

NEW REAL-TIME MEMORY CONTROLLER DESIGN FOR EMBEDDED

MULTI-CORE SYSTEM

By

Ahmed Shafik Shafie Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

NEW REAL-TIME MEMORY CONTROLLER DESIGN FOR EMBEDDED

MULTI-CORE SYSTEM

By

Ahmed Shafik Shafie Mohamed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Hossam A. H. Fahmy

……………………………….

Professor,

Electronics and Communications Engineering ,

Faculty of Engineering, Cairo University

Dr. Ali A. El-Moursy

……………………………….

Associate professor,

Computers and Systems department,

Electronics Research Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

NEW REAL-TIME MEMORY CONTROLLER DESIGN FOR EMBEDDED

MULTI-CORE SYSTEM

By

Ahmed Shafik

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electronics and Communications Engineering

Approved by the

Examining Committee

Prof. Dr. Hossam A. H. Fahmy, Thesis Main Advisor

Dr. Ali A. El-Moursy, Member

Prof. Dr., Mohamed Ryad El Ghonemy

Prof. Dr., Hazem Mahmoud Abbas

(Professor at Ain Shams University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

Engineer’s

Name:

Ahmed Shafik Shafie Mohamed

Date of Birth:

Nationality: Egyptian

E-mail: eng.ahmed.shafik@gmail.com

Phone:

Address:

Registration

Date:

01/10/2010

Awarding Date / /2016

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors: Prof. Dr. Hossam A. H. Fahmy

Dr. Ali A. El-Moursy

Examiners: Prof. Dr. Hazem Mahmoud Abbas (External Examiner)

Faculty of Engineering, Ain Shams university

Prof. Dr. Mohamed Ryad El Ghonemy (Internal Examiner)

Dr. Ali A. El-Moursy (Member)

Prof. Dr. Dr. Hossam A. H. Fahmy (Thesis Main Advisor)

Title of Thesis:

New Real-time Memory Controller for Embedded Multi-Core System

Key Words:

Memory Controller, Real-time, Chip Multi-Processor, Embedded Systems

Summary:

Nowadays modern Chip Multi-Processors (CMPs) become more demanding because of their high

performance especially in real-time embedded systems. On the other side, bounded latencies has become

vital to guarantee high performance and fairness for applications running on CMPs cores. In modern

embedded systems, CMPs has become more effective choice due to their low power and high

performance. As application running on these processors use the shared resources such as: memory, the

shared memory should provide high memory service rates to be able to serve multiple cores in an

acceptable response time. In CMPs, real time applications are bound by the worst case estimated time to

provide hard deadlines to real-time tasks (WCET). The modern systems use the Double Data Rate

Dynamic RAM (DDR DRAM). Yet, constant WCET for the interfered threads cannot be guaranteed due to

sequential serving between requests, so each request status depends on the previous and concurrent

requests. Another reason is that DRAM access time has a high variation due to caching data in row buffers

before reading or writing.

We propose a new memory controller that prioritizes and assigns defined quotas for cores within

unified epoch time accompanied with fair round robin scheduling within cores it selves (MCES). MCES

works on variety of generations of double data rate DRAM (DDR DRAM). MCES can differentiate

between different types of requests as hard real-time request (HRT) and non-hard real-time requests

(NHRT). Hence, MCES can run multimedia real-time applications and hard real-time applications. MCES

is able to achieve an overall performance reached 35% for 4 cores system and an overall performance

speedup of 16% for 8 cores system and the same level of power consumption compared to the last released

memory controller design (WCAD).

i

Acknowledgements

Many people contributed both directly and indirectly to finish and submit dissertation.

First of all, I would like to thank my mother and my father for their large and continuous

support. They were my shelter, rocket launcher and everything to me in my graduate life.

I would thank my supervisors, Dr. Ali A. El-Moursy and prof. Dr.Hossam A. H.

Fahmy for giving me this opportunity to work and learn from them the fundamentals to

do appropriate research. They helped me to build my knowledge in computer

architecture. They motivated me to perform serious research and were patient with me in

making good progress in my research and publishing my ideas.

ii

Dedication

This thesis is dedicated to my mother, my father, my wife, my baby Youssef and to those

who scarified their lives trying to make our country better.

iii

Table of Contents

ACKNOWLEDGEMENTS .. I

DEDICATION.. II

LIST OF FIGURES .. VI

LIST OF TABLES ... VIII

LIST OF ABBREVIATIONS AND DEFINITIONS ... IX

ABSTRACT ... XII

CHAPTER 1. INTRODUCTION .. 1

1.1 PROBLEM ... 1

1.2 MOTIVATION .. 1

1.3 THESIS ORGANIZATION .. 2

CHAPTER 2. BACKGROUND ... 3

2.1 MEMORY CONTROLLER ARCHITECTURE AND FUNCTION ... 3

2.2 REAL-TIME MEMORY CONTROLLER ... 4

2.2.1 Fair Round Robin memory controller .. 4

2.2.2 Priority based scheduling memory controller ... 5

2.3 MEMORY REQUEST PROCESS... 5

2.4 DDR EVOLUTION ... 7

2.4.1 DRAM .. 7

2.4.2 DDRx DRAM ... 8

2.5 DDR TIMING CONSTRAINTS ... 11

2.6 DDR REQUESTS MAPPING AND ROW POLICY ... 15

2.6.1 Interleaved vs Private Banks .. 15

2.6.2 Close Page vs Open Page Policies .. 16

2.7 IN-ORDER VS OUT OF ORDER CORES.. 17

CHAPTER 3. RELATED WORK .. 19

3.1 FAIR SCHEDULING MEMORY CONTROLLERS .. 19

3.1.1 Analyzable memory controller (AMC) .. 19

3.1.2 Worst Case Analysis of DRAM Latency (WCAD) .. 19

3.2 PRIORITY SCHEDULING MEMORY CONTROLLERS ... 20

3.2.1 A Predictable SDRAM Memory Controller (PREDATOR) 20

3.2.2 Bounding WCET Using SDRAM with Priority Scheduling (BWPS) 20

3.2.3 SDRAM controller Traffic with complex QOS requirements 21

iv

3.3 NON REAL-TIME MEMORY CONTROLLERS .. 21

3.3.1 Predictable Memory Controller Performance in Many-Core CMPs 21

3.4 WCET ENHANCEMENT TECHNIQUES .. 21

3.4.1 Hardware WCET Analysis of Hard Real-Time Multicore Systems................. 21

3.4.2 Interference Aware Allocation Algorithm (IA3) for multicore hard real-time

systems... 22

3.4 SUMMARY OF SCHEDULING ALGORITHMS .. 22

CHAPTER 4. REAL-TIME MEMORY CONTROLLER FOR EMBEDDED

SYSTEMS (MCES) ... 24

4.1 SYSTEM ARCHITECTURE ... 24

4.2 ARBITRATION RULES .. 27

4.3 HARDWARE / AREA OVERHEAD ANALYSIS ... 30

4.4 WCET ANALYTICAL MODEL ... 31

4.3.1 Open Request (OR) .. 31

4.3.2 Closed Request (CR) .. 33

4.3.3 Total WCET ... 35

CHAPTER 5. SIMULATORS ... 36

5.1 MARSSX86 ... 36

5.2 DRAMSIM2 ... 37

5.3 CHSTONE ... 37

CHAPTER 6. EVALUATION ... 39

6.1 EXPERIMENTAL SETUP ... 39

6.2 EVALUATION METRICS ... 40

6.3 RESULTS ... 41

6.3.1 Sensitivity analysis ... 41

6.3.2 ALGORITHM COMPARATIVE ANALYSIS ... 46

6.3.2.1 4 Core System .. 46

6.3.2.2 8-Core System ... 50

CHAPTER 7. CONCLUSION & POSSIBLE FUTURE WORK 55

7.1 CONCLUSION .. 55

7.2 POSSIBLE FUTURE WORK .. 55

CHAPTER 8. PUBLICATIONS.. 57

REFERENCES .. 58

APPENDIX A .. 61

1 MARRS DRAMSIM INTEGRATION CODE ... 61

2 DRAMSIM .. 61

v

3 ISSUABLE PART ... 63

4 WCAD 4TH
 ALGORITHM RULE ... 64

vi

List of Figures

Figure 2.1 DDR DRAM Structure .. 6

Figure 2.2 re-ordering requests in Memory Controller ... 6

Figure 2.3 Row Buffer Loading .. 7

Figure 2.4 Load request Timing Constraints .. 14

Figure 2.5 Store request timing constraints .. 14

Figure 2.6 Interleaved banks for 4 banks DDR DRAM ... 15

Figure 2.7 Private Banks for 4 banks DDR DRAM ... 16

Figure 2.8 OoO execution pipeline ... 17

Figure 2.9 In-order core pipeline .. 18

Figure 4.1 MCES architecture .. 24

Figure 4.2 Queuing and Re-ordering .. 25

Figure 4.3 Scheduling Flow chart ... 25

Figure 4.4 MCES Algorithm flow chart ... 26

Figure 4.5 FCFS Queuing ... 28

Figure 4.6 MCES Queuing ... 28

Figure 4.7 MCES Scheduling ... 30

Figure 4.8 WCOR Read .. 32

Figure 4.9 WCOR Write ... 33

Figure 4.10 WCCR Read .. 34

Figure 4.11 WCCR Write ... 34

Figure 5.1 MARSSx86 architecture .. 36

Figure 5.2 DRAMSim2 architecture ... 37

Figure 6.1 MCES average throughput .. 41

Figure 6.2 MCES average execution latency versus Cache size 42

Figure 6.3 Request total latency versus GQ latency ... 43

Figure 6.4 MCES Performance versus fairness .. 44

Figure 6.5 DDR3 MCES vs WCAD NHRT execution latency 45

Figure 6.6 DDR3 MCES vs WCAD HRT execution latency ... 45

Figure 6.7 MCES versus WCAD request processing trend .. 46

Figure 6.8 MCES versus WCAD Normal run performance ... 47

Figure 6.9 MCES versus WCAD Normal run energy consumption 47

Figure 6.10 MCES versus WCAD Reverse run performance .. 48

Figure 6.11 MCES versus WCAD Reverse run energy consumption 48

Figure 6.12 MCES versus WCAD High-way run performance 49

Figure 6.13 MCES versus WCAD High-way run energy consumption 49

Figure 6.14 MCES versus WCAD Normal run 8-core performance 50

Figure 6.15 MCES versus WCAD Normal run 8-Core energy consumption................... 51

vii

Figure 6.16 MCES versus WCAD Reverse run 8-Core performance 52

Figure 6.17 MCES versus WCAD Reverse run 8-Core energy consumption 52

Figure 6.18 MCES versus WCAD High-way 8-Core performance 53

Figure 6.19 MCES versus WCAD High-way run 8-Core energy consumption 53

Figure 6.20 MCES versus WCAD comparison metrics WS, HS, and EDP for all

workload scenarios.. 54

Figure A.1 MARSS DRAMSim2 integration ... 61

Figure A.2 MCES Re-ordering requests in transaction queue .. 62

Figure A.3 MCES Issuing requests ... 63

Figure A.4 WCAD Scheduling Code.. 64

Figure A.5 WCAD applied rules .. 64

viii

List of Tables

Table 2.1 DRAM Control Signals .. 8

Table 2.2 DRAM Specs .. 8

Table 2.3 DDR2 Specs .. 9

Table 2.4 DDR3 Specs .. 10

Table 2.5 DDR Timing Constraints description [11] .. 11

Table 2.6 DDR Timing constraints values .. 12

Table 4.1MCES Estimated hardware size .. 31

Table 5.1 Chstone Suite applications .. 38

Table 6.1 4-CORE/8-Core system simulation parameters .. 40

Table 6.2 Summary metrics abbreviations.. 54

ix

List of Abbreviations and Definitions

CMC/CMP: Chip Multi-Core/Chip Multi-Processor

WCET: Worst Case Estimation Time

DDR DRAM: Double Data Rate Dynamic RAM

RAM: Random Access Memory

MCES: real-time Memory Controller for Embedded multi-core System

MC: Memory Controller

ACT: Activate command

PRE: Precharge Command

HRT: Hard Real-time Task

NHRT: Non-Hard Real-time Task

BL: Burst Length

TRCD: ACT to READ/WRITE delay

TRL: READ to Data Start

TWL: WRITE to Data Start

TBUS: Data bus transfer

TRP: PRE to ACT Delay

TWR: Data End of WRITE to PRE Delay

TRTP: Read to PRE Delay

TRAS: ACT to PRE Delay

TRC: ACT-ACT (same bank)

TRRD: ACT-ACT (different bank)

TFAW: Four ACT Window

TRTW: READ to WRITE Delay

x

TWTR: WRITE to READ Delay

TRFC: Time required to refresh a row

TREF: REF period

OP: Open Page

CP: Closed Page

OoO: Out Of Order Cores

AMC: Analyzable Memory Controller

PREDATOR: A Predictable SDRAM Memory Controller

WCAD: Worst Case Analysis of DRAM Latency in Multi-Requestor Systems

RR: Round Robin

MOT: Memory Out Time

OR: Open Request

CR: Closed Request

TOR: Open Request latency

TCR: Closed Request Latency

WCOR: Worst Case Open Request

WCCR: Worst Case Closed Request

NOT: Number of Open Tasks

NCT: Number of Closed Tasks

CKE: Clock Enable

CS: Chip Select

RAS: Row Address Strobe

CAS: Column Address Strobe

WE: Write Enable

BAn: Bank Selection

FRFS: First Ready First Service

IA3: Interference Aware Allocation Algorithm

xi

XCBA: Inter-Core Bus Arbiter

ICBA: Intra-Core Bus Arbiter

HLS: High Level Synthesis

BWPS: Bounding WCET Using SDRAM with Priority Scheduling

xii

Abstract

Nowadays modern chip multi-processors (CMPs) become very attractive especially in

real-time embedded systems because of their high performance and low per unit cost. On

the other side, bounded latencies is vital to guarantee high performance and fairness for

applications running on multicore processors. In modern embedded systems, Chip

Multicore Processors (CMPs) has become more effective choice due to their low power

and high performance. As application running on these processors use the shared

resources such as: memory, the shared memory should provide high memory service

rates to be able to serve multiple cores in an acceptable response time. In CMPs, real time

applications are bounded by the Worst Case Estimated Time to provide hard deadlines to

real-time tasks (WCET). The modern systems use the Double Data Rate Dynamic RAM

(DDR DRAM) because they are able to transfer the data on the rising and falling edges of

clock cycles which will provide double data rates than the normal DRAMS. Hence, DDR

DRAM is the most compatible with the high demanding CMP processors. Yet, constant

WCET for the interfered threads cannot be guaranteed due to sequential serving between

requests, so each request status depends on the previous and concurrent requests. Another

reason is that DRAM access time has a high variation due to caching data in row buffers

before reading or writing.

In this thesis, we propose a new memory controller that prioritizes and assigns defined

quotas for cores within unified epoch time accompanied with request ranking per core

alongside with fair round robin scheduling among cores (MCES). Our approach works on

variety of generations of double data rate DRAM (DDR DRAM). MCES can differentiate

between two types of requests as hard real-time request (HRT) and non-hard real-time

requests (NHRT). Hence, MCES can run multimedia real-time applications and hard real-

time applications. MCES is able to achieve an overall performance speedup of 35% and

for 4 cores system and an overall performance speedup of 16% for 8 cores system and the

same level of power consumption compared to the last released memory controller design

(WCAD).

1

Chapter 1. Introduction

1.1 Problem

 In modern embedded systems, Chip Multicore Processors (CMPs) [1] has become

more effective choice due to their low power, high performance and low per-unit cost.

CMPs can be either homogenous or heterogeneous. Homogenous cores are identical

cores. Heterogeneous is a set of cores which may differ in area, performance, power

dissipated etc. As mentioned in [1], recent research in heterogeneous CMPs has identified

significant advantages over homogeneous CMPs in terms of power and throughput and in

addressing the effects of Amdahl’s law on the performance of parallel applications.

As application running on these processors use the shared resources such as: caches,

buses, buffers, queues, memory, etc... This shared memory should provide high memory

service rates to be able to serve multiple cores in an acceptable response time. In CMPs,

real time applications are bounded by the Worst Case Estimated Time in order to provide

hard deadlines to real-time tasks (WCET). WCET is the maximum length of time the task

could take to execute on a specific hardware platform. WCET is typically used in real-

time systems, where understanding the worst case timing behavior of software is

important for reliability or correct functional behavior [2].

Modern systems use the last released technology in memory fabrications associated

with the best memory controller algorithms to exploit the high transfer rates and lower

power as Double Data Rate Dynamic RAM (DDR DRAM) [3] [4].DDR DRAM transfers

data on both the rising and falling edge of clock cycles. By using both edges of the clock,

the data signals operate with the same limiting frequency, thereby doubling the data

transmission rate. Although the constant WCET for the interfered threads, a technique to

divide the executed program to two or more simultaneously running tasks, cannot be

guaranteed for the following reasons[8]:

1- Each request delay, due to sequential serving, depends on the previous requests

from the different cores (Inter-task Interference) or the same core (Intra-task

interference).

2- DRAM access time has high variation due to caching data in row buffers before

reading or writing.

1.2 Motivation

To overcome these challenges, several work were proposed by [5] [6] [7] to provide

tight and guaranteed upper bound memory latency timing for real time tasks when

applied to DRAM devices as DDR2. The authors in [8] proved that working on higher

speed DRAM devices as DDR3 and wider buses improves the performance of their

https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Real-time_systems
https://en.wikipedia.org/wiki/Real-time_systems

2

algorithm compared to previous ones in [5][6][7] because they did not exploit the

advantage of caching mechanism in DDR.

MCES, our approach, exploit the use of caching mechanism in DDR3 and parallelism

in DRAM structure to reduce the interference between cores. We present:

1) Priority based dynamic scheduling for real time applications for multimedia and

hard real-time applications.

2) Round robin fair scheduling within cores when the starvation flag is up.

3) Re-ordering between hard real-time tasks (HRTs) non-hard real-time tasks

(NHRTs).

4) DRAM techniques as private banks and open page.

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 provides required background knowledge

on how DRAM works. Chapter 3 compares our approach to related work in the field.

Chapter 4 discusses memory controller algorithm and arbitrary rules. Chapter 5 discusses

our used simulators and evaluation results are presented in chapter 6. Chapter 7 concludes

the thesis and discusses the future work.

3

Chapter 2. Background

Embedded system is computer system with dedicated function running usually with

real-time processing constraints. Compared to general purpose computer systems,

embedded systems should consume lower power with smaller fabricated size and low

cost per unit. Embedded systems are mainly used in military, medical, automotive and

avionics applications due to the nature of integrating these systems in other systems as

hand-hold systems such as mobile phones, automotive systems such as cars, avionics

systems such as plans and spaceships and human disable assistant machines such as

wheel chairs.

 The main components of computer system are multi-core processor and memory

chips. A multi-core processor chip is a single component with two or more independent

cores. These cores can handle concurrent process in the system such as read and execute

instructions as add, subtract, multiply, divide for the arithmetic operations ,move data ,

read and write for the memory operations and branch , conditionally branch for the

control flow operation by passing them to caches. Multi-core processors may have two

cores (dual-core), four cores (quad-core), six cores (hexa-core), eight cores (octa-core),

ten cores (deca-core) or more. Multi-core processors can run multiple instructions in

parallel to increase the overall speed and consequently whole machine performance.

Parallel computing is a form of computation in which many instructions are carried out

simultaneously and operating on the principle that large problems can often be divided

into smaller ones, which are then executed at the same time.

In case the data or instruction request was missed in cache, it is considered a cache-

miss and will be forwarded to memory array through Memory Controller (MC) located in

memory device to serve the miss.

2.1 Memory Controller Architecture and Function

Memory Controller is designed to control the access to memory arrays among cores

i.e. Memory controller is used to schedule the requests in a proficient manner to achieve

the maximum benefits including performance and lowest request time. Memory

controller contains the algorithm required to read/write data from/to DRAM memory and

refresh the DRAM. If the data in the DRAM was not refreshed in constant times, these

data will be lost as the charged capacitors leak their charge. Beside the memory

controller, memory chip contains the memory array. Memory arrays are organized into

ranks and only one rank can be accessed at a time [8] as shown in Figure 2.1. Each rank

is divided into multiple banks which can be accessed in parallel, unless no collisions

occurs on either command or data buses. Each bank consists of a row-buffer and an array

of storage cells divided into rows and columns.

https://en.wikipedia.org/wiki/Computing

4

2.2 Real-time Memory Controller

Real-time Memory Controller is concerned with systems subjected to real-time

constraints. These types of memory controllers must guarantee response for these systems

within specific time or deadlines. These systems are classified into two types:

1- Hard Real-time Systems: These systems must operate within fixed deadlines and

considered failing if these deadlines are not met such as anti-lock brakes and

aircraft control systems.

2- Non Hard (Soft) Real-time Systems: These systems aim is to maximize the

number of tasks to meet their deadlines. Soft real-time systems can miss some

deadlines and cannot be considered failing but the overall performance will be

degraded, connection and service maybe re-established and resumed. If too many

tasks miss their deadlines as audio streaming, a violation of the Service Level

Agreement (SLA) is encountered.

Real-time Memory Controller provides predictable response to core requests i.e.

these types of memory controller need to issue the request based on real-time constraint,

guaranteed real-time response within specific time constraints, which does not mean the

fastest response.

There are many authors proposed algorithms and designs for memory controller.

Some authors proposed real-time logic. Two main types are discussed in this chapter and

will be discussed in more details later in chapter 3.

2.2.1 Fair based scheduling memory controller

This type of memory controllers focuses on fair scheduling between cores. Fair

scheduling algorithm that gives each core equal/fair time slots to process its job and will

not gain a new access until all the cores get their slots, and request ranking in core queues

by re-reordering these requests based on the importance of request before issuing as per

Figure 2.2. They fit hard real-time applications more as they do not require pre-requisites

such as applying fixed priorities or minimum bandwidth before running [5].On the other

side one of the main disadvantages of these fair scheduling techniques is being trivial

approach to handle multiple tasks requirements without any privilege for highly risked

tasks which can lead to degraded performance [9]. Instead, the AMC technique that is

based on Round Robin concept (as explained in full details in section 3.1.1) requires

neither knowing the bandwidth requirements, nor assigning a fixed priority to each task

allowing AMC being applied to control based applications where the bandwidth

requirements are not known. AMC is better suited for hard real-time applications, while

CCSP arbitration is intended for streaming or multimedia real-time applications. [8]

5

2.2.2 Priority based scheduling memory controller

In this type[6][7], memory controllers run based on ranked cores through assigning

priority among cores, and fair request queuing i.e. they treat all the requests form the

same core on FCFS basis and rank requests dispatched from different cores. They are

obviously used in memory intensive applications as multimedia real-time applications to

handle different types of multimedia traffic as video conferencing.

2.3 Memory request process

Cores can only access the content of the row buffer and not the data in the memory

array. Each request access part of the row by selecting some columns because the row

size is large in modern DRAMs (multiple KB). In order to access a memory location, the

row that contains the desired data needs to be loaded into the row buffer of the

corresponding bank by an Activate (ACT) command as shown in Figure 2.3. If the

controller needs to load a different row, the row buffer must first return back the old row

to the mentioned bank in the array by a Precharge (PRE) command. By then, the new

row can be loaded.

Each Load/Store command accesses data in Burst Length BL and the amount of data

transferred will be (BL・WBUS), in which WBUS is the width of the data bus. If the BL is 8

Bytes and WBUS is 64 bits, the amount of data transferred for one request is 64 Bytes.

Since DDR memory transfers data on the rise and the fall edges of clock, the amount of

time for one transfer is BL/2 memory clock cycles i.e. four cycles, tBUS, for a BL of eight.

6

Figure 2.1 DDR DRAM Structure

Core 1

Core N

Memory
Controller

Core Queue

 2nd Req

1st Req

Figure 2.2 re-ordering requests in Memory Controller

7

Figure 2.3 Row Buffer Loading

2.4 DDR Evolution

2.4.1 DRAM

The first version of these DRAM has an asynchronous interface with the system bus.

This means that they will respond as quickly as possible to the control inputs. After that,

the synchronous version on DRAM was invented and synchronized with the system bus.

Both types are single data rate which means that they can accept one command and

transfer one word of data per clock cycle. The Data buses ranges from 4 bits to 16 bits.

All the commands occur on the rising edge of the clock cycle. Table 2.1 represents the

control signals and the function of each signal. First of all, the memory needs the clock

signal (CKE) enabled to perform any memory operation. In order to select a specific

column to write or read the data, choose the bank, row, column by selecting BAn, RAS,

CAS command bits respectively.

8

Table 2.1 DRAM Control Signals

Clock Signal Function

CKE All memory operations are continuous after this signal is high

CS When this signal is high, this chip ignores all other inputs except the

CKE

RAS This is command bit used to determine the row selected

CAS This command bit used to select the targeted column

WE This bit distinguish the write command from the read commands

BAn This bit/s determine the selected bank

2.2.4.2 DDRx DRAM

As the total request latency is limited and determined by DRAM access latency, so

there was a need to increase bandwidth and decrease overall latency. Hence, a doubled

data rate interface was developed. This interface can accept two reads and two writes on

the rising and falling edges of the clock signal. On the other side, there were other

modifications to decrease the consumed power. Table 2.2 shows the DDR DRAM rates

[8].

Table 2.2 DRAM Specs

DRAM Standard

Name

Memory Clock

(MHz)

Cycle time (ns) Peak transfer

rate (MB/s)

DDR-200 100 10 1600

DDR-266 133.3 7.5 2133.3

DDR-333 166.67 6 2666.6

DDR-400A 200 5 3200

DDR-400B 200 5 3200

DDR-400C 200 5 3200

9

DDR2, as DDR, allows transmitting data on the rising and falling edges of the clock

cycle. In addition, DDR2 operates on doubled bus speeds. This means that the DDR2 can

operate on double speed of DDR which allow transferring four reads and four writes per

clock cycle. DDR2 maximum size can reach 4 GB. Table 2.3 shows the DDR2 DRAM

rates [10]

Table 2.3 DDR2 Specs

DRAM Standard

Name

Memory Clock

(MHz)

Cycle time (ns) Peak transfer

rate (MB/s)

DDR-400B 100 10 3200

DDR-400C 100 10 3200

DDR2-533B 133.3 7.5 4266.6

DDR2-533C 133.3 7.5 4266.6

DDR2-667C 166.6 6 5333.3

DDR2-667D 166.6 6 5333.3

DDR2-800C 200 5 6400

DDR2-800D 200 5 6400

DDR2-800E 200 5 6400

DDR2-1066E 266.6 3.75 8533.3

DDR2-1066F 266.6 3.75 8533.3

DDR3 continues to double the amount of data transferred to be eight times the

speed i.e. DDR3 are able to transfer eight words (reads/writes) per clock cycle. DDR3

can support up to 4 ranks with 64 bits each to reach 64 GB. But for hardware limitations,

most CPUs can handle from 4 GB to 16 GB. DDR3 consumes 30% fewer energy than

DDR2 because of decreasing the supply voltage. Table 2.4 shows the DDR2 DRAM rates

[11]

10

Table 2.4 DDR3 Specs

DRAM

Standard Name

Memory Clock

(MHz)

Cycle time (ns) Peak transfer

rate (MB/s)

DDR3-800D 100 10 6400

DDR3-800E 100 10 6400

DDR3-1066E 133.3 7.5 8533.3

DDR3-1066F 133.3 7.5 8533.3

DDR3-1066G 133.3 6 10666.6

DDR3-1333F 166.6 6 10666.6

DDR3-1333G 166.6 6 10666.6

DDR3-1333H 166.6 6 10666.6

DDR3-1333J 166.6 6 10666.6

DDR3-1600G 200 5 12800

DDR3-1600H 200 5 12800

DDR3-1600J 200 5 12800

DDR3-1600K 200 5 12800

DDR3-1866J 233.3 4.28 14933.3

DDR3-1866K 233.3 4.28 14933.3

DDR3-1866L 233.3 4.28 14933.3

DDR3-1866M 233.3 4.28 14933.3

DDR3-2133K 266.6 3.75 17066.6

DDR3-2133L 266.6 3.75 17066.6

DDR3-2133M 266.6 3.75 17066.6

DDR3-2133N 266.6 3.75 17066.6

11

DDR4 is the final DDR DRAM globally released. DDR4 operated on higher

frequency ranges (800 - 1600) MHz and lower voltage reaches 1.2V

2.5 DDR Timing Constraints

DRAM device performs different operational tasks to handle requests. These tasks

require timing constraints to be preserved through MC. All these timing constraints are

defined by Joint Electron Device Engineering Council (JEDEC) standard [6]. This

standard defines all DDR versions including DDR2, DDR3 and DDR4. Table 2.5 lists

most of the used commands and their descriptions. Table 2.6 lists all values in memory

cycles required for our analysis.

Table 2.5 DDR Timing Constraints description [11]

Timing

Parameter

Description

TRCD This is RAS (Row Access Strobe) to CAS (Column Access Strobe) delay.

Before issuing read/write request, the row must be first activated through

activation command that is initiated by memory controller. Hence, the

DDRAM moves the subjected row to the row buffer i.e. it is the clock cycles

between the activation of a row read/write command to that row.

TRL This is read latency. It is the time required by the DRAM memory to start

the data reading

TWL This is write latency. It is the time required by the DRAM memory to start

the data writing

TBUS Amount of time required to transfer the data in the data bus channel

TRP This is RAS precharge after data transmission. If the memory controller

receives another request targeting another row, the memory controller

initiates a precharge command to return back the row from the row buffer.

TRP is the time required to precharge a row. i.e. it is the number of clock

cycles elapsed between a row precharge and activation command in the same

memory rank

TWR It is called write precharge delay or write recovery time. It represents the

amount of time the memory spends after the completion of valid write

operation and before the precharge command is issued.

TRP This is read to precharge delay. It is the number of cycles for a memory

read command to the precharge command for the same memory rank.

12

TRAS This is activate to precharge latency. It is the time spent from the

activation of a row till the precharge command.

TRC It is Row cycles. This is the cycles from the row activation passing by row

precharging till the activation of another row. It is the summation of TRP and

TRAS

TRRD This is activate to activate delay. It is the time elapsed between two row

activate in different banks in the same rank.

TFAW This is the time window for four activation commands allowed

simultaneously to the same rank. This is due to power limitation that feeds

the charge pump on the chip [12].

TRTW Read Then Write delay. This is the time required to switch from read

command to write command in the same rank.

TWTR Write Then Read Delay. It represents the delay required between the last

valid write operation and the next read command.

TRFC This is the Refresh Cycle time. It represents the time measured from the

refresh command (REF) to the first activate command.

Table 2.6 DDR Timing constraints values

Parameters DDR2 –

SG25E

DDR3_32M-

SG15

DDR3-

SG25E

DDR3_64M-

SG15

𝒕𝑹𝑪𝑫 5 10 5 9

𝒕𝑹𝑳 5 10 5 8

𝒕𝑾𝑳 4 9 4 7

𝒕𝑩𝑼𝑺 4 4 4 4

𝒕𝑹𝑷 5 10 5 9

𝒕𝑾𝑹 6 10 6 10

𝒕𝑹𝑻𝑷 3 5 4 5

𝒕𝑹𝑨𝑺 18 24 15 24

𝒕𝑹𝑪 23 34 20 34

𝒕𝑹𝑹𝑫 3 4 4 4

𝒕𝑭𝑨𝑾 14 20 16 20

𝒕𝑹𝑻𝑾 5 6 6 5

𝒕𝑾𝑻𝑹 3 5 4 5

𝒕𝑹𝑭𝑪 51 107 64 107

13

To illustrate these time constraints, Figures 2.4 and 2.5 show load/store request

scenarios to different banks. Figure 2.4 shows timing constraints related to load request.

1st request is targeting bank 1. Request 1 is a load and it consists of ACT and read

commands. 2nd request is a store targeting bank 2 and it consists of ACT and write

commands. Note that the write command of 2nd request cannot be issued immediately

once the tRCD timing constraint of bank 2 has been satisfied. This is because there is

another timing constraint, tRTW between read commands of 1st request and write command

of 2nd request. Hence, the write command can only be issued after timing constraints for

this request are satisfied. Similar constraints are shown for a store request targeting bank

1 and load request in bank 2 in Figure 2.5.

We can note here:

1) The latency for a close request is longer than an open request (which is described

later in section 2.6.2). There are long timing constraints involved with PRE and

ACT commands, which are not needed for open requests.

2) Switching from load to store requests and vice-versa incurs a timing penalty.

There is a constraint tRTW between issuing a read command and a successive write

command. On the other side, the tWTR constraint applies between the end of the

data transmission for a write request and any successive read request.

3) Different requests can access different banks in parallel. There is no constraint

such as tRTW and tWTR between two successive reads or two successive writes to

different banks. Also, PRE and ACT commands to different banks can be issued

in parallel as long as the tRRD and tFAW constraints are met.

14

Figure 2.4 Load request Timing Constraints

Figure 2.5 Store request timing constraints

15

2.6 DDR Requests Mapping and Row policy

2.6.1 Interleaved vs Private Banks

In general, any memory controller has two ways to map data to the banks: Interleaved

Banks and Private Banks [8]. Interleaved banks allow each core to access all banks in

parallel. Meanwhile, the other cores can access all banks concurrently, which will lead to

interference among the cores. The amount of data transferred in one request is BL.WBUS.

NUM_BANKS. E.g. if BL is 8 bytes and WBUS is 64 bits, then the amount of data

transferred is 256 bytes as shown in Figure 2.6. The other request map, Private Banks

map one bank or more to a core so that we can eliminate the interference across the cores

as shown in Figure 2.7. For our approach, we will adopt the private bank methodology.

Core 1

Core 2

Core 3

Core 4

Bank 1

Bank 2

Bank 3

Bank 4

Figure 2.6 Interleaved banks for 4 banks DDR DRAM

16

Core 1

Core 2

Core 3

Core 4

Bank 1

Bank 2

Bank 3

Bank 4

Figure 2.7 Private Banks for 4 banks DDR DRAM

2.6.2 Close Page vs Open Page Policies

Regarding the row policies, there are two row buffer policies: Open Page (OP) and

Close Page (CP) policies [8]. For the OP Policy, the request consists of a read or a write

command. These commands are carried out immediately, if there is no other request uses

this row and the mentioned row is already cached in the row buffer, or the refresh period

does not take place. Hence, total latency decreases. On contrary, if the above mentioned

conditions are not satisfied, then the row buffer is called a row miss. By then, the row

must first be written back to the array by a PRE command. After that, an ACT command

loads the desired row into the row buffer and read/write commands can be issued to

access the data.

On the other side, the CP Policy will auto-precharge the row after the read/write

command is issued. CP can be considered an advantage while pipelining the requests

through interleaved banks because all the read and write commands will run in parallel

and their interference can be reduced using this policy [5]. The drawback for CP, while

using private banks, is that the total latency will be increased for all tasks issued by MC

especially in case row hit is zero. Hence our approach, MCES, uses OP to improve the

cumulative latency by exploiting the DRAM row hit cases.

17

2.7 In-order vs Out Of Order Cores

MCES uses Out Of Order (OoO) [13] cores that are capable of dispatching multiple

instructions to set of queues per cycle. OoO cores avoid the stall that occurs in the in-

order core when the instruction is not completely ready to be processed due to missing

data. OoO processors fill these "slots" in time with other instructions that are ready, then

re-order the results at the end to make it appear that the instructions were processed as

normal as shown in Figure 2.8. However, MC will serve one request each memory cycle

due to the shared resources. The other type of cores is in-order core where instructions

are fetched, executed in generated order. If a request stalls, all requests queued in buffers

will stall waiting for the mentioned request to finish as shown in Figure 2.9. It is worth

mentioning here that the focus is not on modelling cores. Hence, we will not study here

the utilization of cores or its contribution in calculating WCET. Hence, our focus is on

the design of MC.

Figure 2.8 OoO execution pipeline

18

Figure 2.9 In-order core pipeline

19

Chapter 3. Related Work

In this chapter, we will discuss the related work. Similar memory controllers have

been proposed.

3.1 Fair Scheduling Memory Controllers

This category as we mentioned before in chapter 2 fairly schedules the cores’ requests.

Hence, all requests arrived from different cores and reached the final queue will be

scheduled on fairly basis either using Round Robin or First Come First Serve (FCFS). On

the other hand, memory controllers apply ranking on requests during queuing in buffers

before scheduling.

3.1.1 Analyzable memory controller (AMC)

AMC [5] is memory controller that provides an upper-bound latency for hard and non-

hard memory requests in a multi-core system using bank interleaving with closed page

policy alongside with fair round-robin arbiter. AMC prioritize HRT requests over NHRT

requests. If all the requests are HRT, so the AMC schedules them based on fair RR to

prevent any timing anomalies from happening to the tasks. AMC uses one queue per core

to isolate inter-task interference from intra-task interference. Hence, the maximum

latency a request can suffer from will depend on the number of cores. AMC fits better

than the priority scheduling memory controllers for hard real-time applications as their

solution can run on any hard real-time applications without defining parameters as

priorities, minimum bandwidth. On the other hand, AMC RR policy with one request per

core will not satisfy the different core requirements. Hence, if more than one request is

assigned per core, WCET will be degraded severely. Also, assuming fixed Read/Write or

Write/Read maximum latency cannot produce precise latencies as we will show later in

4.3.3.

3.1.2 Worst Case Analysis of DRAM Latency (WCAD)

WCAD [8] controller extends the AMC proposal, yet via using Private Banks and

OP policy. WCAD uses a queue for each core and enqueues only one request per core to a

global FIFO queue. The arbitration rule of the global queue is based on issuing one

request only from each core based on round robin (RR) arbitration and not to enqueue

any other request until the data of the previous request is transmitted. Yet the drawbacks

here in this proposal:

20

1- WCAD, as AMC, assumes equal importance of applications as it does not

consider prioritization in scheduling regardless how much the applications are

memory intensive. This means that using memory intensive applications will

lead to degradation in performance.

2- WCAD cannot distinguish the severity of tasks as hard and non-hard real-time

tasks.

3- WCAD focuses on in-order cores although their algorithm performance degrades

while using OoO cores as we will show later in chapter 6.

3.2 Priority Scheduling Memory controllers

Priority Memory controllers use offline fixed assigned priorities to cores based on

offline analysis for the application running on these cores and bandwidths needed to

accomplish their tasks. Yet, they do not apply request ranking in buffers before

scheduling these tasks.

3.2.1 A Predictable SDRAM Memory Controller (PREDATOR)

Predator [6] ,as AMC, uses bank interleaving with closed page policy yet assigns fixed

priority to requests to guarantee minimum bandwidth and consequently maximum

bounded latency to the cores requests. This is accomplished by defining two steps

approach to predict DDR2 access. First, Predator defines statically read and write

requests to SDRAM memory and this will determine the lower net bandwidth required.

Then, scheduling using Credit Controlled Static Priority (CCSP) which is composed of

rate regulator and a scheduler. The rate regulator is responsible of assigning bandwidth to

each core. After that the static priority scheduler is responsible to provide maximum

latency bound for the requests. This algorithm becomes more effective for multimedia

real-time applications. On the other hand, PREDATOR cannot be used on hard real time

applications as WCET bounded calculations cannot be estimated if cores received hard

real-time requests.

3.2.2 Bounding WCET Using SDRAM with Priority Scheduling (BWPS)

This algorithm BWPS [7] extends Predator to work with priority-based scheduling

(PBS) arbiter to provide WCET, Observed Execution Time (OET) and the Best Case

Execution Time (BCET) analysis of the application running on the proposed architecture.

The use of OET and BCET to evaluate the precision of the algorithm results and the

variability of the PBS arbitration scheme. PBS assigns priority and budget to cores at

design time. Cores with high priority has the low budget and cores with low priority gains

high budget. Pros and cons are to be discussed in section 3.4.

21

3.2.3 SDRAM controller Traffic with complex QOS requirements

Authors in [14], proposed interleaved bank memory controller alongside with round

robin arbiter to provide maximum latency for cores. Authors suggested 2-stage

scheduling algorithm and static priorities assigned to achieve the required QOS which

includes guaranteed minimum throughput at guaranteed maximum latency and smallest

possible latency. Hence, cores are assigned high or standard priorities. After each high

priority request is issued, it is followed by standard priority request to prevent starvation.

This algorithm did not exploit the core priorities well and shared the same issues of

interleaved banks and round robin as mentioned above.

3.3 Non Real-time Memory controllers

The below subsection discusses other algorithms for different designs.

3.3.1 Predictable Memory Controller Performance in Many-Core CMPs

Author as in [15], applied multiple memory controller designs to multi-core system

using a mesh or torus topologies for interconnection to show how memory controller

location and routing algorithm used can improve the latency and bandwidth

characteristics regardless of the processor used. It is worth to mention that this type can

fit Big Data or cloud computing solutions because of their huge and powerful amount of

data but not suitable for embedded systems which need to achieve compromising levels

of high performance and low power consumption.

3.4 WCET enhancement techniques

The next part will discuss other ways to analyze other designs to enhance WCET

estimation and calculation.

3.4.1 Hardware WCET Analysis of Hard Real-Time Multicore Systems

Authors in [16] discusses hardware shared resources as bus and cache interference.

The authors propose bus arbiter to control bus interference when computing WCET and

be able to compute the maximum bounded latency a bus thread can suffer from. The

proposal splits the bus arbiter into 2 bus components. Inter-Core Bus Arbiter (XCBA)

that schedules requests from different cores, and multi Intra-Core Bus Arbiters (ICBAs)

that schedules requests from the same core. The NHRT requests are send to the

corresponding core’s ICBA to select the next memory request to be sent to XCBA based

on FRFS. This FRFS will issue all requests out of order that targets different banks to

22

increase the overall performance. Regarding HRT requests, the arbiter issue the requests

based on FIFO to provide any timing anomalies. In mixed overload, if HRT request needs

the bus and it is being used by NHRT request, so the arbiter will serve the HRT request

immediately to increase any extra delay can be added to its execution time. The

disadvantage is that the arbiter will retry to issue the NHRT request next which consumes

more energy.

3.4.2 Interference Aware Allocation Algorithm (IA3) for multicore hard real-time

systems

 The authors in [17] proposes IA3 which is a new offline algorithm that uses set of

WCET estimations mapped to all execution environment for the task to run. Execution

environment is the resources the task will be assigned to as the cores, scheduling

algorithm, and bus arbitration policy and cache partitions. Their algorithm introduces 2

concepts: WCET matrix and WCET sensitivity. The WCET matrix is n-dimensional

vector for HRT task where each dimension determines the different execution

environments parameters that may affect the WCET for this HRT task i.e. WCET matrix

for a specific task is the collection of WCET estimations for this task running on a

processor under different execution environments.

WCET sensitivity allows the IA3 to be aware of the impact of changing the

execution environment on the WCET estimation. These two concepts will allow the IA3

algorithm to define the allocated resources (number of cores, cache partitions assigned to

each core, etc..) assigned to each task to run efficiently as being used in avionics and

space systems. WCET sensitivity allows tasks with higher demand to be allocated first.

IA3 algorithm can run in 2 different modes:

1- Common mode where the same exaction environment will be applied on all

cores.

2- WCET Sensitivity mode, where different execution environments will be

applied on different cores.

The main drawbacks of this algorithm is that IA3 is off-line algorithm and needs high

computation to fulfill the matrices before running. It can be used in high risk applications

as military or space systems.

3.4 Summary of Scheduling algorithms

 To summarize all the above discussed memory controller algorithms

1- Algorithms in [5], [6], [7], and [14] used interleaved banks so there can be

interference between cores with CP policy which affects total latency by allowing

auto (ACT+PRE) commands and pretending the row hit equals zero.

23

2- As mentioned in [8], these algorithms exploit the caching mechanism in DRAM

devices. As modern DRAM devices become faster, performance of these MCs

degrade severely because the access time between cached devices and non-cached

in DRAM is growing.

3- WCAD [8], uses fair FIFO scheduling and in-order cores so by applying intensive

applications on multiple cores, i.e. core receives more than one request per cycle,

and the performance degrades severely.

4- Other memory controllers [15] is used for cloud computing applications and cannot

be implemented here because it depends on very high numbers of cores and routing

techniques cannot be implemented in embedded designs

5- WCET enhancement techniques are using other layers as hardware layer by

implementing bus arbiters and matrix algorithm to define the best paths to consume

the better WCET. These techniques can help in future implementations.

After discussing all the above memory controllers, it is observed that each scheduling

type is targeting one category of applications and we believe that by taking the

advantages of those techniques in one memory controller can achieve better performance

results and be applied on different application categories.

We are interested in memory controller design for embedded multi-core systems to

optimize shared resources allocation. Hence, MCES, our approach, is memory controller

that aims to apply request ranking within the same core and core prioritization among

cores by exploiting the two methodologies, namely Private Banks and OP policy. MCES

should eliminate row interferences from different cores, since each core can only access

its own memory banks and its allocated private buffer. MCES compares the achieved

results with WCAD as they are the most recent work and the results achieved by their

algorithm are better than any previous algorithm.

24

Chapter 4. Real-time Memory Controller for Embedded

Systems (MCES)

4.1 System Architecture

In this chapter, we will discuss our algorithm for memory controller design. The

architecture of our system is shown in Figure 4.1. We applied our algorithm using OoO

cores. Each core has separate L1 instruction and data caches, followed by L2 unified

cache. MCES is priority-based memory controller as it takes into account the effect of

multimedia real-time applications and request ranking required for hard real-time

applications. MCES Enables fair scheduling using round robin (RR) arbiter within cores

when the starvation flag is up. Each core stores the memory requests (read/write) in

private buffers based on FCFS method, unless otherwise there are different types of

requests arrive in the private buffer in an unordered way i.e. HRT arrived the private

buffer after NHRT request. These memory requests are then enqueued to the global

queue based on the quota/budget assigned to each core. Our queuing and reordering

flowchart to re-order the requests in private buffers is shown in Figure 4.2 and scheduling

algorithm for requests after reaching Global Queue is found in Figure 4.3. From the

figure, the MCES checks the priority of the requests and their timing constraints. If the

request meets these criteria, the request will be issued to memory. Otherwise, starvation

flag decrements and check the lower priority requests to serve if the starvation flag

reaches zero and still has remaining quota to issue. Each memory cycle MCES checks the

Memory Time Out (MOT) parameter to refresh quotas of all cores if the MOT becomes

zero.

Figure 4.1 MCES architecture

25

Figure 4.2 Queuing and Re-ordering

Figure 4.3 Scheduling Flow chart

26

Figure 4.4 MCES Algorithm flow chart

27

4.2 Arbitration Rules

Memory requests are enqueued to global queue and scheduled based on the below

arbitration rules as follow:

1- Each core will have priority given to the core through OS, hence a corresponding

quota for the number of requests allowed to be queued in the global queue. The

core with high priority will gain high quota and so on.

2- Each core will be able to dispatch only requests within the assigned quota. Hence,

the size of the global queue will be limited to the summation of the quotas of all

cores.

3- The core consumes its quota after issuing its requests from the global queue to

memory. The core will not be able to issue any other request until the epoch

period is passed or the global queue issues all the requests. This epoch is called

Memory Request Timeout (MOT).

4- A) The requests issued per cores from the global queue to memory in a RR

fashion.

B) At the start of every memory cycle, the queue is scanned and request is issued

from the highest priority core hence consequently the lower priority core, unless

otherwise the starvation flag is up. This flag switches between cores prevent

request of low priority cores from starvation.

5- Request ranking is also considered in ordering the requests within each core. The

core prioritizes HRT over NHRT through re-ordering the requests in the private

buffer. Hence, each core has two private buffers based on the type of requests

(read/write) to apply this re-ordering. Also the type of the request is watched for

each core dispatches the read requests first followed by the write requests.

6- To eliminate the inter-task interference, every core has its private bank and its

own private buffer.

7- Another level of prioritization considers the similar type of requests (read/write)

regardless of the core priority. This rule forces the controller to issue the similar

requests even it was from lower priority cores before the high priority core

request/s.

To clarify Rule-5, we serve every read/write request based on its time constraint.

Also we focus to serve the hard real-time tasks (HRTs) to improve the overall WCET.

Hence, we apply the re-order technique in the private buffers, so that the HRT request

will be issued first. If all the requests reached the private buffer are HRTs, then they will

be served on FCFS basis .In Figure 4.5, the state of the private buffer is at the initial time

28

t. Let us consider the following scenario. One hard real-time read task (R_H) arrived the

private buffer after two non-hard real-time read tasks (R_N). Without re-ordering, we can

figure out that the HRT request will be served at t` which increases the latency of this

request although after re-ordering in Figure 4.6, it will be served first at t.

Figure 4.5 FCFS Queuing

Figure 4.7 MCES Queuing

Rule-7 determines our algorithm technique that improves the overall performance.

We derive a new way to prioritize requests based on similar request types, regardless of

the priorities of the cores. Let us consider the following scenario for four cores (C0, C1,

C2, and C3) in Figure 4.7 for FCFS scheduling:

29

1- The global queue received 4 simultaneous requests at time t, read from C0, write

request from C1 and read requests from C2 & C3.

2- The queue will issue the read request from C0 which has the highest priority (R0).

After that the write request (W1) will be issued at t` after applying the time

constraints Read Then Write (tRTW).

3- Although C2 & C3 read requests (R2 & R3) are waiting the previous C0 and C1

requests to be served, but they will be issued at the end since they are the lower

priority cores and will be served after time delay Write Then Read (tWTR).

4- In MCES, Figure 4.8, the arbiter will switch to C2 & C3 after serving the read

request from C0 (R0). Hence, R2 & R3 will be served after R0 and finally W1 will

be served next at t`.

5- As per Figure 4.8, the re-ordered requests leads to a compromise between cores

by shrinking the time required to issue all 4 requests. Hence, the overall

performance increases.

Figure 4.7 FCFS Scheduling

30

Figure 4.8 MCES Scheduling

4.3 Hardware / Area Overhead analysis

In this section, we will discuss the hardware needed to implement the MCES algorithm.

As shared memory resources is limited between higher level memories as caches and

lower level memory which is the DRAM. Hence, MCES needs a register to hold the bits

of the Core ID which help to detect the Core’s request sent from cache. This register is

called Core Identifier Register (CIR) and it will be of max four bits in case of 16 cores ,

three bits in case of eight cores, two bits in case of four cores and one bit only in case of

two cores. After that the data transactions (read/write) that should be transferred to

private buffers as shown in Figure 4.1. Hence, the private buffers size per core is the

summation of number of requests that can be held by the private buffers multiplied by the

size of a single request 𝑁𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑏𝑢𝑓𝑓𝑒𝑟𝑠 ∗ ∑ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖=𝑁
𝑖=0 ∗ 𝑙𝑜𝑔2 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 . In order to

apply the re-ordering rule in private buffers, temporary register is needed to hold the

replaced transaction data till the replacement is completed called Hard to Non-hard

Register (HNR). HNR register size is one transaction request. Finally the global queue

GQ size which will hold all the data ready to be issue. Hence, GQ size will depend on

summation of the total quotas assigned to cores ∑ 𝑄𝑢𝑜𝑡𝑎𝑐𝑜𝑟𝑒
𝑐𝑜𝑟𝑒=𝑁
𝑐𝑜𝑟𝑒=0 . Table 4.1 shows

the total size in bytes required by MCES to be implemented for 8 cores. Each core has 2

private buffers for total 16 buffers. Each buffer holds 128 requests and each request is 64

bytes because data bus channel is 64 bits and we use BL equal to eight so bytes Per

Transaction = (JEDEC_DATA_BUS_BITS*BL)/8 . Hence, total private buffer size is

2048000 bytes. To determine GQ size, we need to collect the core quota for each core.

Let’s assume {C0,C1,C2,C3,C4,C5,C6,C7} quotas are {9,8,7,6,5,4,3,2},hence GQ size is

31

2816 bytes with total size equal to 132 KB. On the other side, WCAD MC total size for

eight cores is 129 KB

Table 4.1 MCES Estimated hardware size

Core

Number

Total

private

buffer

number

Transaction

size

Private

buffer size

(KB)

HNR

Register

size

(Bytes)

CIR

Size

(Bytes)

Global Queue

Size (KB)

Total

size

(KB)

WCAD

MC

Size

(KB)

4 8 64 64 64 1 1 66 65

8 16 64 128 64 1 3 132 129

16 32 64 256 64 1 9 266 257

4.4 WCET Analytical Model

In this section, we are going to study the WCET for requests under analysis. For

simplicity, let’s assume each core has one request in its private buffer and this request is

forwarded to global queue. We consider all the requests arrived at the same time t0 as a

worst case conflict among the requests to show the longest waiting time in the queue.

Let’s assume the lowest priority core reached global queue below t0 by delta. This request

will interfere with other requests with higher priorities, so we calculate the WCET for this

request. We are running our WCET calculation on four core numbers (CN=4) based on the

following specifications. Priority of cores will be assigned decreasingly (C0C3) =

(highest prioritylowest priority). Hence, based on the core priority distribution, quotas

will be assigned decreasingly (C0C3) = (highest quotalowest quota). This calculation

will deal with the two different kinds of commands. First we will check the open request

(OR). OR will deal with requests that targets open rows which are already loaded in the

row buffer. After that, we will check closed request (CR). CR command ensures all

requests from cores are targeting different rows, hence continuous ACT and PRE timing

constraints will be added.

4.3.1 Open Request (OR)

For open requests, all rows are already open, and loaded to banks’ row buffer. To

calculate Open Request latency (TOR), we will depend on the previously and concurrently

issued requests of the cores under analysis. If the previous and current requests were of

the same type (read/write), then TOR will be zero because no timing constraints will be

applied here. If the previous and current requests were interleaved, i.e. read request

followed by write requests or vice versa, then the latencies should be considered due to

32

the command line timing constraints for the memory DRAM IO gates which consumes

time to switch from read command to write (tRTW) and from write command to read

(tWTR). We assume that all requests reached global queue at the same time t0 and the

lowest priority core send its request before t0 by delta. This request is served after the

high priority cores issue their requests. Hence, this request suffers from delay. We

calculate the WCET for this request. From Figure 4.9 and 4.10, it is obvious that read

request needs tRL to issue and write request needs entails tWL to issue. Each read request

issued after write request suffers from write then read timing constraint (tWTR) and each

write issued after read request suffers from read then write constraint (tRTW). On the other

side, for most DRAM memories the summation of tRL and the data bus time tBUS is lower

than the summation of tWL and tRTW (tRL+tBUS < tWL+tRTW) so we can conclude that each

read request to be issued suffers from (tWL+ tBUS +tWTR) and each write request suffers

from tRTW. Hence the Worst Case Open Request (WCOR) between t0 and t` are derived

for read and write requests as shown in eq.1 and eq.2 respectively.

Figure 4.9 WCOR Read

𝑇𝑂𝑅
𝑟𝑒𝑎𝑑 =

𝐶𝑁
2
(𝑡𝑊𝐿 + 𝑡𝐵𝑈𝑆 + 𝑡𝑊𝑇𝑅 + 𝑡𝑅𝐿) + (

𝐶𝑁
2

 − 1) 𝑡𝑅𝑇𝑊 (1)

33

Figure 4.10 WCOR Write

4.3.2 Closed Request (CR)

In Closed Request CR, ACT & PRE will be added to command timing constraints

because each request is targeting different row. As mentioned in chapter 2, we need the

PRE command (tRP) to clear the row buffer by returning the old row and ACT command

(tRCD) to load the new one. We assume all requests reached Global Queue at t0 and all

ACT commands are issued at first before breaching four window active time constraint

(tFAW). If one or more ACT commands are issued after tFAW, we need to consider the

effect of activation commands after tFAW. As per Figure 4.11 and 4.12, in order to

calculate Worst Case Closed Request (WCCR), each read suffers from (tWL + tBUS + max

(tWR, tWTR) and each write suffers from tRTW. Finally, the calculated closed request TCR for

read and write requests between t0 and t` are as shown in eq.3 and eq.4 respectively.

𝑇𝑂𝑃
𝑤𝑟𝑖𝑡𝑒 =

𝐶𝑁
2
(𝑡𝐵𝑈𝑆 + 𝑡𝑊𝑇𝑅 + 𝑡𝑅𝑇𝑊) + (𝐶𝑁 − 1)𝑡𝑊𝐿 (2)

34

Figure 4.11 WCCR Read

Figure 4.12 WCCR Write

𝑇𝐶𝑅
𝑟𝑒𝑎𝑑 = 𝑚𝑎𝑥(𝐶𝑁𝑡𝑅𝐶𝐷, 𝑡𝐹𝐴𝑊) +

𝐶𝑁
2
(𝑡𝑊𝐿 + 𝑡𝐵𝑈𝑆 + 𝑡𝑊𝑇𝑅 + 𝑡𝑅𝐿) + (

𝐶𝑁
2

 − 1) 𝑡𝑅𝑇𝑊 (3)

𝑇𝐶𝑅
𝑤𝑟𝑖𝑡𝑒 = 𝑚𝑎𝑥(𝐶𝑁𝑡𝑅𝐶𝐷, 𝑡𝐹𝐴𝑊) +

𝐶𝑁
2
(𝑡𝑊𝐿 + 𝑡𝑅𝑇𝑊 + 𝑡𝑊𝑇𝑅 + 𝑡𝑅𝑇𝑊) + (𝐶𝑁 − 1) 𝑡𝑊𝐿 (4)

35

∆𝜏

 ∆𝜏𝐶𝑅

∆𝜏𝑂𝑅

4.3.3 Total WCET

 In the above analysis, we discussed WCET for either all Open Requests or all Closed

Requests. Since in real scenario, requests are a mixture of both and no one can guarantee

the exact scenario for the actual traffic load. Hence the total WCET time is the

accumulation of number of open tasks (NOT) plus number of closed tasks (NCT) plus the

estimate time to switch between these tasks as shown in eq.5. is divided to

for time elapsed to switch from open request to closed request as shown in

equation.6 and for time switching closed request then open request as shown

in eq.7

∆𝜏𝑂𝑅 = {
𝑚𝑎𝑥(𝑡𝑅𝐿, 𝑡𝑅𝑇𝑊) + 𝑡𝐵𝑈𝑆, 𝑂𝑅𝐷 𝑡ℎ𝑒𝑛 𝐶𝑊𝑅

𝑡𝑊𝐿 + 𝑡𝐵𝑈𝑆 + 𝑡𝑊𝑇𝑅, 𝑂𝑊𝑅 𝑡ℎ𝑒𝑛 𝐶𝑅𝐷
 (6)

∆𝜏

𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑁𝑂𝑇 .𝑚𝑎𝑥 (𝑇𝑂𝑅
𝑟𝑒𝑎𝑑, 𝑇𝑂𝑅

𝑤𝑟𝑖𝑡𝑒) +

 𝑁𝐶𝑇 . 𝑚𝑎𝑥(𝑇𝐶𝑅
𝑟𝑒𝑎𝑑, 𝑇𝐶𝑅

𝑤𝑟𝑖𝑡𝑒) + 2∆𝜏𝑥𝑥.𝑚𝑖𝑛(𝑁𝑂𝑇 , 𝑁𝐶𝑇) (5)

 ∆𝜏𝐶𝑅 =

{

 𝑚𝑎𝑥

(𝑡𝑅𝐶 , 𝑡𝑅𝐶𝐷 +𝑚𝑎𝑥(𝑡𝑅𝐿 , 𝑡𝑅𝑇𝑊) + 𝑡𝐵𝑈𝑆 + 𝑡𝑅𝑃),

𝐶𝑅𝐷 𝑡ℎ𝑒𝑛 𝑂𝑊𝑅

𝑚𝑎𝑥(𝑡𝑅𝐶 , 𝑡𝑊𝐿 + 𝑡𝐵𝑈𝑆 +𝑚𝑎𝑥(𝑡𝑊𝑅, 𝑡𝑊𝑇𝑅) + 𝑡𝑅𝑃)

𝐶𝑊𝑅 𝑡ℎ𝑒𝑛 𝑂𝑅𝐷

 (7)

36

Chapter 5. Simulators

In this chapter, we will discuss the tools used in testing the algorithm and achieving

results output. To test the algorithm two simulators were used: MARSS core emulator

[18] integrated with PTLsim simulator to implement core, cache configuration. The other

tool used is DRAMSim2 simulator [19] used for memory controller design. We selected

CHstone benchmark to test our design [13] which is a suite that includes various real-

time applications.

5.1 MARSSx86

MARSSx86 is a tool for cycle accurate full system simulation of the x86-64

architecture, specifically multicore implementations. MARSS is multicore simulation

environment for the x86-64 ISA, with detailed pipeline model, based on Processor

Technology Laboratory Simulator (PTLsim). MARSS has extensive enhancements for

improved simulation accuracy and it includes detailed models for Coherent

Cache and On-Chip Interconnections with implementation of the MESI, MOESI

Protocols. MARSS is emulator that run an ISO image contain simulation engine

(PTLsim) and the required benchmark needed to handle the tests on ash shown in Figure

5.1.

Figure 5.1 MARSSx86 architecture

PTLsim

http://www.ptlsim.org/

37

5.2 DRAMSim2

DRAM simulator is a cycle accurate memory system simulator that includes DDR2/3

memory system model. Both full system and trace-based simulations can be used.

DRAMSim2 uses MARSS as front-end to generate traffic to DRAM model. Figure 5.2

describes the DRAM architecture.

Figure 5.2 DRAMSim2 architecture

5.3 CHstone

The CHStone benchmark suite has been developed for C-based high-level synthesis

(HLS). CHStone consists of 12 programs which are selected from various application

domains such as arithmetic, media processing, security and microprocessor. The

CHStone benchmark programs are written in the standard C language. Table 5.1

illustrates the benchmark suite programs.

38

Table 5.1 Chstone Suite applications

Program Design Description

DFADD Double-precision floating-point addition

DFMUL Double-precision floating-point multiplication

DFDIV Double-precision floating-point division

DFSIN Sine function for double-precision floating-point numbers

MIPS Simplified MIPS processor

ADPCM Adaptive differential pulse code modulation decoder and encoder

GSM Linear predictive coding analysis of global system for mobile

communications

JPEG JPEG image decompression

MOTION Motion vector decoding of the MPEG-2

AES Advanced encryption standard

BLOWFISH Data encryption standard

SHA Secure hash algorithm

39

Chapter 6. MCES Evaluation

In this section, we compare our approach with WCAD [8]. Both AMC & WCAD use

fair round robin arbitration without prioritizing cores and this leads to neglecting memory

intensive applications. Also PREDATOR [6] and BWPS in [7] use prioritized cores

without request ranking accompanied by interleaved banks and CP. We believe that

putting these approaches together improve the overall performance especially when

taking into account different application priorities. It is also worth mentioning that

applying private bank, eliminates the inter-task interference between cores and applying

OP policy utilizes the DRAM performance.

6.1 Experimental Setup

We run our simulations using MARSS core emulator [18] linked with DRAMSim2

simulator [19], for MC design, by assigning for each core a different priority and quota.

Each core has a private 256KB instruction/data L1 cache and 2MB of unified L2 cache.

Hence, all cores run on 2.0 Ghz and all the upcoming experiments run on 4GB DDR3

DRAM memory. Any more details is mentioned in Table 6.1. We assign the priorities to

cores in an offline mode based on the number of requests hold by each core or by the

memory intensive workload. Hence, benchmarks are investigated first and executed

solely to gather profiles to identify their general behavior by applying various simulation

runs to achieve the best results by best matching the workloads and cores. We tried

different scenarios: normal and reversal scenario. Normal scenario is that each core will

be assigned the suitable adequate workload. On the other side, reversal/swapped scenario

is switching the benchmark assignments to the cores. Hence, each high priority core will

run low benchmark and every low priority core will run the memory intensive

application. Highway scenario describes that all cores run the same memory intensive

benchmark application. Also during simulation run, priorities and quotas can be changed

based on the cores utilization however we didn’t do experiments for this. For now, we

assume that the intensive workload is assigned to cores in an ascending order, i.e. the 1st

core has the highest priority and quota and the last core, 4th core in our experiments, has

the lowest priority and consequently quota for 4 cores system and 8th core will be the

lowest priority for 8 core systems. We are using in our simulations wide range DDR3

DRAM (different models and sizes as in table 2.6) devices, as it is the most recent

technology used by modern CMPs, with 64-bit data BUS width, one data channel and one

command channel. We run multiple simulations on benchmark CHstone [20] to obtain

memory traces for performance measurement and analysis. All benchmark suites are

assigned to cores based on their size and how intensive they are to utilize the memory.

The intensity of benchmarks was calculated by 2 ways: 1- calculate the time used to run

the executable benchmark file. 2- Run each benchmark solely on a core and check the

number of requests generated.

40

6.2 Evaluation metrics

 Results regarding performance measurements are calculated using weighted speedup

however fairness measurements are obtained using harmonic speedup which is used as a

balance between performance and fairness where N is number of cores used [21]

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = ∑
𝑃𝑒𝑟𝑓.𝑀𝐶𝐸𝑆
𝑃𝑒𝑟𝑓.𝑊𝐶𝐴𝐷

 (8)

𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑁

∑
𝑃𝑒𝑟𝑓.𝑀𝐶𝐸𝑆
𝑃𝑒𝑟𝑓.𝑊𝐶𝐴𝐷

 (9)

In order to determine if our solution design (MCES) can be determined as performance

oriented or energy oriented or comprehensive performance and energy design, we used

another combined metric called EDP [22] which calculate inverse perf. /energy

 𝐸𝐷𝑃 =
1

∑
𝑝𝑒𝑟𝑓.
𝐸𝑛𝑒𝑟𝑔𝑦

 (10)

Table 6.1 4-CORE/8-Core system simulation parameters

Processor 2.0 Ghz, x86 processor, 128 entry re-order queue size, 36 entry issue queue size,48

entry load queue size and 32 entry store queue size

L1 cache write through ,256 KB, 8-way set associative,2 cycles latency, 64 bytes line size, 2 read

ports and 1 write port

L2 cache Write through, 2MB, 8-way set associative,5 cycles latency, 64 bytes line size, 2 read

ports and 2 write ports

MCES 128 entry re-order private buffer, 2 private buffers per core

DRAM

components

512MB , 1 GB ,2 GB , 4GB , 8 banks, 64 B row buffer per bank

41

6.3 Results

6.3.1 Sensitivity analysis

In this section, we will discuss some experiments to show our algorithm behavior

response with changing some parameters. First option we change is the core frequencies

we use. Figure 6.1 describes the average throughput for MCES data bus for different

running core frequencies for 4-core system. As the core frequency increases, the final

throughput for our memory controller increases. Hence, MCES can handle high core

frequencies. In Figure 6.2, we checked variable cache sizes. Results achieved that as

increasing the size by doubling, the average execution time enhanced by 1% , 17% , 4%

for 64K , 128K, 256K. As the cache size increases, the percentage of hit ratio increases

which lead to a decrease in the number of requests sent to the memory to retrieve the

data. These results show the scalability of our new proposed MCES against frequency

scaling and cache sizes of the future multicore systems.

Figure 6.1 MCES average throughput

0

2

4

6

8

10

12

14

16

18

MCES AV.

A
v
er

ag
e

th
ro

u
g
h
p

u
t

(G
B

/s
ec

)

1.0GHz 1.3Ghz 1.6Ghz 1.8Ghz 2Ghz

42

Figure 6.2 MCES average execution latency versus Cache size

 Figure 6.3 represents a comparison between global queue latency and total latency

measured in memory cycles (y-axis) compared to global queue size in number of requests

enqueued which represents the summation of all cores’ requests (x-axis). Total latency

represents end-to-end latency or in other words the latency for a request from the time it

reaches the core’s private buffer till it is returned back to the core. Global Queue (GQ)

latency describes the latency of request since it reached the GQ after dispatching from the

private buffer till it is issued by the MC. We tried different queue sizes to study resulted

latency. For GQ size = 4 requests, which is the lowest size as each core will have one

request quota, the latencies reach the maximum value because the amount of requests

arrived in the private buffer are much more than that issued and this proves that running

memory intensive applications using equal shares among the cores, degrades the

performance. Both latencies decrease as size increase till we reach the minimal optimum

point at GQ size = 6 requests. This recommends the uneven distribution of the quota per

core which is the main proposal of our research in this thesis. Moving beyond this point,

and increasing the size of the queue more than 6 requests, the latencies start to slightly

increase again but it didn’t reach the first point because as the core share increases, the

upcoming requests after the first request wait for some memory cycles before issuing.

0

2

4

6

8

10

12

14

MCES Avg.

A
v
er

ag
e

ex
ec

u
ti

o
n
 l

at
en

cy
 (

n
s)

32K 64K 128K 256K

43

Figure 6.3 Request total latency versus GQ latency

Figure 6.4 represents a comparison between our two evaluation metrics, performance

measured by arithmetic mean and fairness measured by harmonic mean (y-axis) versus

multiple values for MOT ,from zero till 200 memory cycles, (x-axis). We can infer from

the figure that at MOT from 40 to 50 memory cycles, we have the best tradeoff between

performance and fairness. Hence, we choose this value for our figures and results. For

MOT between 0 and 40, no significant variation is noticed for the performance level,

however the higher MOT in that range is the better the fairness. This is due to short

period of time given to the cores to issue their requests specially the lower priority ones.

After this point, performance deteriorate and fairness increases slightly because lower

priority cores will have time slots to issue their requests from global queue and more

chance to achieve more progress. Hence, at MOT from 40 to 50 memory cycles, we get

the benefit of the both metrics to achieve maximum performance without starving the

lower priority cores.

0

50

100

150

200

250

300

4 5 6 7 8 9 10

m
em

o
r
y

 c
y

cl
es

number of requests in GQ

GQ Latency Total Latency

44

Figure 6.4 MCES Performance versus fairness

Figure 6.5 and 6.6 represent percentage of performance (y-axis) versus different

versions of DDR3 DRAMs (x-axis). Both figures capture the effectiveness of MCES and

WCAD controllers regarding HRT and NHRT requests. The increased performance for

HRT tasks ranges from 19% for DRAM 512 MB to 23% for DRAM 4GB because as the

DRAM size increases, the row hit ratio increases. Hence, performance increases. Also

WCAD can’t distinguish between these types of tasks and treats them equally. Regarding

NHRT results, MCES performance increased by 14% for 512 MB to 3% for 4GB over

WCAD. This reduction in the performance enhancement for NHRT requests is caused by

re-ordering policy between HRT and NHRT in the private buffers as per the re-ordering

request ranking rule mentioned in the arbitration rules.

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180 200

N
o

rm
a

li
ze

d
 p

er
fo

rm
a

n
ce

 /
fa

ir
n

es
s

(n
s)

MOT

Performance Fairness

45

Figure 6.5 DDR3 MCES vs WCAD NHRT execution latency

Figure 6.6 DDR3 MCES vs WCAD HRT execution latency

Figure 6.7 discusses the trend of request processing for the both MCES and WCAD

algorithms versus time by calculating the number of requests served (y-axis) versus

cycles elapsed (x-axis). First the both algorithms serve huge number of requests but with

improvement compared to MCES by 70%. After that, the number of served requests

decreases till it reach the minimal point at 1500 cycles. The number of requests continues

to increase again and settles at 2500 cycles but with more requests served by MCES by

40 %.

7.50

8.00

8.50

9.00

9.50

10.00

512MB 1GB 2GB 4GB

A
v

er
a

g
e

ex
ec

u
a

ti
o

n
 l

a
te

n
cy

 (
n

s)

MCES Avg. WCAD Avg.

0

2

4

6

8

10

12

512MB 1GB 2GB 4GB

A
v

er
a

g
e

ex
ec

u
ti

o
n

 l
a

te
n

cy
(n

s)

MCES HRT Avg. WCAD HRT Avg.

46

Figure 6.7 MCES versus WCAD request processing trend

6. 3.2 Algorithm Comparative Analysis

6. 3.2.1 4 Core System

 In Figure 6.8 and 6.9, we compare our performance and energy consumption results to

simulation results obtained by WCAD algorithm [4] for 4 core system. The y-axis

represents the percentage of average execution latency in nano seconds and energy

consumed in joules on a per core basis and x-axis represents simulated cores with

assigned suites. Multiple suites are tested based on their size and ability to memory

access. In Figure 6.8, the results obtained are 33% and -23% for low priority cores (C2

and C3 respectively) because they have lower quotas nearly equal to WCAD cores. The

application running on C3 can issue its requests in a timely manner although it suffers

from being the last core its performance (due its low priority order). On the other side,

high priority cores (C0 and C1) achieve marginal performance improvements (68% and

23% respectively) using the new scheduling of MCES, so cores dispatch more requests,

and hence, performance increases. Figure 6.9 compares the average energy consumption

in joule per core performed by MCES and WCAD. MCES saves energy consumption by

18% and 23% for high priority cores (C0 and C1) and 10% and -17% for low cores (C2

and C3). C3 consumes the most energy because it remains idle most of the time waiting

for its slot to issue its requests. On average across all the four cores, MCES achieves

overall high throughput using weighted speedup reached 31% and mostly equal energy

consumption to WCAD for 4-core system with overall EDP 31%. On the other side,

WCAD scored harmonic speedup by 30%

0

50

100

150

200

250

300

350

400

450

500

500 1000 1500 2000 2500 3000

R
eq

u
es

t
n

u
m

b
er

MCES req WAD req

47

Figure 6.8 MCES versus WCAD Normal run performance

Figure 6.9 MCES versus WCAD Normal run energy consumption

Figures 6.10 and 6.11 discuss the same parameters (average latencies and energy

consumptions) for 4-core system. If we swapped the workloads i.e. the low priority cores

run the high memory intensive applications and the high priority cores run the low

memory applications. We find that the high priority cores (C0 and C1) achieve almost 0%

in performance improvement compared to WCAD results. This is due to that they don’t

exploit the advantage of the priority and quota. We still find the lowest priority core (C3)

suffocates due to high number of requests waiting for issuing with the lowest priority and

quota hence maximizing the latency. Overall performance across all cores MCES shows

performance degradation of about 10%. On the other hand in Figure 6.11, the power

0

5

10

15

20

25

C0 (ADPCM) C1 (AES) C2 (GSM) C3 (MIPS)

av
er

g
ae

 e
x
ec

u
ti

o
n
 l

at
en

cy
 (

n
s)

MCES Avg. WCAD Avg

0

5

10

15

20

25

30

35

C0 (ADPCM) C1 (AES) C2 (GSM) C3 (MIPS)

A
v
er

g
ae

 E
n
er

g
y
 c

o
su

m
p

ri
o

n
 (

jo
u
le

)

MCES WCAD

48

savings for high priority cores (C0 & C1) are almost 45% because they finish their

requests early and these results increased for C2 to reach 55% and finally the last core C3

by 88 % saving of energy consumption. Overall energy saving reaches 46%. For the

reverse execution scenario of running the benchmarks, although MCES is not achieving

performance enhancement (-10%), it can achieve very high overall energy saving of 46%

and 10% harmonic speedup with EDP equal to 40%

Figure 6.10 MCES versus WCAD Reverse run performance

Figure 6.11 MCES versus WCAD Reverse run energy consumption

0

10

20

30

40

50

60

70

80

C0 (MIPS) C1 (GSM) C2 (ADPCM) C3 (AES) Overall

A
v
er

g
ar

e
E

x
ec

u
ti

o
n
 l

at
en

cy
 (

n
s)

MCES Avg. WCAD Avg

0

100

200

300

400

500

600

700

800

900

C0 (MIPS) C1 (GSM) C2 (ADPCM) C3 (AES)

A
v
er

ag
e

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

jo
u
le

)

MCES Avg. WCAD Avg

49

Figure 6.12 and 6.13, discuss the high-way run results when all cores run the highest

memory intensive application ADPCM). In figure 6.12, results range from 68% for C0,

65 % for C1, 22% for C2 and degraded by 70 % for C3 resulting in overall weighted

speedup improvement of 13 % comparing MCES to WCAD. While in Figure 6.13,

energy saving ranges from 8% for C0, 12 % for C1, to 42% for C2 and C3 comparing

MCES to WCAD resulting in overall energy saving 18% and overall EDP 28%. On the

other side, WCAD scores harmonic speedup 13%

Figure 6.12 MCES versus WCAD High-way run performance

Figure 6.13 MCES versus WCAD High-way run energy consumption

0

5

10

15

20

25

C0 C1 C2 C3

A
v
er

ag
e

E
x
ec

u
ti

o
n
 L

at
en

cy
 (

n
s)

MCES Avg. WCAD Avg

0

5

10

15

20

25

30

35

40

45

C0 C1 C2 C3

A
v
er

g
ae

 E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

jo
u
le

)

MCES Avg. WCAD Avg

50

6. 3.2.2 8-Core System

In this section, we experiment our algorithm versus WCAD for 8-core system. We

assign the priorities and quotas in an ascending order (Normal Execution Scenario).

Hence, C0 is the highest priority and quota while C7 is the lowest priority and quota.

Figures 6.14 and 6.15 discuss the run under 8-core system with the normal1 execution

scenario (the workloads are assigned as per their memory intensity). Hence, the highest

memory intensive benchmark (ADPCM) is assigned to the most powerful core C0 with

assigned quota 9 requests per MOT and least workload (MPEG2) on C7 with quota 2

requests. In Figure 6.14, results achieved are 43% enhancement for the high priority cores

and 21% degradation for the lower priority cores with overall weighted speedup

enhancement of 16%. Figure 6.15 describes the energy consumption. Results ranged from

improvement of 20% for high priority core (C0) to 19% degradation for low priority core

(C3). This is because the more time the bank opens waiting for issuing, the background

energy consumption increases. Hence, the high priority cores usually use lower energy

consumptions as their powerful abilities to issue their requests and finish reading/writing

in memory while, the lower priority cores wait till the high priority cores to finish, which

forces the bank to wait for the memory controller to issue the required request. MCES

scored overall EDP 13% while WCAD achieves 14% harmonic speedup

Figure 6.14 MCES versus WCAD Normal run 8-core performance

1 For more information, check experimental setup section 6.1

0

2

4

6

8

10

12

14

16

18

20

C0 (ADPCM) C1 (GSM) C2 (MIPS) C3 (JPEG) C4(AES) C5(BF) C6(SHA) C7(MPEG2)

A
v
er

g
ae

 E
x
ec

u
ti

o
n
 t

im
es

 (
n
s)

MCES Avg. WCAD Avg

51

Figure 6.15 MCES versus WCAD Normal run 8-Core energy consumption

Figures 6.16 and 6.17 discuss the reverse order benchmark to core assignment run

(reversal scenario2). Hence, all the memory intensive applications will run on the low

priority cores and vice versa. In Figure 6.16, performance enhancements range from 49%

for high cores since they are able to finish their assigned application in time while low

priority cores have53% performance degradation causing 48% overall degradation. In

Figure 6.17, results ranges from 72% saving in energy for high cores and 15% for lower

cores because after high cores serve their applications, they let the lower cores able to

serve their part which lead to lower memory opening hence, lower energy consumption

Hence, the overall energy enhancement reached 54% , 48% harmonic speedup and EDP

reaches 13%

2 For more information, check experimental setup section 6.1

0

5

10

15

20

25

30

35

40

C0 (ADPCM) C1 (GSM) C2 (MIPS) C3 (JPEG) C4(AES) C5(BF) C6(SHA) C7(MPEG2)

A
v
er

ag
e

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

jo
u
le

)

MCES Avg. WCAD Avg

52

Figure 6.16 MCES versus WCAD Reverse run 8-Core performance

Figure 6.17 MCES versus WCAD Reverse run 8-Core energy consumption

Figure 6.18 and 6.19 describe the highway run for all cores. Hence, the memory

intensive applications (ADPCM, GSM, MIPS, AES, and JPEG) run on all cores in

parallel. In Figure 6.18, results ranges from 41% improvement for high cores and 69%

degradation for low priority cores resulting in 44% for overall degradation. In Figure

6.19, results range from 5% degradation for high cores and 14 % improvement for low

cores. Although the high performance degradation for some benchmarks, the energy-

delay product results show a completely different dimension of the MCES.

0

10

20

30

40

50

60

C0 (MPEG2) C1 (SHA) C2 (BF) C3 (AES) C4(JPEG) C5(MIPS) C6(GSM) C7(ADPCM)

A
v
er

g
ae

 e
x
ec

u
ti

o
n

 r
eq

u
es

t
ti

m
e

(n
s)

MCES Avg. WCAD Avg

0

5

10

15

20

25

30

35

40

45

50

C0 (MPEG2) C1 (SHA) C2 (BF) C3 (AES) C4(JPEG) C5(MIPS) C6(GSM) C7(ADPCM)

A
v
er

g
ar

e
en

er
g
y
 c

o
n
su

m
p

ti
o

n
 (

jo
u
le

)

MCES Avg. WCAD Avg

53

Figure 6.18 MCES versus WCAD High-way 8-Core performance

Figure 6.19 MCES versus WCAD High-way run 8-Core energy consumption

To summarize all the figures in one chart, we add all the metrics and compare their

percentage. WS4N stands for weighted speedup for 4 cores Normal run, HS4N is

Harmonic Speedup for 4 Cores Normal run and EDP4N is Energy to Delay product

combination for 4 cores Normal run as shown in Table 6.2. From the Figure 6.20, we can

get that MCES scores better WS and EDP results for normal run in four and eight cores,

while degraded HS because MCES concerns about the performance of highly memory

0

10

20

30

40

50

60

C0 C1 C2 C3 C4 C5 C6 C7

A
v
er

g
ae

 e
x
ec

u
ti

o
n
 r

eq
u
es

t
ti

m
e

(n
s)

MCES Avg. WCAD Avg

0

2

4

6

8

10

12

14

16

C0 C1 C2 C3 C4 C5 C6 C7

A
v

er
g

a
re

 e
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
jo

u
le

)

MCES Avg. WCAD Avg

54

intensive applications which impacted the fairness metric of lower cores. On the other

side, MCES scores better HS and EDP for reverse runs and degraded WS because MCES

switched the interest to serve the lower intensive application which reflected in higher

fairness and energy/performance combination with degraded overall performance. This

Figure describes the strengths and weakness of MCES algorithm.

Figure 6.20 MCES versus WCAD comparison metrics WS, HS, and EDP for all

workload scenarios

Table 6.2 Summary metrics abbreviations

 Parameter Description

WS4N Weighted Speedup for 4 core Normal run

HS4N Harmonic Speedup for 4 core Normal run

EDP4N Energy Delay Product for 4 core Normal run

WS4R Weighted Speedup for 4 core Reverse run

HS4R Harmonic Speedup for 4 core Reverse run

EDP4R Energy Delay Product for 4 core Reverse run

WS8N Weighted Speedup for 8 core Normal run

HS8N Harmonic Sppedup for 8 core Normal run

EDP8N Energy Delay Product for 8 core Normal run

-60% -40% -20% 0% 20% 40% 60%

WS4N

HS4N

EDP4N

WS4R

HS4R

EDP4R

WS8N

HS8N

EDP8N

WS8R

HS8R

EDP8R

MCESWCAD

55

Chapter 7. Conclusion & possible future work

7.1 Conclusion

This thesis proposed MCES, a new design for the memory controller that considers core

priority in request scheduling to fit real-multimedia applications alongside with request

ranking within cores to suit hard real-time applications. Variable core quota approach

introduced in MCES allows adaptation of the core needs of request service. Such

scheduling leads to improved timing and performance to the high priority cores while

providing fairness among different requests for lower priority cores. MCES uses the state

information of DRAM as shared memory resource in multi-core system to provide an

estimated latency for HRT and NHRT

 MCES utilizes Private Banks and Open Page policy to eliminate the inter-task

interference between cores and improves the DRAM performance by exploiting the row-

hit cases. We calculate the timing latencies for MCES requests under analysis including

open requests only, closed requests only and mixture of both to be able to estimate the

WCET for these tasks.

In order to test the performance of our design, we used two simulators. MARSS for

core and cache design. MARSS was able to run the workloads and transfer the core

requests to our memory controller algorithm implemented on DRAMSim2 simulator.

We compared our design, MCES, with the last released design in the literature. We

applied different workload scenarios. We defined normal, reverse, high-way scenarios.

We used metrics to check the ability of our algorithm to compete and we used weighted

speedup to measure performance, harmonic speedup to measure performance alongside

with fairness. Last metric used was EDP to test if MCES is energy oriented or

performance oriented or can work as tradeoff between energy and performance. MCES

achieved better performance results in normal scenario using weighted speedup reached

31%, 14% for 4-core and 8-core systems while degraded fairness and power-performance

results using harmonic speedup and EDP. On the other side, MCES scored better fairness

and power-performance in reverse and highway scenarios reached 10%, 48% for

harmonic speedup and 51%, 76% for EDP.

Hence, MCES can be used as performance oriented memory controller algorithm if used

in normal scenario, while fairness and power-performance oriented if used in reverse or

high-way scenarios.

7.2 Possible future work

Our future work will focus on

56

1- Studying the effect of cache interference on WCET analysis beside the effect of

using heterogeneous core model and what is the impact row hit ration overall

threads latency

2- Trying dynamic priority scheduling. Although applying this technique may lead

theoretically to timing anomalies for HRT requests and consequently overall

performance degradation, further study and investigation is needed.

3- Applying the same algorithm on higher level aspects as big data, data cloud

applications. This upgrade will need to determine if we can use the same design

or we can more than one memory controller to handle the tremendous amount of

data generated in such applications

4- Designing map algorithm to expect all the WCET scenarios before execution.

This action will undertake huge pre-computation but will deliver high results

output

5- As per the summary Figure 6.20, the EDP scores better results in all scenarios.

Hence, focusing on energy enhancement which is vital requirement for various

modern embedded systems

6- Finally, implementing the solution on circuit design to precisely measure the

performance, power consumption and area overhead of our design.

57

Chapter 8. Publications

· Ahmed S. S. Mohamed, Ali A. El-Moursy, “Real-Time Memory Controller for

Embedded Multi-core System”, In the Proceeding of the 17th International Conferences

on High Performance Computing and Communications (HPCC-2015), New York, USA

August 24 - 26, 2015.

· Ali A. El-Moursy, Ahmed S. S. Mohamed, Hossam A. H. Fahmy, “Quantum-

Based Memory Controller Design of Enhanced Scheduling for Embedded Multi-core

Processors”, submitted, Journal of Parallel and Distributed Computing.

58

References

[1] Kumar, Rakesh, et al. "Heterogeneous chip multiprocessors." Computer 11 (2005):

32-38.

[2] Wilhelm, Reinhard, et al. "The worst-case execution-time problem—overview

methods and survey of tools." ACM Transactions on Embedded Computing Systems

(TECS) 7.3 (2008): 36.

[3] Cuppu, V., Jacob, B., Davis, B. and Mudge, T., 2001. High-performance DRAMs in

workstation environments. Computers, IEEE Transactions on, 50(11), pp.1133-1153.
[4] JEDEC, “DDR3 SDRAM Standard JESD79-3F,” July 2012.

[5] Paolieri, Marco, et al. "An analyzable memory controller for hard real-time

CMPs." Embedded Systems Letters, IEEE 1.4 (2009): 86-90.

[6] Akesson, Benny, Kees Goossens, and Markus Ringhofer. "Predator: a predictable

SDRAM memory controller." Proceedings of the 5th IEEE/ACM international

conference on Hardware/software codesign and system synthesis. ACM, 2007.

[7] Shah, Hardik, Andreas Raabe, and Alois Knoll. "Bounding WCET of applications

using SDRAM with priority based budget scheduling in MPSoCs." Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2012. IEEE, 2012.

[8] Wu, Zheng Pei, Yogen Krish, and Rodolfo Pellizzoni. "Worst case analysis of DRAM

latency in multi-requestor systems." Real-Time Systems Symposium (RTSS), 2013

IEEE 34th. IEEE, 2013.

[9] Shah, Hardik, Andreas Raabe, and Alois Knoll. "Priority division: A high-speed

shared-memory bus arbitration with bounded latency." Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2011. IEEE, 2011.

[10] JEDEC. "DDR3 SDRAM standard (revision F)". July 2012. Retrieved 2015-07-05.

[11] JESD79-2E. JEDEC. April 2008. p. 78. Retrieved 2009-03-14.

[12] Shevgoor, Manjunath, et al. "Understanding the Role of the Power Delivery

Network in 3D-Stacked Memory Devices."

[13] Esmaeilzadeh, Hadi, et al. "Architecture support for disciplined approximate

programming." ACM SIGPLAN Notices. Vol. 47. No. 4. ACM, 2012.

[14] Heithecker, Sven, and Rolf Ernst. "Traffic shaping for an FPGA based SDRAM

controller with complex QoS requirements." Proceedings of the 42nd annual Design

Automation Conference. ACM, 2005.

[15] Abts, Dennis, et al. "Achieving predictable performance through better memory

controller placement in many-core CMPs." ACM SIGARCH Computer Architecture

News. Vol. 37. No. 3. ACM, 2009.

[16] Paolieri, Marco, et al. "Hardware support for WCET analysis of hard real-time

multicore systems." ACM SIGARCH Computer Architecture News. Vol. 37. No. 3.

ACM, 2009.

[17] Paolieri, Marco, et al. "IA^ 3: An Interference Aware Allocation Algorithm for

Multicore Hard Real-Time Systems." Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2011 17th IEEE. IEEE, 2011.

http://www.jedec.org/standards-documents/docs/jesd-79-3d
https://en.wikipedia.org/wiki/JEDEC

59

[18] Patel, Avadh, Furat Afram, and Kanad Ghose. "Marss-x86: A qemu-based micro-

architectural and systems simulator for x86 multicore processors." 1st International

Qemu Users’ Forum. 2011.

[19] Wang, David, et al. "DRAMsim: a memory system simulator." ACM SIGARCH

Computer Architecture News 33.4 (2005): 100-107.

[20] Hara, Yuko, et al. "Proposal and quantitative analysis of the CHStone benchmark

program suite for practical C-based high-level synthesis." Journal of Information

Processing 17 (2009): 242-254.

[21] Ge, Rong, et al. "Powerpack: Energy profiling and analysis of high-performance

systems and applications." Parallel and Distributed Systems, IEEE Transactions

on 21.5 (2010): 658-671.

[22] Kim, Yoongu, et al. "Thread cluster memory scheduling: Exploiting differences in

memory access behavior." Microarchitecture (MICRO), 2010 43rd Annual

IEEE/ACM International Symposium on. IEEE, 2010.

[23] Wilhelm, Reinhard, et al. "Memory hierarchies, pipelines, and buses for future

architectures in time-critical embedded systems." Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on 28.7 (2009): 966-978.

[24] Rixner, Scott, et al. Memory access scheduling. Vol. 28. No. 2. ACM, 2000.

[25] Smith, James E., and Andrew R. Pleszkun. Implementation of precise interrupts in

pipelined processors. Vol. 13. No. 3. ACM, 1985.

[26] Hennessy, John L., and David A. Patterson. Computer architecture: a quantitative

approach. Elsevier, 2011.

[27] 2007 [Online]. Available: www.merasa.org, MERASA EU-FP7Project:

[28] Al-Omari, R., Arun K. Somani, and G. Manimaran. "Efficient overloading

techniques for primary-backup scheduling in real-time systems." Journal of Parallel

and Distributed Computing 64.5 (2004): 629-648.

[29] Subramaniam, Samantika, Milos Prvulovic, and Gabriel H. Loh. "PEEP: Exploiting

predictability of memory dependences in SMT processors." High Performance

Computer Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on.

IEEE, 2008.

[30] Li, Xianfeng, Abhik Roychoudhury, and Tulika Mitra. "Modeling out-of-order

processors for WCET analysis." Real-Time Systems 34.3 (2006): 195-227.

[31] Kim, Dongki, et al. "A quantitative analysis of performance benefits of 3D die

stacking on mobile and embedded SoC." Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2011. IEEE, 2011.

[32] Cho, Su-Jin, et al. "Performance analysis of multi-bank DRAM with increased clock

frequency." Circuits and Systems (ISCAS), 2012 IEEE International Symposium on.

IEEE, 2012.

[33] Elhelw, Amr S., Ali El Moursy, and Hossam Fahmy. "Time-Based Least Memory

Intensive Scheduling." Embedded Multicore/Manycore SoCs (MCSoc), 2014 IEEE

8th International Symposium on. IEEE, 2014.

[34] El-Moursy, Ali A., Walid El-Reedy, and Hossam AH Fahmy. "Fair memory access

scheduling algorithms for multicore processors." International Journal of Parallel,

Emergent and Distributed Systems ahead-of-print (2014): 1-23.

60

[35] Bourgade, Roman, et al. "Accurate analysis of memory latencies for WCET

estimation." 16th International Conference on Real-Time and Network Systems

(RTNS 2008). 2008.

[36] Wilhelm, Reinhard, et al. "Memory hierarchies, pipelines, and buses for future

architectures in time-critical embedded systems." Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on 28.7 (2009): 966-978.

[37] Reineke, Jan, et al. "PRET DRAM controller: Bank privatization for predictability

and temporal isolation." Proceedings of the seventh IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis. ACM, 2011.

[38] Pellizzoni, Rodolfo, and Marco Caccamo. "Impact of peripheral-processor

interference on WCET analysis of real-time embedded systems."Computers, IEEE

Transactions on 59.3 (2010): 400-415.

[39] Muralidhara, Sai Prashanth, et al. "Reducing memory interference in multicore

systems via application-aware memory channel partitioning."Proceedings of the

44th Annual IEEE/ACM International Symposium on Microarchitecture. ACM,

2011.

[40] Kim, Yoongu, et al. "ATLAS: A scalable and high-performance scheduling

algorithm for multiple memory controllers." High Performance Computer

Architecture (HPCA), 2010 IEEE 16th International Symposium on. IEEE, 2010.

[41] El-Moursy, Ali, et al. "Compatible phase co-scheduling on a CMP of multi-threaded

processors." Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.

20th International. IEEE, 2006.

61

Appendix A

1 MARRS DRAMSim Integration Code

Figure A.1 MARSS DRAMSim2 integration

2 DRAMSim

The below function shows the developed code to add the core transaction to private

buffers and apply the swapping function that swaps the HRT request with NHRT requests

62

Figure A.2 MCES Re-ordering requests in transaction queue

63

3 Issuable Part

The below code is the issuable part in the Global queue.

Figure A.3 MCES Issuing requests

64

4 WCAD 4th Algorithm rule

The below code is the coded WCAD 4th rule to apply fairness to starved request

Figure A.4 WCAD Scheduling Code

Figure A.5 WCAD applied rules

 الملخص
 بهم العالي اءالأد بسبب تطلبا كثرا الحديثة المعالجات متعددة رقاقات تصبح الحاضر الوقت في

على .يالعال والأداء اقة اللازمه للتشغيلطال لانخفاض نظرا الحقيقي الوقت نظمةا في وخاصة
ة الزمن شغيل. فى انظمالجانب الأخر, يجب تحقيق اعلى كفاءة و عداله كافيه بين انظمة الت
تماد على معدل يتم الاع الحقيقي تقاس الجوده بالوقت التقديري لأسوأ حاله. فى الأنظمه الحديثه

و تعين لأولويةا تعطي التي الجديدة الذاكرة في تحكم نقترح البيانات فى الذاكره الحديثه. مزدوج
 المتعددة طالوسائ الحقيقي الوقت في التطبيقات دراسة يمكنحصص ثابته للنوى و بالتالى

 .الصعبة الحقيقي الوقت في والتطبيقات

 مهنــــــــــــــــــدس: أحمد شفيق شافعى محمد

 تاريخ الميلاد :

 الجنسيه: مصري

 2010/ 01/10تاريخ التسجيل:

2016/ / تــــاريخ المنــــح:

هندسةالألكترونيات و الأتصالات الكهربية :القســـــــــــــــــــــم

العلوم ماجيستير: الدرجــــــــــــــــــــة

أ.د. حسام علي حسن فهمي المشرفون:
أستاذ مساعد بقسم الحاسبات و الأنظمه د. علي علي علي المرسيأ.م.

كلية الهندسة , جامعة عين شمس عباس محمود أ.د. حازم : الممتحنـــــــون
محمد رياض الغنيميد. أ.
أ.د. حسام علي حسن فهمي

أستاذ مساعد بقسم الحاسبات و الأنظمه د. علي علي علي المرسيأ.م.
 عنـــــوان الرسالــة :

 دائرة التحكم في ذاكرة أنظمة الزمن الحقيقي متعددة النواة
الحقيقى , دائرة متعددة النواه , الأنظمة المدمجة, الزمن منظمة الذاكرة -الكلمات الدالة :

 ملخـــــص البحــــــث :

 انظمة في خاصةو بهم العالي الأداء بسبب تطلبا المعالجات الحديثة اكثر متعددة الحاضر تصبح رقاقات الوقت في
يق اعلى كفاءة الأخر, يجب تحقالعالي. على الجانب والأداء الطاقة اللازمه للتشغيل لانخفاض الحقيقي نظرا الوقت

وأ حاله. فى الأنظمه و عداله كافيه بين انظمة التشغيل. فى انظمة الزمن الحقيقي تقاس الجوده بالوقت التقديري لأس
 تعطي التي ديدةالج الذاكرة في تحكم الحديثه يتم الاعتماد على معدل مزدوج البيانات فى الذاكره الحديثه. نقترح

 المتعددة ائطالوس الحقيقي الوقت في التطبيقات دراسة ن حصص ثابته للنوى و بالتالى يمكنالأولوية و تعي
الصعبة. الحقيقي الوقت في والتطبيقات

 دائرة التحكم في ذاكرة أنظمة الزمن الحقيقي متعددة النواة

 اعداد

 أحمد شفيق شافعى محمد

ةالقاهر ةجامع -رساله مقدمه الى كليه الهندسه
 كجزء من متطلبات الحصول على درجة ماجيستير العلوم

 فى
 هندسة الألكترونيات و الأتصالات الكهربيه

 يعتمد من لجنة الممتحنين:
 الاستاذ الدكتور: حسام على حسن فهمى المشرف الرئيسى

 الاستاذ الدكتور: علي علي علي المرسي عضو

الممتحن الداخلي محمد رياض الغنيمي الاستاذ الدكتور:

عباس الممتحن الخارجي محمود الاستاذ الدكتور: حازم

 كلية الهندسة , جامعة عين شمس

جامعة القاهرة-كلية الهندسه
جمهورية مصر العربية-الجيزة

 سنة
2016

 دائرة التحكم في ذاكرة أنظمة الزمن الحقيقي متعددة النواة

 اعداد

 أحمد شفيق شافعى محمد

ةالقاهر ةجامع -رساله مقدمه الى كليه الهندسه
 كجزء من متطلبات الحصول على درجة ماجيستير العلوم

 فى
الألكترونيات و الأتصالات الكهربيههندسة

 تحت اشراف

 أ.د. حسام على حسن فهمى

……………………………….

لكترونيات و الاتصالات لاأستاذ بقسم ا

 جامعة القاهرة–كليه الهندسة

 د. على على على المرسى

……………………………….

 أستاذ مساعد بقسم الحاسبات و الأنظمه

بالقاهرةمعهد بحوث الاكترونيات

جامعة القاهرة-كلية الهندسه
جمهورية مصر العربية-الجيزة

 سنة
2016

 دائرة التحكم في ذاكرة أنظمة الزمن الحقيقي متعددة النواة

 اعداد

 أحمد شفيق شافعى محمد

ةالقاهر ةجامع -رساله مقدمه الى كليه الهندسه

 كجزء من متطلبات الحصول على درجة ماجيستير العلوم
 فى

 هندسة الألكترونيات و الأتصالات الكهربيه

جامعة القاهرة-كلية الهندسه

جمهورية مصر العربية-الجيزة

 سنة

2016

	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations and Definitions
	Abstract
	Chapter 1. Introduction
	1.1 Problem
	1.2 Motivation
	1.3 Thesis Organization

	Chapter 2. Background
	2.1 Memory Controller Architecture and Function
	2.2 Real-time Memory Controller
	2.2.1 Fair based scheduling memory controller
	2.2.2 Priority based scheduling memory controller

	2.3 Memory request process
	2.4 DDR Evolution
	2.4.1 DRAM
	2.2.4.2 DDRx DRAM

	2.5 DDR Timing Constraints
	2.6 DDR Requests Mapping and Row policy
	2.6.1 Interleaved vs Private Banks
	2.6.2 Close Page vs Open Page Policies

	2.7 In-order vs Out Of Order Cores

	Chapter 3. Related Work
	3.1 Fair Scheduling Memory Controllers
	3.1.1 Analyzable memory controller (AMC)
	3.1.2 Worst Case Analysis of DRAM Latency (WCAD)

	3.2 Priority Scheduling Memory controllers
	3.2.1 A Predictable SDRAM Memory Controller (PREDATOR)
	3.2.2 Bounding WCET Using SDRAM with Priority Scheduling (BWPS)
	3.2.3 SDRAM controller Traffic with complex QOS requirements

	3.3 Non Real-time Memory controllers
	3.3.1 Predictable Memory Controller Performance in Many-Core CMPs

	3.4 WCET enhancement techniques
	3.4.1 Hardware WCET Analysis of Hard Real-Time Multicore Systems
	3.4.2 Interference Aware Allocation Algorithm (IA3) for multicore hard real-time systems

	3.4 Summary of Scheduling algorithms

	Chapter 4. Real-time Memory Controller for Embedded Systems (MCES)
	4.1 System Architecture
	4.2 Arbitration Rules
	4.3 Hardware / Area Overhead analysis
	4.4 WCET Analytical Model
	4.3.1 Open Request (OR)
	4.3.2 Closed Request (CR)
	4.3.3 Total WCET

	Chapter 5. Simulators
	5.1 MARSSx86
	5.2 DRAMSim2
	5.3 CHstone

	Chapter 6. MCES Evaluation
	6.1 Experimental Setup
	6.2 Evaluation metrics
	6.3 Results
	6.3.1 Sensitivity analysis

	6. 3.2 Algorithm Comparative Analysis
	6. 3.2.1 4 Core System
	6. 3.2.2 8-Core System

	Chapter 7. Conclusion & possible future work
	7.1 Conclusion
	7.2 Possible future work

	Chapter 8. Publications
	References
	Appendix A
	1 MARRS DRAMSim Integration Code
	2 DRAMSim
	3 Issuable Part
	4 WCAD 4th Algorithm rule

	الملخص

