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Abstract

The research presented in this thesis addresses the parallelization of sequential com-
puter vision algorithms, such as motion detection, tracking, etc., on big-data tools. Com-
puter vision sequential algorithms have restrictions on how the video frames should be
processed. In these algorithms, the inter-relation between successive frames is important
part of the algorithm sequence as the result of processing one video frame depends on the
result of the previous processed frame(s).

Most of the present big-data processing frameworks distribute the input data randomly
across the available processing units to utilize them efficiently and preserve working
load fairness. Therefore, the current big-data frameworks are not suitable for processing
video data with inter-frame dependency. When processing these sequential algorithms
on big-data tools, splitting the video frames and distributing them on the available cores
will not yield the correct output. Consequently, the advantage of the processing sequential
algorithms on big-data framework becomes limited only to certain cases where video
streams are coming from different input sources.

In this thesis, we propose a complete framework that enables big-data tools to execute
sequential computer vision algorithms in a scalable and parallel way with limited modifi-
cations. Our main objective is to parallelize the processing operation in order to speed up
the required processing time. The main idea is to divide the input big-data video files into
small chunks that can be processed in parallel without affecting the quality of the resulting
output. We have developed an intelligent data grouping algorithm that distributes these
data chunks among the available processing resources and gather the results out of each
chunk. A parallelized chunk-based data splitter was used to provide the input data chunks
concurrently for parallel processing. Then, our grouping algorithm makes sure that all
frames that belong to the same chunk are distributed in order to the associated processing
cores.

To evaluate the performance of the developed chunk-based framework, we conducted
several experimental tests. We used Apache Storm as our big-data framework for its real-
time performance. Storm framework was modified to support input video frame splitting
and parallel execution. We examined the behavior of our proposed framework against
different number of chunks over one hour testing videos. In our evaluation, we used several
sequential computer vision algorithms including face detection, video summarization,
license plate recognition (LPR), and heatmaps. Those algorithms were integrated into

xi



our testing platform. The results of the chunk-based parallelization achieved a speedup
factor from to 2.6x to 7.8x based on the used computer vision algorithm. The processing
of multiple video files using different number of chunks was also evaluated using the face
detection algorithm in which case, we have achieved up to 8x speedup gain.

xii



Chapter 1: Introduction

1.1 Motivation and Overview

Many of the modern successful business models are built on the idea of gathering specific
types of data and analyzing them in order to extract many beneficial results, trends
and insights that attract the end user [1]. Useful data types can be in the form of text
information, captured images and recorded videos that are gathered offline or online on
the real time. To produce accurate and intuitive results, huge amount of data samples must
be gathered and processed simultaneously in an efficient way [2]. So, a lot of big-data
computation tools were developed to fulfill the need of ingesting and processing big-data
in addition to utilizing the available processing resources efficiently.

Video data is one of the fastest growing data types nowadays. This is a result of the
ongoing video content that is being created from web users and the various entertainment
services being offered to users that are based on video data. Also thanks to the high-end
cameras and smartphones that are available for any user anywhere. All of these sources
produce an ever growing video content. According to Statista [3], YouTube users upload
400 hours of video content per minute in July 2015. This will be x10 times larger just by
2020 as illustrated in Figure 1.1. Video content is a heavy data type that requires high
computational resources for processing. For example, one minute of high quality video
requires storage almost as much as 2000 text pages need [4].

Figure 1.1: Number of hours of uploaded videos to YouTube till July 2015. [4]
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Video surveillance systems are currently installed in almost all governmental and
private premises as well as highways and malls. Hundreds of hours are being recorded
24/7 to monitor various important locations and detect any wrong or suspicious behaviors
[2, 5]. As an example, in case of a crime or an accident, all the recorded surveillance
videos can be reviewed to know exactly what happened in a live documented video. The
challenge here is that in most cases it is required to analyze these massive amount of data
as fast as possible and get the needed results. Many of computer vision algorithms that are
applied over these videos are operated sequentially over each video record frame by frame.
Examples of these algorithms including video decoding, video summarization, motion
detection, object detection and tracking.

In this thesis, Apache Storm will be used as the big-data tool or framework for
the evaluation of our proposed framework and produce the necessary validation results.
Apache Storm is one of the growing big-data tools that processes vast amount of real
time data in distributed clusters. Storm processing framework is called a topology which
consists of two important components; spouts and bolts. Spouts are the data sources that
receive data streams which need processing. Bolts are the main component of Storm that
perform the actual processing operations over the data received by Spouts. Data streams
must be distributed between the available bolts in a way that utilize them efficiently and
give the best performance.

1.2 Introduction to Big-Data

In this section we will start by discussing the meaning of big-data as a broad term and the
dimensions that characterise big-data and define its behaviour. Then we will shed the light
over various application fields that need and utilize big-data.

1.2.1 Definition

The Big-Data is a new arising term that refers to the large amount of data that needs to
be analysed and processed to extract useful information, trends, insights, patterns and
analytics. Traditional data processing software and hardware don’t have the ability to
handle this massive amount of data. The concept of big-data is not only related to the size
and volume of data. Based on Laneys work in 2001 [6] the concept of the triple Vs was
introduced to characterize data management based on three dimensions; Volume, Variety
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and Velocity.

Volume represents data size and magnitude which usually exceed terabytes and
petabytes in case of big-data. Variety of data refers to the different types of forms that data
can take such as structured, unstructured and semi-structured data [2, 7]. Structured data
is the data that has a known format and size and can be stored in relational database while
unstructured data is the data that has no defined form and cannot be stored at row-column
format [8]. Examples of unstructured data are audio, image files and video recordings.
Variety in the sense of big-data is the heterogeneous forms that big-data can take between
structured and unstructured data types.

Velocity is the speed of creating new data. Big-data is rapidly generated where almost
90 percent of the worldwide data was created in the past two years [9]. Thanks to the
massive amount of web traffic, data collected from sensor networks, different digital
transactions, and the enormous numbers of mobile devices that are used worldwide. Such
high rates of data generation need fast, efficient and real time analysis and processing that
cannot be achieved by traditional data management tools and processing engines.

Figure 1.2: Triple Vs of big-data [9]

The triple Vs concept was the base foundation to define Big-Data term. Later, it
was extended to include another four Vs; Veracity, Variability, Visualization and Value
[10]. Veracity means that some of the collected data may contains some uncertain or
unreliable data that affects the further data analysis and extracted results [2, 11]. That
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is why big-data faces the challenge of dealing with non-correct or uncertain group of
information which requires special tools and algorithms to deal with this veracity nature
especially when decisions are taken automatically without human intervention. Variability
in big-data means that data comes in different flow rates from various sources [2] and in
another definition it means that despite having big-data in the same data form, it may be
constructed with different semantics [11].

The third new V refers to Visualization which is a crucial challenge for big-data.
Visualization means that large amount of data needs to be presented in an intuitive way
to include all the related parameters and to understand the insights and trends through
complex graphs yet clear and neat. Value is the last V of big-data dimensions. Such large
flood of data is considered to be low density in its original form. The value of big-data
comes from all the analytics performed over it and the useful information resulted from
this analysis. Many organizations and new startup companies are established over the
insights and knowledge gained from processing big-data [10]. This concludes that the
future of technology and business will be determined by the power of utilizing big-data
and transforming it into beneficial knowledge.

1.2.2 Applications

Big-data has many applications in all arenas from health care, financial transactions,
marketing into education and social life. A graphical representation of big-data market
forecast by WikiBon is shown in Figure 1.3 [12]. For example, in health care field many
new wearable gadgets are used to measure biological signals from human bodies such
as heart rate and blood pressure. By collecting such information from large number of
people and analyzing it through big-data tools, doctors can have a clear view over many
diseases symptoms and how to diagnose them correctly [13].

Mobile devices that have different sensors and distributed in almost everywhere are
a valuable source for big-data. Governmental or academic associations can benefit from
such tremendous amount of collected sensors data for applicable or research purposes
related to marketing, social studies, environmental issues, education, security, enhancing
lifestyle and much more.

Another important application for big-data is in social media where many websites
such as Facebook, Twitter, Instagram and Flickr are good examples of how big-data can
be used to understand how people interact with each other. The large collected people’s
personal data reveals the society direction towards general topics and how they value
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some commercial products or artworks. This also can help products manufacturers to
know which brands are preferred by the consumers and how to enhance them according to
tracking positive or negative sentiment of users feedback over social media [14].

When it comes to security, big-data plays a vital role in taking security decisions,
detecting hazards and eliminating dangerous situations. In banking and insurances sectors,
big-data analysis techniques help to detect frauds and malformed financial transactions.
This is done by analysing huge amount of customers transactions and detect suspicious
patterns automatically [15]. Another important type of big-data security applications is
obtained from the huge amount of surveillance videos that are recorded 24 hours daily
in almost all private and governmental facilities. By analysing these records, we can
detect motions, intruders, suspicious behaviours and do further analysis to count people,
detect faces, track objects and much more. Recent big-data technologies help to convert
unstructured video data into searchable content that can be used for security purposes.

Figure 1.3: Wikibons Big-data market forecast [12]
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1.3 Problem Description

Most of the existing big-data tools such as Hadoop, Spark and Storm process data in
parallel by splitting data into small parts and forward each part into a separate processing
instance, (Map, core, etc.) for processing. Those processing instances produce intermedi-
ate results. The intermediate results produced by all processing units are then aggregated
in a later stage using a reducer instance.

This approach is not suitable for several computer vision algorithms where the frames
needed to be processed in sequential order. Example of these algorithms includes motion
detection algorithms and tracking algorithms.

In motion detection algorithm, each frame is subtracted from the immediately previous
frame using background subtraction approach. The result of the subtraction, difference
frame, is then analyzed for non-zero data which is used as an indication of motion. In
tracking algorithm, once an object is detected, the area surrounding this object is recorded
and in the following frame, a matching between the recorded area and the area close to it
in the spatial position is computed. The closed match is then considered the new location
of the object being tracked.

The two scenarios mentioned above require frames in successive order to be sent to
the same processing node which is not the exact case in current big-data solutions. In
current big-data solutions, each new frame is being assigned to an empty core randomly
so sequential frames will be processed in parallel rather than in sequential order.

As an intermediate solution, we are proposing a new operation mode Chunk-Based. In
our proposed chunk-based processing, incoming frames are split into a group of chunks.
Each chunk has frames in sequential order. By doing this, the algorithms mentioned above
can be applied with certain limitation. The limitation of the proposed implementation is
due to the cross chunk relations. For example, tracking across chunk border could fail.
This limitation can be handled by the topology reducer to eliminate redundant results.
However, the performance gain due to splitting the input into many chunks could be
dramatic (proportion to number of parallel cores used in the topology). Algorithms such
as object detection, tracking and summarization need to process the video frames one by
one in order and the results between these frames are dependent. So, depending on the
execution speed of the algorithm, video length and video content; we need relatively long
duration to examine each video file sequentially and produce the results.

Running sequential computer vision algorithm and video processing as a standalone
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application has many drawbacks:

1. The execution time is high, almost equals to the video file duration as it will decode
each frame individually then process it sequentially in order.

2. The processing of many video files will be manually one file at a time because the
algorithm itself cannot handle processing many files in parallel. We have to wait for
one file to finish processing then run the algorithm over the next one and so on.

3. Based on the previous point, there will be under utilization to any available process-
ing resources as we are limited by running one file at a time.

1.4 Challenges

According to the importance of using such vital video processing algorithms and the need
to parallelize the operation over huge amount of data while using the available resources
efficiently, the need arises to use big-data tools to run such applications efficiently. Using
a distributed big-data tool such as Storm to run sequential applications over video data has
many challenges:

1. Data Feed: Data feed must be adequate to data type nature and how it is required to
be processed. In our case, we should know if we need to process video files as a
whole or frame by frame and how can Storm accommodate this.

2. Data Distribution: Storm distributes data among the processing bolts in a ran-
dom way to ensure fairness between resources, this opposes the idea of sequential
applications which need data to be processed in order.

3. Data Consistency: Sequential algorithms also need all data from same data source
to be processed at the same instance which is not applied by default when using
Storm. Storm default data grouping sends data to processing units based on working
load and does not consider any other priority or ordering factors.

1.5 Thesis Organization

This thesis is organized as follows: Chapter 1 is the introduction which includes an
overview about Big-Data concept. Chapter 2 provides a detailed review about three of
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the most powerful big-data processing technologies: Apache Hadoop, Apache Spark and
Apache Storm. Chapter 3 goes through the literature of Computer Vision and discusses
some of the previous work done to parallelize processing of Computer Vision Algorithms
and similar to this thesis objectives. Chapter 4 contains the thesis proposed distributed
chunk-based processing framework concept and system architecture along with the entire
system component functions and workflow. Chapter 5 has the evaluation process method-
ology conducted to examine the performance of the proposed framework and highlights
the speedup gain achieved. Finally, Chapter 6 concludes all the work done within this
thesis and suggests new ideas to extend the proposed work.
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Chapter 2: Big-Data Technologies

2.1 Introduction

The importance of big-data comes from the valuable information that could be revealed
out of such huge and complex data after applying specific analytical procedures and using
robust and scalable processing tools. Emerging technologies are being developed to cover
all the stages of handling big-data. Big-data technologies target the implementation of
all the complex components needed for big-data storing, processing, visualization and
producing final results in the required formats as shown in Figure 2.1.

Figure 2.1: Big-data processing steps [11].

Big-data can be processed in two modes; Batch Processing or Stream Processing.
In batch processing, a group of data is first stored then fed to the big-data tools to be
processed at once while in stream processing data is ingested into processing tool straight
forward in real-time [16]. Batch processing introduced the concept of MapReduce that
allows performing complex computations over big-data in parallel scheme. MapReduce
programming model is divided into two main functions; Map which performs the basic
processing functions over pairs of key-value inputs, then Reduce which groups all the
intermediate results produced by map function and aggregates them into meaningful output
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[17]. Big-data processing tools key feature is the ability to perform batch processing,
stream processing or both of them. Using big-data technologies enables parallel data
processing over a cluster of nodes in an efficient and dynamic way that couldn’t be
achieved using traditional data handling frameworks.

In this chapter we will talk about three of the most popular big-data processing tools
that are designed to cope with the aforementioned big-data characteristics. The studied
tools are Apache Hadoop, Apache Spark and Apache Storm. A comprehensive elaboration
is conducted to understand the basic concept of each tool and how it works. Then we will
conclude to the final tool that will be used in this thesis to achieve parallel processing for
sequential computer vision algorithms in a scalable way.

2.2 Apache Hadoop

2.2.1 Overview

Apache Hadoop [18] is a project launched in 2008 by Doug Cutting and Mike Cafarella in
Yahoo and University of Michigan [17] . Hadoop was inspired by Google’s File System
(GFS) from published paper in 2003 that defines GFS and its functions to handle massive
amount of data. Hadoop definition by Apache states that it is a software framework that
enables the processing of large amount of data over a distributed cluster of commodity
hardware in a simple way and failures prone [19]. Moreover Hadoop is an open source
framework that is able to store, process and manage big-data in a scalable way.

Hadoop became a suitable option for big-data processing due to several key features.
Hadoop cluster consists of large number of cluster nodes. It can scale up or down
automatically by adding or removing nodes from the cluster. This made it necessary for
Hadoop to be fault tolerant. When one node fails, Hadoop can continue working without
any interruption due to data replication across the cluster. Another important feature that
Hadoop introduced is bringing the complex computation operations into data storage
location rather than moving the data to the computation units. This helped to parallelize
the computations and perform them in local nodes [19]. Also Hadoop does not require
specific data formats and can be used to process both structured and unstructured data.
Hadoop supports batch processing mode. Finally, a core competency for Hadoop is its
low running cost where no need for high-end expensive servers and commodity hardware
is just enough.
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2.2.2 Components and Cluster Architecture

Apache Hadoop cluster consists of three main components; Hadoop Distributed File
system (HDFS) [20] for data storage , MapReduce [21] for data analysis and Yet Another
Resource Negotiator (YARN) [22] for management.

HDFS is an open source distributed data storage that is designed to store data using
commodity hardware in an efficient and redundant way while achieving high throughput.
HDFS from architectural point of view is a cluster consists of one master machine named
NameNode and several distributed slave machines known as DataNodes as depicted in
Figure 2.2. Data are split into small blocks and stored in data nodes. This makes data
nodes responsible for data read and write functions while maintaining multiple copies of
data across different data nodes to support fault tolerance [19]. Data are replicated across
HDFS cluster using a replication factor which is commonly three [20] and clients usually
read from the nearest node.

Figure 2.2: HDFS architecture with data replication [19].

NameNode controls data distribution among Hadoop cluster and keeps track of data
blocks mapping between cluster data nodes . When a client needs to read data, it sends
a request to NameNode which responds with DataNode address and metadata that hosts
the required block of data [17]. To make HDFS more robust, a secondary NameNode is
used to backup the original NameNode in case of failure. This solves common HDFS
high availability issues. HDFS programming is written using Java language. So, any
commodity server that runs Linux is a good candidate to be a NameNode or a DataNode.
An abstract master node and slave node internal architecture is shown in Figure 2.3.
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Figure 2.3: HDFS abstract architecture of master and slave nodes.

MapReduce is the part that is responsible for data analysis and processing in Apache
Hadoop. It enables Hadoop to perform distributed processing over large datasets. Given
that the data is distributed among many working machines, mapreduce framework performs
parallel processing over these machines locally where the data resides [19]. The input data
is split into small batches that are independent and can be processed in parallel.

MapReduce is divided into two functions: Map and Reduce that developers can
program them in a custom way based on the required application. In Hadoop, the map
function is invoked over data batches in different commodity machines distributed within
Hadoop cluster where inputs are given as key-value pairs. Data mappers are used to take
raw data then convert them into input key-value pairs for map function. The map function
executes computations over local data to produce intermediate results that are given to
the reduce function as its input. The reduce function uses a custom logic to aggregate the
map results, as key-value pairs, then create the final outputs [21]. Figure 2.4 depicts the
working flow of Hadoop mapreduce. Hadoop inputs and outputs are read from HDFS and
written in HDFS as well using specific input formats.

JobTracker and TaskTracker are the two daemons of Hadoop mapreduce. JobTracker
daemon is located in NameNode which is the cluster master machine. It submits and tracks
mapreduce functions by receiving job requests from client, identifying data location in
datanodes and submitting work to the TaskTracker that is located in the chosen DataNode.
TaskTracker is located in slave machine. It accepts map or reduce job from JobTracker
and assigns it a free working slot then notifies back the JobTracker with the assigned slot

12



and the job status. TaskTracker always reports the JobTracker with number of free slots
that are available for new jobs.

A heartbeat signal is maintained between TaskTracker and JobTracker to periodically
report the TaskTracker availability. MapReduce recovers any failures using its daemons
where any task that fails to successfully send acknowledgement, it is considered failed.
Hence, the Tasktracker reports the failed task to JobTracker which reschedules it back to
different TaskTracker rather than the one it failed previously within [17, 23]. A simple
Hadoop flow using one master node and three slave nodes is shown in Figure 2.5, which
illustrates the HDFS and MapReduce basic components and functions in Hadoop Cluster
[24]. Although mapreduce was a big leap in parallelizing the processing over vast amount
of data, it has some performance limitations. The scalability limit of mapreduce is 4000
node besides it cannot achieve the best resource sharing between different computation
frameworks and also handling jobs’ working flow is centralized in one JobTracker node
[22, 25]. That’s why a new framework called YARN was introduced.

Figure 2.4: Hadoop mapreduce.

YARN is the new generation of mapreduce which aims to solve the limitations of
the old framework. YARN was designed to provide the needed computational resources
such as CPU and memory for processing jobs. Main components of YARN are Resource-

Manager, ApplicationMaster and NodeManager. A ResourceManager is analogous to
JobTracker while NodeManager is analogous to TaskTracker in mapreduce [17]. In de-
signing YARN, the JobTracker functionalities were divided between two new components;
global ResourceManager (RM) and per-application ApplicationMaster (AM). RM is
contained in master node and it targets the distribution and tracking of the cluster con-
tainers (i.e. resources) over the running applications. The RM has two main components;
Scheduler which assigns resources to working nodes and ApplicationManager which is
responsible for job scheduling and restarting the AM in case of failure [25].
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Figure 2.5: Hadoop simple working flow [24].

AM takes charge of executing single application based on Scheduler decisions. The
RM negotiates the needed resources to run specific application with the AM then allocates
the demanded containers. There is a regular heartbeat message sent from AM to RM
to reports its liveness and define its requirements [22]. The NodeManager (NM) is the
worker daemon that is located in every slave machine in the cluster. It is supposed to
inform the RM with its node computational capacity and available containers that is why
a container is considered to be part of NM capacity in terms of memory and cores. NM
initiates or kills working components upon RM requests and execution status.

The workflow of YARN is shown in Figure 2.6:

1. First the client sends application requests using JobSubmitter to RM.

2. The RM asks its Scheduler to allocate a container for the submitted application.

3. The RM asks the associated NM for the requested container.

4. The NM initiates the computational container with the required resources.

5. Finally the AM is run by the container.
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Figure 2.6: Hadoop YARN architecture [26].

2.2.3 Scheduler

Hadoop has different job scheduling techniques. Schedulers basic categories are Static
and Dynamic schedulers. In Static Scheduler, resources are allocated for each job before
the job starts while in dynamic scheduler the resources assignment decisions are taken
during the runtime to change the resources allocation. Examples of Static schedulers are
First In First Out (FIFO) and Capacity scheduler while examples of dynamic scheduler
are Resource Aware and Deadline Constraint. The default scheduler that is used with
JobTracker is FIFO. In FIFO, the first job submitted to JobTracker queue is pulled for
work. Another scheduler is Fair scheduler which tries to assign the same average amount
of resources for each submitted job over time. Fair scheduler was introduced by Facebook
and it is close to Capacity scheduler which was developed by Yahoo except that capacity
scheduler is much suitable for large clusters [27].
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2.2.4 Limitations

As a big-data processing tool, Hadoop has some limitations that hinder it from giving the
ultimate performance. Here we will list some of Hadoop general drawbacks that don’t
make it a good candidate for big-data video processing [23, 28]:

• Data replication in HDFS isn’t efficient in case of big-data, specially video files.

• Master node for HDFS and MapReduce is a single node of failure which risks losing
huge and important data in case of master drop.

• HDFS has no optimization for queries that leads to inefficient query execution with
high cost and large clusters.

• Hadoop by default does not offer security mechanisms due to its complexity. That’s
why it isn’t suitable for surveillance and security applications that are built for
big-data video applications.

• Also no storage or network encryption offered by Hadoop.

• MapReduce framework does not support complex execution models that require
different levels of map or reduce or custom functions.

• Hadoop does not cache intermediate data results or store them in databases, although
these results may generate vital insights and trends about the original input data.

• Hadoop only supports batch processing, so it cannot handle real-time applications
or live video streams.

• Processing speed in Hadoop is relatively low as a result of the long execution time
and high latency of mapreduce framework.

2.3 Apache Spark

2.3.1 Overview

Apache Spark [29] is an open source in-memory big-data processing tool that was first
developed at UC Berkeley in 2009 [17]. The motivation to create Spark was to design a
unified framework for big-data distributed processing. Spark came to solve the limitations
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of Hadoop and mapreduce while being faster and general in-memory processing engine.
Spark utilization of Hadoop is only by using HDFS as storage if needed. Apache Spark is
not replacement for Hadoop itself, it only replaces mapreduce in order to perform real-time
stream processing and fast interactive queries in no time [30].

Spark is known for its processing speed, it is claimed that Spark can work 100x
faster than Hadoop in case of retrieving data from memory and 10x faster for disk
case as mentioned in Spark official website [29]. Many programming languages are
supported using Spark. Developers using Java, Python or R can effortless write or integrate
applications in Spark using different APIs which is an advantage for making Spark easy to
use. Other important features of Spark are supporting advanced analytics, SQL streaming,
machine learning and graph algorithms [30].

2.3.2 Components and Cluster Architecture

The core of distributed processing for Spark is the Resilient Distributed Dataset (RDD).
RDDs are immutable collection of objects, data structures, that are split into small parti-
tions and can be processed in parallel across Spark cluster machines while maintaining
data locality [31]. Spark RDDs are read-only, so any intermediate results can be persisted
into memory or disk to be used later if needed. Each RDD has a lineage that is used to
track and reconstruct any lost RDD. This makes RDD fault tolerant [32]. Originally RDDs
are Scala objects that can be constructed from:

• Reading data file from HDFS,

• Parallelizing a Scala collection by slicing it into small partitions to be processed in
parallel,

• Transforming an existing RDDs using Spark specific functions. For example Map,
Filter and GroupBy functions,

• And finally changing RDDs persistence either by caching or saving them at HDFS
for later use.

Spark deals with data streams in micro-batching that splits data into parts and process
each part individually. This approach called DStream which represents a queue of RDDs.
DStream enables Spark to do both batch and streaming processing in a quick way as long
as the application does not require low latency [31]. Processing mode in Spark takes the
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form of Direct Acyclic Graph (DAG) which is a sequence of direct computations to be
executed over data. As shown in Figure 2.7, DAG nodes are RDDs and edges are the
transformation functions performed on this data. Data transformation in DAG are acyclic
so that the graph goes forward and does not go back to previous step.

Apache Spark has different types of deployments as shown in Figure 2.8. It can be
deployed as a Standalone framework on top of HDFS and side by side with mapreduce.
Or it can run using Hadoop YARN as a resource management framework to coexist
with Hadoop ecosystem. Another deployment is Spark In MapReduce (SIMR) where
mapreduce is used to start Spark jobs [30].

Figure 2.7: Spark DAG.

Figure 2.8: Spark different deployment schemes [30].
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On top of Spark core, RDD and DAG, a group of high-level implemented components
are added to Spark stack as depicted in Figure 2.9. SparkSQL is the component that
enables Spark to process structured and unstructured data. Spark Streaming enables Spark
to process RDDs streams in mini-batches based on new concept called discretized streams.
GraphX is a visualization tool that offers usable APIs to express user defined computations
[33]. MLib is a popular scalable machine learning library that is built especially for Spark
and outperforms Hadoop machine learning engine Apache Mahout [30].

Figure 2.9: Spark components.

Spark cluster architecture consists of a master node and a group of slave nodes. A
Driver node/Driver manager is a JVM that creates SparkContext for Spark application,
transforms RDDs into DAG, stores metadata about RDDs and schedules Spark Tasks
[34]. Driver monitors DAGScheduler and TaskScheduler. Spark Application is divided
into small tasks that are spawned to Spark executors within worker nodes governed by
TaskScheduler. Driver Manager is similar to ApplicationManager in Hadoop, it also
communicates with an entity called Cluster Manager in master node which governs the
cluster resources management. Worker Nodes are where the actual data processing is done
[35]. One worker node has multiple executors. Spark Executor caches data or intermediate
results, reads/writes data from/to external source and performs data processing [34]. From
Figure 2.10 we can have a glimpse view about Spark abstract cluster architecture.
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Figure 2.10: Spark cluster architecture.

2.3.3 Scheduler

As described before, Spark application has a SparkContext that runs a group of executors.
One Spark application has multiple jobs that run in parallel across Spark cluster. That is
why in Spark we have scheduling across different applications and another scheduling
within one application.

• Scheduling across applications: In case of running many Spark applications in
the same cluster, resources are assigned statically for each Spark application so that
each application takes as much resources as it needs for all its execution running
time. For Standalone cluster, applications are running in FIFO order taking all the
available resources. To bound resource assignment, a max values for allocated CPU
cores and memory are set in Spark configuration. Using other resource management
framework such as YARN and Mesos [36], static scheduling across applications
can be applied. A special dynamic scheduling is applied when using Mesos. This
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dynamic scheduling enables resources sharing when any Spark application is no
longer using its assigned resources.

• Scheduling within applications: Within one Spark application, the default jobs
scheduling is FIFO. This scheduling technique becomes unfair when the first job in
the queue is large and resources hungry because it will delay the other applications
until it finishes. Another scheduling technique is Fair scheduler which assigns
resources/tasks to applications job in round robin scheme. Fair scheduler introduced
the idea of Fair Scheduler Pools, where each pool is assigned different weight or
resources allocation priority [37].

2.3.4 Limitations

Although Apache Spark is general and fast big-data processing tool, it has some crucial
drawbacks. Here we will mention the main disadvantage of Spark that eliminate it from
being a good choice for this thesis work [38, 39]:

• In the use cases that require low latency such as stream processing, Apache Spark is
not the good option to cope with low latency requirements.

• Spark is fast because it utilizes memory resources and keeps processing operations
always in-memory. So, Spark needs large memory requirement.

• In-memory processing in an expensive processing paradigm which is not cost-
efficient in case of large clusters.

• Spark does not fully support real time processing.

• To get the better out of Spark, manual optimization is needed.

• Important feature like Back Pressure Handling is not done automatically at Spark.
User has to manually adjust Spark to overcome the cases when input-output queues
are full and no space to receive new data.
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2.4 Apache Storm

2.4.1 Overview

Storm is an open source distributed framework that processes batch or real time stream
processing in a fast and scalable way. Big-data benchmarking tools claim that Storm
can process up to millions of data tuples per second [40]. Generally Storm is known
for its ease of use, fault-tolerance capabilities, scalability, fast and reliable processing.
The fault-tolerance is in the sense of monitoring all the cluster nodes and in case of any
node failure; it can be restarted seamlessly and automatically. The scalability is shown in
Storm elastic throughput that can reach up to one million bytes per second and the parallel
execution of complex operations across Storm cluster. Finally, Storm is designed to be
easy configured and deployed with standard configurations provided [41].

2.4.2 Components and Cluster Architecture

Storm main logic components are Spouts and Bolts which construct a Storm Topology. A
topology is the network that represents the logical connections between group of spouts
and multiple layers of connected bolts as shown in Figure 2.11.

A Storm topology is analogues to a directed graph where edges are the data flow
between nodes and vertices are the computation in spouts and bolts nodes [42]. Spouts
usually receive streams of data from external data sources such as Kafka [41], Kestrel
[42] or Network File Systems (NFS) [41] then they feed these data streams into Storm
Bolts. Bolts are the processing engine of Storm where the entire data transformation and
processing logic take place such as aggregation, filters, joints or user developed functions.
Bolts can have multiple input or output streams at the same time sent from Spouts or
other Bolts [41, 43]. Data are processed within Storm as streams which are a continuous
sequence of data tuples in the form of key-value pairs. Tuples can contain various types of
data such as the regular data types: integers, longs, Boolean ...etc. or you can define your
custom data type using serializers.
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Figure 2.11: Representation of Storm topology containing spouts and bolts.

In order to achieve higher processing parallelism, Storm runs one virtual machine
(VM) per one physical slave called supervisor. Each supervisor can run one or more Java
Virtual Machines (JVMs) called workers that belong to one or multiple running Storm
topologies. Each Strom worker has multiple threads executors that may be a Spout or a
Processing Bolt. To increase the parallelism level, one executor can run multiple entities
tasks of a specific spout or bolt. Tasks are the actual processing units that are distributed
across Storm cluster machines [44]. Number of Storm supervisors equals to number of
physical machines in Storm cluster, while number of workers is configured in Storm
configuration file storm.yaml.

Storm cluster architecture consists of group of physical machines: the master and
worker nodes. The master node runs a Java daemon called nimbus which is responsible for
distributing the processing tasks over the worker nodes. Storm topology is first submitted
to Storm nimbus which distributes input data between Storm spouts and monitors the
execution of the topology within worker nodes. So, nimbus can assign tasks to worker
machines and detect any node failure. Nimbus is a Thrift service where you can submit
your topology in any preferred programming language and Storm will understand it [44],
[45].

On the other hand, worker nodes run a daemon called supervisor. Each worker node
has a group of worker processes. Supervisor distributes the workload over these worker
processes such that each worker process belongs to one running topology [46]. Each
worker process executes a subset of a topology function. Note that every worker process
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has multiple threads called executors that hold one or more tasks where the actual logic of
spouts or bolts is done. When a topology is submitted to Storm nimbus, the entire topology
code and its dependencies are packaged into a JAR file that is distributed over the cluster
worker nodes by Storm nimbus. The communication between nimbus and supervisors
is governed by an entity called a zookeeper. Zookeeper holds the state of nimbus and
supervisors in local disk so in case of node failure; nodes can restart from where it crashed
[43]. Storm cluster can have one or more zookeeper entities. The abstract architecture of
Storm cluster is shown in Figure 2.12 also Figure 2.13 depicts the internals of one Storm
worker node.

Figure 2.12: Storm abstract architecture.
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Figure 2.13: Storm worker node internals.

2.4.3 Scheduler

In order to run Storm topology probably and utilize the available resource efficiently,
Storm needs a scheduler that allocates all the available workers to cluster worker nodes.
Storm Default Scheduler is called Even Scheduler. Its strategy is to allocate the entire
resources evenly between worker nodes using random round-robin policy. Scheduling here
is performed in two steps: the first step is to allocate the topology executors to workers in
round-robin fashion. The second step is to assign these workers to worker nodes in even
distribution, so that all worker nodes are assigned nearly the same number of workers [45].

Although the default scheduler attains fairness among worker nodes, it has some
limitations and drawbacks. From the disadvantages of Storm Even Scheduler is that
users cannot know the exact distribution of their topology components over the cluster,
however it may be needed to assign specific tasks to certain topology components [47].
Also resource allocation using default scheduler may not be the optimum allocation that
satisfies all the tasks requirements [48]. Another shortage of the default scheduler is that it

25



is not a dynamic scheduling that cannot cope with the ongoing increasing demands of a
running topology. Finally, the default scheduler does not consider many vital aspects that
affect Storm performance such as: the communication overhead between nodes, streams
transmission time, resources specification and tasks requirements.

In order to satisfy the user’s specific scheduling policy, Storm gives the ability to design
custom schedulers using an API called IScheduler. To plug-in new schedulers, we need to
modify the IScheduler interface and feed it with all the necessary information about the
running topologies and deployed cluster in addition to the users special requirements [45].
Within Storm supervisors configuration, there is a special field called storm.scheduler.meta

which identifies the used custom scheduler in a key-value pair [47].

Examples of Storm Custom Schedulers are Adaptive online Scheduler [45], Resource
Aware Scheduler (R-Storm) [49], Metadata Aware Storm Scheduler [50] and QoS-aware
scheduler [51].

2.4.4 Storm Stream Grouping

As illustrated, Storm topology has a graph of connected spouts and layers of processing
bolts where each bolt executes many tasks such that each task gets subset of the data
tuples sent from spouts. The partitioning of data streams down to processing bolt tasks
is governed by some built-in stream grouping types [48]. The available stream grouping
types in Storm are [48, 52]:

• Shuffle Grouping: When there is no exact requirements for distributing data tuples,
shuffle grouping is used. Basically shuffle grouping partitions tuples randomly and
equally between bolt tasks to ensure uniform load balance and equal number of
tuples are sent to each task.

• Fields Grouping: In this grouping type, data tuples with same specific field value
will go to the same bolt task for processing. Tuples with another field value may or
may not go to the same bolt task, here we only ensure that data with specific field
value will be grouped together in same processing unit.

• All Grouping: This grouping does not partition data tuples, but it sends a replica of
all tuples to each bolt task in the topology.

• Global Grouping: It is a special case of All grouping, however here all the tuples
belong to one stream are sent to one bolt task which has the lowest ID.
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• Direct Grouping: Here the tuple emitter (usually Spout) decides where exactly
each tuple will go for processing in the topology components. This requires data
streams to be declared as Direct streams when configuring the topology to be able
to direct these streams to specific bolt tasks.

• Local or Shuffle Grouping: In case of having many tasks for the same bolt, this
local grouping shuffles tuples between these bolt tasks. Otherwise, it will act as the
regular shuffle grouping.

• None Grouping: It is used when there is no exact preference when partitioning
data down to bolt tasks. Commonly None grouping acts as shuffle grouping.

• Custom Grouping: Storm gives an API to implement a custom grouping that
fulfill your needs when all the built-in grouping techniques cannot fit your grouping
requirements.

Figure 2.14 shows a graphical representation of some of the stream grouping types
used in Storm.

Figure 2.14: Different stream grouping types in Storm [52].
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2.5 Comparisons between Big-Data Technologies

To summarize the main features of Hadoop, Spark and Storm, a quick comparisons is
conducted in Table 2.1 which focuses on the key differentiating points between these
big-data technologies [17]. This comparison shows how powerful Hadoop, Spark and
Storm are in processing and handling big-data and how each one of them was designed
and tailored to overcome its predecessors drawbacks. From this comparison and the
aforementioned limitations of both Hadoop and Spark, Apache Storm is found to be the
best big-data platform for the research in this thesis.

Table 2.1: Comparison between big-data technologies [17].

When designing video processing and computer vision framework, we need a scalable,
fault tolerant and real time tool such as Storm. Storm is more flexible in implementing
special processing logic unlike Hadoop and Spark which are limited by MapReduce or
DAG framework. This flexibility is required for computer vision algorithms that may
include several processing or data reducing stages that can be achieved using multi-layer
Storm topology. Also Storm has no single point of failure. If nimbus node dies, the
running job will remain functional and nimbus itself will restart easily. If supervisor node
dies, all jobs waiting in the queue will be reassigned to new supervisor nodes without data
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loss. These fault-tolerance capabilities are crucial for video processing applications that
are related to security and governmental sectors. An important aspect to choose Storm
is the stream processing which enables video processing in real-time. Apache Storm
currently has a wide adoption by well-known technological companies such as YAHOO,
Twitter, Spotify and much more [40].

2.6 Conclusion

In this chapter we had a comprehensive illustration about three of powerful big-data tools;
Hadoop, Spark and Storm. We presented an overview about each tool development history
and how it evolved to its current state as a powerful and robust processing tool. We talked
about the main features of each tool and the its key competencies. A brief discussion about
the processing framework components and cluster architecture for Hadoop, Spark and
Storm was introduced to understand how each tool works and how to tune anyone of them
for specific use cases. We found that Hadoop and Spark have various limitations that hinder
them from being good candidate for the developed computer vision processing framework
in this thesis. Apache Storm was shown as the best big-data framework technology that
suits this thesis objective specially for computer vision and video processing requirements.
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Chapter 3: Literature Review

3.1 Introduction

In this chapter, we will go through the basic concepts of computer vision and its objective.
We will highlight some previous efforts in enhancing sequential computer vision algorithms
and performing parallel processing using big-data technologies and how these efforts differ
from this thesis objectives.

3.2 Computer Vision and Video Processing Overview

Computer vision (CV) is known to be the field of developing algorithms that enable
computers and machines to gain knowledge from digital images or videos. CV field aims
to mimic the perception of the human to the surroundings and how the human visual
system understands and analyzes the context from images or videos [53]. Generally, CV
algorithms target the processing of different media forms such as images, sequence of
videos or shots from multiple cameras to automatically extract useful information about
the content of these media sources. Such important theories and algorithms are used in
various applications and fields.

CV goals span from detecting an object appears in image or sequence of video,
specifying the object position, understanding the actions being performed in the scene,
getting the meaning behind theses actions till taking decisions based on the conclusions
acquired from the captured details [54]. The general steps to acquire information from
digital image or one video frame are shown at Figure 3.1.

First, pre-processing algorithms such as noise reduction and image scaling are required
to alter and fine tune the image under processing to match the processing algorithm
requirements. The second step is to select the Area/Region Of Interest (ROI) for the
algorithm which means that we only want to apply the processing over specific segment of
the provided image and not the entire frame. This can be done using different techniques
such as Image Segmentation, Object Detection and Background Subtraction. Then the
selected area is given to the processing algorithm that has a specific logic to apply in
order to perform operations such as Object Detection, Tracking and Feature Matching.
The final step is to reach precious decisions based on the algorithm results and extracted
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information from each individual frame. CV final results may include Motion Analysis,
Pattern Recognition, Alerts for specific events or Summaries of video content and much
more [55].

Figure 3.1: Computer vision steps sequence [55].

CV and Video Processing (VP) have various applications in diverse fields. Examples
of CV applications:

• Optical Characters Recognition (OCR).

• Face Detection.

• Scene Reconstruction.

• Object Tracking.

• People Count.

• Smile Recognition.

• Object Recognition.

• 3D Modeling.

• Video Summarization.

• Indexing of image/video databases.

• Event Detection.

• Safety Alerts.

• Traffic Monitoring.
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3.3 Previous Work

Enabling video processing and analytics in big-data frameworks gave the advantage of
parallelizing such processing algorithms and getting the maximum out of the underlying
hardware resources. To parallelize CV algorithms, many previous contributions were done
in several directions regarding enhancing the processing hardware itself, changing the
algorithm software structure or utilizing the current sequential hardware in a parallelized
way. The earlier efforts went on the direction of parallelizing the hardware architecture
whether it is CPU or GPU architecture.

As mentioned in [56] the clock frequency of CPUs reached almost a fixed value in 2004.
So, in order to increase the parallelism of CV algorithms using such limited sequential
hardware, we have to utilize the available commodity multi-CPU multi-GPU hardware.
The work done by Jaap Van targeted the acceleration of sequential CV algorithms using a
conventional PC that has a multi-core processor in addition to one or more attached GPUs.
The author used OpenMP [57] to benchmark the CV algorithm performance over parallel
multi-core CPU. Using OpenMp, Van achieved speed up from 2.7 to 5 when processing
large size images on a quad-core Intel i7 running Windows 7 using sequential algorithms
while a processing overhead was added when processing small images.

CV processing is categorized into 3 levels[58]; Low Level which includes pixel-
based transformations, Intermediate Level which is related to selecting region of interests
from processed images and apply numeric or symbolic operations and High Level which
combines low and intermediate level results and concludes to information related to object
recognition. The work proposed in [59] was concerned with parallelizating low-level CV
algorithms on distributed cluster of workstations. Two cluster patterns were introduced;
Farmer-Worker pattern and Master-Worker pattern. To process independant segments of
images data, the farmer-worker paradigm is used where data is parallelized and processed
in independent workers. Unlike farmer-worker, the master-worker architecture has a master
node that distributes data processing among workers while guarantees communication and
data sharing between those workers. A significant speedup was obtained using farmer-
worker architecture in applying images convolution operation beside speedup achieved at
image restoration algorithm using master-worker architecture.

Video Transcoding is the process of converting the representation of video data from
one format to another. Video transcoding has many objectives such as rate reduction or
resolution reduction in the scope of redundancy or irrelevancy mitigation. Such intensive
processing video algorithm requires high computational resources. Many efforts were
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done to parallelize video transcoding operations that run sequentially over distributed
architecture. In [60], the author introduced the idea of parallelizing video transcoding
operations using distributed computing to benefit from the scalability and availability that
are offered by distributed architecture. Figure 3.2 shows how distributed computing can
achieve higher throughput by adding new working nodes to the system. Also processing
scheduling algorithm adopted by distributed computing can produce some performance
gain. The distributed video transcoding architecture implemented in [60] is built over
cloud computing using master-workers paradigm. The input video data is split into smaller
parts where each part is considered an independent Group of Pictures (GOPs) -will be
illustrated later in chapter 4-, see Figure 3.3 for the entire implementation. As the video
split size decreases, the proposed system shows higher performance in terms of significant
reduction in startup time and total transcoding time.

Figure 3.2: Distributed stream processing [60].

Another implementation to parallelize video transcoding on cloud computing is done
using Map-Reduce-Based processing framework in [61]. The input video here is divided
into small segments based on GOPs where each segment is directed into one map function
and later the results out of all maps are aggregated at one reduce entity as depicted
in Figure 3.4. The work done by authors targets the scheduling of sub-tasks to cloud
computing machines in order to achieve better performance. The scheduling follows
Max Minimal Complete Time (Max-MCT) approach in assigning video split processing
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task to working machines. The segment length, computer capacity and task-launching
overhead are the considered parameters in evaluating the developed scheduling algorithm.
The Max-MCT tasks scheduling outperformed original MCT however it is not the most
optimized scheduling technique.

Figure 3.3: Distributed video transcoding abstract architecture [60].

Figure 3.4: Video transcoding using mapreduce-based cloud computing [61].

A number of big-data analytics platforms were built using Hadoop framework. In
[62], Pivotal [63] Data Science team established a project that implements large-scale
video analytics over Hadoop. The analytics platform aims to process incoming video
streams in real time, extract important insights and trigger alarms or take actions based
on the analytics results. Video transcoding is done in parallel within HDFS over video
chunks using MPEG-2 encoding/decoding standards where videos are transformed into a
Hadoop sequence file of image frames for better handling. Video analytics in this system is
governed by MapReduce processing framework that suits a diverse collection of computer
vision algorithms such as feature extraction and object detection. To extract structured data
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out of the unstructured processed video streams, SQL, the advanced query language, was
used. The performance of this system was evaluated using Hadoop six-nodes cluster where
the video transcoding step and video analytics is performed in minutes over gigabytes of
long-hours videos.

Authors work in [64] targets the design of video monitoring system that is concerned
with big-data using Hadoop. This monitoring system has vital applications to support safe
city and intelligent transportation fields. The designed monitoring system focused on the
challenges of big-data video monitoring regarding the required high volume data storage,
the complexity of video intelligent analysis and the fusion of large data to implement
useful video-based applications. The monitoring system’s big-data processing platform
component includes Hadoop and HDFS where actual CV and data analytics are done. In
order to provide the user with good video browsing service, a video distribution network
was added to this system to overcome the weak random read of HDFS. Another customized
components such as Task Scheduling and Management and Application Service Interface
were added to enhance the overall big-data video monitoring system and provide high
quality services in real time as depicted in Figure 3.5.
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Figure 3.5: Big-data video monitoring system based on Hadoop [64].

The work in [65] uses Apache Storm to implement a low-delay video transcoding
in distributed computing platforms. The typical initial Storm topology for the proposed
system is shown in Figure 3.6 where the spout is responsible for reading GOP video
segments and providing them to transcode bolt which performs the actual video transcoding
process. The transcoding step is time consuming, that is why it is better to increase the
parallelism of transcode bolt by using more workers. The transcode bolt emits transcoded
video segments to MP4Mux bolt which is an optional step based on user configuration.
Finally the dash bolt collects all video segments. For multi-camera option, the author
stated that the topology components shown in Figure 3.6 should be replicated to handle
different video data generated from multiple camera sources. The author implemented
a custom Storm scheduler to force spouts and dash bolts to be scheduled to same Storm
supervisor. The overall system was tested for local and cloud computers using 720p,
1080p and 4K videos. The 720p video segments gave the best results.
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Figure 3.6: Low-delay Video Transcoding initial topology [65].

To utilize the distributed processing capabilities in CV operations, a new platform
called StormCV [66] was designed to enable Storm to perform CV functions within the
topology architecture. StormCV comes with its CV operations and data models such
as frame and feature extraction. StormCV uses OpenCV to implement most of CV
functions such as face detection and feature extraction. The input data types that could be
processed using StormCV are video streams, video files and images. Using StormCV, the
authors in [67] designed a scalable framework for video surveillance. In this system, the
topology spout acts as Stream-Frame-Fetcher. It reads frames from video stream using
Real Time Streaming Protocol (RTSP) and emits them as a Frame Object. A Background

Subtraction Bolt receives frames from spout then emits them to the processing bolts with
Face Detection or Person Detection functions based on the required output. To gather
meaningful output from this surveillance system, the two processing bolts emit the data
to a Lapeller then Export-to-File Bolt. A standalone Export-To-Video Bolt is running
to save summarized output videos if needed. A complete realization of Storm topology
using StormCV as per authors design is shown in Figure 3.7. To evaluate the proposed
surveillance system, the authors compared the reduction in output videos size using a large
person dataset which resulted in almost 85.65 percent decrease in disk usage based on the
video content.
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Figure 3.7: Storm topology for scalable and intelligent real-time video surveillance
framework [67].

3.4 Conclusion

In this chapter we discussed the concept of CV and the steps followed to acquire infor-
mation and insights from images and video data. We reviewed a collection of previous
efforts done to parallelize the execution of CV algorithms such as video transcoding using
multi-core distributed commodity hardware and within cloud computing architecture.
Many developed systems tackled the idea of enabling big-data processing frameworks
such as Hadoop and Storm to support CV functions and requirements. Although all the
discussed work gave significant improvements in CV parallelization, they have some
notable limitations:

• Not Generic Systems: Most of the designed systems target the scaling of specific
CV algorithms such as video transcoding and surveillance-related algorithms and
not generic.

• Deep knowledge of CV is required: In order to implement any CV algorithm using
any of the aforementioned systems, the user needs to have deep knowledge of
particular libraries and coding functions in order to do any modifications in the used
algorithms.
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• Not suitable for sequential CV algorithms: The direct enhancement of these efforts
goes for CV algorithms that can run already in parallel with no inter-frame data
dependency, however sequential CV algorithms with inter-frame dependency have
vital applications in most fields.

• Enhancement evaluation is algorithm-specific: To assess the advancement of these
previous efforts, the authors focused on observing evaluation metrics that are related
to the algorithms under study such as reduction in output video size which may not
be applicable to other CV algorithms.

In the next chapter we propose a generic scalable distributed chunk-based video pro-
cessing framework that targets using Apache Storm for big-data sequential CV algorithms.
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Chapter 4: Distributed Chunk-based
Big-Data Processing Framework

4.1 Introduction

In this chapter a new processing framework is introduced to process sequential CV
algorithms in parallel using big-data tools. We will illustrate the framework architecture
and all the new developed components that cover the entire VP pipeline from external
data ingestion to completing data processing along with taking the decisions needed for
efficient resources usages using Apache Storm. First, we will illustrate the basic concept
of the introduced chunk-based framework and highlight its new features. Second, we
will go through the new system architecture and the novel components with a detailed
description of each component functions and responsibilities. We will talk about all
the challenges of sequential VP mentioned in chapter 1 and how our new chunk-based
processing framework overcomes them.

4.2 Basic Concept

CV and VP algorithms incorporate several stages to read images or video frames, analyze
the data within each input sample and extract useful results and insights based on the
processing algorithm function as previously illustrated in Figure 3.1. For each individual
video frame processing, the data extracted from this frame may have a direct dependency
on the previous frames in sequence or it is self dependant. In case of no dependency
between the processed frames, we can process all the frames in parallel with random order
using big-data tools such as Apache Storm. Although the frames are dependant, we may
have a redundancy in the output data due to replicated objects and events occured within
the adjacent frames. Using mapreduce framework eliminates the redundancy in the results
by using a reduce function that combines the output of each frame and concludes to clear
and robust results.

When it comes to sequential VP where an inter-frames dependency exists, it is needed
to process video frames in order of their presence at original video file. The results of each
video frame are used in processing the next coming frame. When feeding video frames
to big-data tools one by one especially Storm, they cannot cope with the dependency
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nature of such sequential algorithms. Storm will distribute these frames randomly to the
available processing bolts without tracking their order or paying attention to the sequential
processing requirements. In order to overcome Storm limitation in running sequential VP
algorithm besides benefiting from Storm powerful big-data capabilities, we developed
the distributed chunk-based big-data processing framework (DCB-Framework). The
DCB-Framework is built using mapreduce framework and customized for Apache Storm.

The basic idea of the DCB-Framework is to take input video files and divide each
file into small video chunks to be given to Storm topology as independent inputs. Each
video chunk will be processed by Storm bolts frame by frame in order without the need
to go through the entire video file in sequence. The chunk size value used to split each
input video along with total number of chunks is calculated based on the available CPU
cores and minimum number of frames per chunk that produces meaningful output. The
value of minimum chunk size can vary from one VP algorithm and another. For example,
algorithm such as video summarization needs minimum number of frames lets say 300
in sequence frames to perform background subtraction and extract objects. So, it is not
feasible to pick a chunk size smaller than 300 frames to operate with the DCB-Framework
for video summarization as an example.

DCB-Framework dynamically adjusts the configuration of Storm topology before
it starts to satisfy the needed resources for the input video chunks. That implies the
reconfiguration of the chunk size requested by the user to a more suitable value that
produces number of video chunks equals to number of available CPU core. It is assumed
that each video chunk needs 1 CPU core for processing. This enables us to process each
video chunk in a separate core and perform the processing of all the chunks in parallel.
In order to process each video chunks in parallel, we need to execute the sequential
CV algorithm over each chunk in a separate processing entity that takes the chunk’s
frames in order and process them sequentially. A custom data grouping mechanism is
developed to enable Storm grouping all the frames that belonging to specific video chunk
and sending them to independent processing bolt instances. The custom grouping logic
aims to maintain data consistency in each processing instance and preserve the order of
processing of chunks frames in sequence.

When Storm spout receives an input data tuple which is one video frame in our case,
the spout will emit the tuple to the least loaded bolt task in Storm topology for processing.
However in distributed DCB-Framework it is needed to direct each frame to one distinct
bolt task based on the decision of the implemented custom data grouping. In our work
we added a new bolt tasks assignment technique different than the default round-robin
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one that Storm uses. A novel dynamic chunks distribution mechanism that maintains
an assignment map between video chunks IDs and processing bolt tasks is implemented
within the DCB-Framework. This new distribution mechanism monitors the distribution
of all the upcoming frames one by one on the fly within Storm topology to make sure
it will comply with the assignment map. This also prohibits any racing on the available
resources that could occur from random video frame emitting. DCB-Framework can
process multiple video files in parallel and produce the results of all files almost in the
speed of processing one file individually with high accuracy.

A typical representation of a Storm topology that is used to execute CV algorithms
following the DCB-Framework shown in Figure 4.1. First, the video files that needed to
be processed pass through a native C++ application which reads each video file from disk
and splits it into group of small chunks according to the selected chunk size. Each video
chunk is treated as a sequence of video frames and sent to Storm topology using Apache
Thrift [68, 69] as a communication channel. Thrift serializes each frame with its respective
metadata and sends it using thrift server on specific network ports. Storm spouts listen to
these specific thrift servers ports and receive the video frames and their info. Spouts act
as data sources, so when they receive video frames, spouts emit the frames to Storm bolt
tasks according to the data grouping criteria applied.

Figure 4.1: Storm topology for CV processing using DCB-Framework.

Each Storm bolt has a group of sub-tasks that contain the VP engine. Wherever a
Storm topology is submitted, the entire VP algorithm libraries and dependency files are
grouped in a jar file. This jar file is uploaded to working machine where bolt tasks should
run. For each CV algorithm, multiple bolt task instances are initiated to parallelize the
processing, increase the throughput and decrease the complete latency. Every instance
executes the processing algorithm over different data received from spouts and independent
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of the processing that occur in other bolt instances even if all of them are located in the
same cluster physical node. For bolt tasks distribution over the physical nodes, we use the
default fair scheduler that Storm adopts and mentioned at Chapter 2.

In some processing algorithms, it is required to combine the results out of each video
chunk to eliminate the redundancy of data produced from cutting the video file into sub
chunks. For example, if the algorithm is detecting the appearance of a certain object
through the entire video frames and this object just starts showing in the last frame of one
video chunk and continue showing in the beginning of the next chunk. This object will be
recognized as two different objects which gives misleading results. So, a reduce step is
required after finishing the processing to gather such information and remove any result
redundancy that happens in edges of video chunks.

As shown in Figure 4.1 the reduce function is executed in a seperate topology (Reducer

Topology) which is submitted with the original processing topology. The spouts of the
reducer topology receive the initial results of the CV algorithms through Thrift and emit
them to the reducer bolts for applying reducer logic. Usually the reducer processing is
not heavy compared to the processing algorithm itself. That is why the scope of this
thesis experimental results is testing the distributed DCB-Framework over the processing
topology itself. VP can produce different types of output data. The results could be in the
form of text metadata, images or video files. When Storm bolts finish executing the CV
processing logic, all the resultant data are generated and stored on persistent database or
locally on disk.

From all of that we conclude that generally CV and VP algorithms can be ported
within Storm big-data processing framework. Spouts are used as data sources that read
input video frames and distribute them to the topology processing units which are bolts. To
enable processing of sequential CV algorithms, we introduced the concept of distributed
chunk-based processing in this thesis. The new DCB-Framework leverages the powerful
capabilities of Storm in processing huge amount of video files in competitive time while
using all the available resources efficiently.

In the next section, a detailed elaboration of the DCB-Framework is conducted. We will
introduce new components to Storm topology architecture and list all their functionalities
and the logic behind how they work.
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4.3 Architecture

To perform the new logic of video chunks splitting and custom data grouping within Storm
topology, new components and functionalities are added to Storm basic blocks. Figure 4.2
depicts an overview of the developed DCB-Framework architecture in Storm. Briefly the
new working units that are presented in this thesis are :

1. Resources Calculation Unit (RCU): RCU evaluates the submitted topology re-
sources requirement against the available resources. Then calculates the suitable
chunk size and number of chunks according to the available resources and the
number of video file(s) that needed to be processed.

2. Data Splitting and Feed Unit (DSFU): Here we implemented a video splitting
technique called Parallel-Chunk-mode. The parallel chunk mode is used to split the
video files into chunks with chunk size equals to the actual chunk size calculated in
the resources calculation unit. The splitting process is done in parallel over all the
video files and the chunks are sent almost in parallel to Storm spouts. This enables
Storm to start processing all the video chunks almost simultaneously.

3. Decision Making and Resources Mapping unit (DMRMU): This unit basic func-
tion is to map all the running bolt tasks to the video chunks submitted for processing.
A Task Assignment Map and a Tasks IDs Queue are created and maintained in an
open source in-memory database called Redis. These map and queue are used to
allocate the available resources and govern the distribution decisions for each video
frame to assign each chunk to an individual task and avoid racing problems over
the available resources. This unit also is responsible for performing data grouping
where a custom direct grouping is implemented in Storm, so that each chunk is
processed independently in separate Storm task.

In the upcoming sections, we will discuss all the developed components of the The
DCB-Framework in more details and the relation between these components.
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Figure 4.2: DCB-Framework architecture in Storm topology.
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4.3.1 Resources Calculation Unit (RCU)

In order to calculate the proper chunk size and number of chunks to use at splitting video
files, we developed the Resource Calculation Unit (RCU). The resource calculation unit
takes chunk size as an input. The chunk size is the minimum number of frames per
chunk that is preferred by the user and complies with the algorithm constraints to produce
meaningful output. Some VP algorithms require certain minimum number of frames to
run at once where below this number the algorithm can not operate probably.

The RCU is aware of Storm cluster overall resources, such as how many cores and
memory the entire cluster machines can offer. We managed to let each active Storm
topology to report its exact assigned memory and cores to Redis in-memory database
-which will be discussed later-. The RCU working algorithm is as follows:

• Inputs:

– List of video files to be processed.

– Initial Chunk size: Minimum number of frames per individual video chunk
that is suggested by the user.

– Required memory per instance: This is the maximum memory that will be
assigned to each bolt task instance to process an individual video chunk.

• Functions: Given Storm cluster actual and available resources (CPU cores and
memory), The RCU is responsible for:

– Calculation of Actual Chunk size:

– Calculation of actual number of needed Storm bolts instances to submit Storm
topology that is capable of processing the given video files in parallel.

• Outputs:

– Actual Chunk size.

– Actual number of Storm bolts needed instances.

Figure 6 shows an overview of the RCU block diagram. It depicts the inputs, basic
working functions and the expected outputs of this unit.
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Figure 4.3: The RCU block diagram.

The RCU follows this working procedure:

1. Loop over input video files list and get:

• Number of frames per video file: this is obtained from video file specifications.

• Total number of frames for all video files in input list (Total # of frames).

2. Get working cluster resources: Storm has a configuration file that describes all the
cluster working nodes and their basic processing resources. Hence, from Storm
cluster configuration we loop over all the cluster nodes and get:

• Total number of available CPU cores (Basic # of Cores) in the cluster.

• Total available memory (Basic Memory) in the cluster.

3. Get already used cluster resources: Every submitted and active topology reports its
assigned cpu cores and memory to Redis. So, to calculate the used resources we do
the following:

• Get list of all topologies IDs for the running topologies from Storm. Using the
topologies IDs, access Redis to get taken resources by each topology.

• Sum the returned values to get total used cores and memory (# of Used Cores)
and (Used Memory).
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4. Calculate free resources: Having cluster basic and used resources from steps 2 and
3, we can get the free resources that are available to run a new topology in order to
process the input video files list.

# of Free Cores = Basic # of Cores−# of Used Cores (4.1)

Free Memory = Basic Memory−Used Memory (4.2)

If ( # of Free Cores < # of video files) −→
∴ Resources are not enough to process these files,
else continue,

Figure 4.4 illustrates the working flow of the RCU from step 1 to 4.

Figure 4.4: The RCU steps to calculate number of frames and free resources.

5. Calculate number of bolt instances that can be initiated based on total free memory,
required memory per instance and available number of cores in order to select the
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minimum number of instances needed.

Initial # of instances =

⌈ Free Memory
Memory per instance

⌉
(4.3)

If ( # of Free Cores < Initial # of instance) −→

∴ Needed # of instances = # of Free Cores (4.4)

else,

Needed # of instances = Initial # of instances (4.5)

6. Calculate actual chunk size which defines number of frames per video chunk that
will be used to split the video files. The calculation of chunk size is based on total
number of frames of all video files in input list in addition to the calculated needed
number of bolt instances. After finishing these calculations, the actual chunk size
value will be the maximum between the calculated chunk size and the chunk size
initial value.

Calculated chunk size =

⌈ Total # of frames
Needed # of instances

⌉
(4.6)

If (Calculated chunk size < Initial chunk size) −→

∴ Actual chunk size = Initial chunk size (4.7)

else,

Actual chunk size = Calculated chunk size (4.8)

The entire logic of calculating Actual chunk size is depicted in Figure 4.5

7. Using Actual chunk size, recalculate needed number of instance and take the mini-
mum value between the new calculated number of instances and the one calculated
in step 5.

New # of instances =

⌈ Total # of frames
Actual chunk size

⌉
(4.9)
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Figure 4.5: The RCU working steps to calculate actual chunk size.
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If (Needed # of instances < New # of instances) −→

∴ Final # of instances = Needed # of instances (4.10)

else,

Final # of instances = New # of instances (4.11)

8. In some cases, number of frames per individual video is not divisible by the chunk
size we calculated. So, the last video chunk size could be less than the actual size.
This makes the calculation of needed number of instances based on total number
of frames of all video files in videos list is not completely accurate. As a double
check, we recalculate the needed number of instances per video file and sum the
total number of instances, then compare it with the value calculated in step 7 and
select the greater one.

Start with Total # of instances = 0,
For(video in videos list):{

# of instances per video =

⌈Total # of frames per video
Actual chunk size

⌉
(4.12)

Total # of instances + = # of instances per video (4.13)

}

If (Final # of instances < Total # of instances) −→

∴ Actual # of instances = Total # of instances (4.14)

else,

Actual # of instances = Final # of instances (4.15)

9. Final values are: Actual chunk size and Actual # of instances

The entire algorithm designed to calculate the number of bolt instances is shown in
Figure 4.6.
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Figure 4.6: The RCU calculation of actual needed number of bolt instances.
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4.3.2 Data Splitting and Feed unit (DSFU)

The Data Splitting and Feed Unit (DSFU) is responsible for splitting the input video files
into equally sized small chunks where the chunk size is the actual chunk size calculated by
the RCU as shown in Figure 4.7. Then these video chunks are fed frame by frame ordered
to Storm spouts for processing. We give a unique ID to each video chunk which is the
original video file name plus a numerical suffix that numbers each chunk. The chunks
numbering starts from 0 in order of their presence in the original file itself. This unique
chunks ID will be used later in grouping data probably within Storm and collecting the
results of each chunk individually. Numbering of frames within each chunk is kept the
same as their numbering in the original video file. For example; if the chunk size equals
1000 frames, then the first chunk will have frames numbered from 0 to 999 and the second
chunk frames are from 1000 to 1999 and so on.

Figure 4.7: Splitting video files in DSFU.

Video files compression techniques depend on the fact that all the adjacent sequencing
video frames have a relation and any frame can be predicted by knowing the previous
frames preceding it. The first frame to appear is called an Iframe (Intra-coded picture)
which is a self contained frame that will be used to predict the upcoming frames. The
I-frame has all the needed information to know its content and reconstruct the next frames.
The upcoming frames use the I-frame as a reference by observing the differences that
occur in the image compared to I-frame. These frames are called P-frames (Predicted
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frames). Some frames can use the previous and next frames to it in order to predict its
content, they called B-frames (Bidirectional predicted frame) [70, 71]. Each video file has
many GOPs (Group of pictures) where each GOP consists of one I-frame and multiple of
P and B frames [72].

Figure 4.8: Illustration of video frames sequence consisting of I, P and B frames [70].

In our data splitting and feed unit, we take the actual chunk size calculated as a
reference when splitting the video although we try to make sure that the first frame in
each chunk is an I-frame. This is important as each chunk will be decoded and processed
independently from other chunks and the info of an I-frame is needed to decode the other
frames in the chunk.

The video chunks are sent to Storm spouts to be processed in the processing bolt. We
send all the chunks frames simultaneously to the spout queue such that the first frames
of each chunk are added to the spout receiving queue in almost the same time, then the
second frames and the remaining ones all in order till the end of all chunks. We called this
splitting and receiving technique Parallel chunk-based splitting, see Figure 4.9. It enables
Storm to process all the videos chunks in parallel along the entire available resources.

Figure 4.9: Sending chunks frames to spouts queue using parallel chunk-based splitting.
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4.3.3 Decision Making and Resources Mapping Unit (DMRMU)

As mentioned before, Storm working topologies are constructed from group of spouts and
bolts where the spouts are the data sources and bolts are the processing units. Bolts tasks
are the actual processing units that are distributed among the working cluster machines. In
case of sequential VP algorithms, it is required for all the frames that belong to one media
source to be processed in the same bolt task while preserving their sequential order. So,
after splitting video files into chunks in splitting unit, we need to group the entire frames
of each chunk and emit them to one specific bolt task. Also we need to isolate the frames
of each chunk and make sure that each bolt task receives all the frames from one chunk
exclusively to maintain data consistency as shown in Figure 4.10.

To achieve these needs we implemented a custom Storm grouping using Storm built-
in Direct grouping in addition to a developed decision mechanism that governs tasks
allocation, data grouping and tuples emitting process. The Decision Making and Resources
Mapping unit DMRMU is responsible for assigning bolt tasks to independent video chunks,
grouping chunks frames, applying custom grouping rules and maintaining the assignment
map between bolt tasks and chunks frames data during topology processing operations.

Figure 4.10: Data splitting and grouping in DCD-Framework.

We used Redis [73], an open-source in-memory database and messaging broker to
create and store the assignment map and share these information between all working
machines. Basiclly, Redis stores data as key-value pairs and supports various types of
data structures such as strings, lists, hash tables, sets, sorted sets, geospatial data . . . etc.
It supports many programming languages such as Java, Python, C++, Ruby, PHP and
much more [74, 75]. In our development we used lettuce [76] which is a Redis Java
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client that is thread safe for all synchronous and asynchronous connections with Redis
under Apache license. This suits our developed Storm applications that are written in Java.
Also to execute complex queries and computations in Redis, we used Lua scripts [77] a
lightweight and powerful scripting language that supports functional, object-oriented and
procedural programming. We were able to write lua scripts in Java using Lettuce.

When the topology is submitted, it creates number of bolts tasks equals to the actual
number of needed instances calculated in resources calculation unit. The tasks are dis-
tributed evenly between the cluster machines using Storm default fair scheduler. Based on
the calculated actual chunk size, we limit the number of chunks to be submitted to one
topology at a time to equal number of needed bolt tasks instances. This gives a one-to-one
mapping between the submitted chunks and the running tasks. To distribute the video
chunks over these tasks the DMRMU creates and maintains in Redis the following:

• Tasks IDs queue: A Redis queue contains all bolt tasks IDs in any order.

• Tasks-to-Chunks assignment map: A Redis hash map with <key, value> pairs
represent < TaskID,ChunkID >.

Figure 4.11 shows a sample view of Redis contents with some values as example.

Figure 4.11: Redis sample view of Assignment Map and Tasks Queue.
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The steps to create the Tasks queue and Assignment map during Storm topology
creation are:

1. Each bolt task gets its unique ID in initialization step and pushes it to the top of
tasks IDs queue in Redis.

2. A new record is created in the assignment hashmap in Redis with < key,value >=<

TaskID,” f ree” > . “free” in record value means that this task isn’t assigned yet to
any chunk.

When the spout starts receiving chunks frames, it is required to assign one bolt task
to each individual chunk and send the entire chunk frames exclusively to this bolt task
in sequential order while preserving the frames in the same order the spout receives
them from its queue. We proposed a methodology to utilize the created Tasks queue and
Assignment map in order to perform the assignment operation successfully and route each
frame to its destined task correctly. Also, we took into consideration the precautions to
avoid resources racing between chunks.

Each Spout in the topology performs the following when it receives one video frame:

1. Extract the frame SourceID from the respective metadata sent with the frame. This
frame belongs to the chunk with ChunkID = SourceID

2. Check if there is an assigned bolt task for this chunk with ChunkID;
The spout sends a request to the developed Redis client in DMRMU to get any
record in the Tasks-to-Chunks assignment map where the records value equals the
current ChunkID.
If yes, then there is an assigned bolt task for all the frames belonging to this chunk.

• The DMRMU retrieves the associated records key which is the assigned TaskID

for this video chunk.

• Change the spout emitting stream ID of this frame to equal TaskID.

If no, then this is the first frame of this chunk and we need to pick a free task and
allocate this task to the current video chunk.

• The DMRMU pops the first free TaskID from the Tasks queue in Redis and
returns it as the candidate free slot.
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• Using Redis client, the Assignment map is updated by changing the value of
the record < key,value >=< TaskID = ” f ree” > to < key,value >=< TaskID =

ChunkID > where the ChunkID equals the SourceID of the current frame.

• Change the spout emitting stream ID of this frame to equal TaskID.

• Any new frames belonging to this chunk will be sent to the same bolt task with
the TaskID selected in this stage

We used a Redis queue to store and retrieve the task ID in order to limit the access of
this queue to one requesting chunk at a time. Redis queue limits the access to pop values
from it to one request at a time. This eliminates the chance of selecting the same task
by many chunks and avoid any case where the chunks race over the available resources.
Processing resources allocation and decision process for each video frame is depicted in
Figure 4.12.

Storm spout declares its output streams as Direct streams to have the ability of deciding
the receiving bolt task for each chunk. Using the TaskID assigned to each ChunkID, a spout
alters the receiving TaskID using emitDirect method which is a built-in method in Storm.
This is a custom implementation of Storm streams Direct Grouping. Hence, incoming
data streams tuples are no longer distributed randomly to the consuming bolts but the
distribution process complies with the Assignment map and DMRMU policies.
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Figure 4.12: Selecting TaskID for each video frame.
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4.4 Proposed Framework Key Competencies

The DCB-Framework proposed in this thesis has generic architecture and working logic.
Most of sequential CV and VP algorithms can be ported in Apache Storm for processing
using DCB-Framework. Commodity servers and hardware with reasonable memory and
number of CPU cores can work fine with DCB-Framework. That is why there is no
need for specific hardware requirements to utilize this processing framework and gain
processing speedup. Despite that the main target of this framework is to enhance and
parallelize the processing of sequential VP algorithm, the DCB-Framework is generic and
can adopt parallel algorithms as well.

Another important advantage of DCB-Framework is the ability to process multiple
video files simultaneously while preserving data consistency and isolation within Storm
processing bolts. This leverages the horizontal scalability of Storm big-data framework
efficiently. Data distribution within our proposed framework makes it possible to perform
sequential VP in the scope of one video chunk through big-data processing frameworks
which is an added point to this thesis concept.

4.5 Conclusion

In this chapter we proposed a new processing framework that enables us to port sequential
CV and VP algorithms within big-data processing frameworks. The developed algorithm
basic idea is to split each video file into sub chunks and distribute the processing of
these chunks over the available processing CPU cores under controlled data grouping
and distribution logic. Apache Storm was the selected big-data tool to implement the
DCB-Framework. Storm was the best fit to this thesis work due to its ability to provide
real-time processing while achieving low latency and fault tolerance. The core points and
new system architecture of the proposed framwork were discussed in details. In the next
chapter we review the experimental results done to evaluate the DCB-Framework and
conclude to the enhancements and performance gain achieved.

61





Chapter 5: Experimental Results

5.1 Introduction

In this chapter several experimental tests were performed to evaluate the performance of
the proposed DCB-Framework against different sequential CV algorithms. The selected
use cases are Video Summarization (VS), License Plate Recognition (LPR), Face Detection

and Heatmaps. Then, we illustrate the hardware setup and Storm topology structure used
to conduct these tests. Various evaluation metrics are taken into consideration to prove the
processing gain that our proposed framework can reach. These tests are done over 1 video
file for each CV algorithm then we selected Face Detection for testing against multiple
input video files.

5.2 Evaluation Process Setup

5.2.1 Hardware Setup

A Microsoft Azure online virtual machine was used to conduct the evaluation testing trials.
The virtual machine has 32 Intel CPU cores, 256 Gigabyte memory and 1 Terabyte hard
disk. Ubuntu version in the testing machine is 16.04. Also it has Apache Storm version
1.0.1, Redis version 3.2.8 and Apache Thrift version 0.9.3 installed.

5.2.2 Storm Topology Structure

Storm topology for VP can run on two setups: standalone or distributed cluster. In
standalone setup we have one physical machine that has powerful processing capabilities
and hold the responsibilities of both master and slave machines. In distributed setup we
have one physical master machine with minimal hardware requirements in addition to
one or more powerful slave machines for processing. In our evaluation process we used
the standalone setup due to the limitation of the available powerful machines for testing.
However the algorithm is general and can be applied for distributed cluster setup with no
change in the logic of topology architecture.
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Generally, in any setup we need only one Storm nimbus daemon that is used to submit
and monitor cluster running topologies as described in chapter 2. For each slave machine
we need one Storm supervisor for Storm tasks scheduling. We limit one spout with one
running task per physical salve machine that is responsible for reading input video frames
sent over thrift and distribute them for processing in all existing bolt tasks across the entire
cluster. Only one bolt will be submitted in the processing topology with multiple running
tasks. Number of bolt tasks in the submitted Storm topology is limited by the number of
video chunks that needed to be processed simultaneously.

Let’s say we have 3 input videos each one is divided into 3 chunks, which means that
the processing bolt needs to have 9 individual bolt tasks that contain the processing engine
loaded and ready to process different data. Each spout or bolt tasks runs in a separate
Storm executor. Thus number of topology executors equals to:

# of Topology Executors = # of Spouts + # of Bolt Tasks (5.1)

We run a separate Storm worker for handling supervisor duties in each physical slave
machine while each spout or bolt task has its own worker. So number of Storm workers in
VP topology equals:

# of Topology Workers = # of Slave Machines + # of Spouts + # of Bolt Tasks (5.2)

Storm component parallelism hint equals to initial number of executors assigned to this
component in topology submission. Moreover the topology total parallelism factor equals
to sum of all components executors in the topology. One slave machine in VP topology
components is shown in Figure 5.1.

Storm configurations to tune spouts automatic back pressure [78, 79] are listed in
Table 5.1. Automatic back pressure is a practical feature was added to Storm starting from
version 1.0.0 [80]. It aims to throttle the spout flow of sending new tuples for processing
in case of bolt congestion. This feature depends on the state of the bolt receiving queues
whether they are empty or full. We have two important watermarks that tune the speed
of spout data tuples sending; high and low watermarks. These watermarks define the
percentage of bolt tasks occupation size. When high watermark is reached, the spout
sending rate is slowed down until the bolt consumes group of pending data tuples and the
queue is emptied till reaching low watermark. At low watermark, the spout is allowed to
resume sending data tuples to the topology tasks again. The parameters used to tune Storm
back pressure are presented in Table 5.1. Back pressure feature allows us to decrease
number of failed/non-acked data tuples and enhance data complete latency and throughput.
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Figure 5.1: Storm slave machine components for VP.

Table 5.1: Storm configuration for automatic back pressure.
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5.2.3 Evaluation Metrics

In order to evaluate the presented algorithm in this thesis, we collected different perfor-
mance metrics during the testing runs. First, we collected the total processing time of each
testing video file in all use cases. The total processing time is the difference between the
timestamp of first video frame received by the spout and the timestamp of last processed
frame in bolt tasks. Then, we calculated how many times speed up we achieved compared
to the default sequential processing. Let’s say Ts is the processing time of the video file in
sequential mode and Tc is the processing time in testing chunk-based case. The speed up
gain is:

Speed Up =
Ts

Tc
(5.3)

. The speed up of the sequential processing is considered 1.

Using Storm web UI, we captured an important metric called Complete Latency which
is the total duration between spout emitting the tuple and the processing tuple tree being
completed and acked successfully. That includes the waiting time the frame’s data tuple
spends in the spout sending queue waiting its turn to be emitted for processing. The
complete latency reflects the slowest path of the topology tree. It is also a reflection of how
efficient the back pressure tuning is and if the available resources are enough to process
frames in parallel with minimal waiting time. We implemented a custom Storm metrics
that measures the average of how many frames per second (fps) the spout is receiving and
sending frames to the topology and the average bolt task processing fps.

5.3 Evaluation Test Cases

In this section we assess the performance of DCB-Framework for different sequential CV
popular algorithms. The algorithms under consideration are Video Summarization (VS),
License Plate Recognition (LPR), Face Detection and Heatmaps. For testing we used 1
hour video file of moderate activity for each processing algorithm. The specifications of
these video files are listed in Table 5.2. Noting that we scale the input video files frame
rate to equals 15 fps. That removes the redundancy and eliminates the processing of
unnecessary frames. For example if we have a 30 fps input video file, we will drop almost
15 frame from each second to decrease number of processed frames and unify the frames
rate for all testing videos. When number of chunks = 1, the algorithm runs sequentially
over the video frame by frame. Chunk mode is considered for number of chunks ≥ 2.
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Table 5.2: Testing video specifications for each VP algorithm.

The original total number of frames per video NOriginal is calculated as follows:

NOriginal = Dseconds×Videosfps (5.4)

Where Dseconds is the video duration in seconds and Videosfps is the original video fps.
The final number of frames per video NFinal after scaling the fps to 15 is:

NFinal = NOriginal×
15

Videosfps
(5.5)

5.3.1 Video Summarization

Video Summarization algorithm is used to take hours of video files as input, pass by it
frame by frame to extract all the important events and produce an output summarized
video that is a comprehensive version of the original one. The duration of the output video
is in minutes which is small compared to the original input video. The output summarized
events extend to anything that is moving in the scene (e.g. cars and people . . . etc.). Sample
input and output screenshot for video summarization algorithm is show in Figure 5.2.

The video frames are fed in succession to the algorithm where objects that are presented
in those frames are extracted and tracked throughout the rest of frames. A post-processing
step is applied to eliminate invalid or short-time appearing objects. In order to generate a
meaningful summary, those objects are drawn in a particular order matching that of the
input video. Yet multiple objects can be drawn in a single frame based on user input to
squeeze the summary duration. All objects are then fused in one output video labeling
each with its original timestamp. Video summarization plugin depends on these libraries;
OpenCv 3.3 and Bgslibrary.
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Figure 5.2: Video Summarization algorithm output sample.

In order to test the enhancement of DCB-Framework processing over video summa-
rization algorithm, we used the 1 hour duration testing video with specifications defined in
Table 5.2. We wanted to examine the effect of splitting this video file over different number
of video chunks that are processed in individual bolt tasks. The collected performance
evaluation metrics are listed in Table 5.3.

In Figure 5.3, Figure 5.4 and Figure 5.5 we plotted the total processing time, the
processing speed up and complete latency of video summarization against number of
chunks. It is shown that by increasing number of chunks, the total processing time of
testing video decreases and we got a maximum speed up of around 5x starting from using
13 chunks per video compared to processing it sequentially. The spout complete latency
decreases for video summarization as we reach the saturation point at almost 13 chunk per
video file.

Table 5.3: Video summarization algorithm evaluation metrics.
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Figure 5.3: Total processing time of testing video for video summarization.

Figure 5.4: Processing time speed up of testing video for video summarization.
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Figure 5.5: Complete latency of testing video for video summarization.

5.3.2 Face Detection

The Face Detection VP algorithm aims to find all possible faces in an image or a video
frame. It takes a video frame as an input. If the input frame size is larger than 150 x 150
pixels the width and height of the frame are resized by 1/5. Then the original (or resized)
frame is forwarded to a neural network that detects the faces in the frame. The network
is a C++ implementation of the multitask Convolutional Neural Network (CNN) using
OpenCv library for image processing and Caffe framework for neural network processing.
Example of face detection result for one video frame is shown in Figure 5.6.

The performance evaluation of face detection processing against different number of
parallel video chunks is listed in Table 5.4. These values are for the 1 hour testing video
described in Table 5.2. The evaluation metrics parameters graphs are shown in Figure 5.7,
Figure 5.8 and Figure 5.9. It is noted that the total VP time decreases by increasing number
of video chunks till we reach a max speed up of 7.8x starting from 26 chunks per video
file. This reflects the complete latency decreasing to lower values when the processing
speed up approaches the saturation point.
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Figure 5.6: Face detection algorithm output sample [81].

Table 5.4: Face detection algorithm evaluation metrics.
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Figure 5.7: Total processing time of testing video for face detection.

Figure 5.8: Processing time speed up of testing video for face detection.
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Figure 5.9: Complete latency of testing video for face detection.

5.3.3 License Plate Recognition

The License Plate Recognition (LPR) is used basically to extract the vehicles license
plates information from recorded surveillance videos. The vehicles images are detected
from video surveillance cameras that may be installed in streets, facilities gates or parking
areas. The algorithm takes the video frames one by one and pass it through sequence of
functions. First an OpenCV cascade classifier is used for detecting the license plate in the
video frame. If a specific ROI is defined for this algorithm, only part of the frame will be
processed which is the part that highly contain a license plate. After plate detection, the
frames pass through a neural network to perform Optical Character Recognition (OCR).
The OCR function is to extract each letter and number from the license plate to get the
license information. LPR may have multiple classifiers for different countries plates
standards. A detected car plate out of LPR algorithm is shown in Figure 5.10

Figure 5.10: LPR algorithm output sample.
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Table 5.5 shows the evaluation metrics captured from running LPR testing video
specified in Table 5.2 using DCB-Framework processing for different number of chunks.
From Figure 5.11 we found that LPR total processing time decreases remarkably by
increasing number of splitted video chunks. We achieved a max processing speed up of
about 4.7x as depicted in Figure 5.12. The spout frame complete latency decreases to a
negligible value when we reach the speed up saturation point which is about 10 chunks
for 1 hour testing video, see Figure 5.13.

Table 5.5: License plate recognition algorithm evaluation metrics.

Figure 5.11: Total processing time of testing video for license plate recognition.
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Figure 5.12: Processing time speed up of testing video for license plate recognition.

Figure 5.13: Complete latency of testing video for license plate recognition.

5.3.4 Heatmaps

Heatmaps algorithm is used for group activity detection in captured videos in order to
show the crowd distributions at different designated areas. The heatmaps algorithm
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first models scene changes by subtracting background using sequence of video frames
which enables detecting areas of movement. Then the algorithm applies filtration and
morphological operations in order to remove noise from the results. Using result filtration
over sequence of frames, algorithm generates 2-D histogram for movement areas. Finally,
clustering is applied to classify the 2-D histogram into different density ranges with their
ratios. Figure 5.14 shows sample of Heatmaps expected output. Heatmaps algorithm is
implemented using OpenCV/C++.

Figure 5.14: Sample output of heatmaps algorithm.

From heatmaps evaluation metrics captured in testing trials we found that the process-
ing total time decreases by increasing number of chunks per testing videos. Referring
to Table 5.6, the maximum processing speed up we can get is 2.6x times from running
the heatmaps sequentially over 1 hour testing video. This speed up occurs at the algo-
rithm saturation point which is almost in 5 chunks per video as show in Figure 5.15 and
Figure 5.16. This processing speed up comes along with noticeable decrease in spout
complete latency as depicted in Figure 5.17.
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Table 5.6: Heatmaps algorithm evaluation metrics.

Figure 5.15: Total processing time of testing video for heatmaps.
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Figure 5.16: Processing time speed up of testing video for heatmaps.

Figure 5.17: Complete latency of testing video for heatmaps.

5.3.5 Testing multiple video files

At the previous sections, the proposed DCB-Framework was tested for 1 hour testing video.
In this section we selected the Face Detection use case for evaluating the DCB-Framework
in processing multiple video files simultaneously in parallel. We considered the results
of processing 1 video file sequentially and using 3, 4 and 5 chunks as a benchmark for
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evaluating the performance of processing from two to five 1 hour video files with same
specifications. The processing time of multiple video files sequentially is calculated as
multiple of processing 1 video file sequentially according to number of video files under
testing. For example, the processing time of 1 video file sequentially equals 38.75 minutes.
Therefore the processing time of 3 videos sequentially equals 38.75×3 minutes.

The processing evaluation metrics for multiple video files using face detection are listed
in Table 5.7 and Table 5.8. From the collected results we found that when fixing number
of chunks per each video, the total processing time decreases compared to processing the
same number of video files in sequence. We achieved a higher speed up by increasing
number of video files. This means that the extra resources needed to process multiple
video files using DCB-Framework are reasonable compared to the processing gain we can
achieve.

Table 5.7: Multiple files evaluation metrics.

Table 5.8: Multiple files FPS metrics.

It is noted that there is a slight increase at total time of processing 1 or 2 or any
number of files in parallel when fixing number of chunks. This occurs due to increasing
number of bolt tasks to handle such high number of videos chunks which causes more
context switching between Storm executors to utilize the available CPU cores besides
the increasing communication between these bolt tasks and spout. Figure 5.18 shows
that processing different number of video files in chunk mode requires almost same time
of processing 1 video file with same number of chunks per individual video file with
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an added cumulative overhead. The speed up gain is increasing almost linearly with
number of videos for the same number of chunks per video. The max processing speed
up we recorded is 8x for processing 5 video files each splitted to 5 parallel chunks, see
Figure 5.19. Figure 5.20 shows that the spout complete latency decrease as we increase
number of video files and number of chunks as well.

Figure 5.18: Total processing time for multiple files.

Figure 5.19: Processing time speed up for multiple files.
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Figure 5.20: Complete latency for multiple files.

5.4 Results Observations

From previous evaluation testings we concluded to some important observations. First the
speedup gain differs from one CV processing algorithm to another due to the following
factors; the incoming input frame rate, size of individual frame, visual content of this
frame and the processing logic of each algorithm. This explains why we got different
speedup gain at the same number of chunks for each VP algorithm.

The complete latency of processing same amount of data decreases by increasing
number of video chunks which means increasing number of consuming bolt tasks. This
implies that one video frame waits less in the spout pending queue when there are much
number of consuming bolt tasks that pull higher rates of data simultaneously. Decreasing
complete latency is a vital advantage of DCB-Framework as it means we are almost
processing CV sequential algorithms in real time with less overhead added to processing
each input frame.

It is noticed that the spouts fps rates do not increase linearly with increasing number
of bolt tasks because of the builtin Storm back pressure feature. In the beginning of
processing, the spout fps starts from a high value and it keeps lowering as the bolt tasks
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receiving queues keep getting full. When the bolt tasks queues reach the high watermark
or the spout pending queue reaches the spout max pending value, the spout pauses sending
frames for processing a while until either of these situations is resolved. Reaching high
watermark occurs usually in case of having large number of bolt tasks, thus the spout
doesn’t reach multiples of fps rates but it increases with acceptable rate. Different Storm
configuration tuning could results in better processing rate.

The data received by Storm spout is distributed between all the available bolt tasks.
That is why the total spout receiving frame fps is divided into underlying bolt tasks. So the
individual bolt task processing fps decreases as we increase number of chunks for same
input data however this low rate is multiplied by higher number of consumers. Spout and
bolts fps are reflected in a higher processing throughput when the DCB-Framework is
used.

For each CV algorithm we reached a certain saturation point which beyond it we do not
get any extra gain nor speed up due to reaching fixed input rate. This happens according to
several factors. The first one is the effect of spout back pressure that holds the spout from
receiving or sending extra frames in case of topology congestion. The second one is that
the communication channel between the DSFU and spout is governed by Apache Thrift
data transmission rate. Thrift is a powerful cross-language communication tool, however
it is not optimized for large size data similar to frame size that may reach 2 MByte. So,
Thrift transmission rate reaches a certain upper value for each processing algorithm based
on the algorithm processing speed itself. Despite these current limitations, our developed
DCB-Framework reaches up to 8x of speed up and increases as we process much amount
of video data which is the true essence of big-data processing.

5.5 Conclusion

In this chapter we performed a complete set of testing trials to evaluate the performance of
the proposed DCB-Framework processing over a collection of sequential CV algorithms.
The big-data processing framework used was Apache Storm with detailed illustration
of topology architecture and configuration. We studied the effect of increasing number
of chunks per 1 testing video file using Video Summarization, Face Detection, License
Plate Recognition and Heatmaps. In all use cases, as we increase number of chunks,
the DCB-Framework always outperforms the ordinary sequential processing by different
speed up gains. Processing multiple video files in parallel also was studied under Face
Detection algorithm. It also proved the practicality of the proposed processing algorithm
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and the higher gains it can achieve. The only drawback of the algorithm is the speed up
gain saturation point that occurs when the VP algorithm speed hits Thrift transmission
limits in addition to the effect of Storm back pressure feature.
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Chapter 6: Conclusion and Future
Work

6.1 Conclusion

As the technology evolves, a huge amount of video data are generated daily from enormous
number of sources. Applying sequential CV algorithms over such huge amount of videos
is not reliable using traditional big-data processing architecture.

In order to port CV algorithms with sequential data processing requirements in big-data
processing frameworks we introduced in this thesis the DCB-Framework that is tailored for
processing big-data videos within Apache Storm architecture. In our work we developed
three new components that alter Storm data grouping mechanism and logic of handling
sequential video frames while overcoming the challenges of processing sequential CV
algorithms. We illustrated our new components: RCU, DSFU and DMRMU. We provided
a conscious explanation of the working logic of each component and each one workflow.

The evaluation process of the introduced DCB-Framework was done using Apache
Storm over testing video files. We first evaluated the performance of Video Summarization,
Face Detection, License Plate Recognition and Heatmaps CV sequential algorithms in
processing 1 hour video file for benchmarking. The purpose of testing different CV
algorithms is to study the effect of changing input video’s number of chunks versus the
speed up gain we can get from each algorithm.

It was found that by using the proposed framework, we can get processing speed up
ranges from 2.6x to 7.8x compared to processing the benchmarked video sequentially. The
speedup gain varies depending on different working factors mentioned in the experimental
testing analysis. For evaluating the proposed processing framework over multiple of
concurrent input videos, we selected the Face Detection algorithm for such experiments.
It was observed that by increasing number of input video files and number of chunk per
video, the processing speedup increases significantly reaching x8 in case of processing 5
videos with 5 chunks each.

The evaluation process was done over 1 online powerful virtual machine, however
the chunk-based framework is generic and can work on any number of machines within
the processing cluster. The remarkable outcome of this framework is speeding sequential
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CV algorithms, delivering accurate results in shorter time while utilizing the underlying
processing resources in the most efficient way.

6.2 Future Work

The work of this thesis can be extended by working on several points:

1. Implementing a dynamic distributed chunk-based processing queue: The current
implementation of the chunk-based processing is that the number of to-be processed
chunks should equal number of available topology bolt tasks. At dynamic chunk
queue concept, the initial chunk size provided before the topology submission is
considered the final value without modification. This produces number of video
chunks that may exceed available number of processing CPU cores, thus having
not enough number of bolt tasks to process this number of chunks simultaneously.
The dynamic chunk-queue allows as to process specific number of chunks at a time
that equals the available number of cores and schedule the rest of chunks until the
current ones finish processing. The DMRMU will assign one bolt task to one video
chunk from first chunks batch as described before. When the processing of one
video chunk is finished, the associated bolt task slot will be freed at assignment map
in order to be assigned to another chunk from the upcoming pending batch.

2. Further investigation for saturation point: In order to extend the saturation point of
each CV algorithm we need to fine tune storm configuration of back pressure feature.
This tuning can give better spout and bolt fps rates that extend the processing
enhancement saturation point to further point. Also, another study should be done
to evaluate the effect of Thrift as a communication channel and if we can achieve
better data rates if we replaced it by another tool. This would lead directly to an
extended saturation point, thus higher processing rates at same number of chunks
per video file.

3. Selecting optimal chunk size for multiple video files: For each computer algorithm,
we need to formulate an equation that selects the optimal chunk size which gives
the best performance for given number of video files taking into consideration the
available resources.
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انرؼشف ػهٗ رنك كشف انٕجّ ،ذهخٛص انفٛذٕٚ ،اعرخذيُا انؼذٚذ يٍ خٕاسصيٛاخ سؤٚح انذاعة انًرغهغهح تًا فٙ 

ذى ديج ْزِ انخٕاسصيٛاخ فٙ يُصح الاخرثاس  .خشائظ انذشاسج نرمٛٛى انؼًم انًمرشح ٔنٕدح ذشخٛص انًشكثاخ 

دمك ئطاس انًؼانجح انًرٕاص٘ انمائى ػهٗ ذجضب انثٛاَاخ ذمذو فٗ عشػح انًؼانجح تؼايم ذغشٚغ يٍ . انخاصح تُا

خ انفٛذٕٚ انًرؼذدج ضذ كًا ذى ذمٛٛى يؼانجح يهفا. أعاط خٕاسصيٛح سؤٚح انذاعة انًغرخذيحػهٗ  7.8ئنٗ  2.6

يٍ أجضاء انفٛذٕٚ  تاعرخذاو خٕاسصيٛح انكشف ػٍ انٕجّ نٛصم يؼايم ذغشٚغ انًؼانجح فٙ ْزِ  ػذد يخرهف

 .أضؼاف انًؼانجح انًرغهغهح انؼادٚح  8انذانح ئنٗ 
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 هلخص الرسالت

 

ٚرُأل انثذث انًمذو فٙ ْزِ الأطشٔدح فكشج يٕاصاج خٕاسصيٛاخ سؤٚح انذاعة انًرغهغهح، يثم اكرشاف انذشكح، 

خٕاسصيٛاخ  سؤٚح انذاعة انًرغهغهح نذٚٓا لٕٛد ػهٗ كٛفٛح . ذرثغ الأشٛاء ، ئنخ ، ػهٗ أدٔاخ انثٛاَاخ انضخًح

انخٕاسصيٛاخ ذكٌٕ انؼلالح تٍٛ الإطاساخ انًرراتؼح جضءاً يًٓاً يٍ فٙ ْزِ . يؼانجح ئطاساخ يماطغ انفٛذٕٚ 

ٔادذ ٚؼرًذ يثاششا ػهٗ َاذج يؼانجح الإطاس أٔ ٛجح لأٌ َاذج يؼانجح ئطاس فٛذٕٚ ذغهغم ػًم انخٕاسصيٛح َر

 .الإطاساخ انغاتمح

ئٙ ػثش ٔدذاخ انًؼانجح ذمٕو يؼظى أطش يؼانجح انثٛاَاخ انضخًح انذانٛح ترٕصٚغ تٛاَاخ الإدخال تشكم ػشٕا

ٔتانرانٙ ،فاٌ أطش انثٛاَاخ انضخًح انذانٛح . انًرادح نلاعرفادج يُٓا تكفاءج ٔ نهذفاظ ػهٗ ػذانح ذٕصٚغ الأدًال

ػُذ يؼانجح ْزِ انخٕاسصيٛاخ . نٛغد يُاعة  نًؼانجح تٛاَاخ انفٛذٕٚ راخ الاػرًاد انًرثادل تٍٛ الإطاساخ

نضخًح ، نٍ ٚإد٘ ذمغٛى ئطاساخ انفٛذٕٚ ٔ ذٕصٚؼٓا ػهٗ ٔدذاخ انًؼانجح انًرغهغهح ػهٗ أدٔاخ انثٛاَاخ ا

ٔتانرانٙ ، فاٌ يٛضج خٕاسصيٛاخ انًؼانجح انرراتؼٛح فٙ ئطاس انثٛاَاخ انضخًح . انًرٕفشج ئنٗ انُرائج انصذٛذح

 .ذصثخ يذذٔدج فمظ فٙ دالاخ يؼُٛح دٛث ذأذٙ ذٛاساخ انفٛذٕٚ يٍ يصادس دخم يخرهف

ٔدح ، َمذو ئطاساً كايلاً ًُٚكٍّ أدٔاخ انثٛاَاخ انضخًح يٍ ذُفٛز خٕاسصيٛاخ سؤٚح انذاعة فٙ ْزِ الأطش

ْذفُا انشئٛغٙ ْٕ يٕاصاج ػًهٛح انًؼانجح يٍ أجم . انًرغهغهح تطشٚمح لاتهح نهرٕعغ ٔانرٕاص٘ يغ ذؼذٚلاخ يذذٔدج

انكثٛشج انًذخهح ئنٗ أجضاء صغٛشج ًٚكٍ  انفكشج انشئٛغٛح ْٙ ذمغٛى يهفاخ انفٛذٕٚ. ذغشٚغ ٔلد انًؼانجح انًطهٕتح

نمذ لًُا ترطٕٚش ذمُٛح ذجًٛغ تٛاَاخ ركٛح ذمٕو . يؼانجرٓا تانرٕاص٘ دٌٔ انرأثٛش ػهٗ جٕدج انًخشجاخ انُاذجح

ذى أٚضا اعرخذاو يمطغ تٛاَاخ لائى . ترٕصٚغ لطغ انثٛاَاخ تٍٛ يٕاسد انًؼانجح انًرٕفشج ٔجًغ انُرائج يٍ كم جضء

ثى ذمٕو خٕاسصيٛح انرجًٛغ نذُٚا تانرأكذ . أجضاء تٛاَاخ الإدخال تشكم يرضايٍ نٛرى يؼانجرٓا تانرٕاص٘ػهٗ ذمطٛغ  

يٍ أٌ جًٛغ الإطاساخ انرٙ ذُرًٙ ئنٗ َفظ جضء انفٛذٕٚ انًمطغ ٚرى ذٕصٚؼٓا ئنٗ يشاكض انًؼانجح انخاصح تٓا 

 .تشكم صذٛخ

نرمٛٛى أداء ئطاس انؼًم انًمرشح انًثُٗ ػهٗ أعاط ذجض٘ء انثٛاَاخ ، أجشُٚا انؼذٚذ يٍ الاخرثاساخ انرجشٚثٛح 

ذى . نلاعرفادج يٍ لذسذّ ػهٗ انًؼانجح فٙ انٕلد انفؼهٙ(  عرٕسو)تاعرخذاو ئطاس انثٛاَاخ انضخًح انًؼشٔف 

نمذ ذى دساعح  ئطاس . نٛذػى ذمغٛى ئطاساخ انفٛذٕٚ انًذخهح ٔ انًؼانجح انًرٕاصٚح يؼا( عرٕسو)طشٚمح ػًم  ذؼذٚم

 . انؼًم انًمرشح نذُٚا ضذ ػذد يخرهف يٍ  الأجضاء انًمطؼح ػهٗ يذٖ  فٛذْٕٚاخ الاخرثاس يذذٓا عاػح ٔادذج

 

 

 ا



 

 

 

 َٕسْاٌ يجذٖ عٛذ ػثًاٌ :ذشـههٌ

 1990\5\27 :تاريخ الويلاد

 يصشٖ :الجٌسيت

 2014\3\1 :تاريخ التسجيل

 2018 :تاريخ الوٌح

 ُْذعح الإنكرشَٔٛاخ ٔ الإذصالاخ انكٓشتٛح :القسن

 انؼهٕوياجغرٛش  :الذرجت

  :الوشرفىى

 دغاو ػهٗ دغٍ فًٓٗ. د.أ 

 يذًذ يذًذ سٚذاٌ. د 

 شكح أفٛذتٛىانًذٚش انرمُٗ تش

  

  :الووتحٌىى

 (انًششف انشئٛغٙ)       د دغاو ػهٗ دغٍ فًٓٗ                                   .أ 

 (ًششفان)     يذًذ يذًذ سٚذاٌ                                          . د 

  انًذٚش انرمُٗ تششكح أفٛذتٛى

 (انًًرذٍ انذاخهٙ)       د انغٛذ ػٛغٗ ػثذِ دًٛذ                                  .أ 

 (انًًرذٍ انخاسجٙ)    د خانذ يصطفٗ انغٛذ                                         .أ 

 كهٛح انذاعثاخ ٔ انًؼهٕياخ جايؼح انماْشج

  

  :عٌىاى الرسالت

 هىازاة خىارزهياث رؤيت الحاسب الوتسلسلت علً البياًاث الضخوت باستخذام إطار تىزيع أجساء البياًاث

  

  :الكلواث الذالت

 أجضاء انفٛذٕٚ, انذٕعثح انًرٕاصٚح ، يؼانجح يماطغ انفٛذٕٚ, انثٛاَاخ انكثٛشج، سؤٚح انذاعة اٜنٙ

  

  :هلخـص الرسالت

فٙ ْزِ الأطشٔدح ، َمذو ئطاسا ػًم كايم ًٚكٍّ أطش انثٛاَاخ انكثٛشج يٍ ذشغٛم خٕاسصيٛاخ سؤٚح انذاعة 

فكشذُا ْٕ ذمغٛى يهفاخ انفٛذٕٚ انًذخهح ئنٗ أجضاء صغٛشج ًٚكٍ . انًرغهغهح تطشٚمح لاتهح نهرٕعغ ٔانرٕاص٘

نرذمٛك ْزا انٓذف لًُا ترطٕٚش ذمُٛح ذجًٛغ انثٛاَاخ انزكٛح . يؼانجرٓا تانرٕاص٘ دٌٔ انرأثٛش ػهٗ جٕدج انُاذج 

عرخذاو انرٙ ذٕصع أجضاء انفٛذٕٚ انًمطؼح تٍٛ يٕاسد انًؼانجح انًرادح ٔجًغ انُرائج يٍ كم لطؼح أعشع يٍ ا

 طشق انًؼانجح انًرغهغهح انًغرمهح

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

هىازاة خىارزهياث رؤيت الحاسب الوتسلسلت علً البياًاث الضخوت باستخذام إطار 

 تىزيع أجساء البياًاث

 

 

 ئػذاد 

 ًىرهاى هجذي سيذ عثواى 

 

 

 جايؼح انماْشج –سعانح يمذيح ئنٗ كهٛح انُٓذعح 

 ػهٗ دسجحكجضء يٍ يرطهثاخ انذصٕل 

 هاجستير العلىم 

 فٙ

 هٌذست الإلكتروًياث و الإتصالاث الكهربيت

 

 

 :ٚؼرًذ يٍ نجُح انًًرذٍُٛ  

 

 

 انًششف انشئٛغٗ                                                   حسام علً حسي فهوً: الاستار الذكتىر

 

 

 انًششف                                                                     هحوذ هحوذ ريحاى:  الذكتىر

 انًذٚش انرمُٗ تششكح أفٛذتٛى

 
 

 انًًرذٍ انذاخهٙ                                                      عبذٍ حويذالسيذ عيسً : الاستار الذكتىر

 
 

 ٗانًًرذٍ انخاسج                                                           خالذ هصطفً السيذ: الاستار الذكتىر

 جايؼح انماْشج, كهٛح انذاعثاخ ٔ انًؼهٕياخ

 

 

 

 جايؼــح انماْــشج -كهٛــح انُٓذعــح 

 جًٕٓسٚـح يصـش انؼشتٛــح -انجٛـضج 

2018 



 

 

 
 

 

رؤية الحاسب المتسلسلة على البيانات الضخمة باستخدام إطار موازاة خوارزميات 

 توزيع أجزاء البيانات

 

 

 إعداد 

 نورهان مجدى سيد عثمان 

 

 

 جامعة القاهرة –رسالة مقدمة إلى كلٌة الهندسة  

 كجزء من متطلبات الحصول على درجة 

 ماجستيرالعلوم

 فً

 هندسة الإلكترونيات و الإتصالات الكهربية

 

 

 ف تحت اشرا

 

 محمد محمد ريحان. د حسام على حسن فهمى. د.ا

 

أستاذ بقسم هندسة الإلكترونٌات 

 والإتصالات، كلٌة الهندسة،

 جامعة القاهرة 

 

 

 المدٌر التقنً التنفٌذي بشركة افٌدبٌم

 

 

 

 

 جامعــة القاهــرة -كلٌــة الهندســة 

 جمهورٌـة مصـر العربٌــة -الجٌـزة 

 

2018 
 

 



 

 

 

 

 

 

 

 

 

 

موازاة خوارزميات رؤية الحاسب المتسلسلة على البيانات الضخمة باستخدام إطار 

 توزيع أجزاء البيانات

 

 

 

 إعداد 

 

 نورهان مجدى سيد عثمان 

 

 قاهرةجامعة ال –رسالة مقدمة إلى كلٌة الهندسة 

 كجزء من متطلبات الحصول على درجة 

 ماجستير العلوم

 فً

 هندسة الإلكترونيات و الإتصالات الكهربية

 

 

 

 

 

 

 

 

 جامعــة القاهــرة -كلٌــة الهندســة 

 جمهورٌـة مصـر العربٌــة -الجٌـزة 
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