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simulation based verification fails to cover all possible input combinations and hence 

does not guarantee a 100% bug free design. On the other hand, formal methods are 

efficient in verification of FP arithmetic, yet they require creating a formal model, they 

cannot work on an optimized version of a design and may fail with complex designs 

due to state space explosion.     

Our framework provides a new verification methodology that uses a constraint based 

random technique to generate test vectors for validating binary FP arithmetic 

instructions. The constraints used in our verification are written in System Verilog 

(SV) language and can be solved with any SV constraint solver tool. For every 

arithmetic operation, the written constraints couple the operands, intermediate results, 

rounding direction and the result evaluation to comply with the FP IEEE Standard 

(IEEE Std 754-2008). 

The new proposal is generic and can be used to verify any software or hardware binary 

FP design/library. Also, it proves feasibility and usefulness in finding bugs for various 

binary FP Arithmetic operations for single and double precision formats. 

 

 

mailto:Khaled_nouh@mentor.com


 

i 
 

Acknowledgments 

First of all, I would like to thank God for giving me the strength and perseverance to 

complete this research. His greatest gifts are for sure the ladies that light my life, my 

mother who always pushed me beyond my limits, my wife who held my hands through 

this tough journey, my late grandmother who guided me with her heavenly blessings and 

my little girl who represents the future with all what it holds ahead. 

 

Perhaps, having an idol to look up to is one of the biggest motives to excel in work. 

I was blessed with two: my grandfather, this great man who started from the scratch and 

reached greatness by means of hard work and self-confidence, he always used to say the 

“great ones are those with the great deeds”, and my father the most knowledgeable person 

who I always look up to and seek advice from. 

 

  I would like also to express my gratitude to my advisor Prof. Hossam Aly Fahmy 

for his continuous support, guidance and patience. I could not have imagined having a 

better advisor and mentor. 

 

Last but not the least, I would like to thank my elder brother, my friends and my 

second family at work, specially my partner in the journey Ahmed Ismail. 

  



 

ii 
 

Table of Contents 

ACKNOWLEDGMENTS ............................................................................................. I 

TABLE OF CONTENTS .............................................................................................. II 

LIST OF TABLES ........................................................................................................ V 

LIST OF FIGURES .....................................................................................................VI 

ABSTRACT .............................................................................................................. VIII 

CHAPTER 1 : INTRODUCTION ................................................................................ 1 

1.1. FLOATING POINT NUMBERS ......................................................................... 1 

1.2. IEEE-754 REPRESENTATION OF FLOATING POINT NUMBERS ......................... 2 

1.2.1. Floating point formats ........................................................................................... 2 
1.2.1.1. Binary floating point format ............................................................................................................ 4 

1.2.2. Floating point arithmetic ....................................................................................... 5 
1.2.2.1. Arithmetic operations with operands as infinities and NaNs ........................................................... 5 

1.2.3. Rounding………………………………………………………………………….6 

1.2.4. Exception handling ................................................................................................ 7 

1.3. RANDOM SIMULATION ................................................................................. 8 

1.3.1. Constraint Random Test Pattern Generation ......................................................... 9 

1.3.2. System Verilog Constraints ................................................................................... 9 
1.3.2.1. Random Variables in System Verilog ........................................................................................... 11 
1.3.2.2. Constraint Blocks in system Verilog ............................................................................................. 12 
1.3.2.3. Randomization method .................................................................................................................. 14 

1.4. FLOATING POINT VERIFICATION CHALLENGES ............................................ 15 

1.4.1. Wide input……………………………………………………………………….15 

1.4.2. Usually pipelined implementation ....................................................................... 15 

1.4.3. No generic solution for Software/Hardware implementation .............................. 15 

1.4.4. Dealing with intermediate value before rounding ............................................... 16 

1.5. OUR VERIFICATION FRAMEWORK ............................................................... 16 

1.6. ORGANIZATION OF THE THESIS ................................................................... 17 

CHAPTER 2 : LITERATURE REVIEW .................................................................. 19 

2.1. INTRODUCTION ........................................................................................... 19 

2.2. FORMAL VERIFICATION OF FLOATING POINT ARITHMETIC .......................... 19 

2.3. SIMULATION VERIFICATION OF FLOATING POINT ARITHMETIC .................... 21 

2.4. HYBRID TECHNIQUES OF FLOATING POINT VERIFICATION ........................... 22 

2.5. SUMMARY .................................................................................................. 23 

CHAPTER 3 : PROPOSAL ........................................................................................ 25 

3.1. ADDITION AND SUBTRACTION .................................................................... 25 

3.1.1. Encoding/decoding constraints ............................................................................ 25 

3.1.2. Higher and lower operands constraints ................................................................ 27 

3.1.3. Normalize low operand constraints ..................................................................... 28 

3.1.4. Effective operation constraints ............................................................................ 29 



 

iii 
 

3.1.5. Add/Subtract constraints ...................................................................................... 29 

3.1.6. Carry/Leading Zero correction constraint ........................................................... 30 

3.1.7. Rounding constraints ........................................................................................... 31 

3.1.8. Exception handling constraints ............................................................................ 33 

3.2. MULTIPLICATION ....................................................................................... 34 

3.2.1. Multiplication constraints .................................................................................... 35 

3.2.2. Carry/leading Zeroes correction constraints ........................................................ 36 

3.2.3. Rounding constraints ........................................................................................... 36 

3.2.4. Exception handling constraints ............................................................................ 37 

3.3. DIVISION OPERATION CONSTRAINTS ........................................................... 37 

3.3.1. Normalize divisor constraint ................................................................................ 38 

3.3.2. Division constraints ............................................................................................. 38 

3.3.3. Carry/Leading zeroes correction .......................................................................... 41 

3.3.4. Exception handling constraints ............................................................................ 41 

3.4. FUSED MULTIPLY ADD CONSTRAINTS ......................................................... 42 

3.5. SQUARE ROOT CONSTRAINTS ..................................................................... 43 

3.5.1. Decoding/Encoding constraints ........................................................................... 44 

3.5.2. Pre-Normalization step ........................................................................................ 44 

3.5.3. Square Root constraints ....................................................................................... 45 
3.5.3.1. First Square root algorithm ............................................................................................................ 46 
3.5.3.2. Second Square root algorithm ....................................................................................................... 46 

3.5.4. Post normalization step ........................................................................................ 49 

3.5.5. Rounding constraints ........................................................................................... 49 

3.5.6. Exception handling .............................................................................................. 49 

3.6. USER DEFINED CONSTRAINTS ..................................................................... 50 

CHAPTER 4 RESULTS AND COMPARISONS ..................................................... 51 

4.1. ADVANTAGES OF OUR PROPOSAL ............................................................... 51 

4.1.1. No solver, No modelling ..................................................................................... 51 

4.1.2. Based on System Verilog Language .................................................................... 51 

4.1.3. Global solution for verification ........................................................................... 51 

4.1.4. Fast generation of test vectors ............................................................................. 52 

4.1.5. Linear response with respect to required number of test vectors......................... 53 

4.1.6. No scaling issue with bigger precision ................................................................ 56 

4.2. COMPARISON WITH OTHER RELATED WORK ............................................... 57 

4.2.1. Comparison with FPgen ...................................................................................... 57 

4.2.2. Comparison with decimal floating point constraint solvers ................................ 58 

4.3. SUMMARY OF BUGS DISCOVERED ............................................................... 58 

4.3.1. Bugs in FPU100, an open source design ............................................................. 58 
4.3.1.1. Wrong Inexact exception calculation: ........................................................................................... 58 
4.3.1.2. Wrong result when two normal numbers are subtracted and return a subnormal number: ............ 59 
4.3.1.3. Subtracting positive zero from negative zero: ............................................................................... 60 
4.3.1.4. Wrong result with multiplication when result is subnormal and underflow occurs: ...................... 60 
4.3.1.5. Wrong Output, Inexact and Underflow exceptions with multiplication when underflow occurs: . 60 
4.3.1.6. Wrong result significand with division when the divisor is greater than the dividend .................. 61 
4.3.1.7. Wrong shifted left version of the result significand in division ..................................................... 61 
4.3.1.8. Wrong result significand and underflow flag, when division result in subnormal number ............ 62 
4.3.1.9. Wrong result and overflow flag when division result in overflow................................................. 63 
4.3.1.10. Wrong significand calculation for square root operation ............................................................... 63 



 

iv 
 

4.3.2. SYMPL-FP324-AXI4-GP-GPU design ............................................................... 64 
4.3.2.1. Wrong left shifted significand value when underflow occurs ........................................................ 64 
4.3.2.2. Wrong rounding when guard is unset and sticky is set in multiplication ....................................... 64 

4.3.3. Bugs in FPAdd design ......................................................................................... 65 
4.3.3.1. Wrong Guard value for intermediate result cause wrong value after rounding: ............................ 65 
4.3.3.2. Subtracting positive zero from negative zero: ............................................................................... 66 
4.3.3.3. Wrong inexact and rounding when having a carry with addition .................................................. 66 

4.3.4. Double Precision Floating Point Core design (DOUBLE_FPU) ......................... 67 
4.3.4.1. Wrong implementation of underflow flag in multiplication and division operations .................... 67 
4.3.4.2. Wrong Result and inexact flag after rounding due to having non zero sticky bit with addition .... 68 
4.3.4.3. Wrong Result and inexact flag due to skipping sticky bits after the lower operand is normalized 68 
4.3.4.4. Wrong rounding when having a carry and round tie even direction with addition ........................ 69 

CHAPTER 5 CONCLUSION AND FUTURE WORK ............................................ 71 

5.1. FUTURE WORK ............................................................................................ 72 

5.1.1. Support more floating point operations ............................................................... 72 

5.1.2. Support quadruple precision floating point formats ............................................ 72 

5.1.3. Support Decimal floating point arithmetic .......................................................... 72 

5.1.4. Extending UVM to use our SV constraints ......................................................... 72 

REFERENCES ............................................................................................................. 73 

APPENDIX A: SV CONSTRAINTS FOR ADDITION/SUBTRACTION ............. 76 

APPENDIX B: SV CONSTRAINTS FOR MULTIPLICATION............................ 86 

APPENDIX C: SV CONSTRAINTS FOR DIVISION ............................................. 94 

APPENDIX D: SV CONSTRAINTS FOR SQUARE ROOT ................................ 102 

 

  



 

v 
 

List of Tables 

Table 1.1 Binary Radix Significand ................................................................................. 1 

Table 1.2 Binary and Decimal formats............................................................................. 3 
Table 1.3 Different numbers in binary format .................................................................. 5 
Table 1.4 SV Constraint Example .................................................................................. 10 
Table 1.5 SV Constraint Example with coverage goal ................................................... 10 
Table 1.7 randc Random variables ................................................................................. 11 

Table 1.8 Constraint block example ............................................................................... 12 
Table 1.9 Function example in SV constraint ................................................................ 13 

Table 1.10 Probability of variables with and without solve order ................................. 14 

Table 3.1 Encoding/Decoding constraints ...................................................................... 26 
Table 3.2 Effective operation constraints ....................................................................... 29 
Table 3.3 Intermediate result sign constraint ................................................................. 30 
Table 3.4 Carry/Leading Zero correction of the intermediate result after addition ....... 30 
Table 3.5 Addition/Normalization due to rounding ....................................................... 32 

Table 3.6 constraint function for partial produce summation ........................................ 36 

Table 3.7 Normalize divisor constraints ......................................................................... 38 
Table 3.8 SV function to implement the iterative restoring division algorithm ............. 40 

Table 3.9 SV constraint to implement Pre-normalization step for subnormal numbers 44 
Table 3.10 First approach in calculating the square root using SV power operator ...... 46 
Table 3.11 First approach in calculating the square root using SV power operator ...... 47 

Table 3.12 Exmaple of User defined constraints............................................................ 50 

  

 

 

  



 

vi 
 

List of Figures 

Figure 1.1 Binary Encoding Format ................................................................................. 4 

Figure 1.2 Constraint Random Simulation with Coverage Goals .................................... 9 
Figure 3.1 Verification Framework ................................................................................ 25 
Figure 3.2 Add/Subtract operations constraints ............................................................. 27 
Figure 3.3 Flow for picking the higher and lower operands .......................................... 28 
Figure 3.4 Lower significand normalization .................................................................. 28 

Figure 3.5 Intermediate significand constraint ............................................................... 30 
Figure 3.6 Result constraint due to exceptions ............................................................... 34 

Figure 3.7 Multiplication Operation constraints ............................................................ 34 

Figure 3.8 Partial products summation ........................................................................... 35 
Figure 3.9 Division Operation constraints...................................................................... 37 
Figure 3.10 Initial step for iterative division .................................................................. 39 
Figure 3.11 the iterative, restoring division algorithm ................................................... 40 
Figure 3.12  Mapping between quotient and intermediate result in division ................. 41 

Figure 3.13 FMA operation constraints.......................................................................... 43 

Figure 3.14 Square Root Operation Constraints ............................................................. 44 
Figure 3.15 Registers initialization for the iterative approach ....................................... 47 

Figure 3.16 Tutorial example of the iterative approach ................................................. 48 
Figure 3.17 Mapping between quotient and intermediate result in square root ............. 49 
Figure 4.1 Average time to generate 1 test vector for different operations .................... 53 

Figure 4.2 Time to generate N test vectors for addition ................................................. 54 

Figure 4.3 Time to generate N test vectors for division ................................................. 54 
Figure 4.4 Time to generate N test vectors for multiplication ....................................... 55 
Figure 4.5 Time to generate N test vectors for square root ............................................ 55 

Figure 4.6 Time to generate N test vectors for addition across different cores .............. 56 
Figure 4.7 Time to generate N test vectors for multiplication across different cores .... 56 

Figure 4.8 Ratio of increase in time from single to double precision ............................ 57 
Figure 4.9 Wrong inexact flag with subtraction in FPU100 design ............................... 59 
Figure 4.10 Wrong result when two normal numbers are subtracted and return a 

subnormal number in FPU100 design ............................................................................ 59 

Figure 4.11 Wrong result with multiplication when result is subnormal and underflow 

occurs in FPU100 design ................................................................................................ 60 

Figure 4.12 Wrong Output, Inexact and Underflow exceptions with multiplication when 

underflow occurs ............................................................................................................ 61 
Figure 4.13 Wrong result significand with division when the divisor is greater than the 

dividend .......................................................................................................................... 61 
Figure 4.14 Wrong shifted left version of the result significand in division .................. 62 

Figure 4.15 Wrong result significand and underflow flag, when division result in 

subnormal number .......................................................................................................... 62 
Figure 4.16 Wrong result and overflow flag when division result in overflow ............. 63 
Figure 4.17 Wrong significand calculation for square root in FPU100 ......................... 63 
Figure 4.18 wrong shifted left significand when underflow in FP32X-AXI4 ............... 64 

Figure 4.19 wrong rounding when having sticky set in FP32X-AXI4 design ............... 65 
Figure 4.20 Wrong Guard value for intermediate result cause wrong value after 

rounding .......................................................................................................................... 66 
Figure 4.21 wrong inexact and rounding when having a carry with addition ................ 66 



 

vii 
 

Figure 4.22 Wrong implementation of underflow flag in multiplication ....................... 67 
Figure 4.23 Wrong implementation of underflow flag in division operations ............... 68 
Figure 4.24 Wrong Result and inexact flag after rounding due to having non-zero sticky 

bit with addition .............................................................................................................. 68 
Figure 4.25 Wrong Result and inexact flag due to skipping sticky bits after the lower 

operand is normalized..................................................................................................... 69 
Figure 4.26 wrong rounding when having a carry and round tie even direction with 

addition ........................................................................................................................... 70 
 

  



 

viii 
 

Abstract 

Verification of Floating Point (FP) units is a difficult task to achieve, and the cost of 

post-production bugs is severe. This is due to dealing with a large bit stream of inputs; 

simulation based verification fails to cover all possible input combinations and hence 

does not guarantee a 100% bug free design. On the other hand, formal methods are 

efficient in verification of FP arithmetic, yet they require creating a formal model, they 

cannot work on an optimized version of a design and may fail with complex designs due 

to state space explosion. 

    Our framework provides a new verification methodology that uses a constraint 

based random technique to generate test vectors for validating binary FP arithmetic 

instructions. The constraints used in our verification are written in System Verilog (SV) 

language and can be solved with any SV constraint solver tool. For every arithmetic 

operation, the written constraints couple the operands, intermediate results, rounding 

direction and the result evaluation to comply with the FP IEEE Standard (IEEE Std 754-

2008). 

    The new proposal is generic and can be used to verify any software or hardware 

binary FP design/library. Also, it proves feasibility and usefulness in finding bugs for 

various binary FP Arithmetic operations for single and double precision formats. 
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Chapter 1 : Introduction 

1.1. Floating Point Numbers 

Floating point format is a way of representing real numbers with a string of digits. It 

maps the infinite range of real number by a finite subset with limited precision. A floating 

point number can be characterized by the following:  

 Sign: the polarity of the number, either positive (+), or negative (-), 

 Radix: the base number for scaling, usually two (binary), ten (decimal) or 

sixteen (hexadecimal), 

 Exponent range: the interval of the maximum and minimum power of the 

radix,  

 Significand: also called Precision or Mantissa, it is a fixed number of 

significant digits in base format, a string of 4 digits “10.11” is an example of 

a significand of binary radix, “1.250” is an example of a significand of 

decimal radix, and “FFF.F” is an example of a significand in hexadecimal 

radix. The character ‘.’ separates the integer part of the number from the 

fraction part, for binary radix example, Table (1.1) explains the evaluation of 

the significand “10.11”: 

Table 1.1 Binary Radix Significand 

Digit location (𝑖) 1 0 -1 -2 

Digit weight (𝑟𝑎𝑑𝑖𝑥𝑖 = 2𝑖) 2 1 0.5 0.25 

Digit Value 𝑠𝑖 1 0 1 1 

Weight ×Value = 𝑠𝑖  × 2
𝑖 2 0 0.5 0.25 

Sum = ∑𝑠𝑖  ×  2
𝑖 2.75 

In general any floating point number is represented with the following equation: 

(−𝟏)𝒔𝒊𝒈𝒏 × 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒅 × 𝒓𝒂𝒅𝒊𝒙𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕 

For a Binary radix, with four digit significand, a representation of “2.75” is: 

𝟐. 𝟕𝟓|𝟏𝟎 =  𝟏. 𝟎𝟏𝟏⏟  
𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒅

× 𝟐⏟
𝒓𝒂𝒅𝒊𝒙

      𝟏        ⏞      
𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕
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Representation of a number in a floating point format depends on the radix; some 

numbers can be represented with finite exact precision with one choice of a radix, but are 

approximated with other choices, for example, ‘1.1’ is easily represented with two digit 

decimal precision, while converting it to binary it will give ‘1. 

00011001100110011001101’ which is inexact and approximated in 24 binary precision. 

Integer representation of a number has a uniform step between any two consecutive 

numbers, while a floating point representation can have non uniform hops. On the other 

hand, the range and precision of a floating point representation is much bigger than 

integer.  

1.2. IEEE-754 representation of floating point numbers 

IEEE-754 [1] is a standard that specifies formats and operations for floating-point 

operations. It provides a method for computing any operation with floating-point 

numbers which should return the same result regardless of how it is implemented and 

whether it is in software or hardware. Also, faults and errors, in the arithmetical 

processing are restricted to be reported in a consistent manner as well. 

The standard specifies the different formats for binary and decimal floating-point 

numbers; specifies the following arithmetic operations: addition, subtraction, 

multiplication, division, square root and fused multiply add; includes how to convert 

between integer and floating-point formats, between different floating-point formats, and 

between floating-point formats and external representations as character sequences. Also, 

the standard explains different floating point exceptions and how to handle them. 

1.2.1. Floating point formats 

The floating point standard defines floating-point formats, which represent a finite 

subset of real numbers as mentioned before. Formats are characterized by their radix, 

precision, and exponent range. These formats represent floating-point operands or results 

for the operations.  

The standard specifies formats for both binary and decimal representations, also 

exchanging between these formats are defined as well. There are three formats defined 

for binary and two formats defined for decimal: 

 Binary in single precision (32 bits encoding), double precision (64 bits 

encoding) and Quadruple precision (128 bits encoding), 
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 Decimal in double precision (64 bits encoding), Quadruple precision (128 

bits encoding). 

Table (1.2) summarize different format encoding for binary and decimal supported 

formats: 

Table 1.2 Binary and Decimal formats 

 Binary format (radix=2) Decimal format (radix=10) 

Type Single Double Quadruple Double Quadruple 

Precision 24 digits 53 digits 113 digits 16 digits 34 digits 

emax +127 +1023 +16383 +384 +6144 

 

 

Also, the IEEE standard specifies for every format the maximum exponent 

(𝑒𝑚𝑎𝑥) and minimum exponent (𝑒𝑚𝑖𝑛), where 𝑒𝑚𝑖𝑛 = 1 − 𝑒𝑚𝑎𝑥 for all formats. 

The representations of floating-point data in a format consist of: 

 Any number between – infinity to + infinity, its value is evaluated by sign, 

exponent significand as explained in section 1.1 with the following equation: 

(−𝟏)𝒔𝒊𝒈𝒏 × 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒅 × 𝒓𝒂𝒅𝒊𝒙𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕 

The sign is 1 for negative numbers and 0 for positive numbers, the radix is 2 for 

binary and 10 for decimal, the exponent (𝑒) is any integer such that 𝑒𝑚𝑖𝑛 ≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥, 

the significand is a p string of digits represented as 𝑑0. 𝑑−1𝑑−2…𝑑−𝑝+1, where 𝑑𝑖 is an 

integer such that 0 ≤ 𝑑𝑖 < 𝑟𝑎𝑑𝑖𝑥. 

 Infinities: ±∞,  

 qNan (quiet), sNaN (signaling), will be explained later. 

Numbers that are not infinities or NaNs are divided into two categories:  

 Normal numbers: these are numbers ranging from the smallest positive 

normal floating-point number which is equal to𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛 , where it is 

supposed that the digit left to the floating point is 1, and the largest value is 

𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑎𝑥 × (𝑟𝑎𝑑𝑖𝑥 − 𝑟𝑎𝑑𝑖𝑥𝑝).  

 Subnormal numbers: The non-zero floating-point numbers for a format with 

magnitude less than 𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛, i.e. the digit left to the floating point is 0 and 

the exponent is  𝑒𝑚𝑖𝑛 . These numbers are called subnormal and their 

magnitudes lie between zero and the smallest normal magnitude which 
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is 𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛 . They always have less than p significant digits. The smallest 

subnormal magnitude is 𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛 × 𝑟𝑎𝑑𝑖𝑥1−𝑝. 

Zeroes in floating point formats have an extra information stored in the sign bit. All 

formats have distinct representations for +0 and −0, the sign of a zero is important in 

some operations, for example divide by +0 leads to +infinity, while divide by -0 results 

in –infinity. Binary formats have only one representation each for +0 and −0, but decimal 

formats have more than one. 

1.2.1.1. Binary floating point format 

 

Figure 1.1 Binary Encoding Format 

Figure (1.1) shows the how the binary interchange floating point format is 

represented. Table (1.3) summarize the values of w, E, t and T, where 

 w: number of bits to represent the exponent, 

 E: is the biased exponent, i.e. 𝐸 = 𝑒 + 𝑏𝑖𝑎𝑠, and 𝑏𝑖𝑎𝑠 = 𝑒𝑚𝑎𝑥, depending 

on its value, one can gain information about the encoded number: 

o From 1 to 2𝑤 − 2  normal number, 

o 0  ±0 or subnormal number, 

o 2𝑤 − 1 encodes ±infinities and NaNs depending on the value of T 

 t: is the number of bits to represent the significand, 𝑡 = 𝑝 − 1, no need to 

encode the left most significant digit, as for normal numbers it is always 1, 

while for subnormal numbers it is always 0. This un-encoded bit is usually 

called the hidden bit, 

 T: is the value of the trailing significand, for normal numbers,  𝑇 =

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 − 1 = 𝑑−1𝑑−2…𝑑−𝑝+1. 
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Table 1.3 Different numbers in binary format 

Type E T Notes 

Normal  1 ≤ 𝐸 ≤ 2𝑤 − 2 Any value  

Zero 𝐸 = 0 𝑇 = 0 Sign determine ±0 

Subnormal 𝐸 = 0 𝑇 ≠ 0  

Infinity 𝐸 = 2𝑤 − 1 𝑇 = 0 Sign determine ±∞ 

NaN 𝐸 = 2𝑤 − 1 𝑇 ≠ 0  

 

1.2.2. Floating point arithmetic 

The IEEE-754 standard supports the following arithmetic operations: 

 Addition: computes 𝑥 + 𝑦, 

 Subtraction: computes 𝑥 − 𝑦, 

 Multiplication: computes 𝑥 × 𝑦, 

 Division: computes the quotient of 
𝑥

𝑦
, 

 Square root: computes √𝑥, 

 Fused multiply add: computes (𝑥 × 𝑦) + 𝑧, 

In fused multiply add operation, the intermediate result of multiplication is 

computed as if it has unbounded range and precision, rounding is done only 

once to the destination format after the addition operation. No underflow, 

overflow, or inexact exceptions are raised due to the multiplication, but only 

after addition; and so Fused multiply add operation differs from a 

multiplication that is followed by an addition, 

 Convert to and from integer: The standard supports multiple operations to 

convert from/to integer depending on rounding technique deployed. 

1.2.2.1. Arithmetic operations with operands as infinities and NaNs 

Dealing with infinites is inherited from the behavior of real numbers with infinities 

as operands for example divide by infinity will return zero.  

No exceptions arise when the operands are infinities, the following operations are 

valid and produce no exceptions for finite values of x: 

 𝑥 +∞,∞ ± 𝑥,  returns +∞  

 𝑥 −∞, returns −∞  

 𝑥 × ∞,∞ × 𝑥, returns +∞, if 𝑥 ≠ 0 
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∞

𝑥
, returns ∞, 

 
𝑥

∞
, returns 0, 

 𝑥%∞, return x, x is normal number 

 √∞,  returns ∞ 

On the other hand, the following operations yield in exceptions arising: 

 ∞ due to reaching the maximum value, overflow flag is raised, 

 𝑥/0, divide by zero exception is raised, 

 𝑥%∞, x is subnormal number, underflow flag is raised. 

There are two different types of NaN, signaling (sNan) and quiet (qNaN), they are 

supported in all floating-point arithmetic operations. Signaling NaNs can represent 

uninitialized variables or arithmetic-like enhancements, it is not covered in the IEEE-754 

standard. Quiet NaNs afford including diagnostic information resulting from invalid or 

unavailable data or results. When a certain operation is invalid, the floating point result 

shall be qNaN, and an invalid exception should be raises. Operations involving one or 

more operands as qNaN shall raise no exceptions except for Fused multiply add operation 

that might signal the invalid operation exception (see section 1.2.4). For most operations 

other than maximum and minimum with operands as qNaN inputs, the result shall be a 

qNaN which should be one of the input NaNs.  

1.2.3. Rounding 

Usually the implementation of any arithmetic operation has the intermediate result 

as if unbounded, and to fit the result in finite number of bits, a rounding step takes place. 

Following are the possible rounding directions: 

 Round tie to nearest even: choose the even value that the intermediate 

unbounded result lie between, 

 Round towards zero, the magnitude of the rounded value is less than the 

intermediate unbounded value, 

 Round towards positive infinity, if the intermediate result is positive, the 

magnitude of the rounded result is greater than the intermediate unbounded 

result, if the intermediate result is negative, the magnitude of the rounded 

result is less than the intermediate unbounded result, 
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 Round towards negative infinity, if the intermediate result is positive, the 

magnitude of the rounded result is less than the intermediate unbounded 

result, if the intermediate result is negative, the magnitude of the rounded 

result is greater than the intermediate unbounded result, 

1.2.4. Exception handling 

There are five types of exceptions that can arise, when these exceptions happen, there 

exist a defined handling for the signaled exception. A corresponding status flag shall exist 

in an implementation abiding by the IEEE-754 standard for each kind of exception. An 

arithmetic operation can result in more than one exceptions, for example, exception 

handling for overflow and underflow signals the inexact exception. Following is the list 

of exceptions and how they can happen in arithmetic operations: 

 Invalid operation: 

o An operand as sNaN, 

o Multiplication: 0 × ∞,∞ × 0, 

o Fused multiply add: (0 ×∞) + 𝑐, (∞ × 0) + 𝑐, unless c is a qNaN; 

if c is a qNaN then the implementer is the one to judge whether the 

invalid operation exception should be signaled, 

o Addition/Subtraction/Fused multiply Add: subtraction of infinities, 

(+∞) ∓ (±∞),  

o Division: 
0

0
,
∞

∞
,  

o Remainder: 𝑥%0,∞%𝑥, x is non infinity or NaN, 

o Square Root: if the operand is less than zero, 

 Divide by zero: 

It happens if and only if an exact infinite result is defined for an operation 

with finite operands. The result shall be an infinity and its polarity is 

determined according to the operation: 

o Division, when the divisor is zero and result's sign is exclusive or of 

the dividend sign and the divisor sign,  

o Logarithmic: 𝑙𝑜𝑔2(0) results in −∞. 

 Overflow: 

It happens if and only if the intermediate result before rounding is greater 

than the format’s largest finite number, depending on the rounding technique 
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and the result sign, the result is either infinity or maximum finite value of 

this format: 

o If the rounding is towards zero, the result is the maximum finite value 

with the same sign as the intermediate result, 

o If the rounding is ties to even, the result is infinity with the same sign 

as the intermediate result, 

o If the rounding is toward positive infinity, if the intermediate result is 

positive, the result is positive infinity, if the intermediate result is 

negative, the result in the maximum negative finite value,  

o If the rounding is toward negative infinity, if the intermediate result 

is negative, the result is negative infinity, if the intermediate result is 

positive, the result in the maximum positive finite value, 

 Underflow: 

It happens when the result is a tiny non-zero value, this shall be either: 

o After rounding: when a non-zero result computed as though the 

exponent range were unbounded would lie between ±𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛, 

o Before rounding: when a non-zero result computed as though both 

the exponent range and the precision were unbounded would lie 

between ±𝑟𝑎𝑑𝑖𝑥𝑒𝑚𝑖𝑛. 

When underflow occurs, a rounded result should be delivered. 

 Inexact: 

If the rounded result varies from the intermediate unbounded result, or 

overflow exception is raised or underflow exception is raised, inexact flag 

shall be raised. 

1.3. Random Simulation 

Directed simulation demands generation of huge number of test vectors in order to 

cover all possible input combinations and hence can guarantee full coverage in testing. 

Yet, this is usually inapplicable specially for designs under test involving wide inputs, 

for example, a single precision binary floating point unit that supports only two 

operations and three rounding directions requires 110,680,464,442,257,309,696 test 

vectors (232 × 232 × 2 × 3).  
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Usually, simulation is used with cover goals, so instead of identifying every input 

combination as unique test vector, a common coverage goal is defined to group some 

input combinations together, one naïve way of doing so is to group the inputs based on 

their types: ±Normal/±Subnormal/±Zero/±Infinity/±Nans, this will reduce the variation 

of one operand from 232 to 10. Yet, this introduces a new problem: how to smartly 

generate the desired test vectors? The answer is Random test generation. Random test 

generation is a type of functional verification to provide a random stimulus to a design 

under test.  

1.3.1. Constraint Random Test Pattern Generation 

Random test generation can be more effective by specifying constraints; instead of 

letting the randomizer do all the work, the user can specify some constraints to hit some 

desired corner cases or meet a certain coverage target more easily. Figure (1.2) 

summarizes the flow of constraint random simulation with coverage goal. 

 

 

 

Figure 1.2 Constraint Random Simulation with Coverage Goals 

1.3.2. System Verilog Constraints 

Recent verification languages such as System Verilog (SV) [14] support constraint 

random value generation. It allows users to specify constraints in a compact, declarative 

way. The solver processes these constraints and consequently generates random values 

to meet them. The random constraints are typically specified on top of an object-oriented 

data abstraction (class in System Verilog Language) that models the data to be 

randomized as objects that contain random variables and user-defined constraints. The 
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constraints determine the legal values that can be assigned to the random variables. Then, 

a randomization function is called on the instance of the class. Table (1.4) is an example 

of System Verilog constraint where a class is defined for a random operation that can be 

an addition or subtraction and two random operands that are linked to the result based on 

the randomized operation. 

Table 1.4 SV Constraint Example 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

typedef enum {add, sub} OprType; 

class add_subtract; 

rand OprType opr ;  

rand int op1,op2,result; 

constraint result_calculation { 

(opr == add) -> (result == op1 + op2); 

(opr == sub) -> (result == op1 - op2); 

}; 

endclass 

add_subtract add_sub = new ; 

repeat (10) add_sub.randomize(); 

 

To explain the importance of constraints in random simulation, Table (1.5) is an SV 

test where we have a coverage goal that the result is 0. This will only be valid for any of 

the following scenarios: 

1- When the operation is subtraction and the operands are equal to each other, 

2- When the operation is addition and the operands are same magnitude but have 

opposite signs. 

 

Table 1.5 SV Constraint Example with coverage goal 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

`define N 1000 

`define LSB 5 

module dut; 

  typedef enum {add, sub} OprType; 

  class add_subtract; 

    rand OprType opr ; 

    rand int op1,op2,result; 

    constraint result_calculation { 

      (opr == add) -> (result == op1 + op2); 

      (opr == sub) -> (result == op1 - op2);    }; 

    constraint close_operands { 

      op1[31:`LSB] == op2[31:`LSB];  } 

  endclass 
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14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

  int i; 

  add_subtract a;  

   initial  

  begin 

    i  =  0; 

    a = new(); 

    repeat (`N) begin 

    assert (a.randomize()); 

    i++; 

    if (a.result == 0) 

      $finish; 

    end 

  end 

endmodule 

 

As seen in Table (1.5), the new constraint “close_operands” specify that part of the 

two operands are equal, this part is controlled by a parameter `LSB that is allowed to 

have values between 31 and 0. It is obvious that the smaller the `LSB is, the more close 

the operands will be. Table (1.6) shows the different values of `LSB and the 

corresponding number of test vectors required to hit the coverage goal explained earlier 

(denoted by lines 23 and 24 in Table (1.5). 

Table 1.6 Number of tests required to hit coverage goal with respect to constraints 

on inputs 

`LSB value 5 4 3 2 1 0 

# of tests required 315 37 9 4 2 1 

 

1.3.2.1. Random Variables in System Verilog 

The IEEE-1800 standard of System Verilog supports two types of random variables:  

 rand: Random variables with uniform distribution over their range,  

 randc: Random variables where variables cycle through all the values in a 

random permutation of their declared range. For example, for the following 

random variable declaration:   

Table 1.7 randc Random variables 

1 

2 

3 

4 

randc bit [1:0] y; 

//First permutation: 0321 

//Second permutation: 2301 

//Third permutation:2013 



 

12 
 

5 

6 

// and so on… 

//Values of y in successive calls: 0,3,2,1,2,3,0,1,2,0,1,3 

 

 

The possible values of y are 0, 1, 2 and 3. Initially, the randomizer generates an 

initial order for y covering its whole range, and return these values in successive calls of 

y until the last value, a second order of y is generated and looped over until the last value 

of the order and so on. The main advantage of this type of randomization is that all values 

of y are covered before any value is repeated. 

1.3.2.2. Constraint Blocks in system Verilog 

System Verilog supports adding constraints to constrict the values of the declared 

random variables. These constraint blocks are class members and have a unique name 

called constraint identifier. Below is the explanation of the main features of constraint 

blocks: 

Table 1.8 Constraint block example 

  rand integer a, b, c, x, y, z; 

rand integer A[10]; 

rand bit s; 

rand integer d; 

constraint c1 { 

x inside {3, 5, [8:15]}; 

y dist {10:=1, 20:= 2, 30:= 4}; 

unique {a,b,c}; 

(a > 10) -> (x == 3); 

if (y == 10) z == a; 

else if (y == 20) z == b; 

else z == c; 

foreach ( A [ i ] ) A[i] inside {2,4,8,16}; 

(s) -> (d == 0); 

solve s before d; 

} 

 

 

 Setting membership 

It restrict certain values allowed to one random variable, in the example in 

Table (1.8), x can only have 3, 5, 8 through 15 values. 

 Distribution 
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It sets weight to values allowed to one random variable, the possible values 

of y in the example in Table (1.8) are 10, 20 and 30, with the weighted ratios 

1:2:4 respectively ,i.e., y is more likely to be 30 than 20, and 20 than 10. 

 Uniqueness 

It restrict the embedded list to have mutually exclusive values, in the example 

in Table (1.8), a, b and c are not allowed to have the same value. 

 Implication 

It correlates a subsequent condition given the evaluation of an antecedent 

condition; it the antecedent condition is true the subsequent condition should 

be true, if the antecedent condition is false, no restrictions are set on the 

subsequent condition, in the example in Table (1.8), if the value of a is greater 

than 10, the value of x is 3. 

 If-else constraints 

It constraints set of expression given other set of expressions enclosed in if-

else style, for example, the value of z is equals to a, b, c if y equals 10, 20, 

30 respectively. 

 Foreach iterative constraints 

Iterative constrains allow looping over elements of array variables, the 

foreach iterative constraints in Table (1.8) sets membership for every element 

of the ten elements in the array A, i.e., the possible values of any element is 

2, 4, 8, 16.  

 Functions in constraints 

Some constraints cannot be expressed given the above mentioned constructs, 

so System Verilog allows the use of function calls in constraint expressions. 

Table (1.9) shows how to express leading zeroes calculation for a given 

signifincand, it loops over the significand from the left most bit to the right 

most and exit with the index if the bit value is 1. 

Table 1.9 Function example in SV constraint 

1 

2 

3 

4 

5 

6 

`define p  24 

rand bit [`p-1:0] Significand; 

rand bit Guard, Round, Sticky; 

rand int shift_left_value; 

function int leading_zero_calculation (input [0:`p+2] functionSignificand); 

        for (int i = 0; i <= `p+2;i++) begin 
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7 

8 

9 

10 

11 

12 

13 

                if (functionSignificand[i] == 1'b1) return i; 

        end 

        return `p+3; 

endfunction 

constraint normalize_intermediate_result { 

shift_left_value == leading_zero_calculation({Significand,Guard, 

Round,Sticky}); 

} 

 

 

 Variable ordering 

One can specify to the solver the order to constraint and randomize a variable, 

consider the constraints on s and d in the example in Table (1.8), the 

constraint correlates values of 2 variables: s, d, from the readers’ view, it 

states that s implies d equal zero, from the solver’s view, s and d are random 

variables and solving {s, d} can have 232 + 1 combinations, but s is true only 

in one combination. In line 16, the order of solving is specified to solve s 

before d, and hence s can have 2 possible combination, and then d is chosen 

subjected to the value of s. Adding this order constraint does not change the 

set of legal value combinations, but alters their probability of occurrence. 

Table (1.10) explains the probabilities of values of d and s. 

Table 1.10 Probability of variables with and without solve order 

Value of s Value of d Probability before solve 

order 

Probability after solve 

order 

1 ‘h00000000 1/(1 + 232) 1/2 

0 ‘h00000000 1/(1 + 232) 1/2 × 1/232 

0 ‘h00000001 1/(1 + 232) 1/2 × 1/232 

0 ‘h00000002 1/(1 + 232) 1/2 × 1/232 

0 … 1/(1 + 232) 1/2 × 1/232 

0 ‘hfffffffe 1/(1 + 232) 1/2 × 1/232 

0 ‘hffffffff 1/(1 + 232) 1/2 × 1/232 

 

 

1.3.2.3. Randomization method 

The instance of the class enclosing the constraints should be called with a 

randomization method in order to randomize the declared variables in this class. System 

Verilog defines the following randomization method: 
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 Randomize ():  The randomize () method returns 1 if it successfully sets all 

the random variables and objects to valid values; otherwise, it returns 0. 

Failure to randomize can be due to conflicting constraints. 

There are other topics that are discussed in details in chapter 18 in the IEEE-1800 

standard of System Verilog [14] like for example generation of random sequence, 

manually seeding of randomization, random weighted case, etc…. We are only 

concerned in previously described definitions/constructs. 

1.4. Floating point verification challenges 

1.4.1. Wide input  

As mentioned earlier, the large bits of inputs for floating point unit makes it hard for 

simulation to have all possible input combinations. Hence, simulation stand alone is not 

a good verification environment, as it will take forever to guarantee a bug free design.  

1.4.2. Usually pipelined implementation 

Implementation of some floating point arithmetic operations requires huge 

computation and complex hardware, like iterative implementations of division and 

square roots that imposes delay in the logical circuits slowing down the overall frequency 

of the processor. This is why pipelining is introduced in floating point units.  

Pipelining means that at a certain time instance, there may exist more than one 

execution of a FP operation sharing the same hardware. This imposes a complexity in 

creating the verification model for this pipelined floating point unit.  

Also pipelining imposes latency to the result due to execution in sequence of number 

of cycles, and hence formal verification of a pipelined floating point unit may fail due to 

state space explosion.  

Another dilemma, the cycle delays for one operation is different for another 

operation, which will add more complexity for verifying a floating point unit that 

supports multiple operations with varying number of cycles. 

1.4.3. No generic solution for Software/Hardware implementation 

Floating point arithmetic can exist as software libraries like a C code, can be a 

hardware design in the form of Register Transfer Logic (RTL) and can be an optimized 
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version of this hardware, like Gate Level Designs. This is a problem that stands against 

creating a unified way to verify floating point units in general. For example, RTL can be 

verified using good test benches based on UVM or by addition properties and testing the 

functionality using model checking formal techniques, on the other hand, software 

libraries are verified using programming language. So the methods used in verifying the 

Hardware implementation are incompatible with verifying the software version of the 

floating point implementation.  

1.4.4. Dealing with intermediate value before rounding 

Usually verification techniques are considered black-box testing, i.e. they are only 

interested in how to generate inputs, and how to debug the outputs. For floating point 

units, the result is usually a rounded version of the unbounded intermediate results, this 

intermediate result is the main source of all bugs in any floating point design. Therefore, 

verification of floating point unit should follow a white-box testing technique; it should 

have the capability to generate stimulus/model that can treat the intermediate unbounded 

result as an input to the verification environment.  

1.5. Our verification framework 

We propose a verification framework that combat all the above mentioned 

challenges, which is Test vectors generation based on a model written with system 

Verilog constraints. The SV model defines random variables for input, outputs, 

intermediate results, round directions, and constraints to constrict the data path starting 

from the operands through intermediate results and rounding techniques until the result 

evaluation abiding by the IEEE-754 standard of Binary floating point formats and 

operations. Then, we pass the SV constraints to a simulator to randomly generate test 

vectors based on the above constraint model plus adding user defined constraints to cover 

interesting corner cases. These test vectors can be applied to any floating point design 

whether it is software or hardware, pipelined or not. This method shows effectiveness in 

discovering bugs for addition-subtraction, multiplication, division and square root 

operations in different binary floating point unit designs. 
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1.6. Organization of the thesis 

The remainder of this thesis organized as follows. 0 provides a detailed survey of 

the techniques used in verification of floating point arithmetic. Chapter 3 provide a 

detailed description of the new proposal used in verification of binary floating point 

arithmetic operations. Chapter 4 shows the result of our work in detailed representation 

and draws a comparison between other techniques. Finally, chapter 5 discusses the 

possible future extension of our work.  
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Chapter 2 : Literature Review 

2.1. Introduction 

 Verification of Floating point units is always a challenging task. Many daily 

applications depend on correct floating point calculations. If a single bug is missed during 

development and discovered at customer site, the cost will be severe similar to the 

division bug in the Intel processor [17]. The first lesson learned from the Intel bug was 

the essentiality of more thorough testing since the bug was systematic and was not caused 

from random hardware issues. Yet, thorough testing is still hard to achieve due to the 

huge input bit stream size; simulation based verification fails to cover all possible input 

combinations and hence does not guarantee a 100% bug free design.  

2.2. Formal verification of floating point arithmetic 

Formal methods are efficient in verification of FP arithmetic, yet they require 

creating a formal model, they cannot work on an optimized version of a design and may 

fail with complex designs due to state space explosion. 

Some approaches of formal verification targets verification of floating point unit in 

general using theorem proving, the authors in [6] propose a complete formalization of 

the IEEE-754 standard using higher order logic specification (an expressive formal 

modelling method that allows quantifying over a function of a certain variable). The 

formalization is done for: (1) floating point numbering format, (2) different floating point 

arithmetic operations namely addition, subtraction, multiplication and division, and 

finally (3) normalization and rounding steps of intermediate unbounded result. 

Another approach is introduced in [7], where the authors extends an existing 

verification tool for verifying floating point arithmetic in C programs. This tool is called 

"Caduceus,” it is a first order logic model for C programs (first order logic is an 

expressive formal modelling method that allows quantifying over a certain variable) [18]. 

The formal model for floating point arithmetic is written in Coq [19], formal proof 

management system. On the other hand, the authors in [27] create their own formal model 

based on first order logic theorem proving to formulize floating point arithmetic. 
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Another application that make use of the formal model in Coq, is the verification of 

a generic End-Around-Carry Adder that is widely used in floating point arithmetic [36]. 

The writers in [22] present a way to overcome the failure of theorem proving to work 

on rounded values, and the inability of model checking to generate a counter example 

when the number is in floating point format. They present an approximate way of 

mapping floating point numbers to integer using abstract interpretation, and verifying the 

integer version using traditional formal methods. 

Paper [28] presents an approach based on equivalence checking which can be 

decomposed into two steps; the first step is to verify all the data path of the floating point 

unit by comparing result with a reference model, the second step is to verify pipelined 

floating point instruction using sequential equivalence model checking. 

Some approaches use in their verification a hybrid formal verification combining 

model checking and theorem proving, like verification of floating point multiplier in the 

Intel IA-32 Pentium® microprocessor [8], and verification of a pipelined double 

precision Multiplier based on IEEE standard [23]. The presenters in [8] here combine 

two techniques of formal verification; Symbolic Model checking based on Binary 

Decision Diagram (BDD) - a tree based structure to model any Boolean expression- and 

theorem proving based on formulation of temporal logic using pre-post-condition 

analysis. For Multiplier, BDD stand alone is not applicable due to the exponential 

growing size of multiplier tree regardless of the variable order when forming the reduced 

order BDD [20]. Also, theorem proving standalone involves so much effort and user 

interaction. Similar approach is done in [21] combining word-level model checking with 

theorem proving to verify the hardware of Pentium Pro processor. 

A new data structure is introduced in [35], it is called Multiplicative Power Hybrid 

Decision Diagram (*PHDD); it is a compact representation for functions that map 

Boolean vectors into integer and floating point values. Making use of the newly proposed 

data structure proved to grow linearly with the word size in multiplication, exponential 

in the exponent part of addition, but linear with the Mantissa. Compared to other 

structures such as Multiplicative Boolean Matrix Decomposition (*BMD), experimental 

results shows that *PHDD is 6 time faster. 

Another point of concern is addressed in [24], which is involving formal verification 

on an optimized version of floating point circuit. The authors apply theorem proving on 

gate level version of the design to guarantee the correctness of the rounding step based 
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on Even-Seidel algorithm for addition [25] and multiplication [26] to be compliant with 

IEEE-754 standard. 

2.3. Simulation verification of floating point arithmetic 

The author in [31] presents a way to combine coverage analysis and constraint 

random testing to speed up the verification process by 4.5x. An automatic input generator 

is created at the front end of verification that feeds the design under test with test vectors 

that have not been covered yet. At the back end of testing, a monitor is created to capture 

the correctness of the results and provide a complete coverage analysis for inputs and 

covered corner cases.  

The presenters in [33] addresses the problems of functional verification of decimal 

floating point adder-subtract for FPGA described in VHDL, where they develop a 

verification test plan and create a verification environment based on Open Verification 

Methodology (OVM) [32]. OVM is an open source simulation based functional 

verification methodology that replaces writing an application specific test benches, 

instead, building the testing environment using reusable verification components that are 

structured for use in different applications. In this context, the presenters made use of the 

built in checker comparison in OVM and apply it to compare the arithmetic unit output 

with a reference model which is decNumber C library [33]. 

Coverage models based on Equivalent Partition and Boundary Value analysis aim to 

hit corner cases and reduces the number of test vectors required to fulfill the test space 

[4]. The authors in [2, 3] introduce a tool called FPgen that generates random tests based 

on defining coverage models relating the inputs, intermediate results and the outputs. 

Two behavioral tools are developed in [5]; vecgen is a C program that is used to 

generate floating point test vectors based on input specification file that contains 

description of the vectors required, and fpc is a C program that defines a model based on 

the IEEE standard in [1]; in order to model an implementation compliant with the IEEE-

754 standard, a small amount of C code is written to make calls that will initialize fpc, 

execute it, and model chips issues such as pipeline delays register files, etc…. These two 

tools are integrated and simulated together to form an automatic verification for FP units.  

Generation of floating point test vector is addressed differently in [39]; given some 

ranges for the operands and the result, a rounding technique, it is requested to find a 
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random test vector where operand and result fit in their corresponding range. This 

approach is completed for addition and subtraction and is partially completed for 

multiplication and division. The benefit of this approach, is that one can specify the range 

of certain operand/result to cover a certain corner case. 

For iterative binary floating point operations such as division and square root, a 

proposal is done in [40] to randomly generate operands based on the iterative algorithm 

used, the iteration number and a relative error interval. 

Another point of interest is how to set coverage goals on intermediate result or add 

constraints on it and how to generate the corresponding test vectors. Intermediate result 

is the result of any operation before rounding takes place assuming at this stage infinite 

representation of bits. The authors in [3, 10, 41] address this issue by determining the 

maximum number of bits in intermediate result for every arithmetic operation, then do a 

bit level analysis to create constraints that link intermediate bits with input/output bits, 

then solve those constraints. This is basically the internal algorithm of FPgen tool that 

the author develops to verify addition, subtraction, multiplication and division. [11, 12] 

use similar approach by creating their own engines to solve simultaneously constraints 

on unbounded intermediate results and constraints on inputs-outputs. This methodology 

has proven effectiveness in verifying Addition-Subtraction, Multiplication and Fused 

Multiply Add operations for Decimal FP units.  

2.4. Hybrid techniques of floating point verification 

Verification of Jaguar x86 Floating point unit was carried out using both simulation 

and formal verification depending on the stage of the product [29]; in RTL stage, a 

simulation based verification based on pseudo random test vector generation and 

comparing result with a reference model result, next in Core/System stage, sequence of 

floating point instructions was verified using an architecture level third party tool, and 

finally in the execution stage, formal model based on theorem proven and property model 

checking is used to feedback to the coverage analysis used in pseudo random simulation 

in the first stages and hence speed up these first stage. 

Symbolic Trajectory Evaluation (STE) is used to verify Intel® Processor Graphics 

floating point unit [30]. STE is a formal verification model checking technique using a 



 

23 
 

symbolic simulation based approach where simulation works on the BDD version of the 

design and specifications. 

A High Level Synthesis tool is applied to synthesize and verify a Floating point unit 

starting from its behavioral model until gate level is reached [37]. Simulation is applied 

in both the behavioral model stage and in RTL stage where in the RTL stage a third party 

tool is applied to generate floating point test vectors. After Gate level synthesis, another 

third party tool is used to create logical equivalence with RTL. 

A formal model for the division operation is used in [38] to generate test vectors for 

floating point division. First, the algorithm generates the intermediate (unbounded) value 

of the quotient based on some heuristics and pseudo random generation, and work back 

using the formal model to generate the dividend and the divisor completing the test vector 

format. 

2.5. Summary 

Formal and simulation methods are widely used in the verification of floating point 

units. In our framework, we propose a verification methodology for Binary FP arithmetic 

operations by writing SV constraints to constrict the data path starting from the operands 

through intermediate results and rounding techniques until the result evaluation. Then, 

we pass the constraints to a simulator to randomly generate test vectors based on the 

above constraint model plus adding user defined constraints to cover interesting corner 

cases. This method shows effectiveness in discovering bugs for addition-subtraction and 

multiplication operations in different designs. 
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Chapter 3 : Proposal 

Figure (3.1) illustrates the verification framework. The Operation constraints define 

the random variables for every operation and the constraints that link these variables 

together based on the arithmetic operation desired. The User constraints impose more 

restrictions on the defined variables to force the generation of test vectors to cover a 

specific scenario. Both types of constraints are simulated simultaneously to generate a 

number of test vectors.  

 

 

 

Figure 3.1 Verification Framework 

In our framework, we implement the above mentioned verification framework using 

System Verilog Constraints and applied it on addition, subtraction, multiplication, 

division and fused multiply add operations. The following sections give a detailed insight 

about each operation and what are the aspects carried in each operation. 

3.1. Addition and subtraction 

Figure (3.2) summarizes the data path for the Operation constraints for Add/Subtract. 

3.1.1. Encoding/decoding constraints 

These constraints are concerned with mapping the binary encoding format of IEEE-

754 floating point operands and result in different precisions to sign, exponent and 

significand. Also, it is responsible for figuring out whether the hidden bit of the 

significand is 1 or 0. The hidden bit is constraint with the value of the exponent, if the 

value of the exponent is 0, then the hidden bit is 0, else, the hidden bit is 1. Table (3.1) is 

the SV code for this constraint process: 
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Table 3.1 Encoding/Decoding constraints 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

rand bit [`k-1:0] operand1,operand2,result; //k is the width of the operands 

rand bit operand1Sign,operand2Sign,resultSign; 

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent;  

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa; 

rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand; 

constraint binary_encoding_decoding { 

        {operand1Sign,operand1Exponent,operand1Mantissa} == operand1; 

        {operand2Sign,operand2Exponent,operand2Mantissa} == operand2; 

        {resultSign,resultExponent,resultMantissa} == result; 

} 

constraint significand_mantissa { 

                if (operand1Exponent == ‘0) 

                        ({1'b0,operand1Mantissa} == operand1Significand); 

                else 

                        ({1'b1,operand1Mantissa} == operand1Significand); 

                if (operand1Exponent == ‘0) 

                       ({1'b0,operand2Mantissa} == operand2Significand); 

                else 

                       ({1'b1,operand2Mantissa} == operand2Significand); 

} 
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Figure 3.2 Add/Subtract operations constraints 

3.1.2. Higher and lower operands constraints 

These constraints are responsible for detecting which operand is the higher and 

which is the lower. This is important for the next constraints set in section 3.1.3. The 

flow chart in Figure (3.3) summarize the work flow of these constraints. 
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Figure 3.3 Flow for picking the higher and lower operands 

3.1.3. Normalize low operand constraints 

After determining the lower operand, some normalization constraints should be 

carried on by right shifting the operand significand until the lower exponent matches the 

higher exponent. Also, three extra bits are introduced here that will be used in later stages: 

 Guard bit: 

The left most bit of the shifted out part of the lower significand, 

 Round bit:  

The second left most bit of the shifted out part of the lower significand, 

 Sticky bit:  

It represents all the remaining bits of the shifted out part of the lower 

significand, sticky bit is the disjunction of these bits. 

 

 

 

Figure 3.4 Lower significand normalization 

Figure (3.4) is an example of an exponent difference between the higher and the 

lower operand equals to 5, the lower operand is shifted to right 5 places, 2 of which are 
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placed in the Guard (G) and the Round (R) bits, and the remaining 3 bits are ored together 

to produce the Sticky bit (S). 

3.1.4. Effective operation constraints 

Depending on the operation, the sign of the higher and the lower operands, the 

effective operation constraint is evaluated. The effective operation is addition if the 

operation is add and the sign of both operands is the same, or the operation is subtraction 

and the sign in different. Otherwise, the effective operation is subtraction. 

Table 3.2 Effective operation constraints 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

typedef enum {ADD,SUB} operationTypes; 

rand operationTypes operation, effectiveOperation; 

constraint effective_operation { 

        if ((operation == ADD) && (higherSign == lowerSign)) 

                         (effectiveOperation == ADD); 

        else if ((operation == ADD) && (higherSign != lowerSign)) 

                          (effectiveOperation == SUB); 

        else if ((operation == SUB) && (higherSign == lowerSign)) 

                          (effectiveOperation == SUB); 

        else 

                          (effectiveOperation == ADD); 

} 

 

 

3.1.5. Add/Subtract constraints 

Based on the effective operations, the significand of the higher and lower normalized 

operands are added/subtracted from one another, generating the intermediate result 

significand. This intermediate result significand is expected to be unbounded, and hence 

some random variables are introduced in this steps which are: 

1- Carry:  

A bit added to the left of the intermediate result significand to detect if an 

overflow in addition stage occurs (this doesn’t mean that overflow flag is issued), 

this carry will be used later to normalize the intermediate result. 

2- Intermediate Guard, Round and Sticky bits 

These bits will be used in rounding later. 
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At this point, the intermediate result exponent is constrained to be the same as the 

higher exponent, the intermediate result sign is determined from the effective operation 

and the sign of both operands as shown in Table (3.3).  

Table 3.3 Intermediate result sign constraint 

1 

2 

3 

4 

5 

6 

7 

8 

if ((effectiveOperation == ADD) && (operation == ADD))  

    intermediateSign == higherSign; 

else if ((effectiveOperation == ADD) && (operation == SUB))  

     intermediateSign == operand1Sign; 

else if ((effectiveOperation == SUB) && (operation == ADD))  

     intermediateSign == higherSign; 

else  

    intermediateSign == ((operand1 < operand2)^(operand1Sign)); 

 

 

 

Figure 3.5 Intermediate significand constraint 

3.1.6. Carry/Leading Zero correction constraint 

Table (3.4) describe the stage of Carry/Leading Zeroes correction for intermediate 

results: 

Table 3.4 Carry/Leading Zero correction of the intermediate result after addition 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

constraint carry_leading_zero_correction { 

  if (C) begin 

    {IC_Sig,IC_G,IC_R,IC_S}==({I_Sig,I_G,I_R,I_S}>> 1); 

    (IC_Exp == I_Exp + 1);  

  end 

  else if (I_Sig[`p-1]) begin 

    {IC_Sig,IC_G,IC_R,IC_S} == {I_Sig,I_G,I_R,I_S}; 

    (IC_Exp == I_Exp);  

  end 

  else begin 

    SV == lead_zero_fn ({I_Sig,I_G,I_R,I_S}); 
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12 

13 

14 

15 

16 

17 

    if (SV >= I_Exp) C_SV == I_Exp; 

    else C_SV == SV; 

    {IC_Sig,IC_G,IC_R,IC_S}==({I_Sig,I_G,I_R,I_S} <<C_SV); 

    IC_Exp == I_Exp - C_SV; 

  end 

} 

 

After addition/subtraction, the intermediate result is composed of carry (C), 

significant (I_Sig), exponent (I_Exp), Guard bit (I_G), Round bit (I_R) and Sticky bits 

(I_S).The intermediate result needs to be corrected if there is a carry or leading zeroes in 

intermediate significand. When C is 1, which is only valid in addition, the intermediate 

result is shifted right one place to form the corrected intermediate result (IC_Sig, IC_Exp, 

IC_G, IC_R, IC_S) and the exponent is incremented by one (lines 2 to 5). No correction 

is required if C is 0 and the most significant digit of I_Sig is 1 (lines 6 to 9). If the effective 

operation is subtraction, one leading zero exists in I_Sig if the exponent difference 

between the two operand is larger than 1, also, more than one leading zeroes exist if the 

exponent difference is 0 or 1. A shift value (SV) is calculated by counting the leading 

zeroes and is corrected to not exceed I_Exp (lines 11 to 13). The intermediate result is 

corrected accordingly by left shift of I_Sig, I_G, I_R and I_S by C_SV as well as 

decrementing I_Exp by same value (lines 14 to 15).  

3.1.7. Rounding constraints 

Given the constraints set on the corrected Intermediate significand (IC_Sig), Guard 

(IC_G), Round (IC_R) and Sticky (IC_S) and the correction constraints in the previous 

step, now it is time to set constraints to figure out the round value based on the rounding 

direction. Following is the constraints on round value (RV) based on the rounding 

direction: 

 Round tie to nearest even: 

𝑹𝑽 ==  𝑰𝑪_𝑮 𝒂𝒏𝒅 (𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺 𝒐𝒓 𝑰𝑪_𝑺𝒊𝒈[𝟎])  

The theory behind this, is that when there is a tie between the two nearest 

value (Guard bit is 1, Round bit is 0, and Sticky bit is 0), if the intermediate 

result significand is even (right most bit is 0), the round value should be 0, if 

the intermediate result is odd (right most bit is 1), the round value should be 

1. If either of the Round or Sticky bits is 1, this means that the intermediate 

magnitude is closer to the larger magnitude and hence the round value is 1. 

 Round towards zero: 
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𝑹𝑽 == 𝟎 

This is easily explained since the expected magnitude after rounding is 

always expected less than or equal to the result before rounding. 

 Round towards positive infinity: 

𝑹𝑽 == ! 𝑺𝒊𝒈𝒏 𝒂𝒏𝒅 (𝑰𝑪_𝑮 𝒐𝒓 𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺) 

If the intermediate result is positive (Sign is 0), the magnitude of the rounded 

result is greater than or equal to the intermediate unbounded result, hence if 

the guard, round or sticky has 1, the round value should be 1. 

 Round towards negative infinity: 

𝑹𝑽 == 𝑺𝒊𝒈𝒏 𝒂𝒏𝒅 (𝑰𝑪_𝑮 𝒐𝒓 𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺) 

If the intermediate result is negative (Sign is 1), the magnitude of the rounded 

result is greater than or equal to the intermediate unbounded result, and hence 

if the guard, round or sticky has 1, the round value should be 1.  

 

 After the rounding value is constraint, a further addition step to the intermediate 

significand with the rounding value, is following by a further normalization for carry 

after rounding is required. Table (3.5) explains the constraints for this, if there exist a 

carry after rounding, the exponent should be incremented and the round significand 

should be shifter right by 1 (lines 5 to 8), otherwise nothing should be done (line 9 to 12). 

Table 3.5 Addition/Normalization due to rounding 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

constraint addition_after_round { 

  {roundCarry,roundSignificand} == ({1'b0,IC_Sig} + RV); 

} 

constraint normalization_after_rounding { 

  if (roundCarry == 1'b1)  begin 

    roundNormalizedExponent == IC_Exp + 1; 

    roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]})); 

  end 

  else begin 

    roundNormalizedExponent == IC_Exp; 

    roundNormalizedSignificand == roundSignificand; 

  end 

} 
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3.1.8. Exception handling constraints 

These type of constraints exist to define the behavior of the flags, and the result 

calculation based on these flags. Below is the equations used for flag calculations: 

 Overflow 

𝒐𝒗𝒆𝒓𝒇𝒍𝒐𝒘 == 

(𝑰𝑪_𝑬𝒙𝒑 ==  𝟐𝒘 − 𝟏) 𝒐𝒓 (𝒓𝒐𝒖𝒏𝒅𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅𝑬𝒙𝒑𝒐𝒏𝒆𝒏𝒕 == 𝟐𝒘 − 𝟏) 

The above equation states that overflow flag happens when the exponent 

value exceeds the maximum value of the exponent which is 2 × 𝑒𝑚𝑎𝑥 which 

is the same as 2𝑤 − 2. The check on exponent is done after the normalization 

stages of the intermediate results or the rounded results. 

 Underflow 

When shift value required is greater than the exponent value of the 

intermediate result, underflow flag is raised. This means that the value in the 

intermediate result cannot be expressed unless it crosses the lower boundary 

of the possible values of the intermediate significand.  

 Inexact 

Inexact happens when the intermediate guard, round or sticky is 1, or when 

overflow or underflow happens. 

 Invalid 

Only happens for the following scenarios: 

o An operand as sNaN, 

o subtraction of infinities, (+∞) ∓ (±∞),  

The flow chart in Figure (3.6) explains the constraints on the final result if one of the 

above flags are raised; if the invalid flag is raised, the output should be NaN, else if any 

of the operands is infinity the result should be infinity, else if the overflow flag is not 

raised, the result should be the same as the rounded normalized result, else if overflow 

flag is raised, depending on the round direction the final result is calculated to be either 

the maximum value of floating point or ±∞. 
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Figure 3.6 Result constraint due to exceptions 

3.2. Multiplication 

Figure (3.7) summarizes the data path for Operation constraints for Multiplication. 

No need to choose the higher/lower operands and normalize the lower operand in 

multiplication, in fact, the multiplication data path is much shorter than the addition. 

 

 

 

Figure 3.7 Multiplication Operation constraints 
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3.2.1. Multiplication constraints 

Using System Verilog multiply operator (*) was inefficient, it took a lot of time to 

parse this constraint and slow down the generation of test vectors dramatically. Hence, 

we deploy partial product summation  of both operands through creating a function that 

shift the first operand to the left and depending on the value of the 𝑖𝑡ℎelement of the 

second operand, this partial product will be added or not; if the value of the 𝑖𝑡ℎelement 

in operand2 significand is 0, it is skipped, else, it is added. Figure (3.8) explains the layout 

of the partial product summation, and Table (3.6) shows the SV function to implement 

this algorithm.  

 

 

Figure 3.8 Partial products summation 

As seen in Figure (3.8), the intermediate result is twice the precision of the operands 

to calculate the Round and Sticky; the Round is the first bit to the right of the bits taken 

in the intermediate significand, and the Sticky is disjunction all the other bits. The sign 

is constraint to be the exclusive or of the operands’ signs, the exponent is constraint to 

be the summation of both exponents while subtracting the Bias value with is equal to 

𝑒𝑚𝑎𝑥. 
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Table 3.6 constraint function for partial produce summation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

function [2*`p-1:0] partial_product_multiplication(input [`p-1:0] 

op1,op2); 

        bit [2*`p-1:0] normal[0:`p-1], shifted[0:`p]; 

        shifted[0] = 0; 

        for (int i = 0; i <= `p-1; i++) 

        begin 

                if (op2[i]) 

                        normal[i] = {`p'b0,op1}; 

                else 

                        normal[i] = '0; 

                shifted[i+1] = (normal[i] << i) + shifted[i]; 

        end 

        return shifted[`p]; 

endfunction 

 

 

3.2.2. Carry/leading Zeroes correction constraints 

Same as section 3.1.6 

3.2.3. Rounding constraints 

The RV equations slightly differ from section 3.1.7, as in multiplication, there is no 

Guard bit, only Round and sticky, and hence the equations are:  

 Round tie to nearest even: 

𝑹𝑽 ==  𝑰𝑪_𝑹 𝒂𝒏𝒅 (𝑰𝑪_𝑺 𝒐𝒓 𝑰𝑪_𝑺𝒊𝒈[𝟎])  

 Round towards zero: 

𝑹𝑽 == 𝟎 

 Round towards positive infinity: 

𝑹𝑽 = ! 𝑺𝒊𝒈𝒏 𝒂𝒏𝒅 (𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺) 

 Round towards negative infinity: 

𝑹𝑽 = 𝑺𝒊𝒈𝒏 𝒂𝒏𝒅 (𝑰𝑪_𝑹 𝒐𝒓 𝑰𝑪_𝑺) 
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3.2.4. Exception handling constraints 

Overflow, underflow and inexact exceptions are the same as computed in section 

3.1.8, while for invalid flag, the following is accounted for: 

 An operand as sNaN, 

 0 × ∞,∞ × 0, 

3.3. Division operation constraints 

Figure (3.9) summarizes the data path for the Operation constraints for Division 

operation. Again, no need to choose the higher/lower operands, yet if the divisor is 

subnormal, a normalization step should be done before going through the division 

algorithm in the division constraint section.  

 

 

 

Figure 3.9 Division Operation constraints 
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3.3.1. Normalize divisor constraint 

These constraints act as a filter to divisor; if the divisor is normal number, it passes 

without modification, else, it requires normalization by shifting it to the left and saving 

the shift value later for exponent correction of the intermediate result. 

Table 3.7 Normalize divisor constraints 

1 

2 

3 

4 

5 

6 

7 

8 

9 

function int leading_zero_calculation (input [0:`p-1] functionSignificand); 

        for (int i = 0;i < `p;i++) begin 

                if (functionSignificand[i] == 1'b1) return i; 

        end 

endfunction 

constraint divisor_normalized { 

        exponent_correction == leading_zero_calculation(divisorSignificand); 

        divisorNormalizedSignificand == divisorSignificand << 

exponent_correction; 

} 

 

 

As shown in Table (3.7), a function is implemented to calculate the leading zeroes 

in the divisor, this will return 0 if the divisor is normal, and will return the number of 

leading zeroes if it is subnormal. The divisor significand is normalized by shifting the 

leading zeroes out, and an exponent correction variable is saved for later update of the 

intermediate result exponent. 

3.3.2. Division constraints 

Again, using built in System Verilog operator of division “/” shows slow response 

in generation of the test vectors, and hence an iterative restoring algorithm for division 

was carried out.  

The algorithm works with 3 variables and a comparator, these variables are: 

 The quotient register: it is twice the precision of the binary encoding format, 

 The divisor register: it is three time the precision of the binary encoding 

format, 

 The remainder register: it is three time the precision of the binary encoding 

format. 

The following are the steps used in the iterative algorithm: 

1- Initializing the registers as shown in Figure (3.10): 
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a. The quotient register is initialized with all 0’s, 

b. The divisor register is initialized with the divisor significand aligned to 

the left, 

c. The remainder register is initialized with the dividend significand aligned 

to the left, 

 

 

Figure 3.10 Initial step for iterative division 

2- Compare the remainder resister with the divisor register 

a. If the remainder is greater than or equal to the divisor register: 

i. Update the remainder register by subtracting the value in the 

divisor register 

ii. Insert 1 to the right most bit of the quotient and shift left its 

content 

b. If the remainder is less than the divisor register: 

i. Restore the remainder with its old value 

ii. Insert 0 to the right most bit of the quotient and shift left its 

content 

3- Shift right the divisor register by 1 bit place 

4- Repeat steps 2 and 3 for 2*precision time, (until all the quotient bits are written 

in) 
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Table (3.8) shows the SV function that implements this restoring iterative division 

algorithm, also, the implementation for the iteration is in Figure (3.11). 

Table 3.8 SV function to implement the iterative restoring division algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

function [`p-1:-`m] iterative_div(input [`p-1:0] divident,divisor); 

        bit [2*`p-1:-`m] r[-`p+1:`p], d[-`p+1:`p]; 

        bit [`p-1:-`m] q[-`p+1:`p]; 

        r[-`p+1][2*`p-1:`p] = divident; 

        q[-`p+1] = '0; 

        d[-`p+1][2*`p-1:`p] = divisor; 

        for (int i = -`p+2; i <= `p; i++) 

        begin 

                if (r[i-1] >= d[i-1]) 

                begin 

                        r[i] = r[i-1] - d[i-1]; 

                        q[i] = {q[i-1][`p-2:-`m],1'b1}; 

                end 

                else 

                begin 

                        r[i] = r[i-1]; 

                        q[i] = {q[i-1][`p-2:-`m],1'b0}; 

                end 

                d[i] = {1'b0,d[i-1][2*`p-1:-`m+1]}; 

        end 

        return q[`p]; 

endfunction 

 

 

 

Figure 3.11 the iterative, restoring division algorithm 
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As mentioned earlier, the quotient register is twice the precision with, this is to 

account for the fact that the intermediate result before rounding should be unbounded. 

Figure (3.12) shows the mapping between the 2*p wide quotient and the intermediate 

significand, guard, round and sticky bits.  

 

 

 

Figure 3.12 Mapping between quotient and intermediate result in division 

The sign of the intermediate result is the exclusive or of the divisor and the dividend 

signs, the exponent is the same as that of the dividend. 

3.3.3. Carry/Leading zeroes correction 

In division, there is no carry, and since there was a step earlier to align the divisor to 

the dividend for subnormal divisors, here there is only one correction that needs to be 

handled, it is correcting the exponent of the intermediate result by adding the exponent 

correction computed in Table (3.7). 

  

 

 

3.3.4. Exception handling constraints 

For overflow, underflow and inexact flags, they are the same as in 

addition/subtraction or multiplication, but for the invalid flag, it is different, also there 

exist a new flag with is divide by zero, below is how both flags are constraint 

 Invalid: 

o 
0

0
 

o 
∞

∞
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 Divide by zero:  

o 
𝑥

0
,   where x in a finite floating point number, the result's sign is 

exclusive or of the dividend sign and the divisor sign, 

3.4. Fused multiply Add constraints  

Fused multiple add/subtract is a multiplication followed by an addition or subtraction 

operation. Figure (3.13) shows the constraints on the data path through an FMA 

operation. The operation differ from multiplication followed by addition/subtraction in 

the following points: 

 The significand of the result of multiplication is expected to be unbounded, 

and hence the addition/subtraction operand width is twice the precision of 

the addition/subtraction discussed in section 3.1.  

 The invalid flag is raised when: 

o An operand as sNaN, 

o (0 × ∞) + 𝑐, (∞ × 0) + 𝑐 
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Figure 3.13 FMA operation constraints 

3.5. Square Root constraints 

Figure (3.14) summarizes the data path for the Operation constraints for Square root 

operation. In square root operation, we only deal with one operand, we assume that this 

operand is positive. Square root for negative numbers is not covered in our work. if the 

operand is subnormal, a pre-normalization step should be done before going through the 

square root algorithm, then a post normalization step restores the result to account for the 

the operand sub normality. 
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Figure 3.14 Square Root Operation Constraints 

3.5.1. Decoding/Encoding constraints 

Same as in section 3.1.1, but only for one operand and assumption that the sign bit 

is always zero (positive). 

3.5.2. Pre-Normalization step 

This step is concerned with converting subnormal representation to a normal version 

by shifting left the operand significand until the most significand digit is 1, to be able to 

utilize the square root algorithm explained later that only deals with normal numbers. 

Table (3.9) explains the SV constraints for this normalization step. 

Table 3.9 SV constraint to implement Pre-normalization step for subnormal 

numbers 

1 

2 

3 

4 

5 

6 

function int ShiftValue (input [`p-1:0] i1); 

        int j; 

        ShiftValue = 0; 

        for (int i = `p-2; i >=0 ; i --) 

        begin 

                j = (`p-1) -i; 
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7 

8 

9 

10 

11 

12 

13 

14 

15 

                if (i1[i] && ShiftValue == 0) 

                        ShiftValue = j; 

        end 

endfunction 

constraint pre_norm { 

  SV == ShiftValue(operand1Significand); 

  intermediateSignificand == operand1Significand << SV; 

  intermediateExtendedSignificand == {intermediateSignificand,`p'b0,2'b0}; 

} 

 

 

Another thing that is handled in this step extending the significand from the right 

with zero padding. This step is important since the result of the square root is always 

half the precision of the operand under the root. So to return the same precision as 

the input to the square root algorithm, this extension is required. Also, another two 

bits are extended so that the square root algorithm return one more bit on the right 

that is mapped to the round bit. Line 14 in Table (3.9) denotes the right padding step. 

3.5.3. Square Root constraints 

Two different approaches were carried in calculating the square root for a given 

floating point binary number. The approaches share the calculation of the exponent. 

If the biased exponent is odd, subtracting the bias value which is equal to maximum 

possible exponent (Odd number), will lead to an even number, then the result exponent 

is calculated to be half the unbiased even number, next the bias is added one more time. 

If the biased exponent is even, subtracting the biased value will lead to an odd 

number, then the result exponent is calculated by subtracting one from the exponent to 

make it an even number then halving that number, then adding the bias one more time. 

The following equation summarize how the result exponent is calculated, where RE 

and OE are result exponent and Operand exponent respectively: 

 

𝑯𝒂𝒍𝒇_𝒃𝒊𝒂𝒔 = (𝑬𝒎𝒂𝒙 − 𝟏)/𝟐 

𝑹𝑬 =  𝑶𝑬[𝑾 − 𝟏: 𝟏] + 𝑯𝒂𝒍𝒇_𝒃𝒊𝒂𝒔 + 𝑶𝑬[𝟎] 

To account for the operands with even exponents, a correction step is required to the 

significand by left shift the significand by one. Hence, the fixed point representation of 

the number under the root is either 01.XXX or 1X.XXX, which is a number between 

1.000 and 3.999 and hence, the result of the square root is always between 1.000 and 
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1.999 and hence the square root algorithm will always return 1.YYY, so there is no need 

to worry about normalization after the square root is done for normal numbers. 

3.5.3.1. First Square root algorithm  

The first algorithm is straight forward algorithm using the capabilities of SV 

language; i.e. using the SV power operator to calculate the square root by having the 

power equals 0.5, then the remainder is calculated by squaring the result and subtracting 

it from the original number as shows in Table (3.10). The Round bit is the right most bit 

of the Quotient Q, and the Sticky bit is the disjunction of the Remainder R. 

 

Table 3.10 First approach in calculating the square root using SV power operator 

1 

2 

3 

4 

5 

6 

7 

8 

function [`p+1:0] sqrt_approach_1(input [`p+1:0] i1); 

        logic [`p:0] R,Q; 

        logic Sticky; 

        Q = {i1,`p'b0,1'b0} ** 0.5; 

        R  = i1 - (Q ** 2); 

        Sticky = | R; 

        return {Q,Sticky}; 

endfunction 

3.5.3.2. Second Square root algorithm 

The second approach is based on the proposal in [43], it is an iterative approach 

based on the algorithm explained in Table (3.11). The algorism depends on having three 

registers, each is two more bit wide than the operand significand 

1- Quotient register (Q): will contain the result significand of square root, and the 

Round bit after the iterations are done 

2- Factor register (F) 

3- Remainder register (R): after end of iterations, if it contain non zero value, it 

means that the sticky bit is one, else, sticky bit is zero 

Figure (3.15) explains how the above registers are initialized, both Quotient and 

Factor registers are initialized with zeroes while the Remainder register is initialized with 

Radicand (operand) most 2 significand digits from the right, and zeroes elsewhere.  
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Figure 3.15 Registers initialization for the iterative approach 

Table 3.11 First approach in calculating the square root using SV power operator 

1 

  

2 

  

3 

  

  

4 

 

 

 

 

 

 

 

 

5 

 

 

 

6 

 

 

 

7 

Initialize radicand with input data value, R=0, Q=0, F=0, i=n; n is MSB bit-

index of Radicand (D). 

Divide the radicand into sub-groups which each sub-group consists of 2 digits 

starting from integer LSB. 

Start the calculation from MSB sub-group to LSB sub-group. Treat current 

sub-group as current partial remainder. 

Rt = Dt[i:i-1]; t is time index indicator. 

Do a comparison whether current partial remainder is bigger or equal than 

current partial factor ((Ft<<1)|1), (shift left of factor register, with one 

entering from the right) 

If yes 

  Update Q; Qt+1 = (Qt<<1)|1; 

  Update F; Ft+1 = ((Ft+Ft[0])<<1)|1; 

Else 

  Update Q; Qt+1 = (Qt<<1)|0; 

  Update F; Ft+1 = ((Ft+Ft[0])<<1)|0; 

Do subtraction to partial remainder by the result value of factor 

multiplication; Then append the subtraction result with next subgroup data 

of Radicand in the LSB position of partial remainder, in order to update R. 

      Rt+1 = ((Rt–(Ft*Ft[0]))<<2)|D[i-2:i-3]; 

Update the current indexes for next use. 

t+1 is changed into t; 

i-2 is changed into i; 

       i-3 is changed into i-1; 

If the process is not over 

Jump to step 4 and loop the process. 
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Else  

Latest Q value is final square root value. 

       Latest R value is final remainder value. 

 

 

Figure (3.16) is a tutorial example explaining the above iterative approach to 

calculate the square root of 445. 

 

Figure 3.16 Tutorial example of the iterative approach 

Since 445 is represented in odd number of bits in binary “110111101”, we add a 

dummy zero bit from the left to be “0110111101”, and hence we have 5 subgroups from 

the radicand. The first subgroup is “01”, we initialize the remainder register to be “01”, 

then we compute ((Ft<<1)|1) as explained in step 4, to be “1”, so remainder register is 

greater than or equal to the computed factor, and hence we should update the Quotient 

and Factor register as explained in step 4, so that the Quotient is left shifted with one to 

be “1” and the new factor register is calculated by ((Ft+Ft[0])<<1)|1), to be “1”. We 

calculate the new remainder by computing (Rt+1 = ((Rt–(Ft*Ft[0]))<<2)|D[i-2:i-3]) as 

explained in step 5, and hence the new remainder is “010”. This is the end of the first 

iteration. 

Again, in the next iteration, we compare the current remainder “010” with ((Ft<<1|1) 

which is “11”, and hence we find that it is not greater than or equal the remainder, and 

hence we execute the else part in step 4, so the new Quotient is “10” and the new factor 

is “100”. We use the equation in step 5 to compute the new remainder which will be 

“1011”. This is the end of the second iteration. 

We repeat the above until the last subgroup of the Radicand enters the remainder, 

and then as shown in Figure (3.16), the Quotient register will contain “10101” which is 
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equivalent to 21, and the remainder register is not empty “000100”, hence the value is 

approximated. This is clear as square root of 445 is 21.09502310972899. 

As mentioned in the pre-normalization section, for both approaches, the radicand to 

undergo the square root is padded with zeroes to: 

1- Create a Quotient with same precision as the radicand, hence the radicand is 

padded with p zero digits from the right, 

2- Two more zero digits are added from the right to create one more bit in the 

Quotient to account for the Round bit that will be used in rounding step later 

As for the Sticky bit, it is calculating from the disjunction of the remainder register. 

 

 

Figure 3.17 Mapping between quotient and intermediate result in square root 

3.5.4. Post normalization step 

If the Operand under the square root was subnormal, there existed a pre-

normalization step that made a left shift version of the significand, in this stage, we 

correct this unforsaken left shift by a half right shift of the Quotient significand. 

3.5.5. Rounding constraints 

After calculation the Round, Sticky bits, depending on the round direction, the final 

significand of the square root operation is calculated, by the same equations in 3.2.4. 

3.5.6. Exception handling 

Given the assumption that the operand is positive, only one exception needs 

handling, which is the having a NaN under the square root, and it should result to NaN. 

Square root operation will never return overflow or underflow since the result exponent 

is always less in magnitude than the operand exponent.  
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3.6. User defined constraints 

As mentioned in the proposed algorithm, besides having constraints covering the 

data path for every operation, the user is allowed to add his own constraints to hit desired 

corner cases. Table (3.12) is an example of constraints set during addition/subtraction to 

hit a corner case that will be shown later to cover a bug in one floating point unit design. 

The user constraints add more restrictions on the effective operation to be subtraction 

and intermediate results to have one leading zero. 

Table 3.12 Exmaple of User defined constraints 

1 

2 

3 

4 

constraint intermediateSignificand_userConstraints { 

 effectiveOperation == SUB; 

 I_Sig[`p-1:`p-2] == 2'b01;    

} 
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Chapter 4 Results and comparisons 

In this chapter we discuss the result of our proposal and draw comparisons with other 

verification algorithms for floating point units. All our verification were applied on 

machine with the following specifications: 

 Operating system: CentOS 6.3, 

 Platform: 64 bits, 

 Ram: 48GB, 

 Cores: it has 16 cores, each with frequency of 2.8 GHz 

We used QuestaSim Tool in all our simulation, with the following version: 

 QuestaSim-64 10.4c_1 Compiler 2015.09 Sep  4 2015 

4.1. Advantages of Our proposal 

4.1.1. No solver, No modelling 

One advantage of the proposed algorithm, is that it does not require bit level analysis 

or creating Cartesian equations and developing a particular engine to solve these 

equations as in [2], [3], [5], [11], [12].  

4.1.2. Based on System Verilog Language 

The algorithm is a plug and play utility that can be simulated with any simulator that 

supports SV constraints. Since most Hardware verification nowadays are based on SV 

language, the proposal doesn’t require pre-learning for most of verification engineers.  

4.1.3. Global solution for verification 

Since the methodology is to create test vectors, these test vectors can be applied at 

any time of the product life cycle of a floating point unit, it can be used within behavioral 

simulation with C or Matlab, it can be applied to the RTL and verify its output, it can be 

converted to floating point instructions and test any current processor having floating 

point hardware. 
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4.1.4. Fast generation of test vectors 

Recently, verification is the bottle neck in any software/hardware design life cycle 

due to the huge time and effort spent versus the fast time to market requirements. Our 

methodology shows promising figures with respect to time when being simulated with 

QuestaSim simulator.  

Figure (4.1) shows the average time to generate 1 test vector for addition, 

subtraction, multiplication, division and square root with single and double precision 

binary formats. As shown, the average time to generate one test vector in multiplication 

with single precision is 0.5 millisecond, the average time to generate one test vector in 

multiplication with double precision is 2.5 milliseconds. For Square root, the average 

time to generate one test vector in single precision is 0.9 milliseconds, and the average 

time for double precision is 1.3 milliseconds. For division, the average time to generate 

one test vector with single precision is 2.4 milliseconds and the average time to generate 

one test vector with double precision is 2.7 milliseconds. Division is a bit slower than 

multiplication and square root which is reasonable due to the iterative approach deployed 

in the constraints for division, and due to the extra step of normalization when dealing 

with subnormal divisor. Addition and subtraction are the slowest, with 11.7 milliseconds 

to generate one test vector in single precision and 22.8 milliseconds in double precision, 

again this is justifiable by the fact that the constraint data path for addition and subtraction 

is longer than that of multiplication and division, since it requires computing the effective 

operation, arranging the operands to identify what is the higher and the lower operands 

and finally normalization of the lower operand. 
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Figure 4.1 Average time to generate 1 test vector for different operations 

4.1.5. Linear response with respect to required number of test 

vectors 

As shown in Figures (4.2,4.3,4.4,4.5), increasing number of test vectors (N) shows 

linear response in time, which provide good scalability for our proposal.  

Yet increasing number of cores as shown in Figures (4.6,4.7) doesn’t significantly 

improve time. This is due to the fact that running on multicore improve time when the 

design has multiple hierarchical level, yet our implementation includes all the SV 

constraints in one hierarchy. The experimental results here are run with single precision 

on single core, four cores and eight cores. 
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Figure 4.2 Time to generate N test vectors for addition 

 

 

 

Figure 4.3 Time to generate N test vectors for division 
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Figure 4.4 Time to generate N test vectors for multiplication 

 

Figure 4.5 Time to generate N test vectors for square root 
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Figure 4.6 Time to generate N test vectors for addition across different cores 

 

Figure 4.7 Time to generate N test vectors for multiplication across different cores 

4.1.6. No scaling issue with bigger precision 

If one refer back to Figure (4.1), it is clear that the double precision take more time 

than that of single precision, yet the increase in time is not huge. Figure (4.8) 

summarizing the ratio of increase from single to double precision across different 

operations:  
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Figure 4.8 Ratio of increase in time from single to double precision 

Multiplication shows the worst figures here, again this is justifiable since the partial 

product width is scaled up from 24 bit wide to 53 bit wide, and instead of addition 24 

times, it is done 53 times. For Addition/subtraction, the ratio is almost 2 which is also 

justifiable since the width of the significand is doubled. Division figures are the best here 

where the ratio is almost 1, which means that there is no scaling issue at all for the 

division algorithm applied, this is due to applying an iterative approach in computing the 

quotient and remainder.  Finally, for square root, the ratio is almost 1.5, this can be 

explained; when referring to the algorithm explained in 3.5.3.1, one will notice that in 

order to compute the remainder, power and squaring operation are required, which will 

vary when scaling from single to double precision as the operand’s width undergoing 

power/square increased. 

4.2. Comparison with other related work 

4.2.1. Comparison with FPgen 

The experimental results in [2] implied that it requires 6 minutes to generate 1586 

test vectors for a combination of addition, multiplication and division, which means that 

generation of one test vector takes about 227 milliseconds, while our slowest figures 
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which are captured during simulation of addition/subtraction constraints take only 22.8 

milliseconds, which is at least ten times faster than that of FPgen.  

4.2.2. Comparison with decimal floating point constraint solvers 

As mentioned in [44], the maximum time to generate one test vector for double 

precision floating decimal floating point square root operation is 37 seconds. In our 

experiments, we show that the maximum time to generate one test vector for double 

precision binary square root floating point operation is 1.3 milliseconds.  

4.3. Summary of bugs discovered  

Our verification technique proves to be effective in finding bugs. We deployed the 

generated test vectors on some software/hardware implementations of Binary FP unit to 

verify addition/subtraction operations with single precision and we discovered the 

following bugs:  

4.3.1. Bugs in FPU100, an open source design 

FPU100 is an Opencores VHDL module, IEEE 754-compliant, single precision soft 

core [13]. It has been tested with 2 million test vectors and the no bugs were detected 

since 2007, also, it had been hardware proven as it was implemented in a Cyclone I–

EP1C6 FPGA chip and was then connected to the Java processor JOP [16] to do some 

floating-point calculations. Our framework discovered 4 bugs in subtraction and 2 in 

multiplication, following are the bugs explained:  

4.3.1.1. Wrong Inexact exception calculation: 

Inexact exception is raised if the result overflows/underflows, or any of the 

intermediate guard (G), round (R) or sticky bits(S) is 1. When subtracting two FP 

numbers and the intermediate result is having one leading zero, guard bit is 1 whilst both 

round and sticky are 0, doing a left shift will clear the guard bit, so the result is expected 

to be exact. FPU100 raised inexact flag in this scenario. Figure (4.9) shows the 

intermediate result that causes the bug, since G, R and S are 0’s, the result should be 

exact. 
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Figure 4.9 Wrong inexact flag with subtraction in FPU100 design 

4.3.1.2. Wrong result when two normal numbers are subtracted and return a 

subnormal number: 

When subtracting two normal numbers and the result has leading zeroes that are 

more than the intermediate exponent, the result is subnormal, and the intermediate result 

is shifted with a corrected value as explained in section II, Carry/Leading Zeroes code, 

lines 12 to 14. FPU100 design returns wrong results, which varies with the value of the 

guard bit; if the guard bit is 0, the result is infinity with both overflow and inexact 

exceptions set, if the guard bit is 1, the result is zeroes with both underflow and inexact 

flags set. Figure (4.10) shows the intermediate results that causes the mentioned bugs, 

comparing the correct results vs FPU100 results. 

 

 

 

Figure 4.10 Wrong result when two normal numbers are subtracted and return a 

subnormal number in FPU100 design 
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4.3.1.3. Subtracting positive zero from negative zero: 

For the following: “(-0)-(+0) =?” the result is negative zero (-0), yet the FPU100 

returns positive zero (+0). 

4.3.1.4. Wrong result with multiplication when result is subnormal and 

underflow occurs: 

When multiplying one normal and one subnormal number, the result can have 

leading zeroes, if the leading zeroes are equal to the difference between the intermediate 

exponent and minimum exponent (emin = -126 for single precision), whilst the guard, 

round and sticky are 1’s, underflow exception is raised and the result shall return in 

subnormal format by left shifting of the significand by a shift value equal to the difference 

between the two exponents. FPU100 return the intermediate significand un-shifted as 

shown in Figure (4.11). 

 

 

 

Figure 4.11 Wrong result with multiplication when result is subnormal and 

underflow occurs in FPU100 design 

4.3.1.5. Wrong Output, Inexact and Underflow exceptions with multiplication 

when underflow occurs: 

This is a similar scenario to bug#4, the only difference is that the leading zeroes are 

bigger than the difference between the intermediate exponent and the minimum 

exponent. FPU100 shift the result to eliminate the leading zeroes and produce neither 

underflow, nor inexact exceptions as shown in Figure (4.12). 
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Figure 4.12 Wrong Output, Inexact and Underflow exceptions with multiplication 

when underflow occurs 

4.3.1.6. Wrong result significand with division when the divisor is greater than 

the dividend 

When the divisor is greater than the dividend, the result for FPU100 design is wrong, 

as seen in Figure (4.13), where the exponent is correct, but the significand is wrong. 

 

 

 

Figure 4.13 Wrong result significand with division when the divisor is greater than 

the dividend 

4.3.1.7. Wrong shifted left version of the result significand in division 

The test vector shown in Figure (4.14) shows a shifted version of the result for 

FPU100 design; the FPU100 result is a shift left version of the correct result by 14. 
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Figure 4.14 Wrong shifted left version of the result significand in division 

4.3.1.8. Wrong result significand and underflow flag, when division result in 

subnormal number 

When dividend and divisor are two normal number and division result in subnormal 

number that is inexact, the underflow flag should be raised, yet with FPU100, the 

underflow flag is not raised and the significand value is incorrect as shown in Figure 

(4.15). 

 

 

 

Figure 4.15 Wrong result significand and underflow flag, when division result in 

subnormal number 
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4.3.1.9. Wrong result and overflow flag when division result in overflow 

When dividend exponent minus divisor exponent is 128, which is bigger than 𝑒𝑚𝑎𝑥 

in single precision, overflow flag should be raised and the result should be infinity, this 

is not the case with FPU100 as shown in Figure (4.16).    

 

 

 

Figure 4.16 Wrong result and overflow flag when division result in overflow 

4.3.1.10. Wrong significand calculation for square root operation 

FPU100 design calculates the significand wrongly, Figure (4.17) explains an 

example for the wrongly generated significand with respect to the correct expected one. 

The operand significand is equivalent to “1.70644962787628173828125” in decimal, 

and the square root of such number is “1.3063114”, our generated significand is 

“1.30631137” which is the same as the expected output, yet the FPU100 output is 

“1.143398761749267578125” which is clearly wrong. 

 

Figure 4.17 Wrong significand calculation for square root in FPU100 
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4.3.2. SYMPL-FP324-AXI4-GP-GPU design 

SYMPL FP32X-AXI4 is an open-source, single-precision, multi-thread, IEEE754-

2008 compliant, GP-GPU-Compute engine for single or multi-processing floating-point 

accelerator application written in Verilog RTL [45]. We used our SV constraint model to 

test the design and we discovered two unique bugs. 

4.3.2.1. Wrong left shifted significand value when underflow occurs 

When underflow occurs as a result of multiplication operation due to having 

exponent result less than emin (-126), the result significand is wrong; it is left shifted one 

bit as shown in Figure (4.18). 

 

 

 

Figure 4.18 wrong shifted left significand when underflow in FP32X-AXI4 

4.3.2.2. Wrong rounding when guard is unset and sticky is set in multiplication 

When having a multiplication operation, if the intermediate unbounded result is 

inexact, where the Guard bit is 0, while the Sticky bits are not, then in rounding, the 

intermediate result should be corrected by adding one in case of rounding to negative 

infinity and the sign of the result is negative. This was not handled correctly in FP32X-

AXI4 design, where no one was added while rounding as shown in Figure (4.19). 
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Figure 4.19 wrong rounding when having sticky set in FP32X-AXI4 design 

4.3.3. Bugs in FPAdd design 

FPAdd is one of the FP arithmetic simulators developed in the education of computer 

arithmetic course for University of Massachusetts Amherst [15]. Following are three 

bugs discovered by applying our generated test vectors: 

4.3.3.1. Wrong Guard value for intermediate result cause wrong value after 

rounding:  

When subtracting two FP numbers and the intermediate result is having one leading 

zero and guard bit is 1 whilst both round and sticky are 0, doing a left shift will clear the 

guard bit, so the result is expected to be exact, therefore, rounding stage should not 

change the result, FPAdd produces wrong rounded results due to having 1 in the guard 

bit as shown in Figure (4.20).  
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Figure 4.20 Wrong Guard value for intermediate result cause wrong value after 

rounding 

4.3.3.2. Subtracting positive zero from negative zero: 

For the following: “(-0)-(+0) =?” the result should be negative zero (-0), yet the site 

returns positive zero (+0). 

4.3.3.3. Wrong inexact and rounding when having a carry with addition 

When having a carry in the intermediate result, significand is shifted to the right by 

1, and if before shifting, the right most bit of the significand was 1, and the second right 

most was 0, then after shifting the right most bit is 0, and the guard has 1, if the result is 

negative and round it to negative infinity, the result significand should be incremented 

by 1 in rounding step and the result is inexact as shown in Figure (4.21). FPAdd result in 

exact operation and missed incrementing the significand. 

 

 

 

Figure 4.21 Wrong inexact and rounding when having a carry with addition 
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4.3.4. Double Precision Floating Point Core design (DOUBLE_FPU) 

DOUBLE_FPU is an Open cores Verilog design module, IEEE 754-compliant, 

double precision [41]. 4 operations (addition, subtraction, multiplication, division) are 

supported, as are the 4 rounding modes (to nearest even, towards zero, to positive and 

negative infinities). This unit also supports subnormal numbers. Our framework 

discovered three bugs in addition/subtraction, one in multiplication, and another in 

division, following are the bugs explained:  

4.3.4.1. Wrong implementation of underflow flag in multiplication and division 

operations 

Figures (4.22, 4.23) show a multiplication and a division operation respectively. The 

one thing common in both test vectors produce underflow due to exponent being less 

than the minimum possible value. For multiplication, adding both exponents which are 

(-557) and (-466) result in (-1023) exponent value which is less than emin for double 

precision (-1022), so underflow flag should be raised, yet with DOUBLE_FPU design, 

no underflow flag is raised. For division subtracting the divisor exponent (1018) from 

the dividend exponent (-4) will result in (-1022) which is the minimum exponent, so the 

result is subnormal, yet the Sticky bits are non-zero, so this should produce underflow 

flag. DOUBLE_FPU design didn't raise this flag. 

 

 

 

Figure 4.22 Wrong implementation of underflow flag in multiplication 
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Figure 4.23 Wrong implementation of underflow flag in division operations 

4.3.4.2. Wrong Result and inexact flag after rounding due to having non zero 

sticky bit with addition 

When the intermediate result before rounding have zeroes in guard and round but 

has non zero sticky bits, it is expected that the result is inexact, and if the result is positive 

and the rounding direction is towards positive infinity, a +1 round value should be added 

to the rounded significand as shown in the correct significand in Figure (4.24). 

DOUBLE_FPU rounded significand didn't account for the sticky bits and resulted in 

wrong result and no raise of inexact flag.  

 

 

Figure 4.24 Wrong Result and inexact flag after rounding due to having non-zero 

sticky bit with addition 

4.3.4.3. Wrong Result and inexact flag due to skipping sticky bits after the lower 

operand is normalized 

When normalizing the lower operand and we have zeroes in guard and round but has 

non zero sticky bits, subtracting will result in ones in guard, round and sticky bits, and it 
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is expected that the result is inexact, and if the result is positive and the rounding direction 

is towards negative infinity, round value is 0 and nothing should be added in the rounding 

step as shown in the correct significand in Figure (4.25). DOUBLE_FPU produced wrong 

result and no raise of inexact flag. 

 

 

 

Figure 4.25 Wrong Result and inexact flag due to skipping sticky bits after the 

lower operand is normalized 

4.3.4.4. Wrong rounding when having a carry and round tie even direction with 

addition 

When having a carry in the intermediate result, significand is shifted to the right by 

1, and if before shifting, the right most bit of the significand was 1, and the second right 

most was 0, then after shifting the right most bit is 0, and the guard has 1, whilst round 

and sticky are 0's, then there is a tie, and hence if the significand is odd, we add 1, else 

the significand should remain the same, yet, with DOUBLE_FPU, it added 1 making the 

significand odd as shown in Figure (4.26). 
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Figure 4.26 wrong rounding when having a carry and round tie even direction 

with addition 
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Chapter 5 CONCLUSION AND FUTURE WORK 

Verification of floating point unit is a difficult task due to wide inputs that make it 

impossible to cover all variations. There have not been a generic solution to cover 

verification of both software and hardware implementations. The implementation of the 

floating point unit itself impose more complexity in verification due to having long data 

paths between inputs and outputs. There have never been a generic implementation for 

floating point units. Also, some operations have iteration approaches involving huge 

number of cycles to execute and usually FP unit is pipelined. The root cause of floating 

point bugs is usually due to intermediate result being wrongly rounded, so we need 

intermediate results to be an input to our verification environment. 

Formal and simulation techniques whether simulation or formal have addressed 

floating point verification. Formal methods prove to be effective, yet they may not be 

applicable due to failure to create formal model, and are not easily adapted and 

automated. Also, they involve user interaction. On the other hand, simulation methods 

are easily implemented yet they cannot guarantee a bug free design.  

We proposed a new verification approach based on creating an SV model for the 

IEEE specification for floating point arithmetic operations namely addition, subtraction, 

multiplication and division. We used current simulators that supports SV constraints to 

solve these constraints to generate test vectors for every operation. User defined 

constraints can be added to be simulated with the SV constraint model to hit corner cases 

and can be added to intermediate results.  

Our verification methodology is simple, generic, time saving and compatible with 

any simulator that supports SV constraints. The framework shows effectiveness in 

discovering bugs even for Binary FP addition, subtraction, multiplication and division 

that has been thoroughly tested since ages.  
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5.1. Future work 

5.1.1. Support more floating point operations 

Extending our approach to cover more Binary FP arithmetic operation like namely 

Fused multiply add and logarithmic functions and applying our generated test vectors on 

designs supporting these operations will be our first goal.  

5.1.2. Support quadruple precision floating point formats 

Scaling the verification environment to support quadruple precision will be a good 

research point since it will increase the random variable count intensively that can reach 

the limits of simulation tools. 

5.1.3. Support Decimal floating point arithmetic 

Our work can be extended to support Decimal floating point format and arithmetic. 

The encoding/decoding constraints should be changed to support the decimal IEEE-754 

format. Also, we should add some constraints to handle cohorts. 

5.1.4. Extending UVM to use our SV constraints 

The Universal Verification Methodology (UVM) is a standardized methodology for 

verifying integrated circuit designs. UVM is derived mainly from the OVM (Open 

Verification Methodology). The UVM class library brings much automation to the 

System Verilog language such as sequences and data automation features (packing, copy, 

compare) etc. Since based on System Verilog, the library classes can be extended to 

include our SV constraints library to generate sequences for verification of floating point 

units. 
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Appendix A: SV constraints for Addition/Subtraction  

`define N 1000  //Number of generated test vectors 

`define k 32 //Change to 64 for double 

`define p 24 //Change to 53 for double 

`define w 8 //Change to 11 for double 

`define emax 127 //Change to 1023 for double 

`define bias 127 //Change to 1023 for double 

module DUT_normal; 

 class floating_point_numbers_variables; 

  typedef enum {ADD,SUB} operationTypes; 

  rand operationTypes operation,effectiveOperation; 

  rand bit [`k-1:0] operand1,operand2,result; 

 typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes; 

  rand roundTypes roundDirection; 

  rand bit operand1Sign,operand2Sign, 

  resultSign,higherSign,lowerSign, 

  intermediateSign,intermediateNormalizedSign, 

  roundSign,roundNormalizedSign; 

  rand bit [`w-1:0] operand1Exponent,operand2Exponent, 

  resultExponent,higherExponent,lowerExponent, 

  intermediateExponent,intermediateNormalizedExponent, 

  roundExponent,roundNormalizedExponent; 

  rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa; 

  rand bit [`p-1:0] operand1Significand,operand2Significand, 

  resultSignificand,higherSignificand,lowerSignificand,lowerNormalizedSignificand, 

  intermediateSignificand,intermediateNormalizedSignificand, 

  roundSignificand,roundNormalizedSignificand; 

  rand bit carry,roundCarry,roundValue; 

  rand bit lowerGuard,lowerRound,lowerSticky; 

  rand bit intermediateGuard,intermediateRound,intermediateSticky; 

  rand bit intermediateNormalizedGuard,intermediateNormalizedRound, 

  intermediateNormalizedSticky; 

  rand int intermediateShiftValue,intermediateNormalizedShiftValue; 

  rand bit inexactFlag,overflowFlag; 

  const bit invalidFlag = 1'b0; 

  const bit underflowFlag = 1'b0; 

  const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0, 

  isOperand1Inf = 1'b0,isOperand2Inf = 1'b0; 

  const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0, 

  isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0; 

  constraint binary_encoding_decoding { 

  {operand1Sign,operand1Exponent,operand1Mantissa} == operand1; 

  {operand2Sign,operand2Exponent,operand2Mantissa} == operand2; 

  {resultSign,resultExponent,resultMantissa} == result; 

  } 

  constraint is_operands_infinity_NaN_zero_subnormal { 

    if (isOperand1NaN) 
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    ((operand1Exponent == '1) && (operand1Mantissa != '0)); 

   else if (isOperand1Inf) 

    ((operand1Exponent == '1) && (operand1Mantissa == '0)); 

   else 

    operand1Exponent != '1 && operand1Exponent != '0; 

   if (isOperand2NaN) 

    ((operand2Exponent == '1) && (operand2Mantissa != '0)); 

   else if (isOperand2Inf) 

    ((operand2Exponent == '1) && (operand2Mantissa == '0)); 

   else 

    operand2Exponent != '1 && operand2Exponent != '0; 

  } 

  constraint significand_mantissa { 

    ({1'b1,operand1Mantissa} == operand1Significand); 

    ({1'b1,operand2Mantissa} == operand2Significand); 

  } 

  constraint higher_lower_exponent { 

    if (operand1Exponent > operand2Exponent)  ( 

    (higherSign == operand1Sign) && (higherExponent == operand1Exponent) && 

    (higherSignificand == operand1Significand) && (lowerSign == operand2Sign) && 

    (lowerExponent == operand2Exponent) && 

    (lowerSignificand == operand2Significand) ); 

    else if (operand1Exponent < operand2Exponent) ( 

    (higherSign == operand2Sign) && (higherExponent == operand2Exponent) && 

    (higherSignificand == operand2Significand) && (lowerSign == operand1Sign) && 

    (lowerExponent == operand1Exponent) && 

    (lowerSignificand == operand1Significand) ); 

    else if (operand1Significand >= operand2Significand) ( 

    (higherSign == operand1Sign) && (higherExponent == operand1Exponent) && 

    (higherSignificand == operand1Significand) && (lowerSign == operand2Sign) &&  

    (lowerExponent == operand2Exponent) && 

    (lowerSignificand == operand2Significand) ); 

    else ( 

    (higherSign == operand2Sign) && (higherExponent == operand2Exponent) && 

    (higherSignificand == operand2Significand) && (lowerSign == operand1Sign) &&  

    (lowerExponent == operand1Exponent) && 

    (lowerSignificand == operand1Significand) ); 

  } 

  constraint lower_normalized { 

   {lowerNormalizedSignificand,lowerGuard,lowerRound} == 

   {lowerSignificand,2'b0} >> (higherExponent-lowerExponent); 

    if (higherExponent-lowerExponent < `p+2) 

      lowerSticky ==  

      (|(lowerSignificand << ((`p+2)-(higherExponent-lowerExponent)))); 

    else 

      lowerSticky == (|lowerSignificand); 

   } 

   constraint effective_operation { 

    if ((operation == ADD) && (higherSign == lowerSign))  

    (effectiveOperation == ADD); 
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    else if ((operation == ADD) && (higherSign != lowerSign))  

    (effectiveOperation == SUB); 

    else if ((operation == SUB) && (higherSign == lowerSign))  

    (effectiveOperation == SUB); 

    else (effectiveOperation == ADD); 

  } 

  constraint addition_subtraction { 

    if (effectiveOperation == ADD)  

    {carry,intermediateSignificand, 

     intermediateGuard,intermediateRound,intermediateSticky} ==  

    {1'b0,lowerNormalizedSignificand,lowerGuard,lowerRound,lowerSticky} +  

    {1'b0,higherSignificand,3'b0}; 

    else 

    {carry,intermediateSignificand, 

    intermediateGuard,intermediateRound,intermediateSticky} ==  

    {1'b0,higherSignificand,3'b0} – 

    {1'b0,lowerNormalizedSignificand,lowerGuard,lowerRound,lowerSticky}; 

    if ((effectiveOperation == ADD) && (operation == ADD))  

    (intermediateSign == higherSign); 

    else if ((effectiveOperation == ADD) && (operation == SUB)) 

    (intermediateSign == operand1Sign); 

    else if ((effectiveOperation == SUB) && (operation == ADD))  

    (intermediateSign == higherSign); 

    else (intermediateSign ==  

    (((operand1Exponent < operand2Exponent) ||  

    ((operand1Exponent == operand2Exponent) && 

    (operand1Significand < operand2Significand))) ^(operand1Sign))); 

    intermediateExponent == higherExponent; 

  } 

  function int leading_zero_calculation (input [0:`p+2] functionSignificand); 

    for (int i = 0; i <= `p+2;i++) 

      if (functionSignificand[i] == 1'b1) return i; 

      return `p+3; 

  endfunction  

  constraint carry_leading_zero_correction { 

    intermediateSign == intermediateNormalizedSign; 

    intermediateShiftValue == leading_zero_calculation(intermediateSignificand); 

    if (intermediateShiftValue >= intermediateExponent)  

      intermediateNormalizedShiftValue == intermediateExponent-1; 

    else intermediateNormalizedShiftValue == intermediateShiftValue; 

    // only valid in addition 

    if (carry == 1'b1) ( 

      (intermediateNormalizedExponent == intermediateExponent + 1'b1) &&  

      (intermediateNormalizedGuard == intermediateSignificand[0]) &&  

      (intermediateNormalizedRound == intermediateGuard) &&  

      (intermediateNormalizedSticky == (intermediateSticky | intermediateRound)) &&  

      (intermediateNormalizedSignificand == {1'b1,intermediateSignificand[`p-1:1]})); 

    // no leading zeros 

    else if((intermediateSignificand[`p-1] == 1'b1)) ( 

      (intermediateNormalizedExponent == intermediateExponent ) &&  
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      (intermediateNormalizedGuard == intermediateGuard) &&  

      (intermediateNormalizedRound == intermediateRound) &&  

      (intermediateNormalizedSticky == intermediateSticky) &&  

      (intermediateNormalizedSignificand == intermediateSignificand)); 

    else if ((intermediateShiftValue >= intermediateExponent)) ( 

      (intermediateNormalizedExponent == '0) &&  

      (intermediateNormalizedGuard == 1'b0) &&  

      (intermediateNormalizedRound == 1'b0) &&  

      (intermediateNormalizedSticky == 1'b0) &&   

      ({intermediateNormalizedSignificand,intermediateNormalizedGuard, 

      intermediateNormalizedRound,intermediateNormalizedSticky} ==  

      ({intermediateSignificand,intermediateGuard, 

      intermediateRound,intermediateSticky} << intermediateNormalizedShiftValue)));  

    else if ((intermediateShiftValue != `p+3)) ( 

      (intermediateNormalizedExponent == 

      intermediateExponent - intermediateNormalizedShiftValue) &&  

      (intermediateNormalizedGuard == 1'b0) &&  

      (intermediateNormalizedRound == 1'b0) &&  

      (intermediateNormalizedSticky == 1'b0) &&  

      ({intermediateNormalizedSignificand,intermediateNormalizedGuard, 

      intermediateNormalizedRound,intermediateNormalizedSticky} ==  

      ({intermediateSignificand,intermediateGuard, 

      intermediateRound,intermediateSticky} << intermediateNormalizedShiftValue)));  

   else ( 

    (intermediateNormalizedExponent == '0) &&  

    (intermediateNormalizedGuard == 1'b0) &&  

    (intermediateNormalizedRound == 1'b0) &&  

    (intermediateNormalizedSticky == 1'b0) &&  

    ({intermediateNormalizedSignificand,intermediateNormalizedGuard, 

    intermediateNormalizedRound,intermediateNormalizedSticky} == '0));  

  } 

  constraint rounding { 

    (roundDirection == roundZero) -> (roundValue == 1'b0); 

    (roundDirection == roundPositive) -> 

    (roundValue == (~intermediateNormalizedSign &  

    (intermediateNormalizedGuard | intermediateNormalizedRound | 

    intermediateNormalizedSticky))); 

    (roundDirection == roundNegative) -> 

    (roundValue ==  (intermediateNormalizedSign & (intermediateNormalizedGuard |  

    intermediateNormalizedRound | intermediateNormalizedSticky))); 

    (roundDirection == roundTieEven) -> 

    (roundValue == (intermediateNormalizedGuard & (intermediateNormalizedRound  

    | intermediateNormalizedSticky | intermediateNormalizedSignificand[0]))); 

  } 

  constraint addition_after_round { 

   {roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand}  

   + roundValue); 

    roundSign == intermediateNormalizedSign; 

    roundExponent == intermediateNormalizedExponent; 

   } 
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  constraint normalization_after_rounding { 

    roundNormalizedSign == roundSign; 

    (roundCarry == 1'b1) -> ( 

    (roundNormalizedExponent == roundExponent + 1) && 

    (roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]})); 

    (roundCarry == 1'b0) -> ( 

    (roundNormalizedExponent == roundExponent) &&  

    (roundNormalizedSignificand == roundSignificand)); 

  } 

  constraint overflow_flag { 

    overflowFlag == ((roundNormalizedExponent == '1) | 

    (intermediateNormalizedExponent == '1)); 

  } 

  constraint inexact_flag { 

    inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedRound | 

    intermediateNormalizedSticky | overflowFlag); 

  } 

  constraint result_calculation { 

    if ((overflowFlag == 1'b0)) ( 

      (resultSign == roundNormalizedSign) && 

      (resultExponent == roundNormalizedExponent) && 

      (resultSignificand == roundNormalizedSignificand) && 

      (resultMantissa == roundNormalizedSignificand[`p-2:0]) 

    ); 

    else if (roundDirection == roundTieEven) ( 

      (resultSign == roundNormalizedSign) && 

      (resultExponent == '1) && 

      (resultSignificand == {1'b1,'0}) && 

      (resultMantissa == '0) 

    ); 

    else if ((roundDirection == roundZero) ||  

    ((roundDirection == roundPositive) && (roundNormalizedSign == 1'b1)) || 

    ((roundDirection == roundNegative) && (roundNormalizedSign == 1'b0))) ( 

      (resultSign == roundNormalizedSign) && 

      (resultExponent == `bias+`bias) && 

      (resultSignificand == '1) && 

      (resultMantissa == '1) 

    ); 

     else if ((roundDirection == roundTieEven) || 

     ((roundDirection == roundPositive) && (roundNormalizedSign == 1'b0)) || 

     ((roundDirection == roundNegative) && (roundNormalizedSign == 1'b1))) ( 

(resultSign == roundNormalizedSign) && 

(resultExponent == '1) && 

(resultSignificand == {1'b1,'0}) && 

(resultMantissa == '0) 

     ); 

  } 

endclass 

int i; 

floating_point_numbers_variables fpv; 
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initial 

begin 

i = 0; 

fpv = new(); 

repeat (`N) begin 

assert(fpv.randomize()); 

i++; 

$display("Test ID: %d ",i); 

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result); 

$display("Flags    : %b %b %b 

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag); 

end 

end 

endmodule 

module DUT_subnormal; 

class floating_point_numbers_variables; 

  typedef enum {ADD,SUB} operationTypes; 

  rand operationTypes operation,effectiveOperation; 

  rand bit [`k-1:0] operand1,operand2,result; 

  typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} 

  roundTypes; 

  rand roundTypes roundDirection; 

  rand bit operand1Sign,operand2Sign,resultSign, 

  higherSign,lowerSign,intermediateSign,intermediateNormalizedSign, 

  roundSign,roundNormalizedSign; 

  rand bit [`w-1:0] operand1Exponent,resultExponent,higherExponent, 

  intermediateExponent,intermediateNormalizedExponent, 

  roundExponent,roundNormalizedExponent; 

  const bit [`w-1:0] operand2Exponent = '0,lowerExponent = '0; 

  rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa; 

  rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand, 

  higherSignificand,lowerSignificand,lowerNormalizedSignificand, 

  intermediateSignificand,intermediateNormalizedSignificand, 

  roundSignificand,roundNormalizedSignificand; 

  rand bit carry,roundCarry,roundValue; 

  rand bit lowerGuard,lowerRound,lowerSticky; 

  rand bit intermediateGuard,intermediateRound,intermediateSticky; 

  rand bit intermediateNormalizedGuard,intermediateNormalizedRound, 

  intermediateNormalizedSticky; 

  rand int intermediateShiftValue,intermediateNormalizedShiftValue; 

  rand bit inexactFlag,overflowFlag; 

  const bit invalidFlag = 1'b0;; 

  const bit underflowFlag = 1'b0; 

  const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0, 

  isOperand1Inf =   1'b0,isOperand2Inf = 1'b0; 

  const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0, 

  isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;; 

  constraint binary_encoding_decoding { 

    {operand1Sign,operand1Exponent,operand1Mantissa} == operand1; 

    {operand2Sign,operand2Exponent,operand2Mantissa} == operand2; 
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    {resultSign,resultExponent,resultMantissa} == result; 

  } 

  constraint is_operands_infinity_NaN_zero_subnormal { 

    operand1Exponent != '1 && operand1Exponent != '0; 

    operand2Exponent == '0; 

  } 

  constraint significand_mantissa { 

    ({1'b1,operand1Mantissa} == operand1Significand) ; 

    ({1'b0,operand2Mantissa} == operand2Significand) ; 

  } 

  constraint higher_lower_exponent { 

    (higherSign == operand1Sign) && (higherExponent == operand1Exponent) && 

    (higherSignificand == operand1Significand); 

    (lowerSign == operand2Sign) && (lowerSignificand == operand2Significand); 

  } 

  constraint lower_normalized { 

    {lowerNormalizedSignificand,lowerGuard,lowerRound} ==  

    {lowerSignificand,2'b0} >> (higherExponent-1); 

    if (higherExponent < `p+2) 

      lowerSticky == (|(lowerSignificand << ((`p+2)-(higherExponent-1)))); 

    else 

      lowerSticky == (|lowerSignificand); 

  } 

  constraint effective_operation { 

    if ((operation == ADD) && (higherSign == lowerSign))  

      (effectiveOperation == ADD); 

    else if ((operation == ADD) && (higherSign != lowerSign))  

      (effectiveOperation == SUB); 

    else if ((operation == SUB) && (higherSign == lowerSign)) 

      (effectiveOperation == SUB); 

    else (effectiveOperation == ADD); 

  } 

  constraint addition_subtraction { 

    if (effectiveOperation == ADD)  

      {carry,intermediateSignificand, 

      intermediateGuard,intermediateRound,intermediateSticky} ==  

     {1'b0,lowerNormalizedSignificand,lowerGuard,lowerRound,lowerSticky} +  

     {1'b0,higherSignificand,3'b0}; 

   else 

    {carry,intermediateSignificand, 

    intermediateGuard,intermediateRound,intermediateSticky} ==  

    {1'b0,higherSignificand,3'b0} – 

    {1'b0,lowerNormalizedSignificand,lowerGuard,lowerRound,lowerSticky}; 

    intermediateSign == higherSign; 

    intermediateExponent == higherExponent; 

  } 

  function int leading_zero_calculation (input [0:`p+2] functionSignificand); 

    for (int i = 0; i <= `p+2;i++)  

      if (functionSignificand[i] == 1'b1) return i; 

    return `p+3; 
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  endfunction  

  constraint carry_leading_zero_correction { 

    intermediateSign == intermediateNormalizedSign; 

    intermediateShiftValue == leading_zero_calculation(intermediateSignificand); 

    if (intermediateShiftValue >= intermediateExponent) 

    intermediateNormalizedShiftValue == intermediateExponent-1; 

    else intermediateNormalizedShiftValue == intermediateShiftValue; 

    if (carry == 1'b1) ( 

      (intermediateNormalizedExponent == intermediateExponent + 1'b1) &&  

      (intermediateNormalizedGuard == intermediateSignificand[0]) &&  

      (intermediateNormalizedRound == intermediateGuard) &&  

      (intermediateNormalizedSticky == (intermediateSticky | intermediateRound)) &&  

      (intermediateNormalizedSignificand == {1'b1,intermediateSignificand[`p-1:1]})); 

    else if((intermediateSignificand[`p-1] == 1'b1)) ( 

      (intermediateNormalizedExponent == intermediateExponent ) &&  

      (intermediateNormalizedGuard == intermediateGuard) &&  

      (intermediateNormalizedRound == intermediateRound) &&  

      (intermediateNormalizedSticky == intermediateSticky) &&  

      (intermediateNormalizedSignificand == intermediateSignificand)); 

   else if ((intermediateShiftValue >= intermediateExponent)) ( 

     (intermediateNormalizedExponent == '0) &&  

     (intermediateNormalizedGuard == 1'b0) &&  

     (intermediateNormalizedRound == 1'b0) &&  

     (intermediateNormalizedSticky == 1'b0) &&  

     ({intermediateNormalizedSignificand,intermediateNormalizedGuard, 

     intermediateNormalizedRound,intermediateNormalizedSticky} == 

     ({intermediateSignificand,intermediateGuard, 

     intermediateRound,intermediateSticky} << intermediateNormalizedShiftValue)));   

   else if ((intermediateShiftValue != `p+3)) ( 

     (intermediateNormalizedExponent ==  

     intermediateExponent - intermediateNormalizedShiftValue) &&  

     (intermediateNormalizedGuard == 1'b0) &&  

     (intermediateNormalizedRound == 1'b0) &&  

     (intermediateNormalizedSticky == 1'b0) &&  

     ({intermediateNormalizedSignificand,intermediateNormalizedGuard, 

     intermediateNormalizedRound,intermediateNormalizedSticky} == 

     ({intermediateSignificand,intermediateGuard,intermediateRound, 

     intermediateSticky} << intermediateNormalizedShiftValue)));   

   else ( 

     (intermediateNormalizedExponent == '0) &&  

     (intermediateNormalizedGuard == 1'b0) &&  

     (intermediateNormalizedRound == 1'b0) &&  

     (intermediateNormalizedSticky == 1'b0) &&  

     ({intermediateNormalizedSignificand,intermediateNormalizedGuard, 

     intermediateNormalizedRound,intermediateNormalizedSticky} == '0));   

  } 

  constraint rounding { 

    (roundDirection == roundZero) -> (roundValue == 1'b0); 

    (roundDirection == roundPositive) -> 

    (roundValue == (~intermediateNormalizedSign &  
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    (intermediateNormalizedGuard | intermediateNormalizedRound  

    | intermediateNormalizedSticky))); 

    (roundDirection == roundNegative) -> 

    (roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard | 

    intermediateNormalizedRound | intermediateNormalizedSticky))); 

    (roundDirection == roundTieEven) -> 

    (roundValue == (intermediateNormalizedGuard & (intermediateNormalizedRound 

    | intermediateNormalizedSticky | intermediateNormalizedSignificand[0]))); 

  } 

  constraint addition_after_round { 

    {roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand} +  

    roundValue); 

    roundSign == intermediateNormalizedSign; 

    roundExponent == intermediateNormalizedExponent; 

  } 

  constraint normalization_after_rounding { 

    roundNormalizedSign == roundSign; 

    (roundCarry == 1'b1) -> ( 

    (roundNormalizedExponent == roundExponent + 1) &&  

    (roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]})); 

    (roundCarry == 1'b0) -> ( 

    (roundNormalizedExponent == roundExponent) &&  

    (roundNormalizedSignificand == roundSignificand)); 

  } 

  constraint overflow_flag { 

    overflowFlag == ((roundNormalizedExponent == '1) |  

    (intermediateNormalizedExponent == '1)); 

  } 

  constraint inexact_flag { 

    inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedRound | 

    intermediateNormalizedSticky | overflowFlag); 

  } 

  constraint result_calculation { 

    if ((overflowFlag == 1'b0)) ( 

      (resultSign == roundNormalizedSign) && 

      (resultExponent == roundNormalizedExponent) && 

      (resultSignificand == roundNormalizedSignificand) && 

      (resultMantissa == roundNormalizedSignificand[`p-2:0])); 

    else if (roundDirection == roundTieEven) ( 

      (resultSign == roundNormalizedSign) && 

      (resultExponent == '1) && 

      (resultSignificand == {1'b1,'0}) && 

      (resultMantissa == '0)); 

    else if ((roundDirection == roundZero) ||  

    ((roundDirection == roundPositive) && (roundNormalizedSign == 1'b1)) || 

    ((roundDirection == roundNegative) && (roundNormalizedSign == 1'b0))) ( 

      (resultSign == roundNormalizedSign) && 

      (resultExponent == `bias+`bias) && 

      (resultSignificand == '1) && 

     (resultMantissa == '1)); 
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    else if ((roundDirection == roundTieEven)  

    || ((roundDirection == roundPositive) && (roundNormalizedSign == 1'b0)) || 

    ((roundDirection == roundNegative) && (roundNormalizedSign == 1'b1))) ( 

      (resultSign == roundNormalizedSign) && 

      (resultExponent == '1) && 

      (resultSignificand == {1'b1,'0}) && 

      (resultMantissa == '0)); 

  } 

endclass 

int i; 

floating_point_numbers_variables fpv; 

initial 

begin 

i = 0; 

fpv = new(); 

repeat (`N) begin 

assert(fpv.randomize()); 

i++; 

$display("Test ID: %d ",i); 

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result); 

$display("Flags    : %b %b %b 

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag); 

end 

end 

endmodule 
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Appendix B: SV constraints for Multiplication 

`define N 1000  //Number of generated test vectors 

`define k 32 //Change to 64 for double 

`define p 24 //Change to 53 for double 

`define w 8 //Change to 11 for double 

`define emax 127 //Change to 1023 for double 

`define bias 127 //Change to 1023 for double 

module DUT_normal; 

class floating_point_numbers_variables; 

rand bit [`k-1:0] operand1,operand2,result; 

typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes; 

rand roundTypes roundDirection; 

rand bit operand1Sign,operand2Sign,resultSign, 

intermediateSign,intermediateNormalizedSign, 

roundSign,roundNormalizedSign; 

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent, 

operand1NormalizedExponent,operand2NormalizedExponent; 

rand bit [`w:0] intermediateExponent,intermediateNormalizedExponent, 

roundExponent,roundNormalizedExponent; 

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa; 

rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand, 

intermediateSignificand,intermediateNormalizedSignificand, 

roundSignificand,roundNormalizedSignificand; 

rand bit [`p-2:0] intermediateGuardSticky; 

rand bit carry,roundCarry,roundValue; 

rand bit intermediateGuard,intermediateSticky; 

rand bit intermediateNormalizedGuard,intermediateNormalizedSticky; 

rand bit inexactFlag,overflowFlag,underflowFlag; 

const bit invalidFlag = 1'b0; 

const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0, 

isOperand1Inf = 1'b0,isOperand2Inf = 1'b0; 

const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0, 

isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0; 

rand int intermediateNormalizedShiftValue; 

constraint binary_encoding_decoding { 

{operand1Sign,operand1Exponent,operand1Mantissa} == operand1; 

{operand2Sign,operand2Exponent,operand2Mantissa} == operand2; 

{resultSign,resultExponent,resultMantissa} == result; 

} 

constraint is_operands_infinity_NaN_zero_subnormal { 

if (isOperand1NaN) 

((operand1Exponent == '1) && (operand1Mantissa != '0)); 

else if (isOperand1Inf) 

((operand1Exponent == '1) && (operand1Mantissa == '0)); 

else 

operand1Exponent != '1 && operand1Exponent != '0; 

if (isOperand2NaN) 
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((operand2Exponent == '1) && (operand2Mantissa != '0)); 

else if (isOperand2Inf) 

((operand2Exponent == '1) && (operand2Mantissa == '0)); 

else 

operand2Exponent != '1 && operand2Exponent != '0; 

} 

constraint significand_mantissa  { 

({1'b1,operand1Mantissa} == operand1Significand) && 

 (operand1NormalizedExponent == operand1Exponent) ; 

({1'b1,operand2Mantissa} == operand2Significand) && 

 (operand2NormalizedExponent == operand2Exponent) ; 

} 

function [2*`p-1:0] partial_product_multiplication(input [`p-1:0] op1,op2); 

bit [2*`p-1:0] normal[0:`p-1], shifted[0:`p]; 

shifted[0] = 0; 

for (int i = 0; i <= `p-1; i++) 

begin 

if (op2[i])  

normal[i] = {`p'b0,op1}; 

else 

normal[i] = '0; 

shifted[i+1] = (normal[i] << i) + shifted[i]; 

end 

return shifted[`p]; 

endfunction 

constraint multiplication { 

{carry,intermediateSignificand,intermediateGuardSticky} == 

 partial_product_multiplication(operand1Significand,operand2Significand); 

intermediateGuard == intermediateGuardSticky[`p-2]; 

intermediateSticky == (|intermediateGuardSticky[`p-3:0]); 

intermediateSign == (operand1Sign ^ operand2Sign); 

intermediateExponent == (operand1Exponent + operand2Exponent - `bias); 

} 

constraint underflow_flag { 

if (intermediateExponent > 0 || carry) underflowFlag  == 1'b0; 

else  underflowFlag == 1'b1; 

} 

constraint carry_correction { 

intermediateSign == intermediateNormalizedSign; 

(carry == 1'b1) -> ( 

(intermediateNormalizedExponent == intermediateExponent + 1'b1) &&  

(intermediateNormalizedGuard == intermediateSignificand[0]) &&  

(intermediateNormalizedSticky == (intermediateSticky | intermediateGuard)) &&  

(intermediateNormalizedSignificand == {1'b1,intermediateSignificand[`p-1:1]})); 

(carry == 1'b0 && underflowFlag == 1'b0) -> ( 

(intermediateNormalizedExponent == (intermediateExponent)) &&  

(intermediateNormalizedGuard == intermediateGuard) &&  

(intermediateNormalizedSticky == intermediateSticky) &&  

(intermediateNormalizedSignificand == intermediateSignificand)); 

(carry == 1'b0 && underflowFlag == 1'b1) -> ( 
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(intermediateNormalizedExponent == (intermediateExponent)) &&  

(intermediateNormalizedGuard == intermediateSignificand[0]) &&  

(intermediateNormalizedSticky == (intermediateSticky | intermediateGuard)) &&  

(intermediateNormalizedSignificand == {1'b0,intermediateSignificand[`p-1:1]})); 

} 

constraint overflow_flag { 

if (intermediateNormalizedExponent < (`bias+`bias+1)) overflowFlag == 1'b0; 

else overflowFlag == 1'b1; 

} 

constraint inexact_flag { 

inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedSticky | 

overflowFlag | underflowFlag); 

} 

constraint rounding { 

(roundDirection == roundZero) -> (roundValue == 1'b0); 

(roundDirection == roundPositive) -> (roundValue == (~intermediateNormalizedSign 

& (intermediateNormalizedGuard | intermediateNormalizedSticky))); 

(roundDirection == roundNegative) -> (roundValue == (intermediateNormalizedSign 

& (intermediateNormalizedGuard  | intermediateNormalizedSticky))); 

(roundDirection == roundTieEven) -> (roundValue == 

(intermediateNormalizedGuard & (intermediateNormalizedSticky | 

intermediateNormalizedSignificand[0]))); 

} 

constraint addition_after_round { 

{roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand} + 

roundValue); 

roundSign == intermediateNormalizedSign; 

roundExponent == intermediateNormalizedExponent; 

} 

constraint normalization_after_rounding { 

roundNormalizedSign == roundSign; 

(roundCarry == 1'b1) -> ( 

(roundNormalizedExponent == roundExponent + 1) &&  

(roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]})); 

(roundCarry == 1'b0) -> ( 

(roundNormalizedExponent == roundExponent) &&  

(roundNormalizedSignificand == roundSignificand)); 

} 

constraint result_calculation { 

if (overflowFlag && (roundDirection == roundTieEven))  

(resultSign == roundNormalizedSign) && 

(resultExponent == '1) && 

(resultSignificand == {1'b1,'0}) && 

(resultMantissa == '0) 

;  

else if (overflowFlag && ((roundDirection == roundZero) || ((roundDirection == 

roundPositive) && (roundNormalizedSign == 1'b1)) || ((roundDirection == 

roundNegative) && (roundNormalizedSign == 1'b0)))) 

(resultSign == roundNormalizedSign) && 

(resultExponent == `bias+`bias) && 
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(resultSignificand == '1) && 

(resultMantissa == '1) 

; 

else if (overflowFlag && ((roundDirection == roundTieEven) || ((roundDirection == 

roundPositive) && (roundNormalizedSign == 1'b0)) || ((roundDirection == 

roundNegative) && (roundNormalizedSign == 1'b1)))) 

(resultSign == roundNormalizedSign) && 

(resultExponent == '1) && 

(resultSignificand == {1'b1,'0}) && 

(resultMantissa == '0) 

; 

else  

(resultSign == roundNormalizedSign) && 

(resultExponent == roundNormalizedExponent[`w-1:0]) && 

(resultSignificand == roundNormalizedSignificand) && 

(resultMantissa == roundNormalizedSignificand[`p-2:0]) 

; 

} 

 

endclass 

int i; 

floating_point_numbers_variables fpv; 

initial 

begin 

i = 0; 

fpv = new(); 

repeat (`N) begin 

assert(fpv.randomize()); 

i++; 

$display("Test ID: %d ",i); 

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result); 

$display("Flags    : %b %b %b 

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag); 

end 

end 

endmodule 

module DUT_subnormal; 

class floating_point_numbers_variables; 

rand bit [`k-1:0] operand1,operand2,result; 

typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes; 

rand roundTypes roundDirection; 

rand bit operand1Sign,operand2Sign,resultSign, 

intermediateSign,intermediateNormalizedSign,roundSign,roundNormalizedSign; 

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent, 

operand1NormalizedExponent,operand2NormalizedExponent; 

rand bit [`w:0] intermediateExponent,intermediateNormalizedExponent, 

roundExponent,roundNormalizedExponent; 

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa; 

rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand, 

intermediateSignificand,intermediateNormalizedSignificand, 
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roundSignificand,roundNormalizedSignificand; 

rand bit [`p-2:0] intermediateGuardSticky,intermediateNormalizedGuardSticky; 

rand bit carry,roundCarry,roundValue; 

rand bit intermediateGuard,intermediateRound,intermediateSticky; 

rand bit intermediateNormalizedGuard,intermediateNormalizedRound, 

intermediateNormalizedSticky; 

rand int intermediateShiftValue,intermediateNormalizedShiftValue; 

rand bit inexactFlag,underflowFlag; 

const bit invalidFlag = 1'b0,overflowFlag = 1'b0; 

const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0, 

isOperand1Inf = 1'b0,isOperand2Inf = 1'b0; 

const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0, 

isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;; 

constraint binary_encoding_decoding { 

{operand1Sign,operand1Exponent,operand1Mantissa} == operand1; 

{operand2Sign,operand2Exponent,operand2Mantissa} == operand2; 

{resultSign,resultExponent,resultMantissa} == result; 

} 

constraint is_operands_infinity_NaN_zero_subnormal { 

if (isOperand1NaN) 

((operand1Exponent == '1) && (operand1Mantissa != '0)); 

else if (isOperand1Inf) 

((operand1Exponent == '1) && (operand1Mantissa == '0)); 

else 

operand1Exponent != '1 && operand1Exponent != '0; 

if (isOperand2NaN) 

((operand2Exponent == '1) && (operand2Mantissa != '0)); 

else if (isOperand2Inf) 

((operand2Exponent == '1) && (operand2Mantissa == '0)); 

else 

operand2Exponent == '0; 

} 

// will vary in subnormal 

constraint significand_mantissa  { 

({1'b1,operand1Mantissa} == operand1Significand) && 

 (operand1NormalizedExponent == operand1Exponent) ; 

({1'b0,operand2Mantissa} == operand2Significand) &&  

(operand2NormalizedExponent == operand2Exponent) ; 

} 

function [2*`p-1:0] partial_product_multiplication(input [`p-1:0] op1,op2); 

bit [2*`p-1:0] normal[0:`p-1], shifted[0:`p]; 

shifted[0] = 0; 

for (int i = 0; i <= `p-1; i++) 

begin 

if (op2[i])  

normal[i] = {`p'b0,op1}; 

else 

normal[i] = '0; 

shifted[i+1] = (normal[i] << i) + shifted[i]; 

end 
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return shifted[`p]; 

endfunction 

constraint multiplication { 

{carry,intermediateSignificand,intermediateGuardSticky} ==  

partial_product_multiplication(operand1Significand,operand2Significand); 

intermediateGuard == intermediateGuardSticky[`p-2]; 

intermediateRound == intermediateGuardSticky[`p-3]; 

intermediateSticky == (|intermediateGuardSticky[`p-4:0]); 

intermediateSign == (operand1Sign ^ operand2Sign); 

intermediateExponent == (operand1Exponent + operand2Exponent - `bias + 1); 

} 

function int leading_zero_calculation (input [0:`p+2] functionSignificand); 

    for (int i = 0; i <= `p+2;i++)  

      if (functionSignificand[i] == 1'b1) return i; 

    return `p+3; 

endfunction  

constraint carry_correction { 

intermediateSign == intermediateNormalizedSign; 

intermediateShiftValue == leading_zero_calculation(intermediateSignificand); 

if (intermediateShiftValue >= intermediateExponent) 

 intermediateNormalizedShiftValue == intermediateExponent; 

else intermediateNormalizedShiftValue == intermediateShiftValue; 

(intermediateNormalizedExponent ==  

(intermediateExponent - intermediateNormalizedShiftValue)) &&  

({intermediateNormalizedSignificand,intermediateNormalizedGuardSticky} == 

 ({intermediateSignificand,intermediateGuardSticky} << 

 intermediateNormalizedShiftValue)); 

intermediateNormalizedGuard == intermediateNormalizedGuardSticky[`p-2]; 

intermediateNormalizedRound == intermediateNormalizedGuardSticky[`p-3]; 

intermediateNormalizedSticky == (|intermediateNormalizedGuardSticky[`p-4:0]); 

} 

constraint underflow_flag { 

if (intermediateExponent > intermediateShiftValue) underflowFlag  == 1'b0; 

else  underflowFlag == 1'b1; 

} 

constraint inexact_flag { 

inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedRound | 

intermediateNormalizedSticky | underflowFlag); 

} 

constraint rounding { 

(roundDirection == roundZero) -> (roundValue == 1'b0); 

((underflowFlag == 1'b0) && (roundDirection == roundPositive)) ->  

(roundValue == (~intermediateNormalizedSign & (intermediateNormalizedGuard | 

intermediateNormalizedRound | intermediateNormalizedSticky))); 

((underflowFlag == 1'b0) && (roundDirection == roundNegative)) ->  

(roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard  | 

intermediateNormalizedRound | intermediateNormalizedSticky))); 

((underflowFlag == 1'b0) && (roundDirection == roundTieEven)) ->  

(roundValue == (intermediateNormalizedGuard & (intermediateNormalizedRound | 

intermediateNormalizedSticky | intermediateNormalizedSignificand[0]))); 
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((underflowFlag == 1'b1) && (roundDirection == roundPositive)) ->  

(roundValue == (~intermediateNormalizedSign & (intermediateNormalizedGuard | 

intermediateNormalizedRound | intermediateNormalizedSticky | 

intermediateNormalizedSignificand[0]))); 

((underflowFlag == 1'b1) && (roundDirection == roundNegative)) ->  

(roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard  | 

intermediateNormalizedRound | intermediateNormalizedSticky | 

intermediateNormalizedSignificand[0]))); 

((underflowFlag == 1'b1) && (roundDirection == roundTieEven)) ->  

(roundValue == (intermediateNormalizedSignificand[0] & 

(intermediateNormalizedGuard | intermediateNormalizedRound | 

intermediateNormalizedSticky | intermediateNormalizedSignificand[1]))); 

} 

constraint addition_after_round { 

roundSign == intermediateNormalizedSign; 

if (underflowFlag)  

{roundCarry,roundSignificand} == ({2'b0,intermediateNormalizedSignificand[`p-

1:1]} + roundValue) && 

roundExponent == '0; 

else 

{roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand} + 

roundValue) && 

(roundExponent == intermediateNormalizedExponent); 

} 

constraint normalization_after_rounding { 

roundNormalizedSign == roundSign; 

(roundCarry == 1'b1) -> ( 

(roundNormalizedExponent == roundExponent + 1) &&  

(roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]})); 

(roundCarry == 1'b0) -> ( 

(roundNormalizedExponent == roundExponent) &&  

(roundNormalizedSignificand == roundSignificand)); 

} 

constraint result_calculation { 

(resultSign == roundNormalizedSign); 

(resultExponent == roundNormalizedExponent); 

(resultSignificand == roundNormalizedSignificand); 

(resultMantissa == roundNormalizedSignificand[`p-2:0]); 

} 

endclass 

int i; 

floating_point_numbers_variables fpv; 

initial 

begin 

i = 0; 

fpv = new(); 

repeat (`N) begin 

assert(fpv.randomize()); 

i++; 

$display("Test ID: %d ",i); 
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$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result); 

 

$display("Flags    : %b %b %b 

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag); 

end 

end 

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

94 
 

Appendix C: SV constraints for Division 

`define N 1000  //Number of generated test vectors 

`define k 32 //Change to 64 for double 

`define p 24 //Change to 53 for double 

`define w 8 //Change to 11 for double 

`define emax 127 //Change to 1023 for double 

`define bias 127 //Change to 1023 for double 

module DUT_normal; 

class floating_point_numbers_variables; 

rand bit [`k-1:0] operand1,operand2,result; 

typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes; 

rand roundTypes roundDirection; 

rand bit operand1Sign,operand2Sign,resultSign, 

intermediateSign,intermediateNormalizedSign, 

roundSign,roundNormalizedSign; 

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent, 

operand1NormalizedExponent,operand2NormalizedExponent; 

rand bit [`w:0] intermediateExponent,intermediateNormalizedExponent, 

roundExponent,roundNormalizedExponent; 

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa; 

rand bit [`p-1:0] operand1Significand,operand2Significand,resultSignificand, 

intermediateSignificand,intermediateNormalizedSignificand, 

roundSignificand,roundNormalizedSignificand; 

rand bit [`p-2:0] intermediateGuardSticky; 

rand bit roundCarry,roundValue; 

rand bit intermediateGuard,intermediateSticky; 

rand bit intermediateNormalizedGuard,intermediateNormalizedSticky; 

rand bit inexactFlag,overflowFlag,underflowFlag; 

const bit invalidFlag = 1'b0; 

const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0, 

isOperand1Inf = 1'b0,isOperand2Inf = 1'b0; 

const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b0, 

isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;; 

rand int intermediateNormalizedShiftValue; 

constraint binary_encoding_decoding { 

{operand1Sign,operand1Exponent,operand1Mantissa} == operand1; 

{operand2Sign,operand2Exponent,operand2Mantissa} == operand2; 

{resultSign,resultExponent,resultMantissa} == result; 

} 

constraint is_operands_infinity_NaN_zero_subnormal { 

if (isOperand1NaN) 

((operand1Exponent == '1) && (operand1Mantissa != '0)); 

else if (isOperand1Inf) 

((operand1Exponent == '1) && (operand1Mantissa == '0)); 

else 

operand1Exponent != '1 && operand1Exponent != '0; 

if (isOperand2NaN) 
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((operand2Exponent == '1) && (operand2Mantissa != '0)); 

else if (isOperand2Inf) 

((operand2Exponent == '1) && (operand2Mantissa == '0)); 

else 

operand2Exponent != '1 && operand2Exponent != '0; 

} 

constraint significand_mantissa  { 

({1'b1,operand1Mantissa} == operand1Significand) &&  

(operand1NormalizedExponent == operand1Exponent) ; 

({1'b1,operand2Mantissa} == operand2Significand) &&  

(operand2NormalizedExponent == operand2Exponent) ; 

} 

function [`p-1:-`m] iterative_div(input [`p-1:0] divident,divisor); 

bit [2*`p-1:-`m] r[-`p+1:`p], d[-`p+1:`p]; 

bit [`p-1:-`m] q[-`p+1:`p]; 

r[-`p+1][2*`p-1:`p] = divident; 

q[-`p+1] = '0; 

d[-`p+1][2*`p-1:`p] = divisor; 

for (int i = -`p+2; i <= `p; i++) 

begin 

if (r[i-1] >= d[i-1])  

begin 

r[i] = r[i-1] - d[i-1]; 

q[i] = {q[i-1][`p-2:-`m],1'b1}; 

end 

else 

begin 

r[i] = r[i-1]; 

q[i] = {q[i-1][`p-2:-`m],1'b0}; 

end 

d[i] = {1'b0,d[i-1][2*`p-1:-`m+1]}; 

end 

return q[`p]; 

endfunction 

constraint division { 

{intermediateSignificand,intermediateGuardSticky} ==  

iterative_div(operand1Significand,operand2Significand); 

intermediateSign == (operand1Sign ^ operand2Sign); 

intermediateExponent == (operand1Exponent - operand2Exponent + `bias); 

intermediateGuard ==  intermediateGuardSticky[`p-2]; 

intermediateSticky == |intermediateGuardSticky[`p-3:0]; 

} 

constraint underflow_flag { 

if (intermediateExponent > 0 && intermediateSignificand[`p-1] == 1'b1) 

 underflowFlag  == 1'b0; 

else if (intermediateExponent > 1 && intermediateSignificand[`p-1] == 1'b0)  

underflowFlag  == 1'b0; 

else  underflowFlag == 1'b1; 

} 

constraint normalization { 
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intermediateSign == intermediateNormalizedSign; 

if (intermediateSignificand[`p-1] == 1'b1 && underflowFlag == 1'b0) 

(intermediateNormalizedExponent == (intermediateExponent)) &&  

(intermediateNormalizedGuard == intermediateGuard) &&  

(intermediateNormalizedSticky == intermediateSticky) &&  

(intermediateNormalizedSignificand == intermediateSignificand); 

else if (intermediateSignificand[`p-1] == 1'b0 && underflowFlag == 1'b1) 

(intermediateNormalizedExponent == (intermediateExponent - 1)) &&  

(intermediateNormalizedGuard == intermediateGuard) &&  

(intermediateNormalizedSticky == intermediateSticky) &&  

(intermediateNormalizedSignificand == intermediateSignificand); 

else 

(intermediateNormalizedExponent == intermediateExponent - 1) &&  

(intermediateNormalizedGuard == intermediateGuardSticky[`p-3]) &&  

(intermediateNormalizedSticky == |intermediateGuardSticky[`p-4:0]) &&  

(intermediateNormalizedSignificand ==  

{intermediateSignificand[`p-2:0],intermediateGuard}); 

 

} 

constraint overflow_flag { 

if (intermediateNormalizedExponent < (`bias+`bias+1)) overflowFlag == 1'b0; 

else overflowFlag == 1'b1; 

} 

constraint inexact_flag { 

inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedSticky | 

overflowFlag | underflowFlag); 

} 

constraint rounding { 

(roundDirection == roundZero) -> (roundValue == 1'b0); 

(roundDirection == roundPositive) ->  

(roundValue == (~intermediateNormalizedSign & (intermediateNormalizedGuard | 

intermediateNormalizedSticky))); 

(roundDirection == roundNegative) -> 

 (roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard  | 

intermediateNormalizedSticky))); 

(roundDirection == roundTieEven) -> 

 (roundValue == (intermediateNormalizedGuard & (intermediateNormalizedSticky | 

intermediateNormalizedSignificand[0]))); 

} 

constraint addition_after_round { 

{roundCarry,roundSignificand} == ({1'b0,intermediateNormalizedSignificand} + 

roundValue); 

roundSign == intermediateNormalizedSign; 

roundExponent == intermediateNormalizedExponent; 

} 

constraint normalization_after_rounding { 

roundNormalizedSign == roundSign; 

(roundCarry == 1'b1) -> ( 

(roundNormalizedExponent == roundExponent + 1) &&  

(roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]})); 
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(roundCarry == 1'b0) -> ( 

(roundNormalizedExponent == roundExponent) &&  

(roundNormalizedSignificand == roundSignificand)); 

} 

constraint result_calculation { 

if (overflowFlag && (roundDirection == roundTieEven))  

(resultSign == roundNormalizedSign) && 

(resultExponent == '1) && 

(resultSignificand == {1'b1,'0}) && 

(resultMantissa == '0);  

else if (overflowFlag && ((roundDirection == roundZero) || ((roundDirection == 

roundPositive) && (roundNormalizedSign == 1'b1)) || ((roundDirection == 

roundNegative) && (roundNormalizedSign == 1'b0)))) 

(resultSign == roundNormalizedSign) && 

(resultExponent == `bias+`bias) && 

(resultSignificand == '1) && 

(resultMantissa == '1); 

else if (overflowFlag && ((roundDirection == roundTieEven) || ((roundDirection == 

roundPositive) && (roundNormalizedSign == 1'b0)) || ((roundDirection == 

roundNegative) && (roundNormalizedSign == 1'b1)))) 

(resultSign == roundNormalizedSign) && 

(resultExponent == '1) && 

(resultSignificand == {1'b1,'0}) && 

(resultMantissa == '0); 

else  

(resultSign == roundNormalizedSign) && 

(resultExponent == roundNormalizedExponent[`w-1:0]) && 

(resultSignificand == roundNormalizedSignificand) && 

(resultMantissa == roundNormalizedSignificand[`p-2:0]); 

} 

endclass 

int i; 

floating_point_numbers_variables fpv; 

initial 

begin 

i = 0; 

fpv = new(); 

repeat (`N) begin 

assert(fpv.randomize()); 

i++; 

$display("Test ID: %d ",i); 

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result); 

$display("Flags    : %b %b %b 

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag); 

end 

end 

endmodule 

module DUT_subnormal; 

class floating_point_numbers_variables; 

rand bit [`k-1:0] operand1,operand2,result; 
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typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes; 

rand roundTypes roundDirection; 

rand bit operand1Sign,operand2Sign,resultSign, 

intermediateSign,intermediateNormalizedSign,roundSign,roundNormalizedSign; 

rand bit [`w-1:0] operand1Exponent,operand2Exponent,resultExponent, 

operand2NormalizedExponent; 

rand bit [`w:0] intermediateExponent,intermediateNormalizedExponent, 

roundExponent,roundNormalizedExponent; 

rand bit [`p-2:0] operand1Mantissa,operand2Mantissa,resultMantissa; 

rand bit [`p-1:0] 

operand1Significand,operand2Significand,operand2NormalizedSignificand, 

resultSignificand,intermediateSignificand,intermediateNormalizedSignificand,round

Significand,roundNormalizedSignificand; 

rand bit [`p-2:0] intermediateGuardSticky; 

rand bit roundCarry,roundValue; 

rand bit intermediateGuard,intermediateSticky; 

rand bit intermediateNormalizedGuard,intermediateNormalizedSticky; 

rand bit inexactFlag,overflowFlag,underflowFlag; 

const bit invalidFlag = 1'b0; 

const bit isOperand1NaN = 1'b0,isOperand2NaN = 1'b0, 

isOperand1Inf = 1'b0,isOperand2Inf = 1'b0; 

const bit isOperand1Subnormal = 1'b0,isOperand2Subnormal = 1'b1, 

isResultSubnormal = 1'b0,isOperand1Zero = 1'b0,isOperand2Zero = 1'b0;; 

rand int exponent_correction; 

constraint binary_encoding_decoding { 

{operand1Sign,operand1Exponent,operand1Mantissa} == operand1; 

{operand2Sign,operand2Exponent,operand2Mantissa} == operand2; 

{resultSign,resultExponent,resultMantissa} == result; 

} 

constraint is_operands_infinity_NaN_zero_subnormal { 

if (isOperand1NaN) 

((operand1Exponent == '1) && (operand1Mantissa != '0)); 

else if (isOperand1Inf) 

((operand1Exponent == '1) && (operand1Mantissa == '0)); 

else 

operand1Exponent != '1 && operand1Exponent != '0; 

if (isOperand2NaN) 

((operand2Exponent == '1) && (operand2Mantissa != '0)); 

else if (isOperand2Inf) 

((operand2Exponent == '1) && (operand2Mantissa == '0)); 

else 

operand2Exponent == '0; 

} 

// will vary in subnormal 

constraint significand_mantissa  { 

({1'b1,operand1Mantissa} == operand1Significand) ; 

({1'b0,operand2Mantissa} == operand2Significand) ; 

} 

function int leading_zero_calculation (input [0:`p-1] functionSignificand); 

for (int i = 0;i < `p;i++) begin 
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if (functionSignificand[i] == 1'b1) return i; 

end 

endfunction  

constraint divisor_normalized { 

exponent_correction == leading_zero_calculation(operand2Significand); 

operand2NormalizedSignificand == operand2Significand << exponent_correction; 

} 

function [`p-1:-`m] iterative_div(input [`p-1:0] divident,divisor); 

bit [2*`p-1:-`m] r[-`p+1:`p], d[-`p+1:`p]; 

bit [`p-1:-`m] q[-`p+1:`p]; 

r[-`p+1][2*`p-1:`p] = divident; 

q[-`p+1] = '0; 

d[-`p+1][2*`p-1:`p] = divisor; 

for (int i = -`p+2; i <= `p; i++) 

begin 

if (r[i-1] >= d[i-1])  

begin 

r[i] = r[i-1] - d[i-1]; 

q[i] = {q[i-1][`p-2:-`m],1'b1}; 

end 

else 

begin 

r[i] = r[i-1]; 

q[i] = {q[i-1][`p-2:-`m],1'b0}; 

end 

d[i] = {1'b0,d[i-1][2*`p-1:-`m+1]}; 

end 

return q[`p]; 

endfunction 

 

constraint division { 

{intermediateSignificand,intermediateGuardSticky} ==  

iterative_div(operand1Significand,operand2NormalizedSignificand); 

intermediateSign == (operand1Sign ^ operand2Sign); 

intermediateExponent == (operand1Exponent + exponent_correction + `bias-1); 

intermediateGuard ==  intermediateGuardSticky[`p-2]; 

intermediateSticky == |intermediateGuardSticky[`p-3:0]; 

} 

constraint underflow_flag { 

if (intermediateExponent > 0 && intermediateSignificand[`p-1] == 1'b1) 

 underflowFlag  == 1'b0; 

else if (intermediateExponent > 1 && intermediateSignificand[`p-1] == 1'b0) 

 underflowFlag  == 1'b0; 

else  underflowFlag == 1'b1; 

} 

constraint normalization { 

intermediateSign == intermediateNormalizedSign; 

if (intermediateSignificand[`p-1] == 1'b1 && underflowFlag == 1'b0) 

(intermediateNormalizedExponent == (intermediateExponent)) &&  

(intermediateNormalizedGuard == intermediateGuard) &&  
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(intermediateNormalizedSticky == intermediateSticky) &&  

(intermediateNormalizedSignificand == intermediateSignificand); 

else if (intermediateSignificand[`p-1] == 1'b0 && underflowFlag == 1'b1) 

(intermediateNormalizedExponent == (intermediateExponent - 1)) &&  

(intermediateNormalizedGuard == intermediateGuard) &&  

(intermediateNormalizedSticky == intermediateSticky) &&  

(intermediateNormalizedSignificand == intermediateSignificand); 

else 

(intermediateNormalizedExponent == intermediateExponent - 1) &&  

(intermediateNormalizedGuard == intermediateGuardSticky[`p-3]) &&  

(intermediateNormalizedSticky == |intermediateGuardSticky[`p-4:0]) &&  

(intermediateNormalizedSignificand ==  

{intermediateSignificand[`p-2:0],intermediateGuard}); 

} 

constraint overflow_flag { 

if (intermediateNormalizedExponent < (`bias+`bias+1)) overflowFlag == 1'b0; 

else overflowFlag == 1'b1; 

} 

constraint inexact_flag { 

inexactFlag == (intermediateNormalizedGuard | intermediateNormalizedSticky | 

overflowFlag | underflowFlag); 

} 

constraint rounding { 

(roundDirection == roundZero) -> (roundValue == 1'b0); 

(roundDirection == roundPositive) -> 

 (roundValue == (~intermediateNormalizedSign & (intermediateNormalizedGuard | 

intermediateNormalizedSticky))); 

(roundDirection == roundNegative) -> 

(roundValue == (intermediateNormalizedSign & (intermediateNormalizedGuard  | 

intermediateNormalizedSticky))); 

(roundDirection == roundTieEven) ->  

(roundValue == (intermediateNormalizedGuard & (intermediateNormalizedSticky | 

intermediateNormalizedSignificand[0]))); 

} 

constraint addition_after_round { 

{roundCarry,roundSignificand} ==  

({1'b0,intermediateNormalizedSignificand} + roundValue); 

roundSign == intermediateNormalizedSign; 

roundExponent == intermediateNormalizedExponent; 

} 

constraint normalization_after_rounding { 

roundNormalizedSign == roundSign; 

(roundCarry == 1'b1) -> ( 

(roundNormalizedExponent == roundExponent + 1) &&  

(roundNormalizedSignificand == {1'b1,roundSignificand[`p-1:1]})); 

(roundCarry == 1'b0) -> ( 

(roundNormalizedExponent == roundExponent) &&  

(roundNormalizedSignificand == roundSignificand)); 

} 

constraint result_calculation { 
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if (overflowFlag && (roundDirection == roundTieEven))  

(resultSign == roundNormalizedSign) && 

(resultExponent == '1) && 

(resultSignificand == {1'b1,'0}) && 

(resultMantissa == '0);  

else if (overflowFlag && ((roundDirection == roundZero) || ((roundDirection == 

roundPositive) && (roundNormalizedSign == 1'b1)) || ((roundDirection == 

roundNegative) && (roundNormalizedSign == 1'b0)))) 

(resultSign == roundNormalizedSign) && 

(resultExponent == `bias+`bias) && 

(resultSignificand == '1) && 

(resultMantissa == '1); 

else if (overflowFlag && ((roundDirection == roundTieEven) || ((roundDirection == 

roundPositive) && (roundNormalizedSign == 1'b0)) || ((roundDirection == 

roundNegative) && (roundNormalizedSign == 1'b1)))) 

(resultSign == roundNormalizedSign) && 

(resultExponent == '1) && 

(resultSignificand == {1'b1,'0}) && 

(resultMantissa == '0); 

else  

(resultSign == roundNormalizedSign) && 

(resultExponent == roundNormalizedExponent[`w-1:0]) && 

(resultSignificand == roundNormalizedSignificand) && 

(resultMantissa == roundNormalizedSignificand[`p-2:0]); 

} 

endclass 

int i; 

floating_point_numbers_variables fpv; 

initial 

begin 

i = 0; 

fpv = new(); 

repeat (`N) begin 

assert(fpv.randomize()); 

i++; 

$display("Test ID: %d ",i); 

$display("Test vector: %b %b %b",fpv.operand1,fpv.operand2,fpv.result); 

$display("Flags    : %b %b %b 

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag); 

end 

end 

endmodule 
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Appendix D: SV constraints for Square Root  

`define N 1000  //Number of generated test vectors 

`define k 32 //Change to 64 for double 

`define p 24 //Change to 53 for double 

`define w 8 //Change to 11 for double 

`define emax 127 //Change to 1023 for double 

`define bias 127 //Change to 1023 for double 

module DUT; 

 class floating_point_numbers_variables; 

 rand bit [`k-1:0] operand1,result; 

 typedef enum {roundTieEven,roundPositive,roundNegative,roundZero} roundTypes; 

 rand roundTypes roundDirection; 

 const bit operand1Sign = 1'b0, 

 resultSign = 1'b0,intermediateSign = 1'b0, 

 intermediateNormalizedSign = 1'b0,roundSign = 1'b0; 

 rand bit [`w-1:0] operand1Exponent,resultExponent; 

 rand bit [`w:0] intermediateExponent, intermediateNormalizedExponent, 

 roundExponent; 

 rand bit [`p-2:0] operand1Mantissa,resultMantissa; 

 rand bit [`p-1:0] operand1Significand,resultSignificand,roundSignificand; 

 rand bit [`p:0] intermediateSignificand; 

 rand bit [`p-1:0] intermediateNormalizedSignificand; 

 rand bit [`p+1:0] intermediateSignificandRoundSticky; 

 rand bit roundValue; 

 rand bit intermediateNormalizedRound,intermediateNormalizedSticky; 

 rand bit inexactFlag; 

 const bit overflowFlag = 1'b0, underflowFlag = 1'b0, invalidFlag = 1'b0; 

 const bit isOperand1NaN = 1'b0,isOperand1Inf = 1'b0; 

 const bit isOperand1Subnormal = 1'b0,isResultSubnormal = 1'b0, 

 isOperand1Zero = 1'b0; 

 const int half_bias = (`bias-1)/2; 

 constraint binary_encoding_decoding { 

  {operand1Sign,operand1Exponent,operand1Mantissa} == operand1; 

  {resultSign,resultExponent,resultMantissa} == result; 

 } 

 constraint is_operands_infinity_NaN_zero_subnormal { 

  if (isOperand1NaN) 

   ((operand1Exponent == '1) && (operand1Mantissa != '0)); 

  else if (isOperand1Inf) 

   ((operand1Exponent == '1) && (operand1Mantissa == '0)); 

  else 

   operand1Exponent != '1 && operand1Exponent != '0; 

 } 

 constraint significand_mantissa  { 

  ({1'b1,operand1Mantissa} == operand1Significand); 

 } 

 function [`p+1:0] sqrt(input [`p+1:0] i1); 
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  logic [`p+1:0] R,Q; 

  logic R_; 

  Q = {i1,`p'b0,2'b0} ** 0.5; 

  R  = i1 - (Q ** 2); 

  if (R == i1) 

   R_ = 0; 

  else 

   R_ = 1; 

  return {Q[`p+1:1],R_}; 

 endfunction 

 function [`p+1:0] sqrt_iterative(input [`p+1:0] i1); 

  logic [`p+2:0] F,F_t_1; 

  logic [`p+1:0] R,Q; 

  logic [`p+1:0] R_F; 

  logic [1:0] temp; 

  int i; 

  i = 2*`p+2; 

  F = 0; R = {i1,`p'b0,2'b0} >> i; Q = 0; 

  for (int t = 1; t <= `p+1; t++) begin 

   F_t_1 = F; 

   i = i -2; 

   temp = {i1,`p'b0,2'b0} >> i; 

   if (R >= {F_t_1[`p:0],1'b1}) begin 

    Q = {Q[`p:0],1'b1}; 

    F = ((F_t_1+F_t_1[0]) << 1) +1 ; 

    R_F = R- F; 

    R = (R_F <<2) +temp; 

   end 

   else begin 

    Q = {Q[`p:0],1'b0}; 

    F = (F_t_1+F_t_1[0]) << 1 ; 

    R = (R << 2) + temp; 

   end 

  end 

  return Q; 

 endfunction 

 constraint sqaure_root { 

  intermediateExponent == operand1Exponent[`w-1:1] + half_bias + 

  operand1Exponent[0]; 

  if (operand1Exponent[0])  

   intermediateSignificand == {1'b0,operand1Significand}; 

  else 

   intermediateSignificand == {1'b0,operand1Significand} << 1; 

   intermediateSignificandRoundSticky == sqrt1({intermediateSignificand,1'b0}); 

   intermediateNormalizedExponent == intermediateExponent; 

   intermediateNormalizedSignificand == 

  {intermediateSignificandRoundSticky[`p+1:2]}; 

   intermediateNormalizedRound == intermediateSignificandRoundSticky[1]; 

   intermediateNormalizedSticky == intermediateSignificandRoundSticky[0]; 

 } 
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 constraint inexact_flag { 

  inexactFlag == (intermediateNormalizedRound || intermediateNormalizedSticky); 

 } 

 constraint rounding { 

  (roundDirection == roundZero) -> (roundValue == 1'b0); 

  (roundDirection == roundPositive) -> 

  (roundValue == (~intermediateNormalizedSign &  

  (intermediateNormalizedRound | intermediateNormalizedSticky))); 

  (roundDirection == roundNegative) -> 

  (roundValue == (intermediateNormalizedSign &  

  (intermediateNormalizedRound  | intermediateNormalizedSticky))); 

  (roundDirection == roundTieEven) -> 

  (roundValue == (intermediateNormalizedRound & 

  (intermediateNormalizedSticky | intermediateNormalizedSignificand[0]))); 

 } 

 constraint addition_after_round { 

  roundSignificand == intermediateNormalizedSignificand + roundValue; 

  roundExponent == intermediateNormalizedExponent; 

 } 

 constraint result_calculation { 

  (resultExponent == roundExponent[`w-1:0]) && 

  (resultSignificand == roundSignificand) && 

  (resultMantissa == roundSignificand[`p-2:0]); 

 } 

 endclass 

 int i; 

 floating_point_numbers_variables fpv; 

 initial 

  begin 

   i = 0; 

   fpv = new(); 

   repeat (`N) begin 

   assert(fpv.randomize()); 

   i++; 

   $display("Test ID: %d ",i); 

   $display("Test vector: %b %b",fpv.operand1,fpv.result); 

   $display("Flags    : %b %b %b 

%b",fpv.inexactFlag,fpv.overflowFlag,fpv.underflowFlag,fpv.invalidFlag); 

  end 

 end 

endmodule 



 

 أ
 

 ملخصال
 

 ما ةمرحل في الخطأ علاج وتكلفة المنال، صعبة مهمة العائمة النقطة عمليات من التحقق 
 على لمبنيا التحقق فشل ثم ومن كبيرة ثنائية مدخلات مع التعامل بسبب هذا. قاسية الإنتاج بعد

 من .التصميم في خلل وجود لعدم ضمان لا وبالتالي الممكنة، المدخلات كافة لتغطية المحاكاة
 إلا جال،الم هذا من التحقق في الفاعلية رياضي اساس على المبنية الطرق اثبتت أخرى، ناحية
 نم معدلة نسخة على تعمل أن يمكن لا ايضا للتصميم، رياضي نموذج خلق إلى تحتاج أنها

 .النموزج حجم كبر بسبب معقدة تصاميم مع تفشل وربما تصميم
 توليد قنيةت بإستخدام العائمة للنقطة الثنائية العمليات صحة من للتحقق جديدا مقترح لدينا 

 System)معيارية غةل بإستخدام لدينا التحقق في المستخدمة القيود كتابة يتم. مقيدة عشوائية اختبارات

Verilog )كتابة تمي حسابية، عملية لكل. المعيارية اللغة هذه تدعم للمحاكاه أداة أي مع حلها ويمكن 
 المواصفة مع ليتوافق النهائية النتيجة و التقريب، المتوسطة، النتائج المدخلات، بين تربط قيود

 .IEEE-754 المعيارية
 اببحس يقوم جهاز أو برنامج أي من للتحقق استخدامه ويمكن عام، هو الجديد الاقتراح 

 أخطاء على ورالعث في المقترح وفائدة جدوى يثبت فإنه أيضا،. العائمة للنقطة الثنائية العمليات
   .العائمة للنقطة الثنائية الحسابية العمليات مختلف في
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 القيود لحل معيارية لغة بإستخدام العائمة النقطة ذات الثنائية الحسابات من التحقق

  
  الكلمات الدالة:

 المقيدة محاكاة، ال العائمة النقطةعمليات 
  

  :رسالةملخـص ال
 لإنتاجا بعد ما مرحلة علاج الخطأ في وتكلفة ،المنال صعبة مهمة العائمة النقطةعمليات  من لتحققا

 لتغطية حاكاةمال المبني على التحقق فشلثم  منة و كبير مدخلات ثنائية  مع التعامل بسببهذا . قاسية
 تتاثب أخرى، ناحية من. تصميمال في خللوجود  عدمل ضمان لا وبالتالي الممكنة، المدخلات كافة

 نموذج لقخ إلى تحتاج أنها إلا مجال،ال هذا من التحقق في ةيلاعفال المبنية على اساس رياضي الطرق
 معقدة اميمتص مع تفشل وربما تصميم من نسخة معدلة على تعمل أن يمكن لا ايضا ،رياضي للتصميم

 ماستخدبإ العائمة لنقطةالعمليات الثنائية ل من صحة لتحققل جديدالدينا مقترح  .كبر حجم النموزج بسبب
 لغة إستخدامب لدينا التحقق في المستخدمة القيود كتابة يتم. مقيدة عشوائية اتاختبار  توليد تقنية

 ةعملي كلل. تدعم هذه اللغة المعيارية للمحاكاه أداة أي مع حلها ويمكن (System Verilog)معيارية
 مع ليتوافق لنهائيةا نتيجةو ال ،التقريب ،المتوسطة نتائجال ،مدخلاتال يتم كتابة قيود تربط بين حسابية،

 .IEEE-754 المواصفة المعيارية
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