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Summary:  

In this work, we have added the support of the Fused Multiply-Add (FMA) unit in 

OpenSparc T2 open-source processor. The FMA unit used supports both binary and 

decimal formats. The used FMA optimizes the area and power consumption by 

sharing most of the hardware between the binary and decimal operations. 

The work done includes modifying the processor Instruction Set Architecture (ISA) 

to support the new operations, integrating the FMA unit inside the floating point unit 

of the processor, updating the processor to understand the new instructions and 

communicate correctly with the new unit. The work done also includes modifying the 

assembler to understand the assembly of the new instructions and generates the 

executable accordingly. 

During our work we verified the FMA unit using Formal Verification technology and 

found and fixed many bugs in the implementation. We also proposed a methodology 

for verifying the floating point units using Formal Verification. 

 

 

 

 

 

 

 

 

 

mailto:Ahmed_Ismail@mentor.com


 

i 
 

Acknowledgments 

Praise be to Allah, Lord of the Worlds for all his blessings, and peace be upon 

prophet Mohamed and his companions. 

I want to thank my family and wife for their invaluable support. Also thanks to all 

my friends for their help and support. 

Finally, I would like to express my sincere gratitude to my advisor Prof. Hossam 

Fahmy for his support, patience and encouragement.  



 

ii 
 

Table of Contents 

ACKNOWLEDGMENTS ............................................................................................. I 

TABLE OF CONTENTS .............................................................................................. II 

LIST OF TABLES ........................................................................................................ V 

LIST OF FIGURES .....................................................................................................VI 

ABSTRACT ................................................................................................................ VII 

CHAPTER 1 : INTRODUCTION ................................................................................ 1 

1.1. FLOATING POINT ARITHMETIC .............................................................. 1 

1.2. BINARY FLOATING POINT ARITHMETIC ................................................. 1 

1.3. DECIMAL FLOATING POINT ARITHMETIC .............................................. 2 

1.4. IEEE STANDARD FOR FLOATING POINT ARITHMETIC ............................ 2 

1.4.1. Binary floating point numbers representation ......................................... 2 

1.4.2. Decimal floating point numbers representation ...................................... 4 

1.4.3. Special values .......................................................................................... 5 

1.4.4. Flags and exceptions ............................................................................... 5 
1.4.4.1. Invalid operation ........................................................................................................ 5 
1.4.4.2. Division by zero ......................................................................................................... 6 
1.4.4.3. Overflow .................................................................................................................... 6 
1.4.4.4. Underflow .................................................................................................................. 6 
1.4.4.5. Inexact........................................................................................................................ 6 

1.4.5. Rounding ................................................................................................. 6 

1.5. THESIS ORGANIZATION ........................................................................ 7 

CHAPTER 2 : FLOATING POINT FUSED MULTIPLY-ADD UNIT ................... 9 

2.1. FMA BASIC BLOCKS ............................................................................ 9 

2.2. FMA UNIT DESCRIPTION .................................................................... 10 

2.3. DECODING THE INPUTS ....................................................................... 10 

2.4. MULTIPLICATION ............................................................................... 12 

2.4.1. Partial products generation .................................................................... 13 
2.4.1.1. Decimal partial products generation ........................................................................ 13 
2.4.1.2. Binary partial products generation ........................................................................... 15 

2.4.2. Partial products reduction ..................................................................... 18 

2.5. PREPARING THE ADDEND ................................................................... 19 

2.6. CARRY SAVE ADDER .......................................................................... 22 

2.7. LEADING ZEROS ANTICIPATION.......................................................... 22 

2.8. REDUNDANT ADDER ........................................................................... 22 

2.8.1. Conversion from Binary/Decimal to Redundant ................................... 22 

2.8.2. Redundant addition ............................................................................... 24 

2.9. NORMALIZATION SHIFTING ................................................................ 25 

2.10. ROUNDING ........................................................................................ 25 

2.11. FMA UNIT CONCLUSION ................................................................... 25 



 

iii 
 

CHAPTER 3 : FMA UNIT VERIFICATION ........................................................... 27 

3.1. FMA UNIT INITIAL VERIFICATION ...................................................... 27 

3.2. FMA UNIT EXTENDED VERIFICATION ................................................. 27 

3.2.1. FPU verification techniques and challenges ......................................... 27 
3.2.1.1. FPU simulation based verification ........................................................................... 28 
3.2.1.2. FPU Formal verification .......................................................................................... 28 

3.3. APPLYING SIMULATION TEST VECTORS ON THE FMA UNIT ................ 30 

3.4. APPLYING DESIGN CHECKS ON THE FMA UNIT .................................. 31 

3.5. FORMALLY VERIFYING FMA FUNCTIONALITY ................................... 35 

3.5.1. Testing the overall FMA functionality .................................................. 35 
3.5.1.1. Formal verification tool ........................................................................................... 35 
3.5.1.2. SystemVerilog language .......................................................................................... 36 
3.5.1.3. Defining system properties ...................................................................................... 36 

3.5.2. Testing the FMA building blocks ......................................................... 40 
3.5.2.1. Verifying the binary carry save adder (CSA) ........................................................... 41 
3.5.2.2. Debugging the final binary exponent calculation unit .............................................. 41 

3.6. NEW PROPOSED VERIFICATION FLOW FOR THE FLOATING POINT UNITS

 43 

3.6.1. Testing and debugging the FMA unit ................................................... 43 

3.6.2. Verifying the overall functionality of the FMA unit as a black box 

testing 44 

3.7. FIXING FMA DESIGN FUNCTIONALITY ............................................... 48 

3.8. RE-VERIFYING THE DESIGN ................................................................ 49 

3.9. VERIFYING OTHER FP MULTIPLIERS USING OUR DEVELOPED CHECKER

 49 

3.10. CONCLUSION .................................................................................... 50 

CHAPTER 4 : OPENSPARC T2 PROCESSOR ...................................................... 51 

4.1. OPENSPARC T2 PROCESSOR OVERVIEW ............................................. 51 

4.2. INSTRUCTION FETCH UNIT (IFU) ........................................................ 51 

4.2.1. Fetch unit .............................................................................................. 51 

4.2.2. Pick unit ................................................................................................ 52 

4.2.3. Decode unit ........................................................................................... 53 

4.3. EXECUTION UNIT ................................................................................ 55 

4.4. LOAD STORE UNIT ............................................................................. 56 

4.5. CACHE CROSSBAR ............................................................................. 56 

4.6. MEMORY MANAGEMENT UNIT .......................................................... 56 

4.7. TRAP LOGIC UNIT .............................................................................. 57 

4.8. FLOATING POINT UNIT ....................................................................... 60 

4.8.1. Interface with other units ...................................................................... 62 

4.8.2. Floating-Point State Register (FSR)...................................................... 63 

4.8.3. Conclusion ............................................................................................ 64 

CHAPTER 5 : INCLUDING THE BINARY/DECIMAL FMA IN THE 

OPENSPARC T2 PROCESSOR ................................................................................ 65 

5.1. RELATED WORK ................................................................................. 65 



 

iv 
 

5.2. SPARC ISA UPDATE ......................................................................... 66 

5.3. FGU CHANGES ................................................................................... 68 

5.4. GASKET CHANGES .............................................................................. 69 

5.5. PICK UNIT CHANGES ........................................................................... 69 

5.6. DECODE UNIT CHANGES ..................................................................... 70 

5.7. TLU UNIT CHANGES ........................................................................... 70 

5.8. SOFTWARE CHANGES ......................................................................... 70 

5.8.1. include/opcode/sparc.h changes ............................................................ 71 

5.8.2. opcodes/sparc-opc.c changes ................................................................ 72 

5.8.3. gas/config/tc-sparc.c changes ................................................................ 73 

5.9. FMA AREA CALCULATION ................................................................. 74 

CHAPTER 6 : CONCLUSION AND FUTURE WORK .......................................... 75 

REFERENCES ............................................................................................................. 76 

 

  



 

v 
 

List of Tables 

 

Table 1.1: Binary floating point formats .......................................................................... 2 
Table 1.2: Binary special values encodings ..................................................................... 3 
Table 1.3: Decimal floating point formats ....................................................................... 4 
Table 1.4: Decimal to declet conversion .......................................................................... 5 
Table 2.1: selop signal decoding .................................................................................... 12 

Table 2.2: round signal decoding ................................................................................... 12 
Table 2.3: Decimal digit encoding in Radix-5 format .................................................... 13 

Table 2.4: Decimal digit selection bits in Radix-5 format ............................................. 14 

Table 2.5: Binary selection bits in Radix-4 format ........................................................ 17 
Table 2.6: Decimal to redundant conversion .................................................................. 23 
Table 2.7: Binary to redundant conversion .................................................................... 24 
Table 3.1: Initial simulation results for the FMA unit ................................................... 31 
Table 3.2: Design issues in the FMA unit ...................................................................... 31 

Table 3.3: Test vector causing sNaN value to appear on the FMA output .................... 39 

Table 3.4: Test vector causing assertion firing ............................................................... 40 
Table 3.5: Test vector causing wrong flags values ......................................................... 42 

Table 3.6: Test vector causing wrong unexpected FP result .......................................... 48 
Table 3.7: Test vector causing wrong FP multiplier result ............................................ 49 
Table 3.8: Test vector causing wrong FP multiplier result ............................................ 49 

Table 4.1: OpenSparc T2 hazards .................................................................................. 53 

Table 4.2: FGU clock domains ....................................................................................... 63 
Table 5.1: Opcode for the implementation dependent instructions ................................ 66 
Table 5.2: Op3 values for IMPDEP1 and IMPDEP2 ..................................................... 66 

Table 5.3: Op3 values for IMPDEP1 and IMPDEP2 ..................................................... 66 
Table 5.4: Opcode for the FMA instructions.................................................................. 66 

Table 5.5: Op5 values for FMA operations .................................................................... 67 
Table 5.6: Opcode for IMPDEP1 ................................................................................... 67 
Table 5.7: Opf values for decimal operations ................................................................ 67 
Table 5.8: FGU Area profile .......................................................................................... 74 

 

 

  



 

vi 
 

List of Figures 

 

Figure 1.1: Binary floating point encoding ...................................................................... 3 
Figure 1.2: Decimal floating point encoding .................................................................... 4 
Figure 2.1: FMA block diagram ..................................................................................... 11 
Figure 2.2: Final decimal partial product tree ................................................................ 15 
Figure 2.3: Final binary partial products tree ................................................................. 18 

Figure 2.4: Decimal shift cases ...................................................................................... 20 
Figure 2.5: Binary shift cases ......................................................................................... 21 

Figure 2.6: Procedure for converting to redundant ........................................................ 23 

Figure 2.7: Procedure redundant addition ...................................................................... 25 
Figure 3.1: Fixing undriven signal issue ........................................................................ 32 
Figure 3.2: Latch inferred due to wrong coding style .................................................... 32 
Figure 3.3: Fixing the coding style to avoid inferring latch in the design...................... 33 
Figure 3.4: Combinational loop issue in the design ....................................................... 33 

Figure 3.5: Fixing the combinational loop issue ............................................................ 33 

Figure 3.6: Unreachable block of code issue .................................................................. 34 
Figure 3.7: Optimizing the design by removing the unreachable code block ................ 34 

Figure 3.8: Fixing the missing conditions in the case statement .................................... 35 
Figure 3.9: Specifying cover directives to verify that the output signals can toggle ..... 37 
Figure 3.10: Checks for the binary floating point output variations .............................. 38 

Figure 3.11: Assertions to verify the basic properties identified for the flags ............... 40 

Figure 3.12: Assertions to verify the binary CSA block ................................................ 41 
Figure 3.13: Assertion used to verify the final exponent calculation unit ...................... 42 
Figure 3.14: Using assumption to direct the Formal to run on a specific scenario ........ 43 

Figure 3.15: Using assertion to verify overflow calculation .......................................... 43 
Figure 3.16: FPU verification checker ........................................................................... 45 

Figure 3.17: FPU verification checker workflow ........................................................... 47 
Figure 4.1: OpenSparc T2 Core block diagram .............................................................. 52 
Figure 4.2: Timing diagram for handling dependent instructions .................................. 54 
Figure 4.3: EXU block diagram ..................................................................................... 55 

Figure 4.4: Communication between the SPARC core and the L2 cache through the 

cache crossbar ................................................................................................................. 56 

Figure 4.5: TLU basic blocks ......................................................................................... 57 
Figure 4.6: Correct trap prediction ................................................................................. 59 
Figure 4.7: Trap mis-prediction ...................................................................................... 60 
Figure 4.8: FGU block diagram...................................................................................... 61 
Figure 4.9: FGU pipelines .............................................................................................. 62 

Figure 4.10: FGU interface with other units .................................................................. 63 
Figure 5.1: include/opcode/sparc.h changes ................................................................... 72 
Figure 5.2: opcodes/sparc-opc.c changes ....................................................................... 72 
Figure 5.3: gas/config/tc-sparc.c changes ...................................................................... 74 
 

  



 

vii 
 

Abstract 

In this work, we have added the support of the Fused Multiply-Add (FMA) unit in 

OpenSparc T2 open-source processor. The FMA unit used supports both binary and 

decimal formats, allowing us to complete the support for the binary floating point 

operations in the aforementioned processor since it was missing the FMA operations as 

well as adding initial support for decimal floating point operations which were totally 

missing in the processor. The used FMA optimizes the area and power consumption by 

sharing most of the hardware between the binary and decimal operations. 

The support of more functionality on the processor hardware helps in improving the 

overall processing time, compared to the software implementations of the same 

functionality where the unsupported hardware instruction is replaced by multiple simpler 

instructions. The area considerations for the new hardware support can be minimized by 

optimizing the hardware implementation and reusing the hardware units in different 

operations. Also using newer technology with smaller feature size can reduce the overall 

area needed. 

The work done includes modifying the processor Instruction Set Architecture (ISA) 

to support the new operations, integrating the FMA unit inside the floating point unit of 

the processor, updating the processor to understand the new instructions and 

communicate correctly with the new unit. The work done also includes modifying the 

assembler to understand the assembly of the new instructions and generates the 

executable accordingly. 

The new functionality of the processor is verified by updating the processor testing 

environment with new tests to exercise the new instructions, the old functionality of the 

processor is also verified in the different scenarios by using the processor available 

regression tests. 

During our work we verified the FMA unit using Formal Verification technology 

and found and fixed many bugs in the implementation. We also proposed a methodology 

for verifying the floating point units using Formal Verification.
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Chapter 1 : Introduction 

1.1. Floating point arithmetic 

The floating point arithmetic is used in many applications that require complex 

calculations and accurate results with large dynamic range. The fixed point arithmetic 

although much simpler and can use the integer units in the processor, but it supports very 

small range of numbers. For the same number of bits, the fixed point numbers have a 

choice of either precision or supporting large numbers while floating point numbers can 

support both. Taking an eight bits number as an example, only 256 different numbers can 

be represented in either fixed or floating point numbers, the selection of the fixed point 

location will limit both the range and precision of the number to a fixed value. Assuming 

the point position is selected to be 2 bits from the right, then the maximum fixed point 

number is 64 and the precision is 0.25. On the other side if we defined a floating point 

number with 2 bits to define the point position within the least significant 6 bits then we 

can reach the same maximum value but with higher precision of 0.0625. The floating 

point benefits will come with the cost of adding extra complexity in the calculations 

which turns into extra delay and larger hardware area. 

Floating point operations can be done on any processor even if the processor has no 

floating point support on the hardware. However, the usage of the software libraries to 

perform the floating point operations slows down the computation. A dedicated floating 

point unit (FPU) is supported in many processors today since doing the operation on 

hardware saves both time and power [1]. 

Benchmarking for the support of decimal floating point (DFP) in hardware versus 

the support in software has been done in [2], authors have concluded that large 

improvement in the DFP applications is achieved when having the support in hardware. 

The benchmark results showed that more than 75% of the execution time is spent in DFP 

functions if evaluated in software. The hardware support speedup ranges from 1.3 to 31.2 

on different benchmarks. In [3] the energy-delay product improvement due to the use of 

hardware support was reported over 500. 

1.2. Binary floating point arithmetic 

The binary floating point (BFP) units have been available in commercial computers 

since 1950’s [4]. The numbers in BFP format are represented by three parts: sign, 

exponent and mantissa. The mantissa is similar to the integer representation and therefore 

can use the same integer units or techniques for the mantissa calculations. In fact in some 

processors such as the OpenSparc T2 processor, as we will explain in more details in 

Chapter 4, the integer and binary floating point multiplication and division are sharing 

the same units. 
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1.3. Decimal floating point arithmetic 

The main limitation for the BFP arithmetic is the ability to handle the common 

fractions accurately. The common fraction 0.1 as an example cannot be described 

accurately using BFP number using finite number of bits. This limitation may cause a 

large errors in some of the financial applications causing large loss for the companies due 

to truncation error [5] 

Therefore the increasing demand on DFP arithmetic is more obvious in military and 

financial applications. 

1.4. IEEE standard for floating point arithmetic 

The floating point arithmetic standard (IEEE 754) was published in 1985 and 

updated in 2008 (IEEE 754-2008) [6]. The standard was defined to make sure that the 

results are correct and consistent if the operation is done through hardware unit, software 

library, or combination of both. The software development can be compatible across 

different machines if the operations are following the standard. The standard specifies 

binary and decimal formats for the floating point numbers. The standard specifies five 

basic formats which are three binary formats with encodings of lengths 32, 64, and 128 

bits (also known as single, double and quad precisions) and two decimal formats with 

encodings in lengths of 64 and 128 bits. The standard also specifies possible extensions 

to these formats. 

The floating point numbers are defined in the following form:(−1)s x be x m, where 

s is the sign and can take values 0 or 1, b is the radix and can be either 2 for binary and 

10 for decimal, e is the exponent and can be any integer between emin and emax (the 

emin and emax varies from one format to another but will always follow the rule that 

emin = 1 – emax), and m is the significand of the number. The number of bits in the 

significand is the precision (p) and the values of each digit in the significand is between 

0 and b. The standard defines +ve and –ve zeros. Beside that the standard specifies four 

more floating point values which are two infinities (+∞ and −∞) and two Not a Number 

(NaNs) which are qNaN (quiet) and sNaN (signaling). 

1.4.1. Binary floating point numbers representation 

The binary floating point numbers have the radix of 2. The basic binary floating point 

formats defined in the standard are represented in Table 1.1 

Table 1.1: Binary floating point formats 

Parameter Binary 32 Binary 64 Binary 128 

Precision (p) 24 53 113 

Emax 127 1023 16383 

exponent field width 8 11 15 

 

 

The encoding for the binary number in each format is unique, i.e. each number can 

be represented in only one possible encoding. The binary numbers encoding is shown in 
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Figure 1.1 where the most significant bit (MSB) represents the sign, the next w bits are 

representing the biased exponent, and the least significant p-1 bits are used for the trailing 

significand. The biased exponent is defined as E = e + bias where bias is fixed number 

for every binary format which is equal to emax. The MSB of the significand is hidden so 

the total number of bits for the significand is p. The hidden bit can be either 0 or 1 

according to the exponent value, those are called normal and subnormal numbers 

respectively. 

 

 

Figure 1.1: Binary floating point encoding 

The exponent for normal binary floating point numbers is in the range 1 to 2𝑤 − 2, 

the remaining two values for the exponent which are 0 and 2𝑤 − 1 are reserved for the 

following special representations: 

1. E = 0 is used to encode ±0 and the subnormal numbers 

2. E = 2𝑤 − 1 is used to encode ±∞ and the NaNs 

The normal binary floating point numbers have a hidden 1 in the significand and are 

represented as (−1)s x 2ex 1. significand, the largest number that can be represented in 

this format is (−1)s x 22w−2x 1. 2𝑝−1 while the smallest normal binary floating point 

number is represented by E=1 and trailing significand (T) = 0 and is equivalent to 

(−1)s x 21−bias . The numbers smaller than the smallest normal values are called 

subnormal and have leading hidden 0, with the exponent bits are all zeros. The maximum 

subnormal number is (−1)s x 2−𝑏𝑖𝑎𝑠x 0. 2𝑝−1.  

Because of the hidden 1 in the normal binary numbers, the binary operations requires 

normalization step at the end to bring the result back to the normal form in case the result 

is not subnormal, this is not always needed in the decimal operations since the result can 

be un-normalized as shown in next section. 

The biased exponent E = 2𝑤 − 1 is used to represent special values as shown in 

Table 1.2 

Table 1.2: Binary special values encodings 

Significand Special value 

= 0 ±∞ 

≠ 0 qNaN, or sNaN 

 

 

The 0 binary number is represented by the encoding of E = 0 and T = 0. The standard 

supports ±0 which is useful in case of division by zero to identify of the result is +ve or 

–ve ∞. 
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1.4.2. Decimal floating point numbers representation 

The decimal floating point numbers have the radix of 10. The decimal floating point 

numbers are more convenient in some applications like the financial and military 

applications where the error impact can be very large. The decimal floating point 

numbers are more familiar to the human since it is used in the their normal operations, 

the decimal floating point numbers can also specify some numbers that the binary cannot 

specify accurately in finite number of bits such as the number 0.1. 

The IEEE 754-2008 added support for the decimal floating point arithmetic, the 

standard specifies two basic encodings for the decimal formats as explained in Table 1.3.  

Table 1.3: Decimal floating point formats 

Parameter Decimal 64 Decimal 128 

Precision (p) 16 34 

emax 384 6144 

combination field width in bits 13 17 

 

 

The decimal encoding -unlike the binary one- allows multiple representation for the 

value, all the representations for the same value are called cohort. The different encodings 

for the same decimal number allows the system to maintain the precision of the result, 

for example the two numbers 5 x 10−2 and 50 x 10−3are equivalent but the precision in 

the second number is greater by 1 digit. The number of available cohorts for each values 

varies according to the number of trailing zeros in the value as well as the difference 

between exponent and the maximum and minimum exponents. The maximum number of 

cohorts for decimal floating point number is equal to the number of digits in the 

significand of this number. The standard specifies the preferred exponent -out of all the 

available cohorts- of the number for each operation to make sure that results are 

consistent across the different implementations. 

The decimal numbers encoding is shown in Figure 1.2, the MSB of the number is 

the sign bit, the next w+5 bits (G) are representing the exponent and the last t trailing bits 

are representing the trailing significand (T). 

 

 

Figure 1.2: Decimal floating point encoding 

The standard specifies two ways to encode the significand, the first one is the decimal 

encoding using densely-packed-decimal encoding, the other way is to use binary 

encoding and consider all the t significand bits as one integer value with range from 0 to 

2𝑡 − 1 . The binary encoding can be used efficiently if the decimal floating point 

operations are done on the software since the operations can reuse the integer execution 
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units, while the densely-packed-decimal is more efficient in the hardware 

implementations. In the densely-packed-decimal encoding, every three decimal digits are 

combined to generate a declet of 10 bits, this is more optimized than the BCD format 

where 12 bits are needed to represent the three decimal digits. The conversion of the three 

decimal digits into a declet of 10 bits is shown in Table 1.4. 

Table 1.4: Decimal to declet conversion 

d(1,0), d(2,0), d(3,0) b(0), b(1), b(2) b(3), b(4), b(5) b(6) b(7), b(8), b(9) 

0 0 0 d(1,1:3) d(2,1:3) 0 d(3,1:3) 

0 0 1 d(1,1:3) d(2,1:3) 1 0, 0, d(3,3) 

01 0 d(1,1:3) d(3,1:2), d(2,3) 1 0, 0, d(3,3) 

0 1 1 d(1,1:3) 1, 0, d(2,3) 1 1, 1, d(3,3) 

1 0 0 d(3,1:2), d(1,3) d(2,1:3) 1 1, 0, d(3,3) 

1 0 1 d(2,1:2), d(1,3) 0, 1, d(2,3) 1 1, 1, d(3,3) 

1 1 0 d(3,1:2), d(1,3) 0, 0, d(2,3) 1 1, 1, d(3,3) 

1 1 1 0, 0, d(1,3) 1, 1, d(2,3) 1 1, 1, d(3,3) 

 

 

The exponent bits G are used to identify the special values for the decimal number 

as following: 

1. If the first 5 bits are ones then the number is Nan 

2. If the first 5 bits are equal to 11110, then the number is +ve or -ve ∞ according 

to the sign bit 

1.4.3. Special values 

The standard specifies four non-numbers values that can appear at the output of 

numeric operations, the four special values are ±∞, qNaN, and sNaN. The special values 

can appear on the operands or the result of the floating point operation. The infinity in 

floating point arithmetic is used to specify numbers greater than the maximum supported 

number in the format, the infinity can appear due to overflow in the result or directly 

from cases like division by zero. The NaN values are used to specify either issues in the 

operands or in the operation result. 

1.4.4. Flags and exceptions 

The standard specifies five flags that can be generated during the floating point 

operation, the flags can result in specific trap in the hardware or can be handled by the 

software. Some flags are only applicable for some specific operations like the division 

by zero which is only applicable for division operations. 

1.4.4.1. Invalid operation 

The invalid operation flag is signaled if the result of the operation is not defined for 

the specified operands, in this case there is no defined result for the given operands. For 

operations that produce a floating point number, the result is replaced by qNaN with some 
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debugging information in the significand bits, and the invalid flag is signaled, otherwise 

only the flag is signaled. Some examples for the operations that can signal the invalid 

operation flag are listed below: 

 Any operation with one operand that is sNaN 

 Any multiplication operation between 0 and ∞ 

 Effective subtraction between +∞ and -∞ 

 Square root for negative numbers 

 Division for 0 by 0 or ∞ by ∞ 

1.4.4.2. Division by zero 

For division operation where the divisor is zero and the dividend is finite number, 

the result is +ve or -ve ∞ according to the operands signs, and the division by zero flag 

is signaled. 

1.4.4.3. Overflow 

The overflow flag is signaled if the rounded result is greater than the largest 

supported number in the format. The result in case of overflow is replaced by +ve or -ve 

∞ (or the maximum number according to the rounding mode used) according to the sign 

of the intermediate result before rounding. 

1.4.4.4. Underflow 

The underflow flag is signaled when a tiny non-zero result (between ± bemin) is 

detected. For binary this can be detected before or after the rounding, and for decimal 

this is detected before the rounding operation. 

1.4.4.5. Inexact 

The inexact flag is signaled if the final result of the operation is different from the 

result if the exponent and precision were unbounded. The inexact flag is also signaled 

with overflow and underflow flags. 

1.4.5. Rounding 

The rounding takes the intermediate result as if it was specified with unbounded 

exponent and significand and produces a finite number that can be stored as floating point 

number of the required format. The rounded result always has the same sign as the 

original result. The rounding mode is specified by the user and can be modified 

dynamically. The standard specifies five rounding directions for the decimal floating 

point operations and four for the binary operations. The roundTiesToAway rounding 

direction is required only for decimal operations while the roundTowardPositive, 

roundTowardNegative, roundTowardZero, and roundTiesToEven rounding modes are 

required for binary and decimal. Following is a definition for each rounding mode: 

1. roundTowardPositive: The selected rounding direction is toward +∞ 

2. roundTowardNegative: The selected rounding direction is toward −∞ 

3. roundTowardZero: The selected rounding direction is toward zero 

4. roundTiesToEven: The rounding is toward nearest and even is selected on tie 
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5. roundTiesToAway: The rounding is toward nearest and away from zero is 

selected on tie 

1.5. Thesis organization 

The rest of the thesis is organized as following: Chapter 2 will go through the FMA 

design in general and will go in the design details of the combined decimal/binary FMA 

that we used in our work. Chapter 3 will explain our work in verifying and fixing the 

FMA unit functionality. Chapter 4 will explain the OpenSparc T2 processor architecture. 

Chapter 5 will explain the changes that we applied to integrate the FMA unit in the 

OpenSparc T2 processor. Chapter 6 will conclude this thesis and will go through the 

suggested future work. 
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Chapter 2 : Floating point Fused Multiply-Add unit 

The Fused Multiply-Add operation (FMA) is one of the floating point instructions 

that is added in the IEEE 754-2008 standard. The FMA operation consists of 

multiplication followed by addition with only one rounding operation done at the end. 

The FMA operation is used in many applications that do multiplication followed by 

addition such as the DSP applications where the accumulation equation sum = sum + ai 

x bj appears a lot. The result of the FMA should be more accurate than multiplication 

followed by addition since rounding is done twice if done in two separate steps. The FMA 

operation should also be faster in the processor if implemented in one instruction instead 

of calling two instructions for the FMA operation since the fetch, decode and all the other 

steps in the processor pipeline are done only once. 

The FMA operation is currently supported in many processors architecture either as 

FMA3 operation which takes three operands to specify the sources and the destination or 

as FMA4 operation that has four operands for the sources and destination. 

The FMA can be used to support other operations beside the FMA operation without 

the requirement for a lot of changes in the FMA structure, thus FMA unit can be used as 

a core of FPU if area is limited. The operations that can be supported by the FMA unit 

are: 

1. Fused multiply-add (FMA) 

2. Fused multiply-subtract (FMS) 

3. Multiplication 

4. Addition 

5. Subtraction 

Beside the above operations, the FMA operation can be used to implement the 

division and square root operations using software library.  

2.1. FMA basic blocks 

Most of the FMA designs consists of the same major blocks, the differences appear 

in the implementation of each block [7]. These major blocks are: 

1. Decoding the Operands: The sign, exponent and significand for each of the three 

input operands are extracted from the IEEE 754-2008 standard input format. 

Also any special values such as NaN or infinity is identified in this step. 

2. Multiplication operation: The significands of the first two operands are sent to 

the multiplier to get the multiplication result. The multiplication is done in two 

main steps: 

a. Partial product generation: The partial products are generated in this step 

from the two multiplication inputs. 

b. Partial product reduction:  The partial products are reduced to one or two 

vectors to be added with the third operand to get the final FMA result. 

3. Third operand preparation: In parallel to the multiplication process the 

multiplication exponent is calculated and compared to the third operand 

exponent to determine the shift amount needed for the third operand to be aligned 

with the multiplication result. Shifting can be done to the left or the right 

depending on the sign of exponent difference between the third operand and the 

multiplication result. 
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4. Final Adder: The final adder is used to add the multiplication output with the 

third operand. 

5. Normalization and rounding: As a final step, the result is normalized and rounded 

to provide the final result of the FMA. The preferred exponent in decimal is 

min(exponent(source1) + exponent( source2), exponent(source3)). 

2.2. FMA unit description 

The FMA unit used in our work is the one implemented by A. Adel in his master’s 

thesis [7], the FMA unit supports both decimal and binary operations. The major blocks 

in the FMA which are the multiplier tree and the adder are shared between the binary and 

decimal operations to decrease the area and hence the power consumption. The multiplier 

used is based on the multi operand multiplier proposed by L. Dadda in [8], and the adder 

is based on the redundant adder K. Yehia proposed in his master’s thesis [9]. The other 

blocks in the FMA design are separate for each format. The top level block diagram of 

the FMA is shown in Figure 2.1. 

In the next sections we will go through more details about the FMA unit 

implementation. 

2.3. Decoding the inputs 

The FMA supports decimal and binary 64 bits formats, the inputs to the FMA unit 

are: 

1. Multiplier “OpA” (64 bits) 

2. Multiplicand “OpB” (64 bits) 

3. Addend “OpC” (64 bits) 

4. Binary decimal selection bit “bd” (1 bit) 

5. Select operation control signal “selop” (3 bits) 

6. Rounding direction “round” (3 bits) 

The first three inputs are the FMA input operands, the FMA can work as a multiplier 

or adder directly so in these cases the unit takes only OpA and OpB or OpA and OpC. 

The bd signal is used to select between binary and decimal operation modes where binary 

mode of operation is selected when bd is high and decimal mode is selected otherwise. 

The bd signal is used in multiple places in the control path of the FMA to select between 

the binary and the decimal results. The selop signal is used to select between the different 

operations that the FMA supports, the selop signal decoding is shown in Table 2.1 where 

x in the selop value implies don’t care value (i.e. matches 0 or 1). The round signal is 

used to define the rounding mode, the supported rounding modes and the corresponding 

selection values for the round signal are shown in Table 2.2, where all the IEEE 754-

2008 rounding modes are supported in the FMA in addition to other commonly used 

ones. The same decoding for selop and round signals applies for both binary and decimal 

operations. 
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Figure 2.1: FMA block diagram 
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Table 2.1: selop signal decoding 

selop value Operation Equation 

0 x 0 FMA OpAxOpB+OpC 

0 x 1 FMS OpAxOpB-OpC 

1 0 x Multiplication OpAxOpB 

1 1 0 Addition OpA+OpC 

1 1 1 Subtraction OpA-OpC 

 

Table 2.2: round signal decoding 

round value Rounding mode 

000 Round to nearest, Ties to even 

001 Round away from zero 

010 Round towards positive infinity 

011 Round towards negative infinity 

100 Round towards zero 

101 Round to nearest, Ties away from zero 

110 Round to nearest, Ties towards zero 

 

 

The decoding for the three inputs is done in parallel, the input to the decoding step 

is encoded in the IEEE 754-2008 standard encoding either in decimal or binary format. 

The decoding step is done to extract the sign, exponent and significand from the encoded 

input. Any special values like subnormal in case of binary, zero, NaN or infinity is 

detected in this step and a corresponding flag is signaled to be used in the control path of 

the FMA remaining steps. 

The binary encoding step is simpler than the decimal one. The input operand is 

divided into sign, exponent and significand, the only special handling that is done in 

binary is to identify if the number is normal or subnormal and add 1 or 0 as the MSB of 

the significand accordingly. 

In the decimal decoding step the input numbers are in the decimal IEEE encoding 

format which is more convenient for the hardware units. The encoding used is the 

densely-packed-decimal and the significand is then converted to the BCD 8421 format. 

2.4. Multiplication 

The significands of the first two inputs are sent to the multiplier after being decoded. 

In parallel the exponents are sent to the exponent unit calculation and compared to the 

addend exponent. The multiplier unit is shared between the decimal and binary paths 

although they have different significand widths where significand width for binary is 53 

bits while in decimal the width is 64 bits. The multiplication is done in two steps, the first 

step is the partial products generation and the second one is the partial products reduction. 
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The output of the multiplier unit after partial products reduction is three vectors that will 

be added to the addend. 

2.4.1. Partial products generation 

The partial products are generated for both binary and decimal using two separate 

units, but the partial products reduction is shared between the two formats. Different radix 

values are used for decimal and binary as explained below. Considering the multiplier 

and the multiplicand significands as A and B in our explanation going forward. 

2.4.1.1. Decimal partial products generation 

The SD Radix-5 architecture is used in the decimal multiplication, the partial 

products are generated in BCD 8421 format. In SD Radix-5, each multiplier digit is 

recoded from the normal digit set where 𝐵𝑖 ∈ {0,1,2,3, … ,9} to the radix-5 encoding 𝐵𝑖 =
5 x 𝐵𝑖

𝑈 + 𝐵𝑖
𝐿 where the upper digit 𝐵𝑖

𝑈 ∈ {0,1,2}  and the lower digit 𝐵𝑖
𝐿 ∈ {−2, … ,2} 

as shown in Table 2.3. The multiplicand multiples (±𝐴, ±2𝐴, 5𝐴, 10𝐴 ) need to be 

generated in BCD-8421 to be ready for the multiplication process. All the positive 

multiples are easy decimal multiples that can be obtained without carry propagation and 

with few gate delays. For negative multiples needed in the lower partial products, the 9’s 

complement is obtained first using two gate delay logic, a (+1) is added at the least 

significant digit in the corresponding upper field product to obtain the 10’s complement. 

Table 2.3: Decimal digit encoding in Radix-5 format 

Digit 𝑩𝒊 𝑩𝒊
𝑼 𝑩𝒊

𝑳 

0 0 0 

1 0 1 

2 0 2 

3 1 -2 

4 1 -1 

5 1 0 

6 1 1 

7 1 2 

8 2 -2 

9 2 -1 

 

 

The multiplier digits are used to select from the calculated multiplicand multiples to 

generate the partial product, where the upper digit selects from {0,5A,10A} and the lower 

digit selects from {0,1A,2A}, the sign bit of the lower digit negates the partial product 

selected by the lower digit. 

In order to simplify the partial products selection each digit from the upper and lower 

digits of the multiplier are represented using multiple selection signals where the upper 

digit 𝐵𝑖
𝑈 is represented as two signals {𝑦1𝑖

𝑈 , 𝑦2𝑖
𝑈} and the lower digit 𝐵𝑖

𝐿 is represented 

as 4 signals {𝑦(+2)𝑖
𝐿, 𝑦(+1)𝑖

𝐿 , 𝑦(−1)𝑖
𝐿 , 𝑦(−2)𝑖

𝐿} in addition to one extra signal for the 

sign 𝑦𝑠𝑖. The selection bits truth table is shown in Table 2.4. 
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Table 2.4: Decimal digit selection bits in Radix-5 format 

Digit 𝒀𝒊 𝒚(+𝟏)
𝒊
𝑳 𝒚(+𝟐)

𝒊
𝑳 𝒚(−𝟏)

𝒊
𝑳 𝒚(−𝟐)

𝒊
𝑳 𝒚𝟏

𝒊
𝑼 𝒚𝟐

𝒊
𝑼 𝒚𝒔

𝒊
 

0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 

3 0 0 0 1 1 0 1 

4 0 0 1 0 1 0 1 

5 0 0 0 0 1 0 0 

6 1 0 0 0 1 0 0 

7 0 1 0 0 1 0 0 

8 0 0 0 1 0 1 1 

9 0 0 1 0 0 1 1 

 

 

After selecting the partial products, we have 32 decimal partial products, each of 

them is 17 digits. The partial products selected by the lower digit may be negative and 

need their sign to be extended, while the ones selected by the upper digit are always 

positive. The sign extension is calculated and reduced offline by considering the different 

possibilities and taking into consideration that sign digit can be either 0 or 9 only. The 

final decimal partial product after sign extension reduction offline is shown on Figure 

2.2. 
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Figure 2.2: Final decimal partial product tree 

2.4.1.2. Binary partial products generation 

For binary, the SD Radix-4 architecture is used instead. In SD Radix-4 each 4 bits 

are decoded together with a carry in from the lower significant 4 bits to produce two 

digits and a carry out for the next level. The carry out is calculated directly from the input 
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so no carry propagation delay is needed. The encoding done is in the form 𝐵𝑖 + 𝐶𝑖𝑛 =
16 x 𝐶𝑜𝑢𝑡 + 4 x 𝐵𝑖

𝑈 + 𝐵𝑖
𝐿  where the input 𝐵𝑖 ∈ {0,1,2,3, … ,16} , the carry input and 

output signals 𝐶𝑖  and 𝐶𝑜𝑢𝑡 ∈ {0,1} , the upper decoded digit  𝐵𝑖
𝑈 ∈

{−2, −1, 0,1,2} and the lower decoded digit 𝐵𝑖
𝐿 ∈ {−2, … ,2} . The multiplicand 

multiples needed are (±𝐴, ±2𝐴, ±4𝐴, ±8𝐴). All the positive multiples required can be 

easily obtained using left shift operations. The negative multiples are obtained by getting 

the 1’s complement of the multiples by inverting all the bits, and adding (+1) in separate 

vector (the I-vector) that is directly passed to the reduction tree. 

The multiplier upper digit selects from {0,4A,8A} and the lower digits selects from 

{0,1A,2A}, the sign of the upper and lower field can be negative and the corresponding 

partial product is negated in  this case.  

In order to simplify the selection, each of the lower and upper digits is replaced by 4 

selection signals and 1 sign bit. Where the lower field is replaced by 

{ 𝑦(+2)𝑖
𝐿, 𝑦(+1)𝑖

𝐿 , 𝑦(−1)𝑖
𝐿 , 𝑦(−2)𝑖

𝐿 } and the upper field is replaced by 

{𝑦(+8)𝑖
𝑈, 𝑦(+4)𝑖

𝑈, 𝑦(−4)𝑖
𝑈, 𝑦(−8)𝑖

𝑈} with the sign bits 𝑦𝑠𝑖
𝐿 and 𝑦𝑠𝑖

𝑈 for the lower and 

upper digit respectively. The truth table for the selection bits is shown in Table 2.5. 
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Table 2.5: Binary selection bits in Radix-4 format 

Y cin 𝒚(𝟏)
𝒊
𝑳 𝒚(𝟐)

𝒊
𝑳 𝒚(−𝟏)

𝒊
𝑳 𝒚(−𝟐)

𝒊
𝑳 𝒚𝒔

𝒊
𝑳 𝒚(𝟒)

𝒊
𝑼 𝒚(𝟖)

𝒊
𝑼 𝒚(−𝟒)

𝒊
𝑼 𝒚(−𝟖)

𝒊
𝑼 𝒚𝒔

𝒊
𝑼 cout 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 0 0 0 0 

1 1 0 1 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 1 1 1 0 0 0 0 0 

2 1 0 0 1 0 1 1 0 0 0 0 0 

3 0 0 0 1 0 1 1 0 0 0 0 0 

3 1 0 0 0 0 0 1 0 0 0 0 0 

4 0 0 0 0 0 0 1 0 0 0 0 0 

4 1 1 0 0 0 0 1 0 0 0 0 0 

5 0 1 0 0 0 0 1 0 0 0 0 0 

5 1 0 1 0 0 0 1 0 0 0 0 0 

6 0 0 0 0 1 1 0 1 0 0 0 0 

6 1 0 0 1 0 1 0 1 0 0 0 0 

7 0 0 0 1 0 1 0 1 0 0 0 0 

7 1 0 0 0 0 0 0 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 1 1 1 

8 1 1 0 0 0 0 0 0 0 1 1 1 

9 0 1 0 0 0 0 0 0 0 1 1 1 

9 1 0 1 0 0 0 0 0 0 1 1 1 

10 0 0 0 0 1 1 0 0 1 0 1 1 

10 1 0 0 1 0 1 0 0 1 0 1 1 

11 0 0 0 0 0 1 0 0 1 0 1 1 

11 1 0 0 0 0 0 0 0 1 0 1 1 

12 0 0 0 0 0 0 0 0 1 0 1 1 

12 1 1 0 0 0 0 0 0 1 0 1 1 

13 0 1 0 0 0 0 0 0 1 0 1 1 

13 1 0 1 0 0 0 0 0 1 0 1 1 

14 0 0 0 0 1 1 0 0 0 0 0 1 

14 1 0 0 1 0 1 0 0 0 0 0 1 

15 0 0 0 1 0 1 0 0 0 0 0 1 

15 1 0 0 0 0 0 0 0 0 0 0 1 

 

 

The number of bits in case of binary is 53 bits which is extended by 3 zeros on the 

left hand side of the number to obtain 56 bits. The 56 bits is divided into 14 groups 

resulting in the generation of 28 partial products in addition to the extra I vector. Unlike 

the case of decimal, all the 28 partial products can be negative so sign extension is needed 
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for the 28 partial products. The sign extension is done and reduced offline, the final binary 

partial products tree after sign extension reduction is shown in Figure 2.3. 

 

 

 

Figure 2.3: Final binary partial products tree 

2.4.2. Partial products reduction 

The partial product reduction is shared between the binary and decimal paths. The 

partial products reduction technique used is the one described in [8] where each column 

is reduced independently which reduces the carry propagation between columns. The 

reduction is done using 3:2 compressors implemented using full adder and 2:1 

compressors using half adder. The reduction is done in multiple stages according to the 

number of rows in each column. The largest column in both binary and decimal cases 
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contains 32 digits, this requires 8 stages of reduction to obtain the final summation of the 

column in addition to two carry digits. The smallest reduction tree is done for the first 

column with only 4 inputs and it takes only 2 stages. 

The outputs from the reduction tree are three vectors that will be added to the addend 

in a carry save adder (CSA) after that, the CSA adder generates two vectors that will be 

applied to the final redundant adder. The binary results output from the reduction tree 

can be used directly while the decimal result still needs to be converted from binary back 

to BCD format. 

2.5. Preparing the addend  

In parallel to multiplication, the third operand is prepared for the addition operation. 

The exponent of the multiplication operation is done by summing the exponents of the 

first two operands and subtracting the IEEE standard defined bias. The calculated 

multiplication exponent is compared to the exponent of the third operand to calculate the 

shifting amount required to align the operands of the CSA. To avoid adding extra delay 

on the multiplication path, the multiplication output will never be shifted and instead the 

addend will be shifted right or left according to the exponent difference. 

Because the working width is finite number so the shift amount has maximum limit 

even if the exponent difference was higher than this limit. The working width differs in 

case of binary and decimal, and is selected as small as possible to reduce the area. 
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Figure 2.4: Decimal shift cases 
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Figure 2.5: Binary shift cases 
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The maximum shift amount is determined by understanding the effect of the shift in 

different scenarios. For example if the addend is shifted by very large amount to the left, 

this means that the multiplication results does not contribute to the final result except by 

the sticky bit. In this case it is enough to shift the addend by the minimum amount that 

makes the multiplication result only affects the sticky calculation.  

The different shift scenarios for decimal and binary are shown in Figure 2.4 and 

Figure 2.5. 

2.6. Carry save adder 

The CSA adder takes the three outputs of the multiplier as well as the shifted addend, 

the CSA does 4:2 compression and produces two vectors to be added in the final 

redundant adder. Separate CSA units are used for the binary and the decimal paths. 

The effective operation is calculated by considering the signs of all the operands as 

well as the original operation. The eop is simply the xor of all the previous 4 signals. 

2.7. Leading Zeros anticipation 

In parallel to the redundant addition the leading zeros are anticipated from the two 

vectors output of the CSA to determine the shift amount required on the summation in 

redundant format. The leading zeros detection technique uses an inexact calculation 

followed by a correction to obtain the final leading zeros count as in [10]. 

The LZD result is generated in base 3 format to be used directly on the redundant 

format summation before converting back to binary. Leading ones detection is also done 

in parallel for the case of effective subtraction. 

2.8. Redundant adder 

The addition is done on the redundant system to be able to do carry free addition thus 

decreasing the delay. The two output vectors from the CSA unit are added in this stage. 

The binary and decimal vectors are both converted to the same redundant format to be 

able to share the same adder. Each three bits of the binary signal form one redundant 

digit, while for the decimal one decimal digit is corresponding to one redundant digit. 

The redundant system used operates on the value set [-6,6] encoded in the two’s 

complement format instead of the original representation ([0,9] in the case of decimal, 

and [0,7] in the case of octal), which does not support a carry-free addition/subtraction. 

2.8.1. Conversion from Binary/Decimal to Redundant 

The pseudo code for conversion to redundant is shown in Figure 2.6 where: 

 ITDi = OTDi-1 

 inputi is the input digit at location i 

 INTi is the intermediate sum 

 radix = 10 for decimal, and 8 for octal 

 OTD, and ITD are the output and input transfer digits respectively 
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if (inputi > 5){ 

INTi = inputi - radix; 

OTDi = 1; 

} 

else 

{ 

INTi = inputi ; 

OTDi = 0; 

} 

outputi = INTi+ ITDi; 

Figure 2.6: Procedure for converting to redundant 

The truth table for conversion from decimal to redundant is shown in Table 2.6, and 

for binary shown in Table 2.7. 

Table 2.6: Decimal to redundant conversion 

Input Output OTD 

0 0000(0) 0 

1 0001(1) 0 

2 0010(2) 0 

3 0011(3) 0 

4 0100(4) 0 

5 0101(5) 0 

6 1100(-4) 1 

7 1101(-3) 1 

8 1110(-2) 1 

9 1111(-1) 1 

 

 

 

 

 



 

24 
 

Table 2.7: Binary to redundant conversion 

Input Output OTD 

000 0000(0) 0 

001 0001(1) 0 

010 0010(2) 0 

011 0011(3) 0 

100 0100(4) 0 

101 0101(5) 0 

110 1110(-2) 1 

111 1111(-1) 1 

 

 

2.8.2. Redundant addition 

After the two inputs are converted to the redundant format they are sent to the 

redundant adder. The algorithm used in the adder is shown in pseudo code in Figure 2.7 

where:  

 ITDi = OTDi-1 

 inputi is the input digit at location i 

 INTi is the intermediate sum 

 radix = 10 for decimal, and 8 for octal 

 OTD and ITD are the output and input transfer digits respectively 

 

 

if (sumi > 5) 

{ 

INTi = sumi - radix; 

OTDi = 1; 

} 

if (sumi < -5) 

{ 

INTi = sumi + radix; 

OTDi = -1; 

} 

else 

{ 

INTi = inputi ; 

OTDi = 0; 

} 
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final_sumi = INTi + ITDi; 

Figure 2.7: Procedure redundant addition 

The OTD and ITD signals are represented in two bits: otdn, and otdp. otdn is raised 

if the transfer digit is negative and otdp is raised if the transfer digit is positive. The 

numerical value of the transfer digit is OTD = otdp - otdn. And similarly the numerical 

value of the input transfer digit is ITD = itdp - itdn. 

2.9. Normalization Shifting 

After obtaining the summation in the redundant format, the result has to be 

normalized by shifting to the left by the leading zeros count calculated in the leading 

zeros anticipation unit unless the preferred exponent is reached in decimal or the result 

became subnormal in case of binary. Note that the normalization step is done in the 

redundant format. Another shifting may be done after the rounding operation. 

2.10. Rounding 

The rounding is critical to the accuracy of the result, the rounding operation may add 

extra delay because it may need carry propagation. The rounding is done in parallel with 

the conversion of the data back to the binary/decimal format. 

2.11. FMA unit conclusion 

In this chapter we have went through some of the major blocks in the FMA unit, 

more details are in [7] about each step. In the next chapters we will explain our work on 

verifying and fixing the FMA unit functionality. We will also explain how the FMA was 

integrated into the OpenSparc T2 processor to enable the support of binary FMA 

instructions and decimal addition, subtraction, multiplication and FMA instructions. 
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Chapter 3 : FMA unit verification 

3.1. FMA unit initial verification 

As part of his work, A. Adel has verified the FMA design to work in both binary and 

decimal modes [7]. He tested his work using simulation based verification, by applying 

large number of test vectors that should cover the different scenarios in the design and 

verifying that the output and flags are generated as expected.  

For decimal operations verification, the FMA was tested as a full operation as well 

as testing the multiplier and adder as separate operations. Large number of test vectors 

were applied to hit all the corner cases. The test vectors used were created by A. Ahmed 

et al in [11] using constraint based random test vectors generation technique. More than 

1.1 million test vectors were used to verify all the decimal operations supported by the 

unit. The unit passed all the test vectors. 

For binary operations verification, less testing has been done because of the lack of 

open source binary floating point test vectors. The unit has been tested in different cases 

such as underflow, overflow, zero result, subnormal result, subnormal inputs, massive 

right and left shift, normal operation. The unit also passed all the tests and gave correct 

results. 

3.2. FMA unit extended verification 

Before integrating the FMA unit in the OpenSparc T2 processor we wanted to do 

more testing and verification to guarantee that the unit is functioning correctly in all 

scenarios, especially for the binary unit since it was not fully verified as highlighted by 

the author.  

3.2.1. FPU verification techniques and challenges 

The verification of the floating point units has always been challenging task because 

of the large number of test vectors needed to cover all the possible input combinations. 

The two techniques that are commonly used in verification of FPUs are formal 

verification techniques and simulation based verification techniques. 

The verification of any FP operation has at least to cover the combinations of the 

following basic scenarios: 

1. Different FP numbers types for the operands or the result: 

a. Normal 

b. Subnormal (in case of BFP) or number cohorts (in case of DFP) 

c. NaN 

d. Infinity 

e. Zero 

2. Verify the IEEE flags generation 

a. Inexact flag 

b. Overflow flag 

c. Underflow flag 

d. Invalid flag 
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e. Division by zero flag  

3. The IEEE rounding modes 

a. Rounding to nearest 

b. Rounding to zero 

c. Rounding to +ve infinity 

d. Rounding to –ve infinity 

Because there are large number of scenarios to cover, it is hard to calculate how 

much of testing is enough for your design. As an example for multiplication, the overflow 

can occur due to any of the below reasons: 

1. Overflow occurs after adding the exponents because the resultant exponent is 

greater than the maximum 

2. The resultant exponent just reached the maximum. The overflow is caused by 

the resultant of multiplying the mantissa 

3. The resultant exponent and mantissa just reached the maximum. The overflow 

occurs after rounding 

So to verify that overflow detection is working correctly, you will need to have 

multiple scenarios that hit the overflow from the three different reasons. Note that with 

random test vectors generation it is more likely to hit the overflow due to the first reason. 

The likelihood for the second reason is also higher than the third reason which is 

considered very corner case and need special handling to generate test vectors to hit it. 

3.2.1.1. FPU simulation based verification 

The simulation based verification is inefficient in obtaining good verification for the 

FPU due to the large input space as explained above. However, some techniques like 

constraint random test vectors generation as proposed in [11,12] may help in obtaining 

better coverage with less number of test vectors but still cannot guarantee full coverage 

or bug free design. The constraint random test vectors generation techniques can easily 

generate test vectors to hit the corner cases but the challenge would be in identifying all 

the interesting scenarios to cover. We have used the generated test vectors from [12] as 

part of our verification for the binary FMA functionality. 

3.2.1.2. FPU Formal verification 

The formal verification on the other side can guarantee full coverage for the design 

and can detect corner cases bugs. The formal verification for FPU can be done by either 

theorem proving or by model checking. The theorem proving is done by defining 

theorems for the expected design functionality and using mathematical reasoning to 

prove it. The model checking is done by defining properties for the design and using 

mathematical model to explore the states and prove the properties. 

The formal verification techniques are harder than simulation, it is also not reusable 

in case of theorem proving since the defined theorems depend on the verified design. The 

model checking can also suffer from state explosion if the number of states is very large, 

this can be handled by applying the bounded model checking methods, however, no proof 

can be obtained in this case. 

A lot of research has been done in formal verification targeting the verification of 

the hardware implementation of the FPU. The research areas in formal verification for 

floating point arithmetic are: 

 Developing data structures suitable for verifying FPU 

o The authors in [13] proposed the use of new data structure that is 

developed specifically for the arithmetic operations and has linear 



 

29 
 

increase with the data size. The data structure is called Multiplicative 

Power Hybrid Decision Diagrams (*PHDD). This flow was used to 

verify the multiplication results before rounding. 

 Using combined flow of theorem proving and model checking 

o In [14] hybrid flow combining both theorem proving and model 

checking techniques was proposed, the flow starts by verifying the 

main blocks before working on verifying the full design. This flow 

managed to detect many bugs both in design and specifications, 

however, many of them -according to the authors- can be easily 

detected using test vectors simulation. The model checking 

mechanism used is called Symbolic trajectory evaluation (STE) and 

is based on symbolic simulation.  

o In [15] the authors proposed formal verification flow using theorem 

proving and model checking techniques without relying on any 

specialized representations like the Binary Moment Diagram (BMD). 

The proposed flow uses the STE model checking and tries to break 

the verification problem into verifying the smaller blocks of the 

multiplier. 

 Theorem proving 

o In [16], the authors used automatic theorem proving for verifying the 

AMD-K7 processor’s FPU. The proof done was based on a formal 

description of the hardware, derived from a C model. The flow was 

successful in detecting two flaws in the design. 

o In [17] PVS theorem-prover was used in hierarchical approach at the 

gate level to verify the implementation of Even-Seidel rounding 

algorithm. 

o In [18] the theorem proving technique (Coq) was used to verify the 

end-around-carry adder which is commonly used in floating point 

circuits.  

o In [19] Higher Order Logic (HOL) theorem proving has been 

proposed, the use of HOL allows for a clear and precise description 

of the IEEE standard specification.  

o In [20] PVS theorem proving is used at gate level to verify FPU 

functionality 

 Model checking: 

o In [21], word level model checking technique was proposed to 

overcome the limitation of the symbolic model checking in dealing 

with data path verification. The paper also highlights how the new 

proposed technique can avoid the Pentium FDIV error.  

o In [22] word-level symbolic model checking, *PHDDs, conditional 

symbolic simulation as well as a short-circuiting techniques are used 

for verifying floating point adders. The flow was applied on FP adder 

from University of Michigan and managed to detect many design 

bugs. 

 Equivalence checking 

o In [23] formal verification based on BDD- and SAT-based symbolic 

simulation is used to compare the FMA design to a high level 

description of the same unit written in VHDL. 

o Sequential Equivalence Checking is proposed in [24] by comparing 

the design to its reference model to easily verify the correctness of 
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the floating point design. In addition to verifying the single 

instruction in the design, the paper proposes a method to verify the 

processor control path by comparing the result from single 

instructions to that of the same instruction but in the middle of other 

set of instructions. 

As an alternative to the simulation based verification approach used in [7] which 

requires the user to use large number of verified test vectors to be able to get good 

verification for the design, we have used formal verification tool that depends on model 

checking technology. Instead of driving the design with specific stimulus during the 

simulation, the formal tool will try to prove or find a counter example for all the 

properties defined in the design by exploring all the solution space. This is more efficient 

than providing large list of test vectors manually. However, the user has to understand 

the system to be able to define the properties. The properties are defined in IEEE 

SystemVerilog standard language [25]. During our work we have shown list of properties 

that can be tested, we explained how properties can be defined and verified at the block 

level as well as the full design level. At the end of this chapter we have developed more 

generic approach that can be used to verify the FPU without depending on the internal 

design by defining a high level model for the FPU operation. We have proved the 

effectiveness of our approach in detecting bugs on the FMA unit. The contributions in 

the proposed FPU verification are: 

 The checker is specified in a standard language with embedded assertions to 

verify the different scenarios in the FPU 

 The checker can be used in formal verification or simulation  

 The checker is generic and can be used with any floating point unit 

3.3. Applying simulation test vectors on the FMA unit 

The test vectors generated in [12] for verifying the double precision binary floating 

point addition and multiplication are used. The test vectors are covering the three basic 

operations: multiplication, addition, and subtraction. Unfortunately no test vectors are 

available for the complete FMA operation.  

The test vectors have the following fields: 

 The first operand 

 The second operand 

 The rounding direction 

 The operation type 

 The expected output 

 The expected flags 

A testbench has been developed to apply the list of test vectors on the FMA design 

and compare the FMA output and flags to the expected ones using SVA. Applying sample 

of the test vectors showed that the main functionality of the binary FMA is broken as 

shown on Table 3.1. 
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Table 3.1: Initial simulation results for the FMA unit 

Tested operation # of test 

vectors 

# of fail # of pass 

Multiplication 10 10 0 

Add/Subtract 10 10 0 

 

 

Since simulation is already showing some issues in the design, so applying formal 

verification is expected to show similar issues. However, we applied the formal 

verification as well to explain how formal verification can be used to detect, fix and verify 

bugs. 

3.4. Applying design checks on the FMA unit 

As a first step in applying the formal verification, the user should review and fix any 

design issues that may cause the formal verification tool to report false issues. 

We used Questa AutoCheck tool from Mentor Graphics for detecting issues in the 

design implementation, Questa AutoCheck tool is a fully-automated tool that leverage 

formal technology for detecting design issues such as dead code, floating signals, 

multiple driven signals, register stuck at value, Finite State Machine deadlock, 

combinatorial loops and many other checks for issues that would cause simulation-

synthesis mismatch or cause a fault in the design operation [26]. The Questa Autocheck 

tool automatically apply properties on the different design parts and try formally to prove 

them, otherwise design issue is reported. 

The tool ran successfully on the design and reported some design issues as shown in 

Table 3.2. 

Table 3.2: Design issues in the FMA unit 

Design check # of times reported 

Unused signals 675 

Combinational loop in the design 1 

Undriven signals 223 

Inferred latches 5 

 Signals with multiple drivers 2 

Unreachable block of the code 4 

Overflow from arithmetic operations 6 

 

 

The reported design issues vary in severity, some of the issues like the unused signals 

may be not very critical as it may not affect the functionality while other checks like 

undriven signals can cause the design to fail. 

We started by going through the reported issues and trying to fix them, we will show 

some examples for the different issues reported by the tool and how we were able to fix 

them. 
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As an example for the undriven signals issue, the tool has reported that the two 

signals bin_signM and bin_signIR have no drivers. Going through the RTL 

implementation of the FMA, I found that those signals are used as inputs to 

“RoundingInf” module which is responsible for deciding whether the result is infinity or 

not. This issue is fixed by adding the missing assignment for bin_signM and bin_signIR 

to be driven the multiplication sign expression and the intermediate sign respectively as 

shown in Figure 3.1. The other 221 undriven signals reported by the tool are not critical 

because they are not driving any logic, the design was modified to remove the signals to 

fix the issue. 

 

 

// Adding missing assignment for binary sign signals 

assign bin_signM = bin_signA ^ bin_signB; 

assign bin_signIR = bin_sign; 

Figure 3.1: Fixing undriven signal issue 

The inferred latches issue was also unexpected in the design since the design is 

totally combinational. The latches are inferred due to missing branch in the case 

statements as shown in Figure 3.2. This issue is fixed by adding default branch in the 

case statement as shown in Figure 3.3. 

 

 

// Wrong coding style causing latch to be inferred 

always@(*) 

begin 

case({bin_norm_shiftamnt[0],fine_shift}) 

3'b000: val1 = 13'b0000000000000; 

3'b001: val1 = 13'b1111111111111; 

3'b010: val1 = 13'b1111111111110; 

3'b100: val1 = 13'b1111111111101; 

3'b101: val1 = 13'b1111111111100; 

3'b110: val1 = 13'b1111111111011; 

endcase 

end 

Figure 3.2: Latch inferred due to wrong coding style 

// Fixing the case statement to not infer a latch 

always@(*) 
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begin 

case({bin_norm_shiftamnt[0],fine_shift}) 

3'b000: val1 = 13'b0000000000000; 

3'b001: val1 = 13'b1111111111111; 

3'b010: val1 = 13'b1111111111110; 

3'b100: val1 = 13'b1111111111101; 

3'b101: val1 = 13'b1111111111100; 

3'b110: val1 = 13'b1111111111011; 

// Adding default statement 

default: val1 = 13'bxxxxxxxxxxxxx; 

endcase 

end 

Figure 3.3: Fixing the coding style to avoid inferring latch in the design 

The tool reports one combinational loop in the design, this issue may cause glitches 

and other wrong functionalities in the design. This issue was identified in the binary 

exponent difference calculation circuit where the subnormal was used to calculate the 

correct exponent value, while the calculated exponent value was used to calculate the 

subnormal signal as shown in Figure 3.4. This issue was fixed by removing the 

combinational loop from the assignment and adding the correct conditions to detect the 

subnormal value as shown in Figure 3.5. 

 

 

// subnormalM signal used to calculate expM 

assign expM = (subnormalM) ? expMisn[11:0] : expMi[11:0]; 

// expM signal used to calculate subnormalM 

assign subnormalM = ~expMi[13] | ~(|expM); 

 Figure 3.4: Combinational loop issue in the design 

// Fixed the assignment to not depend on expM signal 

assign subnormalM = ~expMi[13] | ~(|expMi); 

Figure 3.5: Fixing the combinational loop issue 

The signals with multiple drivers issue although can cause mismatches in the results 

but in this design the signal was never used so this issue is ignored. 
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The unreachable block in the code is an issue because it means that the block of the 

code can never be hit and this in most of the scenarios is an unintended behavior. As an 

example for the unreachable code issue, the tool detects uncoverable scenarios in the 

binary leading zero detection unit as shown in Figure 3.6. By tracing the valid signal I 

found it always has value 1 because of the constants used while instantiating this module 

in the design. The code has been optimized by replacing the case statement with simple 

assignment as shown in Figure 3.7.  

 

 

// valid signal is always 1 

assign sel = {valid,cin}; 

always@(*) 

begin 

case(sel) 

// Never reached this branch 

2'b00: LZC = 9'b000000000; // all p's 

// Never reached this branch 

2'b01: LZC = 9'b100101010;//all p's and cin 

default: LZC = LZC3; 

Figure 3.6: Unreachable block of code issue 

// Case statement is replaced by simple assignment 

always@(*)  

 LZC = LZC3; 

Figure 3.7: Optimizing the design by removing the unreachable code block 

The last type of design issues that we debugged in the FMA RTL code is the 

overflow issue that occurs in the arithmetic operations. This issue occurs when the output 

of the arithmetic operation requires more bits than the available bits at the RHS of the 

assignment. All the instances of this issue where verified to be expected and acceptable. 

After fixing all the above issues, we have rerun the tool again to verify that the issues 

are no longer reported. The tool reports that the previously reported issues were addressed 

correctly. However, a new issue has appeared because of our fix for the latch inferred 

issue. In our fix we added a default branch to the case statement with X assignment 

because we didn’t expect that this branch to be ever taken. The AutoCheck tool reports a 

new issue that this X assignment is reachable in some scenarios so the case statement 

shown in Figure 3.3 has to be reviewed again. The scenario that causes the X assignment 

is when fine_shift signal is equal to 3, this scenario is not handled in the case statement 

and it appears to be reachable value. The design module that is showing this issue is the 

one used to calculate the final exponent of the binary result, it is also the module that 
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signals the overflow flag. The module has three inputs which are the resultant exponent 

before normalization, and two signals to specify the shift amount for the normalization. 

The module uses three signals val1, val2, and val3 to calculate the value to be subtracted 

from the exponent to get the final normalized exponent. The case statements that 

calculates val1, val2, and val3 has been updated to handle all the scenarios to avoid hitting 

the default branch as shown in Figure 3.8. 

 

 

// The missing conditions have been added to the case statement 

always@(*) 

begin 

case({bin_norm_shiftamnt[0],fine_shift}) 

3'b000: val1 = 13'b0000000000000; 

3'b001: val1 = 13'b1111111111111; 

3'b010: val1 = 13'b1111111111110; 

3'b011: val1 = 13'b1111111111101; 

3'b100: val1 = 13'b1111111111100; 

3'b101: val1 = 13'b1111111111001; 

3'b110: val1 = 13'b1111111111010; 

3'b111: val1 = 13'b1111111111001; 

endcase 

end 

Figure 3.8: Fixing the missing conditions in the case statement 

 

3.5. Formally verifying FMA functionality 

3.5.1. Testing the overall FMA functionality 

3.5.1.1. Formal verification tool 

After fixing the design issues, we started working on verifying the design 

functionality. In this step in our verification flow we applied Formal verification method 

with Assertion Based Verification (ABV) to test, verify and debug the FMA unit. We 

used Questa Formal tool from Mentor Graphics for the formal verification work 

described in this section [27]. Questa Formal tool is based on model checking technology 

and it automatically verifies that the design behavior matches the specification by 

exploring all the possible design states in breadth-first manner. 
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3.5.1.2. SystemVerilog language  

The design specification is written in IEEE standard SystemVerilog [25] assertions 

construct. The SystemVerilog is an IEEE standard unified language that is used for both 

hardware design and hardware verification. The SystemVerilog Assertions (SVA) are 

used to describe the expected behavior of the system, simulation and formal tools can be 

used to verify that the design behavior is matching the expected behavior. The SVA used 

can vary from describing very simple properties such as onehot to specifying a complete 

sequence that may take few cycles to complete. 

We have used the following three types of properties supported in SystemVerilog: 

 Assertions: used to verify that the design behavior is matching the property 

defined in the assertion. The assertions are applicable in both simulation and 

formal verification with the basic difference that in simulation the user is 

responsible to drive the design with values that activate and exercise the 

assertions completely while this is automatically handled in formal 

verification. There are two types of assertions specified in the design, we 

have used both types in different parts of our verification as explained the 

next sections: 

o Concurrent assertions: The concurrent assertions are evaluated all the 

time during simulation or formal verification run. This is useful to 

define properties that should always be valid in the design. 

o Immediate assertions: The immediate assertions are evaluated only 

when the block including the assertion is evaluated. This is useful to 

enable the assertion only if some condition is met. 

 Assumptions: this is similar to the syntax of the concurrent assertions. The 

assumptions are applicable only in formal verification run and are used to 

constrain the formal tool with specific properties. 

 Coverage statements: this is similar to the syntax of the concurrent assertions. 

The coverage statements can be used in simulation or formal verification 

runs. In simulation run, the coverage statement is used to check if certain 

property is covered by the testing or not. In formal run, since there is no 

testbench to drive the design, the coverage statement is used to check if 

certain property can be covered or not. 

 

3.5.1.3. Defining system properties 

Our testing is divided into two parts, the first part is targeting the binary operations 

while the second part is targeting the decimal operations. The reasons that we wanted to 

verify each mode separately are: 

1. The binary and decimal operations are using some common resources but most 

of the work done in the operations are in different units 

2. It is easier to debug issues when separating the two modes 

3. Make sure that we cover all possibilities in each mode in our testing 

4. The checks that we apply can be different in binary than in decimal 

As a first step in our Formal verification flow we wanted to make sure that the output 

signals can have all the expected results. We did an essential check that no bits are stuck 

at 0 or stuck at 1, this type of issues is common due to wrong connections in the design. 

We used SystemVerilog (SV) coverage statements to specify the cover items that we 

want to check. We added two coverage statements for each bit, the first directive is used 
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to test that the bit can be assigned 0 value while the other directive is checking that the 

bit can be assigned 1 value. The design has two outputs OpR (64 bits) and flags (4 bits) 

so we added 136 cover directives and used Formal tool to check that all of them are 

coverable. We applied the same test for binary and decimal and we got all the cover 

directives covered in both cases. Figure 3.9 shows example for the cover directives that 

we used for the flags.  

 

 

// Using generate statement to loop through the 4 bits of the flags output 

generate 

for (i=0; i<4; i++) 

begin 

// Check that flags[i] can take value 0 

cover property (@(posedge clock) (flags[i] == 1'b0)); 

// Check that flags[i] can take value 1 

cover property (@(posedge clock) (flags[i] == 1'b1)); 

end 

endgenerate 

Figure 3.9: Specifying cover directives to verify that the output signals can toggle 

After checking that the output signals can toggle with no issues, we proceed with our 

testing by adding some assertions to verify some basic functionality of the design. 

The special values that can be generated from the FMA unit are: 

1. Zero 

2. Subnormal 

3. Infinity 

4. qNaN 

We added cover items to make sure that all the above values are reachable. We added 

extra assertion to verify that the output is never sNaN since this value isn’t expected at 

the output of the FMA operation. The assertions and cover properties that we used to 

verify this behavior are shown in Figure 3.10. Note that the values compared in case of 

binary should be different from the case of decimal because of how the special values are 

specified in the standard for each format. 

 

 

// Check for the final result of the FMA unit in case of binary operations, the bd 

signal is used to disable the assertion in case of decimal operation 

// Assert that the sNaN value should never appear at the output of the FMA 

assert property (@(posedge clock) (bd -> (!OpR[51] && OpR[62:52] == 11'h7ff 

&& OpR[51:0] != 0))); // snan 
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// Cover directive for the case of qNaN, the formal tool will report a valid scenario 

that can reach the qNaN result if this result is reachable through the FMA logic 

cover property (@(posedge clock) (bd -> (OpR[51] && OpR[62:52] == 11'h7ff && 

OpR[51:0] != 0)));  // qnan 

// Cover directive for the case of zero, the formal tool will report a valid scenario that 

can reach the zero result if this result is reachable through the FMA logic 

cover property (@(posedge clock) (bd -> (OpR  == 0))); // zero 

// Cover directive for the case of –ve infinity, the formal tool will report a valid 

scenario that can reach the –ve infinity result if this result is reachable through the FMA 

logic 

cover property (@(posedge clock) (bd -> (OpR[63] && OpR[62:52] == 11'h7ff && 

OpR[51:0] == 0))); // -inf 

// Cover directive for the case of +ve infinity, the formal tool will report a valid 

scenario that can reach the +ve infinity result if this result is reachable through the FMA 

logic 

cover property (@(posedge clock) (bd -> (!OpR[63] && OpR[62:52] == 11'h7ff && 

OpR[51:0] == 0))); // inf 

// Cover directive for the case of –ve subnormal number, the formal tool will report 

a valid scenario that can reach the –ve subnormal number result if this result is reachable 

through the FMA logic 

cover property (@(posedge clock) (bd -> (!OpR[63] && OpR[62:52] == 0 && 

OpR[51:0] != 0))); // -ve subnormal 

// Cover directive for the case of +ve subnormal number, the formal tool will report 

a valid scenario that can reach the +ve subnormal number result if this result is reachable 

through the FMA logic 

cover property (@(posedge clock) (bd -> (OpR[63] && OpR[62:52] == 0 && 

OpR[51:0] != 0))); // +ve subnormal 

Figure 3.10: Checks for the binary floating point output variations 

New Formal run has been applied with the assertions and cover directives from 

Figure 3.10. The Formal tool reported all the cover items to be covered, so this means 

that all the special values defined in the standard can be reached in the FMA result. The 

Formal also reported a firing for the specified assertion. This means that there is a 

scenario or more found that can cause the FMA output to be sNaN. The test vector that 

caused the wrong sNaN value is shown on Table 3.3. The expected result in this case is 
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a normal value not a NaN since the three inputs are valid values. Some other interesting 

checks to be added for the floating point verification in general as we learned from the 

above bug are: 

 NaN is expected if one of the inputs is NaN 

 NaN is unexpected if all the FMA inputs are valid 

A lot of other high level checks for the design can be applied without depending on 

a previous knowledge on the implementation details of the FPU. This type of checks 

doesn’t guarantee bug free design but it rather can easily and quickly detect issues in the 

design. 

Table 3.3: Test vector causing sNaN value to appear on the FMA output 

Input signal value 

OpA  64'hFCC4260000000000 

OpB 64’h3FC6CCE000000000 

OpC 64’h7CC64E0000000000 

selop 3’b111 

round 3’b000 

 

 

The other output of the FMA unit beside the FP result is the FP flags. The FP flags 

that can be generated from the FMA unit are: 

1. Inexact flag 

2. Invalid operation flag 

3. Overflow flag 

4. Underflow flag 

According to the meaning of the above four flags we identified the following 

properties that should hold in any FPU compliant with the IEEE 754-2008 standard. 

These properties are: 

1. At maximum one of the following flags can be signaled at specific time instance: 

a. Overflow 

b. Underflow 

c. Invalid operation 

2. At maximum one of the following flags can be signaled at specific time instance: 

a. Inexact flag 

b. Invalid operation flag 

3. Inexact flag is always signaled if the overflow flag is signaled 

4. Inexact flag is always signaled if the underflow flag is signaled 

After identifying the above properties that are expected to always hold in the design, 

we defined them as SVA as shown in Figure 3.11 to be evaluated by the Formal tool. 

After running Formal on the design with the defined assertions, the Formal tool reported 

that the properties always hold in case of decimal operation. However, in case of binary 

the first property does not hold. The Formal tool provides a counter example that explains 

why the property did not hold as expected. The assertion was firing because both the 

overflow and underflow flags were signaled at the same time which is not an expected 

result from the FPU. 
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// First property: invalid, overflow and underflow flags are mutual exclusive 

assert property (@(posedge clock) ($onehot0(flags[2:0])));  

// Second property: if we have overflow or underflow then we should have inexact 

assert property (@(posedge clock) (flags[1]|flags[0] -> flags[3]));  

// Third property: invalid and inexact flags are mutual exclusive 

assert property (@(posedge clock) ($onehot0(flags[3:2])));  

Figure 3.11: Assertions to verify the basic properties identified for the flags 

The test vector that is causing the first assertion to fire was identified by the Formal 

tool as shown in Table 3.4. This result doesn’t mean that this is the only test vector that 

is failing but the Formal tool reports only one counter example for the assertion firing. 

Table 3.4: Test vector causing assertion firing 

Input signal value 

OpA  64'h863D9EA51187B214 

OpB 64’h25B2B7EF849F7042 

OpC 64’h  8040000000000000  

selop 3’b001 

round 3’b000 

 

 

By debugging this issue, both the overflow and underflow flags are not expected. 

This is showing critical issue in the binary operations. We have not done any checking 

yet on the result itself but we have identified a bug in the reported flags. This issue is 

only reproducible in the binary operations, the flags in the decimal operations are never 

violating the first assertion. However, this does not mean that the flags in the decimal 

verification are completely verified yet. 

Because the issue in the final result is not very easy to debug we added some extra 

checking on the intermediate operations to verify the functionality of each unit separately 

as explained in the next section. 

3.5.2. Testing the FMA building blocks 

In this section we will show our work to verify the functionality of the basic units in 

the FMA block using ABV and Formal Verification tool. We focus in our work on the 

binary blocks to debug the issue identified in the flags, the same approach can be applied 

on the decimal operation mode. 

The assertions defined in this section are describing each block functionality, the 

formal run can be applied on either the block only or on the complete design. We have 

chosen to do the Formal run on the full FMA level to make sure that the test vectors 

generated by the Formal tool are valid according to the rest of the design behavior. 
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3.5.2.1. Verifying the binary carry save adder (CSA) 

We have applied assertions to verify the functionality of this important block. 

Although the block implementation is complex but the end result can be simply specified 

as a property. The module has four inputs (A,B,C, and D) and two outputs (R0 and R1). 

The two outputs are the sum and carry of the addition of the four inputs, therefore we 

applied simple assertion as shown in Figure 3.12 to verify that the output of the adder is 

correct. Note that $global_clock is a keyword in the SV standard, it is used because the 

module does not have clock signals to be used in evaluating the assertion. The 

$global_clock in formal verification is considered to be the primary system clock. 

 

 

// The property can be written as (R0 + R1) === (A + B + C + D), however, we found 

that this style is simpler for the formal tool 

assert property (@($global_clock) (R0) === (A + B + C + D - R1)); 

Figure 3.12: Assertions to verify the binary CSA block 

Using the assertion in Figure 3.12 we verified that the whole functionality of the 

CSA block is correct without getting into the details of the implementations of the CSA 

block. 

3.5.2.2. Debugging the final binary exponent calculation unit 

The binary exponent calculation unit is responsible for generating the final exponent 

result and the overflow flag. The inputs to this unit are the exponent before normalization 

and the normalization shift amount. The normalization shift amount used in this module 

is provided in base 3 format to help in optimizing the normalization shift in redundant 

format as explained in Chapter 2. Therefore the module is responsible for two functions: 

convert the shift amount to binary and calculate the final exponent after subtracting the 

shift amount. To verify the module functionality we have created a small model to the 

expected results and used assertion statement to verify the actual behavior matches the 

expected behavior. In our model, the base 3 to binary conversion is done on high level 

description as shown in Figure 3.13 and is subtracted from the input exponent to calculate 

the final exponent of the FMA. 

 

 

// The assertion used is showing the relation between actual output of the unit exp_Rf 

and the expected output according to the input values.  

// Using extra signal to make sure we compare same number of bits in the assertion 

wire [11:0] expected_result; 

assign expected_result = expR - (fine_shift + (3*bin_norm_shiftamnt[1:0]) + 

(9*bin_norm_shiftamnt[3:2]) + (27*bin_norm_shiftamnt[5:4]) + 

(81*bin_norm_shiftamnt[6])); 
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// Assert that the expected output matches the actual output 

assert property (@($global_clock) (exp_Rf === expected_result[10:0])); 

Figure 3.13: Assertion used to verify the final exponent calculation unit 

After applying the assertion in the Formal run, the Formal tool is showing assertion 

firing for the property defined in this module. The reported counter example is 

highlighting issue in how the final exponent is calculated and correspondingly the 

overflow flag. 

The counter example identified by the tool is shown in Table 3.5. 

Table 3.5: Test vector causing wrong flags values 

Input/output signal Value in decimal 

expR  1994 

fine_shift 0 

bin_norm_shiftamnt 24 

exp_Rf 1898 

Expected exp_Rf 1949 

 

 

The expected exp_Rf although not reached in this scenario but is also not valid 

according to the design. Therefore the counter example highlights two issues: 

 The input to the exponent calculation module is wrong 

 The conversion from base 3 to binary is done wrongly inside the module 

 

We have identified many issues in the way the conversion from base 3 to binary was 

done, we have completely rewrote the conversion. We replaced the use of three lookup 

tables (LUT) followed by 2 full adder levels by one bigger LUT followed by one level 

of half adders. The values for the LUT have been generated using a Perl script that mimic 

the functionality of base 3 to binary conversion. 

After fixing the issue we wanted to verify that the issue is fixed in the same exact 

scenario that was showing the firing and also in any other scenario. To verify the fix on 

the same exact scenario we used another feature of the SVA language which is the 

assumption directive. The assumption directive constrains the Formal tool to follow the 

property defined in the assumption. We used this feature to make the Formal tool go 

through the same scenario and verify that the issue is now fixed. The assumption used is 

shown in Figure 3.14. 
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// Force the Formal tool to go through the same scenario that was causing the firing 

assume property (@($global_clock) (expR == 12'd1994 && fine_shift === 2'b00 

&& bin_norm_shiftamnt == 7’d1994)); 

Figure 3.14: Using assumption to direct the Formal to run on a specific scenario 

After applying the assumption, the Formal tool reported that the assertion always 

hold. To verify the property on more scenarios we removed the assumption and run the 

Formal tool again. 

After multiple iterations through the Formal firings and fixing issues in the unit, we 

finally reached a state where the assertion is always passing. This implies that the 

exponent is always correct assuming that the exponent before normalization was correct, 

any issue in the calculated exponent is coming from other parts of the code. The Formal 

tool was very useful in the debugging of this issue by correctly spotting the scenarios that 

are giving wrong behavior. 

The other output of this unit is the overflow flag, this flag is calculated according to 

the final exponent result. Since the main issue that we detected in the FMA unit so far is 

related to the flags so we focused on debugging this issue by verifying the flags 

calculations. The input exponent to the module is 12 bits while the output is only 11 bits. 

Overflow is expected only in case of the presence of 1 at the MSB of the resultant 

exponent after subtracting the normalization shift amount, or if all the exponent bits are 

ones. We added assertion to verify this functionality as shown in Figure 3.15. 

 

// Assertion to verify the overflow calculation 

assert property (@($global_clock) (overflow === (expected_result[11] | 

(&expected_result[10:0])))); 

Figure 3.15: Using assertion to verify overflow calculation 

3.6. New proposed verification flow for the floating point 

units 

We have explored a lot of useful features of the formal verification and we explained 

how we used these features to help in debugging issues and verifying the functionality of 

the FMA design. In this section we will conclude the useful techniques in finding and 

fixing bugs. We will also propose the use of complete verification checker that we have 

developed which can be applied for any floating point unit verification using simulation 

or formal verification. 

3.6.1. Testing and debugging the FMA unit 

We have explained how the formal verification method can be used in detecting and 

debugging bugs in the floating point implementations. The following methods have been 

applied successfully: 
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1. Detecting and fixing any design issues that may cause unexpected behavior, we 

have identified many bugs using this approach and handled them. 

2. Sanity check to make sure that the FMA outputs can reach all the expected paths 

without verifying if the final result is correct or not. In this step we have covered 

the following checks: 

a. Added checks that the output and flags aren’t stuck at 0 or 1 

b. Added checks that the relation between the flags is correct, we have 

identified critical issue in the binary calculations for the overflow and 

underflow flags 

c. Added checks that all the possible special values can be reached from the 

FMA logic, again we have identified an issue in the binary calculations 

where the sNaN is signaled in some scenarios. This result is not expected 

at the output of the FMA operation. 

3. Verifying the functionality of the building blocks of the FMA using assertion to 

describe the expected output of each block. The Formal run is used to verify the 

functionality of each block but instead of running on the block level directly we 

decided to run Formal on the full design even when debugging functionality of 

blocks, this is done for three reasons: 

a. The Formal when run on the full design will only apply the inputs that 

are valid in the full design so saves time in debugging unreachable states 

b. When debugging you can have full visibility of the behavior of the full 

design, this helps in identifying the root cause of the issues faster 

c. Running Formal on the top level is also useful if you want to debug the 

functionality of multiple blocks in one formal run 

3.6.2. Verifying the overall functionality of the FMA unit as a black 

box testing 

In this section we proposed new verification checker for the validation of floating 

point units. The flow is based on formal verification or simulation where the design inputs 

(the two operands and the rounding mode) and outputs (the final results and flags) are 

provided to the checker to verify that the result is correct. This flow is a black box testing 

that is done on the interface signals of the FPU, therefore this approach is highly generic 

and can be adapted for any FPU verification. 

The checker is connected to the FPU inputs and outputs as shown in Figure 3.16, the 

checker can be used in either simulation or formal verification. During the simulation or 

formal run the checker will work on verifying that the FPU is working correctly using 

the embedded assertions. 
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Figure 3.16: FPU verification checker 

We have developed the checker model for BFP multiplication operation, the same 

concepts can be used to develop checkers for the other FP operations. The checker 

supports both single and double precision formats. 

The checker is developed in SV, the main block of code in the checker that calculates 

the expected result and flags is about 150 lines of code while the full checker with all the 

assertions and IEEE format handling is written in less than 300 lines of code. The 

multiplier result evaluation in the checker is written in simple Verilog and with high level 

description of operations, therefore it can be easily traced and reviewed. 

The checker handles all the special values specified in the standard and verifies the 

flags as well as the result. 

As a proof of concept for this flow we applied it on the binary multiplier path of the 

FMA. The same approach can be applied on the addition and the FMA operations, it is 

also applicable for the decimal operations.  

The benefit for this approach is that once we get the model built and verified it can 

be applied directly on any other unit that has the same functionality since it has no 

dependency at all on the implementation details of the unit.  

The checker can also be tuned to test only specific ranges either in input or output 

by using assumption to constrain the formal run. 

Applying the formal verification on the design with the verification checker can 

detect all the issues in the design without the need to drive the run with test vectors. The 

formal tool is designed to try to find a legal scenario that hits the immediate assertions in 

the checker, the test vector generated by the Formal tool will take into consideration all 

the conditions specified in the model to reach the assertion. The formal tool will also try 
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to find a scenario that makes the assertion fire so here we are utilizing the formal tool to 

automatically explore all the possible values that match the checker conditions and will 

check automatically if any of them can cause the assertion to fire. 

The checker flowchart is shown in Figure 3.17, the checker takes the two operands 

and calculate the expected result and flags and compare them to the actual results. The 

first step in the checker flow is decoding the inputs to extract the sign, exponent and 

significand of the two operands, the second step is detecting the special values in the 

inputs (zero, nan, infinity) because the presence of any of them implies that the output is 

already known without the need for extra calculations. If special value is detected at the 

input the corresponding output and flags and generated and are directly compared to the 

actual output and flags.  

If no special values is found in the input operands then we will start calculating the 

intermediate result. However, extra step is done to normalize the subnormal numbers to 

simplify the calculations after that. After calculating the intermediate results, the checker 

will go through one of the following three branches to calculate the final result: 

 Subnormal result 

 Overflow in the result 

 Normal result 

In the three above cases rounding is done to calculate the final result and flags. We 

have added immediate assertions in each of the branches to verify the result if the branch 

is used.  

The assertions used in each branch are duplicated for each rounding mode, so the 

overall number of assertions used in the checker is 120 assertions (4 rounding modes * 5 

for the value and the 4 flags * 6 branches in the code: input NaN, input zero, input infinity, 

output subnormal, output has overflow, normal output). This approach allow us to verify 

the 120 scenarios in one run. 
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Figure 3.17: FPU verification checker workflow 

After applying the checker in the formal run, the Formal tool reported a scenario that 

shows mismatch between the expected OpR and the actual OpR. This proves the 

effectiveness of our approach. The main benefit of our approach is that it automatically 

searches for another failing test vector that will cause the assertion to fire once we fix the 

originally reported one. Thus the model is specified once and can be used many times for 

testing and debugging the results. The model is also generic enough to be used on any 

FP multiplier since it has no dependency at all on the internal implementation.  

The test vector that was causing the assertion to fire is shown on Table 3.6. This test 

vector is showing actual bug in the design. 
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Table 3.6: Test vector causing wrong unexpected FP result 

Input/output signal Value  

OpA  64’h63cf000000000000 

OpB 64’h1b4cf02000000000 

selop 3’b100 

round 3’b100 

OpR 64'h392fce044f800000 

Expected OpR 64'h3f2c089f00000000 

 

 

3.7. Fixing FMA design functionality 

As explained in this chapter we have used combination of simulation and formal 

verification techniques to verify the binary FMA functionality. We have detected a large 

number of bugs and were able to fix many of them. Here is a list of the main blocks that 

have been fixed during our work: 

1. The decoding of the operands were done wrongly in case of zero. This has 

been fixed and verified. 

2. The final result encoding was fixed to handle the subnormal result correctly 

and handle scenario where result reached the maximum non-infinity value. 

3. Binary to base 3 converter: This block is used to convert the exponent from 

binary to base 3 format. This functionality is needed to be able to compare the 

exponent with the shift amount (which is calculated in base 3 format) to avoid 

exceeding the maximum left shift amount that will cause underflow 

otherwise. The module in different scenarios was calculating the maximum 

shift amount wrongly causing wrong detection of underflow. 

4. Base 3 to binary converter: This block is used to convert the shift amount 

from base 3 format to binary format. This functionality is needed to convert 

the shift amount (in base 3) to binary value than can be subtracted from the 

exponent. The module in many cases was doing the conversion wrongly 

causing wrong overflow flag and wrong exponent. 

5. Binary exponent difference calculation: This module is responsible for 

calculating the multiplier exponent and comparing it to the exponent of the 

third operand to calculate the shift amount needed for adder alignment. All 

the outputs of this module were wrong and have been fixed, these outputs are: 

the subnormal detection of the multiplier output, the exponent difference 

between the multiplier and the third operand, and the shift direction (right or 

left). 

6. The handling of multiplier and addition standalone operations were broken 

for binary FMA path 

7. Fixed the underflow flag generation 
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3.8. Re-verifying the design 

We applied simulation tests after fixing the above issues in addition to other issues 

mentioned previously in this chapter and some other minor fixes. The testing has been 

done using one million test vectors for binary floating point multiplication. The FMA 

successfully generated correct result and flags for all the test vectors. Fixing the floating 

point addition support is still in progress, as some of the test vectors are still failing. 

We have also applied the floating point multiplier checker that we developed after 

fixing all the issues detected by the simulation. The checker when run using formal tool 

was able to detect some hidden issues that was missed in the simulation testvectors. 

The two main bugs that were missed by the simulation and detected by formal are 

shown in Table 3.7 and Table 3.8. These scenario were easily detected by formal in about 

90 seconds. 

Table 3.7: Test vector causing wrong FP multiplier result 

Input/output signal Value  

OpA  64’h6ffde7cc83f1d2c2 

OpB 64’h000a1af963b080a3 

selop 3’b100 

round 3’b100 

OpR 64'h3002e34aa08079bc 

Expected OpR 64'h3012e34aa08079bc 

 

 

Table 3.8: Test vector causing wrong FP multiplier result 

Input/output signal Value  

OpA  64’h20957dcb4bbaebe7 

OpB 64’h07629cc14bf8523e 

selop 3’b100 

round 3’b100 

OpR 64'h7fefffffffffffff 

Expected OpR 64'h000000000000000 

 

 

3.9. Verifying other FP multipliers using our developed 

checker 

We have applied our checker to verify the BFP multiplier of the OpenSparc T2 

design. We have applied our verification on both single precision and double precision 

since both are supported in OpenSparc T2 and in our checker. 



 

50 
 

The checker successfully reported that the subnormal support is broken either at the 

inputs or the output. We referred to the documentation and found that this limitation is 

already mentioned. This is considered another proof of concept of the approach and how 

it can be applied on different real designs to detect any hidden bugs. 

The differences between the OpenSparc T2 multiplier and the FMA multiplier from 

verification points of view are: 

 OpenSparc T2 multiplier is pipelined 

 The FMA is a standalone FPU while the OpenSparc T2 FPU is tightly 

integrated inside the processor 

Because of the above differences and since we are interested in verifying one 

instruction at a time we have added support for two new features in the checker: 

 The Formal is forced to evaluate the results with breadth-first manner, since 

the depth search has been disabled by the use of assumption that the checker 

input is stable (using SVA $stable() task) 

 An enable signal can be passed to the checker to enable the assertion only 

when data is ready 

The verification of the OpenSparc T2 FP multiplier has other challenge also to set 

the correct sequence that enable the multiplication pipeline. We have used formal with 

coverage statement to explore the required setup to do the multiplication, we have then 

forced the formal to use this setup when running with the checker. 

3.10. Conclusion 

In this chapter we explored the effort done in verifying and fixing the functionality 

of the FMA unit. We proposed new approach for verifying floating point operations using 

a verification checker that can be used in formal or simulation. We have proven the 

effectiveness of this approach in detecting bugs that was missed by the simulation run on 

the one million test vector. 

During our work we have fixed many bugs and issues in the design, some of the fixes 

are already explained in this chapter. However, we have not fixed yet all the found issues 

in the FMA unit. 
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Chapter 4 : OpenSparc T2 processor 

The processor architecture has evolved over the last few decades to provide high 

throughput processing; the processors have changed from depending on very deep 

pipeline into smaller pipelines but with multiple cores and threads sharing the same 

resources. This change has resulted in increasing the overall utilization of the system 

resources as well as increasing the throughput. 

4.1. OpenSparc T2 processor overview 

The OpenSparc T2 was released in open source form in 2008; it is considered the 

first open source 64 bit processor that also supports chip multithreading (CMT).  

OpenSparc T2 processor contains 8 cores, and each core has support for 8 threads 

that can run simultaneously but only 2 of them can run in parallel. The 8 threads are hard 

partitioned into two thread groups. The memory and floating point pipelines are shared 

between the two thread groups while each thread group has its own integer execution 

pipeline. The active thread within the thread group is selected based on the least recently 

issued priority within the available threads. If thread has long latency because of cache 

miss, it is removed from the list of ready threads until the long latency issue is resolved. 

The SPARC core block diagram is shown in Figure 4.1 where the EXU0 and EXU1 

are the two execution units, the IFU is the instruction fetch unit, TLU is the trap logic 

unit, FGU is the floating point and graphics unit, LSU is the load store unit, and MMU 

is the memory management unit. 

In addition to the blocks in Figure 4.1, the SPARC core includes also 8 way, 16 KB 

instruction cache as well as 4 way, 8 KB data cache. 

In the next sections we will go in more details through some of the major blocks in 

the SPARC core to understand its current support and features. We will focus on the units 

that we have modified, and will explain briefly what the other units are doing. 

4.2. Instruction fetch unit (IFU) 

The IFU is responsible for providing instructions to the other units in the core. The 

IFU provides instructions for the 8 threads. The IFU also maintains the Program Counter 

(PC) in the instruction cache (icache).The IFU consists of three large sub-blocks which 

are: 

 Fetch unit 

 Pick unit 

 Decode unit 

4.2.1. Fetch unit 

The fetch unit is shared between the 8 threads but only one thread is fetched at a 

time, the fetch unit fetches up to four instructions per thread from the icache in one cycle. 

The fetched instructions are saved in instruction buffer (IB), each thread has its own 8 

entry IB. The pick unit will retrieve the instructions from the IB of each thread. The fetch 
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unit also maintains the PC for all the 8 threads and handle scenarios like branch mis-

predicts, cache misses, LSU Synchronization and traps. 

 

Figure 4.1: OpenSparc T2 Core block diagram 

The fetch unit can fetch instructions for one processor at a time since the icache has 

only one port for fetch. The selection of the thread to fetch across the 8 available threads 

is done using the least recently fetched method (LRF). 

4.2.2. Pick unit 

The pick unit picks two instructions each cycle, one for each thread group. The least 

recently picked thread among the ready threads in each thread group is selected. The 

picked instructions in the two thread groups may cause hazard because the pick process 

of one thread group is totally independent on the pick process of the other thread group. 

This independence in the picking process allows the pick unit to operate on high 
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frequency. The two picked instructions may both require the same resource such as the 

FGU thus causing resource hazard. This type of hazard is detected and handled in the 

decode unit. The pick unit does not pick any instruction if the sources of this instruction 

depends on another unfinished instructions, this resolves read after write (RAW) and 

write after write (WAW) hazards. 

4.2.3. Decode unit 

The decode unit decodes two instructions in one cycle, one for each thread group. 

The decode unit reads the integer sources from the integer register file (IRF) and send 

them to the execution unit.  

The decode unit resolves different types of hazards not detected during pick stage. 

This includes: 

 The instructions from the two thread groups require the LSU AND the FGU 

unit (storeFGUstoreFGU hazard) 

 The instructions from the two thread groups require the LSU (load-load 

hazard) 

 The instructions from the two thread groups require the FGU (FGU-FGU 

hazard) 

 The instructions from the two thread groups is a multiply and a multiply 

block stall is in effect (multiply block hazard) 

 The instructions from the two thread groups require the FGU unit and a 

PDIST block is in effect (PDIST block hazard), where PDIST is an 

instruction that has three operands. 

The different types of hazards described above are caused by the limited resources 

in the OpenSparc T2 processor. The decode unit resolves the different types that can 

appear on the resources. The reason for each of the above hazards is explained in Table 

4.1. 

Table 4.1: OpenSparc T2 hazards 

hazard reason  

storeFGUstoreFGU Both LSU and FGU participate in floating point stores 

load-load There is only one LSU per core shared between the two active 

threads. Two LSU instructions cannot be handled at the same 

cycle 

FGU-FGU There is only one FGU per core shared between the two active 

threads. Two FGU instructions cannot be handled at the same 

cycle 

multiply block All multiplies except for FMULS require the multiplier 

hardware for two cycles back to back. No multiplication 

operation can be executed the cycle after a multiplication 

operation has started 

PDIST block The PDIST operation requires two cycles to read the three 

operands from the floating point register file which has only two 

ports. No floating point instruction should be started the cycle 

after PDIST operation 
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Example for the processor handling for dependent and independent instructions to 

avoid hazards is shown in Figure 4.2. The independent FGU operations can start directly 

with no delay, however, the dependent instruction cannot start until the required data is 

ready. 

 

 

 

Figure 4.2: Timing diagram for handling dependent instructions 

The Integer Register File (IRF) and Floating point Register File (FRF) writing ports 

arbitration is also handled by the decode unit.  

The W1 port of the IRF is used for the normal integer instructions that execute 

through the integer pipeline or the floating point pipeline. The W2 port is used for the 

integer loads, and integer divides.  
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The W1 port of the FRF is used for the normal floating point instructions that execute 

through the floating point pipeline. The port W2 is used for floating-point loads and 

floating-point divides. 

4.3. Execution unit 

Each thread group has a dedicated execution unit. The execution unit executes all 

the integer and logical operations except for the integer multiplication and division 

operations which are done in the FGU. The EXU also handles memory and branch 

addresses as well as the integer source operand bypassing. 

The EXU consists of the following subunits as shown in Figure 4.3: 

 Arithmetic Logic Unit (ALU) 

 Shifter (SHFT) 

 Operand Bypass (BYP) 

 Integer Register File (IRF) 

 Register Management Logic (RML) 

 

 

 

Figure 4.3: EXU block diagram 
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4.4. Load Store Unit 

The SPARC core has one LSU shared between the two thread groups. The LSU 

handles all the memory reference between the core, the L1 cache and the L2 cache. All 

the communication with the L2 cache is done through the cache crossbars (processor to 

cache PCX and cache to processor CPX) through the gasket. 

4.5. Cache Crossbar 

The cache crossbar (CCX) unit connects the 8 SPARC cores to the 8 banks of the L2 

cache. An additional port is used to connect the SPARC cores to the IO bridge. Maximum 

number of simultaneous requests from the cores is 8, also the maximum number of data 

return, acks, or invalidations coming from the L2 cache is 8.  

The CCX is divided into two parts: processor to cache crossbar (PCX) and cache to 

processor crossbar (CPX). The block diagram of the CCX unit is shown on Figure 4.4. 

 

 

 

Figure 4.4: Communication between the SPARC core and the L2 cache through 

the cache crossbar 

4.6. Memory Management Unit 

The Memory Management Unit (MMU) uses its hardware tablewalk state machine 

to find valid Translation Table Entries (TTEs) for the requested access. The Translation 

Lookaside Buffers (TLBs) use the TTEs to generate the Physical Addresses (PAs) from 
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Virtual Addresses (VAs) and Real Addresses (RAs). The TLBs use the TTEs to validate 

that a request has the permission to access the requested address. 

4.7. Trap Logic Unit 

The Trap Logic Unit (TLU) manages exceptions, and traps for the SPARC core. The 

thread may take a trap if some exceptions (conditions) occurred. The TLU keeps track of 

the current processor state related to trap. The TLU maintains the trap table to be accessed 

by the software to handle the trap correctly. The TLU prevents the update of architectural 

state for the instructions after an exception, it relies on the IFU and execution units to 

achieve this. The main blocks of the TLU are shown in Figure 4.5. 

 

 

 

Figure 4.5: TLU basic blocks 

The TLU consists of the following blocks: 

 The Flush logic: Responsible for generating flushes in response to exceptions 

 The Trap Stack Array (TSA) maintains the trap state for each of the eight 

threads for up to six trap levels 

 The Trap State Machine prioritizes the trap requests for the eight threads 
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Examples for the different traps in the SPARC core are: 

 ECC errors on the source operands, this is detected in the execution unit, 

LSU, or the FGU 

 Invalid or illegal instruction detected in the IFU 

 Exception reported on the floating point instruction, note that FGU sends the 

trap prediction on the FX2 and the actual trap in FB stage of the pipeline. The 

pipeline timing diagram for the case when the branch prediction is correct is 

shown on Figure 4.6 and the case of the trap mis-predict is shown on Figure 

4.7. In Figure 4.6, the trap is predicted in FX2 cycle, the FGUOp0 instruction 

continues execution but the successive instructions are flushed. The actual 

exception is calculated at FB cycle. In this case the prediction was correct so 

the instruction was flushed. In Figure 4.7, where the predication was wrong 

the instruction FGUOp0 completes successfully and the successive 

instructions and restarted. 
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Figure 4.6: Correct trap prediction 
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Figure 4.7: Trap mis-prediction 

4.8. Floating Point Unit 

The FGU is a floating point and graphics unit that is shared between the 8 threads. 

The theoretical floating-point bandwidth for FGU is 11 Giga Floating Point Ops (GFlops) 

per second. The FGU is responsible for all the floating point operations in SPARC V9 

instruction set, integer multiplication and division, population count instructions, and the 

VIS 2.0 instruction set. 

The FGU includes 256 entry x 64 bit Floating point Register File (FRF) with two 

write ports and two read ports. The FRF supports the 8 threads by dedicating 32 entry 

per thread. Each register file entry includes 14 bits of error correction code (ECC). The 

ECC errors result in a trap if the corresponding enables are set. If the ECC errors are 

correctable, software can fix them following a trap. The second write port (W2) of the 

FRF is dedicated for floating point loads and floating point division/square root 

operations. The first write port (W1) is used to store the output of the other instructions, 

no arbitration is needed for W1 port because all the instructions that can write to it have 

the same fixed delay, and only one instruction is executed per cycle. The two read ports 

(R1 and R2) always read from the same thread in a given cycle, while the two write ports 
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can write to the same or different threads. The FGU supports FRF bypassing for FGU 

operations having FRF destination (excluding the division and square root operations). 

The FGU is compliant with the IEEE 754 standard: 

1. Single and double precision support, all quad precision instructions are not 

supported 

2. Support for all the data types (normal, subnormal, zero, NaN, and infinities) with 

limitations in some instructions 

3. Support for the IEEE required rounding modes 

4. Support for the IEEE defined exceptions (invalid operation, inexact, division by 

zero, overflow, and underflow) 

The FGU block diagram is shown on Figure 4.8. The FGU consists of three 

pipelines: 

 Floating point execution pipeline (FPX) 

 Graphics execution pipeline (FGX) 

 Floating point division and square root pipeline (FPD) 

 

 

 

Figure 4.8: FGU block diagram 

The FGX and FPX pipelines have throughput of one instruction per cycle and require 

fixed number of cycles (6 cycles) regardless of the values of the operands to execute and 

are fully pipelines except for the PDIST instruction, the FPD pipeline uses dedicated non-
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pipelined unit but it is not blocking for the FPX and FGX pipelines. The floating point 

division requires fixed number of cycles while integer division has variable delay 

depending on the values of the operands. The PDIST instruction requires three sources 

so it takes two cycles to fetch the sources for the FRF and no floating point operation can 

start the cycle after the PDIST instruction. 

The FGU design optimizes area and power by sharing the resources across different 

paths, where the floating point add, multiply and division share the format and exponent 

calculations. The FPX pipeline is shared with the graphics and integer data paths 

whenever applicable (partitioned add/subtract reuse the floating point adder, the 8x16 

multiply operations reuse the floating point multiplier, the  integer multiplication and 

division are also reusing the corresponding floating point units). The power is also 

optimized by using clock gating mechanism to disable all the parts that are inactive. Four 

clock domains are used in the FGU unit as shown in Table 4.2. The FGU pipelines details 

are shown on Figure 4.9. 

 

 

 

Figure 4.9: FGU pipelines 

4.8.1. Interface with other units 

The FGU interface with other units in the SPARC processor is explained in Figure 

4.10. The IFU provides the instruction control information (part of the opcode) as well 

as the sources and the destinations. Only one instruction can be issued to the FGU per 



 

63 
 

cycle. The IFU can flush the FGU in the FX2 or FX3 stages. The FGU provides the status 

of the executed instruction to the IFU. The FGU sends the predicted trap and the actual 

exception to the TLU. The TLU can send a flush at FX3 stage. The LSU shared the W2 

port of the FRF with the FPD pipeline where FPD pipeline has higher priority since it 

cannot stall. The FPD reserves the W2 port few cycles before the result is ready by 

notifying the IFU and LSU about the expected completion of the instruction. The load 

operation can update the FRF or the Floating-point State Register (FSR), the floating 

point store instruction shared a read port of the FRF with the execution pipeline. The 

FGU can execute integer instructions so it has interface with the two execution units as 

shown in Figure 4.10. The EXU provides the integer sources as well as the Graphics State 

Register (GSR) control signals to the FGU. The FGU writes the result back to the EXU 

along with the destination address as provided by the IFU.  

 

 

 

Figure 4.10: FGU interface with other units 

Table 4.2: FGU clock domains 

Clock Description  

Main Any instruction requires FGU action enables this domain 

Multiply Any floating point, integer, or VIS multiplication operations 

Divide Any floating point or integer divide or square root 

VIS Any VIS instruction executed in the FGX pipeline 

 

 

4.8.2. Floating-Point State Register (FSR) 

The FSR is maintained inside the FGU for each thread, the FSR is 64 bits which 

includes different bits to control the FGU operation (round direction for example) as well 

as bits to specify the status of the operation. 
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4.8.3. Conclusion 

In this chapter we explained the overall OpenSparc T2 processor design. We have 

also went through details for the main blocks in the SPARC core. In the next chapter we 

will explain all the changes done in the processor to include the FMA unit. 
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Chapter 5 : Including the binary/decimal FMA in the 

OpenSparc T2 processor 

The FGU in the OpenSparc T2 has a good support for the binary floating point 

arithmetic. However, the support for the binary floating point operations is missing the 

FMA instructions. The FGU also has no support at all for the decimal floating point 

arithmetic. Although all the unsupported operations can be handled at the software level, 

but the cost in term of number of cycles to do the same function is huge compared to the 

hardware support.  

In our work we have integrated the binary/decimal FMA unit implemented in [7] 

into the OpenSparc T2 processor thus improving the support of the processor’s floating 

point unit by 11 more binary and decimal instructions.  

The SPARC core units modified during our work are: 

 The gasket 

 Pick unit 

 Decode unit 

 FGU 

 TLU 

In our work we have also added the newly supported instructions to the SPARC ISA 

and updated the assembler software and recompiled it to work with the new instructions 

correctly. All the changes have been verified on the OpenSparc T2 verification 

environment which has been modified to test the newly added instructions. 

5.1. Related work  

In his master’s work M. Hosny [28] has integrated the decimal FMA unit developed 

in [29] in the OpenSparc T2 processor. He has added the support for the new unit in the 

processor architecture and updated the Instruction Set Architecture (ISA) for the new 

decimal instructions supported on the hardware. The new instructions that he defined are: 

 Decimal Fused Multiply-Add double (DFMADDd) 

 Decimal Fused Multiply-Subtract double (DFSUBd) 

 Decimal Fused Negative Multiply-Add double (DFNMADDd) 

 Decimal Fused Negative Multiply-Subtract double (DFNMSUBd) 

 Decimal Floating point Add double (DFADDd) 

 Decimal Floating point Subtract double (DFSUBd) 

 Decimal Floating point Multiply double (DFMULd) 

In his work he also updated the software tool chain to understand the new 

instructions. 

In our work we have integrated FMA unit that supports binary and decimal 

operations into the OpenSparc T2 processor. The FMA unit that we added has less 

delay (by ~ 12%) and additionally supports similar operations on the binary side. 

Integrating of the new unit allows us to support the 4 new binary FMA operations 

in addition to the 7 decimal operation that M. Hosny has supported in his work. In 

addition because the FMA used supports binary multiplication and addition in 
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addition to the FMA operation, this allowed us to explore possible improvements 

in the processor floating point unit to increase the throughput. 

5.2. SPARC ISA update  

The SPARC instruction set has been updated to include the newly supported 

instructions. SPARC V9 provides two instructions that are entirely implementation 

dependent: IMPDEP1 and IMPDEP2. The IMPDEP1 is used to implement many VIS 

instructions in the UltraSparc architecture. In later releases of the SPARC architecture, 

the IMPDEP2 was divided into two parts IMPDEP2A and IMPDEP2B where 

IMPDEP2A remains implementation dependent while IMPDEP2B is used for the binary 

FMA instructions.  

We have used the IMPDEP1 instructions set to implement all the decimal operations 

other than the FMA, and the IMPDEP2B to implement the binary and decimal FMA 

operations. The Opcode for the implementation dependent instructions is shown in Table 

5.1. The Op3 6 bits used to differentiate between the IMPDEP1 and IMPDEP2 are shown 

in Table 5.2. The Op2 2 bits are used to differentiate between the IMPDEP2A and 

IMPDEP2B as shown in Table 5.3. 

Table 5.1: Opcode for the implementation dependent instructions 

10 Impl-dep Op3 Impl-dep Op2 Impl-dep 

31 30 29       25 24   19 18          7  6   5 4            0 

Table 5.2: Op3 values for IMPDEP1 and IMPDEP2 

Op3 Implementation dependent  

110110 IMPDEP1 

110111 IMPDEP2 

Table 5.3: Op3 values for IMPDEP1 and IMPDEP2 

Op2 Implementation dependent  

00 IMPDEP2A 

01,10,11 IMPDEP2B 

 

 

The FMA operations have 4 operands which are: the destination register rd, first 

source rs1, second source rs2 and third source rs3. The Opcode used for the FMA 

operations is shown in Table 5.4. 

Table 5.4: Opcode for the FMA instructions 

10 rd 110111 rs1 rs3 Op5 rs2 

31 30 29     25 24   19 18    14  13   9 8     5 4    0 
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The Op5 used for the FMA operations is shown in Table 5.5. 

Table 5.5: Op5 values for FMA operations 

Op5 Instruction Assembly 

00 01 Multiply-Add single FMADDs 

00 10 Multiply-Add double FMADDd 

00 11 Decimal Multiply-Add  DFMADDd 

01 01 Multiply-Subtract single FMSUBs 

01 10 Multiply-Subtract double FMSUBd 

01 11 Decimal Multiply-Subtract DFMSUBd 

10 01 Negative Multiply-Subtract single FNMSUBs 

10 10 Negative Multiply-Subtract double FNMSUBd 

10 11 Negative Decimal Multiply-Subtract DFNMSUBd 

11 01 Negative Multiply-Add single FNMADDs 

11 10 Negative Multiply-Add double FNMADDd 

11 11 Negative Decimal Multiply-Add  DFNMADDd 

 

 

The decimal operations are implemented using the IMPDEP1 space, the opcode for 

the IMPDEP1 is shown in Table 5.6 and the values of the Opf to differentiate between 

the different instructions is shown in Table 5.7. Note that these operations have only 3 

operands unlike the FMA instructions which are: the destination register rd, the first 

source register rs1 and the second source register rs2. 

Table 5.6: Opcode for IMPDEP1 

10 rd 110110 rs1 Opf rs2 

31 30 29       25 24   19 18   14  13   5 4            0 

Table 5.7: Opf values for decimal operations 

Opf Instruction Assembly 

00000 0010 Decimal Addition DFADDd 

00000 0110 Decimal Subtraction DFSUBd 

01000 0010 Decimal multiplication DFMULd 

 

 

Note that the above selection for the Opcode is done to match [28] so the user can 

use the same compiler on both units. 

In the next sections we will explain how the SPARC core was modified to support 

the new unit and the new instructions. Our changes have affected multiple units in the 

core and we will go through the changes in the next sections. 
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5.3. FGU changes 

The new FMA unit integrated implements some of the functionalities of the original 

FGU which are the binary addition and multiplication, and also supports some new 

functionalities which are the binary and decimal FMA, decimal addition, multiplication 

and subtraction. So we had different design decisions which are: 

1. The new unit to replace the original unit functionality for the adder and multiplier 

and we can remove their old implementation to decrease the core area. We 

explored this possibility but we faced the following issues: 

a. The new unit only supports binary 64 format, although in our future work 

we plan to modify the unit to work also with binary 32 format but 

currently the new unit cannot handle the 32 bits operations. 

b. The multiplication unit in the FGU handles also integer multiplication 

and SIMD operations, these cannot be handled with the new unit. The 

same for addition. 

c. As part of optimizing the core area, some parts like the exponent path is 

shared between different instructions so cannot remove these shared units 

even if the adder and multiplier are replaced with the new unit 

2. The new unit can be integrated as a separate pipeline inside the FGU, this 

approach can help in increasing the processor throughput since now we can have 

two binary-binary or binary-decimal operations handled in parallel. However, 

the support for extra pipeline in the FGU will increase the complexity and will 

require a lot of modifications in the processor such as modifying the decode unit 

to fetch two FGU instructions in the same cycle but the decode unit has to be 

made smarter to differentiate between the types of the FGU instructions and 

which of them can be handled in two units versus the ones that can be only 

handled in one unit. The decode unit will also need to handle more types of 

hazards that can occur because of the presence of the two units such as the 

relations between the sources and the destinations of the two parallel instructions 

may cause RAW or WAW. Also the current FRF used has to be changed or 

enhanced since it only has two write ports and two read ports and all of them are 

already reserved for current pipelines. 

3. Use the new unit to support the new instructions, the old instructions will be 

executed only through the original units. This is simpler approach that allow for 

the addition of the new functionality without complicating things or breaking the 

current support. In our future work we are studying the possibility to allow using 

the new unit for multiplication operations that starts the cycle after a 

multiplication operation is started. Currently the second instruction is blocked 

and we can use the new unit to remove this limitation and improve the processor 

throughput in this case. Another possible improvement is to overcome the 

missing support for the subnormal numbers in the multiplication operation by 

making use of the FMA unit in this case. 

The new unit is integrated as a new block in the FGU, and the new instructions are 

executed in the FPX pipeline. The new instructions read the data from the FRF and write 

back the result to the FRF and the flags to the floating point state registers.  

The FMA instructions require two cycles to read the data from the FRF before the 

actual execution of the operation since the FMA instructions have three sources. This is 

handled the same way the PDIST operation is handled since it also fetches the inputs 

from the FRF in two cycles. This is handled in the decode unit where the three addresses 

are sent to the FRF in two cycles. 
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The output of the FRF is used directly in the FMA unit without any formatting, this 

is different from the other units where the data is formatted first before the operations. 

The FMA unit does the full operation for both the exponent and the significand including 

the final normalization and rounding. Also the sign is calculated inside the FMA unit so 

the output of the FMA unit is connected directly to the FRF write port without any 

modifications. The FMA flags are mapped to the corresponding bits of the state registers 

and the state registers are updated with the result of the FMA unit. The state registers are 

enabled per instruction since each instruction may have different set of corresponding 

flags, state registers enabling conditions has been updated to understand the required 

flags for the new instructions. Also the rounding mode supported by the processor is 

mapped to the corresponding rounding directions of the FMA. The selop and bd inputs 

of the FMA are set according to the instruction type. No special handling is needed to 

support the decimal floating point numbers since they are encoded in 64 bits like the 

binary double precision numbers and are saved in the same register file. Only the FMA 

unit differentiates between the binary and decimal formats of the inputs.  

The FGU sends a flag to the TLU when the PDIST operation is executed, this is 

needed because the TLU needs to know the instructions that require two cycles to fetch 

the operands from the FRF to be able to handle traps correctly. This flag has been updated 

to consider the FMA operations as well since it also requires two cycles to fetch the 

sources from the FRF. 

New clock domain has been added to the FGU control unit to power on the FMA 

unit using clock gating mechanism to save power, this is done similar to the 

multiplication unit. Other changes has been done in the control paths to let the FMA 

result go through the different multiplexers to reach the FRF. 

5.4. Gasket changes 

The cache crossbar (CCX) connects the 8 SPARC cores to the 8 banks of the L2 

cache. All the processor to cache (PCX) and cache to processor (CPX) communication 

is done via the gasket. 

The gasket partially decodes the instructions read from the cache and invalidates the 

incorrect instructions by replacing the first 5 bits of the opcode with zeros. The gasket 

unit is updated to consider the newly added instructions as legal instructions. 

5.5. Pick unit changes 

The pick unit is modified to understand the new instructions and consider them as 

floating point unit instructions. The pick unit also identifies what are the valid sources 

and/or destination for each instruction, it is modified to be able to understand the FMA 

instruction which is the only instruction that has 4 register file addresses in the opcode (3 

for the sources and 1 for the destination).  

Special handling is required for the FMA operations since the floating point register 

file has only 2 read ports so 2 cycles are needed to get the input ready for the FMA 

instruction, the pick unit detects the instructions that need two cycles to fetch input and 

sends flag to the decode unit. The pick unit also has dependency check for Write After 

Write (WAW) and Read After Write (RAW) hazards; this is done by comparing the 

source and destinations of the new instructions with the ones already executing in the 
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pipeline, the check has been updated to consider the hazards that can occur from the FMA 

third operand. 

5.6. Decode unit changes 

The decode unit is changed to prevent any floating point instructions from being 

executed the cycle after FMA instructions to avoid hazard at the floating point register 

file read ports.  

The decode unit extracts the sources and the destination from the new instructions 

and send them to the floating point unit, the decode unit save the third source of the FMA 

instruction in a register to be sent in the next cycle to the floating point unit. 

5.7. TLU unit changes 

The TLU needs to know about the instructions that take two cycles to fetch inputs 

from the FRF to handle the trap correctly. New flag is sent to the TLU to indicate that 

FMA instruction is being executed. 

5.8. Software changes 

The verification environment that is coming with the OpenSparc T2 has different 

diags that are used to test the functionality of the processors. These diags are written in 

assembly language and are compiled using the assembler to generate the executable file. 

The executable file is then dumped in opcode format to be loaded to the processor 

memory during simulation. 

Since the new instructions that we added are not understood by the assembler we 

were not able to test our changes using the assembly tests and instead we used to modify 

the memory image files manually to test the changes. As a fix for this limitation we have 

updated the assembler code to understand the new instructions and generate the 

corresponding opcode correctly. The GNU Binutils version 2.21.1 has been downloaded, 

modified and recompiled. The modified assembler is then added to the processor 

verification tools to be used in the regression tests. 

As an example for the software changes we will show the changes done to enable 

the FMADDd instruction. The other instructions are similar to this. 

The changes are done in three BinUtils sources files: 

 include/opcode/sparc.h: This is the header file for the sparc opcode data 

structure definitions as well as the mapping functions for the opcode. This 

file was modified to support new instruction type with 4 operands. 

 gas/config/tc-sparc.c: This file is the source code for the GNU assembler. 

This file is modified to be able to understand the fourth operand passed to the 

instruction. 

 opcodes/sparc-opc.c: This file includes all the assembly instructions 

supported in the SPARC architecture and the function used to decode them 

into their opcode. This file is modified to define the new instructions. 
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5.8.1. include/opcode/sparc.h changes 

This file was modified as shown in Figure 5.1. Three modifications have been 

applied to the file which are: 

 The op5 part of the opcode that we used in IMPDEP2A instructions set is 

defined. Note that in the definition of this field we specify both the location 

and the size. The location is defined by the shift amount done so in this case 

the field position is 5. The size of the field is defined by the number of ones 

in the “&” operation with x, in this case the size is 4 since 0xf is the 

hexadecimal representation of 1111. 

 The rs3 operand in the opcode is also defined as a new operand in this file, 

similar to the explanation for op5, rs3 is in the 9th bit with size of 5 bits. 

 The last modification in the file to support the FMA instruction is the 

definition of the new format F4F that includes the part of the opcode that is 

used to decode the instructions. For the FMA operation the op, op3 and op5 

fields are used together to decode the instruction. 

 

 

*************** 

*** 193,202 **** 

--- 193,204 ---- 

   

  #define OP2(x)  (((x) & 0x7) << 22)  /* Op2 field of format2 insns.  */ 

  #define OP3(x)  (((x) & 0x3f) << 19) /* Op3 field of format3 insns.  */ 

+ #define OP5(x)  (((x) & 0xf) << 5) /* Op5 field of format5 insns.  */ 

  #define OP(x)  ((unsigned) ((x) & 0x3) << 30) /* Op field of all insns.  */ 

  #define OPF(x)  (((x) & 0x1ff) << 5) /* Opf field of float insns.  */ 

  #define OPF_LOW5(x) OPF ((x) & 0x1f)     /* V9.  */ 

  #define F3F(x, y, z) (OP (x) | OP3 (y) | OPF (z)) /* Format3 float insns.  */ 

+ #define F4F(x, y, z) (OP (x) | OP3 (y) | OP5 (z)) /* Format4 float insns.  */ 

  #define F3I(x)  (((x) & 0x1) << 13)  /* Immediate field of format 3 insns.  

*/ 

  #define F2(x, y) (OP (x) | OP2(y))    /* Format 2 insns.  */ 

  #define F3(x, y, z) (OP (x) | OP3(y) | F3I(z)) /* Format3 insns.  */ 

*************** 

*** 204,209 **** 

--- 206,212 ---- 

  #define DISP30(x) ((x) & 0x3fffffff) 

  #define ASI(x)  (((x) & 0xff) << 5)  /* Asi field of format3 insns.  */ 
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  #define RS2(x)  ((x) & 0x1f)         /* Rs2 field.  */ 

+ #define RS3(x)  (((x) & 0x1f) << 9)         /* Rs3 field.  */ 

  #define SIMM13(x) ((x) & 0x1fff)       /* Simm13 field.  */ 

  #define RD(x)  (((x) & 0x1f) << 25) /* Destination register field.  */ 

  #define RS1(x)  (((x) & 0x1f) << 14) /* Rs1 field.  */ 

Figure 5.1: include/opcode/sparc.h changes 

5.8.2. opcodes/sparc-opc.c changes 

The modifications in this file are shown in Figure 5.2. The new instruction fmaddd 

is added which uses the new format type F4F that we defined in sparc.h. Note that the 

values passed to the F4F corresponds to the values of op, op3, and op5 for the fmaddd 

operation (op=10, op3=0110111,op5=10). The four values “v,B,4,H” used are flags 

corresponding to the types of the operands. The definition for these flags is in 

gas/config/tc-sparc.c. The “v” means that the first operand is 64 bits floating point 

register corresponding to RS1 position in the opcode, the “B” means that the second 

operand is 64 bits floating point register corresponding to the RS2 position in the opcode, 

the “4” means that the third operand is 64 bits floating point register corresponding to the 

RS3 position in the opcode, finally the “H” means that the destination is a 64 bits floating 

point register corresponding to the RD field position in the opcode. 

 

 

*************** 

*** 1809,1814 **** 

--- 1809,1817 ---- 

   

  { "siam",      F3F(2, 0x36, 0x081), F3F(~2, ~0x36, ~0x081)|RD_G0|RS1_G0|RS2(~7), 

"3", 0, v9b }, 

   

+ /* FMA unit instructions */ 

+ { "fmaddd", F4F(2, 0x37, 0x02), F4F(~2, ~0x37, ~0x02), "v,B,4,H", 

F_FLOAT, v9 }, 

+  

  /* More v9 specific insns, these need to come last so they do not clash 

     with v9a instructions such as "edge8" which looks like impdep1. */ 

Figure 5.2: opcodes/sparc-opc.c changes 
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5.8.3. gas/config/tc-sparc.c changes 

The modifications done in this file are shown in Figure 5.3. The modifications done 

are mainly to define the new operand type ‘4’ that we used in sparc-opc.c file. The new 

value RS3 was defined in sparc.h as explained previously. 

*************** 

*** 2131,2136 **** 

--- 2131,2137 ---- 

       case 'e':  /* next operand is a floating point register */ 

       case 'v': 

       case 'V': 

+      case '4': 

   

       case 'f': 

       case 'B': 

*************** 

*** 2153,2158 **** 

--- 2154,2160 ---- 

   

        if ((*args == 'v' 

      || *args == 'B' 

+     || *args == '4' 

      || *args == 'H') 

     && (mask & 1)) 

          { 

*************** 

*** 2213,2218 **** 

--- 2215,2223 ---- 

      case 'R': 

        opcode |= RS2 (mask); 

        continue; 

+     case '4': 

+       opcode |= RS3 (mask); 

+       continue; 
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      case 'g': 

      case 'H': 

Figure 5.3: gas/config/tc-sparc.c changes 

5.9. FMA area calculation 

The area of the FGU has been calculated using Synopsys Design Compiler before 

and after the addition of the FMA unit. The area profile for the FGU is shown on Table 

5.8. 

Table 5.8: FGU Area profile 

 Area (um) 

OpenSPARC T2 FGU 151342 

Modified FGU including the FMA 267453 
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Chapter 6 : Conclusion and future work 

In this research, we have integrated the binary/decimal FMA unit developed in [7] 

in the open-source processor OpenSparc T2. This allowed us to support 11 new floating 

point instructions in the processor ISA. The support of the new instructions in the 

processor helps in improving the overall processing time as well as the power 

consumption. 

The modifications in the OpenSparc T2 processor are scattered across different units, 

the results have been verified using the simulation verification environment that came 

with the processor. New assembly tests have been created to verify the new instructions. 

The SPARC ISA in the GNU assembler has been updated and rebuilt to support the 

new set of added instructions. 

We have worked on verifying the FMA unit as a standalone unit as well as after 

integration in the processor. We proposed a new verification checker for binary floating 

point multiplication that is applicable to any floating point unit; the checker can be used 

in formal or simulation runs and has uncovered many bugs in the unit. We have fixed 

some of found bugs and the others are still under investigation. The checker has been 

applied on other open source designs and proved its capability of detecting corner cases 

bugs. 

As for the future work, the FMA unit can be modified to support the binary single 

precision format, this allows for the support of the three remaining FMA instructions in 

the processor. The verification flow proposed can also be extended to support other 

binary and decimal floating point operations. The developed checker can be applied other 

designs to help in verifying their functionality. 

The OpenSparc T2 FGU unit has some limitation in the multiplication operation that 

can be addressed with the usage of the new integrated unit. Examples for the current 

limitations: 

1. Two successive multiplication instructions is not supported 

2. Subnormal support in the multiplication is incomplete
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 ملخصال
 

 مفتوح معالج في مدمجة وجمع ضرب ةوحدأضافة  لىع الرسالة هذه في العمل يتركز 
 مما والعشرية الثنائية للاعداد العائمة النقطة ذات العمليات الجديدة الوحدة تدعم حيثر المصد

 المدمجة الجمعو  الضرب للعمليات يفتقر كان حيث للمعالج الحسابية الخصائص إستكمال لنا يتيح
ة. سابية ذات النقطة العائمة للأرقام العشريللدعم الأولى للعمليات الح لاضافةاب الثنائية للارقام

للأرقام  وحدات الحساباتالوحدة المدمجة تحسن من أستخدام المساحة و الطاقة عن طريق دمج 
 العشرية و الثنائية.

 معالج يساعد في تحسين وقت المعالجة الكلي، مقارنة معال دعم المزيد من الوظائف فى 
ريق إعادة طالمساحة المطلوبة عن  تقليل يمكن  .الوظائف نفسلأداء تطبيقات البرمجيات  أستخدام

أيضا باستخدام أحدث التكنولوجيا مع حجم أصغر يمكن  . وحدات في عمليات مختلفةالاستخدام 
 .أن تقلل من المساحة الكلية المطلوبة

ل اخدة الجديدة وحدالجديدة، ودمج العمليات المعالج لدعم التعديل تعليمات ويشمل العمل  
ليفهم التعليمات الجديدة و يتواصل بشكل المعالج  عديلالمعالج، وت فىوحدة الفاصلة العائمة 

 .جديدةالت تعليماالفهم يلالمترجم  تعديلتم يتضمن أيضا لعمل الذي ا .جديدةالحدة صحيح مع الو 
من حقق تم التو اختبارات جديدة،  أضافةلمعالج عن طريق ل الجديدةوظائف التم التحقق من  

 .الأختبارات القديمة بأستخداممعالج ال بعد تعديل وظائف القديمةالصلاحية 

ى المبنى عل الرسمى باستخدام تقنية التحقق  مدمجة وجمع ضرب ةوحدتم التحقق من خلال عملنا 
اقترحنا أيضا منهجية للتحقق من  .العديد من الأخطاء في التنفيذ أساس رياضى حيث تم أكتشاف

 .المبنى على أساس رياضى الرسمى التحققالعائمة باستخدام وحدة الفاصلة 
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