The second methodology is to conduct search algorithms within
intervals of interest in order to find the hardest-to-round cases and subsequently construct a
reasonable implementation. While exhaustive search is feasible for small and intermediate
precisions such as SP, more advanced algorithms such as Lefèvre’s were developed to suit
large precisions such as DP.
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Chapter 3: Range Reduction and
Polynomial Approximation
3.1 Range Reduction
In order to implement a realizable design, the working range within which the approxima-
tion is applied should be reasonably small. For example, we cannot use one polynomial
to approximate the sine function over the entire range of SP FPNs. This will implicate
incredibly huge memory and computing requirements. However, we can exploit the
periodicity of the function and reduce the entire interval to much smaller interval (e.g.
[0,π]).

Quite generally, an elementary function f (x) is computed in three main steps:

1. Range reduction: The argument x may be transformed or reduced to another ar-
gument called the reduced argument xr that lies within a smaller predetermined
reduced interval.

2. Evaluation: P(xr) is evaluated using some approximation function valid within the
reduced interval.

3. Reconstruction: The computed elementary function f̂ (x) is obtained from P(xr).

The implementation of this abstract description is straightforward. For instance, the
sine function can be computed as follows:

1. the argument is reduced to the interval [0,π/4] using the relation xr = x−Nπ/4.

2. Evaluate sin(xr) and cos(xr).

3. Obtain sin(x) from the relation sin(x) = sin(xr)cos(Nπ/4) + cos(xr) sin(Nπ/4). The
values of sin(Nπ/4) and cos(Nπ/4) for N = 0,1, . . . ,7 are stored in a lookup table.

The choice of the reduced interval directly affects the evaluation and the reconstruction
steps. For example, having determined the required accuracy, if we change the interval
[0,π/4] to [0,π/8], we mitigate the requirements of the evaluation step (i.e. lower degrees
for the case of polynomial or rational approximation or lower memory requirements for the
case of table-based methods) yet at the expense of doubling the memory requirements for
the reconstruction step as the maximum value of N now is 15 instead of 7. Subsequently,
the range reduction influences the implementation decisions. Range reduction can be
classified into two types as follows:

1. Additive reduction: where xr = x−NK.

2. Multiplicative reduction: where xr = x/KN .
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where N is a non-negative integer.
Multiplicative range reduction is pretty straightforward. K is usually chosen as the

radix of the system; subsequently, xr is computed with no loss in accuracy as only the
exponent section is changed. For example, the computation of xr for log2(x) can be
performed as xr = x/2Ex and subsequently log2(x) = Ex + log2(1.Mx).

However, accurate additive range reduction is surprisingly much more complex to
realize. A straightforward additive range reduction can be done as follows:

N =

⌊ x
K

⌋
(3.1)

xr = x−N ×K (3.2)

Thus, xr ∈ [0,K] or [−K/2,K/2]. Note that K, in many cases, is a transcendental
number and subsequently NK cannot be exactly represented within floating-point systems.
Therefore, we define K′ as the FPN that represents K within the working precision w. A
direct choice is to use K′ = RNw(K).

Unfortunately, the simple operation in Equation 3.2 may lead to inaccurate values of
xr and eventually even more inaccurate f̂ (x) results. This loss of accuracy occurs when
x ≈ NK′ while there is insufficient working precision within the underlying architecture to
obtain xr correctly to enough least significant bits. This inaccuracy of xr will be fed to the
evaluation and then the reconstruction steps and the final output f̂ (x) may be far from the
correct f (x). The loss of accuracy drastically worsens when x becomes very large as the
massive cancellation grows inevitable. That is, when x and NK′ are very large, the value
of xr is always expected to lie within the reduced interval, which is bounded to a much
lower maximum value. This problem directly affects trigonometric functions. Fortunately,
exponential functions, for example, overflow at much lower arguments and subsequently
this problem is much more limited. Thus, more advanced range reduction algorithms,
mainly targeted for trigonometric functions, were developed to produce accurate reduced
arguments efficiently.

3.1.1 Cody and Waite’s Redcution Algorithm
Cody and Waite’s range reduction algorithm was introduced in [4] to increase the accuracy
without increasing the working precision. The simple algorithm mitigates the massive
cancellation problem by splitting K into two constants K′1 and K′2 as follows:

K ≈ K′1 + K′2 (3.3)

such that ∣∣∣∣K − (
K′1 + K′2

)∣∣∣∣� ∣∣∣K −K′
∣∣∣ (3.4)

We can compute K′1 and K′2 as follows:

K′1 = RNw (K) (3.5)

K′2 = RNw
(
K −K′1

)
(3.6)
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Hence, Equation 3.2 becomes as follows:

xr =
(
x−NK′1

)
−NK′2 (3.7)

Thus, the operation represented by Equation 3.7 acts as a safeguard in case (x−NK′1)
suffers from massive cancellation. Hence, with a very low overhead a much higher accurate
xr can be obtained. The algorithm has been successfully implemented in software libraries.
For instance, CRlibm uses different implementations of Cody and Waite’s algorithm for
low and intermediate arguments.

3.1.2 Payne and Hanek’s Reduction Algorithm
Payne and Hanek’s algorithm, introduced in [25], is extremely useful when the ordinary
or the modified Cody and Waite algorithms are unable to produce a sufficiently accurate
value of xr; this usually happens at large arguments. Although the algorithm can be also
used at intermediate and small arguments, the method is considered unfavorable due to
the memory and computational penalty.

Let the FPN x within the target precision p be reformulated as x = 2Ex−p+1×X, where
X is integer where 2p−1 ≤ X < 2p. Thus, Equation 3.2 can be rearranged as follows:

xr =
π

2M

(
2M+Ex−p+1

π
×X−N

)
(3.8)

where M is a positive integer. Note that the quantity (1/π) is a transcendental number.
Thus, it is represented by an infinite series:

1
π

=

∞∑
i=0

Wi×2−i (3.9)

where Wi ∈ {0, 1}. Thus, the final form can be shown as follows:

xr =
π

2M

2M+Ex−p+1×

 ∞∑
i=0

Wi×2−i

×X−N

 (3.10)

Since xr ∈
[
0, π/2M

]
, the following condition should be fulfilled:2M+Ex−p+1×

 ∞∑
i=0

Wi×2−i

×X−N

 ≤ 1 (3.11)

Thus, the subtraction operation in Equation 3.10, which may require a much higher
precision than p depending on the argument value, need not be performed. Obtaining an
accurate value of the fraction part of the quantity

2M+Ex−p+1×

 ∞∑
i=0

Wi×2−i

×X

is sufficient to compute xr. We now only need to know the range of i values to obtain
this quantity accurately. Note that when Equation 3.10 is unraveled, the component of
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the series having i ≤ Ex− p are multiples of 2π and subsequently the components having
i > Ex− p should only be considered. We need also to find a higher bound on i such that
we obtain an accurate value of xr. If we need the fraction part with absolute error to
become less than 2−α, that implies that the last component should be

2π×2Ex−p−i×Wi×X ≈ 23+p+Ex−p−i < 2−α

where π is roughly approximated to 22 and X has a maximum of 2p−1 ≈ 2p. Therefore,
Ex− p + 1 ≤ i ≤ α+ Ex + 4.

In order to obtain the value of xr, the fraction part must be multiplicated by π/2M as
follows:

xr ≈
π

2M × fraction

2M+Ex−p+1×

 α+Ex+4∑
i=Ex−p+1

Wi×2−i

×X

 (3.12)

Although this algorithm can compute efficiently reduced argument regardless of the
value of x, the implementation of the method is very costly for both software and hardware
designs. Payne and Hanek’s algorithm was implemented for example in CRlibm and Sun
Microsystem’s libm, currently known as fdlibm 1.

3.2 Approximation polynomials
In order to evaluate a transcendental function, it should be approximated to some polyno-
mial. Although the popular Taylor polynomials have great advantages due their easiness
and maturity of analysis, they produce poor maximum error results compared to other
approximation polynomials such as minimax, Chebyshev and Legendre approximation
polynomials [21].

If we seek to approximate the continuous function f over a closed interval C = [a,b]
using an approximation polynomial P, there exist two types of approximations [20]:

1. Least squares approximation (also called L2 approximation): L2 approximation
polynomials minimize the L2 distance ‖ f −P‖L2 where

‖ f −P‖L2 =


a∫

b

(
f (x)−P (x)

)2
dx


1
2

(3.13)

Thus, L2 approximation polynomials minimize the average error. Chebyshev series,
Legendre and Jacobi orthogonal polynomials are examples of L2 approximation
polynomials.

2. Least maximum approximation (also called L∞ and minimax approximation): L∞

approximation polynomials minimize the L∞ distance ‖ f −P‖L∞ where

‖ f −P‖L∞ = max
[a,b]
| f (x)−P (x)| (3.14)

Thus, L∞ approximation polynomials minimize the maximum error.
1For more information, visit http://www.netlib.org/fdlibm/readme.
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Approximation polynomials may be obliged to use large degrees to satisfy some
required approximation error. Rational approximation was investigated in [12] to address
this problem. Rational approximation can possibly produce much lower degree values
for numerator and denominator polynomials compared to polynomial approximation
assuming the same accuracy. Rational approximation is still unfavorable compared to
polynomial approximation due to the known high cost of the division operation.

3.3 Minimax Approximation
A theorem by Karl Weierstrass in the late 19th century [17] shows that every continuous
function f on a closed interval [a,b] can be approximated by a polynomial Pn of degree n;
assume that ε > 0, therefore the following condition is fulfilled:

‖ f −P‖L∞ < ε (3.15)

That is, there exists a polynomial that can approximate any continuous function over a
closed interval with a whatever desired maximum error. Thus, L∞ polynomials minimize
the value of ε.

Chebyshev [21] showed that a unique minimax polynomial P∗ exists if and only if
there exist at least n + 2 points within [a,b] , (a ≤ x0 < x1 < x2 < . . . < xn+1 ≤ b) such that:

Pn(xi)− f (xi) = (−1)i (Pn (x0)− f (x0)) = ±‖ f −P‖L∞ ,∀i (3.16)

That is, the L∞ distance equioscillates over at least n + 2 points within [a,b]. Minimax
polynomials can be realized by a numerical algorithm [27] by Remez introduced in 1934.
Remez algorithm can be outlined as follows:

1. Set the index k = 0 and start with initial points (a ≤ x0 < x1 < x2 < . . . < xn+1 ≤ b).
Chebyshev nodes are preferred as initial points in order to obtain initially accurate
approximation:

xi =
a + b

2
+

b−a
2

cos
(
(2i + 1)π

2n

)
i = 0,1, . . . ,n + 1 (3.17)

2. Solve the system of (n + 2) linear equations

Pn,k(x0)− f (x0) = +δk

Pn,k(x1)− f (x1) = −δk

...

Pn,k(xn+1)− f (xn+1) = +δk

(3.18)

where Pn,k(xi) =
∑n

j=0 ak, jx
j
k,i. Obtain ak, j,∀ j and δk.

3. Obtain the points having the extrema yk,i,∀i of f −Pn,k then use xk+1,i = yk,i,∀i. Set
k← k + 1 and then go to step 2.
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As one can expect, the algorithm must be convergent. A theorem by de la Valée-
Poussin [24] shows that

υk =

∥∥∥ f −Pn,k
∥∥∥

L∞

min
∀i
| f (yk,i)−Pn,k(yk,i)|

≥ 1 (3.19)

and

min
∀i
| f (yk,i)−Pn,k(yk,i)| ≥ δk (3.20)

Note that υk = 1 and Pn,k = P∗ as k −→∞. Realistically, the iteration stops when

max
∀i
| f (yk,i)−Pk(yk,i)| −min

∀i
| f (yk,i)−Pk(yk,i)| < ε̂ (3.21)

were the value of ε̂ is predetermined.
There exist several commercial tools that can implement Remez algorithm. Un-

fortunately, we found them unable to produce large-degree/very accurate polynomials.
Thankfully, we found a a free and open source tool called Sollya [3] that can produce
minimax polynomials with whatever required accuracy. Sollya is generally useful for
developing accurate elementary functions that can be implemented in software as well as
hardware algorithms.

3.4 Polynomial Evaluation
Polynomial approximation provides us an efficient polynomial (i.e. the coefficients and the
polynomial degree values) that minimizes the designated distance (i.e. L2 or L∞). Now,
we need to know the efficient methods for evaluating the polynomial Pn(x) =

∑n
i=0 aixi in

runtime. The method of evaluating the polynomial as well as the working precision and
architecture decisions dictate the resulting accuracy and performance.

The widely known Horner’s rule [22] is a simple method to evaluate Pn. It can be
demonstrated as follows:

tn = an (3.22)
ti = ti+1x + ai for i = n−1, . . . ,1,0 (3.23)

Pn = t0 (3.24)

or simply
Pn(x) = ((((anx + an−1) x + an−2) · · · ) x + a1) x + a0 (3.25)

Thus, n additions as well as n multiplications are needed. If FMA is used, only n operations
are required.

Estrin’s scheme [8] is another method that improves Horner’s method to exploit
parallelism. Let Pn(x) be split as follows:

Pn(x) =
∑

0≤i<h

(
ai+hxi

)
xh +

∑
0≤i<h

aixi (3.26)
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where h = (n + 1)/2 is power of 2. The two polynomials can be further split. For example,
a polynomial of degree 7 can be evaluated as follows:

P7(x) =
(
((a7x + a6)) x2 + (a5x + a4)

)
x4 + (a3x + a2) x2 + (a1x + a0)

where P7(x) is constructed as follows:

a7x + a6 a5x + a4 a3x + a2 a1x + a0

×x2+ ×x2+

×x4+

P7(x)

Therefore, the required steps grow logarithmically with the polynomial degree having
the sufficient computational power.

3.5 Summary
In this chapter, range reduction algorithms have been discussed. As straightforward
additive range reduction algorithms causes inaccurate results, more advanced algorithms
such as Cody and Waite, and, Payne and Hanek, were developed to increase the accuracy
of reduced arguments. Polynomial approximation types have been presented. Minimax
approximation polynomials are realized using Remez algorithm. Horner’s and Estrin’s
polynomial evaluation techniques have been presented.
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Chapter 4: Table-Lookup Based
Methods
4.1 Introduction
Table-based methods are the predominant hardware-based techniques for computing high-
performance floating-point elementary functions. They are considered efficient in terms
of speed as well as having the advantage of consuming reasonable amount of memory
requirements especially when the desired accuracy is no more than the faithful rounding
case.

In table-based methods, the working interval C = [a,b] is divided into many smaller
sub-intervals, usually of equal size, and a piece-wise polynomial of a low degree, mainly
ranging from linear to cubic, is applied within the corresponding sub-interval. Dividing
the original wide interval does not come for free, it obliges using relatively large look-up
tables to store the sub-interval polynomial coefficients, ranging from several kbits to over 1
Mbits depending on the target precision, the polynomial degree and the required accuracy
(e.g. faithful, correct, etc . . .).

Generally speaking, there exists a trade-off between latency and memory to achieve
a designated result accuracy. The wider the sub-interval, the larger the required degree
to maintain a designated accuracy and subsequently a higher latency is incurred but at
the advantage of having less memory due to having a fewer number of sub-intervals.
Conversely, the narrower the sub-interval, the lower degree needed yet at the expense of
using larger look-up tables.

Many notable achievements were made throughout the past 25 years to increase
the accuracy of the table-based methods while reducing the memory and computing
requirements. Pioneer works, such as [33, 10, 34, 35], paved the way to implement
accurate floating-point elementary functions at high-speed and realizable lookup table
sizes. Table-based methods can be divided into three paradigms as described in [19]:

1. Compute-bound methods: High-order polynomials with relatively small lookup-
tables are used (e.g. the method by Tang [33]).

2. Table-bound methods: Large lookup-tables with very simple arithmetic circuitry
are used. Bipartite [6] and Multipartite [19, 7] methods which use two or more
lookup-tables with two or many-operand adders.

3. In-between methods: Mostly degree-1 to 3 piecewise polynomials are used with
intermediate lookup-tables (e.g. The method given by Pineiro and Al. [26]).

In this chapter we present some memorable examples of hardware-oriented table-based
methods. To our knowledge, all hardware-oriented methods assume a reduced range
(e.g. sin(x) and 2x for x ∈ [0,1] and 1/

√
x for x ∈ [1,2]). Arguments out of such reduced

intervals should be reduced using software routines or special-purpose circuitry.
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4.2 Memorable Examples

4.2.1 Tang’s Method
Tang’s algorithm [33] is an archetype of the compute-bound methods. It uses large-degree
polynomials with rather small lookup-tables. This paradigm is useful for high precisions
(e.g. DP) where the required size of lookup-tables can be incredibly large for low-degree
picewise polynomials to be implemented. The algorithm was developed for DP sin(x), 2x

and log2(x) and it produces a theoretical bound of 0.57 ulps of accuracy.

4.2.1.1 sin(x) for x ∈ [0,π/4]

• Range reduction: if |x| < 1/16, compute sin(x) with some simple polynomial;
otherwise, calculate the breakpoint c jk where

c jk = 2− j (1 + k/8) j = 1,2,3,4 and k = 0,1, . . . ,7

Then define r as the reduced argument where r = x− c jk where |r| ≤ 1/32

• Evaluation: compute p(r) = sin(r)− r and q(r) = cos(r)−1 as follows:

p(r) = p1r3 + p2r5 + . . .+ pnr2n+1 (4.1)

q(r) = q1r2 + q2r4 + . . .+ qmr2m (4.2)

where the coefficients p1, p2, . . . , pn and q1,q2, . . . ,qm are computed using Remez
algorithm.

• Reconstruction: sin(x) = sin(c jk + r) is reconstructed as follows:

sin(x) = sin(c jk)(cos(r)−1 + 1) + cos(c jk)(sin(r)− r + r) (4.3)
sin(x) ≈ S jk + rC jk + p(r)C jk + q(r)S jk (4.4)

where S jk and C jk,∀ j,k are the stored values of sin(c jk) and cos(c jk) respectively.

4.2.1.2 2x for x ∈ [−1,1]

• Range reduction: compute the reduced argument r where r = |x− (m + ck)| log(2)
where |x− (m + ck)| ≤ 1/64, m = −1,0,1, ck = k/32 and k = 0,1, . . . ,31. Thus, |r| ≤
log(2)/64.

• Evaluation: compute the function p(r) = er −1 where

p(r) = r + p1r2 + . . .+ pnrn+1 (4.5)

The coefficients p1, p2, . . . , pn are computed using Remez algorithm.
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Function No. of table entries No. of coefficients

sin(x) 64 n = 3 and m = 3

2x 32 n = 5

Table 4.1: The number of lookup-table entries and coefficients given by Tang

• Reconstruction: 2x is reconstructed as follows:

2x = 2m+cker (4.6)
2x ≈ 2m (Tk + Tk p(r)) (4.7)

where the values of Tk,∀k are the stored values of 2ck .

The size of the lookup tables is very attractive for the somewhat low-degree polynomial
and the high accuracy obtained. For the case of sin(x), if the values of S jk and C jk are
stored in DP, the size of the table-lookup is then 4 kbits of size. Applying the unmodified
method to obtain correctly rounded results performs poorly (e.g. less than 1% having the
polynomial evaluated using DP FMA for the sine case). We do not know of the existence
of any variant to Tang’s method developed to other designated accuracy and precision
values. Therefore, we cannot verify the requirements that satisfy correct rounding using a
convenient variant of the method.

4.2.2 Bipartite and Multipartite Methods
The bipartite method (also called the table-and-addition method) was first introduced in [6].
The method was used to compute 1/x and 1/

√
x in AMD-K7 [23] as initial approximations

to eventually compute division and square root operations. The method is still favorable
for rather small precisions (i.e. p ≤ 20).

If we imagine that the output of every fixed-point argument x where x ∈ 1 ≤ x < 2 of
width p bits is stored in a lookup table, we will need then a lookup-table of p2p bits to
store all outputs.

Now, assume that x is divided into three sections each of width k, i.e. p = 3k such that
x is arranged as follows:

x = x0 + 2−kx1 + 2−2kx2

where x0 = 1.m1m2 . . .mk, x1 = 0.mk+1mk+2 . . .m2k and x2 = 0.m2k+1m2k+2 . . .mp−1. Re-
member Taylor’s form for x near x̄ is calculated as follows:

f (x) =

n∑
i=0

f (i) (x̄) (x− x̄)i

i!
+

f (n+1) (ζ) (x− x̄)(n+1)

(n + 1)!
(4.8)

where the second term of the right side is the Lagrange remainder and ζ ∈ (x̄, x). Thus, the
Taylor expansion of f (x) centered around the point x0 + 2−kx1 up to the first order term is
calculated as follows:
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f (x) = f
(
x0 + 2−kx1

)
+ 2−2kx2 f ′

(
x0 + 2−kx1

)
+ ε1 (4.9)

where ε1 ≤ 2−4k−1 max(| f ′′|). Now, we further approximate f ′
(
x0 + 2−kx1

)
using Taylor’s

form around x0 as follows:

f ′
(
x0 + 2−kx1

)
= f ′(x0) + ε2 (4.10)

where ε2 ≤ 2−k max(| f ′′|). Thus, f (x) is evaluated as follows:

f (x) = f
(
x0 + 2−kx1

)
+ 2−2kx2

(
f ′(x0) + ε2

)
+ ε1 (4.11)

f (x) = f
(
x0 + 2−kx1

)
+ 2−2kx2 f ′(x0) + ε1 + 2−2kx2ε2 (4.12)

f (x) = a0 (x0, x1) + a1 (x0, x2) + ε (4.13)

where
ε ≤

(
2−4k−1 + 2−3k

)
max

(
| f ′′|

)
(4.14)

The values of a0 and a1 are stored in two lookup-tables each with address width of
2p/3 bits. Thus, only an addition operation is required to obtain f̂ (x) = a0 + a1. If we
assume that p = 3k, then the total memory required is 4p/3×22p/3 bits. This is remarkably
smaller than the case of the primitive output storage of p2p bits for intermediate p values,
i.e. 16−20 bits. However, this advantage dwindles as the target precision increases for the
memory grows exponentially in either case.

The multipartite method (or the ( j + 1)-partite method) was developed in [19] to
generalize the bipartite method. Assume that x is divided into (2 j + 1) k-bit parts as
follows:

x =

2 j∑
i=0

xi2−ik

Thus, the Taylor polynomial for x near x0 =
∑ j

i=0 xi2−ik is calculated as follows:

f (x) = f

 j∑
i=0

xi2−ik

+

 2 j∑
i= j+1

xi2−ik

 f ′
 j∑

i=0

xi2−ik

 (4.15)

We further approximate f ′
(∑ j

i=0 xi2−ik
)

into j terms with corresponding error εi+1 and
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subsequently f (x) is calculated as follows:

f (x) = f

 j∑
i=0

xi2−ik

+ ε0

+ x j+12−( j+1)k f ′
 j−1∑

i=0

xi2−ik

+ ε1

+ x j+22−( j+2)k f ′
 j−2∑

i=0

xi2−ik

+ ε2

...

+ x2 j2−2 jk f ′ (x0) + ε j

(4.16)

where ε0 ≤ 2−2( j+1)k−1 max(| f ′′|) and εi ≤ 2−(2 j+1)k max(| f ′′|)

f (x) = a0
(
x0, x1, . . . , x j

)
+ a1

(
x0, x1, . . . , x j−1, x j+1

)
+ a2

(
x0, x1, . . . , x j−2, x j+2

)
+ · · ·+ a j

(
x0, x2 j

)
+ ε

(4.17)

where

ε =

j∑
i=0

εi ≤
(
2−2( j+1)k−1 + j2−(2 j+1)k

)
max

(
| f ′′|

)
≈ j2−(2 j+1)k max

(
| f ′′|

)
(4.18)

Many variations of the method were developed to increase the accuracy and decrease
the size of the lookup tables. In [35] a second-order Taylor polynomial is developed for
the SP case. The symmetric bipartite table method (SBTM) introduced in [29], imposes
an offset to the center of the approximation such that a symmetry is obtained around it.
Thus, storing the first-order term of either the right side or the left of the center becomes
sufficient while the other side is simply deducted from the symmetry. Subsequently, the
size of the lookup table storing a1 values is reduced by a factor of two. The bipartite and
multipartite methods are not convenient to produce correct rounding because the total
relative error is expected to be closer to the faithful case (Note that p = 3k for Equation
4.14 and p = (2 j + 1)k for Equation 4.18).

4.2.3 Pineiro’s Method
The method by Pineiro et Al. [26] follows the in-between paradigm using degree-2
piecewise minimax polynomials in order to compute faithfully rounded IEEE 754 SP
elementary functions. The method was applied for several elementary functions within
accuracy of 1, 2 and 4 ulps.

Assume the argument x of width p is divided into two sub-words x1 = [x1x2 . . . xm]
and x2 = [xm+1xm+2 . . . xp] where

x = x1 + x22−m
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f (x)
Table size in bits

1 ulp 2 ulps 4 ulps

1/x 27× (25 + 16 + 10) = 6528 27× (24 + 15 + 9) = 6144 26× (25 + 17 + 12) = 3456
√

x 2×26× (25 + 15 + 9) = 6272 2×25× (26 + 17 + 11) = 3456 2×25× (23 + 14 + 9) = 2944

1/
√

x 2×27× (25 + 15 + 9) = 12544 2×26× (24 + 14 + 11) = 6272 2×26× (23 + 13 + 9) = 5760

2x 26× (25 + 16 + 10) = 3264 25× (25 + 18 + 13) = 1792 25× (24 + 15 + 10) = 1568

log2(x) 27× (26 + 16 + 10) = 6656 26× (27 + 19 + 14) = 3840 26× (24 + 16 + 10) = 3200

sin(x) 26× (27 + 19 + 12) = 3712 26× (25 + 17 + 10) = 3328 26× (25 + 15 + 9) = 3136

Table 4.2: The size of lookup-tables given by Pineiro and Al. for several SP elementary
functions for the case of error within 1, 2 and 4 ulps

Thus, the degree-2 approximation piecewise polynomial Pm(x) of f (x) within
[
x1, x1 + 2−m]

can be computed as follows

Pm(x) = a0(x1) + a1(x1)x2 + a2(x1)x2
2 x2 ∈

[
x1, x1 + 2−m

]
(4.19)

Thus, we have 2m sub-intervals each has a corresponding tuple of a second degree
minimax polynomial coefficients (a0,a1,a2) with a corresponding tuple of coefficient
lengths (t, p,q). The method uses what is called the enhanced minimax approximation
that makes sure that the value of m is minimized as the size of the look-up table grows
exponentially with m. Furthermore, the lengths of the coefficients should be minimized to
reasonable wordlengths without violating the designated accuracy. The method can be
summarized as follows:

1. Find m that gives a preliminary minimax polynomial with unrestricted wordlengths
for the three coefficients that corresponds to some preliminary designated approxi-
mation error.

2. Set preliminary large values of (t, p,q) and check whether the bound of the approxi-
mation error is exceeded; if the error budget is still smaller than the approximation
error, decrease (t, p,q) until the error budget meets the approximation error; other-
wise, increment m and go to step 2.

3. Using exhaustive simulation, find the best rounding constant that can be used as a
bias to minimize the overall error.

Table 4.2 shows the obtained results for error within 1 (i.e. faithfully rounded result),
2 and 4 ulps for six elementary functions.

The architecture uses a specialized squaring unit to generate x2
2, a truncation is applied

to the squarer as x2
2 is guaranteed to be less than 2−2m and thus there exists some room to

neglect many of the least significant bits without sacrificing the result designated accuracy.
We have 3 components to be summed: a2x2

2, a1x2 and a0. The first two components are
generated as partial products using the signed-digit radix-4 representation. This reduces
the number of partial products to about half compared to the conventional binary approach
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and subsequently a faster addition is achieved. The third term is added to the function-
specific rounding constant. A fused accumulation tree is used to compress the partial
products using 3:2 and 4:2 carry-save adders (CSAs) into a two conventional words that
are fed to a fast carry-propagation adder (CPA).

The method is currently the preferred choice for SP elementary functions for GPUs
and general-purpose processors. A related work in [32] uses also degree-2 minimax
polynomials yet reduces the size of lookup-tables by around 40% by imposing same a0
for two adjacent subintervals. In [14], degree-1 and 2 interpolations are investigated and
compared to their corresponding approximation minimax polynomials for precisions up to
SP.

4.2.4 Schulte’s Method
Schulte’s method [28, 30] is the main contribution for hardware-based correctly rounded
floating-point elementary functions. The method was applied for four elementary functions,
namely: 1/x,

√
x, 2x and log2(x), using degree-1, 2 and 3 Chebyshev series piecewise

polynomials for p = 16 and 24. This method serves as the best available guide of the
estimated required size of lookup-tables for correctly rounded SP elementary functions
using table-based methods.

Assume the argument x ∈ [1,2) where x = 1 + xh + xl2−k. The Chebyshev series
approximation polynomial Pm(x) =

∑n−1
i=0 ai(xh)xi

l of degree n−1 within the subinterval[
xh, xh + 2−k

]
is computed as follows:

1. The Chebyshev nodes are obtained initially within [−1,1] as follows:

ti = cos
(
(2i + 1)π

2n

)
i = 0,1, . . . ,n−1 (4.20)

2. The Chebyshev nodes are transformed from [−1,1] to
[
xh, xh + 2−k

]
using the rela-

tion:
xi = xh + (ti + 1)2−k−1 i = 0,1, . . . ,n−1 (4.21)

3. The Lagrange polynomial interpolates the Chebyshev nodes within
[
xh, xh + 2−k

]
and is computed as follows:

Pm(x) =

n−1∑
i=0

f (xi)Li(x) (4.22)

where

Li(x) =

n−1∏
j=0, j,i

(x− x j)

n−1∏
j=0, j,i

(xi− x j)

(4.23)

4. The coefficients are rounded to lower precisions in order to explore the smallest
arithmetic and memory requirements without violating the accuracy required for
correct rounding.
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Degree
Coefficient length Table size

a0 a1 a2 a3 Words Bits/word Total bits

1 36 21 – – 512K 57 28.5M

2 40 31 19 – 16K 90 1.4M

3 41 35 27 18 1K 121 121K

Table 4.3: Memory requirements for the four SP elementary functions for the case of
degree 1, 2 and 3

The maximum approximation error δ for Chebyshev series polynomials is calculated
as follows:

δ =
2−n(k+2)+1

∣∣∣ f (n)(ξ)
∣∣∣

n!
(4.24)

where ξ ∈
[
xh, xh + 2−k

]
gives the maximum value of f (n) over the interval. We have two

factors to control the accuracy and the underlying architecture:

1. If k gets incremented, δ is reduced by a factor of 2n but at the expense of doubling
the lookup-table size.

2. If n gets incremented, δ is reduced by a factor of 2k+2 but the expense of extra delay
and complexity for the arithmetic circuitry.

Let us assume δ ≤ 2−q. Thus, k is calculated as follows:

k =

⌈q−2n + 1 + log2

(∣∣∣ f (n)(ξ)
∣∣∣)− log2(n!)

n

⌉
(4.25)

Table (4.3) shows the lookup table size for the four implemented elementary functions
for the case of degree-1, 2 and 3.

The architecture is very similar to Pineiro’s method (see Figure 4.1). Ad-hoc powering
units and partial-product generators are needed followed by a multi-operand adder.

4.3 CRlibm
After presenting several popular hardware-oriented table-based methods, we now discuss
a popular software example that offers correct rounding.

CRlibm [5] is a portable, efficient and IEEE 754 compliant correctly rounded software
math library for DP elementary functions. It uses a 2-step evaluation technique for
computing the final result. A fast step that suffices for most arguments with having 2−60 to
2−80 of function-specific accuracy; a slower and more accurate step includes the rest of
the arguments having 2−120 to 2−150 of function-specific accuracy relying on knowledge
of the hardest-to-round cases given by Lefèvre’s algorithm (see Section 2.3.2). The
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Figure 4.1: The architecture of Schulte’s method
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algorithms used greatly differ from a function to another. We give a brief description
for the implementation of trigonometric functions. The fast step can be summarized as
follows:

• Range reduction: Let x ∈ [−π/4,π/4]. Larger arguments are reduced to x using
periodicity. Let x = a + y where y is the reduced argument and

a =
Nπ
256

In order to return DP correctly rounded result, y ∈ [−π/512,π/512] is considered a
double-double variable represented by two DP FPNs yh and yl where y = yh +yl. The
value of y is obtained using several implementations of Cody and Waite’s method
or Payne and Hanek’s method depending on the value of x. Likewise, the value of
sin(a) is represented by sah + sal and cos(a) by cah + cal where (sah, sal,cah,cal)
are stored in lookup tables.

• Evaluation: compute sin(y) = (1 + ts)(yh + yl) and cos(y) = 1 + tc where

ts = (yh + yl)2
(
s3 + (yh + yl)2

(
s5 + (yh + yl)2

(
s7 + (yh + yl)2

)))
(4.26)

tc = (yh + yl)2
(
c2 + (yh + yl)2

(
c4 + (yh + yl)2

(
c6 + (yh + yl)2

)))
(4.27)

where s3, s5, s7 and c2,c4,c6 are the coefficients of Taylor’s polynomial.

• Reconstruction: Evaluate sin(x) as follows:

sin(x) = (sah + sal)(1 + tc) + (cah + cal)(yh + yl)(1 + ts) (4.28)

Likewise, cos(x) is evaluated as follows:

cos(x) = (cah + cal)(1 + tc)− (sah + sal)(yh + yl)(1 + ts) (4.29)

The multiplication of the least significant terms such as salylts are neglected as they
do not contribute to the final DP result.

The accurate step uses Payne and Hanek’s range reduction algorithm into [−π/4,π/4]
followed by a large-degree polynomial. A degree-25 polynomial is used for sin(x) with an
approximation error of 2−125 for x ∈ [−π/4,π/4] and 2−158 for |x| < 2−17 while a degree-26
polynomial is used for cos(x) with approximation error of 2−132 for x ∈ [−π/4,π/4] and
2−168 for |x| < 2−18.

4.4 Summary
In this chapter, we have discussed the different paradigms of the table-based methods and
presented memorable algorithms of each paradigm. Bipartite and Multipartite methods are
preferred for low precisions, i.e. less than 16 bits. For SP, quadratic minimax polynomials
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are preferred and have been successfully implemented in modern GPUs. To evaluate
the polynomial, table-based methods use special multipliers, ad-hoc powering units and
multi-operand adders.

The main contribution that explicitly addresses the case of correct rounding for SP
was described by Schulte. Being a table-based method, it had to use large lookup tables to
satisfy the correct rounding accuracy while keeping the polynomial degree either 1, 2 or 3
with memory requirements at 28.5 Mb, 1.44 Mb or 121 Kb respectively to evaluate four
elementary functions (namely: 2x, log2(x),

√
x and 1/x) within reduced ranges. Moreover,

a brief description of the CRlibm library implementation has been presented.
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Chapter 5: A Table Lookup-less
Method for Correctly Rounded
Trigonometric Functions
5.1 Motivation
The method by Schulte discussed in the previous chapter shows the high memory cost
required to obtain correctly rounded SP elementary functions using the table-based degree-
1, 2 or 3 piecewise polynomials. The results of memory requirements given by Schulte’s
method imply that the lookup table sizes have to be increased from several kbits to
hundreds of kbits per function to improve the result accuracy from the faithful case to
the correct case in order to maintain the quadratic polynomial. One could also imagine
how enormous and infeasible memory requirements it would cost if correctly rounded DP
results are needed using the same, or any similar, low degree piecewise polynomials.

Rather than dividing the reduced interval into many sub-intervals, we can choose
a single wide reduced interval within which all arguments lie. Larger arguments are
transformed directly to that interval. Now, we should determine what that reduced interval
is. More importantly, we should determine the polynomial with the required accuracy
that achieves correct rounding for all arguments within such an interval using realizable
memory and computing requirements.

As we seek to replace the table-based method with a table lookup-less one, a couple of
questions should be raised:

1. To what extent can a single reduced interval decrease the memory requirements?

Given that Schulte’s degree-1 or 2 piecewise polynomials require several Mbits or
kbits respectively, and knowing the fact that increasing the degree of the piecewise
polynomial decreases the number of sub-intervals assuming fixed entire interval
and required accuracy, how much memory size can a single polynomial for a single
interval consume?

2. What is the increase of the computational cost?

Using a single polynomial for the entire interval dictates increasing the degree of
the approximation polynomial which mainly translates into a higher latency with a
possibly higher logic cost. Moreover, the wordlengths of the computed coefficients
should be reasonable in order to implement realizable memory and logic operands’
wordlengths. Furthermore, the effect of round-off errors may considerably grow due
to the large number of arithmetic operations and subsequently we may be obliged
to increase the working precision which translates into higher latency and area
requirements in order to mitigate the effect of round-off errors.

5.2 Overview of the Method
The main goal of this chapter is to introduce a table lookup-less method in order to compute
correctly rounded IEEE-754 SP trigonometric functions. The method simply computes
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Figure 5.1: Mantissa of the working precision showing the target precision and the length
of the chain L◦ assuming RN mode

correctly rounded sin(x) and cos(x) for |x| < 253. Although we initially address RN mode
for the sake of priority and simplicity, we later show that the method is applicable for RZ,
RU and RD.

The basic method uses a single minimax approximation polynomial of a large degree,
degree-15 to 17, valid over a single relatively wide interval [0,2]. A standard DP FMA is
assumed to carry out the polynomial evaluation using the straightforward Horner’s method
with the help of a simple control unit. The method uses the FMA with additional simple
logic to implement a unified low-cost range reduction algorithm, a modified version of
Cody and Waite’s method, for all FPN arguments within the interval [2,253] yet without
penalizing low and intermediate argument values. The reconstruction is implicit and
lossless; only a sign flip is needed.

However, the apparent disadvantage of our method is the requirement for a higher
latency compared to table-based methods. This problem can be mitigated to some extent
as will be shown later by using a set of a few piecewise polynomials, we propose a set of
four piecewise polynomials, to reduce the average and worst-case latencies (the maximum
piecewise polynomial degree becomes 11).

5.3 A Table Lookup-less Approach
Computing f̂ ◦p (x), the designated result where ◦ ∈ {s,c} to denote the sine and cosine
functions respectively within the target precision p = 24 for our case of SP, involves the
three main steps discussed in Chapter 3, all of which are carried out within the working
precision of DP, i.e. w = 53 (see Figure 5.1):

1. Range reduction: The argument x is transformed to the reduced argument xr within
a smaller range C = [0,b] as follows:

N =

⌊ x
b

⌋
(5.1)

xr = x−b×N (5.2)

i = N mod 2M+1 (5.3)
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where the value of b is chosen as b = π/2M, where M = 0,1,2, . . . and i = 0,1, . . . ,
(
2M+1−1

)
where the index i represents the (i + 1)th sector out of a total of 2M+1 sectors within
[0,2π] and it controls the reconstruction step.

2. Evaluation: The reduced argument xr is fed to an approximation polynomial P◦n(xr)
of degree n where ◦ ∈ {s,c}. We assume a single non-pipelined DP FMA. Thus, the
polynomial evaluation is carried out using Horner’s scheme in n cycles.

3. Reconstruction: The pre-rounded result f̂ ◦w(x) is obtained from P◦n(xr) using the
trigonometric identities:

f̂ s
w(x) = Ps

n(xr)cos(ib) + Pc
n(xr) sin(ib) (5.4)

f̂ c
w(x) = Pc

n(xr)cos(ib)−Ps
n(xr) sin(ib) (5.5)

where the floating-point representations of sin(ib) and cos(ib) are stored in look-up
tables.

The fourth step is called the final rounding where the designated final result f̂ ◦p (x) is
obtained by rounding f̂ ◦w(x) to the target precision p as follows:

f̂ ◦p (x) = Rp
(

f̂ ◦w (x)
)

(5.6)

As discussed earlier in Chapter 3, the first three steps are obviously not entirely
independent, they affect and depend on each other. It also should be clear that our ultimate
goal is to make sure that f ◦p (x) = f̂ ◦p (x) within the whole range.

As discussed in Chapter 2 (see Section 2.3.2), we can directly produce f̂ s
p(x) = x and

f̂ c
p(x) = 1 for Ex < −12. Thus, we unify the argument value comparison on the basis of the

exponent section only. Therefore, the whole range of interest becomes Ψ = [2−12,253].

5.3.1 Determining the value of M
There exists a trade-off between M and the degree n of the approximation polynomial P◦n.
The higher the value of M, the narrower the interval C and subsequently the lower the
degree n of P◦n required for a predetermined value of εapprox and subsequently m◦. This
trade-off translates into another trade-off between latency and area; the higher the value
of M, the lower the latency needed to evaluate P◦n, yet at the expense of higher memory
required for the reconstruction step and therefore a higher area.

In order to obtain an optimal value of M, we should first find m◦∗ (see Section 2.3.2).
As presented in Chapter 2, Table 2.2 shows that the values of Ls

∗ and Lc
∗ are 26 and 28

respectively for x ∈ [2−12,π/2] using exhaustive search. This means that our choice of
w = 53 may be preliminarily sufficient for almost all argument values, i.e. including
arguments requiring the range reduction step.

The value m◦(x) can be calculated as follows:

m◦(x) = L◦( f ◦(x)) + p−E f ◦(x) + 1 (5.7)
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M n m̂s m̂c

1 14 59 59

1 15 65 65

2 11 57 56

2 12 62 63

3 9 56 54

3 10 61 63

Table 5.1: The polynomial degree n and the corresponding value of m̂ for f s(x) and f c(x)
where M = 1,2,3

where E f ◦p (x) is the binary exponent of f ◦p (x). By applying a similar exhaustive testing
within Ψ, we find that m◦∗ = 60 and it happens when x < π/2. Note that, as opposed to
the definition of m◦∗ in Chapter 2 which represents the relative required accuracy, we here
intend to find the absolute required accuracy.

Table 5.1 shows the values of m̂, the computed values of m using Sollya corresponding
to different values of n and M. Thus, one can notice that M = 1 is the judicious choice
when we try to implement the reconstruction represented by Equation 5.4 or 5.5 depending
on the designated final result for two reasons:

1. The case of M = 1 requires evaluating either Ps
n or Pc

n. However, for M > 1, we must
evaluate both Ps

n and Pc
n; i.e. we expect for our architecture a latency of 2n cycles

for the evaluation plus two extra cycles to implement the reconstruction itself.

2. Memory requirements represented by sin(ib) and cos(ib) increase exponentially with
M accompanied by the obligation of using look-up tables for M > 1 to implement
the reconstruction.

Thus, the choice M = 1 enables us to implement an implicit and lossless reconstruction
step as well as the advantage of having to evaluate one polynomial which translates into
lower latency with no memory requirements for the reconstruction. Therefore, it is the
convenient choice in terms of area and latency, and subsequently our working interval
becomes C[0,π/2]. Thus, Table 5.1 indicates that a degree of 14 or 15 is theoretically
sufficient for our case of M = 1 and m◦∗ = 60.

5.3.2 Range Reduction
The range reduction step is only required when x does not lie within C. Its role is to
transform x into another argument xr ∈ C. As discussed in Chapter 3, we should not
use the direct range reduction algorithm shown in Equations 5.1–5.3, where we store
the floating-point representations of 2/π and π/2 within the working precision w, i.e.
b = RNw(π/2) and (1/b) = RNw(2/π). Such a direct method causes incorrect f̂ ◦p (x) results
even at low values of x suffering from massive cancellation at the implementation of
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Equation 5.2 due to the insufficient accuracy of representing b which stems from the
transcendental nature of π. The situation worsens exponentially as Ex increases.

In order to obtain accurate xr results, we increase the accuracy of b by using a modified
version of Cody and Waite’s method (see Section 3.1.1) as follows:

b = K′1 + K′2 (5.8)

K′1 = RNw

(
π

2

)
(5.9)

K′2 = RNw

(
π

2
−K1

)
(5.10)

Therefore, Equation 5.2 is reformulated as xr = x−NK′1−NK′2 and subsequently the range
reduction step is implemented as follows:

t⇐ FMA(x, 1/b, 0) (5.11)
N, i⇐ FLR(t) (5.12)

t⇐ FMA
(
N, −K′1, x

)
(5.13)

xr⇐ FMA
(
N, −K′2, t

)
(5.14)

where FLR operator involves the flooring operation as well as extracting i, which represents
the two bits corresponding to the weights of 20 and 21 of N, and t is assumed to be a dummy
register. All FMA operations use RN mode. We assume that FLR is executed in a dedicated
cycle as the FMA is assumed to be unmodified for the sake of simplicity; subsequently, the
entire range reduction step is implemented in 4 cycles. The implementation of the FLR
operation, which can be easily realized, is not discussed here. Using this range reduction
implementation, if Equation 5.13 suffers a massive cancellation, its output will be exact
and therefore the output of Equation 5.14 will be still accurate. Note that as the value of
Ex increases, the massive cancellation not only happens because the produced value of xr
is very small but also as x and NK′1 are both large values while we expect xr < π/2.

The aforementioned range reduction method works well for argument values roughly
up to 229. For 29 ≤ Ex < 53, xr is not guaranteed to maintain that xr ∈ C. The direction
to where xr tends to lie, depends on the value of 1/b, or more precisely on the rounding
mode of the stored representation of 2/π. If RN or RU is used, xr ∈ [a′,π/2] where a′ < 0.
However, if RZ or RD is used, xr ∈ [0,b′] where b′ > π/2. The values of |a′| and b′, using
exhaustive testing, are guaranteed to grow to no more than π/2 and 2 respectively as
long as Ex < 53. Figure 5.2 shows the change of the maximum values of a′ and b′ for

x = [229,253]. As one can expect, the values of log2

(
max
[2,x]

(|a′|)
)

and log2

(
max
[2,x]

(
b′−π/2

))
equal −∞ for x < 229 as a′,b′ ∈ [0,π/2] for such case.

Thus, we can simply solve this problem by extending the range within which P◦n is valid
from C to C′ = [0,2] while storing 1/b = RZw(2/π). A second and even stronger reason to
extend the valid interval of P◦n to C′ is to avoid the costly comparison between x having
Ex = 0 and π/2 to determine whether x requires range reduction and so as to unify the
comparison on the basis of the value of Ex only. Thus, we have a unified range reduction
algorithm for all arguments requiring range reduction, i.e. for x ∈ [21,253]. It should be
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Figure 5.2: The change of a′ and b′ for 229 ≤ x < 253

clear that the only change is that the polynomial P◦n is now valid within C′ instead of C
while the range reduction implementation is still the same. Thus, for Ex < −12, a direct
handling for small values is carried out; for −12 ≤ Ex < 1, the polynomial evaluation is
directly carried out; for 1 ≤ Ex < 53, the range reduction is carried out followed by the
polynomial evaluation.

Table 5.2 shows that this range extension usually costs an increase of n by 1 to roughly
maintain the value of m shown in Table 5.1. Thus, it shows that n = 15 or n = 16 is now
theoretically sufficient in order to adapt to m◦∗ = 60.

n m̂s m̂c

13 49 50

14 55 54

15 59 60

16 65 64

17 69 70

Table 5.2: The polynomial degree n and the corresponding value of m for f s(x) and f c(x)
where x ∈ [0,2] for M = 1
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5.3.3 Polynomial Computation and Evaluation
Polynomial computation, that is the computation of the polynomial coefficients, was
carried out using Sollya [3], a free and open source tool. We use Sollya to compute the
minimax approximation polynomial using Remez algorithm and obtain the corresponding
minimax approximation error.

Computing the polynomial P◦n(xr) =
∑n

j=0 a jx
j
r in Sollya interactive tool was accom-

plished using the remez() function. This function allows to obtain whatever required
accuracy yet at the expense of a high resulting polynomial degree and large widths within
which the coefficients are stored. Another function named fpminimax() can also compute
approximation polynomials with accuracy close to remez() with the additional feature
of imposing predefined widths on the coefficients at the expense that m̂◦ ≤ w. Thus,
fpminimax() is not convenient for our value of m◦ = 60. Furthermore, the resulting coeffi-
cients are expected to be stored within higher precisions than w = 53 for our n values of
interest. We chose the lowest precision that makes the remez() produce a valid output and
performed a rounding a j = RNw(a′j) for j = 0,1, . . . ,n where a′j is the original pre-rounded
coefficient produced by Sollya. Thus, this operation induces a round-off error that affects
the total error.

The evaluation of P◦n is carried out using our assumption of the single non-pipelined
FMA using the direct Horner’s method (see Section 3.4) and is implemented as follows:

t⇐ FMA(xr, an, an−1)
t⇐ FMA(xr, t, an−2)
t⇐ FMA(xr, t, an−3)
...

P◦n(xr)⇐ FMA(xr, t, a0)

Therefore, P◦n requires n cycles to get evaluated. Also note that xr = x for Ex < 1. We
use RN mode for all n cycles. Thus, we expect an additional round-off error ensued by
these n FMA operations that affects the overall error.

As we seek to evaluate P◦n(xr) depending on the value of i and the designated function
f̂ ◦p , we do not need to store the coefficients of both functions. We can only store Ps

n
coefficients and obtain Pc

n(xr) using the relation:

Pc
n(xr) = Ps

n(x′r) (5.15)

where x′r = π/2− xr which is implemented as:

x′r⇐ FMA(K′1,1,−xr) (5.16)

We should point out that Equation 5.16 may be extended to be more accurate as:

x′r⇐ FMA(K′2,1,−x′r) (5.17)

This accuracy extension is actually useful for very rare cases as will be shown later
using exhaustive testing.

However, for xr ∈ [π/2,2] we obtain a negative value of x′r, which happens not only for
π/2 < x < 2 but also for Ex ≥ 30 where we expect xr to possibly exceed π/2. Therefore,
Equation 5.15 is reformulated as follows:
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◦ Input Output Exception

s

+0 +0
None

−0 −0

|x| < 2Emin x Underflow

c ±0 1 None

both

|x| = Inf
NaN Invalid

sNaN

Otherwise f̂ ◦p (x) None 1

Table 5.3: Outputs and flags for the different arguments

Pc
n(xr) = (−1)S x′r Ps

n(|x′r|) (5.18)

The negation and modulus operations just affect the sign section and therefore they can
be handled by the control unit with no extra latency incurred. Thus, we can just evaluate
Ps

n(|x′r|) and defer the multiplication by (−1)S x′r to the reconstruction step as will be shown.

5.3.4 Reconstruction and Final Rounding
The reconstruction step is implicit and lossless as only the sign bit of the designated result
is affected. Therefore, this mere sign flipping operation can simply involve the quantity
(−1)S x′r as follows:

f̂ s
w(x) =



Ps
n(xr) if −12 ≤ Ex < 1

Ps
n(xr) if 1 ≤ Ex < 53 and i = 0

(−1)S x′r Ps
n(|x′r|) if 1 ≤ Ex < 53 and i = 1

−Ps
n(xr) if 1 ≤ Ex < 53 and i = 2

−(−1)S x′r Ps
n(|x′r|) if 1 ≤ Ex < 53 and i = 3

(5.19)

f̂ c
w(x) =



(−1)S x′r Ps
n(|x′r|) if −12 ≤ Ex < 1

(−1)S x′r Ps
n(|x′r|) if 1 ≤ Ex < 53 and i = 0

−Ps
n(xr) if 1 ≤ Ex < 53 and i = 1

−(−1)S x′r Ps
n(|x′r|) if 1 ≤ Ex < 53 and i = 2

Ps
n(xr) if 1 ≤ Ex < 53 and i = 3

(5.20)

We assume a separate final cycle dedicated for the reconstruction and final rounding
shown in Equation 5.6 as well as signaling the convenient flags (see Table 5.3).

1IEEE-754-2008 recommends not to raise the inexact flag as it is the expected flag for almost all
arguments.
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Figure 5.3: A description for the architecture

5.3.5 Memory and Latency Requirements
Figure 5.3 shows a description of the proposed architecture. Control signals and registers
are omitted in order to simplify the illustration.

The total latency represented by the number of cycles τs and τc for computing f̂ s
p(x)

and f̂ c
p(x) respectively can be calculated as the summation of 1+τ1 +τ2 +τ3 where the first

cycle is assumed to be mandatory and it is dedicated for converting x into double-precision
as Ex needs to be encoded to DP, resolving Ex, fetching the first memory element as well
as handling small arguments and special cases. The value τ1 = 4 represents the latency
required by the range reduction, τ2 = 1 represents Equation 5.16) and may be extended to
2 cycles if Equation 5.17 is used, and τ3 = n + 1 represents the n cycles required by the
evaluation of P◦n plus the final cycle required by the reconstruction and final rounding.

τs =


1 +τ3 if −12 ≤ Ex < 1
1 +τ1 +τ∗2 +τ3 if 1 ≤ Ex < 53
1 Otherwise

(5.21)

τc =


1 +τ2 +τ3 if −12 ≤ Ex < 1
1 +τ1 +τ∗2 +τ3 if 1 ≤ Ex < 53
1 Otherwise

(5.22)

Note that τ∗2 means that τ2 exists only if Pc is required depending on the value of
i and the designated function ◦. The “Otherwise” case involves Ex < −12 including
denormals, Ex ≥ 53, other special cases: zero, infinity, NaN arguments. For 53 ≤ Ex ≤ 127,
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n FTs
Ψ1

FTs
Ψ2

FTc
Ψ1

FTc
Ψ2

14 15 2 0 5

15 1 2 1 3

16 0 2 0 2

17 0 1 0 2

Table 5.4: Number of faithful cases FT◦ at n = 14,15,16,17

we recommend to raise an ad-hoc exception signal with NaN as a default output. The
exception can be used to trigger a special-purpose circuitry or a software routine in order
to reduce the argument using Payne and Hanek’s algorithm (see Section 3.1.2) and then
the values of xr and i are fed back to the architecture. Also note that Equation 5.19 and
5.20 are valid for positive arguments; for negative arguments, the sign must be stripped at
the first cycle for both functions and f s

w(x) is negated at the last cycle.
Preliminary and pessimistic memory requirements are directly calculated as (n + 1 +

3)×64 bits divided as follows: n + 1 coefficients and 3 for storing the values of K′1, K′2
and 1/b. The floating-point representations of zero and one are required in SP and DP for
the following situations: producing the output at zero inputs and f̂ c

p(x) when Ex < −12
for the SP case, and implementing Equation 5.11 and 5.16 for the DP case. We assume
that these direct values can be signaled by the control unit. Thus, we have a memory
size range of 1216 to 1344 bits for n = 15 to 17. Later, we will see that this preliminary
memory calculation is much larger than we really need, and that the total memory size
can be reduced to less than 700 bits using a simple heuristic memory reduction algorithm.

5.3.6 Exhaustive Testing Results
We test our method exhaustively by comparing f̂ ◦p (x) with the expected f ◦p (x) within
Ψ. We define Ψ1 = [2−12,21] and Ψ2 = [21,253]. We also define FT◦ to represent the
number of occurrences of faithful cases, where the output has an error of 1 ulp, within
the corresponding interval. Table 5.4 shows the results when Equation 5.17 is applied.
We have no cases having error more than 1 ulp within Ψ for our n values of interest. If
Equation 5.17 is ignored we find an increase for the entire range Ψ of 8,7,2,4 for FTs

Ψ
and

1,2,0,1 for FTc
Ψ

for n = 14,15,16,17 respectively. Therefore, the extension of Equation
5.17 may be considered unnecessary in order to reduce the entire latency by a cycle. It
may be useful to point out that for the n = 16 case whose polynomial is shown in Table
5.5, the least of all those 4 faithful cases for both functions is larger than 213. Those 4
exceptions may be put in a table to be accessed in the first cycle in order to obtain 100%
correct rounding within the whole range.

To understand how the final result f̂ ◦p is obtained correctly rounded, we compare f̂ s
w(x)

and f̂ c
w(x) with f s

w(x) and f c
w(x) (i.e. the expected results using MPFR) respectively for

x ∈ Ψ1. We define ζ◦, a positive integer that represents the difference in ulps with respect
to DP between f̂ ◦w(x) and f ◦w(x) where:
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j a j

0 1.1011000010011001011110010111010011011110111101111011×2−66

1 1.0000000000000000000000000000000000000000000000000000×20

2 1.0111010100111100100011110110101101001000010101000101×2−52

3 −1.0101010101010101010101010101010101010101011000110101×2−3

4 1.0001101010010000000110011100000100010001000101000011×2−44

5 1.0001000100010001000100010001000011011010111010101101×2−7

6 1.1011011001000101010011110101110110011101111100111001×2−40

7 −1.1010000000011010000000100011101001100001010001011000×2−13

8 1.0011100100001000111110010111011111001111011110010111×2−37

9 1.0111000111011101110001010101010011000111101011011111×2−19

10 1.0000010100101101101110001100010000100111010010011000×2−36

11 −1.1010111010011011000001000110001010001111001001011101×2−26

12 1.0001001000000111101010100110101110101100110111101100×2−37

13 1.0101100100110110110111011111001100110110000111000001×2−33

14 1.0101001001101000111001100101110110110011111000110011×2−40

15 −1.0010010011010100100011111100001110101100101000110000×2−40

16 1.0110010010101011010101101111000011111100010000000010×2−45

Table 5.5: coefficients of P16
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Figure 5.4: L◦ vs log2(ζ◦(x))

ζ s =
| f s

w(x)− f̂ s
w(x)|

2−(w−1)+E f s
w(x)

(5.23)

and

ζc =
| f c

w(x)− f̂ c
w(x)|

2−(w−1)+E f c
w(x)

(5.24)

Note that we assume that E f̂ ◦w(x) = E f ◦w(x) which may not be guaranteed in very rare
cases yet this does not affect our argument. While log2(ζ◦(x)) can roughly represent the
number of corrupt bits starting from the most significant position w−1 backwardly, our
architecture decisions should maintain that log2(ζ◦(x)) is not large enough so as to not
affect L◦ for every argument within Ψ (see Figure 5.4).

Nevertheless, we are more interested in studying the change of the maximum of ζ over
C′, which indicates to a potential incorrectly rounded final result f ◦p , faithfully rounded
for our case. Therefore, we define ζ′◦, a maximum value of all ζ◦ values over a fixed tight
range of consecutive FPNs.
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n C̃R F̃T ẼR

13 0.71% 1.42% 97.87%

14 11.33% 25.54% 63.13%

15 32.43% 36.47% 31.10%

16 76.58% 23.20% 0.22%

17 78.78% 20.74% 0.48%

Table 5.6: Accuracy of f̂ s
w(x) for x ∈ Ψ1

For the case of f s as shown in Figure 5.5, we can easily detect the relation between
ζ′s(x) and m̂s for each n. Moreover, we can relate the difference between two different
log2(ζ′s(x)) for two different n values at some fixed log2(x) value. To understand the
graphs more clearly, for example, Let us discuss the case for n = 13. For x values
having Ex = −12 at n = 13 we expect that the mantissa components can be as small as
2−12−52 = 2−64 while our |εapprox| < 2−49 and therefore we expect ζ s can be up to 215. As m̂
increases by 4 or 6 as n gets incremented, log2(ζ′s) is reduced roughly by the same values
at some x as we increment n. This is more apparent at low log2(x) values. For n = 16 and
17 we see that log2(ζ′s) is always 0; that is, we have faithful results with respect to f s

w(x),
from log2(x) = −12 until almost the end of the interval, i.e. towards log2(x) ≈ 0. As we
may expect, almost all erroneous cases for n = 13,14,15 happen to lie at small values of x,
i.e. roughly within log2(x) ∈ [−12,−9]. For n = 16,17 we have 100% correctly rounded
results for f s

p(x).
Actually, we found that a great share of the total cases of f̂ s

w for x ∈ Ψ1 are cor-
rectly rounded with respect to f̂ s

w as n increases. Table 5.6 shows the share of cor-
rectly rounded (C̃R), faithful (F̃T) and erroneous or cases having error ≥ 2 ulps (ẼR) for
n = 13,14,15,16,17 for f̂ s

w within Ψ1.
For the case of f c shown in Figure 5.6, we find that due to the advantageous non-

uniform distribution of x′r, the value of log2(ζ′c) is guaranteed to be small unless x ≈ π/2.
Thus, we expect the existence possibility of erroneous cases to lie when log2(x) ∈ [0,1]
especially within the very narrow range around x ≈ π/2.

The figures 5.5 and 5.6 indicate that the pre-rounded result is accurate enough to be
easily rounded to any of the other three rounding modes within Ψ. Although using RN
mode especially at the last cycle of the polynomial evaluation may not be the optimal
choice for the directed rounding modes, FT occurrences are still only a few cases within
Ψ. For n = 16 and using the same f̂ ◦w(x) obtained for RN, we have FT◦Ψ1 = 0 for RZ, RU
and RD; while FTs

Ψ2
values are of 7,4,3 and FTc

Ψ2
values of 5,5,1 for RZ, RU and RD

respectively when Equation 5.17 is applied.

5.3.7 A Heuristic Algorithm for Memory Reduction
This simple yet effective heuristic algorithm is based on the observation that the coefficients
having lower values contribute less to the final result f̂ ◦p (x). Note that while we have
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Figure 5.5: log2(ζ′s(x)) vs log2(x) for x ∈ Ψ1

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

log2(x)

lo
g 2

(ζ
′c

)

n = 13
n = 14
n = 15
n = 16
n = 17

Figure 5.6: log2(ζ′c(x)) vs log2(x) for x ∈ Ψ1
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| f̂ ◦p (x)| ≤ 1 and P◦n is only accurate to 2−m̂s
, the values of Ea′j

can be as low as −66 for
n = 16 and −70 for n = 17 and as high as 0 for all n values of interest. Therefore, having
all coefficients exactly represented in DP may be unnecessary. We can then relate the
width of the mantissa section to |a′j|, or more precisely to Ea′j

.

Algorithm 1: Heuristic algorithm for memory reduction

for j = 0,1,2, . . . ,n do
if Ea′j

≤ −(w + θ−1) then
a j← 0;

else if Ea′j
> −(w + θ−1) and Ea′j

< −θ then
a j← RNw′(a′j);

else
a j← RNw(a′j);

end

As shown in Algorithm 1, we define a positive integer bias θ, where if Ea′j
≥ −θ we

round the coefficient normally as before to DP. For lower values of Ea′j
, a′j is rounded to a

precision w′ as follows:

w′(Ea′j
) = w + θ+ Ea′j

(5.25)

If |a′j| is small enough such that Ea′j
≤ −(w + θ− 1), we force it to equal zero. The

algorithm simply intends to make the accuracy of each coefficient as small as 2−(w+θ−1).
We can start with some small θ value and perform an exhaustive testing to decide whether it
gives acceptable results with respect to the original rounding. If it does not, we increase the
value of θ and re-perform the exhaustive testing and so forth until we obtain an acceptable
result with respect to the original rounding.

The algorithm also indicates that the convenient values of θ, as will be shown in
Table 5.7, imply that storing the exponent section in 11 bits according to the standard DP
encoding is utterly useless as all coefficients, as well as K′1, K′2 and 1/b, share a much
narrower range of exponent representations which can fit to 6 bits for our n values of
interest. Thus, we can only store the least 6 significant bits as follows: the number zero
is represented by 000000 while Ea j values from −62 to 0 are represented by 000001 to
111111. By appending the 5 most significant bits as 01111 for this set of Ea j values, we
obtain correctly represented exponents in the standard DP exponent encoding.

Table 5.7 shows some results using the algorithm while Equation 5.17 is applied.
MEMP and MEMT represent the polynomial memory and total memory (including the
stored values of K′1, K′2 and 1/b) in bits respectively. It is not surprising to obtain a lower
memory for n = 16 than n = 15 at the same θ value as we have more coefficients having
lower absolute values when n is higher and subsequently the algorithm becomes able to
round to lower values of w′. Moreover, it may happen that when we increment θ, we may
find that FT◦ increases for the same n value.

5.3.8 Using Piece-wise Polynomials
Although the main philosophy of the thesis is to provide a single polynomial over a wide
range to make the memory requirements feasible at the expense of using higher degrees,
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n θ MEMP MEMT FTs
Ψ1

FTs
Ψ2

FTc
Ψ1

FTc
Ψ2

16 8 532 708 0 1 0 2

16 7 514 690 1 1 1 3

15 8 582 758 0 2 0 3

17 7 504 680 0 2 0 2

Table 5.7: Examples of faithful case occurrences FT◦ at different θ and n values

we can divide the original interval C′ into a few sub-intervals, each requiring a lower
degree than the original n value in order to reduce the average and worst case latencies
while still keeping the memory at reasonable size.

While there is no restriction for choosing the number of piecewise polynomials and
the width of each sub-interval, we can choose them so as to simplify the implementation
without incurring considerable logic and memory overhead. We may use a set of polyno-
mials depending on the value of Ex. Thus, we expect unequally sized sub-intervals and
subsequently different required values of n for each. The resolution of Ex can be carried
out fast due to having a very small number of segments.

For example, we may divide C′ into 4 sub-intervals β1 = [0,2−5], β2 = [2−5,2−2],
β3 = [2−2,20] and β4 = [20,21], where nβ1 = 6, nβ2 = 8, nβ3 = 10 and nβ4 = 11. That is, P◦

is interpreted as: P◦β1
for E < −5, P◦β2

for −5 ≤ E < −2, P◦β23 for −2 ≤ E < 0 and P◦β4
for

E = 0. This configuration produces, when Equation 5.17 is applied, FTs
Ψ

= 4 and FTc
Ψ

= 3
with preliminary non-reduced 2688 bits of memory.

There exist many other possible but more expensive and complicated techniques to
reduce the latency or increase the throughput such as using a pipelined FMA with Estrin’s
method (see Section 3.4), using cascaded FMAs or modifying the FMA internally to
support the final rounding and the FLR operations.

5.3.9 Applying The Method for The Double-Precision Case
There have been already investigations, thanks to Lefèvre’s algorithm, to find the hardest-
to-round cases for several elementary functions within certain intervals (see Section 2.3.2).
The results of Ls

∗ and Lc
∗ given in Table 2.3 indicate that the standard QP may not be

preliminarily sufficient for all cases. However, for the DP case, we do not hope to produce
only a few faithful cases out of the whole range as we have in SP, but one faithful case in a
billion cases may be a satisfactory proportion.

We argue that this method may be extended to compute correctly rounded double-
precision results. The only changes are: p = 53, w = 113; this translates into a QP FMA
and using convenient degree such as n = 28 with corresponding m̂s = 131 to compute
correctly rounded results for argument values |x| < 2113. We generated 6 billion random
cases within the range [2−25,2113] and found 100% correctly rounded cases for both
functions. Although this number of random test cases is still very small compared to the
total designated range, the test indicates that the method is feasible to be successfully
applied to the DP case. Thus, we may be able to compute correctly rounded double-
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precision trigonometric function for an enormous range of arguments with less than
4kbits of memory and within a latency of 30 to 36 cycles according to our architecture
assumptions.

5.A Coefficients of Polynomials After Memory Reduction
In this appendix we present the 4 polynomials shown in Table 5.7 after applying the
memory reduction algorithm.

j a j

0 0.0×20

1 1.0×20

2 1.01110101×2−52

3 −1.0101010101010101010101010101010101010101011000110101×2−3

4 1.000110101001×2−44

5 1.0001000100010001000100010001000011011010111010101101×2−7

6 1.10110110010001010101×2−40

7 −1.10100000000110100000001000111010011000010100011×2−13

8 1.00111001000010001111101×2−37

9 1.01110001110111011100010101010100110001111×2−19

10 1.000001010010110110111001×2−36

11 −1.101011101001101100000100011000101×2−26

12 1.00010010000001111010101×2−37

13 1.01011001001101101101111×2−33

14 1.0101001001101000111×2−40

15 −1.00100100110101001001×2−40

16 1.01100100101011×2−45

Table 5.8: Coefficients of P16 with θ = 8

j a j

0 0.0×20

1 1.0×20

2 1.01×2−56

3 −1.010101010101010101010101010101010101010101010110001×2−3

4 1.001001011×2−48

5 1.0001000100010001000100010001000100001101001010010111×2−7

6 1.0001100110000011×2−43

7 −1.101000000001101000000001101011011111000000101×2−13

8 1.111101111100100101×2−41

9 1.0111000111011110001011010001000101100101×2−19

10 1.00001100101101110011×2−39

11 −1.10101110011011000110000010001101×2−26

12 1.0111010000011110111×2−40

13 1.01011111100100011010001001×2−33

14 1.001111110011×2−42

15 −1.11011010111011×2−41

16 1.111111101111×2−47

17 1.101011111×2−50

Table 5.9: Coefficients of P17 with θ = 8
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j a j

0 0.0×20

1 1.0×20

2 1.0111011×2−52

3 −1.0101010101010101010101010101010101010101011000110101×2−3

4 1.000110101001×2−44

5 1.0001000100010001000100010001000011011010111010101101×2−7

6 1.101101100100010101×2−40

7 −1.1010000000011010000000100011101001100001010001×2−13

8 1.001110010000100011111×2−37

9 1.0111000111011101110001010101010011001×2−19

10 1.000001010010110110111×2−36

11 −1.101011101001101100000100011000101×2−26

12 1.0001001000000111101011×2−37

13 1.01011001001101101101111×2−33

14 1.0101001001101000111×2−40

15 −1.00100100110101001×2−40

16 1.01100100101011×2−45

Table 5.10: Coefficients of P16 with θ = 7

j a j

0 0.0×20

1 1.0000000000000000000000000000000000000000000000000001×20

2 −1.1101010101001×2−47

3 −1.0101010101010101010101010101010101010011011010110101×2−3

4 −1.00001100100101001111×2−39

5 1.0001000100010001000100010001011010100000001011101101×2−7

6 −1.001101010000001100001001×2−35

7 −1.1010000000011001111101100000110110001111011101×2−13

8 −1.00111100000101101101010111×2−33

9 1.01110001111001000101100001110100001001×2−19

10 −1.011000101000110011001000001×2−33

11 −1.101011001001000010000000000110111×2−26

12 −1.1011101000111110011010101×2−35

13 1.100001010010111101100111×2−33

14 −1.11011110000011010001×2−39

15 −1.11001001100011111×2−42

Table 5.11: Coefficients of P15 with θ = 8
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5.B Applying the Method for 2x and log2(x)

As Chapter 2 tells us that m◦∗ ≈ p + log2(λ) (see Section 2.3.2), we can expect having
theoretically similar results to those obtained for trigonometric functions using the same
architecture for other elementary functions. Note that our decision of using a working
precision of DP cannot practically guarantee correct rounding for all arguments or similar
results to those obtained for the case of trigonometric functions. The problem lies primarily
within the round-off errors. The effect of the round-off errors may greatly differ from a
function to another due to the values of the coefficients, the degree of the polynomial, the
intervals of the arguments and the expected outputs.

In this appendix we give the results obtained for 2x for x ∈ [0,1] and log2(x) for
x ∈ [2,4]. As is the case with the trigonometric functions, we conduct an exhaustive
search to find the hardest-to-round cases and then find the polynomial having the required
accuracy with assuming the same architecture used for the case of trigonometric functions.
Table 2.1 shows the relation between L◦ and Γ(L◦) for log2(x) and 2x for the designated
reduced intervals. We denote the largest value of L◦∗ for 2x and log2(x) as Le

∗ and Ll
∗

respectively. As shown in Table 2.1, the values of Le
∗ and Ll

∗ are 26 and 29 respectively.
A similar exhaustive search is conducted to find me

∗ and ml
∗ and they are found to be 51

and 54 respectively. Note as the output range for the two functions within the designated
intervals is [1,2], the values of me

∗ and ml
∗ are exactly Le

∗+ p+1 and Ll
∗+ p+1 respectively

(see Equation 5.7) as Ex = 0 for either case.
For 2x:

1. Range reduction: compute xr as follows:

xr =

x if x ∈ [0,1]
x−bxc Otherwise

(5.26)

2. Evaluation: Evaluate Pe(x) for x ∈ [0,1]

3. Reconstruction:

2x =


1 if |x| < 2−25

Pe(xr) if x ∈ [2−25,1]
2bxcPe(xr) if x ∈

[
1, (2−2−23)×26

]
∞ if x ≥ 27

(5.27)

For log2(x):

1. Range reduction:

xr =

x if x ∈ [2,4]
2×1.Mx Otherwise

(5.28)

2. Evaluation: Evaluate Pl(xr).

3. Reconstruction:

log2(x) =

Pl(xr) if x ∈ [2,4]
Ex−1 + Pl(xr) Otherwise

(5.29)
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f (x) C L◦ m◦∗ n MEMP m̂◦ FT◦C

2x [0,1] 29 54 10 492 51 1

log2(x) [2,4] 26 51 15 858 43 10

Table 5.12: The values for certain elementary functions for the RN case

j a j

0 1.000000000000000000000000000000000000000000000000001×20

1 1.011000101110010000101111111011111010001101110101×2−1

2 1.1110101111111011110111111111100001000110000010011×2−3

3 1.1100011010110000100011010110101000011010001×2−5

4 1.001110110010101010110111101111111011011011×2−7

5 1.0101110110000111111000100010011001110111111×2−10

6 1.0100001100001011100111110000011000110101×2−13

7 1.111111111000000011011111111110001101×2−17

8 1.0110010110000011101010111000101×2−20

9 1.1001010100101110010100010111×2−24

10 1.01010111110100110111110001×2−27

Table 5.13: Coefficients of Pe

The polynomials of both functions were obtained using Sollya as usual. However, the
function fpminimax() was used to obtain both polynomials. Table 5.12 shows the values
of m̂◦, n and FT◦C for both functions within the designated intervals.
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j a j

0 −1.1010010100010110110011101110101100100100110011110101×21

1 1.1110100110001100001110011010010100111011001111101101×22

2 −1.0010110110011000101110000010101001111100010101111×23

3 1.0011000101111101010010000110010010011101001011100111×23

4 −1.1110000000001111100110010110110110100001111001110111×22

5 1.0010010111011101110111001101010101000110011001111101×22

6 −1.0001101011000111101100111101011111101011111011000011×21

7 1.101011100001101011111110010111000001011110011101111×2−1

8 −1.00000010101011010101010000111100011101101000101111×2−2

9 1.11101001110000100110100010101000011010110111101×2−5

10 −1.011010001011011110100101100110001010011110001×2−7

11 1.1001010100000110110111101000100000100111111×2−10

12 −1.0100111011111101011011100011111101101101×2−13

13 1.10000000110101100010011101101001101×2−17

14 −1.0001001001000101010010101111011×2−21

15 1.01101101011000010100111001×2−27

Table 5.14: Coefficients of Pl
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Chapter 6: Conclusion and Future
Work
A table lookup-less method for computing correctly rounded IEEE-754 SP elementary
functions has been presented. The method uses a single large-degree minimax approxima-
tion polynomial valid over a wide single interval. A standard DP FMA is used to carry out
the polynomial evaluation with the help of a simple control unit. Additional simple logic is
integrated to support the range reduction and carry out the implicit reconstruction and final
rounding steps. The method was applied for trigonometric functions within |x| < 253 with
consuming memory of 708 bits using a degree-16 polynomial after reducing the initial
memory using a simple heuristic algorithm. We have also argued that the method can
be applied for DP trigonometric functions. Moreover, the method was applied for 2x for
x ∈ [0,1] and log2(x) for x ∈ [2,4] having polynomial degrees of 10 and 15 with consuming
memory of 492 and 858 bits respectively. The method can be also extended to compute
other elementary functions with similar accuracy results using the same architecture.

The method requires very small memory requirements, usually hundreds of bits
compared to hundreds of kbits for degree-2 table-based methods, and uses the general-
purpose DP FMA to compute the final result, as opposed to the special-purpose circuitry
(special multipliers, ad-hoc powering units and multi-operand adders) used by the table-
based methods. Nevertheless, the latency of the method is much higher compared to
the table-based methods due to the large-degree polynomials used. To mitigate this
problem, we have proposed using a small number of piece-wise polynomials to reduce the
average and worst-case latencies. For the case of trigonometric functions, we have applied
unequally sized 4 sub-intervals for the initial reduced interval [0,2] and have had a total
non-reduced memory of 2688 bits with polynomial degrees of 6,8,10 and 11.

The method needs a more rigorous error analysis in order to be generalized for arbitrary
target precisions and elementary functions. As seen in Chapter 5, the round-off error was
not the governing type of error for the case of trigonometric functions. However, this may
not be the case for other elementary functions. Thus, the required working precision of the
FMA may be larger or slightly smaller than DP for certain other elementary functions. The
implementations of single wide polynomial vs several piece-wise polynomials need also to
be compared in terms of area-latency trade-off. Furthermore, the practical implementations
of FMA such as using pipelining can be explored with using more advanced polynomial
evaluation techniques such as Estrin’s method.

Although the method offers a substantial reduction of memory compared to the table-
based methods, applying the method to obtain a lower accuracy such as the faithful
accuracy is considered generally unwise depending on the designated function and reduced
interval. While degree-2 piecewise polynomials usually produce faithfully rounded results
with lookup-tables of several kbits, reducing the polynomial degree using our method
to achieve the faithful accuracy may not be considerable. Thus, we may still end up
having large latency due to the large-degree polynomial while having a not very significant
memory reduction.
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الملخص

ممقربـة تقريـباا   الرســالة تقدم طريـقة مخصصة للهـاردولير لحـساب الدولال الوللية 
ممجددولل باستخـدام دالة. IEEE-754صحيحاا طبقاا لمعيـار  الطريقة تقدم نـهج غـير 

بدرجة عالـيـة على نطاق ولاحد ولاسـع بعــكس تقريبـية مختـارة لتقليـل أقـصى خطـأ
ممـجددوللة السـائـدة حاليـاا ول التـى تستخدم كميـة ضخـمة من الذاكـرة لتحقـيق الطرق ال

الطريـقـة تــم تطبـيقها بشكــل أسـاسـى للـدولال. التقريـب صحيـح بدرجة منـخفـضة
الطريـقة تطـبق المرحلتـان. 253لقيـم مدخـلت  حتـى  المثلثية لسـعـة الدقـة المنفردة

تصغير النطــاق ول تـقديـر الدالــة التقريـبـية باستـخدام ولحدة جمع ول ضرب من سعة
مرحلة تصغيرالنطاق تستخدم خورازمية موحدة لجدميـع المدخـلت . الدقة المزدولجة

نهج الطريقة يسـمح بحساب نطـاق ضخم من. ول هى منبثقة من طريقة كـودى وليـت
700أقل من (مدخلت  الدولال المـثلثيـة ول باستـخدام كــمية منـخفـضة مـن الذاكـرة 

ولهى كميـة قد تصل الـى أقــل مـن خـمـس مرات  من الكميـة المسـتخـدمة فــى) بت
ممجدـدوللـة لحسـاب النـتـائج علـى نـطـاق ضيـق بتقريـب مــن النمـط المين الطرق ال

. الطـريـقة جــاهــزة لدعـم جـميــع أنـــواعالقــل دقــــة مـن التـقــريـب الصـحيـح
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لسـعة الدقــة المزدولجة  كمـا تـم استـخدامها على الدولال السية ول اللوغارتمية لسعة
الدقة المنفردة.
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