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performance especially in real-time embedded systems. On the other side, bounded latencies has become 

vital to guarantee high performance and fairness for applications running on CMPs cores.  In modern 

embedded systems, CMPs has become more effective choice due to their low power and high 

performance. As application running on these processors use the shared resources such as: memory, the 

shared memory should provide high memory service rates to be able to serve multiple cores in an 

acceptable response time. In CMPs, real time applications are bound by the worst case estimated time to 

provide hard deadlines to real-time tasks (WCET). The modern systems use the Double Data Rate 

Dynamic RAM (DDR DRAM). Yet, constant WCET for the interfered threads cannot be guaranteed due to 

sequential serving between requests, so each request status depends on the previous and concurrent 

requests. Another reason is that DRAM access time has a high variation due to caching data in row buffers 

before reading or writing. 

We propose a new memory controller that prioritizes and assigns defined quotas for cores within 

unified epoch time accompanied with fair round robin scheduling within cores it selves (MCES). MCES 

works on variety of generations of double data rate DRAM (DDR DRAM). MCES can differentiate 

between different types of requests as hard real-time request (HRT) and non-hard real-time requests 

(NHRT). Hence, MCES can run multimedia real-time applications and hard real-time applications. MCES 

is able to achieve an overall performance reached 35% for 4 cores system  and an overall performance 

speedup of 16% for 8 cores system and the same level of power consumption compared to the last released 

memory controller design (WCAD).  
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Abstract 

 

Nowadays modern chip multi-processors (CMPs) become very attractive especially in 

real-time embedded systems because of their high performance and low per unit cost. On 

the other side, bounded latencies is vital to guarantee high performance and fairness for 

applications running on multicore processors.  In modern embedded systems, Chip 

Multicore Processors (CMPs) has become more effective choice due to their low power 

and high performance. As application running on these processors use the shared 

resources such as: memory, the shared memory should provide high memory service 

rates to be able to serve multiple cores in an acceptable response time. In CMPs, real time 

applications are bounded by the Worst Case Estimated Time to provide hard deadlines to 

real-time tasks (WCET). The modern systems use the Double Data Rate Dynamic RAM 

(DDR DRAM) because they are able to transfer the data on the rising and falling edges of 

clock cycles which will provide double data rates than the normal DRAMS. Hence, DDR 

DRAM is the most compatible with the high demanding CMP processors.  Yet, constant 

WCET for the interfered threads cannot be guaranteed due to sequential serving between 

requests, so each request status depends on the previous and concurrent requests. Another 

reason is that DRAM access time has a high variation due to caching data in row buffers 

before reading or writing. 

 

In this thesis, we propose a new memory controller that prioritizes and assigns defined 

quotas for cores within unified epoch time accompanied with request ranking per core 

alongside with fair round robin scheduling among cores (MCES). Our approach works on 

variety of generations of double data rate DRAM (DDR DRAM). MCES can differentiate 

between two types of requests as hard real-time request (HRT) and non-hard real-time 

requests (NHRT). Hence, MCES can run multimedia real-time applications and hard real-

time applications. MCES is able to achieve an overall performance speedup of 35% and 

for 4 cores system and an overall performance speedup of 16% for 8 cores system and the 

same level of power consumption compared to the last released memory controller design 

(WCAD).  
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Chapter 1. Introduction 

1.1 Problem  

 

 In modern embedded systems, Chip Multicore Processors (CMPs) [1] has become 

more effective choice due to their low power, high performance and low per-unit cost. 

CMPs can be either homogenous or heterogeneous.  Homogenous cores are identical 

cores. Heterogeneous is a set of cores which may differ in area, performance, power 

dissipated etc. As mentioned in [1], recent research in heterogeneous CMPs has identified 

significant advantages over homogeneous CMPs in terms of power and throughput and in 

addressing the effects of Amdahl’s law on the performance of parallel applications. 

 

As application running on these processors use the shared resources such as: caches, 

buses, buffers, queues, memory, etc... This shared memory should provide high memory 

service rates to be able to serve multiple cores in an acceptable response time. In CMPs, 

real time applications are bounded by the Worst Case Estimated Time in order to provide 

hard deadlines to real-time tasks (WCET). WCET is the maximum length of time the task 

could take to execute on a specific hardware platform. WCET is typically used in real-

time systems, where understanding the worst case timing behavior of software is 

important for reliability or correct functional behavior [2]. 

 

Modern systems use the last released technology in memory fabrications associated 

with the best memory controller algorithms to exploit the high transfer rates and lower 

power as Double Data Rate Dynamic RAM (DDR DRAM) [3] [4].DDR DRAM transfers 

data on both the rising and falling edge of clock cycles. By using both edges of the clock, 

the data signals operate with the same limiting frequency, thereby doubling the data 

transmission rate. Although the constant WCET for the interfered threads, a technique to 

divide the executed program to two or more simultaneously running tasks, cannot be 

guaranteed for the following reasons[8]: 

 

1- Each request delay, due to sequential serving, depends on the previous requests 

from the different cores (Inter-task Interference) or the same core (Intra-task 

interference).  

 

2- DRAM access time has high variation due to caching data in row buffers before    

reading or writing.  

 

1.2 Motivation 

 

To overcome these challenges, several work were proposed by [5] [6] [7] to provide 

tight and guaranteed upper bound memory latency timing for real time tasks when 

applied to DRAM devices as DDR2. The authors in [8] proved that working on higher 

speed DRAM devices as DDR3 and wider buses improves the performance of their 

https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Real-time_systems
https://en.wikipedia.org/wiki/Real-time_systems
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algorithm compared to previous ones in [5][6][7] because they did not exploit the 

advantage of caching mechanism in DDR.  

 

MCES, our approach, exploit the use of caching mechanism in DDR3 and parallelism 

in DRAM structure to reduce the interference between cores. We present:  

 

1) Priority based dynamic scheduling for real time applications for multimedia and 

hard real-time applications.  

2) Round robin fair scheduling within cores when the starvation flag is up. 

3) Re-ordering between hard real-time tasks (HRTs) non-hard real-time tasks 

(NHRTs).   

4) DRAM techniques as private banks and open page.    

 

1.3 Thesis Organization  

 

The thesis is organized as follows. Chapter 2 provides required background knowledge 

on how DRAM works. Chapter 3 compares our approach to related work in the field. 

Chapter 4 discusses memory controller algorithm and arbitrary rules. Chapter 5 discusses 

our used simulators and evaluation results are presented in chapter 6. Chapter 7 concludes 

the thesis and discusses the future work.  
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Chapter 2. Background 

  

Embedded system is computer system with dedicated function running usually with 

real-time processing constraints. Compared to general purpose computer systems, 

embedded systems should consume lower power with smaller fabricated size and low 

cost per unit. Embedded systems are mainly used in military, medical, automotive and 

avionics applications due to the nature of integrating these systems in other systems as 

hand-hold systems such as mobile phones, automotive systems such as cars, avionics 

systems such as plans and spaceships and human disable assistant machines such as 

wheel chairs. 

 The main components of computer system are multi-core processor and memory 

chips. A multi-core processor chip is a single component with two or more independent 

cores. These cores can handle concurrent process in the system such  as read and execute 

instructions as add, subtract, multiply, divide for the arithmetic operations ,move data , 

read and write for the memory operations and  branch , conditionally branch for the 

control flow operation by passing them to caches. Multi-core processors may have two 

cores (dual-core), four cores (quad-core), six cores (hexa-core), eight cores (octa-core), 

ten cores (deca-core) or more.  Multi-core processors can run multiple instructions in 

parallel to increase the overall speed and consequently whole machine performance. 

Parallel computing is a form of computation in which many instructions are carried out 

simultaneously and operating on the principle that large problems can often be divided 

into smaller ones, which are then executed at the same time. 

 

In case the data or instruction request was missed in cache, it is considered a cache-

miss and will be forwarded to memory array through Memory Controller (MC) located in 

memory device to serve the miss.  

 

2.1 Memory Controller Architecture and Function 

 

Memory Controller is designed to control the access to memory arrays among cores 

i.e. Memory controller is used to schedule the requests in a proficient manner to achieve 

the maximum benefits including performance and lowest request time.  Memory 

controller contains the algorithm required to read/write data from/to DRAM memory and 

refresh the DRAM. If the data in the DRAM was not refreshed in constant times, these 

data will be lost as the charged capacitors leak their charge. Beside the memory 

controller, memory chip contains the memory array.   Memory arrays are organized into 

ranks and only one rank can be accessed at a time [8] as shown in Figure 2.1. Each rank 

is divided into multiple banks which can be accessed in parallel, unless no collisions 

occurs on either command or data buses. Each bank consists of a row-buffer and an array 

of storage cells divided into rows and columns.  

 

https://en.wikipedia.org/wiki/Computing
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2.2 Real-time Memory Controller  

 

Real-time Memory Controller is concerned with systems subjected to real-time 

constraints. These types of memory controllers must guarantee response for these systems 

within specific time or deadlines. These systems are classified into two types: 

1- Hard Real-time Systems: These systems must operate within fixed deadlines and 

considered failing if these deadlines are not met such as anti-lock brakes and 

aircraft control systems. 

2- Non Hard (Soft) Real-time Systems: These systems aim is to maximize the 

number of tasks to meet their deadlines. Soft real-time systems can miss some 

deadlines and cannot be considered failing but the overall performance will be 

degraded, connection and service maybe re-established and resumed. If too many 

tasks miss their deadlines as audio streaming, a violation of the Service Level 

Agreement (SLA) is encountered.  

Real-time Memory Controller provides predictable response to core requests i.e. 

these types of memory controller need to issue the request based on real-time constraint, 

guaranteed real-time response within specific time constraints, which does not mean the 

fastest response.  

There are many authors proposed algorithms and designs for memory controller. 

Some authors proposed real-time logic. Two main types are discussed in this chapter and 

will be discussed in more details later in chapter 3. 

 

2.2.1 Fair based scheduling memory controller 

  

This type of memory controllers focuses on fair scheduling between cores. Fair 

scheduling algorithm that gives each core equal/fair time slots to process its job and will 

not gain a new access until all the cores get their slots, and request ranking in core queues 

by re-reordering these requests based on the importance of request before issuing as per 

Figure 2.2.  They fit hard real-time applications more as they do not require pre-requisites 

such as applying fixed priorities or minimum bandwidth before running [5].On the other 

side one of the main disadvantages of these fair scheduling techniques is being trivial 

approach to handle multiple tasks requirements without any privilege for highly risked 

tasks which can lead to degraded performance [9].  Instead, the AMC technique that is 

based on Round Robin concept (as explained in full details in section 3.1.1) requires 

neither knowing the bandwidth requirements, nor assigning a fixed priority to each task 

allowing AMC being applied to control based applications where the bandwidth 

requirements are not known. AMC is better suited for hard real-time applications, while 

CCSP arbitration is intended for streaming or multimedia real-time applications. [8] 
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2.2.2 Priority based scheduling memory controller 

 

In this type[6][7], memory controllers run based on ranked cores through assigning 

priority among cores, and fair request queuing i.e. they treat all the requests form the 

same core on FCFS basis and rank requests dispatched from different cores. They are 

obviously used in memory intensive applications as multimedia real-time applications to 

handle different types of multimedia traffic as video conferencing.  

  

2.3 Memory request process 

  

Cores can only access the content of the row buffer and not the data in the memory 

array. Each request access part of the row by selecting some columns because the row 

size is large in modern DRAMs (multiple KB). In order to access a memory location, the 

row that contains the desired data needs to be loaded into the row buffer of the 

corresponding bank by an Activate (ACT) command as shown in Figure 2.3. If the 

controller needs to load a different row, the row buffer must first return back the old row 

to the mentioned bank in the array by a Precharge (PRE) command. By then, the new 

row can be loaded.  

Each Load/Store command accesses data in Burst Length BL and the amount of data 

transferred will be (BL・WBUS), in which WBUS is the width of the data bus. If the BL is 8 

Bytes and WBUS is 64 bits, the amount of data transferred for one request is 64 Bytes.  

Since DDR memory transfers data on the rise and the fall edges of clock, the amount of 

time for one transfer is BL/2 memory clock cycles i.e. four cycles, tBUS, for a BL of eight.  
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Figure 2.1 DDR DRAM Structure 

 

Core 1

Core N

Memory 
Controller

Core Queue

 2nd Req 
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Figure 2.2 re-ordering requests in Memory Controller 

 



7 
 
 

 

Figure 2.3 Row Buffer Loading 

 

 

2.4 DDR Evolution 

 

2.4.1 DRAM 

 

The first version of these DRAM has an asynchronous interface with the system bus. 

This means that they will respond as quickly as possible to the control inputs.  After that, 

the synchronous version on DRAM was invented and synchronized with the system bus. 

Both types are single data rate which means that they can accept one command and 

transfer one word of data per clock cycle. The Data buses ranges from 4 bits to 16 bits. 

All the commands occur on the rising edge of the clock cycle. Table 2.1 represents the 

control signals and the function of each signal. First of all, the memory needs the clock 

signal (CKE) enabled to perform any memory operation. In order to select a specific 

column to write or read the data, choose the bank, row, column by selecting BAn, RAS, 

CAS command bits respectively.  
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Table 2.1 DRAM Control Signals 

 

Clock Signal  Function 

CKE  All memory operations are continuous after this signal is high 

CS  When this signal is high, this chip ignores all other inputs except the 

CKE 

RAS This is command bit used to determine the row selected 

CAS  This command bit used to select the targeted column 

WE  This bit distinguish the write command from the read commands 

BAn This bit/s determine the selected bank 

  

2.2.4.2 DDRx DRAM 

 

As the total request latency is limited and determined by DRAM access latency, so 

there was a need to increase bandwidth and decrease overall latency. Hence, a doubled 

data rate interface was developed. This interface can accept two reads and two writes on 

the rising and falling edges of the clock signal.  On the other side, there were other 

modifications to decrease the consumed power. Table 2.2 shows the DDR DRAM rates 

[8]. 

Table 2.2 DRAM Specs 

 

DRAM Standard 

Name 

Memory Clock 

(MHz) 

Cycle time (ns) Peak transfer 

rate (MB/s) 

DDR-200 100 10 1600 

DDR-266 133.3 7.5 2133.3 

DDR-333 166.67 6 2666.6 

DDR-400A 200 5 3200 

DDR-400B 200 5 3200 

DDR-400C 200 5 3200 
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DDR2, as DDR, allows transmitting data on the rising and falling edges of the clock 

cycle. In addition, DDR2 operates on doubled bus speeds. This means that the DDR2 can 

operate on double speed of DDR which allow transferring four reads and four writes per 

clock cycle.  DDR2 maximum size can reach 4 GB. Table 2.3 shows the DDR2 DRAM 

rates [10] 

Table 2.3 DDR2 Specs 

 

DRAM Standard 

Name 

Memory Clock 

(MHz) 

Cycle time (ns) Peak transfer 

rate (MB/s) 

DDR-400B 100 10 3200 

DDR-400C 100 10 3200 

DDR2-533B 133.3 7.5 4266.6 

DDR2-533C 133.3 7.5 4266.6 

DDR2-667C 166.6 6 5333.3 

DDR2-667D 166.6 6 5333.3 

DDR2-800C 200 5 6400 

DDR2-800D 200 5 6400 

DDR2-800E 200 5 6400 

DDR2-1066E 266.6 3.75 8533.3 

DDR2-1066F 266.6 3.75 8533.3 

 

DDR3 continues to double the amount of data transferred to be eight times the 

speed i.e. DDR3 are able to transfer eight words (reads/writes) per clock cycle.  DDR3 

can support up to 4 ranks with 64 bits each to reach 64 GB. But for hardware limitations, 

most CPUs can handle from 4 GB to 16 GB. DDR3 consumes 30% fewer energy than 

DDR2 because of decreasing the supply voltage. Table 2.4 shows the DDR2 DRAM rates 

[11] 
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Table 2.4 DDR3 Specs 

 

DRAM 

Standard Name 

Memory Clock 

(MHz) 

Cycle time (ns) Peak transfer 

rate (MB/s) 

DDR3-800D 100 10 6400 

DDR3-800E 100 10 6400 

DDR3-1066E 133.3 7.5 8533.3 

DDR3-1066F 133.3 7.5 8533.3 

DDR3-1066G 133.3 6 10666.6 

DDR3-1333F 166.6 6 10666.6 

DDR3-1333G 166.6 6 10666.6 

DDR3-1333H 166.6 6 10666.6 

DDR3-1333J 166.6 6 10666.6 

DDR3-1600G 200 5 12800 

DDR3-1600H 200 5 12800 

DDR3-1600J 200 5 12800 

DDR3-1600K 200 5 12800 

DDR3-1866J 233.3 4.28 14933.3 

DDR3-1866K 233.3 4.28 14933.3 

DDR3-1866L 233.3 4.28 14933.3 

DDR3-1866M 233.3 4.28 14933.3 

DDR3-2133K 266.6 3.75 17066.6 

DDR3-2133L 266.6 3.75 17066.6 

DDR3-2133M 266.6 3.75 17066.6 

DDR3-2133N 266.6 3.75 17066.6 
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DDR4 is the final DDR DRAM globally released. DDR4 operated on higher 

frequency ranges (800 - 1600) MHz and lower voltage reaches 1.2V  

2.5 DDR Timing Constraints 

 

DRAM device performs different operational tasks to handle requests. These tasks 

require timing constraints to be preserved through MC. All these timing constraints are 

defined by Joint Electron Device Engineering Council (JEDEC) standard [6]. This 

standard defines all DDR versions including DDR2, DDR3 and DDR4. Table 2.5 lists 

most of the used commands and their descriptions. Table 2.6 lists all values in memory 

cycles required for our analysis.   

Table 2.5 DDR Timing Constraints description [11] 

 

Timing 

Parameter 

Description 

TRCD This is RAS (Row Access Strobe) to CAS (Column Access Strobe) delay. 

Before issuing read/write request, the row must be first activated through 

activation command that is initiated by memory controller. Hence, the 

DDRAM moves the subjected row to the row buffer i.e. it is the clock cycles 

between the activation of a row read/write command to that row. 

TRL This is read latency. It is the time required by the DRAM memory to start 

the data reading 

TWL This is write latency. It is the time required by the DRAM memory to start 

the data writing 

TBUS Amount of time required to transfer the data in the data bus channel  

TRP This is RAS precharge after data transmission. If the memory controller 

receives another request targeting another row, the memory controller 

initiates a precharge command to return back the row from the row buffer. 

TRP is the time required to precharge a row. i.e. it is the number of clock 

cycles elapsed between a row precharge and activation command in the same 

memory rank 

TWR It is called write precharge delay or write recovery time. It represents the 

amount of time the memory spends after the completion of valid write 

operation and before the precharge command is issued.  

TRP This is read to precharge delay. It is the number of cycles for a memory 

read command to the precharge command for the same memory rank. 
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TRAS This is activate to precharge latency. It is the time spent from the 

activation of a row till the precharge command. 

TRC It is Row cycles. This is the cycles from the row activation passing by row 

precharging till the activation of another row. It is the summation of TRP and 

TRAS  

TRRD This is activate to activate delay. It is the time elapsed between two row 

activate in different banks in the same rank. 

TFAW This is the time window for four activation commands allowed 

simultaneously to the same rank. This is due to power limitation that feeds 

the charge pump on the chip [12].  

TRTW Read Then Write delay. This is the time required to switch from read 

command to write command in the same rank. 

TWTR Write Then Read Delay.  It represents the delay required between the last 

valid write operation and the next read command. 

 

TRFC This is the Refresh Cycle time. It represents the time measured from the 

refresh command (REF) to the first activate command. 

 

Table 2.6 DDR Timing constraints values 

 

Parameters DDR2 – 

SG25E 

DDR3_32M-

SG15 

DDR3-

SG25E 

DDR3_64M-

SG15 

𝒕𝑹𝑪𝑫 5 10 5 9 

𝒕𝑹𝑳 5 10 5 8 

𝒕𝑾𝑳 4 9 4 7 

𝒕𝑩𝑼𝑺 4 4 4 4 

𝒕𝑹𝑷 5 10 5 9 

𝒕𝑾𝑹 6 10 6 10 

𝒕𝑹𝑻𝑷 3 5 4 5 

𝒕𝑹𝑨𝑺 18 24 15 24 

𝒕𝑹𝑪 23 34 20 34 

𝒕𝑹𝑹𝑫 3 4 4 4 

𝒕𝑭𝑨𝑾 14 20 16 20 

𝒕𝑹𝑻𝑾 5 6 6 5 

𝒕𝑾𝑻𝑹 3 5 4 5 

𝒕𝑹𝑭𝑪 51 107 64 107 
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To illustrate these time constraints, Figures 2.4 and 2.5 show load/store request 

scenarios to different banks. Figure 2.4 shows timing constraints related to load request. 

1st request is targeting bank 1. Request 1 is a load and it consists of ACT and read 

commands. 2nd request is a store targeting bank 2 and it consists of ACT and write 

commands. Note that the write command of 2nd request cannot be issued immediately 

once the tRCD timing constraint of bank 2 has been satisfied. This is because there is 

another timing constraint, tRTW between read commands of 1st request and write command 

of 2nd request.  Hence, the write command can only be issued after timing constraints for 

this request are satisfied. Similar constraints are shown for a store request targeting bank 

1 and load request in bank 2 in Figure 2.5.  

 

We can note here: 

1) The latency for a close request is longer than an open request (which is described 

later in section 2.6.2). There are long timing constraints involved with PRE and 

ACT commands, which are not needed for open requests.  

 

2) Switching from load to store requests and vice-versa incurs a timing penalty. 

There is a constraint tRTW between issuing a read command and a successive write 

command. On the other side, the tWTR constraint applies between the end of the 

data transmission for a write request and any successive read request.  

 

 

3) Different requests can access different banks in parallel. There is no constraint 

such as tRTW and tWTR between two successive reads or two successive writes to 

different banks. Also, PRE and ACT commands to different banks can be issued 

in parallel as long as the tRRD and tFAW constraints are met. 
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Figure 2.4 Load request Timing Constraints 

 

Figure 2.5 Store request timing constraints 
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2.6 DDR Requests Mapping and Row policy 

 

2.6.1 Interleaved vs Private Banks 

 

In general, any memory controller has two ways to map data to the banks: Interleaved 

Banks and Private Banks [8]. Interleaved banks allow each core to access all banks in 

parallel. Meanwhile, the other cores can access all banks concurrently, which will lead to 

interference among the cores. The amount of data transferred in one request is BL.WBUS. 

NUM_BANKS. E.g. if BL is 8 bytes and WBUS is 64 bits, then the amount of data 

transferred is 256 bytes as shown in Figure 2.6.  The other request map, Private Banks 

map one bank or more to a core so that we can eliminate the interference across the cores 

as shown in Figure 2.7. For our approach, we will adopt the private bank methodology.  

 

 

Core 1

Core 2

Core 3

Core 4

Bank 1

Bank 2

Bank 3

Bank 4
 

 

Figure 2.6 Interleaved banks for 4 banks DDR DRAM 
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Core 1

Core 2

Core 3

Core 4

Bank 1

Bank 2

Bank 3

Bank 4
 

 

Figure 2.7 Private Banks for 4 banks DDR DRAM 

 

2.6.2 Close Page vs Open Page Policies 
 

Regarding the row policies, there are two row buffer policies: Open Page (OP) and 

Close Page (CP) policies [8]. For the OP Policy, the request consists of a read or a write 

command. These commands are carried out immediately, if there is no other request uses 

this row and the mentioned row is already cached in the row buffer, or the refresh period 

does not take place. Hence, total latency decreases. On contrary, if the above mentioned 

conditions are not satisfied, then the row buffer is called a row miss. By then, the row 

must first be written back to the array by a PRE command. After that, an ACT command 

loads the desired row into the row buffer and read/write commands can be issued to 

access the data.  

 

On the other side, the CP Policy will auto-precharge the row after the read/write 

command is issued. CP can be considered an advantage while pipelining the requests 

through interleaved banks because all the read and write commands will run in parallel 

and their interference can be reduced using this policy [5]. The drawback for CP, while 

using private banks, is that the total latency will be increased for all tasks issued by MC 

especially in case row hit is zero. Hence our approach, MCES, uses OP to improve the 

cumulative latency by exploiting the DRAM row hit cases.  

 



17 
 
 

2.7 In-order vs Out Of Order Cores 

MCES uses Out Of Order (OoO) [13] cores that are capable of dispatching multiple 

instructions to set of queues per cycle. OoO cores avoid the stall that occurs in the in-

order core when the instruction is not completely ready to be processed due to missing 

data. OoO processors fill these "slots" in time with other instructions that are ready, then 

re-order the results at the end to make it appear that the instructions were processed as 

normal as shown in Figure 2.8. However, MC will serve one request each memory cycle 

due to the shared resources. The other type of cores is in-order core where instructions 

are fetched, executed in generated order. If a request stalls, all requests queued in buffers 

will stall waiting for the mentioned request to finish as shown in Figure 2.9. It is worth 

mentioning here that the focus is not on modelling cores. Hence, we will not study here 

the utilization of cores or its contribution in calculating WCET. Hence, our focus is on 

the design of MC.   

 

Figure 2.8 OoO execution pipeline 
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Figure 2.9 In-order core pipeline 
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Chapter 3. Related Work 

 

In this chapter, we will discuss the related work. Similar memory controllers have 

been proposed.  

 

3.1 Fair Scheduling Memory Controllers 

 

This category as we mentioned before in chapter 2 fairly schedules the cores’ requests. 

Hence, all requests arrived from different cores and reached the final queue will be 

scheduled on fairly basis either using Round Robin or First Come First Serve (FCFS). On 

the other hand, memory controllers apply ranking on requests during queuing in buffers 

before scheduling.  

3.1.1 Analyzable memory controller (AMC) 

 

AMC [5] is memory controller that provides an upper-bound latency for hard and non-

hard memory requests in a multi-core system using bank interleaving with closed page 

policy alongside with fair round-robin arbiter.  AMC prioritize HRT requests over NHRT 

requests. If all the requests are HRT, so the AMC schedules them based on fair RR to 

prevent any timing anomalies from happening to the tasks. AMC uses one queue per core 

to isolate inter-task interference from intra-task interference. Hence, the maximum 

latency a request can suffer from will depend on the number of cores.   AMC fits better 

than the priority scheduling memory controllers for hard real-time applications as their 

solution can run on any hard real-time applications without defining parameters as 

priorities, minimum bandwidth. On the other hand, AMC RR policy with one request per 

core will not satisfy the different core requirements. Hence, if more than one request is 

assigned per core, WCET will be degraded severely. Also, assuming fixed Read/Write or 

Write/Read maximum latency cannot produce precise latencies as we will show later in 

4.3.3.   

 

 

3.1.2 Worst Case Analysis of DRAM Latency (WCAD) 

 

WCAD [8] controller extends the AMC proposal, yet via using Private Banks and 

OP policy. WCAD uses a queue for each core and enqueues only one request per core to a 

global FIFO queue. The arbitration rule of the global queue is based on issuing one 

request only from each core based on round robin (RR) arbitration and not to enqueue 

any other request until the data of the previous request is transmitted. Yet the drawbacks 

here in this proposal:  



20 
 
 

 

1- WCAD, as AMC, assumes equal importance of applications as it does not 

consider prioritization in scheduling regardless how much the applications are 

memory intensive. This means that using memory intensive applications will 

lead to degradation in performance.  

2- WCAD cannot distinguish the severity of tasks as hard and non-hard real-time 

tasks. 

3- WCAD focuses on in-order cores although their algorithm performance degrades 

while using OoO cores as we will show later in chapter 6. 

 

3.2 Priority Scheduling Memory controllers 

 

Priority Memory controllers use offline fixed assigned priorities to cores based on 

offline analysis for the application running on these cores and bandwidths needed to 

accomplish their tasks.  Yet, they do not apply request ranking in buffers before 

scheduling these tasks. 

3.2.1 A Predictable SDRAM Memory Controller (PREDATOR) 

 

Predator [6] ,as AMC, uses bank interleaving with closed page policy yet  assigns fixed 

priority to requests to guarantee minimum bandwidth and consequently maximum 

bounded latency to the cores requests. This is accomplished by defining two steps 

approach to predict DDR2 access. First, Predator defines statically read and write 

requests to SDRAM memory and this will determine the lower net bandwidth required. 

Then, scheduling using Credit Controlled Static Priority (CCSP) which is composed of 

rate regulator and a scheduler. The rate regulator is responsible of assigning bandwidth to 

each core. After that the static priority scheduler is responsible to provide maximum 

latency bound for the requests.  This algorithm becomes more effective for multimedia 

real-time applications. On the other hand, PREDATOR cannot be used on hard real time 

applications as WCET bounded calculations cannot be estimated if cores received hard 

real-time requests.  

 

3.2.2 Bounding WCET Using SDRAM with Priority Scheduling (BWPS)  

 

This algorithm BWPS [7] extends Predator to work with priority-based scheduling 

(PBS) arbiter to provide WCET, Observed Execution Time (OET) and the Best Case 

Execution Time (BCET) analysis of the application running on the proposed architecture. 

The use of OET and BCET to evaluate the precision of the algorithm results and the 

variability of the PBS arbitration scheme. PBS assigns priority and budget to cores at 

design time. Cores with high priority has the low budget and cores with low priority gains 

high budget. Pros and cons are to be discussed in section 3.4.  
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3.2.3 SDRAM controller Traffic with complex QOS requirements 

 

Authors in [14], proposed interleaved bank memory controller alongside with round 

robin arbiter to provide maximum latency for cores. Authors suggested 2-stage 

scheduling algorithm and static priorities assigned to achieve the required QOS which 

includes guaranteed minimum throughput at guaranteed maximum latency and smallest 

possible latency. Hence, cores are assigned high or standard priorities. After each high 

priority request is issued, it is followed by standard priority request to prevent starvation. 

This algorithm did not exploit the core priorities well and shared the same issues of 

interleaved banks and round robin as mentioned above. 

 

3.3 Non Real-time Memory controllers 

 

The below subsection discusses other algorithms for different designs.  

 

3.3.1 Predictable Memory Controller Performance in Many-Core CMPs 

 

Author as in [15], applied multiple memory controller designs to multi-core system 

using a mesh or torus topologies for interconnection to show how memory controller 

location and routing algorithm used  can improve the latency and bandwidth 

characteristics  regardless of the processor used. It is worth to mention that this type can 

fit Big Data or cloud computing solutions because of their huge and powerful amount of 

data but not suitable for embedded systems which need to achieve compromising levels 

of high performance and low power consumption. 

 

3.4 WCET enhancement techniques  

 

The next part will discuss other ways to analyze other designs to enhance WCET 

estimation and calculation. 

3.4.1 Hardware WCET Analysis of Hard Real-Time Multicore Systems 

 

Authors in [16] discusses hardware shared resources as bus and cache interference. 

The authors propose bus arbiter to control bus interference when computing WCET and 

be able to compute the maximum bounded latency a bus thread can suffer from. The 

proposal splits the bus arbiter into 2 bus components. Inter-Core Bus Arbiter (XCBA) 

that schedules requests from different cores, and multi Intra-Core Bus Arbiters (ICBAs) 

that schedules requests from the same core. The NHRT requests are send to the 

corresponding core’s ICBA to select the next memory request to be sent to XCBA based 

on FRFS. This FRFS will issue all requests out of order that targets different banks to 
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increase the overall performance.  Regarding HRT requests, the arbiter issue the requests 

based on FIFO to provide any timing anomalies. In mixed overload, if HRT request needs 

the bus and it is being used by NHRT request, so the arbiter will serve the HRT request 

immediately to increase any extra delay can be added to its execution time. The 

disadvantage is that the arbiter will retry to issue the NHRT request next which consumes 

more energy. 

 

3.4.2 Interference Aware Allocation Algorithm (IA3) for multicore hard real-time   

systems 

 

 The authors in [17] proposes IA3 which is a new offline algorithm that uses set of 

WCET estimations mapped to all execution environment for  the task to run. Execution 

environment is the resources the task will be assigned to as the cores, scheduling 

algorithm, and bus arbitration policy and cache partitions.   Their algorithm introduces 2 

concepts: WCET matrix and WCET sensitivity.  The WCET matrix is n-dimensional 

vector for HRT task where each dimension determines the  different execution 

environments parameters that may affect the WCET for this HRT task i.e. WCET matrix 

for a specific task is the collection of WCET estimations for this task running on a 

processor under different execution environments.   

WCET sensitivity allows the IA3 to be aware of the impact of changing the 

execution environment on the WCET estimation. These two concepts will allow the IA3 

algorithm to define the allocated resources (number of cores, cache partitions assigned to 

each core, etc.. ) assigned to each task to run efficiently as being used in avionics and 

space systems. WCET sensitivity allows tasks with higher demand to be allocated first.   

IA3   algorithm can run in 2 different modes:  

1- Common mode where the same exaction environment will be applied on all 

cores.  

2- WCET Sensitivity mode, where different execution environments will be 

applied on different cores.  

The main drawbacks of this algorithm is that IA3 is off-line algorithm and needs high 

computation to fulfill the matrices before running. It can be used in high risk applications 

as military or space systems. 

3.4 Summary of Scheduling algorithms 

 To summarize all the above discussed memory controller algorithms 

 

1-  Algorithms in [5], [6], [7], and [14] used interleaved banks so there can be 

interference between cores with CP policy which affects total latency by allowing 

auto (ACT+PRE) commands and pretending the row hit equals zero. 
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2- As mentioned in [8], these algorithms exploit the caching mechanism in DRAM 

devices. As modern DRAM devices become faster, performance of these MCs 

degrade severely because the access time between cached devices and non-cached 

in DRAM is growing. 

3- WCAD [8], uses fair FIFO scheduling and in-order cores so by applying intensive 

applications on multiple cores, i.e. core receives more than one request per cycle, 

and the performance degrades severely.    

4- Other memory controllers [15] is used for cloud computing applications and cannot 

be implemented here because it depends on very high numbers of cores and routing 

techniques cannot be implemented in embedded designs  

5- WCET enhancement techniques are using other layers as hardware layer by 

implementing bus arbiters and matrix algorithm to define the best paths to consume 

the better WCET. These techniques can help in future implementations.  

 

After discussing all the above memory controllers, it is observed that each scheduling 

type is targeting one category of applications and we believe that by taking the 

advantages of those techniques in one memory controller can achieve better performance 

results and be applied on different application categories. 

 

We are interested in memory controller design for embedded multi-core systems to 

optimize shared resources allocation. Hence, MCES, our approach, is memory controller 

that aims to apply request ranking within the same core and core prioritization among 

cores by exploiting the two methodologies, namely Private Banks and OP policy. MCES 

should eliminate row interferences from different cores, since each core can only access 

its own memory banks and its allocated private buffer. MCES compares the achieved 

results with WCAD as they are the most recent work and the results achieved by their 

algorithm are better than any previous algorithm. 
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Chapter 4. Real-time Memory Controller for Embedded 

Systems (MCES) 

 

4.1 System Architecture 

 

In this chapter, we will discuss our algorithm for memory controller design.  The 

architecture of our system is shown in Figure 4.1.  We applied our algorithm using OoO 

cores. Each core has separate L1 instruction and data caches, followed by L2 unified 

cache.   MCES is priority-based memory controller as it takes into account the effect of 

multimedia real-time applications and request ranking required for hard real-time 

applications.  MCES Enables fair scheduling using round robin (RR) arbiter within cores 

when the starvation flag is up. Each core stores the memory requests (read/write) in 

private buffers based on FCFS method, unless otherwise there are different types of 

requests arrive in the private buffer in an unordered way i.e. HRT arrived the private 

buffer after NHRT request. These memory requests are then enqueued to the global 

queue based on the quota/budget assigned to each core. Our queuing and reordering 

flowchart to re-order the requests in private buffers is shown in Figure 4.2 and scheduling 

algorithm for requests after reaching Global Queue is found in Figure 4.3. From the 

figure, the MCES checks the priority of the requests and their timing constraints.  If the 

request meets these criteria, the request will be issued to memory. Otherwise, starvation 

flag decrements and check the lower priority requests to serve if the starvation flag 

reaches zero and still has remaining quota to issue. Each memory cycle MCES checks the 

Memory Time Out (MOT) parameter to refresh quotas of all cores if the MOT becomes 

zero.  

 
 

Figure 4.1 MCES architecture 



25 
 
 

 

Figure 4.2 Queuing and Re-ordering 

 

Figure 4.3 Scheduling Flow chart 
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Figure 4.4 MCES Algorithm flow chart 
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4.2 Arbitration Rules 

 

Memory requests are enqueued to global queue and scheduled based on the below 

arbitration rules as follow:  

 

1- Each core will have priority given to the core through OS, hence a corresponding 

quota for the number of requests allowed to be queued in the global queue. The 

core with high priority will gain high quota and so on.  

 

2- Each core will be able to dispatch only requests within the assigned quota. Hence, 

the size of the global queue will be limited to the summation of the quotas of all 

cores.  

 

3- The core consumes its quota after issuing its requests from the global queue to 

memory. The core will not be able to issue any other request until the epoch 

period is passed or the global queue issues all the requests. This epoch is called 

Memory Request Timeout (MOT). 

 

4- A) The requests issued per cores from the global queue to memory in a RR 

fashion.  

B) At the start of every memory cycle, the queue is scanned and request is issued 

from the highest priority core hence consequently the lower priority core, unless 

otherwise the starvation flag is up. This flag switches between cores prevent 

request of low priority cores from starvation.  

 

5- Request ranking is also considered in ordering the requests within each core. The 

core prioritizes HRT over NHRT through re-ordering the requests in the private 

buffer. Hence, each core has two private buffers based on the type of requests 

(read/write) to apply this re-ordering. Also the type of the request is watched for 

each core dispatches the read requests first followed by the write requests.  

 

6- To eliminate the inter-task interference, every core has its private bank and its 

own private buffer. 

 

7- Another level of prioritization considers the similar type of requests (read/write) 

regardless of the core priority. This rule forces the controller to issue the similar 

requests even it was from lower priority cores before the high priority core 

request/s.  

 

To clarify Rule-5, we serve every read/write request based on its time constraint. 

Also we focus to serve the hard real-time tasks (HRTs) to improve the overall WCET. 

Hence, we apply the re-order technique in the private buffers, so that the HRT request 

will be issued first.  If all the requests reached the private buffer are HRTs, then they will 

be served on FCFS basis .In Figure 4.5, the state of the private buffer is at the initial time 
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t. Let us consider the following scenario. One hard real-time read task (R_H) arrived the 

private buffer after two non-hard real-time read tasks (R_N). Without re-ordering, we can 

figure out that the HRT request will be served at t` which increases the latency of this 

request although after re-ordering in Figure 4.6, it will be served first at t.  

 

 

Figure 4.5 FCFS Queuing 

 

Figure 4.7 MCES Queuing 

 

Rule-7 determines our algorithm technique that improves the overall performance. 

We derive a new way to prioritize requests based on similar request types, regardless of 

the priorities of the cores. Let us consider the following scenario for four cores (C0, C1, 

C2, and C3) in Figure 4.7 for FCFS scheduling: 
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1-  The global queue received 4 simultaneous requests at time t, read from C0, write 

request from C1 and read requests from C2 & C3.  

 

2- The queue will issue the read request from C0 which has the highest priority (R0). 

After that the write request (W1) will be issued at t` after applying the time 

constraints Read Then Write (tRTW).  

 

3- Although C2 & C3 read requests (R2 & R3) are waiting the previous C0 and C1 

requests to be served, but they will be issued at the end since they are the lower 

priority cores and will be served after time delay Write Then Read (tWTR).  

 

4- In MCES, Figure 4.8, the arbiter will switch to C2 & C3 after serving the read 

request from C0 (R0). Hence, R2 & R3 will be served after R0 and finally W1 will 

be served next at t`.  

 

5- As per Figure 4.8, the re-ordered requests leads to a compromise between cores 

by shrinking the time required to issue all 4 requests. Hence, the overall 

performance increases. 

 

 

Figure 4.7 FCFS Scheduling 
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Figure 4.8 MCES Scheduling 

 

4.3 Hardware / Area Overhead analysis 

 

In this section, we will discuss the hardware needed to implement the MCES algorithm. 

As shared memory resources is limited between higher level memories as caches and 

lower level memory which is the DRAM.  Hence, MCES needs a register to hold the bits 

of the Core ID which help to detect the Core’s request sent from cache. This register is 

called Core Identifier Register (CIR) and it will be of max four bits in case of  16 cores , 

three bits in case of  eight cores, two bits in case of four cores and one bit only in case of 

two cores. After that the data transactions (read/write) that should be transferred to 

private buffers as shown in Figure 4.1. Hence, the private buffers size per core is the 

summation of number of requests that can be held by the private buffers multiplied by the 

size of a single request  𝑁𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑏𝑢𝑓𝑓𝑒𝑟𝑠 ∗ ∑ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖=𝑁
𝑖=0 ∗  𝑙𝑜𝑔2 𝑟𝑒𝑞𝑢𝑒𝑠𝑡  .  In order to 

apply the re-ordering rule in private buffers, temporary register is needed to hold the 

replaced transaction data till the replacement is completed called Hard to Non-hard 

Register (HNR). HNR register size is one transaction request. Finally the global queue 

GQ size which will hold all the data ready to be issue. Hence, GQ size will depend on 

summation of the total quotas assigned to cores   ∑  𝑄𝑢𝑜𝑡𝑎𝑐𝑜𝑟𝑒
𝑐𝑜𝑟𝑒=𝑁
𝑐𝑜𝑟𝑒=0 . Table 4.1 shows 

the total size in bytes required by MCES to be implemented for 8 cores. Each core has 2 

private buffers for total 16 buffers. Each buffer holds 128 requests and each request is 64 

bytes because data bus channel is 64 bits and we use BL equal to eight so bytes Per 

Transaction = (JEDEC_DATA_BUS_BITS*BL)/8   . Hence, total private buffer size is 

2048000 bytes. To determine GQ size, we need to collect the core quota for each core. 

Let’s assume {C0,C1,C2,C3,C4,C5,C6,C7} quotas are  {9,8,7,6,5,4,3,2},hence GQ size is 
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2816 bytes with total size equal to 132 KB. On the other side, WCAD MC total size for 

eight cores is 129 KB 

 

Table 4.1 MCES Estimated hardware size 

Core 

Number 

Total 

private 

buffer 

number 

Transaction 

size 

Private 

buffer size 

(KB) 

HNR 

Register 

size  

(Bytes) 

CIR 

Size 

(Bytes) 

Global Queue 

Size (KB) 

Total 

size 

(KB) 

WCAD 

MC 

Size 

(KB) 

4 8 64 64 64 1 1 66 65 

8 16 64 128 64 1 3 132 129 

16 32 64 256 64 1 9 266 257 

 

4.4 WCET Analytical Model 

 

In this section, we are going to study the WCET for requests under analysis. For 

simplicity, let’s assume each core has one request in its private buffer and this request is 

forwarded to global queue. We consider all the requests arrived at the same time t0 as a 

worst case conflict among the requests to show the longest waiting time in the queue. 

Let’s assume the lowest priority core reached global queue below t0 by delta. This request 

will interfere with other requests with higher priorities, so we calculate the WCET for this 

request. We are running our WCET calculation on four core numbers (CN=4) based on the 

following specifications. Priority of cores will be assigned decreasingly (C0C3) = 

(highest prioritylowest priority). Hence, based on the core priority distribution, quotas 

will be assigned decreasingly (C0C3) = (highest quotalowest quota). This calculation 

will deal with the two different kinds of commands. First we will check the open request 

(OR). OR will deal with requests that targets open rows which are already loaded in the 

row buffer. After that, we will check closed request (CR). CR command ensures all 

requests from cores are targeting different rows, hence continuous ACT and PRE timing 

constraints will be added. 

 

4.3.1 Open Request (OR) 

 

For open requests, all rows are already open, and loaded to banks’ row buffer. To 

calculate Open Request latency (TOR), we will depend on the previously and concurrently 

issued requests of the cores under analysis. If the previous and current requests were of 

the same type (read/write), then TOR will be zero because no timing constraints will be 

applied here. If the previous and current requests were interleaved, i.e. read request 

followed by write requests or vice versa, then the latencies should be considered due to 
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the command line timing constraints for the memory DRAM IO gates which consumes 

time to switch from read command to write (tRTW) and from write command to read 

(tWTR). We assume that all requests reached global queue at the same time t0 and the 

lowest priority core send its request before t0 by delta. This request is served after the 

high priority cores issue their requests. Hence, this request suffers from delay. We 

calculate the WCET for this request. From Figure 4.9 and 4.10, it is obvious that read 

request needs tRL to issue and write request needs entails tWL to issue. Each read request 

issued after write request suffers from write then read timing constraint (tWTR) and each 

write issued after read request suffers from read then write constraint (tRTW). On the other 

side, for most DRAM memories the summation of tRL and the data bus time tBUS is lower 

than the summation of tWL and tRTW (tRL+tBUS < tWL+tRTW) so we can conclude that each 

read request to be issued suffers from (tWL+ tBUS +tWTR) and each write request suffers 

from tRTW. Hence the Worst Case Open Request (WCOR) between t0 and t` are derived 

for read and write requests as shown in eq.1 and eq.2 respectively. 

 

 

Figure 4.9 WCOR Read 

 

 

 

 

𝑇𝑂𝑅
𝑟𝑒𝑎𝑑 =  

𝐶𝑁
2
(𝑡𝑊𝐿 + 𝑡𝐵𝑈𝑆 + 𝑡𝑊𝑇𝑅 + 𝑡𝑅𝐿) + (

𝐶𝑁
2

 − 1) 𝑡𝑅𝑇𝑊                                                                (1) 
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Figure 4.10 WCOR Write 

 

 

 

4.3.2 Closed Request (CR) 

 

In Closed Request CR, ACT & PRE will be added to command timing constraints 

because each request is targeting different row.  As mentioned in chapter 2, we need the 

PRE command (tRP) to clear the row buffer by returning the old row and ACT command 

(tRCD) to load the new one. We assume all requests reached Global Queue at t0 and all 

ACT commands are issued at first before breaching four window active time constraint 

(tFAW). If one or more ACT commands are issued after tFAW, we need to consider the 

effect of activation commands after tFAW. As per Figure 4.11 and 4.12, in order to 

calculate Worst Case Closed Request (WCCR), each read suffers from (tWL + tBUS + max 

(tWR, tWTR) and each write suffers from tRTW. Finally, the calculated closed request TCR for 

read and write requests between t0 and t` are as shown in eq.3 and eq.4 respectively. 

𝑇𝑂𝑃
𝑤𝑟𝑖𝑡𝑒 =

𝐶𝑁
2
(𝑡𝐵𝑈𝑆 + 𝑡𝑊𝑇𝑅 + 𝑡𝑅𝑇𝑊) + (𝐶𝑁 − 1)𝑡𝑊𝐿                                                          (2)  
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Figure 4.11 WCCR Read 

 

 

 

 

Figure 4.12 WCCR Write 

 

𝑇𝐶𝑅
𝑟𝑒𝑎𝑑 = 𝑚𝑎𝑥(𝐶𝑁𝑡𝑅𝐶𝐷, 𝑡𝐹𝐴𝑊) +

𝐶𝑁
2
(𝑡𝑊𝐿 +  𝑡𝐵𝑈𝑆 + 𝑡𝑊𝑇𝑅 + 𝑡𝑅𝐿) + (

𝐶𝑁
2

 − 1) 𝑡𝑅𝑇𝑊                                        (3) 

𝑇𝐶𝑅
𝑤𝑟𝑖𝑡𝑒 = 𝑚𝑎𝑥(𝐶𝑁𝑡𝑅𝐶𝐷, 𝑡𝐹𝐴𝑊) +  

𝐶𝑁
2
(𝑡𝑊𝐿 + 𝑡𝑅𝑇𝑊 + 𝑡𝑊𝑇𝑅 + 𝑡𝑅𝑇𝑊) + (𝐶𝑁 − 1) 𝑡𝑊𝐿                                  (4) 
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∆𝜏 

 ∆𝜏𝐶𝑅 

 

∆𝜏𝑂𝑅 

 

4.3.3 Total WCET 

 

 In the above analysis, we discussed WCET for either all Open Requests or all Closed 

Requests. Since in real scenario, requests are a mixture of both and no one can guarantee 

the exact scenario for the actual traffic load. Hence the total WCET time is the 

accumulation of number of open tasks (NOT) plus number of closed tasks (NCT) plus the 

estimate time to switch between these tasks      as shown in eq.5.       is divided to      

for time elapsed to switch from open request to closed request as shown in 

equation.6 and         for time switching closed request then open request as shown 

in eq.7 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

∆𝜏𝑂𝑅 = {
𝑚𝑎𝑥(𝑡𝑅𝐿, 𝑡𝑅𝑇𝑊) + 𝑡𝐵𝑈𝑆,  𝑂𝑅𝐷 𝑡ℎ𝑒𝑛 𝐶𝑊𝑅

𝑡𝑊𝐿 + 𝑡𝐵𝑈𝑆 + 𝑡𝑊𝑇𝑅,      𝑂𝑊𝑅 𝑡ℎ𝑒𝑛 𝐶𝑅𝐷
                                                      (6) 

∆𝜏 

 

𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑁𝑂𝑇 .𝑚𝑎𝑥 (𝑇𝑂𝑅
𝑟𝑒𝑎𝑑, 𝑇𝑂𝑅

𝑤𝑟𝑖𝑡𝑒) + 

                                                                                               𝑁𝐶𝑇 . 𝑚𝑎𝑥(𝑇𝐶𝑅
𝑟𝑒𝑎𝑑, 𝑇𝐶𝑅

𝑤𝑟𝑖𝑡𝑒)  + 2∆𝜏𝑥𝑥.𝑚𝑖𝑛(𝑁𝑂𝑇 , 𝑁𝐶𝑇)                                             (5) 

         ∆𝜏𝐶𝑅 =

{
 
 

 
 𝑚𝑎𝑥

(𝑡𝑅𝐶 , 𝑡𝑅𝐶𝐷 +𝑚𝑎𝑥(𝑡𝑅𝐿 , 𝑡𝑅𝑇𝑊) + 𝑡𝐵𝑈𝑆 + 𝑡𝑅𝑃),

𝐶𝑅𝐷 𝑡ℎ𝑒𝑛 𝑂𝑊𝑅

𝑚𝑎𝑥(𝑡𝑅𝐶 , 𝑡𝑊𝐿 + 𝑡𝐵𝑈𝑆 +𝑚𝑎𝑥(𝑡𝑊𝑅, 𝑡𝑊𝑇𝑅) + 𝑡𝑅𝑃)

𝐶𝑊𝑅 𝑡ℎ𝑒𝑛 𝑂𝑅𝐷

                                       (7) 
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Chapter 5. Simulators  

 

In this chapter, we will discuss the tools used in testing the algorithm and achieving 

results output. To test the algorithm two simulators were used: MARSS core emulator 

[18] integrated with PTLsim simulator to implement core, cache configuration. The other 

tool used is DRAMSim2 simulator [19] used for memory controller design. We selected 

CHstone benchmark to test our design [13] which is a suite that includes various real-

time applications. 

5.1 MARSSx86 

 

MARSSx86 is a tool for cycle accurate full system simulation of the x86-64 

architecture, specifically multicore implementations.  MARSS is multicore simulation 

environment for the x86-64 ISA, with detailed pipeline model, based on Processor 

Technology Laboratory Simulator (PTLsim). MARSS has extensive enhancements for 

improved simulation accuracy and it includes detailed models for Coherent 

Cache and On-Chip Interconnections with implementation of the MESI, MOESI 

Protocols. MARSS is emulator that run an ISO image contain simulation engine 

(PTLsim) and the required benchmark needed to handle the tests on ash shown in Figure 

5.1. 

 

Figure 5.1 MARSSx86 architecture 

 

 

 

PTLsim 

http://www.ptlsim.org/
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5.2 DRAMSim2 

 

DRAM simulator is a cycle accurate memory system simulator that includes DDR2/3 

memory system model. Both full system and trace-based simulations can be used. 

DRAMSim2 uses MARSS as front-end to generate traffic to DRAM model. Figure 5.2 

describes the DRAM architecture.   

 

 

Figure 5.2 DRAMSim2 architecture 

5.3 CHstone 

 

The CHStone benchmark suite has been developed for C-based high-level synthesis 

(HLS). CHStone consists of 12 programs which are selected from various application 

domains such as arithmetic, media processing, security and microprocessor. The 

CHStone benchmark programs are written in the standard C language. Table 5.1 

illustrates the benchmark suite programs. 
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Table 5.1 Chstone Suite applications 

Program Design Description 

DFADD Double-precision floating-point addition  

DFMUL Double-precision floating-point multiplication  

DFDIV Double-precision floating-point division  

DFSIN Sine function for double-precision floating-point numbers 

MIPS Simplified MIPS processor 

ADPCM Adaptive differential pulse code modulation decoder and encoder 

GSM Linear predictive coding analysis of global system for mobile 

communications 

JPEG JPEG image decompression 

MOTION Motion vector decoding of the MPEG-2 

AES Advanced encryption standard 

BLOWFISH Data encryption standard 

SHA Secure hash algorithm 
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Chapter 6. MCES Evaluation 

 

In this section, we compare our approach with WCAD [8]. Both AMC & WCAD use 

fair round robin arbitration without prioritizing cores and this leads to neglecting memory 

intensive applications. Also PREDATOR [6] and BWPS in [7] use prioritized cores 

without request ranking accompanied by interleaved banks and CP. We believe that 

putting these approaches together improve the overall performance especially when 

taking into account different application priorities. It is also worth mentioning that 

applying private bank, eliminates the inter-task interference between cores and applying 

OP policy utilizes the DRAM performance.  

 

6.1 Experimental Setup 

We run our simulations using MARSS core emulator [18] linked with DRAMSim2 

simulator [19], for MC design, by assigning for each core a different priority and quota. 

Each core has a private 256KB instruction/data L1 cache and 2MB of unified L2 cache.  

Hence, all cores run on 2.0 Ghz and all the upcoming experiments run on 4GB DDR3 

DRAM memory. Any more details is mentioned in Table 6.1. We assign the priorities to 

cores in an offline mode based on the number of requests hold by each core or by the 

memory intensive workload. Hence, benchmarks are investigated first and executed 

solely to gather profiles to identify their general behavior by applying various simulation 

runs to achieve the best results by best matching the workloads and cores.  We tried 

different scenarios: normal and reversal scenario. Normal scenario is that each core will 

be assigned the suitable adequate workload. On the other side, reversal/swapped scenario 

is switching the benchmark assignments to the cores. Hence, each high priority core will 

run low benchmark and every low priority core will run the memory intensive 

application. Highway scenario describes that all cores run the same memory intensive 

benchmark application.  Also during simulation run, priorities and quotas can be changed 

based on the cores utilization however we didn’t do experiments for this. For now, we 

assume that the intensive workload is assigned to cores in an ascending order, i.e. the 1st 

core has the highest priority and quota and the last core, 4th core in our experiments, has 

the lowest priority and consequently quota for 4 cores system and 8th core will be the 

lowest priority for 8 core systems. We are using in our simulations wide range DDR3 

DRAM (different models and sizes as in table 2.6) devices, as it is the most recent 

technology used by modern CMPs, with 64-bit data BUS width, one data channel and one 

command channel. We run multiple simulations on benchmark CHstone [20] to obtain 

memory traces for performance measurement and analysis. All benchmark suites are 

assigned to cores based on their size and how intensive they are to utilize the memory. 

The intensity of benchmarks was calculated by 2 ways: 1- calculate the time used to run 

the executable benchmark file. 2- Run each benchmark solely on a core and check the 

number of requests generated. 
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6.2 Evaluation metrics  

 

  Results regarding performance measurements are calculated using weighted speedup 

however fairness measurements are obtained using harmonic speedup which is used as a 

balance between performance and fairness where N is number of cores used [21] 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =  ∑
𝑃𝑒𝑟𝑓.𝑀𝐶𝐸𝑆
𝑃𝑒𝑟𝑓.𝑊𝐶𝐴𝐷

                                               (8) 

𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =  
𝑁

∑
𝑃𝑒𝑟𝑓.𝑀𝐶𝐸𝑆
𝑃𝑒𝑟𝑓.𝑊𝐶𝐴𝐷

                                                  (9) 

In order to determine if our solution design (MCES) can be determined as performance 

oriented or energy oriented or comprehensive performance and energy design, we used 

another combined metric called EDP [22] which calculate inverse perf. /energy 

                                 𝐸𝐷𝑃 =        
1

∑
𝑝𝑒𝑟𝑓.
𝐸𝑛𝑒𝑟𝑔𝑦

                                             (10) 

 

Table 6.1 4-CORE/8-Core system simulation parameters 

Processor  2.0 Ghz, x86 processor, 128 entry re-order queue size, 36 entry issue queue size,48 

entry load queue size and 32 entry store queue size 

L1 cache write through ,256 KB, 8-way set associative,2 cycles latency, 64 bytes line size, 2 read 

ports and 1 write port 

L2 cache Write through, 2MB, 8-way set associative,5 cycles latency, 64 bytes line size, 2 read 

ports and  2 write ports 

MCES  128 entry re-order private buffer, 2 private buffers per core 

DRAM 

components  

512MB , 1 GB ,2 GB , 4GB , 8 banks, 64 B row buffer per bank  
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6.3 Results 

 

6.3.1 Sensitivity analysis 

 

In this section, we will discuss some experiments to show our algorithm behavior 

response with changing some parameters. First option we change is the core frequencies 

we use. Figure 6.1 describes the average throughput for MCES data bus for different 

running core frequencies for 4-core system. As the core frequency increases, the final 

throughput for our memory controller increases. Hence, MCES can handle high core 

frequencies. In Figure 6.2, we checked variable cache sizes. Results achieved that  as 

increasing the size by doubling, the average execution time enhanced by 1% , 17% , 4% 

for 64K , 128K, 256K. As the cache size increases, the percentage of hit ratio increases 

which lead to a decrease in the number of requests sent to the memory to retrieve the 

data. These results show the scalability of our new proposed MCES against frequency 

scaling and cache sizes of the future multicore systems.  

 

 

Figure 6.1 MCES average throughput 
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Figure 6.2 MCES average execution latency  versus Cache size 

 Figure 6.3 represents a comparison between global queue latency and total latency 

measured in memory cycles (y-axis) compared to global queue size in number of requests 

enqueued which represents the summation of all cores’ requests (x-axis). Total latency 

represents end-to-end latency or in other words the latency for a request from the time it 

reaches the core’s private buffer till it is returned back to the core. Global Queue (GQ) 

latency describes the latency of request since it reached the GQ after dispatching from the 

private buffer till it is issued by the MC. We tried different queue sizes to study resulted 

latency. For GQ size = 4 requests, which is the lowest size as each core will have one 

request  quota, the latencies reach the maximum value because the amount of requests 

arrived in the private buffer are much more than that issued and this proves that running 

memory intensive applications using equal shares among the cores, degrades the 

performance. Both latencies decrease as size increase till we reach the minimal optimum 

point at GQ size = 6 requests. This recommends the uneven distribution of the quota per 

core which is the main proposal of our research in this thesis. Moving beyond this point, 

and increasing the size of the queue more than 6 requests, the latencies start to slightly 

increase again but it didn’t reach the first point because as the core share increases, the 

upcoming requests after the first request wait for some memory cycles before issuing.  
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Figure 6.3 Request total latency versus GQ latency 

 

Figure 6.4 represents a comparison between our two evaluation metrics, performance 

measured by arithmetic mean and fairness measured by harmonic mean (y-axis) versus 

multiple values for MOT ,from zero till 200 memory cycles, (x-axis). We can infer from 

the figure that at MOT from 40 to 50 memory cycles, we have the best tradeoff between 

performance and fairness. Hence, we choose this value for our figures and results. For 

MOT between 0 and 40, no significant variation is noticed for the performance level, 

however the higher MOT in that range is the better the fairness. This is due to short 

period of time given to the cores to issue their requests specially the lower priority ones. 

After this point, performance deteriorate and fairness increases slightly because lower 

priority cores will have time slots to issue their requests from global queue and more 

chance to achieve more progress. Hence, at MOT from 40 to 50 memory cycles, we get 

the benefit of the both metrics to achieve maximum performance without starving the 

lower priority cores. 
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Figure 6.4 MCES Performance versus fairness 

Figure 6.5 and 6.6 represent percentage of performance (y-axis) versus different 

versions of DDR3 DRAMs (x-axis). Both figures capture the effectiveness of MCES and 

WCAD controllers regarding HRT and NHRT requests. The increased performance for 

HRT tasks ranges from 19% for DRAM 512 MB to 23% for DRAM 4GB because as the 

DRAM size increases, the row hit ratio increases. Hence, performance increases. Also 

WCAD can’t distinguish between these types of tasks and treats them equally. Regarding 

NHRT results, MCES performance increased by 14% for 512 MB to 3% for 4GB over 

WCAD. This reduction in the performance enhancement for NHRT requests is caused by 

re-ordering policy between HRT and NHRT in the private buffers as per the re-ordering 

request ranking rule mentioned in the arbitration rules. 
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Figure 6.5  DDR3 MCES vs WCAD NHRT execution latency 

 

Figure 6.6 DDR3 MCES vs WCAD HRT execution latency 

Figure 6.7 discusses the trend of request processing for the both MCES and WCAD 

algorithms versus time by calculating the number of requests served (y-axis) versus 

cycles elapsed (x-axis). First the both algorithms serve huge number of requests but with 

improvement compared to MCES by 70%. After that, the number of served requests 

decreases till it reach the minimal point at 1500 cycles. The number of requests continues 

to increase again and settles at 2500 cycles but with more requests served by MCES by 

40 %. 
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Figure 6.7 MCES versus WCAD request processing trend 

6. 3.2 Algorithm Comparative Analysis 

 

6. 3.2.1 4 Core System  

 

     In Figure 6.8 and 6.9, we compare our performance and energy consumption results to 

simulation results obtained by WCAD algorithm [4] for 4 core system. The y-axis 

represents the percentage of average execution latency in nano seconds and energy 

consumed in joules on a per core basis and x-axis represents simulated cores with 

assigned suites. Multiple suites are tested based on their size and ability to memory 

access. In Figure 6.8, the results obtained are 33% and -23% for low priority cores (C2 

and C3 respectively) because they have lower quotas nearly equal to WCAD cores. The 

application running on C3 can issue its requests in a timely manner although it suffers 

from being the last core its performance (due its low priority order).  On the other side, 

high priority cores (C0 and C1) achieve marginal performance improvements (68% and 

23% respectively) using the new scheduling of MCES, so cores dispatch more requests, 

and hence, performance increases.  Figure 6.9 compares the average energy consumption 

in joule per core performed by MCES and WCAD. MCES saves energy consumption by 

18% and 23% for high priority cores (C0 and C1) and 10% and -17% for low cores (C2 

and C3). C3 consumes the most energy because it remains idle most of the time waiting 

for its slot to issue its requests. On average across all the four cores, MCES achieves 

overall high throughput using weighted speedup reached 31% and  mostly equal energy 

consumption to WCAD for 4-core system with overall EDP 31%.  On the other side, 

WCAD scored harmonic speedup by 30%  
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Figure 6.8 MCES versus WCAD Normal run performance 

 

Figure 6.9 MCES versus WCAD Normal run energy consumption 

Figures 6.10 and 6.11 discuss the same parameters (average latencies and energy 

consumptions) for 4-core system. If we swapped the workloads i.e. the low priority cores 
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savings for high priority cores (C0 & C1) are almost 45% because they finish their 

requests early and these results increased for C2 to reach 55% and finally the last core C3 

by 88 % saving of energy consumption. Overall energy saving reaches 46%.  For the 

reverse execution scenario of running the benchmarks, although MCES is not achieving 

performance enhancement (-10%), it can achieve very high overall energy saving of 46% 

and 10% harmonic speedup with EDP equal to 40%   

 

 

Figure 6.10 MCES versus WCAD Reverse run performance 

 

Figure 6.11 MCES versus WCAD Reverse run energy consumption 
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Figure 6.12 and 6.13, discuss the high-way run results when all cores run the highest 

memory intensive application ADPCM). In figure 6.12, results range from 68% for C0, 

65 % for C1, 22% for C2 and degraded by 70 % for C3 resulting in overall weighted 

speedup improvement of 13 % comparing MCES to WCAD. While in Figure 6.13, 

energy saving ranges from 8% for C0, 12 % for C1, to 42% for C2 and C3 comparing 

MCES to WCAD resulting in overall energy saving 18% and overall EDP 28%. On the 

other side, WCAD scores harmonic speedup 13% 

 

Figure 6.12 MCES versus WCAD High-way run performance 

 

 

Figure 6.13 MCES versus WCAD High-way run energy consumption 
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6. 3.2.2 8-Core System 

 

In this section, we experiment our algorithm versus WCAD for 8-core system. We 

assign the priorities and quotas in an ascending order (Normal Execution Scenario). 

Hence, C0 is the highest priority and quota while C7 is the lowest priority and quota. 

Figures 6.14 and 6.15 discuss the run under 8-core system with the normal1 execution 

scenario (the workloads are assigned as per their memory intensity). Hence, the highest 

memory intensive benchmark (ADPCM) is assigned to the most powerful core C0 with 

assigned quota 9 requests per MOT and least workload (MPEG2) on C7 with quota 2 

requests. In Figure 6.14, results achieved are 43% enhancement for the high priority cores 

and 21% degradation for the lower priority cores with overall weighted speedup 

enhancement of 16%. Figure 6.15 describes the energy consumption. Results ranged from 

improvement of 20% for high priority core (C0) to 19% degradation for low priority core 

(C3). This is because the more time the bank opens waiting for issuing, the background 

energy consumption increases. Hence, the high priority cores usually use lower energy 

consumptions as their powerful abilities to issue their requests and finish reading/writing 

in memory while, the lower priority cores wait till the high priority cores to finish, which 

forces the bank to wait for the memory controller to issue the required request. MCES 

scored overall EDP 13% while WCAD achieves 14% harmonic speedup  

 

 

 

Figure 6.14 MCES versus WCAD Normal run 8-core performance 

                                                           
1  For more information, check experimental setup section 6.1  
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Figure 6.15 MCES versus WCAD Normal run 8-Core energy consumption 

 

Figures 6.16 and 6.17 discuss the reverse order benchmark to core assignment run 

(reversal scenario2). Hence, all the memory intensive applications will run on the low 

priority cores and vice versa.  In Figure 6.16, performance enhancements range from 49% 

for high cores since they are able to finish their assigned application in time while low 

priority cores have53% performance degradation causing 48% overall degradation. In 

Figure 6.17, results ranges from 72% saving in energy for high cores and 15% for lower 

cores because after high cores serve their applications, they let the lower cores able to 

serve their part which lead to lower memory opening hence, lower energy consumption 

Hence, the overall energy enhancement reached 54% , 48% harmonic speedup and EDP 

reaches 13%  

 

 

                                                           
2 For more information, check experimental setup section 6.1 

0

5

10

15

20

25

30

35

40

C0 (ADPCM) C1 (GSM) C2 (MIPS) C3 (JPEG) C4(AES) C5(BF) C6(SHA) C7(MPEG2)

A
v
er

ag
e 

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

jo
u
le

) 

MCES Avg. WCAD Avg



52 
 
 

 

Figure 6.16 MCES versus WCAD Reverse run 8-Core performance 

 

Figure 6.17 MCES versus WCAD Reverse run 8-Core energy consumption 
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Figure 6.18 MCES versus WCAD High-way 8-Core performance 

 

Figure 6.19 MCES versus WCAD High-way run 8-Core energy consumption 
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intensive applications which impacted the fairness metric of lower cores. On the other 

side, MCES scores better HS and EDP for reverse runs and degraded WS because MCES 

switched the interest to serve the lower intensive application which reflected in higher 

fairness and energy/performance combination with degraded overall performance. This 

Figure describes the strengths and weakness of MCES algorithm. 

 

Figure 6.20 MCES versus WCAD comparison metrics WS, HS, and EDP for all 

workload scenarios 

Table 6.2 Summary metrics abbreviations 

 Parameter Description 

WS4N  Weighted Speedup for 4 core Normal run 

HS4N Harmonic Speedup for 4 core Normal run 

EDP4N Energy Delay Product for 4 core Normal run 

WS4R Weighted Speedup for 4 core Reverse run 

HS4R Harmonic Speedup for 4 core Reverse run 

EDP4R Energy Delay Product for 4 core Reverse run 

WS8N Weighted Speedup for 8 core Normal run 

HS8N Harmonic Sppedup for 8 core Normal run 

EDP8N Energy Delay Product for 8 core Normal run 
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Chapter 7. Conclusion & possible future work 

7.1 Conclusion 

 

This thesis proposed MCES, a new design for the memory controller that considers core 

priority in request scheduling to fit real-multimedia applications alongside with request 

ranking within cores to suit hard real-time applications.  Variable core quota approach 

introduced in MCES allows adaptation of the core needs of request service. Such 

scheduling leads to improved timing and performance to the high priority cores while 

providing fairness among different requests for lower priority cores. MCES uses the state 

information of DRAM as shared memory resource in multi-core system to provide an 

estimated latency for HRT and NHRT 

 MCES utilizes Private Banks and Open Page policy to eliminate the inter-task 

interference between cores and improves the DRAM performance by exploiting the row-

hit cases. We calculate the timing latencies for MCES requests under analysis including 

open requests only, closed requests only and mixture of both to be able to estimate the 

WCET for these tasks. 

In order to test the performance of our design, we used two simulators. MARSS for 

core and cache design. MARSS was able to run the workloads and transfer the core 

requests to our memory controller algorithm implemented on DRAMSim2 simulator. 

We compared our design, MCES, with the last released design in the literature. We 

applied different workload scenarios. We defined normal, reverse, high-way scenarios. 

We used metrics to check the ability of our algorithm to compete and we used weighted 

speedup to measure performance, harmonic speedup to measure performance alongside 

with fairness. Last metric used was EDP to test if MCES is energy oriented or 

performance oriented or can work as tradeoff between energy and performance. MCES 

achieved better performance results in normal scenario using weighted speedup reached 

31%, 14% for 4-core and 8-core systems while degraded fairness and power-performance 

results using harmonic speedup and EDP. On the other side, MCES scored better fairness 

and power-performance in reverse and highway scenarios reached 10%, 48% for 

harmonic speedup and 51%, 76% for EDP. 

Hence, MCES can be used as performance oriented memory controller algorithm if used 

in normal scenario, while fairness and power-performance oriented if used in reverse or 

high-way scenarios.  

 

7.2 Possible future work 

Our future work will focus on 
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1-  Studying the effect of cache interference on WCET analysis beside the effect of 

using heterogeneous core model and what is the impact row hit ration overall 

threads  latency  

2- Trying dynamic priority scheduling. Although applying this technique may lead 

theoretically to timing anomalies for HRT requests and consequently overall 

performance degradation, further study and investigation is needed. 

3- Applying the same algorithm on higher level aspects as big data, data cloud 

applications. This upgrade will need to determine if we can use the same design 

or we can more than one memory controller to handle the tremendous amount of 

data generated in such applications 

4- Designing map algorithm to expect all the WCET scenarios before execution. 

This action will undertake huge pre-computation but will deliver high results 

output 

5- As per the summary Figure 6.20, the EDP scores better results in all scenarios. 

Hence, focusing on energy enhancement which is vital requirement for various 

modern embedded systems   

6- Finally, implementing the solution on circuit design to precisely measure the 

performance, power consumption and area overhead of our design. 
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Chapter 8. Publications 

 

· Ahmed S. S. Mohamed, Ali A. El-Moursy, “Real-Time Memory Controller for 

Embedded Multi-core System”, In the Proceeding of the 17th International Conferences 

on High Performance Computing and Communications (HPCC-2015), New York, USA 

August 24 - 26, 2015. 

· Ali A. El-Moursy, Ahmed S. S. Mohamed, Hossam A. H. Fahmy, “Quantum-

Based Memory Controller Design of Enhanced Scheduling for Embedded Multi-core 

Processors”, submitted, Journal of Parallel and Distributed Computing. 
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Appendix A 

 

1 MARRS DRAMSim Integration Code  

 

 

Figure A.1 MARSS DRAMSim2 integration 

2 DRAMSim   

 

The below function shows the developed code to add the core transaction to private 

buffers and apply the swapping function that swaps the HRT request with NHRT requests  
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Figure A.2 MCES Re-ordering requests in transaction queue 
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3 Issuable Part 

 

The below code is the issuable part in the Global queue. 

 

Figure A.3 MCES Issuing requests 

 

 

 

 

 

 

 

 

 

 



64 
 
 

4 WCAD 4th Algorithm rule 

The below code is the coded WCAD 4th rule to apply fairness to starved request 

 

Figure A.4 WCAD Scheduling Code 

 

Figure A.5 WCAD applied rules 



 
 

 الملخص
 بهم العالي اءالأد بسبب تطلبا كثرا الحديثة المعالجات متعددة رقاقات تصبح الحاضر الوقت في

على  .يالعال والأداء اقة اللازمه للتشغيلطال لانخفاض نظرا الحقيقي الوقت نظمةا في وخاصة
ة الزمن شغيل. فى انظمالجانب الأخر, يجب تحقيق اعلى كفاءة و عداله كافيه بين انظمة الت
تماد على معدل يتم الاع الحقيقي تقاس الجوده بالوقت التقديري لأسوأ حاله.  فى الأنظمه الحديثه

و تعين  لأولويةا تعطي التي الجديدة الذاكرة في تحكم نقترح البيانات فى الذاكره الحديثه.  مزدوج
 المتعددة طالوسائ الحقيقي الوقت في التطبيقات دراسة يمكنحصص ثابته للنوى و بالتالى 

                                                            .الصعبة الحقيقي الوقت في والتطبيقات
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يق اعلى كفاءة الأخر, يجب تحقالعالي. على الجانب  والأداء الطاقة اللازمه للتشغيل لانخفاض الحقيقي نظرا الوقت

وأ حاله.  فى الأنظمه و عداله كافيه بين انظمة التشغيل. فى انظمة الزمن الحقيقي تقاس الجوده بالوقت التقديري لأس
 تعطي التي ديدةالج الذاكرة في تحكم الحديثه يتم الاعتماد على معدل مزدوج البيانات فى الذاكره الحديثه.  نقترح

 المتعددة ائطالوس الحقيقي الوقت في التطبيقات دراسة ن حصص ثابته للنوى و بالتالى يمكنالأولوية و تعي
الصعبة.    الحقيقي الوقت في والتطبيقات  
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