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Abstract
Polar codes recently received high attention by researchers as proven to approach

channel capacity at higher codeword length. However, the decoding latency grows
significantly with codeword length, rendering implementation for latency constrained
applications impossible. To tackle this problem, this thesis proposes a polar decoder
architecture based on radix-4 processing units with a special last stage processing unit
to decode up to 16 bits in the same clock. In addition, it proposes decoding extended
special sub-codes to reduce latency. Moreover, it uses partial sum look-ahead
technique, resulting in a high throughput with low latency decoding architecture.
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Chapter 1: Introduction
1.1 Introduction
The ever going improvement in the information technology applications and usage
is adding a severe demand to a cost efficient reliable high data rate communication
system. Those applications range in different fields from the wireless communication
systems to other wired yet low power systems to digital storage systems. The
wireless mobile communications field for example have witnessed lots of improvements
which added extra complexity and demand on the systems starting from the first
wireless mobile call using analog signals on the 1980s to the second-generation
mobile communication (2G) in the 1990s, the data rates erupted after that by the
deployment of the (3G) networks in the 2000s ,in 2010 the long Term Evolution
(LTE-4G) was used in commercial networks boosting the data rates to limits we have
never reached. Currently the next technology (5G) is being developed, the main
characteristics will be fiber-like data rates along with "zero-like" latencies, while
being able to connect about 100 billion devices.
Another example is the digital storage systems as they typically write and read
huge chunks of data at very high rates , applying error correction techniques before
writing the data is necessary to minimize bit error rate (BER) when reading, yet
the error correction technique used must have good waterfall region performance
with very low error-floors and moderate throughput of several gigabits per second
(GbpS).
Another aspect is the huge breakthrough in wearables field that requires ultra low
power communication systems. Fulfilling their low power requirements may decrease
the SNR and increase consequents. Therefore, powerful error correction techniques
shall be adopted. Those challenges made a need to squeeze more data and to increase
the data rates while using the same bandwidth and same power or even using the
same old data rate but with much less power consumption figures.
That leads the recent researches to try achieving the maximum allowable rate of
reliable data communication stated by Shannon in [21].

1.2 Channel Coding
Since the ultimate goal of a communication system is to provide a cost efficient
technique for communicating information between two point with acceptable rate
and reliability from the system point of view. The key aspect affecting the reliability
is the signal energy per bit to noise power spectral density ratio (bit-to-noise). This
ratio along with the modulation scheme defines the BER. For a fixed bit-to-noise
ratio and a defined modulation scheme, the only way to improve the reliable data
rate (number of true transmitted bits per second) is to use some error-control coding
techniques [22].
Even if the current reliable data rate without error-control coding is acceptable the
designer can still make use of error-control coding to reduce the bit-to-noise ratio
while maintaining the rate thus reducing both transmitted power and hardware costs.
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Most of error-control techniques mainly introduce redundancy in the message in
order to withstand the noise introduced by the channel in the receiver and to correct
some errors that may happen in reception like forward error correction (FEC).
The communication systems usually contains source encoding in the transmitter
and then a channel encoder at receiver side , the signal will have some noise and
distortion that introduce error in sent message , in order to correct this message to
some extent, introducing some redundancy before the transmitter will be handy.

Figure 1.1 contains a typical communication system showing source coding /
decoding and channel coding / decoding. The Data source generates the raw data
bits, then they are formatted to match the communication system , this formatting
is done by compressing the data without risking the information loss, the last stage
before uploading the data to transmission medium -whether wired or wireless- is to
add the error correction redundancy in the channel coding block.
On the receiver side, the error detection and correction is handled by the channel
decoder, the data is then returned to the application format by decompressing in
the source decoder.

Data Source Source Coding Channel Coding

Introducing
distortion

User/Application Source decoding Channel Decoding

Figure 1.1: A simple communication system

It is important for the system designer though to trade-off between the data
rate improvement using channel coding technique and the increased transmission
bandwidth along with the added complexity for implementing the channel decoder
operation.

The error-correcting channel coding techniques can be classified into block codes
and convolutional codes. The main difference between the two types of codes is the
presence of a memory in the encoders of those codes. In the block encoding the
whole data block is saved into a memory member. The encoder operates on all of
them simultaneously. In the convolutional encoder a sliding window technique is
used so it can accept a continuous sequence of data bits and generates a continuous

2



sequence of the encoded bits at a higher rate than the block encoder.

1.3 Channel Capacity
An Important property of a communication channel is the Channel capacity [21].
The Channel Capacity C is the number of channels that have the maximum mutual
information I. Since Shannon only stated the channel capacity but not a way to
design a coding technique to reach this capacity, reaching the channel capacity was
the target of lots of researchers to get the most reliable rate of the used channel.
Lots of research theoretically reached the channel capacity but there were more
problems in implementation. Claude Berrou was able to introduce turbo codes
[7] that achieved high performance of error correction over the used channel at a
capacity within a small margin of channel capacity. Also Low-Density Parity-Check
(LDPC) was developed by Robert Gallager in [12] and it showed to have similar
performance to that of turbo codes. Those techniques have been used widely in
communication systems, having small differences may bias the designer towards one
or another when designing a new system.

1.4 Is coding dead?
The channel capacity is achieved and one can think that there is no room for further
research in this field. In 1974 [17] stated the motto reputable this period "Coding is
dead except for the deep-space channel" and illustrated this motto.

Several researches targeted reaching the channel capacity upper boundary. The
LDPC codes [12] reached a near Shannon capacity. Then the turbo codes [7] reached
a better performance. For long time, lots of researchers stuck with those coding
techniques. This caused the saying that channel coding is died to get famous.
In 2009 E. Arikan introduced the channel polarization along with a successive
cancellation decoding technique for this codes which was provably the first capacity
achieving codes with a linear simple form.

1.5 Research opportunity in polar codes
The main issue with the polar codes were that the decoding performance was
achieved when the codeword length reaches infinity, further research proved that the
successive cancellation decoding can hold a decent bit error correction performance
with low complexity in codeword length that vary in the range 210 to 220.
The successive cancellation decoder presented by Arikan was of complexity O(NlogN)
while its decoding latency was equal to 2N −2. This latency was very high that it
was a show stopper in the usage of polar codes in real life applications.
The remaining problem was being able to implement this low complex yet high
latency decoding technique in a feasible latency for its application.

3



1.6 Conclusion
The current demand of the recent technology is pushing the information theory
specialists to adopt more efficient error detection and correction techniques. The
channel coding means the addition of extra redundancy to the source message to
enable the detection and correction of error. Channel coding was said to be dead.
After the invention of LDPC and turbo codes, there where no valuable improvements
till the invention of polar codes by E. Arikan. The Polar codes suffered a very high
latency (initially equal 2N −2). This offered a huge research opportunity to tackle
this problem.

4



Chapter 2: Literature Review
2.1 Introduction
Channel polarization is presented and proved by E.Arikan to be the first channel
capacity achieving coding technique that is simple and with a linear form. It depends
on combining a set of binary discrete memoryless channels into another set of channels
where the polarization starts to appear, the polarization appears in the sense that
after the combination of these channels, some of them reaches higher reliability than
others. Polar codes have a high resemblance to the Reed-Muller coding, yet the error
performance of polar codes is better. Several encoder implementations are presented.
Current state of the art decoding techniques were surveyed in this chapter.

2.2 Channel polarization
E. Arikan [3] noticed the effect of channel polarization when combining a set of
N symmetric binary discrete memoryless channels (BDMC) using modulo-2 sum
of bits in a flow graph like the one used with Reed-Muller codes into another set
of channels, it was found that after the polarization some channels will be able to
transmit data with better performance than others.
The new set of channels will maintain the total Mutual information(i.e the overall
mutual information will be N ∗I(W )). Yet the mutual information of some channels
will be < I(W ) so it will be marked unreliable, other channels will have mutual
information > I(W ) and will be marked reliable.
As N tends to ∞ the channels will be either completely reliable or completely
unreliable, the ratio of the completely reliable channels will be equal to Shannon’s
channel capacity.

2.2.1 Mutual information
The mutual information term in information theory defines a metric to calculate the
dependence between two variables. Consider a channel with input denoted as x and
the output as y. If the mutual information of x and y is large, this means there is a
strong relation which helps regaining x from y.
Mutual information generally measures the similarity of P (x,y) to P (x)P (y). The
mutual information is calculated for discrete values as:

I(X;Y ) =∑
Y
∑

X p(x,y)log( p(x,y)
p(x)p(y))

For Channel coding :

I(W ) =∑
y
∑

x
1
2W (y|x)log W (y|x)

1
2 W (y|0)+ 1

2 W (y|1)

For B-DMC W:

I(W ) > log 2
1+Z(W )

5



I(W ) 6
√

1−Z(W )2

where Z(W ) is the Bhattacharyya parameter.

2.2.2 Bhattacharyya parameter
The Bhattacharyya coefficient(parameter) [3] is a metric to measure the closeness of
two probability distributions. For the distributions of different values of a several
bits in a decoder, the closeness is a sign of being not able to separate the two cases
from each other, thus not being able to decide the bit correctly.
The Bhattacharyya coefficient is calculated as:

Z(W ) =∑
y

√
W (y|0)W (y|1)

The Bhattacharyya coefficient is the inverse of the Bhattacharyya distance. Bhat-
tacharyya coefficient takes a value in [0,1].
Arikan [3] used the Bhattacharyya coefficient instead of the Hamming distance to
differentiate the reliable channels(least Bhattacharyya coefficient) from non reliable
ones.
An important property of the Bhattacharyya coefficient is that when the number
of channels to combine increase the mutual information gets larger and the Bhat-
tacharyya coefficient gets smaller.
As N →∞ Z(W )→ 0 I(W )→ 1
or
Z(W )→ 1 I(W )→ 0

2.3 Polar encoders
The channel polarization is carried out with an encoder similar to that needed for
Reed-Muller encoders, yet the reliable channel selection is done by comparing the
Bhattacharyya parameter instead of using the hamming weight selection [2].

2.3.1 Reed-Muller vs Polar codes
Reed-Muller is a channel coding technique that has a great similarity with polar codes
from the encoder point of view, both techniques use the same channel combining
way by the use of Kronecker power of G.
Yet the only difference is using Hamming distance to differentiate the reliable
channels instead of Bhattacharyya coefficient in polar codes.

2.3.2 Reed-Muller vs Polar codes performance on BEC
Table 2.1 and Figure 2.1 shows the difference in performance between Polar codes
and Reed-Muller codes on a binary erasure channel(BEC) with a rate 1

2 and a
codeword length 32 [3].
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Table 2.1: BER for polar codes and Reed-Muller(N,K) = (32,16) Codes
Erasure probability

Type of Code 0.05 0.15 0.25 0.35 0.45
RM(2,5) 0.00000 0.00039 0.01169 0.06525 0.24507
Polar 0.00001 0.00056 0.00702 0.05005 0.16722
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Figure 2.1: BER for polar codes and Reed-Muller(N,K) = (32,16) Codes
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Table 2.2 and Figure 2.2 shows the performance of Reed-Muller codes on a BEC
with a N = 256 [3].
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Figure 2.2: BER for Reed-Muller N=256 runs=1000 Iterations = 60 on BEC

Table 2.3 and Figure 2.3 shows the performance of polar codes on a BEC with a
N = 256 [3].

Table 2.4 and Figure 2.4 shows the performance of Reed-Muller codes on a BSC
with a N = 256 [3].

Table 2.5 and Figure 2.5 shows the performance of polar codes on a BSC with a
N = 256 [3].

2.3.3 Polar encoders implementations
Because of being very simple compared to the polar decoders, the polar encoder
received less amount of research while approximately all the researches was targeting
to achieve a better performance polar decoder. Yet there are several ways to
implement polar encoders.
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Figure 2.3: BER for polar codes N=256 runs=1000 Iterations = 60 on BEC
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2.3.3.1 Combinational polar encoder

The combinational encoder can encode N bits in the same clock cycle, this fits short
codewords as for longer codewords this will have a very long critical path, i.e. long
clock period. This is the least complex encoder although the area may grow huge
when long code words are applied.
Figure 2.6 shows the implementation of 8-bit combinational encoder with coding
rate = 1

2 . It is important to notice that not all of the 8-bits are used because some
bits are frozen (at "0" in this case) when the implementation is not programmable
for different coding rates. For example, the XOR gate count is reduced from 12
gates to just 7 gates in the case of 8-bit coding with coding rate 1

2 .

0

U3

0

0

X0

X1

X2

X3

X4

X5

X6

X7

U6

U7

0

U5

Figure 2.6: 8-bit combinational (8,4 )encoder

2.3.3.2 Pipelined polar encoder

This encoder can encode N bits in N clock cycles, this fits short and long codewords,
it has a relatively short critical path so it can operate on high frequencies. This is a
more complex encoder but the area used by this implementation is relatively small.
Figure 2.7 shows the implementation of 8-bit pipelined encoder with coding rate
= 1

2 . This encoder can be divided into 2 main parts, the matrix generation unit
which is able to generate a new row of the Kronecker product GN , the second part
(the calculation module) contains a shift register to shift the bit to decode with the
corresponding GN row, this bit is anded with the Kronecker input and then XORed
with the old result of each column.

The matrix generation part area can further be reduced by the usage of Kronecker
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power property, the N generation matrix GN can be written as

GN =
GN

2
0

GN
2

GN
2



GN = GN
2
⊕
[
1 0
1 1

]

This form of the GN matrix can be translated in words that the GN matrix can be
calculated by calculating the GN

2
matrix and then using it after being anded with

another G2 matrix [9].
Figure 2.8 shows an update to the generation matrix by the use of GN

2
and

another tweaked G2 generation matrix, this G2 is tweaked to switch only when the
other GN

2
finishes a complete cycle, this imitates the property of the Kronecker

product of G2.
Figure 2.9 shows an abstract of the generation matrix proposed in figure 2.8. Since
this matrix generation still contains N/2 generation matrix, this matrix can be
recursively implemented the same way as GN , thus reaching the general form
represented in figure2.10. Although the reduced area in figure 2.8,2.9 is approximately
equal to the added area of the AND array, this will not hold with longer codewords
and the new implementation would be smaller in area.

2.4 Polar decoders

2.4.1 Successive cancellation decoders
The channel polarization of Binary symmetric channel (BSC) performance was proved
using the likelihood based successive cancellation decoders, Although the successive
cancellation decoder achieved the required performance and capacity (asymptotically
when N tends to infinity), it suffered a huge decoding latency O(NlogN) because of
its successive behavior.
The usage of successive cancellation decoder with binary erasure channel (BEC)
was proven to achieve the error correction performance with both theoretical and
numerical approaches in [24].
Several researches have been done to solve the decoding latency by optimizing the
successive cancellation decoders or even proposing other decoders such as :

1. Belief propagation decoders.

2. Successive cancellation list decoders.

2.4.2 Belief propagation decoders
Because of the great encoding similarity, polar codes can be easily decoded with the
belief-propagation decoders. The belief-propagation decoders were originally used
with the Reed-Muller technique.
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Figure 2.9: N generation matrix composed of AND array , GN
2
and GN

N Matrix generation unit

N/2 Matrix generation unit G2 Matrix generator

AND array

N Matrix generation unit

N=2 Matrix generation unit G2 Matrix generator

AND4 array G2 Matrix generator

AND4 array G2 Matrix generator

AND8 array G2 Matrix generator

ANDN array

Figure 2.10: N generation matrix composed of G2 and multiple AND arrays
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To compare the polar codes with reed-muller the work in [2] used the same rate and
the same decoder. The error probabilities for BSC and erasure probabilities for BEC
were calculated. It was found that the polar codes have clear performance advantage
over the reed-muller codes even in small codeword length N = 32. This codeword
length N = 32 is the shortest codeword length were both coding techniques differ.
For example at rate 0.45 using BEC channel the erasure probability of RM(2,5) was
found to be 0.24507 while polar codes erasure probability was equal to 0.16722.

2.4.3 Successive cancellation list decoders (SCL)
The ordinary successive cancellation decoder was able to achieve its error correction
performance only in long codeword length. Several work adopted finding a way to
achieve better error correction performance. This of course comes on the price of
some added complexity.
The successive cancellation decoder uses the decoded bit for decoding the next bits.
If those bits are frozen, it sticks with the 0 path (assuming frozen bits are set to 0).
This decision is took regardless the actual values of the likelihood ratios. Thus if an
error occurs while decoding a certain bit, there is no way to fix this after. There is a
risk of decoding all the subsequent bits in wrong manner since they are depending
on the faulty bit.
The successive cancellation list decoders keeps several decoding paths (multiple
values for the decoded bits) while decoding. It then drops the paths with the worst
metric when the list count is reached.
In other words, first the starting bit Likelihood ratios are calculated and likelihood
metrics are calculated for these 2 paths, adding another bit will add 2 more paths
(resulting in 4 paths with 4 new metrics), the decoder keeps recalculating the required
metrics every other bits till the count of paths reaches the maximum path L. Once
the maximum list count is reached, for every another packet to decode 2L metrics
are calculated and the L worst metric paths are dropped, this continues till reaching
the codeword length N, the best metric path is decided to be the decoded codeword.
It is easy to see that although the probability of error decreased (thus the performance
of the decoder is increased) this came at a price of high decoding latency O(LN2)
and high complexity. It can be easily noted that the successive cancellation decoder
is a special case of the list decoder were the list size is set to 1.
Clearly the list decoder is higher in complexity yet gives a better error-correction
performance on short code lengths as shown in [23].
A software decoder implementation of successive cancellation list decoders was
presented in [20].
Figure 2.11 shows the different paths while decoding a codeword of length N = 4
and list size L = 3, ordinary successive cancellation decoder is denoted by the dashed
arrows, while the list decoder paths are denoted by both the dotted and dashed
arrows.
Although the first bit is known to be frozen, the successive cancellation list decoder
used the paths with û0 = 1 and û0 = 0.
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Figure 2.11: Decoding paths of N=4 codeword, List size L=3

2.4.4 Multi-bit successive cancellation decoding
Without any performance loss and by returning back to the LLR meaning at a
certain point of the flow graph, [26] proposed a technique to decide the value of 2
consecutive bits together from the previous stage. Deciding the consecutive bits like
this helps to skip the decoding cycles of calculating LLRs and then deciding the
values of the 2-bits, this affected the overall latency tremendously by reducing the
4 cycles to decode 2 consecutive bits into just one cycle. The multi-bit decoding
technique was ported to the SCL decoders. The SCL latency was reduced severely
[27].

2.5 Latency reduction efforts
A lot of work has been done recently to reduce the high latency of SC decoding. This
is classified into performance improvement by using short block length while main-
taining the error correction performance at application acceptable levels, minimizing
the decoding latency, and even simplifying the successive cancellation decoder itself.
Instead of using the likelihood ratios, log likelihood ratios(LLRs) were used with
minimum approximation of f function equation, therefore eliminating the multiplica-
tion and division operations [15]. LLRs were even ported to successive cancellation
list decoders thus reducing its complexity. In [29] a general log-likelihood-ratio
successive cancellation list (SCL) decoder is introduced, where decision of 2k bits
can be determined simultaneously for arbitrary k. A high throughput flexible imple-
mentation of a simplified successive cancellation decoder was presented in [19] and
was about 8 times faster that state of the art decoders when published.
The polar decoding of long sets of used non frozen bits (rate 1) and long sets of frozen
bits (rate 0) is pretty easier than other special sub-codes rates. Those sub-codes can
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be decoded in a special way with less clock cycles than handling those sub-codes as
other rate codes [1], this improves the decoding latency for longer codes since the
rate 0,1 patterns will be longer and can be handled in shorter period.

2.6 Literature survey
A multi kernel polar decoder was presented in [8], this multi kernel decoder targets
maximizing the minimum distance. A comparison between polar decoders, LDPC
and Turbo decoders was done in [5], while surveying the error-correction performance
and hardware efficiency of different polar decoder techniques.
Since decoding a bit using successive cancellation decoder depends on the previously
decoded bits in the form of partial sums, [6] proposed a generation technique for
the partial sums, it is divided into 2 parts: a matrix generation circuit and a shift-
register-based partial sum calculator. [13] transformed the unrolled architecture to
a multi-mode decoder along with a dedicated decoder for polar codes. A multilevel
structure was used in generating the matrix as proposed in [9].
[18] introduced a scalable architecture for SC decoding using a semi-parallel encoder-
based partial-sum calculation module. Both the belief propagation decoder and
the successive cancellation decoder are concatenated forming a hybrid decoder in
[25]. Different approaches to improve successive cancellation decoding along with
the analysis of the stochastic SC decoding performance were presented in [28]. [10]
introduced a low power high-throughput combinational SC decoder. [4] studied the
faulty SC decoding of polar codes and proved that fully reliable data transfer is not
possible at any rate.

2.7 Thesis proposal
Starting with the work in [26], the 2-bit SC decoder was generalized to a radix-4
architecture that is able to compute the LLRs in even stages only, and a minimum
of 4-bit simultaneous decoding at last stage. It also decodes extra special sub-codes
of higher length in the same cycle. Additionally, this work proposes a partial-sum
lookahead (PSL) architecture to further reduce the latency. The proposed PSL
starts the computation of subsequent nodes without waiting for decoding of current
information bits, and corresponding partial sums.

2.8 conclusion
Polar codes shares a high similarity with the Reed-Muller codes, both uses the same
encoder except for the frozen bit selection where hamming distance is replaced by
the Bhattacharyya parameter value. The performance of polar codes is shown to
supersede that of Reed-Muller codes. Polar encoders have a very simple structure,
combinational implementation fits perfectly the small codeword encoders while
pipelined encoder is better for longer codewords, the matrix generation circuit in
the pipelined encoder can be simplified in a recursive way. The SCL decoder is
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more complex yet have a better error detection and correction performance than
the ordinary SC decoder.
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Chapter 3: Theory
3.1 Introduction
Polar coding technique makes use of N independent B-DMC channels to generate
another N channels with the same total capacity, yet this capacity is shuffled and
some of the generated channels have better reliability compared to other channels.
Successive cancellation decoders are the first decoders used by E.Arikan to proof
the polar codes error correction performance. Although having low complexity, SC
suffers from high decoding latency because of its serial(successive) structure along
with the very long codewords used. It is proven that the polar codes achieves the
channel capacity at long codewords reaching infinity.
In this work the latency problem is tackled by the adoption of multi-bit decoding at
the same clock cycle. This is done by the usage of radix-4 processing units along with
a special last stage decision unit. Another techniques were added to this proposal
to further decrease the overall latency such as: partial sum lookahead and special
sub-codes handling.

3.2 Channel coding theory
In [21] Shannon proved that for any channel coding technique on a limited channel
bandwidth, the maximum data rate is bounded by the channel capacity C which is
achievable with some random code, yet Shannon didn’t exhibit any exact formable
sequence that will fulfill this capacity.
E.Arikan [3] introduced channel polarization technique that achieved channel capac-
ity for binary discrete memoryless channels B-DMC.
Channel polarization targets creating a set of N channels from another N independent
channels. The symmetric capacity of the created channels tends to 0 or 1 as N
becomes large. this process can be divided into :

1. channel combining

2. channel splitting

3.2.1 Channel combining
Recursively combine copies of a B-DMC to produce WN : XN−> Y N where N = 2n.
At the 0th level of recursion W1 = W At the 1st level of recursion n = 1 two
independent copies of W1 are combined to obtain W2 : X2−> Y 2

W2(y1,y2|u1,u2) = W (y1|u1⊕u2)W (y2|u2)
Figure 3.1 shows the combining of 2 W channels into another 2 channels where first
one is less reliable than the second one, the explanation is since the second channel
is meant to carry u1, now after combining u1 can be deducted from the output of
both W1 and W2.
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WU2

y1

y2

Figure 3.1: Combining 2 W1 channels to obtain W2

The next level of recursion combines two W2 channel to create W4 : X4−> Y 4

W4(y4
1|u4

1) = W2(y2
1|u1⊕u2,u3⊕u4)W2(y4

3|u2,u4)

u1

u2

u3

u4

W2

W

W

y1

y2

y3

y4

W4

W2

W

W

Figure 3.2: Combining 4 W1 channels to obtain W4 by using the generated W2

Figure 3.2 shows the second level of channel combining , it can be seen that the
first level of combining is then recombined together to generate 4 combined channels
The relation between vector u4

1 and x4
1 can be written as
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X4
1 = u4

1G4BN with

G4 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1



G4 can be described as the Kronecker power of the matrix as G4 = G⊗2 where

G =
[
1 0
1 1

]

and BN is a simple bit-reversal permutation matrix, for simplicity BN is dropped
from all upcoming studies.
GN can be generalized as GN = G⊗n.

3.2.2 16 bit encoder
The Generation matrix of a 16 bit channel combination G16 shall be represented as
:

G16 =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The 16-bit channel combiner shall be implemented by and encoder as shown in
figure 3.3, this encoder contains 16

2 ∗ log2(16) XOR gates, the general form of encoder
complexity is N

2 ∗ log2(N)

3.2.3 Channel splitting
Being able to generate the polarized WN channel set, these channels should be
splitted into N channels with different transition probabilities.
The interesting property of the generated channels is that they are polarized in
the sense that the reliability of a given channels is more or less than the original

27



X0

X1

X2

X3

X5

X6

X7

X8

X9

X10

X11

X13

X14

X15

X4

X12

U0

U1

U2

U3

U5

U6

U7

U8

U9

U10

U11

U13

U14

U15

U4

U12

\

Input Stage 
    0

Stage 
    1

Stage 
    2

Stage 
    3

Output
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channel. Thus the reliable channels can be used for bit transmission and the non
reliable channels shall be transmitting frozen bits on a value that is known by both
encoder and decoder ,either "0" or "1" . In the upcoming work, all frozen channels are
transmitting "0". The channels shall be divided to reliable and not reliable depending
on the transition probabilities. As per [3] division can be carried out by calculat-
ing the Bhattacharyya parameter for the generated channels using the recursive form :

Z(W 2j−1
N ) = 2Z(W j

N/2)−Z(W j
N/2)2

Z(W 2j
N ) = Z(W j

N/2)2.

The channels are sorted according to Bhattacharyya parameter. The count of
channels that fulfill the desirable rate and have the least Bhattacharyya parameter
will be used for transmitting data.
The encoder has a very simple nature. This simplicity enabled the generation of
different encoders in a very non complex, and problem free implementations. Those
implementations ranged from small area pipelined structure to pure combinational
one cycle encoders. The design of a polar encoder has not attracted researches and
optimizations like the polar decoders.
The polar decoders complexity and length depends on the codeword length which is
huge. Although the successive cancellation decoder is pretty simple, it suffers from
huge latency because of the large codewords used.

3.3 Successive cancellation decoders
In SC decoding, the decoded bits are estimated sequentially. The decoder is described
by a flow tree [11] as shown in figure 3.4. There are 2 types of processing nodes in
the flow tree which are f and g nodes, where the f function replaces the XOR gate
in the encoder, and the G function resembles the check node in the encoder ( where
check node is the other input of the XOR gate ).
The decoding of a bit ûi is performed by analyzing the Likelihood ratio LR(y, ûi

1−1)
if it is < 1 and the bit is not frozen, then the bit is decided "1" and is decided "0"
otherwise. For sake of simplicity, Each likelihood ratio is going to be denoted L(i, j)
where i is the row count and j is the stage count. The input to decoder is at stage 0
and the LR of bit i before decision is L(i, log2(N)).
As per the flow tree to decode the ith bit ûi, L(i, log2(N)) shall be calculated,this
needs LR at stage log2(N)−1 to be calculated and for this to get calculated LR at
stage log2(N)−2 shall be calculated, this continues in successive pattern.

3.3.1 f,g equation derivation
As referred in [14], and by analyzing the 2-bit encoder in figure 3.5 it can be found
that :

c = a⊕ b (3.1)

d = b (3.2)
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a

b

c

d
Figure 3.5: 2-bit Kronecker product

Equations 3.1,3.2 can be reformed in decoder case into:

â = c⊕d (3.3)

b̂ = d (3.4)
From equation 3.3,3.4 the probabilities of decoded bits can be described as:

P (â = 0) = P (c = 0)P (d = 0)+P (c = 1)P (d = 1) (3.5)

P (â = 1) = P (c = 0)P (d = 1)+P (c = 1)P (d = 0) (3.6)

P (b̂ = 0, â = 0) = P (c = 0)P (d = 0) (3.7)
P (b̂ = 0, â = 1) = P (c = 1)P (d = 0) (3.8)
P (b̂ = 1, â = 0) = P (c = 1)P (d = 1) (3.9)
P (b̂ = 1, â = 1) = P (c = 0)P (d = 1) (3.10)

Thus,

LR(â) = P (â = 0)
P (â = 1) = P (c = 0)P (d = 0)+P (c = 1)P (d = 1)

P (c = 0)P (d = 1)+P (c = 1)P (d = 0) = LR(c)LR(d)+1
LR(c)+LR(d)

(3.11)

LR(b̂a=0) = P (b̂ = 0, â = 0)
P (b̂ = 1, â = 0)

= P (c = 0)P (d = 0)
P (c = 1)P (d = 1) = LR(c)LR(d) (3.12)

LR(b̂a=1) = P (b̂ = 0, â = 1)
P (b̂ = 1, â = 1)

= P (c = 1)P (d = 0)
P (c = 0)P (d = 1) = LR(d)

LR(c) (3.13)

Combining equations 3.12,3.13:

LR(b̂) = LR(d)1−2âLR(c) (3.14)

The 1−2â form is to convert the â values from 0,1 into −1,1 to decide whether a
division or a multiplication is needed.
Equations 3.11 , 3.14 can be generalized as the f and g function as :

f(L1,L2) = L1L2 +1
L1 +L2

(3.15)
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g(L1,L2, ûs) = L1−2ûs
2 L1 (3.16)

where ûs is the partial sum calculated from previously decoded bits.
The result of equation 3.14 can be generalized to show that ith decoded bit ûi is
estimated based on the previously decoded bits û0, û1 . . . ûi−1.
The problem with equations 3.15, 3.16 is that they are complex to implement from
hardware perspective because it contain multiplications and divisions. This com-
plexity can be released by using the logarithms for both sides of the equations and
calculate/use log likelihood ratios (LLR) instead of likelihood ratios. The f and g
function can be calculated for likelihood ratios as [15]:

f(L1,L2) = 2tanh−1(tanh(L1/2)tanh(L2/2)) (3.17)

g(L1,L2, ûs) = (−1)ûsL1 +L2 (3.18)

The f equation seems very complex for implementation, yet the minimum sum
approximation [15] may be used without any obvious performance decrease. The
new f equation tends to :

|f(L1,L2)| 'min(|L1|, |L2|) (3.19)

sgn(f(L1,L2)) = sgn(L1)⊕ sgn(L2) (3.20)
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3.4 Proposed Architecture

3.4.1 Overview
Successive cancellation decoding makes use of multiple f and g processing circuits
(PUs). This Processing units implements the functions defined in (3.21) , (3.22). As
shown in figure 3.6, the 4-bit decoder flow graph imitates the 4-bit encoder where f
function replaces the first input of XOR gate in encoder while g function replaces
the other input of the XOR gate. A 4-bit decoder contains log2(4) decoding stages.
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Figure 3.6: A 4-bit polar encoder / decoder

The successive cancellation decoder flow graph is divided into vertical stages. The
first decoding stage is called stage 0, while the last stage (before bit decision) shall be
called stage log2(n)−1. A new combined processing circuit was proposed, this new
circuit was able to use the LLRs at stage i to calculate the LLRs at stage i + 2 thus
skipping 2 stages at a time. Those LLRs are calculated by the use of the combined
f and g functions in the form (ff = f(f,f),fg = f(g,g),gf = g(f,f)gg = g(g,g)).
Compared to the old processing circuit, the combined PUs reduce the memory
requirements since they are only storing the LLRs in even stages, and it also
decreases the overall decoding latency.
A 16-bit decoder is shown in figure 3.7 using the new combined circuit. The radix-2
last stage unit will not be able to cope with the radix-4 architecture, A new hard
decision unit called last stage processing unit (LSPU) is proposed where at least 4
bits can be decoded at the same clock.
For simplicity each processing unit is added to the figure 4 times once for every
equation type ff,fg,gf,gg, but since those equations are never used in the same
time, only 4 processing units are needed for figure 3.7 in the line architecture.
Section 3.4.3 presents the proposed unit, as depicted in Figure 3.9.
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3.4.2 Combined processing circuit
In [15], a simple form of f,g function are proposed as :

f(L0,L1)≈ sgn(L0)sgn(L1)min{|L0|, |L1|} (3.21)

g(L0,L1, ŝ) = L0(−1)ŝ +L1 (3.22)
where L0,L1 are the log likelihood ratios while the effect of previously decoded bits
appears in the form of the partial sum ŝ. By the use of the equations 3.21 and 3.22,
the new radix-4 PU functions can be easily proven to be :

ff(L0,L1,L2,L3) = f(f(L0,L2),f(L1,L3))≈ sgn(L0)sgn(L1)sgn(L2)sgn(L3).
min{|L0|, |L1|, |L2|, |L3|}

(3.23)
fg(L0,L1,L2,L3, ŝ00)≈ sgn(L1)sgn(L3).min{|L1|, |L3|}

+(−1)ŝ00sgn(L0)sgn(L2).min{|L0|, |L2|}
(3.24)

gf(L0,L1,L2,L3, ŝ01, ŝ11)≈ sgn(L0(−1)ŝ01 +L2).
sgn(L1(−1)ŝ11 +L3).

min
{
|sgn(L0(−1)ŝ01 +L2)|, |L1(−1)ŝ11 +L3|

} (3.25)

gg(L0,L1,L2,L3, ŝ10, ŝ01, ŝ11) = (−1)ŝ10+ŝ01L0

+(−1)ŝ11L1 +(−1)ŝ10L2 +L3
(3.26)

where ŝij :i is the partial sum count and j is the decoding stage count.
The complexity of the radix-4 PU is higher than the regular radix-2 PU, since

the regular PU only computes f and g, the new circuit area is a less smaller than
twice the radix-2 processing unit area, yet the needed count of PUs in both the
tree or line architectures is reduced to half maintaining approximately the same
processing units areas. So the new architecture reduces latency in a smaller area.

3.4.3 Last stage processing unit
The Last stage processing unit(LSPU) block makes use of the 4 LLR inputs called
L0, L1, L2, and L3 respectively, and the four binary inputs denoted by frozen0,
frozen1, frozen2, and frozen3. The frozen pattern frozeni shows whether each
bit ui is frozen or not.
The LSPU has 16 different frozen bits patterns, so it is a must to study each of
the 16 cases of the frozen bit patterns and have a closed decoding form. Yet
by analyzing the Bhattacharyya parameter and the recursive equations in [3]:
Z(W 2j−1

N ) = 2Z(W j
N/2)−Z(W j

N/2)2

Z(W 2j
N ) = Z(W j

N/2)2

Since Z(W ) takes a value in
0,1

then Z(W ) > Z2(W )
Thus, 2Z(W j

N/2)−Z(W j
N/2)2 > Z(W j

N/2)2
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This proves that for each 2 consecutive channels, the channel 2j−1 is always less
reliable than 2j, there is no actual pattern where the bit 2j−1 is used and 2j is
frozen.
This reduces the available 16 different frozen bit patterns into just 6 bits that
should be studied. The LSPU is able of computing the four bits û0, û1, û2, and û3
simultaneously. This processing unit makes use of equations 3.23-3.26 to calculate
LLRs and perform hard decision to decode 4 bits simultaneously in the same cycle.

3.4.3.1 Case 1: All bits are frozen

All bits are frozen , the decoded values are set to "0".

3.4.3.2 case 2: All bits are frozen, u3 is used

All bits are frozen except u3, thus the decoded values are set to "0" except u3.
Getting back to equation 3.26
LLR(u3) = (−1)ŝ10+ŝ01L0 +(−1)ŝ11L1 +(−1)ŝ10L2 +L3 LLR(u3) = L0 +L1 +L2 +L3
u3 = SgnL0.L1.L2.L3 = s0123

3.4.3.3 case 3: u0, u1 are frozen, u2, u3 are not frozen

Getting back to equations 3.25,3.26
LLR(u2)≈ sgn(L0(−1)ŝ01 +L2).
sgn(L1(−1)ŝ11 +L3).
min

{
|sgn(L0(−1)ŝ01 +L2)|, |L1(−1)ŝ11 +L3|

}
LLR(u2)≈ sgn(L0 +L2).sgn(L1 +L3).

u2 = XOR(s02, s13)
u3 = NOT (s13)

3.4.3.4 case 4: u0, u2 are frozen, u1, u3 are not frozen

Getting back to equations 3.24,3.26
u1 = XOR(s01, s23)
u3 = NOT (s23)

3.4.3.5 case 5: bit u0 is only frozen.

Starting with equations 3.23-3.26 knowing that u0 = 0:

LLR(u1) = fg(L0,L1,L2,L3, ŝ00 = 0) (3.27)
LLR(u1)≈ sgn(L1)sgn(L3).min{|L1|, |L3|} + sgn(L0)sgn(L2).min{|L0|, |L2|}

(3.28)
if(sgn(L1)sgn(L3).min{|L1|, |L3|}+ sgn(L0)sgn(L2).min{|L0|, |L2|}< 0)

u1 = 1
else
u1 = 0

u1 = sgn(sgn(L1)sgn(L3).min{|L1|, |L3|}+ sgn(L0)sgn(L2).min{|L0|, |L2|})
(3.29)
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if(min{|L1|, |L3|}< min{|L0|, |L2|})
u1 = sgn(L0)sgn(L2)
else
u1 = sgn(L1)sgn(L3)

LLR(u2) = gf(L0,L1,L2,L3, ŝ01 = u1, ŝ11 = u1) (3.30)

LLR(u2)≈ sgn(L0(−1)u1 +L2).
sgn(L1(−1)u1 +L3).
min

{
|sgn(L0(−1)ŝ01 +L2)|, |L1(−1)ŝ11 +L3|

}

u2 = sgn(L0(−1)u1 +L2).sgn(L1(−1)u1 +L3) (3.31)

if(min{|L1|, |L3|}< min{|L0|, |L2|})
u2 = sgn(L0sgn(L0)sgn(L2)+L2).sgn(L1sgn(L0)sgn(L2)+L3)
u2 = sgn(|L0|sgn(L2)+L2).sgn(L1sgn(L0)sgn(L2)+L3)
u2 = sgn(L2).sgn(L1sgn(L0)sgn(L2)+L3)
if(|L1|< |L3|)
u2 = s2.s3
else
u2 = s0.s1
else
u2 = sgn(L0sgn(L1)sgn(L3)+L2).sgn(L1sgn(L1)sgn(L3)+L3)
u2 = sgn(L0sgn(L1)sgn(L3)+L2).sgn(|L1|sgn(L3)+L3)
u2 = sgn(L0sgn(L1)sgn(L3)+L2).s3
if(|L0|< |L2|)
u2 = s2.s3
else
u2 = s0.s1
LLR(u3) = gg(L0,L1,L2,L3, ŝ10 = u2, ŝ01 = u1, ŝ11 = u1)
= (−1)u2+u1L0 +(−1)u1L1 +(−1)u2L2 +L3
if(min{|L1|, |L3|}< min{|L0|, |L2|})
u1 = sgn(L0)sgn(L2)
if(|L1|< |L3|)
u3 = sgn(L3)

else
u3 = s0.s1.s2
else if(min{|L1|, |L3|}> min{|L0|, |L2|})
u3 = s3

3.4.3.6 case 6: No frozen bits

the decoder is just encoding s0, s1, s2, s3
u0 = XOR(s0, s1, s2, s3)
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u1 = XOR(s1, s3)
u2 = XOR(s2, s3)
u3 = s3

3.4.4 Hard decision unit implementation
Figure 3.8 and algorithm 1 illustrates the Hard decision LSPU function. All the 6
frozen and non frozen pattern scenarios are handled with cases 1 though 6 while the
other scenarios are omitted for being impossible. The 24 available patterns are not
all possible because of the Bhattacharyya parameter properties, so only the valid
patterns of frozen bits are implemented. The notations si, sij , and sijkl represent
the sign bits of Li,{Li + Lj}, and {Li + Lj + Lk + Ll} respectively. The LLRs are
implemented using the 2’s complement to have easy separability of the sign bit while
easing the operation on these arguments. The corresponding hardware architecture
of LSPU is depicted in Figure 3.9.

3.4.5 Special sub-codes decoding
The work in [1] simplified the successive cancellation decoding by adding special
decoding techniques for rate zero and rate one nodes, this work proposes extension
to these special sub-codes to allow decoding more sequences instantly. The key idea
is that having frozen bits duplicates some encoded bits;i.e xm = xn = ui +uj . This
consequently adds redundancy in LLRs, and assists in decoding by averaging both
LLRm and LLRn at the channel output. Therefore, LLR = LLRi +LLRm is used
in decoding ui and uj .
To be able to generate a decoding form, special sub-code length is assumed to be 8
and then will be generalized to general length k.
Yet in this work, Special sub-codes of maximum length of 16-bit are only handled as
the targeted codeword length is 1024 and longer length sub-codes will be rare in
this limited codeword. This length is optimum as it can be decoded in the same
cycle while still being able to improve decoding latency.
Figure 3.8 can be extended for any node where all the k child bits fit in one of the
following criteria:

3.4.5.1 Criterion 1: All bits are frozen

All the k child bits are frozen, these child bits are decoded simultaneously to value
of zero.

3.4.5.2 Criterion 2: All bits are frozen except last bit

All the k child bits are frozen except for k.
Assuming 8-bit encoder with this frozen pattern:
x0 = u7
x1 = u7
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Algorithm 1: Radix-4 last stage processing unit
1: Case 1: All bits are frozen (rate zero)
2: û0 = 0, û1 = 0, û2 = 0, û3 = 0
3: Case 2: u0,u1,u2 are frozen
4: x0 = u3,x1 = u3,x2 = u3,x3 = u3
5: û0 = 0, û1 = 0, û2 = 0, û3 = s0123
6: Case 3: u0,u1 are frozen
7: û0 = 0, û1 = 0, û2 = XOR (s02, s13),
8: û3 = (s13)
9: Case 4: u0,u2 are frozen

10: û0 = 0, û2 = 0, û1 = XOR (s01, s23),
11: û3 = (s23)
12: Case 5: u0 is frozen
13: û0 = 0,
14: if min{|L0|, |L2|}< min{|L1|, |L3|} then
15: û1 = XOR (s0, s2)
16: if |L1|< |L3| then
17: û2 = XOR (s2, s3), û3 = s3
18: else
19: û2 = XOR (s0, s1), û3 = XOR (s0, s1, s2)
20: end if
21: else
22: û1 = XOR (s1, s3), û3 = s3
23: if |L0|< |L2| then
24: û2 = XOR (s2, s3)
25: else
26: û2 = XOR (s0, s1)
27: end if
28: end if
29: Case 6: No frozen bits (rate one)
30: û0 = XOR (s0, s1, s2, s3)
31: û1 = XOR (s1, s3), û2 = XOR (s2, s3), û3 = s3
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x2 = u7
x3 = u7
x4 = u7
x5 = u7
x6 = u7
x7 = u7
It is obvious that all the LLRs at the receiver will be carrying the same information,
thus the decoding will be:

LLRuk−1 = 1
k
∗L0:k−1 (3.32)

where L0:k−1 =∑k−1
j=0 Lj

it can be deducted that:
ûk−1 = S0:k−1 (3.33)

where S0:k−1 = sign(L0:k−1) and the frozen bits are decoded simultaneously to value
of zero.

3.4.5.3 Criterion 3: All bits are frozen except middle and last bits

k bits are frozen except for k−1 and k/2−1.
Assuming 8-bit encoder with this frozen pattern:
x0 = u3⊕u7
x1 = u3⊕u7
x2 = u3⊕u7
x3 = u3⊕u7
x4 = u7
x5 = u7
x6 = u7
x7 = u7
The last equations shows that x0:3 are the same and x4:7 are also the same, Thus
ûk−1 = Sk/2:k
ûk/2−1 = S0:k/2−1 + ûk−1
and the frozen bits are decoded simultaneously to value of zero.

3.4.5.4 Criterion 4: All bits are frozen except the quarters of the sub
code

k bits are frozen except for k/4−1 , k/2−1 , 3k/2−1 and , k−1 .
Assuming 8-bit encoder with this frozen pattern:
x0 = u1⊕u3⊕u5⊕u7
x1 = u1⊕u3⊕u5⊕u7
x2 = u3⊕u7
x3 = u3⊕u7
x4 = u5⊕u7
x5 = u5⊕u7
x6 = u7
x7 = u7
the frozen bits are decoded simultaneously to value of zero while ûk−1 = S3k/4−1:k−1
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û3k/4−1 = Sk/2−1:3k/4−1 + ûk−1
ûk/2−1 = Sk/4−1:k/2−1 + ûk−1 + û3k/4−1
ûk/4−1 = S0:k/4−1 + ûk−1 + û3k/4−1 + ûk/2−1

3.4.5.5 Criterion 5: All bits are frozen except the last 2 bits

k bits are frozen except for k−1 and k−2.
Assuming 8-bit encoder with this frozen pattern:
x0 = u6⊕u7
x1 = u7
x2 = u6⊕u7
x3 = u7
x4 = u6⊕u7
x5 = u7
x6 = u6⊕u7
x7 = u7
the frozen bits are decoded simultaneously to value of zero while ûk−1 = S0:k−1odd

ûk−2 = S0:k−1even + ûk−1.

3.4.5.6 Criterion 6: All bits are frozen except the last 4 bits

k bits are frozen except for k−1 , k−2 , k−3 and k−4.
x0 = u4⊕u5⊕u6⊕u7
x1 = u5⊕u7
x2 = u6⊕u7
x3 = u7
x4 = u4⊕u5⊕u6⊕u7
x5 = u5⊕u7
x6 = u6⊕u7
x7 = u7
the frozen bits are decoded simultaneously to value of zero while
ûk−1 = S∑L4∗j+3
ûk−2 = S∑L4∗j+2 + ûk−1
ûk−3 = S∑L4∗j+1 + ûk−1 + ûk−2
ûk−4 = S∑L4∗j

+ ûk−1 + ûk−2 + ûk−3
where j ranges from 0 to k/4−1

3.4.5.7 Criterion 7: No frozen bits

no bits are frozen then the sign of each LLR is assumed to be input bit to a
polar encoder of size k , the encoder output x̂0:k are the needed û0:k. û0 =
s0⊕ s1⊕ s2⊕ s3⊕ s4⊕ s5⊕ s6⊕ s7
û1 = s1⊕ s3⊕ s5⊕ s7
û2 = s2⊕ s3⊕ s6⊕ s7
û3 = s3⊕ s7
û4 = s4⊕ s5⊕ s6⊕ s7
û5 = s5⊕ s7
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û6 = s6⊕ s7
û7 = s7

3.4.6 Partial sum calculation
By regarding the 4-bit encoder and decoder flow graph 3.6, the f function in decoder
replaces the XOR symbol in encoder while the g function replaces the dot in encoder,
so it is obvious that the g function depends on the bit value on the input of the XOR
(thus partially re-encoding the decoded bits) The partial sum generation matrix
introduced in [9] calculates the updated partial sums after decoding one new bitûi

in one clock cycle. Figure 3.10 shows a partial sum calculation matrix based on a
generation matrix as the one used for encoding along with the shift register and
XOR matrix, this XOR matrix differs from that of the encoder matrix as shown. The
shift register is meant to feed the recently decoded bit ui every cycle. This Partial
sum calculation can further be reduced by using the generation matrix simplification
[9] as shown in figure 3.11 and the general form can be as in figure 3.12.
The main problem is that the radix-4 proposal decodes 4 bits simultaneously,while
this partial sum network is limited to calculate partial sums after only on decoded
bit in one cycle
The partial sum generation matrix is tweaked to update 4 bits at a time depending
on the fact that:
G⊗N = G⊗N−4⊗G⊗4

where
G =

[
1 0
1 1

]
and G⊗2 = G⊗G

Thus every 1 is replaced with
[
ûi + ûi+1 + ûi+2 + ûi+3 ûi+1 + ûi+3 ûi+2 + ûi+3 ûi+3

]
where those bits are the results of the 4-bit encoding of the newly decoded bits
And every 0 is replaced with

[
0 0 0 0

]
The resulting word is XORed with the past partial sum register creating the

current partial sum register. This implementation is described in figure 3.13. When
compared to figure 3.12 the difference is only the removal of the ordinary shift
register and replace it with a circuit capable of feeding the combined versions of
the last decoded 4-bits ui,ui+1,ui+2,ui+3 This approach can be further tweaked to
be able to update partial sum after decoding 16 bits at a time in case of special
sub-code handling.

3.4.7 Partial sum lookahead
To decrease the overall decoder area ,the line architecture [30] is used over the tree
architecture, Only the PUs needed to calculate the LLRs in the most crowded clock
cycles (the stage 2 ff LLRs for example) are implemented, thus only the PUs that
can be utilized in at least one cycle are instantiated. For n-bit codeword decoder,
only n/4 combined processing units are instantiated.

The dependency of LLRs calculations on the previously decoded bits through
the partial sum usage is what gives the successive cancellation decoder its successive
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structure, thus the instantiated processing units may remain idle for most of the
time due to this successive structure. A bottle neck in the decoding process appears
because of this wait on the newly calculated partial sums. And since the partial
sums are updated every cycle by the newly decoded 4-bits only, this gives 24 possible
values for the decoded bits to be. To break the bottleneck, the partial sum lookahead
technique is proposed. Thus reducing the decoding latency of ordinary successive
cancellation decoder. The partial sum lookahead idea imitates the carry lookahead
in digital subtracter circuits that may be used in the decoding process. Instead of
waiting for the hard decision of the bits ui,ui+1,ui+2,ui+3 to update the partial sum
values and then calculate the LLRs, which will be leading to the decoding of the
next 4 bits ui+4,ui+5,ui+6,ui+7, the 16 possible values of the bits ui,ui+1,ui+2,ui+3
are used to calculate partial sums and are fed into 16 different idle processing units,
when the bits are decoded the LLRs in stage log2(n)−2 will be ready through a
multiplexer. Thus the bits ui+4,ui+5,ui+6,ui+7 can be hard decided in the next
cycle.
It can be seen that the use of partial sum lookahead in the radix-4 architecture
needs 16 free processing units, the same idea can be used for previous stages such as
stage log2(n)−4 but in this case higher number of idle processing units are needed
(namely 256 processing unit) along with a huge multiplexer. In the 1024 decoder,
only 256 processing units are instantiated so the partial sum lookahead can not be
used for stage log2(n)−4 since the maximum number of free processing units will
be 255. Figure 3.14 shows the clock cycle scheduling of 2 (64-bit SC decoders) both
uses the radix-4 architecture while only the second one combines it with partial sum
lookahead technique.
The partial sum lookahead was being used for 3/4 of the total LLRs calculated (those
calculated using only log2(n)−2 calculations with out getting back to older stages).
Thus the partial sum lookahead decreases 75% of the total cycles of calculating
log2(n)−2. The total cycles will be 75%∗n/4 = 3∗n

16 . That is in the case of (1024,512)
decoder, the decoding latency was reduced by 192 cycles to reach 404 cycles compared
to 596 cycles for the radix-4 only architecture. The savings in latency are more
significant with higher code lengths. In figure 3.14, the notation Lk

i refers to the ith

LLR at the kth decoding level. The notation Lk
i:j refers to the set of LLRs from Lk

i

to Lk
j .

3.4.8 Memory architecture
To reduce the overall latency, the memory architecture is implemented in a way to
achieve concurrent access for all LLR input values for a specific PU. The proposed
architecture includes 64 single-port memory banks. The 0th (first) decoding level
processing the input LLRs (received from the channel) has the the ith PU. This PU
has four inputs L0

i ,L0
i+n/4,L0

i+2n/4,L0
i+3n/4, where n is the size of the codeword. In

order to avoid conflicts in memory accesses, the LLRs are stored in different memory
banks to guarantee simultaneous access. Similarly, the ith PU at next decoding
level has 4 inputs; L2

i ,L2
i+n/16,L2

i+2n/16,L2
i+3n/16 which are stored in different banks

too. This avoids any possible memory access bottleneck which affects the decoding
latency significantly.
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3.5 Conclusion
The channel coding is divided into 2 parts, the channel combining and channel
splitting. These processes make use of N different B-DMC channels to generate
another set of N channels that are polarized in the way that some of them are not
reliable for data transmission while other channels are highly reliable.
Successive cancellation decoder is based on processing units that are capable of
calculating 2 types of equations f,g. The usage of log likelihood ratios along with
the minimum sum approximation decreased the mathematical complexity of this
processing unit.
A radix-4 processing unit was presented that is capable of calculating the LLRs
by the use of ff,fg,gf,gg functions. A special last stage processing unit that is
capable of handling the only 6 legal cases of frozen bits is presented.
The last stage processing unit is extended to some of the easy scenarios of subsequent
bits so that it is capable of decoding more than 4-bit at the same clock cycle if any
of this frozen bit scenarios are valid.
A new partial sum calculation circuit is adopted and updated to fit the multi-bit
decoding in the last stage unit. Since lots of processing units are instantiated and
not used all time because of the serial behavior of SCD, these processing units are
used to handle every available combination of decoded bits and then multiplex the
correct choice once those bits are decided. The memories are divided into banks to
be able to provide the bandwidth required by the radix-4 processing units.
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Chapter 4: BER simulation results
4.1 BER simulations results on different channel

models
Matlab simulations have been done to prove the proposed architecture bit error
performance on a binary discrete memoryless channel on both binary erasure channel
and AWGN.
The binary erasure channel is modeled by XORing random bits in the data flow
with a probability 1-W.
While the AWGN is modeled by adding some white noise (on all frequencies with
Gaussian probability) on the bit stream after being transmitted, there is no easy
way to map the AWGN channel versus the probability of error as it is not quantized
error insertion, so it makes more sense to model the AWGN BER versus the Signal
to noise ratio (SNR).

4.2 BER simulations results on a binary erasure
channel

Different codeword length where used ranging from 16 bit to 1024 bit. Shorter
codewords where not used because the polar codes performance will not appear so
the error correction performance will be worse. And because the differences between
the reed-muller codes and polar codes vanish at those short codewords.
The Matlab simulations where done on a count of simulation iterations large enough
to get the expected BER at a high accuracy (i.e the total bit count simulated is
100 times the BER expected or more). Frozen bits patterns are calculated using
Bhattachrya parameter, coding rate was set to 1

2 , 8 different values of transition
probabilities, Matlab BSC function was used with 1-W as probability of error input,
the results were plotted on the Y axis with a log scale while the X axis plotting
erasure probability on a log graph.
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Figure 4.1: BER with a polar codes length N 16 on a binary erasure channel

Figure 4.1 shows the BER with a polar codes length N = 16 and code rate= 1
2

on a binary erasure channel with erasure probability Pe where the X axis represents
Pe and the Y axis represents BER. It can be seen that at higher erasure probability
the bit error rate is approximately equal to the erasure probability, this can be
explained that the error correction performance of polar codes at codeword length
16 is not good enough because the channels are not really polarized, in other words
the selected bits are not very reliable compared to the frozen bits, this problem is
fixed with every longer codeword length applied.
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Figure 4.2: BER with a polar codes length N 64 on a binary erasure channel

Figure 4.2 shows the BER with a polar codes length N = 64 and code rate1
2 on

a binary erasure channel with erasure probability Pe where the x axis represents
Pe and the Y axis represents BER. It is easily noted that the BER rate dropped
to approximately 1

2 for the slightly longer codeword length. Error probability
didn’t reach zero in the smaller erasure probability points, but because of the
limited simulation power, for a relatively convenient simulation time the lowest error
probability reached was 7E(−7).

55



0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

B
ER

ERASURE PROBABILITY

BER BEC N=256

Figure 4.3: BER with a polar codes length N 256 on a binary erasure channel

Figure 4.3 shows the BER with a polar codes length N = 256 and code rate1
2 on

a binary erasure channel with erasure probability Pe where the x axis represents Pe

and the Y axis represents BER. Here the BER curve slope is very high, the error
probability drops fast when the erasure probability is dropped from 1.00E−01 to
1.00E−02, There is a simulation limitation starting to appear with this curve with
the stated simulation iterations, the Error probability after decoding is getting very
rare that it needs very long Matlab simulations to cover. Thus the lowest error
probability to get in a convenient simulation time is 4E(−6).
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Figure 4.4: BER with a polar codes length N 1024 on a binary erasure channel

Figure 4.4 shows the BER with a polar codes length N = 1024 and code rate= 1
2

on a binary erasure channel with erasure probability Pe where the X axis represents
Pe and the Y axis represents BER. It can be seen that still for high erasure probability
5.00E− 02, the BER is approximately the same as the erasure probability thus
there is no real gain for the coding at this high erasure rates, yet at lower erasure
probability 1.00E−05 the BER obviously dropped to near zero BER, because of
the simulation length limitation, it can be seen that the BER is clipped at a lowest
value equal 1.8E(−5) for a convenient simulation time.
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4.3 BER simulations results on AWGN channel
Different codeword length where used ranging from 16 bit to 1024 bit. Shorter
codewords where not used because the polar codes performance will not appear so
the error correction performance will be worse. And because the differences between
the reed-muller codes and polar codes vanish at those short codewords.
The Matlab simulations where done on a count of simulation iterations large enough
to get the expected BER at a high accuracy (i.e the total bit count simulated is
100 times the BER expected or more). Frozen bits patterns are calculated using
Bhattachrya parameter, coding rate was set to 1

2 , 10 different values of Signal to
noise ratios were used, Matlab AWGN function was used with SNR as input, the
results were plotted on the Y axis with a log scale while the X axis plotting signal
to noise ratio SNR in Db.
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Figure 4.5: BER with a polar codes length N 16 on an AWGN channel

Figure 4.5 shows the BER with a polar codes length N = 16 and code rate1
2 on

an AWGN channel with signal to noise ratio SNR represented on X axis and the
Y axis represents BER. The AWGN is adding a white Gaussian noise to the bit
stream after encoding, this is not as measurable as the Erasure because we can only
manage the Signal to noise ratio SNR between the transmitted data and the noise
thus there is an indirect control to the actual error probability injected to the coded
data stream. As depicted from the figure when SNR gets high the probability of
error drops. It can be seen that at 5 db the BER is around 0.0003
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Figure 4.6: BER with a polar codes length N 64 on an AWGN channel

Figure 4.6 shows the BER with a polar codes length N = 64 and code rate1
2 on

an AWGN channel with signal to noise ratio SNR represented on x axis in DB and
the Y axis represents BER on a logarithmic scale. The BER at N = 64 compared to
N = 16 is getting better as expected.
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Figure 4.7: BER with a polar codes length N 256 on an AWGN channel

Figure 4.7 shows the BER with a polar codes length N = 256 and code rate1
2

on an AWGN channel with signal to noise ratio SNR represented on X axis and
the Y axis represents BER on a logarithmic scale. The water drop shape of the
curve as expected shows that as SNR increases, the BER drops with higher rate.
This shows the effect of channel coding on the error correction performance. Yet
at SNR = 5.5Db the BER dropped to less than 0.000001, thus it was very hard to
get a non zero value with the limited simulation iterations that can be possible in a
convenient simulation time.
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Figure 4.8: BER with a polar codes length N 1024 on an AWGN channel

Figure 4.8 shows the BER with a polar codes length N = 1024 and code rate1
2

on an AWGN channel with signal to noise ratio SNR represented on X axis and
the Y axis represents BER. Since N = 1024 this gives the least error probability.
With the initial minimum number of simulation iterations, the BER dropped to
zero. Thus another simulations were run with more simulation points and the results
were averaged until reaching the expected water drop shape of the curve. but at
SNR = 4Db the BER error rate dropped below the 0.000001 Threshold, yet was
very hard to get a non zero value with the limited simulation iterations that can be
possible in a convenient simulation time.
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Chapter 5: Results
5.1 Results

5.1.1 Reducing decoding latency
The proposed polar decoder latency is computed as: n

4 cycles consumed by last stage
PU, n

4i cycles used in calculation of the ithstage LLRs where i = 1,2,3, ..., log2(n)
2 −1.

The total latency then is n
4 + n

4 + n
16 + ... + n

4
log2(n)

2 −1
= n

4 +∑k= log2(n)
2 −1

k=1 n.
(

1
4

)k
=

7
12n− 4

3 which is clearly less than the (0.75n−1) latency defined in [26] using SC
decoder with precomputation.
Furthermore, the proposed partial sum lookahead replaces the n/4 by n/16, and

the corresponding latency =n
4 + n

16 + n
16 + ...+ n

4
log2(n)

2 −1
= n

16 +∑k= log2(n)
2 −1

k=1 n.
(

1
4

)k
=

19
48n− 4

3 .
Depending on the count of the Special codes of certain length in the codeword, the
effect of special sub-code handling on latency is calculated.
Table 5.1 shows the count of length 16 special sub-codes occurrences in different
codeword length of code rate 1

2 .
Each sub-code occurrence replaces the 5 cycles needed to decode 16-bit code with
the use of partial sum look ahead with just once cycle, Thus each occurrence gives 4
clock cycle latency gain.

Table 5.1: 16-bit Special sub-code occurrences in different codeword length with
code rate 1

2 and the corresponding latency gain
n 1024 4096 16384 65536

occurrence count 7 37 177 803
latency gain(cycles) 28 148 708 3212

To maintain consistency in comparison, the latency calculation assumes that
both control unit processing and memory accesses are done concurrently in the same
clock cycle with PU processing.
Table 5.2 compares the latency improvements in the proposed architecture with
those in [26].

Table 5.2: Latency Reduction in the proposed architecture (clock cycles)
codeword size (n) 64 256 1024 4096 16384 65536
Reference [26] 47 191 767 3071 12143 49151

Proposed Radix-4 SC decoder 36 148 596 2388 9444 38228
Proposed partial sum lookahead 24 100 404 1620 6484 25940

Prop. with spcl sub-codes. - - 376 1472 5776 22728
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5.1.2 Area Improvement
According to [14] the LLR quantization is optimum in between Q = 5 or Q = 6.
Q = 5 with decoder inputs saturated between [−2,2] is selected. The number of
needed PUs is decreased to n

4 in the line architecture which is half the count in
[30], the single PU area is approximately doubled. The areas of one LSPU module
and one Special sub-codes decoding unit are negligible compared to the n

4 PUs
areas. Therefore, the total area is almost similar to [26]. The proposed architecture
no longer need to compute and store LLRs in each stage. Otherwise, it computes
and store LLRs only in even stages, skipping the odd stages. As a consequence,
the memory size is reduced to half. The resulting memory size for the proposed
architecture isQ∗ n

2 logn bits.

5.1.3 VLSI implementation
To compare the proposed architecture to [26] and the dedicated decoder of [13],
the hardware implementation of a (1024, 512) radix-4 SC decoder based on tree
decoding architecture was done. The design is implemented with Verilog hardware
description language, while synthesis is done using Synopsys DC tool using both
TSMC 65nm and Open Cell Library 15nm FreePDK Technology [16]
Table 5.3 compares [26] , [13] and the proposed architecture for different aspects.

Table 5.3: Results of (1024, 512) SC decoder implementation quantized at 5-bits
Polar decoder imple-
mentation

[13] [26] Proposed Radix-4 SC decoding

Frequency(MHz) 750 500 3058 650
Decoding latency (cy-
cle)

767 365 596 596

Total gate count 338499 1050000 377420 259270
Throughput (Mbps) 500 1360 2647 556.898
CMOS Technology 45nm 65nm 15nm 65nm
TSNT (Mbps/Kgate)
(scaled to 65nm)

1.024 1.3 1.62 2.173

Where TSNT is the Technology Scaled Normalized Throughput and defined as
follows:

TSNT = Throughput∗ tech.

65nm
∗ 1

gatecount
(5.1)

Table 5.3 shows that the proposed design has a reduction in gate count of TSMC
implementation by 23.4% with respect to [26]. The latency has also been reduced
by a factor of 10% although it operates at a lower maximum clock frequency. If
both designs operate at a similar frequency, the decoding latency reduction shall be
DecodingLatencyold−DecodingLatencyproposed

DecodingLatencyold
= 22.3%.

The resulting gate count is different between the 15nm and the 65nm because of
using two different technology kits; TSMC and freePDK. The freePDK is lacking
some complex standard cells that is left to synthesizer thus degrading the gate count
optimization found in TSMC kit.
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The overall improvement in performance is represented by the normalized through-
put increase. The improvement in TSNT is 212% compared to [26] as calculated in
5.1.
This TSNT is further improved after using line architecture thus decreasing the
count of needed PUs and being able to use the partial sum lookahead and special
sub-codes handling techniques.

The power consumption of the proposed radix-4 decoder (using design compiler
and TSMC 65nm) is 1.66 uW as leakage power , and 1.0187 uW as Dynamic power.
This power consumption is comparable to state of the art implementations.
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Chapter 6: Conclusion
6.1 Conclusion
Channel coding techniques add redundancy to the message to help in error detection
and correction. The maximum rate of reliable communication of a message on a
B-DMC is stated by Shannon to be the Channel capacity C. The polar codes are
proven to achieve the channel capacity asymptotically when the codeword length
tends to infinity.
LDPC ,Reed-muller and turbo codes are the closest contenders to polar codes. Polar
codes differs from Reed-Muller codes in the frozen bit selection criteria, polar codes
uses the Bhattacharyya parameter instead of the hamming distance. Polar encoders
are pretty simple and several implementation were introduced.
Several polar decoders were introduced. Successive cancellation decoder is a low
complexity decoder yet it suffers from high decoding latency. Because of the similarity
between polar codes and reed-muller codes, belief propagation decoders can also be
used for polar codes.
The error correction performance of polar codes with successive cancellation decoders
can get even better with the use of the generalization of decoder called successive
cancellation list decoder, although having slightly higher complexity.
Successive cancellation decoders latency were further reduced by introducing the
multi-bit successive cancellation decoding. The decoding complexity itself was
reduced by the usage of log likelihood ratios instead of likelihood ratios along with
minimum sum approximation. This is done without affecting the error correction
performance. A radix-4 processing unit was proposed that is capable of calculating
the LLR values skipping 2 stages at a time. Another special hard decision unit was
proposed to cope with the new processing unit, it is able to decide 4-bits at a time
without performance loss.
The (1024, 512) successive cancellation decoding latency was decreased from 767
to 597 cycles. The throughput and memory efficiency have been increased. The
decoding latency further decreased by the introduction of partial Sum lookahead. It
was able to decrease the decoding latency further to 404 clock cycles at no additional
area overhead or complexity. Furthermore, the special sub-codes handling reduced
the decoder latency to 376 clock cycles, this gain is proven to grow for longer
codeword length. In addition, the proposed architecture improves the TSNT by
more than 212% compared to existing counterpart.

6.2 Future work
Many different implementations, adaptations and further tests have been left for
future work because of the limited available time of this work.
The future work is going to be presented as points for simplicity:

1. Regarding the current algorithm, we are looking forward to implement the
current RTL implementation on FPGA, this will enable giving exact figures
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with calculation of the exact error correction performance while providing
easier verification of the functionality.

2. Studying generation of higher radix decoders. Although adopting higher radix
decoders may add extra complexity to the last stage processing unit, there
shall be an optimal radix decreasing the latency to minimum without adding
a deal breaking complexity.

3. Studying the current work with other decoders for polar codes such as: belief
propagation and successive cancellation list decoders, studying also how to use
the current proposal for SCL decoders.

4. Studying possible application of polar codes and what changes shall be ad-
dressed to current implementation to follow the application requirements
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Appendix A: Important matlab
and verilog codes
A.1 Choosing the frozen bits
All this part is written using matlab.

A.1.1 calculating Bhattacharyya parameter
function Z=z_value(k,j,W);
if(k==2)
if(j==1)
Z=1-(W^2);
else %j=2
Z=(1-W)^2;
end%if(j=1)
else
if(j<=k/2)
Z=2*z_value(k/2,j,W)-(z_value(k/2,j,W))^2;
else
Z=(z_value(k/2,j-(k/2),W))^2;
end%if(j<=k)
end%if(k==2)
end%function

function Z=z_all(N,W);
for j=1:1:N
Z(j)=z_value(N,j,W);
end
end%function

A.1.2 Setting the pattern array ufixed
function u_fixed=ufixed(N,G_N,length_fixed,W);
[~,sorted_index]=sort(z_all(N,W));
maxIndex=sorted_index(1:length_fixed);
u_fixed=ones(1,N);
for maxindex_count=1:(N-length_fixed)
u_fixed(maxIndex(maxindex_count))=0;
end
end

where ufixed=1 for a frozen bit , 0 for a data bit
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A.2 Processing unit verilog implementation
module processing_unit(a,b,c,d,S11,S12,S21,S22,function_type,result);
parameter width =5;
input wire [width-1:0] a;
input wire [width-1:0] c;
input wire [width-1:0] b;
input wire [width-1:0] d;
input wire S11;
input wire S12;
input wire S21;
input wire S22;
input wire [1:0] function_type; // 0: FF 1:FG 2:GF 3:GG
output wire [width-1:0] result;
wire [width-1:0] adder_1_a,adder_2_a,adder_3_a;
wire [width-1:0] adder_1_b,adder_2_b,adder_3_b;
wire add_sub_1,add_sub_2,add_sub_3;
wire overflow1,overflow2,overflow3;
wire [width-1:0] out1,out2,out3;
wire [width-1:0] input_1_1,input_1_2,input_1_3;
wire [width-1:0] input_2_1,input_2_2,input_2_3;
wire [width-1:0] minimum_1,minimum_2,minimum_3;
wire result_A_BBAR_1,result_A_BBAR_2,result_A_BBAR_3;

adder_subtractor #width
u_adder_subtractor_1(adder_1_a,adder_1_b,add_sub_1,out1,overflow1);
adder_subtractor #width
u_adder_subtractor_2(adder_2_a,adder_2_b,add_sub_2,out2,overflow2);
adder_subtractor #width
u_adder_subtractor_3(adder_3_a,adder_3_b,add_sub_3,out3,overflow3);
min_of_absolute #width
u_min_of_absolute_1(input_1_1,input_2_1,result_A_BBAR_1,minimum_1);
min_of_absolute #width
u_min_of_absolute_2(input_1_2,input_2_2,result_A_BBAR_2, minimum_2);
min_of_absolute #width
u_min_of_absolute_3(input_1_3,input_2_3,result_A_BBAR_3,minimum_3);
//min_
assign input_1_1=a;
assign input_2_1=c;

assign input_1_2=b;
assign input_2_2=d;

assign input_1_3=(function_type==0)?minimum_1:out1;
assign input_2_3=(function_type==0)?minimum_2:out2;

assign adder_1_a=(function_type==1)?0:c;
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assign adder_1_b=(function_type==1)?minimum_2:a;
assign add_sub_1=(function_type==1)?b[width-1]^d[width-1]:S11;

assign adder_2_a=(function_type==1)?out1:d;
assign adder_2_b=(function_type==1)?minimum_1:b;
assign add_sub_2=(function_type==1)?a[width-1]^c[width-1]^S21:S12;

assign adder_3_a=(function_type[0]==0)?0:out2;
assign adder_3_b=(function_type[0]==0)?minimum_3:out1;
assign add_sub_3=(function_type==0)?a[width-1]^c[width-1]^b[width-1]^d[width-1]:

(function_type==2)?out1[width-1]^out2[width-1]:S22;

assign result=((function_type==0)||(function_type==3))?out3:(function_type==1)?
out2:minimum_3;
endmodule

module min_of_absolute(a,b,ABbar,minimum);
parameter width =5;
input wire [width-1:0] a;
input wire [width-1:0] b;
output wire ABbar;
output wire [width-1:0] minimum;
wire [width-1:0] temp_subtractor_result;
wire [width-1:0] result_before_absolute;
wire overflow,overflow2;
wire subtract;
adder_subtractor #width u0(a,b,subtract,temp_subtractor_result,overflow);
adder_subtractor #width absolute_module({width{1’b0}},result_before_absolute
,result_before_absolute[width-1],minimum,overflow2);
assign subtract=a[width-1]~^b[width-1];
assign ABbar= a[width-1]^temp_subtractor_result[width-1];
assign result_before_absolute=ABbar?a:b;
endmodule

module adder_subtractor(a,b,subtract,sum,overflow);
parameter width =5;
input wire [width-1:0] a;
input wire [width-1:0] b;
input wire subtract;
output wire [width-1:0] sum;
output wire overflow;

wire [width-1:0] carry_temp;
adder_subtractor_bit_block u0(a[0],b[0],subtract,subtract,sum[0],carry_temp[0]);
generate
genvar i;
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for(i=1;i<width;i=i+1)
begin : generate_adder_bits
adder_subtractor_bit_block u(a[i],b[i],carry_temp[i-1],subtract,sum[i],carry_temp[i]);
end
endgenerate
assign overflow=carry_temp[width-1]^carry_temp[width-2];
endmodule
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A.3 Last stage Processing unit verilog implemen-
tation

module hard_decision_unit(LLR0,LLR1,LLR2,LLR3,freeze_pattern,u0,u1,u2,u3);
parameter LLR_WIDTH=5;
input wire [LLR_WIDTH-1:0] LLR0;
input wire [LLR_WIDTH-1:0] LLR1;
input wire [LLR_WIDTH-1:0] LLR2;
input wire [LLR_WIDTH-1:0] LLR3;
input wire [3:0] freeze_pattern;
output reg u0;
output reg u1;
output reg u2;
output reg u3;
reg [LLR_WIDTH-1:0] absLLR0,absLLR1,absLLR2,absLLR3;
reg [LLR_WIDTH-1:0]sum,sum2;
always @*
begin
case (freeze_pattern)
4’b0000:
begin
u0=0;
u1=0;
u2=0;
u3=0;
end
4’b1000:
begin
u0=0;
u1=0;
u2=0;
sum=LLR0+LLR1+LLR2+LLR3;
u3=sum[LLR_WIDTH-1];
end
4’b1100:
begin
sum=LLR0+LLR2;
sum2=LLR1+LLR3;
u0=0;
u1=1;
u2=sum[LLR_WIDTH-1]^sum2[LLR_WIDTH-1];
u3=sum2[LLR_WIDTH-1];
end
4’b1010:
begin
sum=LLR0+LLR1;
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sum2=LLR2+LLR3;
u0=0;
u1=sum[LLR_WIDTH-1]^sum2[LLR_WIDTH-1];
u2=0;
u3=sum2[LLR_WIDTH-1];
end
4’b1110:
begin
u0=0;
sum=LLR0+LLR2;
sum2=LLR1+LLR3;
if(sum[LLR_WIDTH-1]) sum=0-sum;
if(sum2[LLR_WIDTH-1]) sum2=0-sum2;
if(sum<sum2)
begin
u1=LLR0[LLR_WIDTH-1]^LLR2[LLR_WIDTH-1];
if(absLLR1[LLR_WIDTH-1]) absLLR1=0-absLLR1;
if(absLLR3[LLR_WIDTH-1]) absLLR3=0-absLLR3;
if(absLLR1<absLLR3)
begin
u2=LLR2[LLR_WIDTH-1]^LLR3[LLR_WIDTH-1];
u3=LLR3[LLR_WIDTH-1];
end
else
begin
u2=LLR0[LLR_WIDTH-1]^LLR1[LLR_WIDTH-1];
u3=u2^LLR2[LLR_WIDTH-1];
end
end
else
begin
u1=LLR1[LLR_WIDTH-1]^LLR3[LLR_WIDTH-1];
if(absLLR0[LLR_WIDTH-1]) absLLR0=0-absLLR0;
if(absLLR2[LLR_WIDTH-1]) absLLR2=0-absLLR2;
if(absLLR0<absLLR2)
begin
u2=LLR2[LLR_WIDTH-1]^LLR3[LLR_WIDTH-1];
end
else
begin
u2=LLR0[LLR_WIDTH-1]^LLR1[LLR_WIDTH-1];
end
u3=LLR3[LLR_WIDTH-1];
end
end
4’b1111:
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begin
u0=LLR0[LLR_WIDTH-1]^LLR1[LLR_WIDTH-1]^LLR2[LLR_WIDTH-1]^LLR3[LLR_WIDTH-1];
u1=LLR1[LLR_WIDTH-1]^LLR3[LLR_WIDTH-1];
u2=LLR2[LLR_WIDTH-1]^LLR3[LLR_WIDTH-1];
u3=LLR3[LLR_WIDTH-1];
end
endcase
end
endmodule
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  أ
 

 ملخصال
 

نتيجة لاثبات قابليتها من الوصول حظيت الشفرات القطبية مؤخرا باهتمام شديد من قبل الباحثين 
 عند استخدام جمل طويلة في التشفير. الي السعة القصوي لقناة الاتصال

و لكن سرعة الاستجابة لتصاميم فك التشفير تناسبت طرديا مع طول الجمل التشفيرية مما جعل 
 .استخدام هذه التقنية مع الاستخدامات المتطلبة لسرعات استجابة عالية يعد مستحيلا

لتخطي هذه المشكلة، اقترحت هذه الرسالة معمارية لفك التشفير مستخدمة وحدات معالجة ذات 
 16اساس رباعي مع وحدة معالجة نهائية ذو طابع خاص، حيث انها قادرة علي تحديد حتي 

 في ان واحد. bitجزيئ منطقي 
لتقليل وقت  علاوة علي ذلك اقترحت الرسالة فك تشفير لحظي للشفرات الخاصة الجزئية

 الاستجابة الكلي.
تم ايضا استخدام تقنية التوقع المستقبلي للمجموع الجزئي مما ادي الي تقليل سرعة الاستجابة و 

 رفع الاداء الكلي للمعمارية المقترحة. 
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