

BINARY FLOATING POINT ARITHMETIC VERIFICATION

USING A STANDARD LANGUAGE TO SOLVE

CONSTRAINTS

By

Khaled Mohamed Abdel Maksoud Nouh

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATION ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

BINARY FLOATING POINT ARITHMETIC

VERIFICATION USING A STANDARD LANGUAGE TO

SOLVE CONSTRAINTS

By

Khaled Mohamed Abdel Maksoud Nouh

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATION ENGINEERING

Under the Supervision of

Prof. Dr. Hossam A. H. Fahmy

Electronics and Communication

Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

BINARY FLOATING POINT ARITHMETIC

VERIFICATION USING A STANDARD LANGUAGE TO

SOLVE CONSTRAINTS

By

Khaled Mohamed Abdel Maksoud Nouh

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATION ENGINEERING

Approved by the

Examining Committee

Prof. Dr. Hossam A. H. Fahmy, Thesis Main Advisor

Prof. Dr. Ibrahim Mohamed Qamar, Internal Examiner

Prof. Dr. Ashraf M. Salem, External Examiner, Faculty of Engineering,

Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

Engineer’s Name: Khaled Mohamed AbdelMaksoud Nouh

Date of Birth: 20/7/1987

Nationality: Egyptian

E-mail: Khaled_nouh@mentor.com

Phone: 01271110627

Address: 136, El Narges 4, New cairo

Registration Date: 01/10/2010

Awarding Date: 2016

Degree: Master of Science

Department: ELECTRONICS AND COMMUNICATION

ENGINEERING

Supervisors:

 Prof. Dr. Hossam A. H. Fahmy

Examiners:

 Prof. Dr. Hossam A. H. Fahmy

 Prof. Dr. Ibrahim Mohamed Qamar

 Prof. Dr. Ashraf M. Salem, Faculty of Engineering, Ain

Shams University

Title of Thesis:

Binary Floating Point Arithmetic Verification using a Standard Language to Solve

Constraints

Key Words:

Floating point arithmetic; Constrained Simulation

Summary:

Verification of Floating Point (FP) units is a difficult task to achieve, and the cost of

post-production bugs is severe. This is due to dealing with a large bit stream of inputs;

simulation based verification fails to cover all possible input combinations and hence

does not guarantee a 100% bug free design. On the other hand, formal methods are

efficient in verification of FP arithmetic, yet they require creating a formal model, they

cannot work on an optimized version of a design and may fail with complex designs

due to state space explosion.

Our framework provides a new verification methodology that uses a constraint based

random technique to generate test vectors for validating binary FP arithmetic

instructions. The constraints used in our verification are written in System Verilog

(SV) language and can be solved with any SV constraint solver tool. For every

arithmetic operation, the written constraints couple the operands, intermediate results,

rounding direction and the result evaluation to comply with the FP IEEE Standard

(IEEE Std 754-2008).

The new proposal is generic and can be used to verify any software or hardware binary

FP design/library. Also, it proves feasibility and usefulness in finding bugs for various

binary FP Arithmetic operations for single and double precision formats.

mailto:Khaled_nouh@mentor.com

i

Acknowledgments

First of all, I would like to thank God for giving me the strength and perseverance to

complete this research. His greatest gifts are for sure the ladies that light my life, my

mother who always pushed me beyond my limits, my wife who held my hands through

this tough journey, my late grandmother who guided me with her heavenly blessings and

my little girl who represents the future with all what it holds ahead.

Perhaps, having an idol to look up to is one of the biggest motives to excel in work.

I was blessed with two: my grandfather, this great man who started from the scratch and

reached greatness by means of hard work and self-confidence, he always used to say the

“great ones are those with the great deeds”, and my father the most knowledgeable person

who I always look up to and seek advice from.

 I would like also to express my gratitude to my advisor Prof. Hossam Aly Fahmy

for his continuous support, guidance and patience. I could not have imagined having a

better advisor and mentor.

Last but not the least, I would like to thank my elder brother, my friends and my

second family at work, specially my partner in the journey Ahmed Ismail.

ii

Table of Contents

ACKNOWLEDGMENTS ... I

TABLE OF CONTENTS .. II

LIST OF TABLES .. V

LIST OF FIGURES ...VI

ABSTRACT .. VIII

CHAPTER 1 : INTRODUCTION .. 1

1.1. FLOATING POINT NUMBERS ... 1

1.2. IEEE-754 REPRESENTATION OF FLOATING POINT NUMBERS 2

1.2.1. Floating point formats ... 2
1.2.1.1. Binary floating point format .. 4

1.2.2. Floating point arithmetic ... 5
1.2.2.1. Arithmetic operations with operands as infinities and NaNs ... 5

1.2.3. Rounding………………………………………………………………………….6

1.2.4. Exception handling .. 7

1.3. RANDOM SIMULATION ... 8

1.3.1. Constraint Random Test Pattern Generation ... 9

1.3.2. System Verilog Constraints ... 9
1.3.2.1. Random Variables in System Verilog ... 11
1.3.2.2. Constraint Blocks in system Verilog ... 12
1.3.2.3. Randomization method .. 14

1.4. FLOATING POINT VERIFICATION CHALLENGES .. 15

1.4.1. Wide input……………………………………………………………………….15

1.4.2. Usually pipelined implementation ... 15

1.4.3. No generic solution for Software/Hardware implementation 15

1.4.4. Dealing with intermediate value before rounding ... 16

1.5. OUR VERIFICATION FRAMEWORK ... 16

1.6. ORGANIZATION OF THE THESIS ... 17

CHAPTER 2 : LITERATURE REVIEW .. 19

2.1. INTRODUCTION ... 19

2.2. FORMAL VERIFICATION OF FLOATING POINT ARITHMETIC 19

2.3. SIMULATION VERIFICATION OF FLOATING POINT ARITHMETIC 21

2.4. HYBRID TECHNIQUES OF FLOATING POINT VERIFICATION 22

2.5. SUMMARY .. 23

CHAPTER 3 : PROPOSAL .. 25

3.1. ADDITION AND SUBTRACTION .. 25

3.1.1. Encoding/decoding constraints .. 25

3.1.2. Higher and lower operands constraints .. 27

3.1.3. Normalize low operand constraints ... 28

3.1.4. Effective operation constraints .. 29

iii

3.1.5. Add/Subtract constraints .. 29

3.1.6. Carry/Leading Zero correction constraint ... 30

3.1.7. Rounding constraints ... 31

3.1.8. Exception handling constraints .. 33

3.2. MULTIPLICATION ... 34

3.2.1. Multiplication constraints .. 35

3.2.2. Carry/leading Zeroes correction constraints .. 36

3.2.3. Rounding constraints ... 36

3.2.4. Exception handling constraints .. 37

3.3. DIVISION OPERATION CONSTRAINTS ... 37

3.3.1. Normalize divisor constraint .. 38

3.3.2. Division constraints ... 38

3.3.3. Carry/Leading zeroes correction .. 41

3.3.4. Exception handling constraints .. 41

3.4. FUSED MULTIPLY ADD CONSTRAINTS ... 42

3.5. SQUARE ROOT CONSTRAINTS ... 43

3.5.1. Decoding/Encoding constraints ... 44

3.5.2. Pre-Normalization step .. 44

3.5.3. Square Root constraints ... 45
3.5.3.1. First Square root algorithm .. 46
3.5.3.2. Second Square root algorithm ... 46

3.5.4. Post normalization step .. 49

3.5.5. Rounding constraints ... 49

3.5.6. Exception handling .. 49

3.6. USER DEFINED CONSTRAINTS ... 50

CHAPTER 4 RESULTS AND COMPARISONS ... 51

4.1. ADVANTAGES OF OUR PROPOSAL ... 51

4.1.1. No solver, No modelling ... 51

4.1.2. Based on System Verilog Language .. 51

4.1.3. Global solution for verification ... 51

4.1.4. Fast generation of test vectors ... 52

4.1.5. Linear response with respect to required number of test vectors......................... 53

4.1.6. No scaling issue with bigger precision .. 56

4.2. COMPARISON WITH OTHER RELATED WORK ... 57

4.2.1. Comparison with FPgen .. 57

4.2.2. Comparison with decimal floating point constraint solvers 58

4.3. SUMMARY OF BUGS DISCOVERED ... 58

4.3.1. Bugs in FPU100, an open source design ... 58
4.3.1.1. Wrong Inexact exception calculation: ... 58
4.3.1.2. Wrong result when two normal numbers are subtracted and return a subnormal number: 59
4.3.1.3. Subtracting positive zero from negative zero: ... 60
4.3.1.4. Wrong result with multiplication when result is subnormal and underflow occurs: 60
4.3.1.5. Wrong Output, Inexact and Underflow exceptions with multiplication when underflow occurs: . 60
4.3.1.6. Wrong result significand with division when the divisor is greater than the dividend 61
4.3.1.7. Wrong shifted left version of the result significand in division ... 61
4.3.1.8. Wrong result significand and underflow flag, when division result in subnormal number 62
4.3.1.9. Wrong result and overflow flag when division result in overflow... 63
4.3.1.10. Wrong significand calculation for square root operation ... 63

iv

4.3.2. SYMPL-FP324-AXI4-GP-GPU design ... 64
4.3.2.1. Wrong left shifted significand value when underflow occurs .. 64
4.3.2.2. Wrong rounding when guard is unset and sticky is set in multiplication 64

4.3.3. Bugs in FPAdd design ... 65
4.3.3.1. Wrong Guard value for intermediate result cause wrong value after rounding: 65
4.3.3.2. Subtracting positive zero from negative zero: ... 66
4.3.3.3. Wrong inexact and rounding when having a carry with addition .. 66

4.3.4. Double Precision Floating Point Core design (DOUBLE_FPU) 67
4.3.4.1. Wrong implementation of underflow flag in multiplication and division operations 67
4.3.4.2. Wrong Result and inexact flag after rounding due to having non zero sticky bit with addition 68
4.3.4.3. Wrong Result and inexact flag due to skipping sticky bits after the lower operand is normalized 68
4.3.4.4. Wrong rounding when having a carry and round tie even direction with addition 69

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 71

5.1. FUTURE WORK .. 72

5.1.1. Support more floating point operations ... 72

5.1.2. Support quadruple precision floating point formats .. 72

5.1.3. Support Decimal floating point arithmetic .. 72

5.1.4. Extending UVM to use our SV constraints ... 72

REFERENCES ... 73

APPENDIX A: SV CONSTRAINTS FOR ADDITION/SUBTRACTION 76

APPENDIX B: SV CONSTRAINTS FOR MULTIPLICATION............................ 86

APPENDIX C: SV CONSTRAINTS FOR DIVISION ... 94

APPENDIX D: SV CONSTRAINTS FOR SQUARE ROOT 102

v

List of Tables

Table 1.1 Binary Radix Significand ... 1

Table 1.2 Binary and Decimal formats... 3
Table 1.3 Different numbers in binary format .. 5
Table 1.4 SV Constraint Example .. 10
Table 1.5 SV Constraint Example with coverage goal ... 10
Table 1.7 randc Random variables ... 11

Table 1.8 Constraint block example ... 12
Table 1.9 Function example in SV constraint .. 13

Table 1.10 Probability of variables with and without solve order 14

Table 3.1 Encoding/Decoding constraints .. 26
Table 3.2 Effective operation constraints ... 29
Table 3.3 Intermediate result sign constraint ... 30
Table 3.4 Carry/Leading Zero correction of the intermediate result after addition 30
Table 3.5 Addition/Normalization due to rounding ... 32

Table 3.6 constraint function for partial produce summation .. 36

Table 3.7 Normalize divisor constraints ... 38
Table 3.8 SV function to implement the iterative restoring division algorithm 40

Table 3.9 SV constraint to implement Pre-normalization step for subnormal numbers 44
Table 3.10 First approach in calculating the square root using SV power operator 46
Table 3.11 First approach in calculating the square root using SV power operator 47

Table 3.12 Exmaple of User defined constraints.. 50

vi

List of Figures

Figure 1.1 Binary Encoding Format ... 4

Figure 1.2 Constraint Random Simulation with Coverage Goals 9
Figure 3.1 Verification Framework .. 25
Figure 3.2 Add/Subtract operations constraints ... 27
Figure 3.3 Flow for picking the higher and lower operands .. 28
Figure 3.4 Lower significand normalization .. 28

Figure 3.5 Intermediate significand constraint ... 30
Figure 3.6 Result constraint due to exceptions ... 34

Figure 3.7 Multiplication Operation constraints .. 34

Figure 3.8 Partial products summation ... 35
Figure 3.9 Division Operation constraints.. 37
Figure 3.10 Initial step for iterative division .. 39
Figure 3.11 the iterative, restoring division algorithm ... 40
Figure 3.12 Mapping between quotient and intermediate result in division 41

Figure 3.13 FMA operation constraints.. 43

Figure 3.14 Square Root Operation Constraints ... 44
Figure 3.15 Registers initialization for the iterative approach 47

Figure 3.16 Tutorial example of the iterative approach ... 48
Figure 3.17 Mapping between quotient and intermediate result in square root 49
Figure 4.1 Average time to generate 1 test vector for different operations 53

Figure 4.2 Time to generate N test vectors for addition ... 54

Figure 4.3 Time to generate N test vectors for division ... 54
Figure 4.4 Time to generate N test vectors for multiplication 55
Figure 4.5 Time to generate N test vectors for square root .. 55

Figure 4.6 Time to generate N test vectors for addition across different cores 56
Figure 4.7 Time to generate N test vectors for multiplication across different cores 56

Figure 4.8 Ratio of increase in time from single to double precision 57
Figure 4.9 Wrong inexact flag with subtraction in FPU100 design 59
Figure 4.10 Wrong result when two normal numbers are subtracted and return a

subnormal number in FPU100 design .. 59

Figure 4.11 Wrong result with multiplication when result is subnormal and underflow

occurs in FPU100 design .. 60

Figure 4.12 Wrong Output, Inexact and Underflow exceptions with multiplication when

underflow occurs .. 61
Figure 4.13 Wrong result significand with division when the divisor is greater than the

dividend .. 61
Figure 4.14 Wrong shifted left version of the result significand in division 62

Figure 4.15 Wrong result significand and underflow flag, when division result in

subnormal number .. 62
Figure 4.16 Wrong result and overflow flag when division result in overflow 63
Figure 4.17 Wrong significand calculation for square root in FPU100 63
Figure 4.18 wrong shifted left significand when underflow in FP32X-AXI4 64

Figure 4.19 wrong rounding when having sticky set in FP32X-AXI4 design 65
Figure 4.20 Wrong Guard value for intermediate result cause wrong value after

rounding .. 66
Figure 4.21 wrong inexact and rounding when having a carry with addition 66

vii

Figure 4.22 Wrong implementation of underflow flag in multiplication 67
Figure 4.23 Wrong implementation of underflow flag in division operations 68
Figure 4.24 Wrong Result and inexact flag after rounding due to having non-zero sticky

bit with addition .. 68
Figure 4.25 Wrong Result and inexact flag due to skipping sticky bits after the lower

operand is normalized... 69
Figure 4.26 wrong rounding when having a carry and round tie even direction with

addition ... 70

viii

Abstract

Verification of Floating Point (FP) units is a difficult task to achieve, and the cost of

post-production bugs is severe. This is due to dealing with a large bit stream of inputs;

simulation based verification fails to cover all possible input combinations and hence

does not guarantee a 100% bug free design. On the other hand, formal methods are

efficient in verification of FP arithmetic, yet they require creating a formal model, they

cannot work on an optimized version of a design and may fail with complex designs due

to state space explosion.

 Our framework provides a new verification methodology that uses a constraint

based random technique to generate test vectors for validating binary FP arithmetic

instructions. The constraints used in our verification are written in System Verilog (SV)

language and can be solved with any SV constraint solver tool. For every arithmetic

operation, the written constraints couple the operands, intermediate results, rounding

direction and the result evaluation to comply with the FP IEEE Standard (IEEE Std 754-

2008).

 The new proposal is generic and can be used to verify any software or hardware

binary FP design/library. Also, it proves feasibility and usefulness in finding bugs for

various binary FP Arithmetic operations for single and double precision formats.

1

Chapter 1 : Introduction

1.1. Floating Point Numbers

Floating point format is a way of representing real numbers with a string of digits. It

maps the infinite range of real number by a finite subset with limited precision. A floating

point number can be characterized by the following:

 Sign: the polarity of the number, either positive (+), or negative (-),

 Radix: the base number for scaling, usually two (binary), ten (decimal) or

sixteen (hexadecimal),

 Exponent range: the interval of the maximum and minimum power of the

radix,

 Significand: also called Precision or Mantissa, it is a fixed number of

significant digits in base format, a string of 4 digits “10.11” is an example of

a significand of binary radix, “1.250” is an example of a significand of

decimal radix, and “FFF.F” is an example of a significand in hexadecimal

radix. The character ‘.’ separates the integer part of the number from the

fraction part, for binary radix example, Table (1.1) explains the evaluation of

the significand “10.11”:

Table 1.1 Binary Radix Significand

Digit location (𝑖) 1 0 -1 -2

Digit weight (𝑟𝑎𝑑𝑖𝑥𝑖 = 2𝑖) 2 1 0.5 0.25

Digit Value 𝑠𝑖 1 0 1 1

Weight ×Value = 𝑠𝑖 × 2
𝑖 2 0 0.5 0.25

Sum = ∑𝑠𝑖 × 2
𝑖 2.75

In general any floating point number is represented with the following equation:

(−𝟏)𝒔𝒊𝒈𝒏 × 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒅 × 𝒓𝒂𝒅𝒊𝒙𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕

For a Binary radix, with four digit significand, a representation of “2.75” is:

𝟐. 𝟕𝟓|𝟏𝟎 = 𝟏. 𝟎𝟏𝟏⏟
𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒅

× 𝟐⏟
𝒓𝒂𝒅𝒊𝒙

 𝟏 ⏞
𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕

2

Representation of a number in a floating point format depends on the radix; some

numbers can be represented with finite exact precision with one choice of a radix, but are

approximated with other choices, for example, ‘1.1’ is easily represented with two digit

decimal precision, while converting it to binary it will give ‘1.

00011001100110011001101’ which is inexact and approximated in 24 binary precision.

Integer representation of a number has a uniform step between any two consecutive

numbers, while a floating point representation can have non uniform hops. On the other

hand, the range and precision of a floating point representation is much bigger than

integer.

1.2. IEEE-754 representation of floating point numbers

IEEE-754 [1] is a standard that specifies formats and operations for floating-point

operations. It provides a method for computing any operation with floating-point

numbers which should return the same result regardless of how it is implemented and

whether it is in software or hardware. Also, faults and errors, in the arithmetical

processing are restricted to be reported in a consistent manner as well.

The standard specifies the different formats for binary and decimal floating-point

numbers; specifies the following arithmetic operations: addition, subtraction,

multiplication, division, square root and fused multiply add; includes how to convert

between integer and floating-point formats, between different floating-point formats, and

between floating-point formats and external representations as character sequences. Also,

the standard explains different floating point exceptions and how to handle them.

1.2.1. Floating point formats

The floating point standard defines floating-point formats, which represent a finite

subset of real numbers as mentioned before. Formats are characterized by their radix,

precision, and exponent range. These formats represent floating-point operands or results

for the operations.

The standard specifies formats for both binary and decimal representations, also

exchanging between these formats are defined as well. There are three formats defined

for binary and two formats defined for decimal:

 Binary in single precision (32 bits encoding), double precision (64 bits

encoding) and Quadruple precision (128 bits encoding),

3

 Decimal in double precision (64 bits encoding), Quadruple precision (128

bits encoding).

Table (1.2) summarize different format encoding for binary and decimal supported

formats:

Table 1.2 Binary and Decimal formats

 Binary format (radix=2) Decimal format (radix=10)

Type Single Double Quadruple Double Quadruple

Precision 24 digits 53 digits 113 digits 16 digits 34 digits

emax +127 +1023 +16383 +384 +6144

Also, the IEEE standard specifies for every format the maximum exponent

(𝑒𝑚𝑎𝑥) and minimum exponent (𝑒𝑚𝑖𝑛), where 𝑒𝑚𝑖𝑛 = 1 − 𝑒𝑚𝑎𝑥 for all formats.

The representations of floating-point data in a format consist of:

 Any number between – infinity to + infinity, its value is evaluated by sign,

exponent significand as explained in section 1.1 with the following equation:

(−𝟏)𝒔𝒊𝒈𝒏 × 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒅 × 𝒓𝒂𝒅𝒊𝒙𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕

The sign is 1 for negative numbers and 0 for positive numbers, the radix is 2 for

binary and 10 for decimal, the exponent (𝑒) is any integer such that 𝑒𝑚𝑖𝑛 ≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥,

the significand is a p string of digits represented as 𝑑0. 𝑑−1𝑑−2…𝑑−𝑝+1, where 𝑑𝑖 is an

integer such that 0 ≤ 𝑑𝑖 < 𝑟𝑎𝑑𝑖𝑥.

 Infinities: ±∞,

 qNan (quiet), sNaN (signaling), will be explained later.

Numbers that are not infinities or NaNs are divided into two categories:

 Normal numbers: these are numbers ranging from the smallest positive

normal floating-point number which is equal to𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛 , where it is

supposed that the digit left to the floating point is 1, and the largest value is

𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑎𝑥 × (𝑟𝑎𝑑𝑖𝑥 − 𝑟𝑎𝑑𝑖𝑥𝑝).

 Subnormal numbers: The non-zero floating-point numbers for a format with

magnitude less than 𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛, i.e. the digit left to the floating point is 0 and

the exponent is 𝑒𝑚𝑖𝑛 . These numbers are called subnormal and their

magnitudes lie between zero and the smallest normal magnitude which

4

is 𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛 . They always have less than p significant digits. The smallest

subnormal magnitude is 𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛 × 𝑟𝑎𝑑𝑖𝑥1−𝑝.

Zeroes in floating point formats have an extra information stored in the sign bit. All

formats have distinct representations for +0 and −0, the sign of a zero is important in

some operations, for example divide by +0 leads to +infinity, while divide by -0 results

in –infinity. Binary formats have only one representation each for +0 and −0, but decimal

formats have more than one.

1.2.1.1. Binary floating point format

Figure 1.1 Binary Encoding Format

Figure (1.1) shows the how the binary interchange floating point format is

represented. Table (1.3) summarize the values of w, E, t and T, where

 w: number of bits to represent the exponent,

 E: is the biased exponent, i.e. 𝐸 = 𝑒 + 𝑏𝑖𝑎𝑠, and 𝑏𝑖𝑎𝑠 = 𝑒𝑚𝑎𝑥, depending

on its value, one can gain information about the encoded number:

o From 1 to 2𝑤 − 2 normal number,

o 0 ±0 or subnormal number,

o 2𝑤 − 1 encodes ±infinities and NaNs depending on the value of T

 t: is the number of bits to represent the significand, 𝑡 = 𝑝 − 1, no need to

encode the left most significant digit, as for normal numbers it is always 1,

while for subnormal numbers it is always 0. This un-encoded bit is usually

called the hidden bit,

 T: is the value of the trailing significand, for normal numbers, 𝑇 =

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 − 1 = 𝑑−1𝑑−2…𝑑−𝑝+1.

5

Table 1.3 Different numbers in binary format

Type E T Notes

Normal 1 ≤ 𝐸 ≤ 2𝑤 − 2 Any value

Zero 𝐸 = 0 𝑇 = 0 Sign determine ±0

Subnormal 𝐸 = 0 𝑇 ≠ 0

Infinity 𝐸 = 2𝑤 − 1 𝑇 = 0 Sign determine ±∞

NaN 𝐸 = 2𝑤 − 1 𝑇 ≠ 0

1.2.2. Floating point arithmetic

The IEEE-754 standard supports the following arithmetic operations:

 Addition: computes 𝑥 + 𝑦,

 Subtraction: computes 𝑥 − 𝑦,

 Multiplication: computes 𝑥 × 𝑦,

 Division: computes the quotient of
𝑥

𝑦
,

 Square root: computes √𝑥,

 Fused multiply add: computes (𝑥 × 𝑦) + 𝑧,

In fused multiply add operation, the intermediate result of multiplication is

computed as if it has unbounded range and precision, rounding is done only

once to the destination format after the addition operation. No underflow,

overflow, or inexact exceptions are raised due to the multiplication, but only

after addition; and so Fused multiply add operation differs from a

multiplication that is followed by an addition,

 Convert to and from integer: The standard supports multiple operations to

convert from/to integer depending on rounding technique deployed.

1.2.2.1. Arithmetic operations with operands as infinities and NaNs

Dealing with infinites is inherited from the behavior of real numbers with infinities

as operands for example divide by infinity will return zero.

No exceptions arise when the operands are infinities, the following operations are

valid and produce no exceptions for finite values of x:

 𝑥 +∞,∞ ± 𝑥, returns +∞

 𝑥 −∞, returns −∞

 𝑥 × ∞,∞ × 𝑥, returns +∞, if 𝑥 ≠ 0

6

∞

𝑥
, returns ∞,

𝑥

∞
, returns 0,

 𝑥%∞, return x, x is normal number

 √∞, returns ∞

On the other hand, the following operations yield in exceptions arising:

 ∞ due to reaching the maximum value, overflow flag is raised,

 𝑥/0, divide by zero exception is raised,

 𝑥%∞, x is subnormal number, underflow flag is raised.

There are two different types of NaN, signaling (sNan) and quiet (qNaN), they are

supported in all floating-point arithmetic operations. Signaling NaNs can represent

uninitialized variables or arithmetic-like enhancements, it is not covered in the IEEE-754

standard. Quiet NaNs afford including diagnostic information resulting from invalid or

unavailable data or results. When a certain operation is invalid, the floating point result

shall be qNaN, and an invalid exception should be raises. Operations involving one or

more operands as qNaN shall raise no exceptions except for Fused multiply add operation

that might signal the invalid operation exception (see section 1.2.4). For most operations

other than maximum and minimum with operands as qNaN inputs, the result shall be a

qNaN which should be one of the input NaNs.

1.2.3. Rounding

Usually the implementation of any arithmetic operation has the intermediate result

as if unbounded, and to fit the result in finite number of bits, a rounding step takes place.

Following are the possible rounding directions:

 Round tie to nearest even: choose the even value that the intermediate

unbounded result lie between,

 Round towards zero, the magnitude of the rounded value is less than the

intermediate unbounded value,

 Round towards positive infinity, if the intermediate result is positive, the

magnitude of the rounded result is greater than the intermediate unbounded

result, if the intermediate result is negative, the magnitude of the rounded

result is less than the intermediate unbounded result,

7

 Round towards negative infinity, if the intermediate result is positive, the

magnitude of the rounded result is less than the intermediate unbounded

result, if the intermediate result is negative, the magnitude of the rounded

result is greater than the intermediate unbounded result,

1.2.4. Exception handling

There are five types of exceptions that can arise, when these exceptions happen, there

exist a defined handling for the signaled exception. A corresponding status flag shall exist

in an implementation abiding by the IEEE-754 standard for each kind of exception. An

arithmetic operation can result in more than one exceptions, for example, exception

handling for overflow and underflow signals the inexact exception. Following is the list

of exceptions and how they can happen in arithmetic operations:

 Invalid operation:

o An operand as sNaN,

o Multiplication: 0 × ∞,∞ × 0,

o Fused multiply add: (0 ×∞) + 𝑐, (∞ × 0) + 𝑐, unless c is a qNaN;

if c is a qNaN then the implementer is the one to judge whether the

invalid operation exception should be signaled,

o Addition/Subtraction/Fused multiply Add: subtraction of infinities,

(+∞) ∓ (±∞),

o Division:
0

0
,
∞

∞
,

o Remainder: 𝑥%0,∞%𝑥, x is non infinity or NaN,

o Square Root: if the operand is less than zero,

 Divide by zero:

It happens if and only if an exact infinite result is defined for an operation

with finite operands. The result shall be an infinity and its polarity is

determined according to the operation:

o Division, when the divisor is zero and result's sign is exclusive or of

the dividend sign and the divisor sign,

o Logarithmic: 𝑙𝑜𝑔2(0) results in −∞.

 Overflow:

It happens if and only if the intermediate result before rounding is greater

than the format’s largest finite number, depending on the rounding technique

8

and the result sign, the result is either infinity or maximum finite value of

this format:

o If the rounding is towards zero, the result is the maximum finite value

with the same sign as the intermediate result,

o If the rounding is ties to even, the result is infinity with the same sign

as the intermediate result,

o If the rounding is toward positive infinity, if the intermediate result is

positive, the result is positive infinity, if the intermediate result is

negative, the result in the maximum negative finite value,

o If the rounding is toward negative infinity, if the intermediate result

is negative, the result is negative infinity, if the intermediate result is

positive, the result in the maximum positive finite value,

 Underflow:

It happens when the result is a tiny non-zero value, this shall be either:

o After rounding: when a non-zero result computed as though the

exponent range were unbounded would lie between ±𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛,

o Before rounding: when a non-zero result computed as though both

the exponent range and the precision were unbounded would lie

between ±𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛.

When underflow occurs, a rounded result should be delivered.

 Inexact:

If the rounded result varies from the intermediate unbounded result, or

overflow exception is raised or underflow exception is raised, inexact flag

shall be raised.

1.3. Random Simulation

Directed simulation demands generation of huge number of test vectors in order to

cover all possible input combinations and hence can guarantee full coverage in testing.

Yet, this is usually inapplicable specially for designs under test involving wide inputs,

for example, a single precision binary floating point unit that supports only two

operations and three rounding directions requires 110,680,464,442,257,309,696 test

vectors (232 × 232 × 2 × 3).

9

Usually, simulation is used with cover goals, so instead of identifying every input

combination as unique test vector, a common coverage goal is defined to group some

input combinations together, one naïve way of doing so is to group the inputs based on

their types: ±Normal/±Subnormal/±Zero/±Infinity/±Nans, this will reduce the variation

of one operand from 232 to 10. Yet, this introduces a new problem: how to smartly

generate the desired test vectors? The answer is Random test generation. Random test

generation is a type of functional verification to provide a random stimulus to a design

under test.

1.3.1. Constraint Random Test Pattern Generation

Random test generation can be more effective by specifying constraints; instead of

letting the randomizer do all the work, the user can specify some constraints to hit some

desired corner cases or meet a certain coverage target more easily. Figure (1.2)

summarizes the flow of constraint random simulation with coverage goal.

Figure 1.2 Constraint Random Simulation with Coverage Goals

1.3.2. System Verilog Constraints

Recent verification languages such as System Verilog (SV) [14] support constraint

random value generation. It allows users to specify constraints in a compact, declarative

way. The solver processes these constraints and consequently generates random values

to meet them. The random constraints are typically specified on top of an object-oriented

data abstraction (class in System Verilog Language) that models the data to be

randomized as objects that contain random variables and user-defined constraints. The

10

constraints determine the legal values that can be assigned to the random variables. Then,

a randomization function is called on the instance of the class. Table (1.4) is an example

of System Verilog constraint where a class is defined for a random operation that can be

an addition or subtraction and two random operands that are linked to the result based on

the randomized operation.

Table 1.4 SV Constraint Example

1

2

3

4

5

6

7

8

9

10

11

typedef enum {add, sub} OprType;

class add_subtract;

rand OprType opr ;

rand int op1,op2,result;

constraint result_calculation {

(opr == add) -> (result == op1 + op2);

(opr == sub) -> (result == op1 - op2);

};

endclass

add_subtract add_sub = new ;

repeat (10) add_sub.randomize();

To explain the importance of constraints in random simulation, Table (1.5) is an SV

test where we have a coverage goal that the result is 0. This will only be valid for any of

the following scenarios:

1- When the operation is subtraction and the operands are equal to each other,

2- When the operation is addition and the operands are same magnitude but have

opposite signs.

Table 1.5 SV Constraint Example with coverage goal

1

2

3

4

5

6

7

8

9

10

11

12

13

`define N 1000

`define LSB 5

module dut;

 typedef enum {add, sub} OprType;

 class add_subtract;

 rand OprType opr ;

 rand int op1,op2,result;

 constraint result_calculation {

 (opr == add) -> (result == op1 + op2);

 (opr == sub) -> (result == op1 - op2); };

 constraint close_operands {

 op1[31:`LSB] == op2[31:`LSB]; }

 endclass

11

14

15

16

17

18

19

20

21

22

23

24

25

26

27

 int i;

 add_subtract a;

 initial

 begin

 i = 0;

 a = new();

 repeat (`N) begin

 assert (a.randomize());

 i++;

 if (a.result == 0)

 $finish;

 end

 end

endmodule

As seen in Table (1.5), the new constraint “close_operands” specify that part of the

two operands are equal, this part is controlled by a parameter `LSB that is allowed to

have values between 31 and 0. It is obvious that the smaller the `LSB is, the more close

the operands will be. Table (1.6) shows the different values of `LSB and the

corresponding number of test vectors required to hit the coverage goal explained earlier

(denoted by lines 23 and 24 in Table (1.5).

Table 1.6 Number of tests required to hit coverage goal with respect to constraints

on inputs

`LSB value 5 4 3 2 1 0

of tests required 315 37 9 4 2 1

1.3.2.1. Random Variables in System Verilog

The IEEE-1800 standard of System Verilog supports two types of random variables:

 rand: Random variables with uniform distribution over their range,

 randc: Random variables where variables cycle through all the values in a

random permutation of their declared range. For example, for the following

random variable declaration:

Table 1.7 randc Random variables

1

2

3

4

randc bit [1:0] y;

//First permutation: 0321

//Second permutation: 2301

//Third permutation:2013

12

5

6

// and so on…

//Values of y in successive calls: 0,3,2,1,2,3,0,1,2,0,1,3

The possible values of y are 0, 1, 2 and 3. Initially, the randomizer generates an

initial order for y covering its whole range, and return these values in successive calls of

y until the last value, a second order of y is generated and looped over until the last value

of the order and so on. The main advantage of this type of randomization is that all values

of y are covered before any value is repeated.

1.3.2.2. Constraint Blocks in system Verilog

System Verilog supports adding constraints to constrict the values of the declared

random variables. These constraint blocks are class members and have a unique name

called constraint identifier. Below is the explanation of the main features of constraint

blocks:

Table 1.8 Constraint block example

 rand integer a, b, c, x, y, z;

rand integer A[10];

rand bit s;

rand integer d;

constraint c1 {

x inside {3, 5, [8:15]};

y dist {10:=1, 20:= 2, 30:= 4};

unique {a,b,c};

(a > 10) -> (x == 3);

if (y == 10) z == a;

else if (y == 20) z == b;

else z == c;

foreach (A [i]) A[i] inside {2,4,8,16};

(s) -> (d == 0);

solve s before d;

}

 Setting membership

It restrict certain values allowed to one random variable, in the example in

Table (1.8), x can only have 3, 5, 8 through 15 values.

 Distribution

13

It sets weight to values allowed to one random variable, the possible values

of y in the example in Table (1.8) are 10, 20 and 30, with the weighted ratios

1:2:4 respectively ,i.e., y is more likely to be 30 than 20, and 20 than 10.

 Uniqueness

It restrict the embedded list to have mutually exclusive values, in the example

in Table (1.8), a, b and c are not allowed to have the same value.

 Implication

It correlates a subsequent condition given the evaluation of an antecedent

condition; it the antecedent condition is true the subsequent condition should

be true, if the antecedent condition is false, no restrictions are set on the

subsequent condition, in the example in Table (1.8), if the value of a is greater

than 10, the value of x is 3.

 If-else constraints

It constraints set of expression given other set of expressions enclosed in if-

else style, for example, the value of z is equals to a, b, c if y equals 10, 20,

30 respectively.

 Foreach iterative constraints

Iterative constrains allow looping over elements of array variables, the

foreach iterative constraints in Table (1.8) sets membership for every element

of the ten elements in the array A, i.e., the possible values of any element is

2, 4, 8, 16.

 Functions in constraints

Some constraints cannot be expressed given the above mentioned constructs,

so System Verilog allows the use of function calls in constraint expressions.

Table (1.9) shows how to express leading zeroes calculation for a given

signifincand, it loops over the significand from the left most bit to the right

most and exit with the index if the bit value is 1.

Table 1.9 Function example in SV constraint

1

2

3

4

5

6

`define p 24

rand bit [`p-1:0] Significand;

rand bit Guard, Round, Sticky;

rand int shift_left_value;

function int leading_zero_calculation (input [0:`p+2] functionSignificand);

 for (int i = 0; i <= `p+2;i++) begin

14

7

8

9

10

11

12

13

 if (functionSignificand[i] == 1'b1) return i;

 end

 return `p+3;

endfunction

constraint normalize_intermediate_result {

shift_left_value == leading_zero_calculation({Significand,Guard,

Round,Sticky});

}

 Variable ordering

One can specify to the solver the order to constraint and randomize a variable,

consider the constraints on s and d in the example in Table (1.8), the

constraint correlates values of 2 variables: s, d, from the readers’ view, it

states that s implies d equal zero, from the solver’s view, s and d are random

variables and solving {s, d} can have 232 + 1 combinations, but s is true only

in one combination. In line 16, the order of solving is specified to solve s

before d, and hence s can have 2 possible combination, and then d is chosen

subjected to the value of s. Adding this order constraint does not change the

set of legal value combinations, but alters their probability of occurrence.

Table (1.10) explains the probabilities of values of d and s.

Table 1.10 Probability of variables with and without solve order

Value of s Value of d Probability before solve

order

Probability after solve

order

1 ‘h00000000 1/(1 + 232) 1/2

0 ‘h00000000 1/(1 + 232) 1/2 × 1/232

0 ‘h00000001 1/(1 + 232) 1/2 × 1/232

0 ‘h00000002 1/(1 + 232) 1/2 × 1/232

0 … 1/(1 + 232) 1/2 × 1/232

0 ‘hfffffffe 1/(1 + 232) 1/2 × 1/232

0 ‘hffffffff 1/(1 + 232) 1/2 × 1/232

1.3.2.3. Randomization method

The instance of the class enclosing the constraints should be called with a

randomization method in order to randomize the declared variables in this class. System

Verilog defines the following randomization method:

15

 Randomize (): The randomize () method returns 1 if it successfully sets all

the random variables and objects to valid values; otherwise, it returns 0.

Failure to randomize can be due to conflicting constraints.

There are other topics that are discussed in details in chapter 18 in the IEEE-1800

standard of System Verilog [14] like for example generation of random sequence,

manually seeding of randomization, random weighted case, etc…. We are only

concerned in previously described definitions/constructs.

1.4. Floating point verification challenges

1.4.1. Wide input

As mentioned earlier, the large bits of inputs for floating point unit makes it hard for

simulation to have all possible input combinations. Hence, simulation stand alone is not

a good verification environment, as it will take forever to guarantee a bug free design.

1.4.2. Usually pipelined implementation

Implementation of some floating point arithmetic operations requires huge

computation and complex hardware, like iterative implementations of division and

square roots that imposes delay in the logical circuits slowing down the overall frequency

of the processor. This is why pipelining is introduced in floating point units.

Pipelining means that at a certain time instance, there may exist more than one

execution of a FP operation sharing the same hardware. This imposes a complexity in

creating the verification model for this pipelined floating point unit.

Also pipelining imposes latency to the result due to execution in sequence of number

of cycles, and hence formal verification of a pipelined floating point unit may fail due to

state space explosion.

Another dilemma, the cycle delays for one operation is different for another

operation, which will add more complexity for verifying a floating point unit that

supports multiple operations with varying number of cycles.

1.4.3. No generic solution for Software/Hardware implementation

Floating point arithmetic can exist as software libraries like a C code, can be a

hardware design in the form of Register Transfer Logic (RTL) and can be an optimized

16

version of this hardware, like Gate Level Designs. This is a problem that stands against

creating a unified way to verify floating point units in general. For example, RTL can be

verified using good test benches based on UVM or by addition properties and testing the

functionality using model checking formal techniques, on the other hand, software

libraries are verified using programming language. So the methods used in verifying the

Hardware implementation are incompatible with verifying the software version of the

floating point implementation.

1.4.4. Dealing with intermediate value before rounding

Usually verification techniques are considered black-box testing, i.e. they are only

interested in how to generate inputs, and how to debug the outputs. For floating point

units, the result is usually a rounded version of the unbounded intermediate results, this

intermediate result is the main source of all bugs in any floating point design. Therefore,

verification of floating point unit should follow a white-box testing technique; it should

have the capability to generate stimulus/model that can treat the intermediate unbounded

result as an input to the verification environment.

1.5. Our verification framework

We propose a verification framework that combat all the above mentioned

challenges, which is Test vectors generation based on a model written with system

Verilog constraints. The SV model defines random variables for input, outputs,

intermediate results, round directions, and constraints to constrict the data path starting

from the operands through intermediate results and rounding techniques until the result

evaluation abiding by the IEEE-754 standard of Binary floating point formats and

operations. Then, we pass the SV constraints to a simulator to randomly generate test

vectors based on the above constraint model plus adding user defined constraints to cover

interesting corner cases. These test vectors can be applied to any floating point design

whether it is software or hardware, pipelined or not. This method shows effectiveness in

discovering bugs for addition-subtraction, multiplication, division and square root

operations in different binary floating point unit designs.

17

1.6. Organization of the thesis

The remainder of this thesis organized as follows. 0 provides a detailed survey of

the techniques used in verification of floating point arithmetic. Chapter 3 provide a

detailed description of the new proposal used in verification of binary floating point

arithmetic operations. Chapter 4 shows the result of our work in detailed representation

and draws a comparison between other techniques. Finally, chapter 5 discusses the

possible future extension of our work.

18

19

Chapter 2 : Literature Review

2.1. Introduction

 Verification of Floating point units is always a challenging task. Many daily

applications depend on correct floating point calculations. If a single bug is missed during

development and discovered at customer site, the cost will be severe similar to the

division bug in the Intel processor [17]. The first lesson learned from the Intel bug was

the essentiality of more thorough testing since the bug was systematic and was not caused

from random hardware issues. Yet, thorough testing is still hard to achieve due to the

huge input bit stream size; simulation based verification fails to cover all possible input

combinations and hence does not guarantee a 100% bug free design.

2.2. Formal verification of floating point arithmetic

Formal methods are efficient in verification of FP arithmetic, yet they require

creating a formal model, they cannot work on an optimized version of a design and may

fail with complex designs due to state space explosion.

Some approaches of formal verification targets verification of floating point unit in

general using theorem proving, the authors in [6] propose a complete formalization of

the IEEE-754 standard using higher order logic specification (an expressive formal

modelling method that allows quantifying over a function of a certain variable). The

formalization is done for: (1) floating point numbering format, (2) different floating point

arithmetic operations namely addition, subtraction, multiplication and division, and

finally (3) normalization and rounding steps of intermediate unbounded result.

Another approach is introduced in [7], where the authors extends an existing

verification tool for verifying floating point arithmetic in C programs. This tool is called

"Caduceus,” it is a first order logic model for C programs (first order logic is an

expressive formal modelling method that allows quantifying over a certain variable) [18].

The formal model for floating point arithmetic is written in Coq [19], formal proof

management system. On the other hand, the authors in [27] create their own formal model

based on first order logic theorem proving to formulize floating point arithmetic.

20

Another application that make use of the formal model in Coq, is the verification of

a generic End-Around-Carry Adder that is widely used in floating point arithmetic [36].

The writers in [22] present a way to overcome the failure of theorem proving to work

on rounded values, and the inability of model checking to generate a counter example

when the number is in floating point format. They present an approximate way of

mapping floating point numbers to integer using abstract interpretation, and verifying the

integer version using traditional formal methods.

Paper [28] presents an approach based on equivalence checking which can be

decomposed into two steps; the first step is to verify all the data path of the floating point

unit by comparing result with a reference model, the second step is to verify pipelined

floating point instruction using sequential equivalence model checking.

Some approaches use in their verification a hybrid formal verification combining

model checking and theorem proving, like verification of floating point multiplier in the

Intel IA-32 Pentium® microprocessor [8], and verification of a pipelined double

precision Multiplier based on IEEE standard [23]. The presenters in [8] here combine

two techniques of formal verification; Symbolic Model checking based on Binary

Decision Diagram (BDD) - a tree based structure to model any Boolean expression- and

theorem proving based on formulation of temporal logic using pre-post-condition

analysis. For Multiplier, BDD stand alone is not applicable due to the exponential

growing size of multiplier tree regardless of the variable order when forming the reduced

order BDD [20]. Also, theorem proving standalone involves so much effort and user

interaction. Similar approach is done in [21] combining word-level model checking with

theorem proving to verify the hardware of Pentium Pro processor.

A new data structure is introduced in [35], it is called Multiplicative Power Hybrid

Decision Diagram (*PHDD); it is a compact representation for functions that map

Boolean vectors into integer and floating point values. Making use of the newly proposed

data structure proved to grow linearly with the word size in multiplication, exponential

in the exponent part of addition, but linear with the Mantissa. Compared to other

structures such as Multiplicative Boolean Matrix Decomposition (*BMD), experimental

results shows that *PHDD is 6 time faster.

Another point of concern is addressed in [24], which is involving formal verification

on an optimized version of floating point circuit. The authors apply theorem proving on

gate level version of the design to guarantee the correctness of the rounding step based

21

on Even-Seidel algorithm for addition [25] and multiplication [26] to be compliant with

IEEE-754 standard.

2.3. Simulation verification of floating point arithmetic

The author in [31] presents a way to combine coverage analysis and constraint

random testing to speed up the verification process by 4.5x. An automatic input generator

is created at the front end of verification that feeds the design under test with test vectors

that have not been covered yet. At the back end of testing, a monitor is created to capture

the correctness of the results and provide a complete coverage analysis for inputs and

covered corner cases.

The presenters in [33] addresses the problems of functional verification of decimal

floating point adder-subtract for FPGA described in VHDL, where they develop a

verification test plan and create a verification environment based on Open Verification

Methodology (OVM) [32]. OVM is an open source simulation based functional

verification methodology that replaces writing an application specific test benches,

instead, building the testing environment using reusable verification components that are

structured for use in different applications. In this context, the presenters made use of the

built in checker comparison in OVM and apply it to compare the arithmetic unit output

with a reference model which is decNumber C library [33].

Coverage models based on Equivalent Partition and Boundary Value analysis aim to

hit corner cases and reduces the number of test vectors required to fulfill the test space

[4]. The authors in [2, 3] introduce a tool called FPgen that generates random tests based

on defining coverage models relating the inputs, intermediate results and the outputs.

Two behavioral tools are developed in [5]; vecgen is a C program that is used to

generate floating point test vectors based on input specification file that contains

description of the vectors required, and fpc is a C program that defines a model based on

the IEEE standard in [1]; in order to model an implementation compliant with the IEEE-

754 standard, a small amount of C code is written to make calls that will initialize fpc,

execute it, and model chips issues such as pipeline delays register files, etc…. These two

tools are integrated and simulated together to form an automatic verification for FP units.

Generation of floating point test vector is addressed differently in [39]; given some

ranges for the operands and the result, a rounding technique, it is requested to find a

22

random test vector where operand and result fit in their corresponding range. This

approach is completed for addition and subtraction and is partially completed for

multiplication and division. The benefit of this approach, is that one can specify the range

of certain operand/result to cover a certain corner case.

For iterative binary floating point operations such as division and square root, a

proposal is done in [40] to randomly generate operands based on the iterative algorithm

used, the iteration number and a relative error interval.

Another point of interest is how to set coverage goals on intermediate result or add

constraints on it and how to generate the corresponding test vectors. Intermediate result

is the result of any operation before rounding takes place assuming at this stage infinite

representation of bits. The authors in [3, 10, 41] address this issue by determining the

maximum number of bits in intermediate result for every arithmetic operation, then do a

bit level analysis to create constraints that link intermediate bits with input/output bits,

then solve those constraints. This is basically the internal algorithm of FPgen tool that

the author develops to verify addition, subtraction, multiplication and division. [11, 12]

use similar approach by creating their own engines to solve simultaneously constraints

on unbounded intermediate results and constraints on inputs-outputs. This methodology

has proven effectiveness in verifying Addition-Subtraction, Multiplication and Fused

Multiply Add operations for Decimal FP units.

2.4. Hybrid techniques of floating point verification

Verification of Jaguar x86 Floating point unit was carried out using both simulation

and formal verification depending on the stage of the product [29]; in RTL stage, a

simulation based verification based on pseudo random test vector generation and

comparing result with a reference model result, next in Core/System stage, sequence of

floating point instructions was verified using an architecture level third party tool, and

finally in the execution stage, formal model based on theorem proven and property model

checking is used to feedback to the coverage analysis used in pseudo random simulation

in the first stages and hence speed up these first stage.

Symbolic Trajectory Evaluation (STE) is used to verify Intel® Processor Graphics

floating point unit [30]. STE is a formal verification model checking technique using a

23

symbolic simulation based approach where simulation works on the BDD version of the

design and specifications.

A High Level Synthesis tool is applied to synthesize and verify a Floating point unit

starting from its behavioral model until gate level is reached [37]. Simulation is applied

in both the behavioral model stage and in RTL stage where in the RTL stage a third party

tool is applied to generate floating point test vectors. After Gate level synthesis, another

third party tool is used to create logical equivalence with RTL.

A formal model for the division operation is used in [38] to generate test vectors for

floating point division. First, the algorithm generates the intermediate (unbounded) value

of the quotient based on some heuristics and pseudo random generation, and work back

using the formal model to generate the dividend and the divisor completing the test vector

format.

2.5. Summary

Formal and simulation methods are widely used in the verification of floating point

units. In our framework, we propose a verification methodology for Binary FP arithmetic

operations by writing SV constraints to constrict the data path starting from the operands

through intermediate results and rounding techniques until the result evaluation. Then,

we pass the constraints to a simulator to randomly generate test vectors based on the

above constraint model plus adding user defined constraints to cover interesting corner

cases. This method shows effectiveness in discovering bugs for addition-subtraction and

multiplication operations in different designs.

24

25

Chapter 3 : Proposal

Figure (3.1) illustrates the verification framework. The Operation constraints define

the random variables for every operation and the constraints that link these variables

together based on the arithmetic operation desired. The User constraints impose more

restrictions on the defined variables to force the generation of test vectors to cover a

specific scenario. Both types of constraints are simulated simultaneously to generate a

number of test vectors.

Figure 3.1 Verification Framework

In our framework, we implement the above mentioned verification framework using

System Verilog Constraints and applied it on addition, subtraction, multiplication,

division and fused multiply add operations. The following sections give a detailed insight

about each operation and what are the aspects carried in each operation.

3.1. Addition and subtraction

Figure (3.2) summarizes the data path for the Operation constraints for Add/Subtract.

3.1.1. Encoding/decoding constraints

These constraints are concerned with mapping the binary encoding format of IEEE-

754 floating point operands and result in different precisions to sign, exponent and

significand. Also, it is responsible for figuring out whether the hidden bit of the

significand is 1 or 0. The hidden bit is constraint with the value of the exponent, if the

value of the exponent is 0, then the hidden bit is 0, else, the hidden bit is 1. Table (3.1) is

the SV code for this constraint process:

26

Table 3.1 Encoding/Decoding constraints

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

rand bit [`k-1:0] operand1,operand2,result; //k is the width of the operands

rand bit operand1Sign,operand2Sign,resultSign;

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent;

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa;

rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand;

constraint binary_encoding_decoding {

 {operand1Sign,operand1Exponent,operand1Mantissa} == operand1;

 {operand2Sign,operand2Exponent,operand2Mantissa} == operand2;

 {resultSign,resultExponent,resultMantissa} == result;

}

constraint significand_mantissa {

 if (operand1Exponent == ‘0)

 ({1'b0,operand1Mantissa} == operand1Significand);

 else

 ({1'b1,operand1Mantissa} == operand1Significand);

 if (operand1Exponent == ‘0)

 ({1'b0,operand2Mantissa} == operand2Significand);

 else

 ({1'b1,operand2Mantissa} == operand2Significand);

}

27

Figure 3.2 Add/Subtract operations constraints

3.1.2. Higher and lower operands constraints

These constraints are responsible for detecting which operand is the higher and

which is the lower. This is important for the next constraints set in section 3.1.3. The

flow chart in Figure (3.3) summarize the work flow of these constraints.

28

Figure 3.3 Flow for picking the higher and lower operands

3.1.3. Normalize low operand constraints

After determining the lower operand, some normalization constraints should be

carried on by right shifting the operand significand until the lower exponent matches the

higher exponent. Also, three extra bits are introduced here that will be used in later stages:

 Guard bit:

The left most bit of the shifted out part of the lower significand,

 Round bit:

The second left most bit of the shifted out part of the lower significand,

 Sticky bit:

It represents all the remaining bits of the shifted out part of the lower

significand, sticky bit is the disjunction of these bits.

Figure 3.4 Lower significand normalization

Figure (3.4) is an example of an exponent difference between the higher and the

lower operand equals to 5, the lower operand is shifted to right 5 places, 2 of which are

29

placed in the Guard (G) and the Round (R) bits, and the remaining 3 bits are ored together

to produce the Sticky bit (S).

3.1.4. Effective operation constraints

Depending on the operation, the sign of the higher and the lower operands, the

effective operation constraint is evaluated. The effective operation is addition if the

operation is add and the sign of both operands is the same, or the operation is subtraction

and the sign in different. Otherwise, the effective operation is subtraction.

Table 3.2 Effective operation constraints

1

2

3

4

5

6

7

8

9

10

11

12

typedef enum {ADD,SUB} operationTypes;

rand operationTypes operation, effectiveOperation;

constraint effective_operation {

 if ((operation == ADD) && (higherSign == lowerSign))

 (effectiveOperation == ADD);

 else if ((operation == ADD) && (higherSign != lowerSign))

 (effectiveOperation == SUB);

 else if ((operation == SUB) && (higherSign == lowerSign))

 (effectiveOperation == SUB);

 else

 (effectiveOperation == ADD);

}

3.1.5. Add/Subtract constraints

Based on the effective operations, the significand of the higher and lower normalized

operands are added/subtracted from one another, generating the intermediate result

significand. This intermediate result significand is expected to be unbounded, and hence

some random variables are introduced in this steps which are:

1- Carry:

A bit added to the left of the intermediate result significand to detect if an

overflow in addition stage occurs (this doesn’t mean that overflow flag is issued),

this carry will be used later to normalize the intermediate result.

2- Intermediate Guard, Round and Sticky bits

These bits will be used in rounding later.

30

At this point, the intermediate result exponent is constrained to be the same as the

higher exponent, the intermediate result sign is determined from the effective operation

and the sign of both operands as shown in Table (3.3).

Table 3.3 Intermediate result sign constraint

1

2

3

4

5

6

7

8

if ((effectiveOperation == ADD) && (operation == ADD))

 intermediateSign == higherSign;

else if ((effectiveOperation == ADD) && (operation == SUB))

 intermediateSign == operand1Sign;

else if ((effectiveOperation == SUB) && (operation == ADD))

 intermediateSign == higherSign;

else

 intermediateSign == ((operand1 < operand2)^(operand1Sign));

Figure 3.5 Intermediate significand constraint

3.1.6. Carry/Leading Zero correction constraint

Table (3.4) describe the stage of Carry/Leading Zeroes correction for intermediate

results:

Table 3.4 Carry/Leading Zero correction of the intermediate result after addition

1

2

3

4

5

6

7

8

9

10

11

constraint carry_leading_zero_correction {

 if (C) begin

 {IC_Sig,IC_G,IC_R,IC_S}==({I_Sig,I_G,I_R,I_S}>> 1);

 (IC_Exp == I_Exp + 1);

 end

 else if (I_Sig[`p-1]) begin

 {IC_Sig,IC_G,IC_R,IC_S} == {I_Sig,I_G,I_R,I_S};

 (IC_Exp == I_Exp);

 end

 else begin

 SV == lead_zero_fn ({I_Sig,I_G,I_R,I_S});

31

12

13

14

15

16

17

 if (SV >= I_Exp) C_SV == I_Exp;

 else C_SV == SV;

 {IC_Sig,IC_G,IC_R,IC_S}==({I_Sig,I_G,I_R,I_S} <<C_SV);

 IC_Exp == I_Exp - C_SV;

 end

}

After addition/subtraction, the intermediate result is composed of carry (C),

significant (I_Sig), exponent (I_Exp), Guard bit (I_G), Round bit (I_R) and Sticky bits

(I_S).The intermediate result needs to be corrected if there is a carry or leading zeroes in

intermediate significand. When C is 1, which is only valid in addition, the intermediate

result is shifted right one place to form the corrected intermediate result (IC_Sig, IC_Exp,

IC_G, IC_R, IC_S) and the exponent is incremented by one (lines 2 to 5). No correction

is required if C is 0 and the most significant digit of I_Sig is 1 (lines 6 to 9). If the effective

operation is subtraction, one leading zero exists in I_Sig if the exponent difference

between the two operand is larger than 1, also, more than one leading zeroes exist if the

exponent difference is 0 or 1. A shift value (SV) is calculated by counting the leading

zeroes and is corrected to not exceed I_Exp (lines 11 to 13). The intermediate result is

corrected accordingly by left shift of I_Sig, I_G, I_R and I_S by C_SV as well as

decrementing I_Exp by same value (lines 14 to 15).

3.1.7. Rounding constraints

Given the constraints set on the corrected Intermediate significand (IC_Sig), Guard

(IC_G), Round (IC_R) and Sticky (IC_S) and the correction constraints in the previous

step, now it is time to set constraints to figure out the round value based on the rounding

direction. Following is the constraints on round value (RV) based on the rounding

direction:

 Round tie to nearest even:

𝑹𝑽 == 𝑰𝑪_𝑮 𝒂𝒏𝒅 (𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺 𝒐𝒓 𝑰𝑪_𝑺𝒊𝒈[𝟎])

The theory behind this, is that when there is a tie between the two nearest

value (Guard bit is 1, Round bit is 0, and Sticky bit is 0), if the intermediate

result significand is even (right most bit is 0), the round value should be 0, if

the intermediate result is odd (right most bit is 1), the round value should be

1. If either of the Round or Sticky bits is 1, this means that the intermediate

magnitude is closer to the larger magnitude and hence the round value is 1.

 Round towards zero:

32

𝑹𝑽 == 𝟎

This is easily explained since the expected magnitude after rounding is

always expected less than or equal to the result before rounding.

 Round towards positive infinity:

𝑹𝑽 == ! 𝑺𝒊𝒈𝒏 𝒂𝒏𝒅 (𝑰𝑪_𝑮 𝒐𝒓 𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺)

If the intermediate result is positive (Sign is 0), the magnitude of the rounded

result is greater than or equal to the intermediate unbounded result, hence if

the guard, round or sticky has 1, the round value should be 1.

 Round towards negative infinity:

𝑹𝑽 == 𝑺𝒊𝒈𝒏 𝒂𝒏𝒅 (𝑰𝑪_𝑮 𝒐𝒓 𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺)

If the intermediate result is negative (Sign is 1), the magnitude of the rounded

result is greater than or equal to the intermediate unbounded result, and hence

if the guard, round or sticky has 1, the round value should be 1.

 After the rounding value is constraint, a further addition step to the intermediate

significand with the rounding value, is following by a further normalization for carry

after rounding is required. Table (3.5) explains the constraints for this, if there exist a

carry after rounding, the exponent should be incremented and the round significand

should be shifter right by 1 (lines 5 to 8), otherwise nothing should be done (line 9 to 12).

Table 3.5 Addition/Normalization due to rounding

1

2

3

4

5

6

7

8

9

10

11

12

13

constraint addition_after_round {

 {roundCarry,roundSignificand} == ({1'b0,IC_Sig} + RV);

}

constraint normalization_after_rounding {

 if (roundCarry == 1'b1) begin

 roundNormalizedExponent == IC_Exp + 1;

 roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]}));

 end

 else begin

 roundNormalizedExponent == IC_Exp;

 roundNormalizedSignificand == roundSignificand;

 end

}

33

3.1.8. Exception handling constraints

These type of constraints exist to define the behavior of the flags, and the result

calculation based on these flags. Below is the equations used for flag calculations:

 Overflow

𝒐𝒗𝒆𝒓𝒇𝒍𝒐𝒘 ==

(𝑰𝑪_𝑬𝒙𝒑 == 𝟐𝒘 − 𝟏) 𝒐𝒓 (𝒓𝒐𝒖𝒏𝒅𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅𝑬𝒙𝒑𝒐𝒏𝒆𝒏𝒕 == 𝟐𝒘 − 𝟏)

The above equation states that overflow flag happens when the exponent

value exceeds the maximum value of the exponent which is 2 × 𝑒𝑚𝑎𝑥 which

is the same as 2𝑤 − 2. The check on exponent is done after the normalization

stages of the intermediate results or the rounded results.

 Underflow

When shift value required is greater than the exponent value of the

intermediate result, underflow flag is raised. This means that the value in the

intermediate result cannot be expressed unless it crosses the lower boundary

of the possible values of the intermediate significand.

 Inexact

Inexact happens when the intermediate guard, round or sticky is 1, or when

overflow or underflow happens.

 Invalid

Only happens for the following scenarios:

o An operand as sNaN,

o subtraction of infinities, (+∞) ∓ (±∞),

The flow chart in Figure (3.6) explains the constraints on the final result if one of the

above flags are raised; if the invalid flag is raised, the output should be NaN, else if any

of the operands is infinity the result should be infinity, else if the overflow flag is not

raised, the result should be the same as the rounded normalized result, else if overflow

flag is raised, depending on the round direction the final result is calculated to be either

the maximum value of floating point or ±∞.

34

Figure 3.6 Result constraint due to exceptions

3.2. Multiplication

Figure (3.7) summarizes the data path for Operation constraints for Multiplication.

No need to choose the higher/lower operands and normalize the lower operand in

multiplication, in fact, the multiplication data path is much shorter than the addition.

Figure 3.7 Multiplication Operation constraints

35

3.2.1. Multiplication constraints

Using System Verilog multiply operator (*) was inefficient, it took a lot of time to

parse this constraint and slow down the generation of test vectors dramatically. Hence,

we deploy partial product summation of both operands through creating a function that

shift the first operand to the left and depending on the value of the 𝑖𝑡ℎelement of the

second operand, this partial product will be added or not; if the value of the 𝑖𝑡ℎelement

in operand2 significand is 0, it is skipped, else, it is added. Figure (3.8) explains the layout

of the partial product summation, and Table (3.6) shows the SV function to implement

this algorithm.

Figure 3.8 Partial products summation

As seen in Figure (3.8), the intermediate result is twice the precision of the operands

to calculate the Round and Sticky; the Round is the first bit to the right of the bits taken

in the intermediate significand, and the Sticky is disjunction all the other bits. The sign

is constraint to be the exclusive or of the operands’ signs, the exponent is constraint to

be the summation of both exponents while subtracting the Bias value with is equal to

𝑒𝑚𝑎𝑥.

36

Table 3.6 constraint function for partial produce summation

1

2

3

4

5

6

7

8

9

10

11

12

13

function [2*`p-1:0] partial_product_multiplication(input [`p-1:0]

op1,op2);

 bit [2*`p-1:0] normal[0:`p-1], shifted[0:`p];

 shifted[0] = 0;

 for (int i = 0; i <= `p-1; i++)

 begin

 if (op2[i])

 normal[i] = {`p'b0,op1};

 else

 normal[i] = '0;

 shifted[i+1] = (normal[i] << i) + shifted[i];

 end

 return shifted[`p];

endfunction

3.2.2. Carry/leading Zeroes correction constraints

Same as section 3.1.6

3.2.3. Rounding constraints

The RV equations slightly differ from section 3.1.7, as in multiplication, there is no

Guard bit, only Round and sticky, and hence the equations are:

 Round tie to nearest even:

𝑹𝑽 == 𝑰𝑪_𝑹 𝒂𝒏𝒅 (𝑰𝑪_𝑺 𝒐𝒓 𝑰𝑪_𝑺𝒊𝒈[𝟎])

 Round towards zero:

𝑹𝑽 == 𝟎

 Round towards positive infinity:

𝑹𝑽 = ! 𝑺𝒊𝒈𝒏 𝒂𝒏𝒅 (𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺)

 Round towards negative infinity:

𝑹𝑽 = 𝑺𝒊𝒈𝒏 𝒂𝒏𝒅 (𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺)

37

3.2.4. Exception handling constraints

Overflow, underflow and inexact exceptions are the same as computed in section

3.1.8, while for invalid flag, the following is accounted for:

 An operand as sNaN,

 0 × ∞,∞ × 0,

3.3. Division operation constraints

Figure (3.9) summarizes the data path for the Operation constraints for Division

operation. Again, no need to choose the higher/lower operands, yet if the divisor is

subnormal, a normalization step should be done before going through the division

algorithm in the division constraint section.

Figure 3.9 Division Operation constraints

38

3.3.1. Normalize divisor constraint

These constraints act as a filter to divisor; if the divisor is normal number, it passes

without modification, else, it requires normalization by shifting it to the left and saving

the shift value later for exponent correction of the intermediate result.

Table 3.7 Normalize divisor constraints

1

2

3

4

5

6

7

8

9

function int leading_zero_calculation (input [0:`p-1] functionSignificand);

 for (int i = 0;i < `p;i++) begin

 if (functionSignificand[i] == 1'b1) return i;

 end

endfunction

constraint divisor_normalized {

 exponent_correction == leading_zero_calculation(divisorSignificand);

 divisorNormalizedSignificand == divisorSignificand <<

exponent_correction;

}

As shown in Table (3.7), a function is implemented to calculate the leading zeroes

in the divisor, this will return 0 if the divisor is normal, and will return the number of

leading zeroes if it is subnormal. The divisor significand is normalized by shifting the

leading zeroes out, and an exponent correction variable is saved for later update of the

intermediate result exponent.

3.3.2. Division constraints

Again, using built in System Verilog operator of division “/” shows slow response

in generation of the test vectors, and hence an iterative restoring algorithm for division

was carried out.

The algorithm works with 3 variables and a comparator, these variables are:

 The quotient register: it is twice the precision of the binary encoding format,

 The divisor register: it is three time the precision of the binary encoding

format,

 The remainder register: it is three time the precision of the binary encoding

format.

The following are the steps used in the iterative algorithm:

1- Initializing the registers as shown in Figure (3.10):

39

a. The quotient register is initialized with all 0’s,

b. The divisor register is initialized with the divisor significand aligned to

the left,

c. The remainder register is initialized with the dividend significand aligned

to the left,

Figure 3.10 Initial step for iterative division

2- Compare the remainder resister with the divisor register

a. If the remainder is greater than or equal to the divisor register:

i. Update the remainder register by subtracting the value in the

divisor register

ii. Insert 1 to the right most bit of the quotient and shift left its

content

b. If the remainder is less than the divisor register:

i. Restore the remainder with its old value

ii. Insert 0 to the right most bit of the quotient and shift left its

content

3- Shift right the divisor register by 1 bit place

4- Repeat steps 2 and 3 for 2*precision time, (until all the quotient bits are written

in)

40

Table (3.8) shows the SV function that implements this restoring iterative division

algorithm, also, the implementation for the iteration is in Figure (3.11).

Table 3.8 SV function to implement the iterative restoring division algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

function [`p-1:-`m] iterative_div(input [`p-1:0] divident,divisor);

 bit [2*`p-1:-`m] r[-`p+1:`p], d[-`p+1:`p];

 bit [`p-1:-`m] q[-`p+1:`p];

 r[-`p+1][2*`p-1:`p] = divident;

 q[-`p+1] = '0;

 d[-`p+1][2*`p-1:`p] = divisor;

 for (int i = -`p+2; i <= `p; i++)

 begin

 if (r[i-1] >= d[i-1])

 begin

 r[i] = r[i-1] - d[i-1];

 q[i] = {q[i-1][`p-2:-`m],1'b1};

 end

 else

 begin

 r[i] = r[i-1];

 q[i] = {q[i-1][`p-2:-`m],1'b0};

 end

 d[i] = {1'b0,d[i-1][2*`p-1:-`m+1]};

 end

 return q[`p];

endfunction

Figure 3.11 the iterative, restoring division algorithm

41

As mentioned earlier, the quotient register is twice the precision with, this is to

account for the fact that the intermediate result before rounding should be unbounded.

Figure (3.12) shows the mapping between the 2*p wide quotient and the intermediate

significand, guard, round and sticky bits.

Figure 3.12 Mapping between quotient and intermediate result in division

The sign of the intermediate result is the exclusive or of the divisor and the dividend

signs, the exponent is the same as that of the dividend.

3.3.3. Carry/Leading zeroes correction

In division, there is no carry, and since there was a step earlier to align the divisor to

the dividend for subnormal divisors, here there is only one correction that needs to be

handled, it is correcting the exponent of the intermediate result by adding the exponent

correction computed in Table (3.7).

3.3.4. Exception handling constraints

For overflow, underflow and inexact flags, they are the same as in

addition/subtraction or multiplication, but for the invalid flag, it is different, also there

exist a new flag with is divide by zero, below is how both flags are constraint

 Invalid:

o
0

0

o
∞

∞

42

 Divide by zero:

o
𝑥

0
, where x in a finite floating point number, the result's sign is

exclusive or of the dividend sign and the divisor sign,

3.4. Fused multiply Add constraints

Fused multiple add/subtract is a multiplication followed by an addition or subtraction

operation. Figure (3.13) shows the constraints on the data path through an FMA

operation. The operation differ from multiplication followed by addition/subtraction in

the following points:

 The significand of the result of multiplication is expected to be unbounded,

and hence the addition/subtraction operand width is twice the precision of

the addition/subtraction discussed in section 3.1.

 The invalid flag is raised when:

o An operand as sNaN,

o (0 × ∞) + 𝑐, (∞ × 0) + 𝑐

43

Figure 3.13 FMA operation constraints

3.5. Square Root constraints

Figure (3.14) summarizes the data path for the Operation constraints for Square root

operation. In square root operation, we only deal with one operand, we assume that this

operand is positive. Square root for negative numbers is not covered in our work. if the

operand is subnormal, a pre-normalization step should be done before going through the

square root algorithm, then a post normalization step restores the result to account for the

the operand sub normality.

44

Figure 3.14 Square Root Operation Constraints

3.5.1. Decoding/Encoding constraints

Same as in section 3.1.1, but only for one operand and assumption that the sign bit

is always zero (positive).

3.5.2. Pre-Normalization step

This step is concerned with converting subnormal representation to a normal version

by shifting left the operand significand until the most significand digit is 1, to be able to

utilize the square root algorithm explained later that only deals with normal numbers.

Table (3.9) explains the SV constraints for this normalization step.

Table 3.9 SV constraint to implement Pre-normalization step for subnormal

numbers

1

2

3

4

5

6

function int ShiftValue (input [`p-1:0] i1);

 int j;

 ShiftValue = 0;

 for (int i = `p-2; i >=0 ; i --)

 begin

 j = (`p-1) -i;

45

7

8

9

10

11

12

13

14

15

 if (i1[i] && ShiftValue == 0)

 ShiftValue = j;

 end

endfunction

constraint pre_norm {

 SV == ShiftValue(operand1Significand);

 intermediateSignificand == operand1Significand << SV;

 intermediateExtendedSignificand == {intermediateSignificand,`p'b0,2'b0};

}

Another thing that is handled in this step extending the significand from the right

with zero padding. This step is important since the result of the square root is always

half the precision of the operand under the root. So to return the same precision as

the input to the square root algorithm, this extension is required. Also, another two

bits are extended so that the square root algorithm return one more bit on the right

that is mapped to the round bit. Line 14 in Table (3.9) denotes the right padding step.

3.5.3. Square Root constraints

Two different approaches were carried in calculating the square root for a given

floating point binary number. The approaches share the calculation of the exponent.

If the biased exponent is odd, subtracting the bias value which is equal to maximum

possible exponent (Odd number), will lead to an even number, then the result exponent

is calculated to be half the unbiased even number, next the bias is added one more time.

If the biased exponent is even, subtracting the biased value will lead to an odd

number, then the result exponent is calculated by subtracting one from the exponent to

make it an even number then halving that number, then adding the bias one more time.

The following equation summarize how the result exponent is calculated, where RE

and OE are result exponent and Operand exponent respectively:

𝑯𝒂𝒍𝒇_𝒃𝒊𝒂𝒔 = (𝑬𝒎𝒂𝒙 − 𝟏)/𝟐

𝑹𝑬 = 𝑶𝑬[𝑾 − 𝟏: 𝟏] + 𝑯𝒂𝒍𝒇_𝒃𝒊𝒂𝒔 + 𝑶𝑬[𝟎]

To account for the operands with even exponents, a correction step is required to the

significand by left shift the significand by one. Hence, the fixed point representation of

the number under the root is either 01.XXX or 1X.XXX, which is a number between

1.000 and 3.999 and hence, the result of the square root is always between 1.000 and

46

1.999 and hence the square root algorithm will always return 1.YYY, so there is no need

to worry about normalization after the square root is done for normal numbers.

3.5.3.1. First Square root algorithm

The first algorithm is straight forward algorithm using the capabilities of SV

language; i.e. using the SV power operator to calculate the square root by having the

power equals 0.5, then the remainder is calculated by squaring the result and subtracting

it from the original number as shows in Table (3.10). The Round bit is the right most bit

of the Quotient Q, and the Sticky bit is the disjunction of the Remainder R.

Table 3.10 First approach in calculating the square root using SV power operator

1

2

3

4

5

6

7

8

function [`p+1:0] sqrt_approach_1(input [`p+1:0] i1);

 logic [`p:0] R,Q;

 logic Sticky;

 Q = {i1,`p'b0,1'b0} ** 0.5;

 R = i1 - (Q ** 2);

 Sticky = | R;

 return {Q,Sticky};

endfunction

3.5.3.2. Second Square root algorithm

The second approach is based on the proposal in [43], it is an iterative approach

based on the algorithm explained in Table (3.11). The algorism depends on having three

registers, each is two more bit wide than the operand significand

1- Quotient register (Q): will contain the result significand of square root, and the

Round bit after the iterations are done

2- Factor register (F)

3- Remainder register (R): after end of iterations, if it contain non zero value, it

means that the sticky bit is one, else, sticky bit is zero

Figure (3.15) explains how the above registers are initialized, both Quotient and

Factor registers are initialized with zeroes while the Remainder register is initialized with

Radicand (operand) most 2 significand digits from the right, and zeroes elsewhere.

47

Figure 3.15 Registers initialization for the iterative approach

Table 3.11 First approach in calculating the square root using SV power operator

1

2

3

4

5

6

7

Initialize radicand with input data value, R=0, Q=0, F=0, i=n; n is MSB bit-

index of Radicand (D).

Divide the radicand into sub-groups which each sub-group consists of 2 digits

starting from integer LSB.

Start the calculation from MSB sub-group to LSB sub-group. Treat current

sub-group as current partial remainder.

Rt = Dt[i:i-1]; t is time index indicator.

Do a comparison whether current partial remainder is bigger or equal than

current partial factor ((Ft<<1)|1), (shift left of factor register, with one

entering from the right)

If yes

 Update Q; Qt+1 = (Qt<<1)|1;

 Update F; Ft+1 = ((Ft+Ft[0])<<1)|1;

Else

 Update Q; Qt+1 = (Qt<<1)|0;

 Update F; Ft+1 = ((Ft+Ft[0])<<1)|0;

Do subtraction to partial remainder by the result value of factor

multiplication; Then append the subtraction result with next subgroup data

of Radicand in the LSB position of partial remainder, in order to update R.

 Rt+1 = ((Rt–(Ft*Ft[0]))<<2)|D[i-2:i-3];

Update the current indexes for next use.

t+1 is changed into t;

i-2 is changed into i;

 i-3 is changed into i-1;

If the process is not over

Jump to step 4 and loop the process.

48

Else

Latest Q value is final square root value.

 Latest R value is final remainder value.

Figure (3.16) is a tutorial example explaining the above iterative approach to

calculate the square root of 445.

Figure 3.16 Tutorial example of the iterative approach

Since 445 is represented in odd number of bits in binary “110111101”, we add a

dummy zero bit from the left to be “0110111101”, and hence we have 5 subgroups from

the radicand. The first subgroup is “01”, we initialize the remainder register to be “01”,

then we compute ((Ft<<1)|1) as explained in step 4, to be “1”, so remainder register is

greater than or equal to the computed factor, and hence we should update the Quotient

and Factor register as explained in step 4, so that the Quotient is left shifted with one to

be “1” and the new factor register is calculated by ((Ft+Ft[0])<<1)|1), to be “1”. We

calculate the new remainder by computing (Rt+1 = ((Rt–(Ft*Ft[0]))<<2)|D[i-2:i-3]) as

explained in step 5, and hence the new remainder is “010”. This is the end of the first

iteration.

Again, in the next iteration, we compare the current remainder “010” with ((Ft<<1|1)

which is “11”, and hence we find that it is not greater than or equal the remainder, and

hence we execute the else part in step 4, so the new Quotient is “10” and the new factor

is “100”. We use the equation in step 5 to compute the new remainder which will be

“1011”. This is the end of the second iteration.

We repeat the above until the last subgroup of the Radicand enters the remainder,

and then as shown in Figure (3.16), the Quotient register will contain “10101” which is

49

equivalent to 21, and the remainder register is not empty “000100”, hence the value is

approximated. This is clear as square root of 445 is 21.09502310972899.

As mentioned in the pre-normalization section, for both approaches, the radicand to

undergo the square root is padded with zeroes to:

1- Create a Quotient with same precision as the radicand, hence the radicand is

padded with p zero digits from the right,

2- Two more zero digits are added from the right to create one more bit in the

Quotient to account for the Round bit that will be used in rounding step later

As for the Sticky bit, it is calculating from the disjunction of the remainder register.

Figure 3.17 Mapping between quotient and intermediate result in square root

3.5.4. Post normalization step

If the Operand under the square root was subnormal, there existed a pre-

normalization step that made a left shift version of the significand, in this stage, we

correct this unforsaken left shift by a half right shift of the Quotient significand.

3.5.5. Rounding constraints

After calculation the Round, Sticky bits, depending on the round direction, the final

significand of the square root operation is calculated, by the same equations in 3.2.4.

3.5.6. Exception handling

Given the assumption that the operand is positive, only one exception needs

handling, which is the having a NaN under the square root, and it should result to NaN.

Square root operation will never return overflow or underflow since the result exponent

is always less in magnitude than the operand exponent.

50

3.6. User defined constraints

As mentioned in the proposed algorithm, besides having constraints covering the

data path for every operation, the user is allowed to add his own constraints to hit desired

corner cases. Table (3.12) is an example of constraints set during addition/subtraction to

hit a corner case that will be shown later to cover a bug in one floating point unit design.

The user constraints add more restrictions on the effective operation to be subtraction

and intermediate results to have one leading zero.

Table 3.12 Exmaple of User defined constraints

1

2

3

4

constraint intermediateSignificand_userConstraints {

 effectiveOperation == SUB;

 I_Sig[`p-1:`p-2] == 2'b01;

}

51

Chapter 4 Results and comparisons

In this chapter we discuss the result of our proposal and draw comparisons with other

verification algorithms for floating point units. All our verification were applied on

machine with the following specifications:

 Operating system: CentOS 6.3,

 Platform: 64 bits,

 Ram: 48GB,

 Cores: it has 16 cores, each with frequency of 2.8 GHz

We used QuestaSim Tool in all our simulation, with the following version:

 QuestaSim-64 10.4c_1 Compiler 2015.09 Sep 4 2015

4.1. Advantages of Our proposal

4.1.1. No solver, No modelling

One advantage of the proposed algorithm, is that it does not require bit level analysis

or creating Cartesian equations and developing a particular engine to solve these

equations as in [2], [3], [5], [11], [12].

4.1.2. Based on System Verilog Language

The algorithm is a plug and play utility that can be simulated with any simulator that

supports SV constraints. Since most Hardware verification nowadays are based on SV

language, the proposal doesn’t require pre-learning for most of verification engineers.

4.1.3. Global solution for verification

Since the methodology is to create test vectors, these test vectors can be applied at

any time of the product life cycle of a floating point unit, it can be used within behavioral

simulation with C or Matlab, it can be applied to the RTL and verify its output, it can be

converted to floating point instructions and test any current processor having floating

point hardware.

52

4.1.4. Fast generation of test vectors

Recently, verification is the bottle neck in any software/hardware design life cycle

due to the huge time and effort spent versus the fast time to market requirements. Our

methodology shows promising figures with respect to time when being simulated with

QuestaSim simulator.

Figure (4.1) shows the average time to generate 1 test vector for addition,

subtraction, multiplication, division and square root with single and double precision

binary formats. As shown, the average time to generate one test vector in multiplication

with single precision is 0.5 millisecond, the average time to generate one test vector in

multiplication with double precision is 2.5 milliseconds. For Square root, the average

time to generate one test vector in single precision is 0.9 milliseconds, and the average

time for double precision is 1.3 milliseconds. For division, the average time to generate

one test vector with single precision is 2.4 milliseconds and the average time to generate

one test vector with double precision is 2.7 milliseconds. Division is a bit slower than

multiplication and square root which is reasonable due to the iterative approach deployed

in the constraints for division, and due to the extra step of normalization when dealing

with subnormal divisor. Addition and subtraction are the slowest, with 11.7 milliseconds

to generate one test vector in single precision and 22.8 milliseconds in double precision,

again this is justifiable by the fact that the constraint data path for addition and subtraction

is longer than that of multiplication and division, since it requires computing the effective

operation, arranging the operands to identify what is the higher and the lower operands

and finally normalization of the lower operand.

53

Figure 4.1 Average time to generate 1 test vector for different operations

4.1.5. Linear response with respect to required number of test

vectors

As shown in Figures (4.2,4.3,4.4,4.5), increasing number of test vectors (N) shows

linear response in time, which provide good scalability for our proposal.

Yet increasing number of cores as shown in Figures (4.6,4.7) doesn’t significantly

improve time. This is due to the fact that running on multicore improve time when the

design has multiple hierarchical level, yet our implementation includes all the SV

constraints in one hierarchy. The experimental results here are run with single precision

on single core, four cores and eight cores.

54

Figure 4.2 Time to generate N test vectors for addition

Figure 4.3 Time to generate N test vectors for division

55

Figure 4.4 Time to generate N test vectors for multiplication

Figure 4.5 Time to generate N test vectors for square root

56

Figure 4.6 Time to generate N test vectors for addition across different cores

Figure 4.7 Time to generate N test vectors for multiplication across different cores

4.1.6. No scaling issue with bigger precision

If one refer back to Figure (4.1), it is clear that the double precision take more time

than that of single precision, yet the increase in time is not huge. Figure (4.8)

summarizing the ratio of increase from single to double precision across different

operations:

57

Figure 4.8 Ratio of increase in time from single to double precision

Multiplication shows the worst figures here, again this is justifiable since the partial

product width is scaled up from 24 bit wide to 53 bit wide, and instead of addition 24

times, it is done 53 times. For Addition/subtraction, the ratio is almost 2 which is also

justifiable since the width of the significand is doubled. Division figures are the best here

where the ratio is almost 1, which means that there is no scaling issue at all for the

division algorithm applied, this is due to applying an iterative approach in computing the

quotient and remainder. Finally, for square root, the ratio is almost 1.5, this can be

explained; when referring to the algorithm explained in 3.5.3.1, one will notice that in

order to compute the remainder, power and squaring operation are required, which will

vary when scaling from single to double precision as the operand’s width undergoing

power/square increased.

4.2. Comparison with other related work

4.2.1. Comparison with FPgen

The experimental results in [2] implied that it requires 6 minutes to generate 1586

test vectors for a combination of addition, multiplication and division, which means that

generation of one test vector takes about 227 milliseconds, while our slowest figures

58

which are captured during simulation of addition/subtraction constraints take only 22.8

milliseconds, which is at least ten times faster than that of FPgen.

4.2.2. Comparison with decimal floating point constraint solvers

As mentioned in [44], the maximum time to generate one test vector for double

precision floating decimal floating point square root operation is 37 seconds. In our

experiments, we show that the maximum time to generate one test vector for double

precision binary square root floating point operation is 1.3 milliseconds.

4.3. Summary of bugs discovered

Our verification technique proves to be effective in finding bugs. We deployed the

generated test vectors on some software/hardware implementations of Binary FP unit to

verify addition/subtraction operations with single precision and we discovered the

following bugs:

4.3.1. Bugs in FPU100, an open source design

FPU100 is an Opencores VHDL module, IEEE 754-compliant, single precision soft

core [13]. It has been tested with 2 million test vectors and the no bugs were detected

since 2007, also, it had been hardware proven as it was implemented in a Cyclone I–

EP1C6 FPGA chip and was then connected to the Java processor JOP [16] to do some

floating-point calculations. Our framework discovered 4 bugs in subtraction and 2 in

multiplication, following are the bugs explained:

4.3.1.1. Wrong Inexact exception calculation:

Inexact exception is raised if the result overflows/underflows, or any of the

intermediate guard (G), round (R) or sticky bits(S) is 1. When subtracting two FP

numbers and the intermediate result is having one leading zero, guard bit is 1 whilst both

round and sticky are 0, doing a left shift will clear the guard bit, so the result is expected

to be exact. FPU100 raised inexact flag in this scenario. Figure (4.9) shows the

intermediate result that causes the bug, since G, R and S are 0’s, the result should be

exact.

59

Figure 4.9 Wrong inexact flag with subtraction in FPU100 design

4.3.1.2. Wrong result when two normal numbers are subtracted and return a

subnormal number:

When subtracting two normal numbers and the result has leading zeroes that are

more than the intermediate exponent, the result is subnormal, and the intermediate result

is shifted with a corrected value as explained in section II, Carry/Leading Zeroes code,

lines 12 to 14. FPU100 design returns wrong results, which varies with the value of the

guard bit; if the guard bit is 0, the result is infinity with both overflow and inexact

exceptions set, if the guard bit is 1, the result is zeroes with both underflow and inexact

flags set. Figure (4.10) shows the intermediate results that causes the mentioned bugs,

comparing the correct results vs FPU100 results.

Figure 4.10 Wrong result when two normal numbers are subtracted and return a

subnormal number in FPU100 design

60

4.3.1.3. Subtracting positive zero from negative zero:

For the following: “(-0)-(+0) =?” the result is negative zero (-0), yet the FPU100

returns positive zero (+0).

4.3.1.4. Wrong result with multiplication when result is subnormal and

underflow occurs:

When multiplying one normal and one subnormal number, the result can have

leading zeroes, if the leading zeroes are equal to the difference between the intermediate

exponent and minimum exponent (emin = -126 for single precision), whilst the guard,

round and sticky are 1’s, underflow exception is raised and the result shall return in

subnormal format by left shifting of the significand by a shift value equal to the difference

between the two exponents. FPU100 return the intermediate significand un-shifted as

shown in Figure (4.11).

Figure 4.11 Wrong result with multiplication when result is subnormal and

underflow occurs in FPU100 design

4.3.1.5. Wrong Output, Inexact and Underflow exceptions with multiplication

when underflow occurs:

This is a similar scenario to bug#4, the only difference is that the leading zeroes are

bigger than the difference between the intermediate exponent and the minimum

exponent. FPU100 shift the result to eliminate the leading zeroes and produce neither

underflow, nor inexact exceptions as shown in Figure (4.12).

61

Figure 4.12 Wrong Output, Inexact and Underflow exceptions with multiplication

when underflow occurs

4.3.1.6. Wrong result significand with division when the divisor is greater than

the dividend

When the divisor is greater than the dividend, the result for FPU100 design is wrong,

as seen in Figure (4.13), where the exponent is correct, but the significand is wrong.

Figure 4.13 Wrong result significand with division when the divisor is greater than

the dividend

4.3.1.7. Wrong shifted left version of the result significand in division

The test vector shown in Figure (4.14) shows a shifted version of the result for

FPU100 design; the FPU100 result is a shift left version of the correct result by 14.

62

Figure 4.14 Wrong shifted left version of the result significand in division

4.3.1.8. Wrong result significand and underflow flag, when division result in

subnormal number

When dividend and divisor are two normal number and division result in subnormal

number that is inexact, the underflow flag should be raised, yet with FPU100, the

underflow flag is not raised and the significand value is incorrect as shown in Figure

(4.15).

Figure 4.15 Wrong result significand and underflow flag, when division result in

subnormal number

63

4.3.1.9. Wrong result and overflow flag when division result in overflow

When dividend exponent minus divisor exponent is 128, which is bigger than 𝑒𝑚𝑎𝑥

in single precision, overflow flag should be raised and the result should be infinity, this

is not the case with FPU100 as shown in Figure (4.16).

Figure 4.16 Wrong result and overflow flag when division result in overflow

4.3.1.10. Wrong significand calculation for square root operation

FPU100 design calculates the significand wrongly, Figure (4.17) explains an

example for the wrongly generated significand with respect to the correct expected one.

The operand significand is equivalent to “1.70644962787628173828125” in decimal,

and the square root of such number is “1.3063114”, our generated significand is

“1.30631137” which is the same as the expected output, yet the FPU100 output is

“1.143398761749267578125” which is clearly wrong.

Figure 4.17 Wrong significand calculation for square root in FPU100

64

4.3.2. SYMPL-FP324-AXI4-GP-GPU design

SYMPL FP32X-AXI4 is an open-source, single-precision, multi-thread, IEEE754-

2008 compliant, GP-GPU-Compute engine for single or multi-processing floating-point

accelerator application written in Verilog RTL [45]. We used our SV constraint model to

test the design and we discovered two unique bugs.

4.3.2.1. Wrong left shifted significand value when underflow occurs

When underflow occurs as a result of multiplication operation due to having

exponent result less than emin (-126), the result significand is wrong; it is left shifted one

bit as shown in Figure (4.18).

Figure 4.18 wrong shifted left significand when underflow in FP32X-AXI4

4.3.2.2. Wrong rounding when guard is unset and sticky is set in multiplication

When having a multiplication operation, if the intermediate unbounded result is

inexact, where the Guard bit is 0, while the Sticky bits are not, then in rounding, the

intermediate result should be corrected by adding one in case of rounding to negative

infinity and the sign of the result is negative. This was not handled correctly in FP32X-

AXI4 design, where no one was added while rounding as shown in Figure (4.19).

65

Figure 4.19 wrong rounding when having sticky set in FP32X-AXI4 design

4.3.3. Bugs in FPAdd design

FPAdd is one of the FP arithmetic simulators developed in the education of computer

arithmetic course for University of Massachusetts Amherst [15]. Following are three

bugs discovered by applying our generated test vectors:

4.3.3.1. Wrong Guard value for intermediate result cause wrong value after

rounding:

When subtracting two FP numbers and the intermediate result is having one leading

zero and guard bit is 1 whilst both round and sticky are 0, doing a left shift will clear the

guard bit, so the result is expected to be exact, therefore, rounding stage should not

change the result, FPAdd produces wrong rounded results due to having 1 in the guard

bit as shown in Figure (4.20).

66

Figure 4.20 Wrong Guard value for intermediate result cause wrong value after

rounding

4.3.3.2. Subtracting positive zero from negative zero:

For the following: “(-0)-(+0) =?” the result should be negative zero (-0), yet the site

returns positive zero (+0).

4.3.3.3. Wrong inexact and rounding when having a carry with addition

When having a carry in the intermediate result, significand is shifted to the right by

1, and if before shifting, the right most bit of the significand was 1, and the second right

most was 0, then after shifting the right most bit is 0, and the guard has 1, if the result is

negative and round it to negative infinity, the result significand should be incremented

by 1 in rounding step and the result is inexact as shown in Figure (4.21). FPAdd result in

exact operation and missed incrementing the significand.

Figure 4.21 Wrong inexact and rounding when having a carry with addition

67

4.3.4. Double Precision Floating Point Core design (DOUBLE_FPU)

DOUBLE_FPU is an Open cores Verilog design module, IEEE 754-compliant,

double precision [41]. 4 operations (addition, subtraction, multiplication, division) are

supported, as are the 4 rounding modes (to nearest even, towards zero, to positive and

negative infinities). This unit also supports subnormal numbers. Our framework

discovered three bugs in addition/subtraction, one in multiplication, and another in

division, following are the bugs explained:

4.3.4.1. Wrong implementation of underflow flag in multiplication and division

operations

Figures (4.22, 4.23) show a multiplication and a division operation respectively. The

one thing common in both test vectors produce underflow due to exponent being less

than the minimum possible value. For multiplication, adding both exponents which are

(-557) and (-466) result in (-1023) exponent value which is less than emin for double

precision (-1022), so underflow flag should be raised, yet with DOUBLE_FPU design,

no underflow flag is raised. For division subtracting the divisor exponent (1018) from

the dividend exponent (-4) will result in (-1022) which is the minimum exponent, so the

result is subnormal, yet the Sticky bits are non-zero, so this should produce underflow

flag. DOUBLE_FPU design didn't raise this flag.

Figure 4.22 Wrong implementation of underflow flag in multiplication

68

Figure 4.23 Wrong implementation of underflow flag in division operations

4.3.4.2. Wrong Result and inexact flag after rounding due to having non zero

sticky bit with addition

When the intermediate result before rounding have zeroes in guard and round but

has non zero sticky bits, it is expected that the result is inexact, and if the result is positive

and the rounding direction is towards positive infinity, a +1 round value should be added

to the rounded significand as shown in the correct significand in Figure (4.24).

DOUBLE_FPU rounded significand didn't account for the sticky bits and resulted in

wrong result and no raise of inexact flag.

Figure 4.24 Wrong Result and inexact flag after rounding due to having non-zero

sticky bit with addition

4.3.4.3. Wrong Result and inexact flag due to skipping sticky bits after the lower

operand is normalized

When normalizing the lower operand and we have zeroes in guard and round but has

non zero sticky bits, subtracting will result in ones in guard, round and sticky bits, and it

69

is expected that the result is inexact, and if the result is positive and the rounding direction

is towards negative infinity, round value is 0 and nothing should be added in the rounding

step as shown in the correct significand in Figure (4.25). DOUBLE_FPU produced wrong

result and no raise of inexact flag.

Figure 4.25 Wrong Result and inexact flag due to skipping sticky bits after the

lower operand is normalized

4.3.4.4. Wrong rounding when having a carry and round tie even direction with

addition

When having a carry in the intermediate result, significand is shifted to the right by

1, and if before shifting, the right most bit of the significand was 1, and the second right

most was 0, then after shifting the right most bit is 0, and the guard has 1, whilst round

and sticky are 0's, then there is a tie, and hence if the significand is odd, we add 1, else

the significand should remain the same, yet, with DOUBLE_FPU, it added 1 making the

significand odd as shown in Figure (4.26).

70

Figure 4.26 wrong rounding when having a carry and round tie even direction

with addition

71

Chapter 5 CONCLUSION AND FUTURE WORK

Verification of floating point unit is a difficult task due to wide inputs that make it

impossible to cover all variations. There have not been a generic solution to cover

verification of both software and hardware implementations. The implementation of the

floating point unit itself impose more complexity in verification due to having long data

paths between inputs and outputs. There have never been a generic implementation for

floating point units. Also, some operations have iteration approaches involving huge

number of cycles to execute and usually FP unit is pipelined. The root cause of floating

point bugs is usually due to intermediate result being wrongly rounded, so we need

intermediate results to be an input to our verification environment.

Formal and simulation techniques whether simulation or formal have addressed

floating point verification. Formal methods prove to be effective, yet they may not be

applicable due to failure to create formal model, and are not easily adapted and

automated. Also, they involve user interaction. On the other hand, simulation methods

are easily implemented yet they cannot guarantee a bug free design.

We proposed a new verification approach based on creating an SV model for the

IEEE specification for floating point arithmetic operations namely addition, subtraction,

multiplication and division. We used current simulators that supports SV constraints to

solve these constraints to generate test vectors for every operation. User defined

constraints can be added to be simulated with the SV constraint model to hit corner cases

and can be added to intermediate results.

Our verification methodology is simple, generic, time saving and compatible with

any simulator that supports SV constraints. The framework shows effectiveness in

discovering bugs even for Binary FP addition, subtraction, multiplication and division

that has been thoroughly tested since ages.

72

5.1. Future work

5.1.1. Support more floating point operations

Extending our approach to cover more Binary FP arithmetic operation like namely

Fused multiply add and logarithmic functions and applying our generated test vectors on

designs supporting these operations will be our first goal.

5.1.2. Support quadruple precision floating point formats

Scaling the verification environment to support quadruple precision will be a good

research point since it will increase the random variable count intensively that can reach

the limits of simulation tools.

5.1.3. Support Decimal floating point arithmetic

Our work can be extended to support Decimal floating point format and arithmetic.

The encoding/decoding constraints should be changed to support the decimal IEEE-754

format. Also, we should add some constraints to handle cohorts.

5.1.4. Extending UVM to use our SV constraints

The Universal Verification Methodology (UVM) is a standardized methodology for

verifying integrated circuit designs. UVM is derived mainly from the OVM (Open

Verification Methodology). The UVM class library brings much automation to the

System Verilog language such as sequences and data automation features (packing, copy,

compare) etc. Since based on System Verilog, the library classes can be extended to

include our SV constraints library to generate sequences for verification of floating point

units.

73

References

1. "IEEE Standard for Floating-Point Arithmetic," IEEE Std 754-2008, August 2008.

2. M. Aharoni, S. Asaf, L. Fournier, A. Koifman, R. Nagel, "FPgen - a test generation

framework for datapath floating-point verification," High-Level Design Validation

and Test Workshop, Eighth IEEE International, pp. 17-22, November 2003.

3. E. Guralnik, M. Aharoni, A.J. Birnbaum, A. Koyfman, "Simulation-Based

Verification of Floating-Point Division," Computers, IEEE Transactions, vol.60,

no.2, pp.176-188, February 2011.

4. G. Pachiana, J.A. Rodriguez, "Coverage modeling for verification of floating point

arithmetic units," Micro-Nanoelectronics, Technology and Applications (EAMTA),

Argentine Conference, pp.83-88, July 2014.

5. K. Kannappan, G.H. Herbeck, C. Stearns, "A methodology for automated behavioral

verification of floating-point designs," ASIC Conference and Exhibit, Proceedings of

Fifth Annual IEEE International, pp.487-490, September 1992.

6. J. Pan, K.N. Levitt, "A Formal Specification of the IEEE Floating-Point Standard

with Application to the Verification of F," Signals, Systems and Computers,

Conference Record Twenty-Fourth Asilomar Conference, vol.1, pp.505, November

1990.

7. S. Boldo, J.C. Filliatre, "Formal Verification of Floating-Point Programs," Computer

Arithmetic, ARITH '07 18th IEEE Symposium, pp.187-194, June 2007.

8. R. Kaivola, N. Narasimhan, "Formal verification of the Pentium(R) 4 multiplier,"

High-Level Design Validation and Test Workshop, Sixth IEEE International, pp.115-

120, 2001.

9. D.W. Matula, L.D. McFearin, "A Formal Model and Efficient Traversal Algorithm

for Generating Testbenches for Verification of IEEE Standard Floating Point

Division," in Design, Automation and Test in Europe, DATE '06. Proceedings , vol.1,

no., pp.1-5, March 2006.

10. M. Aharoni, M. S. Asaf, R. Maharik, I. Nehama, I. Nikulshin, A. Ziv, "Solving

constraints on the invisible bits of the intermediate result for floating-point

verification," Computer Arithmetic, ARITH '17 17th IEEE Symposium, pp.76-83,

June 2005.

11. A.A. Sayed-Ahmed, H.A. Fahmy, M.Y. Hassan, "Three engines to solve verification

constraints of decimal Floating-Point operation," Signals, Systems and Computers

(ASILOMAR), Conference Record of the Forty Fourth Asilomar Conference,

pp.1153-1157, November 2010.

12. A.A. Sayed-Ahmed, H.A. Fahmy, R. Samy, "Verification of decimal floating-point

fused-multiply-add operation," Computer Systems and Applications (AICCSA), 9th

IEEE/ACS International Conference, pp.255-262, December 2011.

13. OpenCores, “FPU100: overview,” captured in: http://www.

opencores.org/?do=project&who=fpu100, August 2009.

74

14. “IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and

Verification Language," IEEE Std 1800-2012, February 2013.

15. Umass, “Floating Point Add/Subtract,” captured in:

http://www.ecs.umass.edu./ece/koren/arith/simulator/FPAdd/, December 2012.

16. M. Schoeberl, "JOP: A Java Optimized Processor for Embedded Real-Time

Systems", Vienna University of Technology, PhD Thesis, January 2005.

17. D. Price, "Pentium FDIV flaw-lessons learned," Micro, IEEE, vol.15, no.2, pp.86,88,

April 1995.

18. Jean-Christophe Filliâtre, Claude March´e and Thierry Hubert. The Caduceus tool

for the verification of C programs. http://caduceus.lri.fr/.

19. The Coq Proof Assistant. http://coq.inria.fr/.

20. R. E. Bryant., “On the complexity of VLSI implementations and graph

representations of boolean functions with applications to integer multiplication,”

Computers, IEEE Transaction, vol. 40, no. 2, pp. 205–213, February 1991.

21. D. M. Russinoff, “A mechanically checked proof of IEEE compliance of the floating

point multiplication, division and square root algorithms of the AMD-K7 processor,”

London Mathematical Society Journal of Computational Mathematics, pp.148–200,

1998.

22. V.D. Thai, T.T. Quan, T.V. Le, B.T. Ngo, "An Approximation-Based Abstract

Interpretation Framework for Formal Verification of Floating-Point Programs," in

Computing and Communication Technologies, IEEE RIVF International

Conference, pp.1-4, February 2012.

23. M.D. Aagaard, C.-J.H. Seger, "The formal verification of a pipelined double-

precision IEEE floating-point multiplier," in Computer-Aided Design, IEEE/ACM

International Conference, pp.7-10, November 1995.

24. N. Kikkeri, P.-M. Seidel, "Optimized Arithmetic Hardware Design based on

Hierarchical Formal Verification," in Electronics, Circuits and Systems, ICECS '06

13th IEEE International Conference, pp.541-544, December 2006.

25. P-M. Seidel,; G. Even, “Delay-optimized implementation of IEEE floating-point

addition,” IEEE Transactions on Computers, no.2, vol.53, pp.97-114, February 2004.

26. G. Even, P-M. Seidel, ”A comparison of three rounding algorithms for IEEE floating-

point multiplication,” IEEE Transactions on Computers, no. 7, vol.49, pp. 638-650,

July 2000.

27. M. Brain, C. Tinelli, P. Ruemmer, T. Wahl, "An Automatable Formal Semantics for

IEEE-754 Floating-Point Arithmetic," in Computer Arithmetic, IEEE 22nd

Symposium, pp.160-167, June 2015.

28. U. Krautz, V. Paruthi, A. Arunagiri, S. Kumar, S. Pujar, T. Babinsky, "Automatic

verification of Floating Point Units," in Design Automation Conference (DAC), 51st

ACM/EDAC/IEEE, pp.1-6, June 2014.

29. J. Rupley, J. King, E. Quinnell, F. Galloway, K. Patton, P. Seidel, J. Dinh, H. Bui; A.

Bhowmik, "The Floating-Point Unit of the Jaguar x86 Core," in Computer Arithmetic

(ARITH), 21st IEEE Symposium, pp.7-16, April 2013.

http://coq.inria.fr/

75

30. V.M. KiranKumar, A. Gupta, R. Ghughal, "Symbolic Trajectory Evaluation: The

primary validation Vehicle for next generation Intel® Processor Graphics FPU," in

Formal Methods in Computer-Aided Design (FMCAD), pp.149-156, October 2012.

31. O. Goni, E. Todorovich, "Components for Coverage-Driven Verification of floating-

point units," in Programmable Logic (SPL), IX Southern Conference, pp.1-7,

November 2014.

32. M. Glasser, Open Verification Methodology Cookbook. Springer Dordrecht

Heidelberg London New York, 2009.

33. O. Goni, M. Vazquez, E. Todorovich, G. Sutter, "Experiences applying framework-

based functional verification to a design for programmable logic," in Programmable

Logic (SPL), VII Southern Conference, pp.109-115, April 2011.

34. M. Cowlishaw, The decNumber C library, 3rd ed., IBM Corporation, 2008.

35. Y-A. Chen; R.E. Bryant, "*PHDD: an efficient graph representation for floating point

circuit verification," in Computer-Aided Design, IEEE/ACM International

Conference, pp.2-7, November 1997.

36. Q. Wang, X. Song; W.N. Hung, M. Gu, J. Sun, "Scalable Verification of a Generic

End-Around-Carry Adder for Floating-Point Units by Coq," in Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions, vol.34, no.1, pp.150-

154, January 2015.

37. C-I. Chen, C-Y. Yu, Y-J. Lu, C-F. Wu, "Apply high-level synthesis design and

verification methodology on floating-point unit implementation," in VLSI Design,

Automation and Test (VLSI-DAT), International Symposium, pp.1-4, April 2014.

38. D.W. Matula, L.D. McFearin, "A Formal Model and Efficient Traversal Algorithm

for Generating Testbenches for Verification of IEEE Standard Floating Point

Division," in Design, Automation and Test in Europe, DATE '06. Proceedings , vol.1,

no., pp.1-5, March 2006.

39. A. Ziv, M. Aharoni, S. Asaf, "Solving range constraints for binary floating-point

instructions," in Computer Arithmetic, 16th IEEE Symposium, pp.158-164, June

2003.

40. E. Guralnik, A.J. Birnbaum, A. Koyfman, A. Kaplan, "Implementation Specific

Verification of Divide and Square Root Instructions," in Computer Arithmetic, 19th

IEEE Symposium, pp.114-121, June 2009.

41. M. Aharoni, R. Maharik, A. Ziv, "Solving Constraints on the Intermediate Result of

Decimal Floating-Point Operations," in Computer Arithmetic, ARITH '07. 18th IEEE

Symposium on, pp.38-45, June 2007.

42. D. Lundgren, “Double Precision Floating Point Core Verilog,” captured in:

http://opencores.org/project,double_fpu, December 2009.

43. R.V.W. Putra, "A novel fixed-point square root algorithm and its digital hardware

design," in ICT for Smart Society (ICISS), pp.1-4, June 2013.

44. A.S. Ahmed, H. Fahmy, U. Kuhne, "Verification of the decimal floating-point square

root operation," in Test Symposium (ETS), 19th IEEE European , pp.1-2, May 2014.

45. J. Harthcock, “Open-source, single-precision, GP-GPU-Compute engine being

designed for IEEE754 compliance,” captured in: https://github.com/jerry-

D/SYMPL-FP324-AXI4-GP-GPU, September 2015.

76

Appendix A: SV constraints for Addition/Subtraction

`define N 1000 //Number of generated test vectors

`define k 32 //Change to 64 for double

`define p 24 //Change to 53 for double

`define w 8 //Change to 11 for double

`define emax 127 //Change to 1023 for double

`define bias 127 //Change to 1023 for double

module DUT_normal;

 class floating_point_numbers_variables;

 typedef enum {ADD,SUB} operationTypes;

 rand operationTypes operation,effectiveOperation;

 rand bit [`k-1:0] operand1,operand2,result;

 typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes;

 rand roundTypes roundDirection;

 rand bit operand1Sign,operand2Sign,

 resultSign,higherSign,lowerSign,

 intermediateSign,intermediateNormalizedSign,

 roundSign,roundNormalizedSign;

 rand bit [`w-1:0] operand1Exponent,operand2Exponent,

 resultExponent,higherExponent,lowerExponent,

 intermediateExponent,intermediateNormalizedExponent,

 roundExponent,roundNormalizedExponent;

 rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa;

 rand bit [`p-1:0] operand1Significand,operand2Significand,

 resultSignificand,higherSignificand,lowerSignificand,lowerNormalizedSignificand,

 intermediateSignificand,intermediateNormalizedSignificand,

 roundSignificand,roundNormalizedSignificand;

 rand bit carry,roundCarry,roundValue;

 rand bit lowerGuard,lowerRound,lowerSticky;

 rand bit intermediateGuard,intermediateRound,intermediateSticky;

 rand bit intermediateNormalizedGuard,intermediateNormalizedRound,

 intermediateNormalizedSticky;

 rand int intermediateShiftValue,intermediateNormalizedShiftValue;

 rand bit inexactFlag,overflowFlag;

 const bit invalidFlag = 1'b0;

 const bit underflowFlag = 1'b0;

 const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0,

 isOperand1Inf = 1'b0,isOperand2Inf = 1'b0;

 const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0,

 isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;

 constraint binary_encoding_decoding {

 {operand1Sign,operand1Exponent,operand1Mantissa} == operand1;

 {operand2Sign,operand2Exponent,operand2Mantissa} == operand2;

 {resultSign,resultExponent,resultMantissa} == result;

 }

 constraint is_operands_infinity_NaN_zero_subnormal {

 if (isOperand1NaN)

77

 ((operand1Exponent == '1) && (operand1Mantissa != '0));

 else if (isOperand1Inf)

 ((operand1Exponent == '1) && (operand1Mantissa == '0));

 else

 operand1Exponent != '1 && operand1Exponent != '0;

 if (isOperand2NaN)

 ((operand2Exponent == '1) && (operand2Mantissa != '0));

 else if (isOperand2Inf)

 ((operand2Exponent == '1) && (operand2Mantissa == '0));

 else

 operand2Exponent != '1 && operand2Exponent != '0;

 }

 constraint significand_mantissa {

 ({1'b1,operand1Mantissa} == operand1Significand);

 ({1'b1,operand2Mantissa} == operand2Significand);

 }

 constraint higher_lower_exponent {

 if (operand1Exponent > operand2Exponent) (

 (higherSign == operand1Sign) && (higherExponent == operand1Exponent) &&

 (higherSignificand == operand1Significand) && (lowerSign == operand2Sign) &&

 (lowerExponent == operand2Exponent) &&

 (lowerSignificand == operand2Significand));

 else if (operand1Exponent < operand2Exponent) (

 (higherSign == operand2Sign) && (higherExponent == operand2Exponent) &&

 (higherSignificand == operand2Significand) && (lowerSign == operand1Sign) &&

 (lowerExponent == operand1Exponent) &&

 (lowerSignificand == operand1Significand));

 else if (operand1Significand >= operand2Significand) (

 (higherSign == operand1Sign) && (higherExponent == operand1Exponent) &&

 (higherSignificand == operand1Significand) && (lowerSign == operand2Sign) &&

 (lowerExponent == operand2Exponent) &&

 (lowerSignificand == operand2Significand));

 else (

 (higherSign == operand2Sign) && (higherExponent == operand2Exponent) &&

 (higherSignificand == operand2Significand) && (lowerSign == operand1Sign) &&

 (lowerExponent == operand1Exponent) &&

 (lowerSignificand == operand1Significand));

 }

 constraint lower_normalized {

 {lowerNormalizedSignificand,lowerGuard,lowerRound} ==

 {lowerSignificand,2'b0} >> (higherExponent-lowerExponent);

 if (higherExponent-lowerExponent < `p+2)

 lowerSticky ==

 (|(lowerSignificand << ((`p+2)-(higherExponent-lowerExponent))));

 else

 lowerSticky == (|lowerSignificand);

 }

 constraint effective_operation {

 if ((operation == ADD) && (higherSign == lowerSign))

 (effectiveOperation == ADD);

78

 else if ((operation == ADD) && (higherSign != lowerSign))

 (effectiveOperation == SUB);

 else if ((operation == SUB) && (higherSign == lowerSign))

 (effectiveOperation == SUB);

 else (effectiveOperation == ADD);

 }

 constraint addition_subtraction {

 if (effectiveOperation == ADD)

 {carry,intermediateSignificand,

 intermediateGuard,intermediateRound,intermediateSticky} ==

 {1'b0,lowerNormalizedSignificand,lowerGuard,lowerRound,lowerSticky} +

 {1'b0,higherSignificand,3'b0};

 else

 {carry,intermediateSignificand,

 intermediateGuard,intermediateRound,intermediateSticky} ==

 {1'b0,higherSignificand,3'b0} –

 {1'b0,lowerNormalizedSignificand,lowerGuard,lowerRound,lowerSticky};

 if ((effectiveOperation == ADD) && (operation == ADD))

 (intermediateSign == higherSign);

 else if ((effectiveOperation == ADD) && (operation == SUB))

 (intermediateSign == operand1Sign);

 else if ((effectiveOperation == SUB) && (operation == ADD))

 (intermediateSign == higherSign);

 else (intermediateSign ==

 (((operand1Exponent < operand2Exponent) ||

 ((operand1Exponent == operand2Exponent) &&

 (operand1Significand < operand2Significand))) ^(operand1Sign)));

 intermediateExponent == higherExponent;

 }

 function int leading_zero_calculation (input [0:`p+2] functionSignificand);

 for (int i = 0; i <= `p+2;i++)

 if (functionSignificand[i] == 1'b1) return i;

 return `p+3;

 endfunction

 constraint carry_leading_zero_correction {

 intermediateSign == intermediateNormalizedSign;

 intermediateShiftValue == leading_zero_calculation(intermediateSignificand);

 if (intermediateShiftValue >= intermediateExponent)

 intermediateNormalizedShiftValue == intermediateExponent-1;

 else intermediateNormalizedShiftValue == intermediateShiftValue;

 // only valid in addition

 if (carry == 1'b1) (

 (intermediateNormalizedExponent == intermediateExponent + 1'b1) &&

 (intermediateNormalizedGuard == intermediateSignificand[0]) &&

 (intermediateNormalizedRound == intermediateGuard) &&

 (intermediateNormalizedSticky == (intermediateSticky | intermediateRound)) &&

 (intermediateNormalizedSignificand == {1'b1,intermediateSignificand[`p-1:1]}));

 // no leading zeros

 else if((intermediateSignificand[`p-1] == 1'b1)) (

 (intermediateNormalizedExponent == intermediateExponent) &&

79

 (intermediateNormalizedGuard == intermediateGuard) &&

 (intermediateNormalizedRound == intermediateRound) &&

 (intermediateNormalizedSticky == intermediateSticky) &&

 (intermediateNormalizedSignificand == intermediateSignificand));

 else if ((intermediateShiftValue >= intermediateExponent)) (

 (intermediateNormalizedExponent == '0) &&

 (intermediateNormalizedGuard == 1'b0) &&

 (intermediateNormalizedRound == 1'b0) &&

 (intermediateNormalizedSticky == 1'b0) &&

 ({intermediateNormalizedSignificand,intermediateNormalizedGuard,

 intermediateNormalizedRound,intermediateNormalizedSticky} ==

 ({intermediateSignificand,intermediateGuard,

 intermediateRound,intermediateSticky} << intermediateNormalizedShiftValue)));

 else if ((intermediateShiftValue != `p+3)) (

 (intermediateNormalizedExponent ==

 intermediateExponent - intermediateNormalizedShiftValue) &&

 (intermediateNormalizedGuard == 1'b0) &&

 (intermediateNormalizedRound == 1'b0) &&

 (intermediateNormalizedSticky == 1'b0) &&

 ({intermediateNormalizedSignificand,intermediateNormalizedGuard,

 intermediateNormalizedRound,intermediateNormalizedSticky} ==

 ({intermediateSignificand,intermediateGuard,

 intermediateRound,intermediateSticky} << intermediateNormalizedShiftValue)));

 else (

 (intermediateNormalizedExponent == '0) &&

 (intermediateNormalizedGuard == 1'b0) &&

 (intermediateNormalizedRound == 1'b0) &&

 (intermediateNormalizedSticky == 1'b0) &&

 ({intermediateNormalizedSignificand,intermediateNormalizedGuard,

 intermediateNormalizedRound,intermediateNormalizedSticky} == '0));

 }

 constraint rounding {

 (roundDirection == roundZero) -> (roundValue == 1'b0);

 (roundDirection == roundPositive) ->

 (roundValue == (~intermediateNormalizedSign &

 (intermediateNormalizedGuard | intermediateNormalizedRound |

 intermediateNormalizedSticky)));

 (roundDirection == roundNegative) ->

 (roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard |

 intermediateNormalizedRound | intermediateNormalizedSticky)));

 (roundDirection == roundTieEven) ->

 (roundValue == (intermediateNormalizedGuard & (intermediateNormalizedRound

 | intermediateNormalizedSticky | intermediateNormalizedSignificand[0])));

 }

 constraint addition_after_round {

 {roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand}

 + roundValue);

 roundSign == intermediateNormalizedSign;

 roundExponent == intermediateNormalizedExponent;

 }

80

 constraint normalization_after_rounding {

 roundNormalizedSign == roundSign;

 (roundCarry == 1'b1) -> (

 (roundNormalizedExponent == roundExponent + 1) &&

 (roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]}));

 (roundCarry == 1'b0) -> (

 (roundNormalizedExponent == roundExponent) &&

 (roundNormalizedSignificand == roundSignificand));

 }

 constraint overflow_flag {

 overflowFlag == ((roundNormalizedExponent == '1) |

 (intermediateNormalizedExponent == '1));

 }

 constraint inexact_flag {

 inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedRound |

 intermediateNormalizedSticky | overflowFlag);

 }

 constraint result_calculation {

 if ((overflowFlag == 1'b0)) (

 (resultSign == roundNormalizedSign) &&

 (resultExponent == roundNormalizedExponent) &&

 (resultSignificand == roundNormalizedSignificand) &&

 (resultMantissa == roundNormalizedSignificand[`p-2:0])

);

 else if (roundDirection == roundTieEven) (

 (resultSign == roundNormalizedSign) &&

 (resultExponent == '1) &&

 (resultSignificand == {1'b1,'0}) &&

 (resultMantissa == '0)

);

 else if ((roundDirection == roundZero) ||

 ((roundDirection == roundPositive) && (roundNormalizedSign == 1'b1)) ||

 ((roundDirection == roundNegative) && (roundNormalizedSign == 1'b0))) (

 (resultSign == roundNormalizedSign) &&

 (resultExponent == `bias+`bias) &&

 (resultSignificand == '1) &&

 (resultMantissa == '1)

);

 else if ((roundDirection == roundTieEven) ||

 ((roundDirection == roundPositive) && (roundNormalizedSign == 1'b0)) ||

 ((roundDirection == roundNegative) && (roundNormalizedSign == 1'b1))) (

(resultSign == roundNormalizedSign) &&

(resultExponent == '1) &&

(resultSignificand == {1'b1,'0}) &&

(resultMantissa == '0)

);

 }

endclass

int i;

floating_point_numbers_variables fpv;

81

initial

begin

i = 0;

fpv = new();

repeat (`N) begin

assert(fpv.randomize());

i++;

$display("Test ID: %d ",i);

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result);

$display("Flags : %b %b %b

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag);

end

end

endmodule

module DUT_subnormal;

class floating_point_numbers_variables;

 typedef enum {ADD,SUB} operationTypes;

 rand operationTypes operation,effectiveOperation;

 rand bit [`k-1:0] operand1,operand2,result;

 typedef enum {roundTieEven,roundPositive,roundNegative,roundZero}

 roundTypes;

 rand roundTypes roundDirection;

 rand bit operand1Sign,operand2Sign,resultSign,

 higherSign,lowerSign,intermediateSign,intermediateNormalizedSign,

 roundSign,roundNormalizedSign;

 rand bit [`w-1:0] operand1Exponent,resultExponent,higherExponent,

 intermediateExponent,intermediateNormalizedExponent,

 roundExponent,roundNormalizedExponent;

 const bit [`w-1:0] operand2Exponent = '0,lowerExponent = '0;

 rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa;

 rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand,

 higherSignificand,lowerSignificand,lowerNormalizedSignificand,

 intermediateSignificand,intermediateNormalizedSignificand,

 roundSignificand,roundNormalizedSignificand;

 rand bit carry,roundCarry,roundValue;

 rand bit lowerGuard,lowerRound,lowerSticky;

 rand bit intermediateGuard,intermediateRound,intermediateSticky;

 rand bit intermediateNormalizedGuard,intermediateNormalizedRound,

 intermediateNormalizedSticky;

 rand int intermediateShiftValue,intermediateNormalizedShiftValue;

 rand bit inexactFlag,overflowFlag;

 const bit invalidFlag = 1'b0;;

 const bit underflowFlag = 1'b0;

 const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0,

 isOperand1Inf = 1'b0,isOperand2Inf = 1'b0;

 const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0,

 isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;;

 constraint binary_encoding_decoding {

 {operand1Sign,operand1Exponent,operand1Mantissa} == operand1;

 {operand2Sign,operand2Exponent,operand2Mantissa} == operand2;

82

 {resultSign,resultExponent,resultMantissa} == result;

 }

 constraint is_operands_infinity_NaN_zero_subnormal {

 operand1Exponent != '1 && operand1Exponent != '0;

 operand2Exponent == '0;

 }

 constraint significand_mantissa {

 ({1'b1,operand1Mantissa} == operand1Significand) ;

 ({1'b0,operand2Mantissa} == operand2Significand) ;

 }

 constraint higher_lower_exponent {

 (higherSign == operand1Sign) && (higherExponent == operand1Exponent) &&

 (higherSignificand == operand1Significand);

 (lowerSign == operand2Sign) && (lowerSignificand == operand2Significand);

 }

 constraint lower_normalized {

 {lowerNormalizedSignificand,lowerGuard,lowerRound} ==

 {lowerSignificand,2'b0} >> (higherExponent-1);

 if (higherExponent < `p+2)

 lowerSticky == (|(lowerSignificand << ((`p+2)-(higherExponent-1))));

 else

 lowerSticky == (|lowerSignificand);

 }

 constraint effective_operation {

 if ((operation == ADD) && (higherSign == lowerSign))

 (effectiveOperation == ADD);

 else if ((operation == ADD) && (higherSign != lowerSign))

 (effectiveOperation == SUB);

 else if ((operation == SUB) && (higherSign == lowerSign))

 (effectiveOperation == SUB);

 else (effectiveOperation == ADD);

 }

 constraint addition_subtraction {

 if (effectiveOperation == ADD)

 {carry,intermediateSignificand,

 intermediateGuard,intermediateRound,intermediateSticky} ==

 {1'b0,lowerNormalizedSignificand,lowerGuard,lowerRound,lowerSticky} +

 {1'b0,higherSignificand,3'b0};

 else

 {carry,intermediateSignificand,

 intermediateGuard,intermediateRound,intermediateSticky} ==

 {1'b0,higherSignificand,3'b0} –

 {1'b0,lowerNormalizedSignificand,lowerGuard,lowerRound,lowerSticky};

 intermediateSign == higherSign;

 intermediateExponent == higherExponent;

 }

 function int leading_zero_calculation (input [0:`p+2] functionSignificand);

 for (int i = 0; i <= `p+2;i++)

 if (functionSignificand[i] == 1'b1) return i;

 return `p+3;

83

 endfunction

 constraint carry_leading_zero_correction {

 intermediateSign == intermediateNormalizedSign;

 intermediateShiftValue == leading_zero_calculation(intermediateSignificand);

 if (intermediateShiftValue >= intermediateExponent)

 intermediateNormalizedShiftValue == intermediateExponent-1;

 else intermediateNormalizedShiftValue == intermediateShiftValue;

 if (carry == 1'b1) (

 (intermediateNormalizedExponent == intermediateExponent + 1'b1) &&

 (intermediateNormalizedGuard == intermediateSignificand[0]) &&

 (intermediateNormalizedRound == intermediateGuard) &&

 (intermediateNormalizedSticky == (intermediateSticky | intermediateRound)) &&

 (intermediateNormalizedSignificand == {1'b1,intermediateSignificand[`p-1:1]}));

 else if((intermediateSignificand[`p-1] == 1'b1)) (

 (intermediateNormalizedExponent == intermediateExponent) &&

 (intermediateNormalizedGuard == intermediateGuard) &&

 (intermediateNormalizedRound == intermediateRound) &&

 (intermediateNormalizedSticky == intermediateSticky) &&

 (intermediateNormalizedSignificand == intermediateSignificand));

 else if ((intermediateShiftValue >= intermediateExponent)) (

 (intermediateNormalizedExponent == '0) &&

 (intermediateNormalizedGuard == 1'b0) &&

 (intermediateNormalizedRound == 1'b0) &&

 (intermediateNormalizedSticky == 1'b0) &&

 ({intermediateNormalizedSignificand,intermediateNormalizedGuard,

 intermediateNormalizedRound,intermediateNormalizedSticky} ==

 ({intermediateSignificand,intermediateGuard,

 intermediateRound,intermediateSticky} << intermediateNormalizedShiftValue)));

 else if ((intermediateShiftValue != `p+3)) (

 (intermediateNormalizedExponent ==

 intermediateExponent - intermediateNormalizedShiftValue) &&

 (intermediateNormalizedGuard == 1'b0) &&

 (intermediateNormalizedRound == 1'b0) &&

 (intermediateNormalizedSticky == 1'b0) &&

 ({intermediateNormalizedSignificand,intermediateNormalizedGuard,

 intermediateNormalizedRound,intermediateNormalizedSticky} ==

 ({intermediateSignificand,intermediateGuard,intermediateRound,

 intermediateSticky} << intermediateNormalizedShiftValue)));

 else (

 (intermediateNormalizedExponent == '0) &&

 (intermediateNormalizedGuard == 1'b0) &&

 (intermediateNormalizedRound == 1'b0) &&

 (intermediateNormalizedSticky == 1'b0) &&

 ({intermediateNormalizedSignificand,intermediateNormalizedGuard,

 intermediateNormalizedRound,intermediateNormalizedSticky} == '0));

 }

 constraint rounding {

 (roundDirection == roundZero) -> (roundValue == 1'b0);

 (roundDirection == roundPositive) ->

 (roundValue == (~intermediateNormalizedSign &

84

 (intermediateNormalizedGuard | intermediateNormalizedRound

 | intermediateNormalizedSticky)));

 (roundDirection == roundNegative) ->

 (roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard |

 intermediateNormalizedRound | intermediateNormalizedSticky)));

 (roundDirection == roundTieEven) ->

 (roundValue == (intermediateNormalizedGuard & (intermediateNormalizedRound

 | intermediateNormalizedSticky | intermediateNormalizedSignificand[0])));

 }

 constraint addition_after_round {

 {roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand} +

 roundValue);

 roundSign == intermediateNormalizedSign;

 roundExponent == intermediateNormalizedExponent;

 }

 constraint normalization_after_rounding {

 roundNormalizedSign == roundSign;

 (roundCarry == 1'b1) -> (

 (roundNormalizedExponent == roundExponent + 1) &&

 (roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]}));

 (roundCarry == 1'b0) -> (

 (roundNormalizedExponent == roundExponent) &&

 (roundNormalizedSignificand == roundSignificand));

 }

 constraint overflow_flag {

 overflowFlag == ((roundNormalizedExponent == '1) |

 (intermediateNormalizedExponent == '1));

 }

 constraint inexact_flag {

 inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedRound |

 intermediateNormalizedSticky | overflowFlag);

 }

 constraint result_calculation {

 if ((overflowFlag == 1'b0)) (

 (resultSign == roundNormalizedSign) &&

 (resultExponent == roundNormalizedExponent) &&

 (resultSignificand == roundNormalizedSignificand) &&

 (resultMantissa == roundNormalizedSignificand[`p-2:0]));

 else if (roundDirection == roundTieEven) (

 (resultSign == roundNormalizedSign) &&

 (resultExponent == '1) &&

 (resultSignificand == {1'b1,'0}) &&

 (resultMantissa == '0));

 else if ((roundDirection == roundZero) ||

 ((roundDirection == roundPositive) && (roundNormalizedSign == 1'b1)) ||

 ((roundDirection == roundNegative) && (roundNormalizedSign == 1'b0))) (

 (resultSign == roundNormalizedSign) &&

 (resultExponent == `bias+`bias) &&

 (resultSignificand == '1) &&

 (resultMantissa == '1));

85

 else if ((roundDirection == roundTieEven)

 || ((roundDirection == roundPositive) && (roundNormalizedSign == 1'b0)) ||

 ((roundDirection == roundNegative) && (roundNormalizedSign == 1'b1))) (

 (resultSign == roundNormalizedSign) &&

 (resultExponent == '1) &&

 (resultSignificand == {1'b1,'0}) &&

 (resultMantissa == '0));

 }

endclass

int i;

floating_point_numbers_variables fpv;

initial

begin

i = 0;

fpv = new();

repeat (`N) begin

assert(fpv.randomize());

i++;

$display("Test ID: %d ",i);

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result);

$display("Flags : %b %b %b

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag);

end

end

endmodule

86

Appendix B: SV constraints for Multiplication

`define N 1000 //Number of generated test vectors

`define k 32 //Change to 64 for double

`define p 24 //Change to 53 for double

`define w 8 //Change to 11 for double

`define emax 127 //Change to 1023 for double

`define bias 127 //Change to 1023 for double

module DUT_normal;

class floating_point_numbers_variables;

rand bit [`k-1:0] operand1,operand2,result;

typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes;

rand roundTypes roundDirection;

rand bit operand1Sign,operand2Sign,resultSign,

intermediateSign,intermediateNormalizedSign,

roundSign,roundNormalizedSign;

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent,

operand1NormalizedExponent,operand2NormalizedExponent;

rand bit [`w:0] intermediateExponent,intermediateNormalizedExponent,

roundExponent,roundNormalizedExponent;

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa;

rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand,

intermediateSignificand,intermediateNormalizedSignificand,

roundSignificand,roundNormalizedSignificand;

rand bit [`p-2:0] intermediateGuardSticky;

rand bit carry,roundCarry,roundValue;

rand bit intermediateGuard,intermediateSticky;

rand bit intermediateNormalizedGuard,intermediateNormalizedSticky;

rand bit inexactFlag,overflowFlag,underflowFlag;

const bit invalidFlag = 1'b0;

const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0,

isOperand1Inf = 1'b0,isOperand2Inf = 1'b0;

const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0,

isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;

rand int intermediateNormalizedShiftValue;

constraint binary_encoding_decoding {

{operand1Sign,operand1Exponent,operand1Mantissa} == operand1;

{operand2Sign,operand2Exponent,operand2Mantissa} == operand2;

{resultSign,resultExponent,resultMantissa} == result;

}

constraint is_operands_infinity_NaN_zero_subnormal {

if (isOperand1NaN)

((operand1Exponent == '1) && (operand1Mantissa != '0));

else if (isOperand1Inf)

((operand1Exponent == '1) && (operand1Mantissa == '0));

else

operand1Exponent != '1 && operand1Exponent != '0;

if (isOperand2NaN)

87

((operand2Exponent == '1) && (operand2Mantissa != '0));

else if (isOperand2Inf)

((operand2Exponent == '1) && (operand2Mantissa == '0));

else

operand2Exponent != '1 && operand2Exponent != '0;

}

constraint significand_mantissa {

({1'b1,operand1Mantissa} == operand1Significand) &&

 (operand1NormalizedExponent == operand1Exponent) ;

({1'b1,operand2Mantissa} == operand2Significand) &&

 (operand2NormalizedExponent == operand2Exponent) ;

}

function [2*`p-1:0] partial_product_multiplication(input [`p-1:0] op1,op2);

bit [2*`p-1:0] normal[0:`p-1], shifted[0:`p];

shifted[0] = 0;

for (int i = 0; i <= `p-1; i++)

begin

if (op2[i])

normal[i] = {`p'b0,op1};

else

normal[i] = '0;

shifted[i+1] = (normal[i] << i) + shifted[i];

end

return shifted[`p];

endfunction

constraint multiplication {

{carry,intermediateSignificand,intermediateGuardSticky} ==

 partial_product_multiplication(operand1Significand,operand2Significand);

intermediateGuard == intermediateGuardSticky[`p-2];

intermediateSticky == (|intermediateGuardSticky[`p-3:0]);

intermediateSign == (operand1Sign ^ operand2Sign);

intermediateExponent == (operand1Exponent + operand2Exponent - `bias);

}

constraint underflow_flag {

if (intermediateExponent > 0 || carry) underflowFlag == 1'b0;

else underflowFlag == 1'b1;

}

constraint carry_correction {

intermediateSign == intermediateNormalizedSign;

(carry == 1'b1) -> (

(intermediateNormalizedExponent == intermediateExponent + 1'b1) &&

(intermediateNormalizedGuard == intermediateSignificand[0]) &&

(intermediateNormalizedSticky == (intermediateSticky | intermediateGuard)) &&

(intermediateNormalizedSignificand == {1'b1,intermediateSignificand[`p-1:1]}));

(carry == 1'b0 && underflowFlag == 1'b0) -> (

(intermediateNormalizedExponent == (intermediateExponent)) &&

(intermediateNormalizedGuard == intermediateGuard) &&

(intermediateNormalizedSticky == intermediateSticky) &&

(intermediateNormalizedSignificand == intermediateSignificand));

(carry == 1'b0 && underflowFlag == 1'b1) -> (

88

(intermediateNormalizedExponent == (intermediateExponent)) &&

(intermediateNormalizedGuard == intermediateSignificand[0]) &&

(intermediateNormalizedSticky == (intermediateSticky | intermediateGuard)) &&

(intermediateNormalizedSignificand == {1'b0,intermediateSignificand[`p-1:1]}));

}

constraint overflow_flag {

if (intermediateNormalizedExponent < (`bias+`bias+1)) overflowFlag == 1'b0;

else overflowFlag == 1'b1;

}

constraint inexact_flag {

inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedSticky |

overflowFlag | underflowFlag);

}

constraint rounding {

(roundDirection == roundZero) -> (roundValue == 1'b0);

(roundDirection == roundPositive) -> (roundValue == (~intermediateNormalizedSign

& (intermediateNormalizedGuard | intermediateNormalizedSticky)));

(roundDirection == roundNegative) -> (roundValue == (intermediateNormalizedSign

& (intermediateNormalizedGuard | intermediateNormalizedSticky)));

(roundDirection == roundTieEven) -> (roundValue ==

(intermediateNormalizedGuard & (intermediateNormalizedSticky |

intermediateNormalizedSignificand[0])));

}

constraint addition_after_round {

{roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand} +

roundValue);

roundSign == intermediateNormalizedSign;

roundExponent == intermediateNormalizedExponent;

}

constraint normalization_after_rounding {

roundNormalizedSign == roundSign;

(roundCarry == 1'b1) -> (

(roundNormalizedExponent == roundExponent + 1) &&

(roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]}));

(roundCarry == 1'b0) -> (

(roundNormalizedExponent == roundExponent) &&

(roundNormalizedSignificand == roundSignificand));

}

constraint result_calculation {

if (overflowFlag && (roundDirection == roundTieEven))

(resultSign == roundNormalizedSign) &&

(resultExponent == '1) &&

(resultSignificand == {1'b1,'0}) &&

(resultMantissa == '0)

;

else if (overflowFlag && ((roundDirection == roundZero) || ((roundDirection ==

roundPositive) && (roundNormalizedSign == 1'b1)) || ((roundDirection ==

roundNegative) && (roundNormalizedSign == 1'b0))))

(resultSign == roundNormalizedSign) &&

(resultExponent == `bias+`bias) &&

89

(resultSignificand == '1) &&

(resultMantissa == '1)

;

else if (overflowFlag && ((roundDirection == roundTieEven) || ((roundDirection ==

roundPositive) && (roundNormalizedSign == 1'b0)) || ((roundDirection ==

roundNegative) && (roundNormalizedSign == 1'b1))))

(resultSign == roundNormalizedSign) &&

(resultExponent == '1) &&

(resultSignificand == {1'b1,'0}) &&

(resultMantissa == '0)

;

else

(resultSign == roundNormalizedSign) &&

(resultExponent == roundNormalizedExponent[`w-1:0]) &&

(resultSignificand == roundNormalizedSignificand) &&

(resultMantissa == roundNormalizedSignificand[`p-2:0])

;

}

endclass

int i;

floating_point_numbers_variables fpv;

initial

begin

i = 0;

fpv = new();

repeat (`N) begin

assert(fpv.randomize());

i++;

$display("Test ID: %d ",i);

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result);

$display("Flags : %b %b %b

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag);

end

end

endmodule

module DUT_subnormal;

class floating_point_numbers_variables;

rand bit [`k-1:0] operand1,operand2,result;

typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes;

rand roundTypes roundDirection;

rand bit operand1Sign,operand2Sign,resultSign,

intermediateSign,intermediateNormalizedSign,roundSign,roundNormalizedSign;

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent,

operand1NormalizedExponent,operand2NormalizedExponent;

rand bit [`w:0] intermediateExponent,intermediateNormalizedExponent,

roundExponent,roundNormalizedExponent;

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa;

rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand,

intermediateSignificand,intermediateNormalizedSignificand,

90

roundSignificand,roundNormalizedSignificand;

rand bit [`p-2:0] intermediateGuardSticky,intermediateNormalizedGuardSticky;

rand bit carry,roundCarry,roundValue;

rand bit intermediateGuard,intermediateRound,intermediateSticky;

rand bit intermediateNormalizedGuard,intermediateNormalizedRound,

intermediateNormalizedSticky;

rand int intermediateShiftValue,intermediateNormalizedShiftValue;

rand bit inexactFlag,underflowFlag;

const bit invalidFlag = 1'b0,overflowFlag = 1'b0;

const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0,

isOperand1Inf = 1'b0,isOperand2Inf = 1'b0;

const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0,

isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;;

constraint binary_encoding_decoding {

{operand1Sign,operand1Exponent,operand1Mantissa} == operand1;

{operand2Sign,operand2Exponent,operand2Mantissa} == operand2;

{resultSign,resultExponent,resultMantissa} == result;

}

constraint is_operands_infinity_NaN_zero_subnormal {

if (isOperand1NaN)

((operand1Exponent == '1) && (operand1Mantissa != '0));

else if (isOperand1Inf)

((operand1Exponent == '1) && (operand1Mantissa == '0));

else

operand1Exponent != '1 && operand1Exponent != '0;

if (isOperand2NaN)

((operand2Exponent == '1) && (operand2Mantissa != '0));

else if (isOperand2Inf)

((operand2Exponent == '1) && (operand2Mantissa == '0));

else

operand2Exponent == '0;

}

// will vary in subnormal

constraint significand_mantissa {

({1'b1,operand1Mantissa} == operand1Significand) &&

 (operand1NormalizedExponent == operand1Exponent) ;

({1'b0,operand2Mantissa} == operand2Significand) &&

(operand2NormalizedExponent == operand2Exponent) ;

}

function [2*`p-1:0] partial_product_multiplication(input [`p-1:0] op1,op2);

bit [2*`p-1:0] normal[0:`p-1], shifted[0:`p];

shifted[0] = 0;

for (int i = 0; i <= `p-1; i++)

begin

if (op2[i])

normal[i] = {`p'b0,op1};

else

normal[i] = '0;

shifted[i+1] = (normal[i] << i) + shifted[i];

end

91

return shifted[`p];

endfunction

constraint multiplication {

{carry,intermediateSignificand,intermediateGuardSticky} ==

partial_product_multiplication(operand1Significand,operand2Significand);

intermediateGuard == intermediateGuardSticky[`p-2];

intermediateRound == intermediateGuardSticky[`p-3];

intermediateSticky == (|intermediateGuardSticky[`p-4:0]);

intermediateSign == (operand1Sign ^ operand2Sign);

intermediateExponent == (operand1Exponent + operand2Exponent - `bias + 1);

}

function int leading_zero_calculation (input [0:`p+2] functionSignificand);

 for (int i = 0; i <= `p+2;i++)

 if (functionSignificand[i] == 1'b1) return i;

 return `p+3;

endfunction

constraint carry_correction {

intermediateSign == intermediateNormalizedSign;

intermediateShiftValue == leading_zero_calculation(intermediateSignificand);

if (intermediateShiftValue >= intermediateExponent)

 intermediateNormalizedShiftValue == intermediateExponent;

else intermediateNormalizedShiftValue == intermediateShiftValue;

(intermediateNormalizedExponent ==

(intermediateExponent - intermediateNormalizedShiftValue)) &&

({intermediateNormalizedSignificand,intermediateNormalizedGuardSticky} ==

 ({intermediateSignificand,intermediateGuardSticky} <<

 intermediateNormalizedShiftValue));

intermediateNormalizedGuard == intermediateNormalizedGuardSticky[`p-2];

intermediateNormalizedRound == intermediateNormalizedGuardSticky[`p-3];

intermediateNormalizedSticky == (|intermediateNormalizedGuardSticky[`p-4:0]);

}

constraint underflow_flag {

if (intermediateExponent > intermediateShiftValue) underflowFlag == 1'b0;

else underflowFlag == 1'b1;

}

constraint inexact_flag {

inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedRound |

intermediateNormalizedSticky | underflowFlag);

}

constraint rounding {

(roundDirection == roundZero) -> (roundValue == 1'b0);

((underflowFlag == 1'b0) && (roundDirection == roundPositive)) ->

(roundValue == (~intermediateNormalizedSign & (intermediateNormalizedGuard |

intermediateNormalizedRound | intermediateNormalizedSticky)));

((underflowFlag == 1'b0) && (roundDirection == roundNegative)) ->

(roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard |

intermediateNormalizedRound | intermediateNormalizedSticky)));

((underflowFlag == 1'b0) && (roundDirection == roundTieEven)) ->

(roundValue == (intermediateNormalizedGuard & (intermediateNormalizedRound |

intermediateNormalizedSticky | intermediateNormalizedSignificand[0])));

92

((underflowFlag == 1'b1) && (roundDirection == roundPositive)) ->

(roundValue == (~intermediateNormalizedSign & (intermediateNormalizedGuard |

intermediateNormalizedRound | intermediateNormalizedSticky |

intermediateNormalizedSignificand[0])));

((underflowFlag == 1'b1) && (roundDirection == roundNegative)) ->

(roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard |

intermediateNormalizedRound | intermediateNormalizedSticky |

intermediateNormalizedSignificand[0])));

((underflowFlag == 1'b1) && (roundDirection == roundTieEven)) ->

(roundValue == (intermediateNormalizedSignificand[0] &

(intermediateNormalizedGuard | intermediateNormalizedRound |

intermediateNormalizedSticky | intermediateNormalizedSignificand[1])));

}

constraint addition_after_round {

roundSign == intermediateNormalizedSign;

if (underflowFlag)

{roundCarry,roundSignificand} == ({2'b0,intermediateNormalizedSignificand[`p-

1:1]} + roundValue) &&

roundExponent == '0;

else

{roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand} +

roundValue) &&

(roundExponent == intermediateNormalizedExponent);

}

constraint normalization_after_rounding {

roundNormalizedSign == roundSign;

(roundCarry == 1'b1) -> (

(roundNormalizedExponent == roundExponent + 1) &&

(roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]}));

(roundCarry == 1'b0) -> (

(roundNormalizedExponent == roundExponent) &&

(roundNormalizedSignificand == roundSignificand));

}

constraint result_calculation {

(resultSign == roundNormalizedSign);

(resultExponent == roundNormalizedExponent);

(resultSignificand == roundNormalizedSignificand);

(resultMantissa == roundNormalizedSignificand[`p-2:0]);

}

endclass

int i;

floating_point_numbers_variables fpv;

initial

begin

i = 0;

fpv = new();

repeat (`N) begin

assert(fpv.randomize());

i++;

$display("Test ID: %d ",i);

93

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result);

$display("Flags : %b %b %b

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag);

end

end

endmodule

94

Appendix C: SV constraints for Division

`define N 1000 //Number of generated test vectors

`define k 32 //Change to 64 for double

`define p 24 //Change to 53 for double

`define w 8 //Change to 11 for double

`define emax 127 //Change to 1023 for double

`define bias 127 //Change to 1023 for double

module DUT_normal;

class floating_point_numbers_variables;

rand bit [`k-1:0] operand1,operand2,result;

typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes;

rand roundTypes roundDirection;

rand bit operand1Sign,operand2Sign,resultSign,

intermediateSign,intermediateNormalizedSign,

roundSign,roundNormalizedSign;

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent,

operand1NormalizedExponent,operand2NormalizedExponent;

rand bit [`w:0] intermediateExponent,intermediateNormalizedExponent,

roundExponent,roundNormalizedExponent;

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa;

rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand,

intermediateSignificand,intermediateNormalizedSignificand,

roundSignificand,roundNormalizedSignificand;

rand bit [`p-2:0] intermediateGuardSticky;

rand bit roundCarry,roundValue;

rand bit intermediateGuard,intermediateSticky;

rand bit intermediateNormalizedGuard,intermediateNormalizedSticky;

rand bit inexactFlag,overflowFlag,underflowFlag;

const bit invalidFlag = 1'b0;

const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0,

isOperand1Inf = 1'b0,isOperand2Inf = 1'b0;

const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0,

isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;;

rand int intermediateNormalizedShiftValue;

constraint binary_encoding_decoding {

{operand1Sign,operand1Exponent,operand1Mantissa} == operand1;

{operand2Sign,operand2Exponent,operand2Mantissa} == operand2;

{resultSign,resultExponent,resultMantissa} == result;

}

constraint is_operands_infinity_NaN_zero_subnormal {

if (isOperand1NaN)

((operand1Exponent == '1) && (operand1Mantissa != '0));

else if (isOperand1Inf)

((operand1Exponent == '1) && (operand1Mantissa == '0));

else

operand1Exponent != '1 && operand1Exponent != '0;

if (isOperand2NaN)

95

((operand2Exponent == '1) && (operand2Mantissa != '0));

else if (isOperand2Inf)

((operand2Exponent == '1) && (operand2Mantissa == '0));

else

operand2Exponent != '1 && operand2Exponent != '0;

}

constraint significand_mantissa {

({1'b1,operand1Mantissa} == operand1Significand) &&

(operand1NormalizedExponent == operand1Exponent) ;

({1'b1,operand2Mantissa} == operand2Significand) &&

(operand2NormalizedExponent == operand2Exponent) ;

}

function [`p-1:-`m] iterative_div(input [`p-1:0] divident,divisor);

bit [2*`p-1:-`m] r[-`p+1:`p], d[-`p+1:`p];

bit [`p-1:-`m] q[-`p+1:`p];

r[-`p+1][2*`p-1:`p] = divident;

q[-`p+1] = '0;

d[-`p+1][2*`p-1:`p] = divisor;

for (int i = -`p+2; i <= `p; i++)

begin

if (r[i-1] >= d[i-1])

begin

r[i] = r[i-1] - d[i-1];

q[i] = {q[i-1][`p-2:-`m],1'b1};

end

else

begin

r[i] = r[i-1];

q[i] = {q[i-1][`p-2:-`m],1'b0};

end

d[i] = {1'b0,d[i-1][2*`p-1:-`m+1]};

end

return q[`p];

endfunction

constraint division {

{intermediateSignificand,intermediateGuardSticky} ==

iterative_div(operand1Significand,operand2Significand);

intermediateSign == (operand1Sign ^ operand2Sign);

intermediateExponent == (operand1Exponent - operand2Exponent + `bias);

intermediateGuard == intermediateGuardSticky[`p-2];

intermediateSticky == |intermediateGuardSticky[`p-3:0];

}

constraint underflow_flag {

if (intermediateExponent > 0 && intermediateSignificand[`p-1] == 1'b1)

 underflowFlag == 1'b0;

else if (intermediateExponent > 1 && intermediateSignificand[`p-1] == 1'b0)

underflowFlag == 1'b0;

else underflowFlag == 1'b1;

}

constraint normalization {

96

intermediateSign == intermediateNormalizedSign;

if (intermediateSignificand[`p-1] == 1'b1 && underflowFlag == 1'b0)

(intermediateNormalizedExponent == (intermediateExponent)) &&

(intermediateNormalizedGuard == intermediateGuard) &&

(intermediateNormalizedSticky == intermediateSticky) &&

(intermediateNormalizedSignificand == intermediateSignificand);

else if (intermediateSignificand[`p-1] == 1'b0 && underflowFlag == 1'b1)

(intermediateNormalizedExponent == (intermediateExponent - 1)) &&

(intermediateNormalizedGuard == intermediateGuard) &&

(intermediateNormalizedSticky == intermediateSticky) &&

(intermediateNormalizedSignificand == intermediateSignificand);

else

(intermediateNormalizedExponent == intermediateExponent - 1) &&

(intermediateNormalizedGuard == intermediateGuardSticky[`p-3]) &&

(intermediateNormalizedSticky == |intermediateGuardSticky[`p-4:0]) &&

(intermediateNormalizedSignificand ==

{intermediateSignificand[`p-2:0],intermediateGuard});

}

constraint overflow_flag {

if (intermediateNormalizedExponent < (`bias+`bias+1)) overflowFlag == 1'b0;

else overflowFlag == 1'b1;

}

constraint inexact_flag {

inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedSticky |

overflowFlag | underflowFlag);

}

constraint rounding {

(roundDirection == roundZero) -> (roundValue == 1'b0);

(roundDirection == roundPositive) ->

(roundValue == (~intermediateNormalizedSign & (intermediateNormalizedGuard |

intermediateNormalizedSticky)));

(roundDirection == roundNegative) ->

 (roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard |

intermediateNormalizedSticky)));

(roundDirection == roundTieEven) ->

 (roundValue == (intermediateNormalizedGuard & (intermediateNormalizedSticky |

intermediateNormalizedSignificand[0])));

}

constraint addition_after_round {

{roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand} +

roundValue);

roundSign == intermediateNormalizedSign;

roundExponent == intermediateNormalizedExponent;

}

constraint normalization_after_rounding {

roundNormalizedSign == roundSign;

(roundCarry == 1'b1) -> (

(roundNormalizedExponent == roundExponent + 1) &&

(roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]}));

97

(roundCarry == 1'b0) -> (

(roundNormalizedExponent == roundExponent) &&

(roundNormalizedSignificand == roundSignificand));

}

constraint result_calculation {

if (overflowFlag && (roundDirection == roundTieEven))

(resultSign == roundNormalizedSign) &&

(resultExponent == '1) &&

(resultSignificand == {1'b1,'0}) &&

(resultMantissa == '0);

else if (overflowFlag && ((roundDirection == roundZero) || ((roundDirection ==

roundPositive) && (roundNormalizedSign == 1'b1)) || ((roundDirection ==

roundNegative) && (roundNormalizedSign == 1'b0))))

(resultSign == roundNormalizedSign) &&

(resultExponent == `bias+`bias) &&

(resultSignificand == '1) &&

(resultMantissa == '1);

else if (overflowFlag && ((roundDirection == roundTieEven) || ((roundDirection ==

roundPositive) && (roundNormalizedSign == 1'b0)) || ((roundDirection ==

roundNegative) && (roundNormalizedSign == 1'b1))))

(resultSign == roundNormalizedSign) &&

(resultExponent == '1) &&

(resultSignificand == {1'b1,'0}) &&

(resultMantissa == '0);

else

(resultSign == roundNormalizedSign) &&

(resultExponent == roundNormalizedExponent[`w-1:0]) &&

(resultSignificand == roundNormalizedSignificand) &&

(resultMantissa == roundNormalizedSignificand[`p-2:0]);

}

endclass

int i;

floating_point_numbers_variables fpv;

initial

begin

i = 0;

fpv = new();

repeat (`N) begin

assert(fpv.randomize());

i++;

$display("Test ID: %d ",i);

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result);

$display("Flags : %b %b %b

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag);

end

end

endmodule

module DUT_subnormal;

class floating_point_numbers_variables;

rand bit [`k-1:0] operand1,operand2,result;

98

typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes;

rand roundTypes roundDirection;

rand bit operand1Sign,operand2Sign,resultSign,

intermediateSign,intermediateNormalizedSign,roundSign,roundNormalizedSign;

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent,

operand2NormalizedExponent;

rand bit [`w:0] intermediateExponent,intermediateNormalizedExponent,

roundExponent,roundNormalizedExponent;

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa;

rand bit [`p-1:0]

operand1Significand,operand2Significand,operand2NormalizedSignificand,

resultSignificand,intermediateSignificand,intermediateNormalizedSignificand,round

Significand,roundNormalizedSignificand;

rand bit [`p-2:0] intermediateGuardSticky;

rand bit roundCarry,roundValue;

rand bit intermediateGuard,intermediateSticky;

rand bit intermediateNormalizedGuard,intermediateNormalizedSticky;

rand bit inexactFlag,overflowFlag,underflowFlag;

const bit invalidFlag = 1'b0;

const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0,

isOperand1Inf = 1'b0,isOperand2Inf = 1'b0;

const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b1,

isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;;

rand int exponent_correction;

constraint binary_encoding_decoding {

{operand1Sign,operand1Exponent,operand1Mantissa} == operand1;

{operand2Sign,operand2Exponent,operand2Mantissa} == operand2;

{resultSign,resultExponent,resultMantissa} == result;

}

constraint is_operands_infinity_NaN_zero_subnormal {

if (isOperand1NaN)

((operand1Exponent == '1) && (operand1Mantissa != '0));

else if (isOperand1Inf)

((operand1Exponent == '1) && (operand1Mantissa == '0));

else

operand1Exponent != '1 && operand1Exponent != '0;

if (isOperand2NaN)

((operand2Exponent == '1) && (operand2Mantissa != '0));

else if (isOperand2Inf)

((operand2Exponent == '1) && (operand2Mantissa == '0));

else

operand2Exponent == '0;

}

// will vary in subnormal

constraint significand_mantissa {

({1'b1,operand1Mantissa} == operand1Significand) ;

({1'b0,operand2Mantissa} == operand2Significand) ;

}

function int leading_zero_calculation (input [0:`p-1] functionSignificand);

for (int i = 0;i < `p;i++) begin

99

if (functionSignificand[i] == 1'b1) return i;

end

endfunction

constraint divisor_normalized {

exponent_correction == leading_zero_calculation(operand2Significand);

operand2NormalizedSignificand == operand2Significand << exponent_correction;

}

function [`p-1:-`m] iterative_div(input [`p-1:0] divident,divisor);

bit [2*`p-1:-`m] r[-`p+1:`p], d[-`p+1:`p];

bit [`p-1:-`m] q[-`p+1:`p];

r[-`p+1][2*`p-1:`p] = divident;

q[-`p+1] = '0;

d[-`p+1][2*`p-1:`p] = divisor;

for (int i = -`p+2; i <= `p; i++)

begin

if (r[i-1] >= d[i-1])

begin

r[i] = r[i-1] - d[i-1];

q[i] = {q[i-1][`p-2:-`m],1'b1};

end

else

begin

r[i] = r[i-1];

q[i] = {q[i-1][`p-2:-`m],1'b0};

end

d[i] = {1'b0,d[i-1][2*`p-1:-`m+1]};

end

return q[`p];

endfunction

constraint division {

{intermediateSignificand,intermediateGuardSticky} ==

iterative_div(operand1Significand,operand2NormalizedSignificand);

intermediateSign == (operand1Sign ^ operand2Sign);

intermediateExponent == (operand1Exponent + exponent_correction + `bias-1);

intermediateGuard == intermediateGuardSticky[`p-2];

intermediateSticky == |intermediateGuardSticky[`p-3:0];

}

constraint underflow_flag {

if (intermediateExponent > 0 && intermediateSignificand[`p-1] == 1'b1)

 underflowFlag == 1'b0;

else if (intermediateExponent > 1 && intermediateSignificand[`p-1] == 1'b0)

 underflowFlag == 1'b0;

else underflowFlag == 1'b1;

}

constraint normalization {

intermediateSign == intermediateNormalizedSign;

if (intermediateSignificand[`p-1] == 1'b1 && underflowFlag == 1'b0)

(intermediateNormalizedExponent == (intermediateExponent)) &&

(intermediateNormalizedGuard == intermediateGuard) &&

100

(intermediateNormalizedSticky == intermediateSticky) &&

(intermediateNormalizedSignificand == intermediateSignificand);

else if (intermediateSignificand[`p-1] == 1'b0 && underflowFlag == 1'b1)

(intermediateNormalizedExponent == (intermediateExponent - 1)) &&

(intermediateNormalizedGuard == intermediateGuard) &&

(intermediateNormalizedSticky == intermediateSticky) &&

(intermediateNormalizedSignificand == intermediateSignificand);

else

(intermediateNormalizedExponent == intermediateExponent - 1) &&

(intermediateNormalizedGuard == intermediateGuardSticky[`p-3]) &&

(intermediateNormalizedSticky == |intermediateGuardSticky[`p-4:0]) &&

(intermediateNormalizedSignificand ==

{intermediateSignificand[`p-2:0],intermediateGuard});

}

constraint overflow_flag {

if (intermediateNormalizedExponent < (`bias+`bias+1)) overflowFlag == 1'b0;

else overflowFlag == 1'b1;

}

constraint inexact_flag {

inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedSticky |

overflowFlag | underflowFlag);

}

constraint rounding {

(roundDirection == roundZero) -> (roundValue == 1'b0);

(roundDirection == roundPositive) ->

 (roundValue == (~intermediateNormalizedSign & (intermediateNormalizedGuard |

intermediateNormalizedSticky)));

(roundDirection == roundNegative) ->

(roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard |

intermediateNormalizedSticky)));

(roundDirection == roundTieEven) ->

(roundValue == (intermediateNormalizedGuard & (intermediateNormalizedSticky |

intermediateNormalizedSignificand[0])));

}

constraint addition_after_round {

{roundCarry,roundSignificand} ==

({1'b0,intermediateNormalizedSignificand} + roundValue);

roundSign == intermediateNormalizedSign;

roundExponent == intermediateNormalizedExponent;

}

constraint normalization_after_rounding {

roundNormalizedSign == roundSign;

(roundCarry == 1'b1) -> (

(roundNormalizedExponent == roundExponent + 1) &&

(roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]}));

(roundCarry == 1'b0) -> (

(roundNormalizedExponent == roundExponent) &&

(roundNormalizedSignificand == roundSignificand));

}

constraint result_calculation {

101

if (overflowFlag && (roundDirection == roundTieEven))

(resultSign == roundNormalizedSign) &&

(resultExponent == '1) &&

(resultSignificand == {1'b1,'0}) &&

(resultMantissa == '0);

else if (overflowFlag && ((roundDirection == roundZero) || ((roundDirection ==

roundPositive) && (roundNormalizedSign == 1'b1)) || ((roundDirection ==

roundNegative) && (roundNormalizedSign == 1'b0))))

(resultSign == roundNormalizedSign) &&

(resultExponent == `bias+`bias) &&

(resultSignificand == '1) &&

(resultMantissa == '1);

else if (overflowFlag && ((roundDirection == roundTieEven) || ((roundDirection ==

roundPositive) && (roundNormalizedSign == 1'b0)) || ((roundDirection ==

roundNegative) && (roundNormalizedSign == 1'b1))))

(resultSign == roundNormalizedSign) &&

(resultExponent == '1) &&

(resultSignificand == {1'b1,'0}) &&

(resultMantissa == '0);

else

(resultSign == roundNormalizedSign) &&

(resultExponent == roundNormalizedExponent[`w-1:0]) &&

(resultSignificand == roundNormalizedSignificand) &&

(resultMantissa == roundNormalizedSignificand[`p-2:0]);

}

endclass

int i;

floating_point_numbers_variables fpv;

initial

begin

i = 0;

fpv = new();

repeat (`N) begin

assert(fpv.randomize());

i++;

$display("Test ID: %d ",i);

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result);

$display("Flags : %b %b %b

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag);

end

end

endmodule

102

Appendix D: SV constraints for Square Root

`define N 1000 //Number of generated test vectors

`define k 32 //Change to 64 for double

`define p 24 //Change to 53 for double

`define w 8 //Change to 11 for double

`define emax 127 //Change to 1023 for double

`define bias 127 //Change to 1023 for double

module DUT;

 class floating_point_numbers_variables;

 rand bit [`k-1:0] operand1,result;

 typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes;

 rand roundTypes roundDirection;

 const bit operand1Sign = 1'b0,

 resultSign = 1'b0,intermediateSign = 1'b0,

 intermediateNormalizedSign = 1'b0,roundSign = 1'b0;

 rand bit [`w-1:0] operand1Exponent,resultExponent;

 rand bit [`w:0] intermediateExponent, intermediateNormalizedExponent,

 roundExponent;

 rand bit [`p-2:0] operand1Mantissa,resultMantissa;

 rand bit [`p-1:0] operand1Significand,resultSignificand,roundSignificand;

 rand bit [`p:0] intermediateSignificand;

 rand bit [`p-1:0] intermediateNormalizedSignificand;

 rand bit [`p+1:0] intermediateSignificandRoundSticky;

 rand bit roundValue;

 rand bit intermediateNormalizedRound,intermediateNormalizedSticky;

 rand bit inexactFlag;

 const bit overflowFlag = 1'b0, underflowFlag = 1'b0, invalidFlag = 1'b0;

 const bit isOperand1NaN = 1'b0,isOperand1Inf = 1'b0;

 const bit isOperand1Subnormal = 1'b0,isResultSubnormal = 1'b0,

 isOperand1Zero = 1'b0;

 const int half_bias = (`bias-1)/2;

 constraint binary_encoding_decoding {

 {operand1Sign,operand1Exponent,operand1Mantissa} == operand1;

 {resultSign,resultExponent,resultMantissa} == result;

 }

 constraint is_operands_infinity_NaN_zero_subnormal {

 if (isOperand1NaN)

 ((operand1Exponent == '1) && (operand1Mantissa != '0));

 else if (isOperand1Inf)

 ((operand1Exponent == '1) && (operand1Mantissa == '0));

 else

 operand1Exponent != '1 && operand1Exponent != '0;

 }

 constraint significand_mantissa {

 ({1'b1,operand1Mantissa} == operand1Significand);

 }

 function [`p+1:0] sqrt(input [`p+1:0] i1);

103

 logic [`p+1:0] R,Q;

 logic R_;

 Q = {i1,`p'b0,2'b0} ** 0.5;

 R = i1 - (Q ** 2);

 if (R == i1)

 R_ = 0;

 else

 R_ = 1;

 return {Q[`p+1:1],R_};

 endfunction

 function [`p+1:0] sqrt_iterative(input [`p+1:0] i1);

 logic [`p+2:0] F,F_t_1;

 logic [`p+1:0] R,Q;

 logic [`p+1:0] R_F;

 logic [1:0] temp;

 int i;

 i = 2*`p+2;

 F = 0; R = {i1,`p'b0,2'b0} >> i; Q = 0;

 for (int t = 1; t <= `p+1; t++) begin

 F_t_1 = F;

 i = i -2;

 temp = {i1,`p'b0,2'b0} >> i;

 if (R >= {F_t_1[`p:0],1'b1}) begin

 Q = {Q[`p:0],1'b1};

 F = ((F_t_1+F_t_1[0]) << 1) +1 ;

 R_F = R- F;

 R = (R_F <<2) +temp;

 end

 else begin

 Q = {Q[`p:0],1'b0};

 F = (F_t_1+F_t_1[0]) << 1 ;

 R = (R << 2) + temp;

 end

 end

 return Q;

 endfunction

 constraint sqaure_root {

 intermediateExponent == operand1Exponent[`w-1:1] + half_bias +

 operand1Exponent[0];

 if (operand1Exponent[0])

 intermediateSignificand == {1'b0,operand1Significand};

 else

 intermediateSignificand == {1'b0,operand1Significand} << 1;

 intermediateSignificandRoundSticky == sqrt1({intermediateSignificand,1'b0});

 intermediateNormalizedExponent == intermediateExponent;

 intermediateNormalizedSignificand ==

 {intermediateSignificandRoundSticky[`p+1:2]};

 intermediateNormalizedRound == intermediateSignificandRoundSticky[1];

 intermediateNormalizedSticky == intermediateSignificandRoundSticky[0];

 }

104

 constraint inexact_flag {

 inexactFlag == (intermediateNormalizedRound || intermediateNormalizedSticky);

 }

 constraint rounding {

 (roundDirection == roundZero) -> (roundValue == 1'b0);

 (roundDirection == roundPositive) ->

 (roundValue == (~intermediateNormalizedSign &

 (intermediateNormalizedRound | intermediateNormalizedSticky)));

 (roundDirection == roundNegative) ->

 (roundValue == (intermediateNormalizedSign &

 (intermediateNormalizedRound | intermediateNormalizedSticky)));

 (roundDirection == roundTieEven) ->

 (roundValue == (intermediateNormalizedRound &

 (intermediateNormalizedSticky | intermediateNormalizedSignificand[0])));

 }

 constraint addition_after_round {

 roundSignificand == intermediateNormalizedSignificand + roundValue;

 roundExponent == intermediateNormalizedExponent;

 }

 constraint result_calculation {

 (resultExponent == roundExponent[`w-1:0]) &&

 (resultSignificand == roundSignificand) &&

 (resultMantissa == roundSignificand[`p-2:0]);

 }

 endclass

 int i;

 floating_point_numbers_variables fpv;

 initial

 begin

 i = 0;

 fpv = new();

 repeat (`N) begin

 assert(fpv.randomize());

 i++;

 $display("Test ID: %d ",i);

 $display("Test vector: %b %b",fpv.operand1,fpv.result);

 $display("Flags : %b %b %b

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag);

 end

 end

endmodule

 أ

 ملخصال

 ما ةمرحل في الخطأ علاج وتكلفة المنال، صعبة مهمة العائمة النقطة عمليات من التحقق
 على لمبنيا التحقق فشل ثم ومن كبيرة ثنائية مدخلات مع التعامل بسبب هذا. قاسية الإنتاج بعد

 من .التصميم في خلل وجود لعدم ضمان لا وبالتالي الممكنة، المدخلات كافة لتغطية المحاكاة
 إلا جال،الم هذا من التحقق في الفاعلية رياضي اساس على المبنية الطرق اثبتت أخرى، ناحية
 نم معدلة نسخة على تعمل أن يمكن لا ايضا للتصميم، رياضي نموذج خلق إلى تحتاج أنها

 .النموزج حجم كبر بسبب معقدة تصاميم مع تفشل وربما تصميم
 توليد قنيةت بإستخدام العائمة للنقطة الثنائية العمليات صحة من للتحقق جديدا مقترح لدينا

 System)معيارية غةل بإستخدام لدينا التحقق في المستخدمة القيود كتابة يتم. مقيدة عشوائية اختبارات

Verilog)كتابة تمي حسابية، عملية لكل. المعيارية اللغة هذه تدعم للمحاكاه أداة أي مع حلها ويمكن
 المواصفة مع ليتوافق النهائية النتيجة و التقريب، المتوسطة، النتائج المدخلات، بين تربط قيود

 .IEEE-754 المعيارية
 اببحس يقوم جهاز أو برنامج أي من للتحقق استخدامه ويمكن عام، هو الجديد الاقتراح

 أخطاء على ورالعث في المقترح وفائدة جدوى يثبت فإنه أيضا،. العائمة للنقطة الثنائية العمليات
 .العائمة للنقطة الثنائية الحسابية العمليات مختلف في

 نوح خالد محمد عبد المقصود :دسـمهن
 1987\07\20 تاريخ الميلاد:

 مصري الجنسية:
 2010\10\1 تاريخ التسجيل:

 2016 تاريخ المنح:
 الكهربية والاتصالات الإلكترونيات هندسة القسم:
 العلوم ماجستير الدرجة:

 المشرفون:
 فهمي حسن علي حسام. أ.د

 الممتحنون:
 فهمي حسن علي حسام. أ.د
 قمر محمد إبراهيم .أ.د
 شمس عين جامعة الهندسة، كلية ،سالم محمد أشرف أ.د.

 عنوان الرسالة:
 القيود لحل معيارية لغة بإستخدام العائمة النقطة ذات الثنائية الحسابات من التحقق

 الكلمات الدالة:

 المقيدة محاكاة، ال العائمة النقطةعمليات

 :رسالةملخـص ال
 لإنتاجا بعد ما مرحلة علاج الخطأ في وتكلفة ،المنال صعبة مهمة العائمة النقطةعمليات من لتحققا

 لتغطية حاكاةمال المبني على التحقق فشلثم منة و كبير مدخلات ثنائية مع التعامل بسببهذا . قاسية
 تتاثب أخرى، ناحية من. تصميمال في خللوجود عدمل ضمان لا وبالتالي الممكنة، المدخلات كافة

 نموذج لقخ إلى تحتاج أنها إلا مجال،ال هذا من التحقق في ةيلاعفال المبنية على اساس رياضي الطرق
 معقدة اميمتص مع تفشل وربما تصميم من نسخة معدلة على تعمل أن يمكن لا ايضا ،رياضي للتصميم

 ماستخدبإ العائمة لنقطةالعمليات الثنائية ل من صحة لتحققل جديدالدينا مقترح .كبر حجم النموزج بسبب
 لغة إستخدامب لدينا التحقق في المستخدمة القيود كتابة يتم. مقيدة عشوائية اتاختبار توليد تقنية

 ةعملي كلل. تدعم هذه اللغة المعيارية للمحاكاه أداة أي مع حلها ويمكن (System Verilog)معيارية
 مع ليتوافق لنهائيةا نتيجةو ال ،التقريب ،المتوسطة نتائجال ،مدخلاتال يتم كتابة قيود تربط بين حسابية،

 .IEEE-754 المواصفة المعيارية

 القيود للح معيارية لغة بإستخدام العائمة النقطة ذات الثنائية الحسابات من التحقق

 اعداد

 خالد محمد عبد المقصود نوح

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلومماجستير درجة على الحصول متطلبات من كجزء

 في

 الكهربية والاتصالات الإلكترونيات هندسة

 :يعتمد من لجنة الممتحنين

 حسام علي حسن فهمي المشرف الرئيسى الاستاذ الدكتور:

 خليادالممتحن الإبراهيم محمد قمر الاستاذ الدكتور:

سالم الممتحن الخارجي، كلية الهندسة، محمد أشرفالاستاذ الدكتور:

 جامعة عين شمس

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

2016

 القيود للح معيارية لغة بإستخدام العائمة النقطة ذات الثنائية الحسابات من التحقق

 اعداد

 خالد محمد عبد المقصود نوح

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلومماجستير درجة على الحصول متطلبات من كجزء

 في

 الكهربية والاتصالات الإلكترونيات هندسة

 تحت اشراف

 فهمى حسن يعل حساما. د.

 تلاتصاالا و االلكترونيات قسم

 القاهرة جامعة الهندسة كلية

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

2016

 القيود للح معيارية لغة بإستخدام العائمة النقطة ذات الثنائية الحسابات من التحقق

 اعداد

 خالد محمد عبد المقصود نوح

 القاهرة جامعة - الهندسة كلية إلى مقدمة رسالة

 العلومماجستير درجة على الحصول متطلبات من كجزء

 في

 الكهربية والاتصالات الإلكترونيات هندسة

 القاهــرة جامعــة - الهندســة كليــة

 العربيــة مصـر جمهوريـة - الجيـزة

2016

