

LOW ENERGY COMPUTER ARCHITECTURE

DESIGNS

By

Mervat Mohamed Adel Mahmoud

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communication Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

LOW ENERGY COMPUTER ARCHITECTURE

DESIGNS

By

Mervat Mohamed Adel Mahmoud

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communication Engineering

Under the Supervision of

Prof. Dr. Hossam A. H. Fahmy Dr. Dalia A. El-Dib

Electronics and Communications

Department

Faculty of Engineering, Cairo University,

Cairo, Egypt

 Electrical and Computer Engineering

Department

Faculty of Engineering, Dalhousie

University, Halifax, NS, Canada

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has

been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have

cited them in the references section.

i

Dedication

I would like to dedicate my thesis to my beloved mother.

ii

Acknowledgments

 بسم الله الرحمن الرحيم
 "سُبْحَانَكَ لََ عِلْمَ لَنَا إِلَا مَا عَلامْتَنَا إِناكَ أَنتَ الْعَلِيمُ الْحَكِيمُ"

 صدق الله العظيم

Foremost, all thanks are due to Almighty, the merciful God. God blessed me and

gave me the strength to finish this study.

Dr. Hossam Fahmy and Dr. Dalia El-Dib, my thesis supervisors, have guided my

work insightfully, and supported me during the thesis journey. Dr. Hossam (مُعَلمِي) and I

would like to write it in Arabic as he represents all the real meanings of this word and

the verse of Ahmed Shawky’s poem:

علّمُ أن يكونَ رسولَعلّمِ وَفِّـهِ التبجيـلا ... كـادَ المُ قـُمْ للمُ
ـساً وعقولَنشئُ أنفُ بني ويُ ذي ... يَ متَ أشرفَ أو أجلا من الأعلِ

Dr. Dalia has enriched my research with her experience and has always supported,

guided and encouraged me to achieve higher in my entire career path - not only in my

research.

My parents have supported me with their love and prayers. I would never succeed

in life without their early support. Owing them my success, I will never be able to thank

them enough. To them, I would like to express my sincere thanks.

My colleagues, Safaa Ahmed Elawamy, Dina Ellithy, and Rasha Mahmoud have

provided me with cooperation and help with the design simulations and CAD tools.

Also, I would like to thank my sister Marwa. And finally, I would like to thank my dear

friends Asmaa Adawy, Rasha Shoitan, Abeer Farouk, Nahla El-azab, Ebtsam Arafa,

Heba Draz, Ratshih, Nahla El-Sayed, and Hoda Hosny, who endured this long journey

with me, always offering unconditional support and love.

iii

Table of Contents

ACKNOWLEDGMENTS ...I

DEDICATION ... II

TABLE OF CONTENTS ... III

LIST OF TABLES .. V

LIST OF FIGURES .. VI

ABSTRACT ... VII

CHAPTER 1 INTRODUCTION ... 1

1.1. Power vs Energy ... 1

1.2. Power/Energy Measurement in Digital Design .. 2

1.3. Low Power/Energy Digital Design ... 4

1.4. Approximate Computing for Saving Energy .. 5

1.5. Thesis Overview ... 7

CHAPTER 2 : LOW ENERGY PIPELINED DUAL BASE (DECIMAL/BINARY), DBM,

MULTIPLIER ... 9

2.1. Introduction... 9

2.2. Available Combined Binary/Decimal Multipliers .. 10

2.3. Low Energy Pipelined Dual Base (decimal/binary) Multiplier, DBM, Design . 13

2.3.1. Multiplicand Multiples Generation Stage .. 13

2.3.2. Partial Products Selection Stage .. 16

2.3.3. Partial Products Accumulation Stage .. 18

2.3.3.1. Binary Column Tree ... 19

2.3.3.2. Split Binary Addition ... 21

2.3.3.3. Split Decimal Addition ... 21

2.4. Summary ... 22

CHAPTER 3 : DBM MULTIPLIER COMPARISON AND RESULTS 23

3.1. Introduction... 23

3.2. FPGA Simulation Results ... 23

3.3. ASIC Implementation Simulation Results For The non-pipelined Designs 25

3.4. Binary/Decimal Pipeline Stages Selection Using NanGate-45 nm Technology 26

3.5. Pipelined DBM Design Simulation Results For Different Technologies 28

iv

3.6. Power Distribution Analysis ... 30

3.7. Summary ... 32

CHAPTER 4 : LOW ENERGY DESIGN FOR MAIN MEMORY (LITERATURE IN DATA

COMPRESSION) ... 33

4.1. Introduction... 33

4.1.1. Memory Hierarchy .. 33

4.1.2. Lossless Compression.. 35

4.2. Literature Review on Lossless Compression Algorithms 36

4.2.1. Definitions ... 36

4.2.2. Basic Coding Techniques .. 38

4.2.2.1. Unary Coding .. 38

4.2.2.2. Binary Coding .. 38

4.2.2.3. Codes with Selector Part ... 38

4.2.2.4. Run Length Encoding (RLE) [1967] .. 39

4.2.3. Statistical Coding Techniques ... 40

4.2.3.1. Shannon-Fano Coding [1948] ... 40

4.2.3.2. Huffman Coding [1952] ... 40

4.2.3.3. Arithmetic Coding .. 42

4.2.4. Dictionary Based Coding Techniques ... 43

4.2.4.1. LZ77 and LZ78 [Lempel and Ziv, 1977 and 1978] 43

4.2.5. Differential Coding .. 44

4.2.6. Conclusion ... 44

CHAPTER 5 : SUGGESTED APPROACH FOR LOW ENERGY ASIC DESIGN FOR MAIN

MEMORY DATA COMPRESSION/DECOMPRESSION ... 47

5.1. Recent Literature in Memory Compression ... 47

5.2. Suggested Methodology for Low Energy Main Memory Compression 50

5.3. Comparison and Results ... 53

5.4. Preparing design for fabrication ... 56

5.5. Summary ... 62

CONCLUSIONS AND FUTURE WORK .. 63

REFERENCES .. 65

APPENDIX A: RTL SYNTHESIS FLOW COMMANDS USING SYNOPSYS DESIGN

COMPILER (DC) ... 71

v

List of Tables

Table 2.1 Decimal Multiplicand multiples selection .. 17

Table 3.1 Worst path delay, area and power consumption of the proposed design and

the previously published designs ... 24

Table 3.2 Detailed power dissipations distribution (in Watts) for the proposed pipelined

design and the previously published designs.. 24

Table 3.3 Area, total power dissipation, and PDP for non-pipelined designs at 100MHz.

 .. 25

Table 3.4 Minimum path delay for non-pipelined designs at maximum operating

frequency .. 26

Table 3.5 Delay breakdown of each stage in the non-pipelined DBM design for

NanGate-45 nm technology at 100MHz... 27

Table 3.6 Comparison among different pipelining schemes for NanGate 45nm

technology at 100MHz ... 28

Table 3.7 Area, power, and PDP for pipelined DBM design at 100MHz for different

technologies .. 29

Table 3.8 Detailed power dissipation for pipelined DBM design for NanGate 45nm at

100 MHz ... 29

Table 3.9 Power distribution of the pipelined DBM at 100 MHz for different

technologies .. 31

Table 4.1 Memory technologies’ at 2012 ... 33

Table 4.2 Three simple codes and their expected length .. 37

Table 4.3 minimal binary, Elias, Golomb, and Rice codes

(i.e. the blanks in the codewords do not appear in the coded bit stream) 39

Table 4.4 Huffman coding example ... 41

Table 4.5 Example of arithmetic coding for message of 10 symbols (a) statistical model

of the data, (b) coding of the input message ... 43

Table 4.6 Comparison between different basic coding techniques 45

Table 5.1 Similarity between memory lines (reference: 1st line of each 4K page) 55

Table 5.2 Compression performance for different designs. ... 55

Table 5.3 Compression ratios for different benchmark applications for the suggested

approach. .. 55

Table 5.4 Compression ratios for the different designs .. 56

vi

List of Figures

Figure 1.1 Energy consumption versus power consumption [7] 2

Figure 1.2 Switching power ... 3

Figure 1.3 Short circuit power .. 3

Figure 1.4 Example of how glitches occur ... 4

Figure 1.5 Leakage Power .. 4

Figure 1.6 Approximate computing in architecture level of abstraction [29] 7

Figure 2.1 non-pipelined Dual Base (decimal/binary) Multiplier, non-pipelined DBM.

 .. 12

Figure 2.2 Pipelining Schemes ... 14

Figure 2.3 Proposed pipelined Combined Binary/Decimal Multiplier. 15

Figure 2.4 Decimal multiples generation ... 16

Figure 2.5 Partial products selection .. 17

Figure 2.6 Binary column tree scheme. .. 19

Figure 2.7 “Column 15” binary CSA tree .. 20

Figure 2.8 The four binary bit-vectors after rearranging. ... 21

Figure 2.9 Scheme of the final Binary CPA. .. 21

Figure 2.10 Scheme of the final Decimal CPA. ... 22

Figure 2.11 The three decimal, BCD, bit-vectors after rearranging. 22

Figure 3.1 Total power breakdown in terms of the structure for 45nm technology at 100

MHz .. 30

Figure 4.1 Levels in memory hierarchy ... 35

Figure 5.1 Benini et al. basic compression block diagram [91] 48

Figure 5.2 General block diagram for “base-delta-immediate compression” Compressor

Unit (CU) .. 49

Figure 5.3 “Base-delta-immediate compression” block diagram 49

Figure 5.4 Block diagram of 4KB memory page ... 51

Figure 5.5 Compression block diagram for a 32B memory line 51

Figure 5.6 Details of the 8-bits subtractor, the basic unit of the compression design 52

Figure 5.7 Decompression block diagram for 32B memory line 53

Figure 5.8 Compression design block diagram after editing for fabrication 58

Figure 5.9 FPGA post translate simulation results ... 59

Figure 5.10 ASIC post synthesis simulation results ... 60

Figure 5.11 ASIC post synthesis simulation results for four memory lines 61

vii

Abstract

The continuous increase in chip integration and the associated power consumption

concerns with moving towards portability made low energy design one of the main

challenges facing VLSI systems. As low energy design has low power with high

operating frequency. Power/Energy management has various strategies at all design

process levels. That includes energy optimization at technology, circuit, logic,

architecture and system levels of abstraction. In this thesis, we present two low energy

designs. A low energy design at circuit level of abstraction is proposed for combined

binary/decimal multipliers. And a low energy design at architecture level of abstraction

is proposed for main memory data compression.

As combined binary/decimal arithmetic is optimal in supporting binary and

decimal high speed and low power applications. A low energy clock-gated pipelined

dual base binary/decimal fixed-point multiplier is suggested extending a previously

proposed non-pipelined design. A thorough study conducted on both the pipelined and

non-pipelined designs versus other architectures in literature proves tremendous

reductions in energy consumption. The pipeline stages are chosen to achieve energy

reductions with acceptable latency. In addition, clock gating the pipelined multiplier

design is introduced to provide a total of 43% energy reduction for the pipelined design

if compared to the lowest energy design in the literature.

In addition, a new low energy lossless compression/decompression approach is

suggested for the data of main memory. The proposed approach depends on the delta

coding and the observation that, for many applications, the lines of the main memory

pages are mostly similar. The target is to achieve a simple low energy compression

design for exact storage of memory data. The proposed design lowers energy

consumption by up to 66% when compared to previous designs. This is due to its

simplicity and low latency. Furthermore, the frequency of operation is increased from

300 MHz to 800 MHz. The new design also allows the main memory to store up to

30% more data according to PARSEC and PERFECT benchmarks applications data.

1

Chapter 1 Introduction

In predicting the future of integrated electronics, Gordon Moore predicted in 1965

that the number of components per chip will double every year in the period till 1975

[1] reaching 65,000 components on a single quarter-inch semiconductor. In 1975,

Moore reduced the rate to a doubling every two years due to integrating more

microprocessors which are in general less dense in electronic circuits [2]. In 1995,

Moore's stated that his projection is not going to stop soon [3]. In fact, Moore's rule was

considered one of the driving forces of electronics industry. It challenged technologists

to deliver annual breakthrough in manufacturing Integrated Circuits (ICs) to comply

with Moore's law. In 2014, a die was able to hold over seven billion transistors. Moore's

law worked perfectly and was continuously fulfilled and has caused many of the most

important changes in the electronics manufacturing technology.

Since 1970s, The most dominant electronics manufacturing technologies used were

bipolar and nMOS transistors [4]. Nevertheless, these consume non-negligible power

even in static (non-switching) state. Consequently, by 1980s, the power consumption of

bipolar designs and its cooling solution costs were considered too high to be

sustainable. This caused an expected switch to a slower, but lower-power

Complementary Metal Oxide Semiconductor (CMOS) technology. At that time, CMOS

transistors consumed lower power largely because static (leakage) power was

negligible if compared to dynamic (switching) power. Along with fulfilling Moore's

law, the aim is always to increase processing power of electronic circuits. This is

achieved by scaling down the technology, increasing the number of components per

chip, and increasing the frequency of operation. In the late 2004 with scaling down the

CMOS fabrication technology to 45-nm and downwards, we encountered a high

increase in leakage power to the extent that it is comparable to dynamic power and can

even dominate the overall power dissipation. Also, with integrating more and more

components, the power increases dramatically, and causes a challenge regarding

excessive thermal dissipation. Thus, another paradigm shift in computing electronics

was inevitable. The shift to multi-core computing was in the aim to increase

performance while keeping the hardware simple, retain acceptable power consumption

and transfer complexity to higher levels of the system design abstraction, including

software level. [4]. Approximate computing (AC) is one of the energy efficient

computing paradigms that use the inaccuracy tolerance inherited in applications for

significant performance improvements [5][6]. It leads to another tradeoff, energy and

performance versus computing quality. Where, slightly losing computing quality can

improve energy and/or density.

1.1. Power vs Energy

Both terms energy and power are ex-changeably used although energy is different

from power. For example, a specific task needs a specified amount of energy 𝐸 to

complete over time 𝑇. Its power consumption 𝑃 is the rate at which energy is consumed

(𝐸/𝑇). The time needed to complete the task can be increased by reducing the

frequency of operation for example. Whereas, the same amount of energy is still needed

2

to complete the task. Thus, the power consumption is reduced; however the energy

consumption (area under the graph) is still the same as shown in Figure 1.1.

Figure 1.1 Energy versus power [7]

While energy measures the total quantity of work done, it doesn’t say how fast the

work done. As a loaded semi-trailer can be moved across the country with a

lawnmower engine if time is not essential. If other things being equal, the tiny engine

would do the same amount of energy and burn the same amount of fuel as the truck’s

big one. But the bigger engine has more power, so it can get the job done faster.

The question now, in computer architecture design, which is more important power

or energy?. Desktop computers or wired digital devices are permanently connected to a

power supply. Power supply feeds the design components with power (𝑃 = 𝑉. 𝐼),

whereas these design’s components consume this power. That makes energy efficiency

here a bonus compared to a functional necessity. However, laptop computers or

portable devices have limited battery life time (𝐸 = 𝑃. 𝑇), before get rid of the battery

or recharge it.

1.2. Power/Energy Measurement in Digital Design

An IC's energy consumption is defined as its power consumption by the operating

frequency (𝐸 = 𝑃/𝑓) while power consumption is mainly composed of static power

and dynamic power.

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (1.1)

Dynamic power consumption is frequency-dependent and results from one of the

following three sources: Switching power, short circuit power and glitching power [11].

The dominant part of the dynamic power is the switching power which is consumed

3

during the charging and discharging of capacitive nodes, Figure 1.2. It can be

represented with the following equation;

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝛼. 𝐶𝑙. 𝑉𝑑𝑑
2 . 𝑓 (1.2)

Where 𝛼 is the switching activity of the circuit; 𝐶𝑙 is the effective capacitance of the

circuit; 𝑉𝑑𝑑 is the supply voltage; and 𝑓 is the operating frequency.

Short circuit power occurs during the momentary current flow that occurs when two

complementary transistors conduct during a logic transition, which arises from long rise

or fall times of input signals, Figure 1.3. Moreover, glitching power occasionally arises

due to the finite delay of the logic gates that cause spurious transitions at different

nodes in the circuit, Figure 1.4.

Figure 1.2 Switching power

Figure 1.3 Short circuit power

4

Figure 1.4 Example of how glitches occur

Static power typically comes from leakage current and dc current sources. Static

power consumption has many components and has many paths, Figure 1.5. The most

important contributor to static power in CMOS is the subthreshold leakage which is

exponentially dependent on (𝑉𝑔𝑠 − 𝑉𝑇), where 𝑉𝑔𝑠 is the gate to source voltage and 𝑉𝑇 is

the threshold voltage. Another part of leakage is caused by reduced gate oxide

thickness 𝑡𝑜𝑥 which increases gate oxide tunneling current. All parts of leakage current

are increased excessively due to scaling down of technology which requires reducing

𝑉𝑇 and 𝑡𝑜𝑥 to keep up with higher processing requirements.

Figure 1.5 Leakage Power

1.3. Low Power/Energy Digital Design

Low power/energy design methodologies can be applied at all design levels of

abstraction including system, algorithm, architecture, logic, circuit, device and

technology levels. Low energy design can be defined as a design that has low power at

high operating frequency. However, some of the low energy techniques reduce energy

in exchange of reduced performance. Eventually, one has to reach a compromise

between energy, power, performance, and cost to satisfy overall design requirements.

Nevertheless, improvement at a higher level design abstraction will definitely affect all

subsequent design abstraction levels to comply with the changes at that higher level. At

5

system level of abstraction, multi threshold voltage, 𝑉𝑡ℎ, recommends to use high 𝑉𝑡ℎ

devices on the non-critical paths which reduces the leakage power without increasing

the total delay of the design [8]. Similarly, multi 𝑉𝑑𝑑 systems and variable frequencies

are enabled according to current needs as higher 𝑉𝑑𝑑 and higher operating frequencies

generally translate to higher power dissipation. Moreover, Frequencies can even be cut

off parts of the design in idle mode using clock-gating to eliminate switching power

[9]; or turning off 𝑉𝑑𝑑/𝑉𝑠𝑠 to the unused blocks temporarily to mitigate leakage power

using power-gating [10]. Moreover, the increasing performance requirements of digital

signal processing systems causes the capacity of memory integrated in systems to

become larger; this increases the power consumption of such systems. Many domain-

specific approaches are performed to improve the system energy efficiency [11].

Pipelining and multi-core processing (parallelism) are used for low power system

designs at architecture level of abstraction. Also, software and HDL coding style can

minimize power consumption for designs targeting reconfigurable devices [12][13].

On the other hand, approximate computing appears recently to decrease the

power/energy consumption. In the next section, the approximate computing idea, and

techniques at different levels of abstractions is explained.

1.4. Approximate Computing for Saving Energy

Data-intensive applications like machine learning, data analytics, web search, and

digital signal processing (image, audio, video, and graphics) are main processing

bottlenecks in data center and server applications. A perfect result is not necessary and

an approximate result is sufficient in these applications because of human perceptual

limitations in recognizing high-frequency patterns, redundant input data, or noisy inputs

[14]. As example, for image processing, users of smartphones and mobile devices want

to take photos and to have all the pictures available on the devices. However, the

amount of solid-state storage available in these devices is limited and these devices are

usually backed to the cloud. So, it is acceptable to allow image quality degradation, as

there can always be a full-quality version of the image stored in the cloud [15]. Also,

distributed applications and web services, such as online stores and social networks, are

expected to be available, responsive, and fault-tolerant [16].

In the past few years, approximate computing has gained a lot of research attention.

Nevertheless, it is related to the concept of stochastic/probabilistic computing [14].

Stochastic computing (SC) started by von Neumann in his work on probabilistic logic

in 1956 to find low cost alternative to conventional binary computing [17]. Though,

stochastic computing leads to very low complexity arithmetic; it has long computation

time and low accuracy [18]. Approximate computing allows a significant improvement

in energy efficiency for systems and applications that can tolerate some loss of quality

of the computed result such as global positioning system (GPS) sensors, and speech

recognition. These complex systems need complex algorithms to give good results

quickly. And to be energy efficient, approximation is a way to meet these goals.

Approximate computing can be applied at software, architecture, circuit, and logic

levels of abstraction. For instance, certain calculations or memory accesses, which are

not critical to the application’s final output quality, are selectively ignored in the

programming language [19] [16]. At the transistor level, logic complexity can be

reduced by reducing the number of transistors, and therefore the load capacitances.

Gupta et al. propose various imprecise full adder cells, and use them to design

approximate n-bit adders and approximate arithmetic unit. They depend on reducing

6

switched capacitance, and significantly shorting the critical paths which enable voltage

scaling [20]. For circuit level of abstraction, a less accurate computation circuit design

or a reduced supply voltage for certain hardware components are suggested to trade off

energy and accuracy [21][22]. In several suggested approximate adders, design is

divided into two sections; upper accurate part of most significant bits and lower

approximate part of less significant bits. Imprecise full adder cells are used for the

addition of the lower approximate part [23][24][25]. On the other hand, Yazdanbakhsh

et al. in [26] suggest a Verilog syntax annotation for the designer to identify the parts of

the design that need to be approximate in the synthesis process. There are some recent

efforts for high level approximate synthesis. Nepal et al. in [27] generate approximate

designs depending on the algorithmic structure of the input high-level behavioral

description. Their proposed synthesis methodology uses an iterative stochastic greedy

approach that generates variant approximate designs. Their main techniques for

approximation are truncating the size of the intermediate signals, simplify arithmetic

computations, use approximate arithmetic circuits, and/or approximately unroll loops.

The variant approximate designs are compared with the original exact design in terms

of functional accuracy, power, area, and time to identify the optimal inexact designs.

Moreover, Li et al. in [28] developed an approach for scheduling and binding

considering approximate circuits.

For architecture level of abstraction, the processor designs that support

approximate computing depend on identifying the instructions or code segments that

can be run in approximate mode to enhance the traditional code running on general

purpose processors to energy efficient code. For fine-grained approximate computing,

an instruction set architecture (ISA) may define a set of special instructions that allow

the compiler to convey what can be approximated without specifying how. Then in

processor architecture, approximation technique can be freely chosen. It avoids the

overheads of dynamic correctness checks and error recovery [29]. So, runtime and

design time approximation techniques are separated and processor can contain both

precise and approximate data paths, as shown in Figure 1.6. For coarse-grained

approximate computing, segments that can be run in approximation mode are unloaded

where runtime and design time are correlated. So, processor can contain some of its

cores operate at an aggressive voltage to run these segments to be energy efficient with

the sacrifice of the precision [30].

7

Figure 1.6 Approximate computing in architecture level of abstraction [29]

1.5. Thesis Overview

The thesis target low power with low latency designs for low energy portable

applications. The first design targets applications that have decimal computations such

as contactless smart card, and wireless sensor networks, as well as, mobile application

processors for the second design.

The thesis is organized as follows: Chapter 2 introduces low power/energy design

at the circuit level of abstraction for one of the important operator of the computer

arithmetic unit, multiplication. A low energy clock-gated pipelined dual base

binary/decimal fixed-point multiplier, DBM, is suggested extending a previously

proposed non-pipelined design. A comparison between the suggested DBM multiplier

design and the previously proposed binary/decimal multipliers are discussed in chapter

3 as well as the simulation results. Chapter 4 presents an introduction in memory

hierarchy and lossless compression as an introduction to a low energy design for

memory system at architecture level of abstraction. A literature review in basic lossless

data coding, statistical, and dictionary based techniques is also discussed. Then, a new

low energy lossless compression ASIC design is suggested in chapter 5 for

memory/cache data compression/decompression. Finally, conclusions and future work

are presented. Appendix A is added at the end of the thesis for the RTL synthesis flow

commands explanation using synopsis design compiler.

8

9

Chapter 2 : Low Energy Pipelined Dual Base

(Decimal/Binary), DBM, Multiplier

2.1. Introduction

There are various approaches for low power/energy multipliers at most design

abstraction levels. At system level, optimum partitioning and dynamic power

management of the design result in orders of magnitude power reduction [31]. At

algorithmic level, the topology of the partial products accumulation tree affects power,

speed, and area of the multiplier significantly. Different topologies are used for

multipliers, such as Dadda, Wallace, Three Dimensional Method (TDM), Baugh-

Wooley, and Overturned-Stairs adder tree design [32]. At architecture level,

parallelism, pipelining, power gating [10] , and data encoding are major strategies that

decrease energy dissipation. At logic level, power can be reduced by controlling

switching activity. Moni and Sophia [12] monitor the input of the multiplier and detect

the non-effective ranges, then, deactivate unusable circuitry to reduce switching

activity. In addition, the output product is truncated (output precision is compromised)

to decrease the power consumption and increase the speed. Sharma [13] uses bus

inverter encoding to use either the original information or its inverted form depending

on minimum switching activity. Row and column bypassing is used by Yan and Chen

[33] , and Wen et al. [34] to save switching power. Their designs achieve high power

reduction with a small area overhead. Abid et al. [35] use NAND gates instead of AND

gates to generate most of the multiplier partial product bits. Thereby, the power

consumption and the total number of needed transistors is decreased with little increase

in delay. Furthermore, many techniques are used to decrease power at transistor/layout

level [36][37][38][39]. However, power optimization at architecture, algorithmic and

system levels achieve considerable power reduction compared to other levels’

techniques [40].

On the other hand, commercial databases' numeric data are decimal. This is

evidenced by a survey on a wide range of applications including airline systems,

financial applications, inventory control, management reporting, marketing services,

etc. [34]. Decimal arithmetic is supported by many programming languages, such as C,

Visual Basic, COBOL, Java, and Python [35]. However, on the hardware side,

microprocessors typically use binary arithmetic. Therefore, initial benchmarks indicate

that applications spend 50% to 90% of their time in decimal processing overhead

including binary/decimal conversions [34]. Moreover, software solutions are not

accurate because they cannot exactly represent decimal fractions [35]. Dramatic

advances in VLSI technology allow the hardware realization to replace the software

realization of many complex functions such as decimal arithmetic. The hardware

implementation of a complex function consumes less energy than its software

equivalent and is even faster [36]. Thus, decimal arithmetic specific hardware is more

efficient when dealing with commercial and financial data. Yet, the binary arithmetic

specific hardware is still optimal in many applications including simulation programs

where conversion time is much smaller than the run time. Also, binary addresses handle

a wider range of addresses than decimal ones [41]. Thus, the combined binary/decimal

arithmetic hardware arose, where each can be alternatively used according to the

application at hand.

10

2.2. Available Combined Binary/Decimal Multipliers

Decimal hardware significantly reduces the arithmetic delay in commercial and

financial applications eliminating programming and conversion overheads [42].

Decimal hardware also gives accurate results with fraction numbers, as the most of

binary representation of decimal fractions are not accurate. However, binary hardware

is still optimal in many major applications and binary addresses handle a wider range of

addresses than decimal ones [42]. Literally, in financial data center processors, two

hardware arithmetic units are required; a binary one and a decimal one. Therefore,

combined binary/decimal arithmetic is suggested in literature to support both decimal

and binary applications simultaneously offering a high speed and low area solution.

Parallel multiplication, in general, consists of three basic stages: multiples

generation, partial products selection, and partial products accumulation. Early decimal

multipliers generate all decimal multiplicand multiples, from 2𝑥 to 9𝑥. To reduce the

area and delay, a reduced set of decimal multiplicand multiples was generated [43]. The

remaining multiples are obtained dynamically during the algorithm. A signed digit, SD,

recoding technique for the pre-generated multiples was presented in [44][45][46]. SD

recoding allows the use of negative multiples from the set and reduces area and delay.

Multiplexers controlled by the multiplier digits are used for partial products selection. If

all decimal multiplicand multiples are generated in the previous stage, only one

multiplexer is needed. But, if a reduced set of the multiplicand multiples are generated,

a multiplier recoding is needed to represent each multiplier digit. Thereby, two/three

multiplexers, for secondary/tertiary sets, are needed to choose the suitable multiplicand

multiples for each multiplier digit. When all multiplicand multiples are generated, one

partial product for each multiplier digit, 4-bit, is selected. So, n/4 partial products are

generated, where n is the number of multiplier bits. The presence of all possible

multiples leads to a smaller number of partial products. But, the associated carry

propagate addition has a large multiples generation delay, 𝑂(𝑙𝑜𝑔2 𝑛). On the other

hand, when a reduced set of multiplicand multiples are generated, two/three partial

products for each multiplier digit are selected. So,
𝑛

2
 /

3𝑛

4
 partial products are generated

for secondary/tertiary sets. Consequently, the number of partial products is increased

leading to extra two/three levels in the carry save adder (CSA) accumulation tree. But

the associated multiples generation delay is approximately of 𝑂(1). Originally, decimal

addition is implemented using binary adders with decimal correction block for every

digit. Adding 6 to the digit if the digit’s value exceeds 9 to correct the binary sum digits

[47]. A new decimal adder presented by Vázquez et al. [46] uses the binary carry save

hardware with all-valid BCD formats, such as BCD-4221 and BCD-5211. These BCD

formats have a valid decimal value for all 16 combinations. Thus, they attain a valid

sum and carry outputs which deduct the area and delay needed for correction blocks.

Only a decimal multiplication by two for the carry outputs is used after each CSA level.

In this work the partial products accumulation stage is mostly investigated and

worked on because this stage has the most significant area and delay. Integrating binary

and decimal operations using conventional binary and decimal addition leads to extra

delay in the multiplication path. Multiplexers used in binary/decimal selection overload

binary and decimal paths. Also, decimal correction blocks add up to binary

multiplication path delay. Dadda [48] suggests binary column addition for each decimal

digit then converts the binary output sum of each column into its decimal format. Using

this idea in integrating binary/decimal additions separates decimal correction blocks

from binary path, and eliminates the usage of multiplexers. A shared partial products

11

accumulation tree was proposed by Vázquez et al. in their 64-bits combined

binary/decimal multiplier design [46]. A shared CSA tree is used for binary and

decimal accumulation. Carry multiplication by two in the tree uses multiplexers to

select between binary and decimal multiplication by two. The use of multiplexers leads

to an increase in area and delay especially those of the binary path. Hickmann et al.

proposed three combined binary/decimal designs [49]. The first is a 64-bits multiplier

which uses a shared binary/decimal tree with improved CSA tree design. This design

decreases the area but has the same binary/decimal delay of Vázquez et al. Its binary

delay is larger than that of a standalone binary design. The second 64-bits design uses

split binary and decimal CSA trees which has a small area increase if compared to the

first design. However, this design decreases the delay of the binary multiplication by

41% with almost the same decimal delay. The third design is the same as the split

design but uses 53bits/16digits. The 53-bits and 16-digits are the lengths of the

significands of double precision binary and decimal floating-point numbers

respectively. The second design of Hickmann et al. has a significant contribution. So,

the second design of Hickmann et al. along with the design of Vázquez et al. are chosen

as reference designs to compare and evaluate the architecture/system modifications

proposed in this work.

The pipelined Dual Base (decimal/binary) Multiplier, DBM, extends a previously

proposed non-pipelined DBM design [50]. A block diagram of the non-pipelined DBM

design is shown in Figure 2.1. The objective of the non-pipelined DBM design is

separating the decimal and binary multiplication paths without increasing the area.

Consequently, the non-pipelined DBM design uses a shared binary column tree for both

binary and decimal partial products accumulation. Then the binary and decimal paths

are split for the last addition steps. This results in decreasing the area of the

accumulation stage achieving a speed equal to that of the fastest known design,

Hickmann et al.’s second design. Vázquez et al., as detailed in [51], and Hickmann et

al. use radix-5 for decimal multiples generation stage. They compute 10's complement

for negative multiples which takes some area and delay. Jaberipur and Kaivani [52]

propose a direct combinational generation of 8X and 9X for decimal multiples to avoid

the decimal negative multiples. The non-pipelined DBM design [50] uses radix-5 for

decimal multiples generation stage. However, binary and decimal negative multiples

are generated using one's complement, and 9's complement, implemented in two level

gates, respectively. Then the (+1) is included in the binary column tree levels without

extra delay in the accumulation stage.

12

Figure 2.1 non-pipelined Dual Base (decimal/binary) Multiplier, non-pipelined

DBM. [50]

33 Decimal SUMs

(range ~ 3 digits)

Decimal

Multiples

Binary

Multiples

Decimal

Product

Multiples Generation

 Multiplier Multiplicand

Binary Column Tree

Partial Products Selection

33 partial products 2 sign vectors

33 Sum + 33 Carry

33 Binary Sum/
Carry Column CPA

33 Binary SUMs

(range ~ 5 bits

 to 9 bits)

33 Binary/Decimal
SUMs converter

3 Decimal

bit-vectors

3:2 Decimal

CSA

Final Decimal CPA

Rearrange

4 Binary

bit-vectors

3:2 CSA

3:2 CSA

Final Binary CPA

Binary

Product

B/D control

...

...

Rearrange

13

2.3. Low Energy Pipelined Dual Base (decimal/binary)

Multiplier, DBM, Design

Energy reduction is based on power (static and dynamic) and the operating

frequency. Pipeline stages are chosen to achieve low energy. The shared binary column

tree in the DBM design achieves lowest area if compared to previously proposed

binary/decimal accumulation trees and thus consumes lowest static power as will be

detailed in the simulations. Clock gating is used in the split binary/decimal part of the

accumulation stage. Clock gating eliminates the switching activity of the binary

multiplication part during the decimal multiplication. Thus, when a binary

multiplication is running, the decimal multiplication hardware remains idle, thereby,

consuming no dynamic power dissipation and vice versa. Moreover, the multiplier

enable is clock gated to stop the switching activity when the multiplier is not in use.

For pipelining purposes, dividing the design into too many pipeline stages would

result in too many registers, thereby, increasing area and power. To decide the adequate

number of pipeline stages for binary and decimal multiplication, the delay of each

multiplication stage of the non-pipelined DBM is studied first. Then, various pipelining

structures (as shown in Figure 2.2) were implemented and simulated to decide the

minimum energy design. The comparison among the attempted pipelined designs is

presented in the simulation section. Accordingly, pipelining both binary and decimal

multiplication into two stages is chosen to be the pipelined DBM.

The pipelined DBM design that we will use throughout the rest of this thesis is

detailed in Figure 2.3. The design has two 64-bits operands, 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑 𝐴 and 𝐵,

Binary/Decimal control signal, 𝐵/𝐷 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, and a multiplier enable signal, 𝑀𝑢𝑙𝑡_𝑒𝑛.

𝐵/𝐷 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 signal is used to determine whether the operands are binary or decimal.

The operands are binary when the 𝐵/𝐷 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is ‘0’. Otherwise, operands are Binary

Coded Decimal with weight 8421 (BCD-8421), when the 𝐵/𝐷 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is ‘1’. 𝑀𝑢𝑙𝑡_𝑒𝑛

signal is used for multiplier global clock gating. To ensure that the 𝐵/𝐷 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 signal

is correct and stable before the second pipeline stage, it is assigned to a negative edge

register. The 𝐵/𝐷 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 signal is input to the clock gating AND gate. The stages of

the DBM design are detailed in the following sections.

2.3.1. Multiplicand Multiples Generation Stage

The 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 is represented by 16 digits, each group of 4-bits is considered as

one digit for both binary and decimal multiplications. So, multiplicand multiples {𝐴 to

15𝐴}, and {𝐴 to 9𝐴} are required for binary and decimal multiplications respectively.

The DBM design uses radix-16 booth multiplication for binary recoding. It has a

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑 multiples set of (±𝐴, ±2𝐴, ±4𝐴, ±8𝐴) which is generated using

(0, 1, 2, 3) shift registers respectively. This binary recoding significantly reduces the

area, delay, and power needed to have 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑 multiples from 𝐴 to 15𝐴.

Negative multiples are generated using 2’s complement operation. One’s complement

is first generated in this stage by inverting the positive multiple bits using NOT gates.

Then in the partial products selection stage a sign bit is generated to be added to partial

products in the accumulation stage. Decimal multiples use BCD-8421 signed-digit

radix-5 recoding with 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑 multiples set (±𝐴, ±2𝐴, 5𝐴, 10𝐴). 2𝐴 and 5𝐴

multiples are generated using shifting and conversion between different BCD formats

[21] as shown in Figure 2.4. The decimal 10𝐴 multiple is generated using 4-bits

shifting.

14

Figure 2.2 Pipelining Schemes. (Scheme A) for one binary stage and two decimal

stages. (Scheme B) for two binary stages and two decimal stages. (Scheme C) for

two binary stages and three decimal stages. (Scheme D) for three binary stages

and four decimal stages

Scheme A Scheme B

Scheme C Scheme D

15

Figure 2.3 Proposed pipelined Combined Binary/Decimal Multiplier.

16

Figure 2.4 Decimal multiples generation

A nine’s complement is obtained for each digit for negative multiples. Then, a sign bit

is generated at the partial products selection stage to get the 10's complement of the

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑 multiple.

2.3.2. Partial Products Selection Stage

The partial products selection block diagram for binary and decimal multiplications

is shown in Figure 2.5. Each of the binary and decimal Multiplicand multiples sets is

divided into two groups. The binary set is divided into (–2A, –A, A, 2A) and (–8A, –

4A, 4A, 8A) groups. The decimal set is divided into (–2A, –A, A, 2A) and (5A, 10A)

groups. For binary radix-16 booth multiplication, the Multiplier is padded with one ‘0’

bit to the right and four ‘0’ bits to the left. So, the Multiplier is divided into 17 digits.

Two Multiplicand multiples are selected for the first 16 Multiplier digits. The last

Multiplier digit, composed of the last five bits, is "00000" or "00001". So it needs only

one partial product for binary multiplication, where it selects between 0 or A

Multiplicand multiple. Negative multiples are needed in the two groups, so two sign

bits are generated for each Multiplier digit. The decimal partial products selection

according to BCD-8421 signed-digit radix-5 recoding is shown in Table 2.1.

17

Figure 2.5 Partial products selection

Table 2.1 Decimal Multiplicand multiples selection

Multiple
MUX1

multiple selection

MUX2

multiple selection

0 0 0

A A 0

2A 2A 0

3A -2A 5A

4A -A 5A

5A 0 5A

6A A 5A

7A 2A 5A

8A -2A 10A

9A -A 10A

18

The conditions that control the multiplexers depend on 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟’s current digit,

(𝑏𝑖+3𝑏𝑖+2𝑏𝑖+1𝑏𝑖), most significant bit of previous 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 digit, 𝑏𝑖−1, and 𝐵/
𝐷 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑐. The equations that control the two multiplexers are as follows;

For MUXs1

 𝑐𝑜𝑛𝑑. 1𝐵 = 𝑏𝑖𝑏̅𝑖−1 + 𝑏̅𝑖𝑏𝑖−1 (2.1)

 𝑐𝑜𝑛𝑑. 1𝐷 = 𝑏̅𝑖𝑏𝑖+2 + 𝑏𝑖𝑏̅𝑖+1𝑏̅𝑖+2 (2.2)

 𝑐𝑜𝑛𝑑. 1 = 𝑐𝑜𝑛𝑑. 1𝐵 ∙ 𝑐̅ + 𝑐𝑜𝑛𝑑. 1𝐷 ∙ 𝑐 (2.3)

 𝑐𝑜𝑛𝑑. 2𝐵 = (𝑏0
̅̅ ̅𝑏1𝑏−1

̅̅ ̅̅̅ + 𝑏0𝑏1̅𝑏−1) ∙ 𝑐̅ (2.4)

 𝑐𝑜𝑛𝑑. 2𝐷 = (𝑏0
̅̅ ̅𝑏3 + 𝑏0𝑏1 + 𝑏1𝑏2

̅̅ ̅) ∙ 𝑐 (2.5)

 𝐼𝑛𝑣. 1𝐵 = (𝑏0
̅̅ ̅𝑏1 + 𝑏1𝑏−1

̅̅ ̅̅̅) (2.6)

 𝐼𝑛𝑣. 1𝐷 = (𝑏3 + 𝑏0𝑏1𝑏2
̅̅ ̅ + 𝑏0

̅̅ ̅𝑏1̅𝑏2) (2.7)

For MUXs2

 𝑐𝑜𝑛𝑑. 4𝐵 = (𝑏1𝑏2
̅̅ ̅ + 𝑏1̅𝑏2) ∙ 𝑐̅ (2.8)

 𝑐𝑜𝑛𝑑. 8𝐵 = (𝑏1̅𝑏2
̅̅ ̅ 𝑏3 + 𝑏1𝑏2𝑏3

̅̅ ̅) ∙ 𝑐̅ (2.9)

 𝑐𝑜𝑛𝑑. 5𝐷 = (𝑏0𝑏1 + 𝑏2𝑏3
̅̅ ̅) ∙ 𝑐 (2.10)

 𝑐𝑜𝑛𝑑. 10𝐷 = (𝑏3) ∙ 𝑐 (2.11)

 𝐼𝑛𝑣. 2𝐵 = (𝑏3) (2.12)

Where 𝑐𝑜𝑛𝑑. 2𝐵 abbreviates condition for choosing binary multiplicand 2𝐴; 𝐼𝑛𝑣. 1𝐵

abbreviates condition for choosing negative binary multiplicand for MUXs1; 𝐼𝑛𝑣. 2𝐵

abbreviates condition for choosing negative binary multiplicand for MUXs2, and

similarly for other abbreviations.

2.3.3. Partial Products Accumulation Stage

The partial products accumulation stage is divided into two parts: shared binary

column tree and split binary/decimal addition. The main part is the shared one. The

shared binary CSA column tree design, based on Dadda’s column tree [48], does not

cause any area or delay overhead in both binary and decimal paths. Its output column

𝑆𝑢𝑚s and 𝐶𝑎𝑟𝑟𝑦s are rearranged twice for binary and decimal split paths to multiply

each bit by its relevant weight. Shared binary column tree produces four vectors for

binary rearrangement and three vectors for decimal. Clock gating is used at the

beginning of split binary/decimal partial products addition.

19

2.3.3.1. Binary Column Tree

The 33 partial products with the two signed vectors are added using a CSA binary

column tree as shown in Figure 2.6. Each 4-bits column represents a binary number

from 0 to 15 or a BCD-8421 number from 0 to 9 depending on 𝐵/𝐷 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 signal.

Whether binary or BCD-8421, a binary tree is used to add each column digits to

generate 𝑆𝑢𝑚 and 𝐶𝑎𝑟𝑟𝑦 for each column. Each column has a different number of

digits; the maximum number of digits per columns is 33 digits plus two sign bits. Each

column's 𝑆𝑢𝑚 and 𝐶𝑎𝑟𝑟𝑦 does not exceed 8-bits and is represented in a binary format.

“Column 15” tree which has the maximum number of digits is shown in Figure 2.7.

“Column 15” tree is a 33 digit CSA binary column tree. The two sign bits are entered to

the first bit of shifted carry digits inside the tree. A binary tree is implemented here to

save the correction delays of decimal path due to the six invalid BCD-8421 digits. The

column tree does not pass the carry bit to the next digit. Where, carry bit is of order 16

in binary addition and of order 10 in decimal addition. The column tree outputs 33

𝑆𝑢𝑚s and 33 𝐶𝑎𝑟𝑟𝑦s with bit lengths ranging from 4-bits to 8-bits. In the next step, the

column tree outputs are rearranged twice, one for binary split path and another for

decimal split path. Rearranging of the column tree output digits multiplies each digit by

its relevant weight for binary and decimal paths.

Figure 2.6 Binary column tree scheme.

20

Figure 2.7 “Column 15” binary CSA tree

21

2.3.3.2. Split Binary Addition

The output of the column tree is rearranged into two major partial Sums and two

major partial Carrys. The four binary bit-vectors output after rearranging are shown in

Figure 2.8. A small tree is used to add the four binary bit-vectors. The tree consists of

two CSAs and one Carry Propagate Adder (CPA). The scheme of the CPA based on

Kogge-Stone’s design [53] is shown in Figure 2.9.

Figure 2.8 The four binary bit-vectors after rearranging.

Figure 2.9 Scheme of the final Binary CPA.

2.3.3.3. Split Decimal Addition

The CSA column tree outputs 𝑆𝑢𝑚 and 𝐶𝑎𝑟𝑟𝑦 for each column. First, a simple

binary Kogge-Stone CPA is used to add each column 𝑆𝑢𝑚 and 𝐶𝑎𝑟𝑟𝑦. Binary CPA is

used to decrease the number of decimal additions which reduces area, delay, and

subsequently energy. The output of the binary Kogge-Stone CPAs is 33 Binary 𝑆𝑈𝑀s

having a range from 5-bits to 9-bits. Then, a binary to BCD converter is used to convert

each Binary 𝑆𝑈𝑀 output to a Decimal 𝑆𝑈𝑀, BCD-8421 [54]. Then, each Decimal

𝑆𝑈𝑀 is converted to BCD-4221 to be ready for the next decimal addition. BCD-4221

format has valid decimal values for all 4-bits combinations which allows the use of

22

binary CSA without large decimal correction [46]. The Decimal 𝑆𝑈𝑀s are rearranged

to multiply each column output digit by its relevant weight.

At the end, a decimal CSA based on [46] followed by a decimal CPA adds the final

three decimal bit-vectors. A scheme of the implemented decimal CPA design is shown

in Figure 2.10and the three decimal bit-vectors generated after rearranging are shown in

Figure 2.11.

Figure 2.10 Scheme of the final Decimal CPA.

Figure 2.11 The three decimal, BCD, bit-vectors after rearranging.

2.4. Summary

This chapter introduces the available combined binary/decimal multipliers with

details explanation for the non-pipelined binary/decimal DBM multiplier design. Then

various pipelined binary/decimal multiplier designs are suggested with different

pipeline stages division to be tested for lower energy consumption. Then clock gating is

presented for the best performance pipelined DBM design for lower energy

consumption.

23

Chapter 3 : DBM Multiplier Comparison and Results

3.1. Introduction

The binary/decimal multiplier designs of Vázquez et al. [46], Hickmann et al. [49],

non-pipelined suggested design [50], and suggested pipelined designs are implemented

using VHDL. First, for fast/preliminary evaluation of our design, the first suggested

pipelined design with two binary stages and three decimal stages along with the

previous designs are synthesized and implemented on FPGA. ISE Design Suite 12.1

and Xilinx XPower analyzer tool are used to simulate the designs on Virtex-5

xc5vlx50ff676 FPGA. A C program is written to generate random test cases with 50%

binary and 50% decimal multiplication operations. 10,000 random test cases are used

for FPGA simulations, where it takes about 10 hours to complete. Then, a simulation

activity file, SAIF file, is generated using Xilinx ISim simulator for multipliers’

dynamic switching activity simulation.

Then, for more accurate simulation results, designs are simulated for ASIC

implementation. Thus, the VHDL designs are synthesized in Synopsis Design Compiler

B-2008.09 with TSMC 65nm low power CMOS standard cell library, tcbn65lpbwp7t,

operating at 1.2V. Moreover, the designs are synthesized with the open cell libraries

NanGate 45nm [55] and NanGate 15nm [56] at their typical operating voltage 1.1V and

0.8V, respectively. Thereby, the performance of area, delay, power, and energy of

implemented designs are studied at smaller technology nodes. All simulation results are

generated using default design compiler timing script with clock, input, output, load,

and wire load constraints per technology file. For power analysis, the switching activity

for 120,000 test cases is used. For pipelined design, the clock uncertainty is set to 10%

of the clock period. The previously published combined binary/decimal multipliers are

non-pipelined. Thus, for impartial comparison, the power and energy of the non-

pipelined DBM design is studied against those of the other previously published

multiplier designs first. Then, the different pipeline schemes are simulated for optimum

area, energy, and throughput tradeoffs and the choice of the suggested pipelined DBM

design with two binary stages and two decimal stages is discussed. Then, the simulation

results of the pipelined DBM design are presented. At the end, the total power

distribution among leakage and dynamic power for all multiplier designs at different

technology nodes is presented. Dynamic power is divided into switching and internal

power for interconnect and gates’ internal dynamic power, respectively. Also, the

power breakdown among multiplier components is analyzed.

3.2. FPGA Simulation Results

Table 3.1 shows area, delay, and power values for the two previously proposed

combined binary/decimal multiplier designs and the proposed pipelined multiplier

design with two binary pipelining stages and three decimal pipelining stages. The total

delay of one multiplication operation of the proposed combined binary/decimal design

is approximately equal to the delay caused by the previous two combined

binary/decimal designs. The suggested design has a tiny extra delay for pipelining

registers. The maximum clock frequency of the suggested multiplier is 75MHz. The

area of the suggested design is less than that of Vázquez et al. and that of Hickmann et

24

al. by 22.5% and 30.4% respectively. The power consumption of the suggested design

is less than that of Vázquez et al. by 31.8% and less than that of Hickmann et al. design

by about 56.4%.

Table 3.2 shows the detailed power dissipation for the three designs running at

frequencies of 25 MHz, 25 MHz, and 77 MHz for Vázquez et al., Hickmann et al., and

the suggested multiplier design, respectively. The suggested pipelined design is divided

into three decimal stages thus its operating frequency is three times the non-pipelined

ones. Hickmann et al. IOs power dissipation is very high because it duplicates the

number of output pins due to split tree. Hickmann et al. IOs' power dissipation is

almost double that of Vázquez et al. IOs power dissipation. In our suggested multiplier

design, clock gating decreases switching which obviously decreases IOs power

dissipation. Logic, signal, and leakage power dissipation in our proposed design are

slightly less than in previous designs due to area reduction.

Table 3.1 Worst path delay, area and power consumption of the proposed design

and the previously published designs

Multiplier Design
Vázquez et al.

design [46]
Hickmann et al.

design [49]
Proposed pipelined

design (Scheme C)

Worst path delay

(ns)
39.8

Decimal path ≈ 37.6

Binary path ≈ 32.4
min 𝑇𝑐𝑙𝑘 = 13

FPGA utilization 48.1% 53.6% 37.3%

Power consumption

(W)
2.895 4.533 1.975

Table 3.2 Detailed power dissipations distribution (in Watts) for the proposed

pipelined design and the previously published designs

Vázquez et al.

design [46]
Hickmann et al.

design [49]
Proposed pipelined

design (Scheme C)

Clocks - - 0.053

Logic 0.196 0.268 0.250

Signals 0.643 1.023 0.779

IOs 1.497 2.659 0.347

Leakage 0.559 0.583 0.546

Total 2.895 4.533 1.975

25

3.3. ASIC Implementation Simulation Results For The non-

pipelined Designs

Area, power, and PDP (Power Delay Product) comparisons among the three non-

pipelined designs at 100MHz simulating frequency are observed for different

technology nodes. Results are depicted in Table 3.3 showing that the non-pipelined

DBM architecture design provides significant decrease in area, power, and energy. For

Hickmann et al. design [49], and non-pipelined DBM design [50], the average of the

binary and decimal delay is used for calculating the PDP. Shared binary column tree

greatly decreases the area of the DBM and consequently power. Binary and decimal

paths split in the last addition steps attain good delay for both binary and decimal

multiplication. That leads to best energy efficiency among the non-pipelined designs.

Minimum path delay is measured by synthesizing the design with very small clock

cycle to get the output negative slack. Adding the absolute value of the slack to the

small clock cycle gives an estimate value of the maximum operating frequency. Then,

the design is synthesized at estimated maximum operating frequency with technology

constraints to double check the maximum operating frequency. The minimum path

delay is the reverse of the maximum operating frequency. The minimum binary and

decimal path delays experimented at current technology used by industry, NanGate

45nm, and the smallest technology, NanGate 15nm are shown in Table 3.4. All non-

pipelined designs have almost the same decimal path delay. The non-pipelined DBM’s

binary path delay is smaller than that of Vázquez et al. and almost the same as that of

Hickmann et al. The non-pipelined DBM design allows an operating frequency of up to

4 GHz at 15nm technology with less area and energy than previously published

combined binary/decimal multipliers.

Table 3.3 Area, total power dissipation, and PDP for non-pipelined designs at

100MHz.

 Area (𝒎𝒎𝟐) Power dissipation (mW) Average PDP (pJ)

TSMC

65nm

NanGate

45nm

NanGate

15nm

TSMC

65nm

NanGate

45nm

NanGate

15nm

TSMC

65nm

NanGate

45nm

NanGate

15nm

Vázquez et al.

design [46]
59.11 41.14 11.19 19.69 10.134 2.63 187.06 61.37 1.88

Hickmann et al.

design [49]
62.87 46.91 12.51 22.19 12.604 3.22 175.95 60.06 1.7

non-pipelined

DBM design [50]
40.33 29.59 8.09 11.31 7.267 1.90 79.93 35.36 0.93

26

Table 3.4 Minimum path delay for non-pipelined designs at maximum operating

frequency

NanGate 45nm NanGate 15nm

Decimal

path (ns)

Binary

path (ns)

Decimal

path (ns)

Binary

path (ns)

Vázquez et al. design [46] 3.5 3.5 0.251 0.251

Hickmann et al. design [49] 3.3 1.5 0.249 0.155

non-pipelined DBM design [50] 3.1 1.47 0.248 0.161

3.4. Binary/Decimal Pipeline Stages Selection Using

NanGate-45 nm Technology

The delay of the different multiplier stages in the non-pipelined DBM design is

shown in Table 3.5. The delay of the binary column tree is considered our reference for

desired pipeline stage delay and the pipelining stages are decided accordingly.

Pipelining allows one operation to be executed every clock cycle after first operation

finished. So, dividing the multiplication operation into more pipeline stages will

increase throughput, but will result in adding a large amount of registers. That will

cause area and power increments. Throughput is calculated as follows

For non-pipelined designs Throughput = 1 𝑚𝑖𝑛. 𝑝𝑎𝑡ℎ 𝑑𝑒𝑙𝑎𝑦⁄ (3.1)

For pipelined designs Throughput = 1 𝑚𝑖𝑛. 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒⁄ (3.2)

Various attempted pipelined structures, Figure 2.2, were implemented and

simulated to get the most appropriate pipelined design. The pipelining attempts start by

one binary stage and two decimal stages for scheme A. The slowest stage of scheme A

is divided into two stages in scheme B. The slowest stage of scheme B is divided into

two stages in scheme C and the same for scheme D. Pipelined designs are synthesized,

before and after clock gating, at a simulating frequency of 100 MHz to compare area,

delay, throughput, power, and energy as shown in Table 3.6. The previously published

non-pipelined binary/decimal multipliers are included in Table 3.6 for comparison.

For pipelined schemes before clock gating, more pipelining stages lead to an

increase in area and power due to the used registers and their switching activity effect

on power. On the other hand, more pipelining stages allow the use of higher

frequencies. The energy consumption combines these trade-offs and is the main factor

for the chosen design. An extra pipeline stage at the output of the partial products

selection stage in scheme D adds a large number of registers. These registers are needed

to store all multiplication partial products, thereby, increasing area and power. Thus,

scheme D design is excluded. Clock gating decreases the power consumption with

negligible increase in area. It is started at the registers after the “Binary Column Tree”

block. Scheme A is not fully clock gated as the “Split Binary Final Addition” is not

clock gated. The clock gated scheme B gives minimum power consumption as it is fully

27

clock gated with minimum extra registers. It also has a suitable delay so it gives good

energy consumption. Clock gated schemes C and D increase power due to more

registers’ switching activity with almost the same effect of clock gating as in scheme B.

Consequently, scheme B is chosen to be the pipelined DBM.

Table 3.5 Delay breakdown of each stage in the non-pipelined DBM design for

NanGate-45 nm technology at 100MHz

Stage
Critical binary

path delay (ns)

Critical decimal

path delay (ns)

Multiples Generation 0.160 ns 0.102 ns

Partial Products Selection 1.385 ns 1.442 ns

Partial

Products

Accumulation

Binary column tree 1.198 ns 1.198 ns

Split Binary part 0.329 ns -

Split Decimal part - 1.491 ns

Final

CPA

Final Binary CPA 1.133 ns -

Final Decimal CPA - 1.079 ns

28

Table 3.6 Comparison among different pipelining schemes for NanGate 45nm

technology at 100MHz

Non-pipelined

Designs
Area (mm

2
)

Power

(mW)

Min. path

delay (ns)

Average

PDP (pJ)

Throughput

(M operation

per second)

Vázquez et al. [46] 41.14 10.134 6.056 61.37 165

Hickmann

et al. [49]

Bin.
46.91 12.604

4.05
60.06

246

Dec. 5.48 182

non-pipelined

DBM [50]

Bin.
29.59 7.267

4.313
35.36

231

Dec. 5.419 184

Pipelined Designs
Area (mm2) Power

(mW)

slowest

pipeline stage

delay (ns)

PDP (pJ) Throughput

Comb. Seq.

w
it

h
o
u

t

cl
o
ck

 g
a
ti

n
g

Scheme A 29.36 3.52 5.942 5.273 31.33 189

Scheme B 29.56 5.30 6.08 3.861 23.48 259

Scheme C 29.71 6.62 6.358 3.833 24.37 260

Scheme D 29.92 16.52 7.27 3.091 22.47 323

a
ft

er

cl
o
ck

 g
a
ti

n
g

Scheme A 29.85 3.53 5.38 5.273 28.37 189

Scheme B 30.05 5.32 5.197 3.882 20.18 247

Scheme C 30.16 6.64 5.482 3.833 21.01 260

Scheme D 30.41 16.63 6.252 3.091 19.33 323

3.5. Pipelined DBM Design Simulation Results For Different

Technologies

The pipelined DBM design with two Binary stages and two Decimal stages

(scheme B) provides best tradeoff compared to the other multipliers design. On the

other hand, the pipelined DBM design is synthesized at different technology nodes.

Area, power, and energy of the design at 100 MHz are shown in Table 3.7. By

comparing it with results in Table 3.3, the area is a little higher than that of the non-

pipelined DBM design. However, the pipelined DBM is smaller than other previously

published non-pipelined designs with regards to area. The total power dissipation of the

pipelined DBM design for TSMC 65nm, NanGate 45nm, and NanGate 15nm

29

technologies are lower than that of the non-pipelined DBM design by 30%, 28%, and

27%, respectively. Nevertheless, the pipelined design can operate at a higher frequency.

So, the energy of the pipelined DBM is around 31%, 43%, and 44% less than that of the

non-pipelined DBM design for TSMC 65nm, NanGate 45nm, and NanGate 15nm

technologies, respectively. The pipelined DBM allows the use of higher frequencies, up

to 500 MHz and 6 GHz, with energy consumptions of 78 pJ and 19 pJ, for NanGate

45nm and NanGate 15nm technologies respectively. The breakdown of power

dissipation analysis of the DBM designs in terms of combinational and sequential

components for NanGate 45nm technology at 100 MHz is shown in Table 3.8. The

pipelined DBM design without clock gating is included to differentiate between

pipelining and clock gating effect in the DBM design. Total leakage power of the

pipelined designs is slightly increased as the area is higher due to added registers.

Nevertheless, pipelining and clock gating in partial products accumulation stage reduce

the total dynamic power dissipation.

Table 3.7 Area, power, and PDP for pipelined DBM design at 100MHz for

different technologies

TSMC

65nm

NanGate

45nm

NanGate

15nm

Area (𝐦𝐦𝟐) 46.77 35.37 9.60

Power dissipation (mW) 7.84 5.197 1.384

PDP (pJ) 55.469 20.18 0.523

Table 3.8 Detailed power dissipation for pipelined DBM design for NanGate 45nm

at 100 MHz

Internal power

(mW)

Switching power

(mW)

Leakage power

(uW)

 Comb. Seq. Total Comb. Seq. Total Comb. Seq. Total

non-pipelined

DBM [50]
2.774 - 2.774 3.766 - 3.766 728 - 728

pipelined DBM

(without clk-gating)
2.436 0.308 2.744 2.408 0.112 2.520 786 31 817

pipelined DBM 2.107 0.213 2.320 2.00 0.053 2.053 786 31 817

30

3.6. Power Distribution Analysis

A power comparison among multiplier components is presented in Figure 3.1.

Multiples generation and partial products selection stages have similar power

dissipation for Vázquez et al., and Hickmann et al. designs. Those of the DBM designs

consume less power due to the fast generation of 8A and 9A. Hickmann et al. design

has the largest power dissipation in the accumulation stage due to duplicated addition

stages caused by split binary and decimal paths. Besides, the use of binary column tree

in the DBM designs’ accumulation stage decreases the power dissipation significantly.

Also, clock gating in pipelined design causes more power reduction. Finally, a study of

the power distribution among power consumption components for all designs at

different technology nodes is shown in Table 3.9 at 100MHz frequency. Leakage power

is dissipated when design cells are turned off, switching power is the power consumed

when cells inputs and outputs are switching, and internal power is cells power

dissipation. As technology size decreases, leakage power to dynamic power percentage

increases. This is observed in simulation results. Although the pipelined DBM design

has a small area increment than the non-pipelined DBM design causing a small

increment in leakage power. Also, the pipelined DBM has the lowest dynamic power

for all used technologies.

Figure 3.1 Total power breakdown in terms of the structure for 45nm technology

at 100 MHz

31

Table 3.9 Power distribution of the pipelined DBM at 100 MHz for different

technologies

Internal

Power (mW)

Switching

Power (mW)

Leakage

Power

TSMC

65nm

Vázquez et al.

design [46]
14.58 5.11 0.83 uW

Hickmann et al.

design [49]
15.75 6.44 0.93 uW

non-pipelined DBM

design [50]
8.17 3.14 0.64 uW

pipelined DBM

design 6.47 1.37 0.83 uW

NanGate

45nm

Vázquez et al.

design [46]
3.78 5.34 1.01 mW

Hickmann et al.

design [49]
4.76 6.71 1.14 mW

non-pipelined DBM

design [50]
2.77 3.766 0.73 mW

pipelined DBM

design 2.52 2.193 0.82 mW

NanGate

15nm

Vázquez et al.

design [46]
1.14 1.02 0.47 mW

Hickmann et al.

design [49]
1.33 1.35 0.54 mW

non-pipelined DBM

design [50]
0.82 0.75 0.35 mW

pipelined DBM

design
0.6 0.39 0.40 mW

32

3.7. Summary

This chapter introduces comparisons and simulation results for the different

suggested pipelined binary/decimal multiplier designs and non-pipelined

binary/decimal multiplier designs in literature. Firstly the designs are tested using

FPGA then simulated for ASIC in Synopsis Design Compiler with TSMC 65nm low

power CMOS standard cell library, NanGate 45nm and NanGate 15nm libraries. The

performance of area, delay, power, and energy are studied for the different designs. The

suggested low energy clock-gated pipelined DBM multiplier shows high reductions in

area, power, and energy consumption with acceptable latency. It provides 43% energy

reduction if compared to the lowest energy non-pipelined design in the literature.

33

Chapter 4 : Low Energy Design for Main Memory

(Literature in Data Compression)

4.1. Introduction

4.1.1. Memory Hierarchy

Recent features in computer system technology, design, and architecture, such as

parallelism and multithreading, increase the computer performance. Nevertheless, more

data bandwidth and capacity are required. Memory bandwidth can be defined as the

rate of information read/write from/into memory by the processor; and memory

capacity as the amount of information that is held by the memory. Therefore, system

memory performance and energy became significant bottlenecks in computer systems

framework [57]. Data temporal and spatial locality are the main factors behind modern

memory hierarchy system. Temporal locality supposes that when memory data is

referenced, it will be referenced again shortly. Spatial locality presumes that when an

address is referenced, data whose addresses are close by will be referenced soon [58].

Accordingly, memory hierarchy and levels are decided according to technology, speed,

capacity, and cost. The primary technologies used today in memory hierarchies are

shown in Table 4.1 [58]. SRAM (static random access memory) technology is the

fastest memory technology and is used closer to the processor in the cache level

memory. Nevertheless, it is the most expensive and is highest in energy consumption.

The main memory uses DRAM (dynamic random access memory) technology which

has larger capacity for same silicon area with lower speed. Secondary storage is the

largest level in the hierarchy, so lower-cost and slower technologies are used, such as

Magnetic disk. Flash memory is a nonvolatile memory that is used as the secondary

memory in personal mobile devices.

Table 4.1 Memory technologies’ at 2012 [58]

Memory technology Typical access time (ns) Price/GB at 2012

 SRAM semiconductor

(Cache Memory)
0.5 – 2.5 $500 - $1000

DRAM semiconductor

(Main Memory)
50 – 70 $10 - $20

Flash semiconductor 5,000 – 50,000 $0.75 - $1.00

Magnetic disk

(Hard Disk Drive)
5,000,000 – 20,000,000 $0.05 - $0.10

34

SRAM technology is a memory arrays that typically consists of six transistors per

bit to avoid disturbance of information when read. It has a fixed read/write access time

although the read and write access times may differ. SRAM’s access time is very close

to the clock cycle time and it needs one clock cycle for read/write as it doesn’t need to

be refreshed. Nowadays, PCs and server systems’ cache levels, last level cache (LLC),

level 2 (L2), and level 3 (L3) are integrated onto the processor chip unlike where the

past, they used separate SRAM chips for each level [58]. SRAM cells are volatile but as

long as power is connected, the cell values are kept indefinitely. DRAM memory

consists of an array of charge storage cells; that contains one capacitor and a transistor

for each bit. The data is stored as a charge in a capacitor. DRAMs are cheaper and

much denser per bit than SRAM but they need to be refreshed regularly to recharge the

capacitor. The refresh process is done by just read the cell contents and write them back

in it; this process is repeated every several milliseconds. Actually, DRAMs use two-

level decoding structure which allows refreshing an entire row, word line, at one time.

Refreshing process of DRAM is the reason for calling it dynamic, as opposite to the

SRAM static storage. Besides, flash Memory technology is a mix of erasable

programmable read-only memory (EPROM) and electrically erasable programmable

read-only memory (EEPROM) technologies. As flash memory technology can erase a

large amount of memory at one time, it called flash; as opposite to EEPROM that

erases each byte individually. The flash cell typically consists of one floating gate

transistor like EPROM cell; whereas, EEPROM has two transistors per cell.

Nevertheless, they are different in geometry, and materials density that allows the flash

memory to be programmed and erased electrically [59]. Furthermore, most flash

memories use wear leveling technique that distributes writing on all its blocks to be

wearing evenly which avoid writing frequently on the same cells. Wear leveling

increases the memory life time of the flash memory. However, it needs a controller to

spread the writes in the memory blocks and higher level software to monitor the blocks

wear. Hard disk drive (HDD) is an electromechanical technology that store data in

magnetic materials similar to the cassette or videotape materials. HDD consists of a set

of metal platters, covered with magnetic material on both sides, rotate on a spindle.

Above each platter surface, a read/write head is placed which is a movable arm

containing a small electromagnetic coil. HDD technology is less expensive than other

technologies but its access time is very high because it has a mechanical rotations. [58]

Lately, secondary storage is implemented using NAND flash memory-based solid

state drives (SSD) which are still much faster than HDDs technology. While SSD has

less area and extra cost, SSD is a semiconductor based technology which makes a

significant performance improvement over the rotational HDDs [60]. For recent

technologies, DRAM access times are about 10 ns and secondary storage SSD latencies

are about 10 μs [60] [61] [62]. Figure 4.1 shows the structure of a memory hierarchy

according to capacity and closeness to the processor. Data accesses that hit in the

highest level of the hierarchy can be processed quickly due to faster memory. Data

accesses that miss go to the lower levels of the hierarchy, which are slower. [58]

Nowadays more cores are integrated onto the same chip so more applications are

run concurrently and applications become more data intensive which make memory

compression an urgent need. Memory compression grows the capacity of a memory

system, reduces page fault, and reduces energy and bandwidth demands. The main

memory bandwidth has been a critical shared resource for multiprocessors chip. Most

prior techniques have been designed to focus on the capacity metric which has complex

logic and few prior works focus on reducing energy or bandwidth. Nowadays, they

focus on energy and bandwidth [63]. Compression is utilized to increase cache and

35

main memory capacity, where large capacity memory systems constrain energy and

bandwidth [64]. Main memory compression allows more data to be stored near the

processor and reduces the number of accesses to the secondary storage or flash memory

for portable devices.

Figure 4.1 Levels in memory storage hierarchy [58]

4.1.2. Lossless Compression

Information theory studies the quantification, storage, and communication of

information. It is the basis of many techniques used in data compression. Quantifying

information measure information that is included in a piece of data [65]. The toss of a

coin is a simple event that can easily be used to study the meaning of information in

binary representation. It has two results, thus the result of any toss is initially uncertain.

When the coin is thrown, the result is head or tail, yes or no, or 1 or 0; so its uncertainty

can be solved in one bit. This example can easily be generalized for binary

representation of information. Many real-life problems’ solutions can be expressed in

the form of several bits; the problem is to find the minimum number of bits. As one bit

can express the answer of a yes/no question, the number of bits that express any

problem’s result are equivalent to the minimum number of yes/no questions that must

be answered to reach this solution. Another example of a problem is deck of 64 playing

cards and person A hold one card and person B have to guess it. The cards can be

numbered 1 to 64, for simplicity. The minimum number of yes/no questions that are

needed to guess the card are the number of bits to express the problem’s solution. The

cards numbers 1 to 64 should be divided into two intervals 1-32 and 33-64. The first

question is “is the solution in the first interval 1-32?”. If the answer is no, the solution is

in the interval 33-64. Then the interval 33-64 is divided into two sub-intervals and the

next question is “is the solution in the interval 33-48?”, and so on until the sub-interval

Hard Drives

Capacity of the memory at each level

Increasing

distance

from the

processor

And

access time

CPU

Flash memory

Main memory

Cache memory

Processor

registers

36

reduces to a single number. This technique is called binary search. The number of

required questions is exactly six to reach the solution. Mathematically, the answer is

equal to 𝑙𝑜𝑔264. That is why the logarithm is the mathematical function that quantifies

information [65]. Similarly, the information contained in a deck of 52 playing cards

is 𝑙𝑜𝑔252 = 5.7.

For decimal representation, the problem is to compute the number of digits to

express a positive integer 𝑁. With 𝑁 number increase, more digits are needed. Two

decimal digits can represent the first 100 positive integers (0-99) and three digits can

represent the first 1000 numbers, and so on. The number of digits required to represent

positive integer 𝑁 number are approximately log 𝑁. Where, the base of the logarithm is

10. Accordingly, the information content in 𝑁 numbers is proportional to the number of

digits it takes to express 𝑁, and the function that can measure this information is the

logarithm with base equal to the base of the used digits [65]. And it is noticeable that as

the base of the used digits increase, one digit can hold more information. And it can be

expressed that the information included in one base-𝑛 digit equals that included in

log2 𝑛 bits [65] (i.e. information included in one decimal digit = information included

in log2 10 = 3.322 bits).

In this thesis, lossless compression is chosen for main memory data as we can’t

lose memory data. Lossless compression allows us to save the data in less space

without cost any loss of information. The target is to reach the minimum number of bits

to store the information included in a set of data. The three major compression factors

and tradeoffs considered in this work for the memory data are hardware complexity,

compression ratio, and compression/decompression latencies; specially decompression

where it is in the critical path of the processor execution time of instructions.

4.2. Literature Review on Lossless Compression Algorithms

4.2.1. Definitions

Data compression is usually called source coding where coding in signal

processing seek to encode a data message to transmit the same information using fewer

bits. Coding can be defined as; the process of generating a binary representation for

data elements to store it in less storage space than the original data. Finding the

optimum way to compress data is one of the challenging problems in the field of source

coding [66][67]. Probabilities are used in compression algorithms to choose the suitable

code lengths for each data symbol. These probabilities are derived from the data

message, from similar messages, or upon human experience and knowledge.

Assume data of 𝑛 symbols 𝑆 = [𝑠1, 𝑠2, . . . 𝑠𝑛], and its corresponding probability

estimates 𝑃 = [𝑝1, 𝑝2, . . . 𝑝𝑛]. After coding, we have a source code codewords 𝐶 =
[𝑐1, 𝑐2, . . . 𝑐𝑛] and the length of codewords, number of bits in each codeword, 𝐿(𝐶) =
[𝑙1, 𝑙2, … , 𝑙𝑁]. The length of codeword is sometimes called cost. Table 4.2 shows three

different source codes and their expected length [68]; the coding problem is 𝑛 = 6,

𝑆 = [1, 2, 3, 4, 5, 6], 𝑃 = [0.67, 0.11, 0.08, 0.07, 0.04, 0.03]. 𝐶1 is the simple binary

code. 𝐶3 codewords are ["0", "100", "101", "110", "1110", "1111"]. Its codewords is

chosen with lengths 𝐿(𝐶3) = [1, 3, 3, 3, 4, 4] to gain from the different probabilities of

occurrence of symbols. A code with a small number of bits is defined to the most

frequent symbol. The details of different source codes will be discussed later; the

following are some important definitions

37

Minimum-Redundancy Coding; it is a set of codeword lengths which best matches

the probability distribution of the data symbols thus gives the minimum code length for

certain data message.

Prefix-free coding; it refers to the coding techniques which ensures that each

codeword is not a prefix of any other codeword of the data symbols codes.

Expected length or Expected cost; the average number of bits per source data symbol.

The expected length 𝐿(𝐶) of a source code 𝐶 with probabilities 𝑝𝑖 and codeword

lengths 𝑙𝑖 is defined as

𝐿(𝐶) = ∑ 𝑝𝑖𝑙𝑖
𝑛
𝑖=1 (4.1)

Table 4.2 Three simple codes and their expected length

𝑠𝑖 𝑝𝑖
Code 1

𝐶1

Code 2

𝐶2

Code 3

𝐶3

1 0.67 000 00 0

2 0.11 001 01 100

3 0.08 010 100 101

4 0.07 011 101 110

5 0.04 100 110 1110

6 0.03 101 111 1111

Expected length

(bits/symbol)
3.00 2.22 1.73

Kraft-McMillan inequality; It concerns the relation between the codewords 𝑐𝑖 and

their lengths 𝑙𝑖 to establish a unique prefix-free code. Kraft at 1949 observes that if the

probability of data symbols is negative power of two, 𝑝𝑖 = 2−𝑘𝑖 where 𝑘𝑖 is an integer

number. So setting each codeword 𝑐𝑖 to its corresponding 𝑘𝑖 bits, 𝑙𝑖 = 𝑘𝑖, results in a

minimum-redundancy coding and the code should be a prefix-free [69]. As the

summation of the supposed code symbols probabilities should be less than or equal 1

∑ 𝑝𝑖
𝑛
𝑖=1 ≤ 1 (4.2)

So Kraft inequality says that if the quantity

𝐾(𝐶) = ∑ 2−𝑙𝑖𝑛
𝑖=1 > 1 (4.3)

then the code can’t be prefix-free. For example, assume that 𝑛 codewords are all of

length 𝑙𝑖 = 1, then 𝐾(𝐶) = 𝑛 2⁄ , and a prefix-free code is only possible when 𝑛 ≤ 2.

38

Based on this work, McMillan at 1956 showed that if 𝐾(𝐶) ≤ 1 for code 𝐶, then there

always exists another code 𝐶′ which is a prefix-free with the same cost of C and is

uniquely decodable in a left-to-right manner. [69]

4.2.2. Basic Coding Techniques

4.2.2.1. Unary Coding

The data symbols are numbered as in Table 4.2 first column then each symbol 𝑠𝑖 is

represented as 𝑠𝑖 − 1 of ‘1’ bits, followed by a single ‘0’ bit.

4.2.2.2. Binary Coding

In Table 4.2, 𝐶1 is the standard binary representation using ⌈𝑙𝑜𝑔2𝑛⌉ for the number

of bits of codewords, which equal three in this example. A shorter codewords, equal to

⌊𝑙𝑜𝑔2𝑛⌋, can be assigned to the frequent symbols as in 𝐶2 with the prefix-free property.

So the total expected length is reduced. Generally, it can be assigned if 𝑙𝑜𝑔2𝑛 is not an

integer number. Minimal binary code contains (2⌈𝑙𝑜𝑔2𝑛⌉ − 𝑛) codewords that are

⌊𝑙𝑜𝑔2𝑛⌋ bits long, and the remaining 2𝑛 − 2⌈𝑙𝑜𝑔2𝑛⌉ are ⌈𝑙𝑜𝑔2𝑛⌉ bits long [68]. Another

example of minimal binary coding is shown in Table 4.3. However, the standard binary

coding representation is also a prefix-free.

4.2.2.3. Codes with Selector Part

It consists of a 𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 part that indicates a range of values that compose a

bucket, 𝑏, and a binary part that indicates a precise value within the specified bucket,

Table 4.3.

Elias Coding, called also "Exponential and Binary Search" [1976]

The second code in Table 4.3 is 𝐶𝛾. Its codewords consist of two portions. The first

portion is a unary code for the binary magnitude of 𝑠𝑖, which takes 1 + ⌊log2 𝑠𝑖⌋ bits.

The second part of each codeword is a simple binary code within the range of ⌊log2 𝑠𝑖⌋
bits. Thus the total codeword length is 1 + 2⌊log2 𝑠𝑖⌋ bits. This algorithm was firstly

described by Bentley and Yao [1976]. The codewords of the second Elias code 𝐶𝛿 is

also divided into two portions. The first portion is coded using 𝐶𝛾 instead of unary

code, and the codeword length is equal 1 + 2⌊𝑙𝑜𝑔2𝑙𝑜𝑔2(2𝑠𝑖)⌋ + ⌊log2 𝑠𝑖⌋ bits. [68]

For small number of symbols, Elias coding appear to have high cost. Nevertheless,

for large number of symbols, both Elias codes are exponentially better than unary

coding where their bucket sizes grow exponentially, 𝑏 = (1, 2, 4, 8, . . . , 2𝑘, . . .).

39

Table 4.3 minimal binary, Elias, Golomb, and Rice codes

(i.e. the blanks in the codewords do not appear in the coded bit stream)

𝑠𝑖 𝑝𝑖
Minimal

binary code

Elias 𝐶𝛾

code

Elias 𝐶𝛿

code

Golomb

code, 𝑏 = 5

Rice code,

𝑘 = 2

1 0.32 000 0 0 0 00 0 00

2 0.21 001 10 0 100 0 0 01 0 01

3 0.11 010 10 1 100 1 0 10 0 10

4 0.1 011 110 00 101 00 0 110 0 11

5 0.09 100 110 01 101 01 0 111 10 00

6 0.07 101 110 10 101 10 10 00 10 01

7 0.05 110 110 11 101 11 10 01 10 10

8 0.03 111 0 1110 000 11000 000 10 10 10 11

9 0.02 111 1 1110 001 11000 001 10 110 110 00

Expected length

(bits/symbol)
3.05 3.18 3.55 3.38 3.28

Golomb Coding [1966]

It also consists of two portions with a fixed parameter 𝑏 for the bucket size. The

first portion is a unary code where each bucket, 𝑏, symbols has new unary code. The

second portion is a minimal binary code where its short codewords is assigned to the

least values. A division operation used in the encoder to generate the integer quotient of

(𝑛/𝑏). The first portion of the codewords length is ⌈(𝑠𝑖 b⁄)⌉ and the second portion

length is equal to minimal binary coding.

Rice Coding [1979]

It is a special case of Golomb code. Rice coding designate the parameter 𝑏 equal to

2𝑘 where 𝑘 is an integer value to reduce the design complexity. The value 𝑠𝑖 is shifted

right 𝑘 bits to get the value of the unary code part, then the low-order 𝑘 bits of the 𝑠𝑖

are coded as a 𝑘-bit binary value.

4.2.2.4. Run Length Encoding (RLE) [1967]

Its main idea is to replace 𝑛 consecutive occurrences of data symbol 𝑠𝑖 with the

ŕ𝑛𝑠𝑖. Where ŕ is a reserved value to indicate that the following two values is for

repeated symbols. Only runs longer than three characters get compressed as the

compression take three bytes; reserved value, number of repetition of the symbol, and

the symbol. RLE is supported by some bitmap file formats, such as TIFF, and BMP.

The advantage of RLE lies on implementation simplicity and low latency.

40

4.2.3. Statistical Coding Techniques

Statistical compression has two main operations: modeling, and coding. Modeling

phase is the process of learning about the structure of the data being compressed to

generate a statistical model. Coding is used to map data to the compressed form.

Statistical coding also has variable-length codewords to assign shorter codewords to

symbols that have higher probability of occurrence. In the next sections, statistical

compression algorithms are presented, such as Shannon-Fano, Huffman, and arithmetic

coding.

4.2.3.1. Shannon-Fano Coding [1948]

It is independently discovered by Claude Shannon in 1948 and Robert Fano in

1949, and is known as Shannon-Fano coding [68]. The list of symbol probabilities are

divided into two parts, with probability as close to 0.5 as possible to each part. Each

part takes one bit prefix bit, ‘0’ or ‘1’, as the first bit of their codewords. Then each part

is sub-divided into subparts of probability of weights that as close as possible to half of

its parent part weight. Code 3 in Table 4.2 is a prefix-free Shannon-Fano coding that

reduces the codeword length to 1.73 bits per symbol. However, Shannon-Fano

algorithm is not always effective as it not always gives the minimum redundancy

codewords. That is the results of its top-down structure scheme. For example, if the

probability distribution of data symbols 𝑃 = [0.35, 0.15, 0.1, 0.1, 0.1, 0.1, 0.1], the

Shannon-Fano codewords 𝐶 = [“00”, ”01”, ”100”, ”101”, ”110”, ”1110”, "1111"] with

lengths 𝐿(𝐶) = [2, 2, 3, 3, 3, 4, 4] and 2.7 bits/symbol for the expected length. This

approach assigns a 2-bit codeword to the second symbol, while it should have a

codeword of the same length as symbols 3, 4, 5, 6, and 7.

4.2.3.2. Huffman Coding [1952]

A bottom-up mechanism is employed rather than Shannon-Fano top-down

algorithm. It sorts the symbols according to their probability distribution in descending

order. Then at each step of the algorithm, the last two symbols take one bit prefix bit,

‘0’ and ‘1’, as the first bit of their codewords and the two symbols probabilities are

combined and the symbols probabilities are reordered. Table 4.4 shows an example of

Huffman coding steps for 𝑃 = [0.35, 0.15, 0.1, 0.1, 0.1, 0.1, 0.1]. The length of the

generated codewords is 𝐿(𝐶) = [2, 3, 3, 3, 3, 3, 3] and the expected length is 2.65. The

Huffman scheme is simple, and gives the best codes for data symbols when the

probabilities of the different symbols making up the message are known. However, it

produces ideal variable-length codes when the symbols probabilities are negative

powers of two such as 1/2, 1/4, or 1/8. [65]

Afterward, several minimum redundancy codes are performed depending on the

idea of Huffman coding. Canonical Huffman coding was introduced by Schwartz and

Kallick in 1964, Connell in 1973, Hirschberg and Lelewer in 1990, Zobel and Moffat in

1995, and Moffat and Turpin in 1997 [68]. The canonical Huffman codes are a specific

type of Huffman code that store codewords efficiently by generating “normal” Huffman

codewords lengths and then change codewords preserving their lengths. The objective

is to find codes that are simple, and fast to be encoded and decoded with the same

expected length/cost of codewords.

41

Table 4.4 Huffman coding example

𝑃 initial code 𝑃 initial code 𝑃 initial code

0.35 𝑐1 = 𝜆 0.35 𝑐1 = 𝜆 0.35 𝑐1 = 𝜆

0.15 𝑐2 = 𝜆
0.2

𝑐6 = 0,
𝑐7 = 1

0.2

𝑐6 = 0,
𝑐7 = 1 0.1 𝑐3 = 𝜆

0.1 𝑐4 = 𝜆 0.15 𝑐2 = 𝜆
0.2

𝑐4 = 0,
𝑐5 = 1 0.1 𝑐5 = 𝜆 0.1 𝑐3 = 𝜆

0.1 𝑐6 = 𝜆 0.1 𝑐4 = 𝜆 0.15 𝑐2 = 𝜆

0.1 𝑐7 = 𝜆 0.1 𝑐5 = 𝜆 0.1 𝑐3 = 𝜆

initial stage First step Second step

𝑃 initial code 𝑃 initial code 𝑃 initial code

0.35 𝑐1 = 𝜆

0.4

𝑐6 = 00,
𝑐7 = 01,

𝑐4 = 10,
𝑐5 = 11

0.6

𝑐1 = 0

𝑐2 = 10,

𝑐3 = 11

0.25
𝑐2 = 0,
𝑐3 = 1

0.2
𝑐6 = 0,
𝑐7 = 1

0.4

𝑐6 = 00,
𝑐7 = 01,
𝑐4 = 10,
𝑐5 = 11

 0.35 𝑐1 = 𝜆

0.2
𝑐4 = 0,
𝑐5 = 1

0.25

𝑐2 = 0,
𝑐3 = 1

Third step Fourth step Fifth step

 𝑃 initial code

1

𝑐1 = 00
𝑐2 = 010,

𝑐3 = 011

𝑐6 = 100,
𝑐7 = 101,

𝑐4 = 110,
𝑐5 = 111

 Sixth step

Nowadays, Huffman coding is widely used with the mainstream compression

formats such as ZIP. And sometimes it is used with other compression techniques;

multimedia codecs such as JPEG and MP3 use a front-end model and quantization

followed by Huffman coding.

42

4.2.3.3. Arithmetic Coding

It is firstly proposed in 1960s by Peter Elias [65]. Arithmetic coding gives one

codeword (typically long) to the input message. It encodes more symbols using only

one codeword of fixed length. It assigns a certain initial interval to the input message

then read it symbol by symbol and narrow the interval according to the probability of

symbols. The number of bits that represent the interval is larger as the interval is

narrower, so the higher probability symbols narrow the interval less than the lower

probability ones. The interval is specified by lower and upper limits or by lower limit

and width. The initial interval is [0, 1), which means a range of real numbers from 0 to

1 including 0 but not including 1. However, the arithmetic coding output is a real

number in the range [0, 1) although the 0. part is not included; the number 0.97654 is

encoded to 97654.

After the initial interval is set to [0, 1), the interval is divided into subintervals

whose sizes are proportional to the symbols’ probabilities, then the message is read

symbol by symbol. However, the order of symbols according to their probability

distribution are ascending or descending. At each step, new symbol is processed and the

current interval gets smaller so it takes more bits to express it. The output is a unique

number that identify the input message. Table 4.5 shows an example of arithmetic

coding. The input message is 𝑎2𝑎3𝑎1𝑎4𝑎1𝑎5𝑎2𝑎6𝑎1𝑎7. Table 4.5(a) shows the symbol’s

probability of occurrence according to input message. To encode the message, the

initial interval is set to [0, 1). The first symbol 𝑎2 reduces this interval to the subinterval

from its 50% point to its 70% point. It gets the new interval [0.5,0.7) of size 0.2. For

the second symbol 𝑎3, the new interval is [0.58, 0.64), it is calculated by 0.5 + (0.7 −
0.5) × 0.4 = 0.58 and 0.5 + (0.7 − 0.5) × 0.7 = 0.64. So it reduces the interval from

size 0.2 to size 0.06. The final code of this method can be any number from the final

range. The Low and High values of the interval [NewLow, NewHigh) is calculated

using the following equations

NewLow = OldLow + old_interval_Range ∗ LowRange(si) (4.4)

NewHigh = OldLow + old_interval_Range ∗ HighRange(si) (4.5)

where 𝑜𝑙𝑑_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑅𝑎𝑛𝑔𝑒 = 𝑂𝑙𝑑𝐻𝑖𝑔ℎ − 𝑂𝑙𝑑𝐿𝑜𝑤,

𝐿𝑜𝑤𝑅𝑎𝑛𝑔𝑒(𝑠𝑖), and 𝐻𝑖𝑔ℎ𝑅𝑎𝑛𝑔𝑒(𝑠𝑖) indicate the low and high limits of the

subinterval of the symbol 𝑠𝑖, respectively.

The output stream consists of the symbols and its frequencies (probabilities) then

the bits of the compressed code. After coding all the input data message

𝑎2𝑎3𝑎1𝑎4𝑎1𝑎5𝑎2𝑎6𝑎1𝑎7, the final code is a number in the interval [0.628796836,

0.6287968684). We can choose 62879684, (11101111110111011111000100)𝑏. The

average length of codeword here is 2.6 instead of 2.7, and 2.65 for Shannon-Fano, and

Huffman coding, respectively. As the length of output code is 26-bits for 10 symbols.

43

Table 4.5 Example of arithmetic coding for message of 10 symbols (a) statistical

model of the data, (b) coding of the input message

 Message Current interval

𝒔𝒊 𝒑𝒊
symbol’s

subintervals
 Initial interval [0, 1)

𝑎1 0.3 [0.7, 1) 𝑎2 [0.5, 0.7)

𝑎2 0.2 [0.5, 0.7) 𝑎3 [0.58, 0.64)

𝑎3 0.1 [0.4, 0.5) 𝑎1 [0.622, 0.64)

𝑎4 0.1 [0.3, 0.4) 𝑎4 [0.6274, 0.6292)

𝑎5 0.1 [0.2, 0.3) 𝑎1 [0.62866, 0.6292)

𝑎6 0.1 [0.1, 0.2) 𝑎5 [0.628768, 0.628822)

𝑎7 0.1 [0, 0.1) 𝑎2𝑎6 [0.62879608, 0.62879716)

 𝑎1𝑎7 [0.628796836, 0.6287968684)

(a) (b)

4.2.4. Dictionary Based Coding Techniques

Using statistical model for data coding makes the quality of the model affect the

quality of the compression. Dictionary based coding approaches choose strings of

symbols and encode each one as used in a dictionary. The statistical coding is

permanent, sometimes allowing the addition of strings but no removals, while the

dictionary based coding takes strings previously found in the input stream, permitting

for additions and removals of strings while new data is being read.

4.2.4.1. LZ77 and LZ78 [Lempel and Ziv, 1977 and 1978]

LZ77 [70] and LZ78 [71] are also known as LZ1 and LZ2 respectively. It knows

the used characters by certain data stream and generates new coding for it depending on

number of used characters. Every data stream has its dictionary based on the data

stream. It moves on all input data to build the dictionary codes that will be compressed.

It uses fixed length code for input patterns. After generating the dictionary model for

the input data, compression and decompression is done according to look up tables,

LUTs, with buffer move through all bytes and a comparator to match dictionary entries.

Compression ratio depend on input data, large number of used characters will give bad

compression ratio and vice versa. Its delay is proportional to input data, large number

of bytes gives high latency. LZ77 maintains a sliding window during compression.

LZ78 decompression allows random access to the input as long as the entire dictionary,

while LZ77 decompression must always start at the beginning of the input. These two

algorithms form the basis for many variations including LZW, LZMA, LZS, LZSS, and

others. These algorithms formed the basis of several worldwide compression schemes,

including GIF and the DEFLATE algorithm used in PNG.

44

4.2.5. Differential Coding

It is a different approach results in a significantly less complex system. It encodes

the first data element of the source code, and then encodes the differences between the

next source elements and the first element. It is used for sources such as speech and

images which have a correlation between its samples. [67]

For example, the source code [6.2, 9.7, 13.2, 5.9, 8, 7.4, 4.2, 1.8] is coded into

[6.2, 3.5, 7, −0.3 , 1.8, 1.2, −2, −4.4]. The original code is recovered by adding the

difference values to the first element. One of the common usages of this coding is

differential pulse code modulation (DPCM) and delta modulation. While differential

coding does not provide high compression as some other coding techniques, it is very

simple to implement. It is recommended for speech and image applications.

4.2.6. Conclusion

Binary, minimal binary, and run length coding are independent on input data.

Minimal binary coding is like binary coding but save some bits when the number of

data symbols is not in a power of two, 2k. Run length coding is used with other coding

approaches, after or before another coding, due to its simplicity and good compression

depending on repeated patterns of the input data.

Table 4.6 shows a comparison between the different basic coding techniques with

an example of 60 symbols where comparing numbers is easier than equations. Both

Golomb and Rice codes are extensively used in compression applications due to their

low expected length/cost with a large number of symbols. And Rice code is preferred

because it’s simpler. Elias Cδ average number of bits is higher than Elias Cγ at equal

probability distribution of input symbols, but when the probabilities of some symbols

are higher than the others, the cost of Cδ will be less. Generally, the choice of the

coding technique depends on the probability distribution of the data symbols which

lead to the expected cost, and the implementation complexity of the coding technique.

Statistical and dictionary based coding encode symbols in non-fixed length codewords

depending on their probability of repetition in the input data. While they have high

compression ratio compared to basic coding techniques, they need more processing on

input data before coding, and need extra storage space. The storage space is for the

statistics codes or the dictionary data to be able to recode them.

For our target here, ASIC compression/decompression design for main memory

data, the choice of the compression approach depends on the memory data types and

the implementation feasibility of the approach in hardware. Differential coding and

basic coding approaches like unary, minimal binary, Elias, and rice coding have simple

hardware implementation in contradiction of the Golomb and arithmetic coding which

has division in its encoder. Despite the hardware implementation of Shannon-Fano and

Huffman statistical coding is simple, the statistical coding and Run length coding

should move on the input data firstly before coding which not practicable in hardware.

However, run length coding is the simplest as it can be implemented by reading piece

by piece of the input data. Also, dictionary based coding firstly study the input data,

however, it need large LUTs in its hardware implementation.

45

Table 4.6 Comparison between different basic coding techniques

Codes
Maximum/last codeword

length (bits)

Average codewords Length assume equal probability

distribution (bits)
Complexity Latency

Unary

(n symbols)
𝑛 1 + 2 + 3 + ⋯ . . + 𝑛 = 𝑛(𝑛 + 1)/2

Simple
Small (subtraction

by 1 delay)
(60 symbols) 60 1830

minimal binary ⌈log2n⌉ (2⌈𝑙𝑜𝑔2𝑛⌉ − 𝑛) ∗ ⌊log2n⌋ + 2𝑛 − 2⌈𝑙𝑜𝑔2𝑛⌉ ∗ ⌈log2n⌉
Simple

Small (like binary

coding)
(60 symbols) 6 (64-60) * 5 + 56 * 6 = 356

Elias 𝑪𝜸

(n symbols)
1 + 2⌊log2n⌋ 𝑛 + 2(⌊log2 1⌋ + ⌊log2 2⌋ + ⌊log2 3⌋ + ⋯)

Simple
Small (unary code

+ binary coding)
(60 symbols) 11 60+2(2*1+4*2+8*3+16*4+29*5) = 546

Elias 𝑪𝜹

(n symbols)
1 + 2⌊log2log22n⌋ + ⌊log2n⌋

𝑛 + (⌊log2 1⌋ + ⌊log2 2⌋ + ⌊log2 3⌋ + ⋯) +

2(⌊log2log22⌋ + ⌊log2log24⌋ + ⌊log2log26⌋+. . .) Simple
Medium (Elias 𝐶𝛾 +

binary coding)
(60 symbols) 8 60+(2*1+4*2+8*3+16*4+29*5)+2(4*1+8*2+16*3+29*4) = 671

Golomb

(fixed-size b)
⌈(n b⁄)⌉ + ⌈log2b⌉ (⌈(1 7⁄)⌉ + ⌈(2 7⁄)⌉ + ⌈(3 7⁄)⌉ + ⋯) + 𝑛 ∗ ⌈log2b⌉

Complex
Medium (division/

multiplication)
(60 symbols, b=7) 9 + 3 = 12 (7*1+ 7*2+7*3+7*4+7*5+7*6+7*7+7*8+4*9) +60*3 = 288

Rice

(b=𝟐𝒌)
⌈(n b⁄)⌉ + k (⌈(1 8⁄)⌉ + ⌈(2 8⁄)⌉ + ⌈(3 8⁄)⌉ + ⋯) + 𝑛 ∗ ⌈log2b⌉

Simple

Small (unary code

+ shift + binary

coding) (60 symbols, k=3,b=8) 8 + 3 = 11 (8*1+ 8*2+8*3+8*4+8*5+8*6+8*7+4*8) +60*3 = 256

46

47

Chapter 5 : Suggested Approach for Low Energy ASIC

Design for Main Memory Data

Compression/Decompression

5.1. Recent Literature in Memory Compression

Since applications become more data intensive, capacity and bandwidth of memory

system become critical in application performance. At architecture level of abstraction,

memory solutions can be classified into reference-based solutions which don’t reduce

the amount of data stored and value-based solutions which reduce the amount of data

stored. Reference based solutions like placement and replacement solutions [72], and

prefetching predict reference stream [73]. Memory compression which reduces the size

of memory blocks and memory data deduplication [74] that eliminates the redundant

block copies are considered value-based solutions. Memory redundancy is a result of

constants, some application inputs (i.e. multiple adjacent pixels may have the same

color in image processing), and some operations such as copying and assignment. Also,

some applications provide worst-case scenario so it uses large size data types whereas

most values could fit in smaller data types. Besides, the differences between values

stored within the cache line are small in some applications so they can be represented in

a compressed form using a base value and an array of differences [64].

The basic coding techniques used in compression algorithms are Huffman coding

which works by analyzing the data and the elements that has high probability are coded

with small number of bits. It is a variable length coding approach [65] [75]. LZ

dictionary based compression algorithms work by replacing repeated occurrences of

data elements with references to a single copy of that element existing earlier in the

uncompressed data. It uses fixed length codes. It used in literature by Ekman and

Stenstrom [76] and by IBM [77]. They will be discussed in details in next sections.

Zero-content compression suggested by Dusser et al. in [78] concern null data blocks in

cache memory and propose Zero-Content Augmented cache (ZCA) which consists of a

conventional cache augmented with a specialized cache for null blocks, the Zero-

Content cache (ZC). In the ZC cache, the data block is represented by its address tag

and a validity bit and several null blocks are associated with a single address tag in the

ZC cache. Its decompression is very simple. Dusser and Seznec in [79] apply null data

compression in main memory and attempt to manage null blocks throughout the whole

memory hierarchy. The limitation of their approach is that it cannot compress data with

other patterns. Base-delta compression is used for similar data. So it can be represented

using a base value and an array of differences.

IBM propose a memory expansion technology (MXT) [77] for main memory

compression. They add an uncompressed large L3 cache, 32 MB, in front of the

compressed memory and use LZ dictionary based compression algorithm. The critical

decompression hardware is parallel implemented on special purpose ASIC circuit. The

number of memory accesses are reduced but the latency of memory access is increased

significantly, where the decompression block takes 64 cycles. Benini et al. [80] reduce

the memory traffic using an on-the-fly variable-length compression solution, depending

on delta coding. Their design depends on dividing the 16B cache line into four words,

and then compresses it to at least 12B. The compressed line stores the nonzero bits of

the differences between first word and the other three words as well as the first word.

48

The compression and decompression hardware implementations have a simple design

complexity, Figure 5.1. The latency of the decompression of one compressed cache line

is 4-byte addition for 16B cache line.

Figure 5.1 Benini et al. basic compression block diagram [91]

Ekman and Stenstrom [76] propose an approach to reduce main memory blocks

fragmentation due to variable-length compression schemes. Moreover, they overcome

the performance loss of MXT technique due to indirect access with a low-latency

frequent-pattern compression, FPC, algorithm [81]. Besides, their approach provides a

significant compression ratio with a simple zero-content compression algorithm.

Nevertheless, sometimes cache miss depends on the size of compressed block.

Pekhimenko et al. in [82] suggest a new cache compression algorithm depending on

delta coding, base-delta-immediate compression. Figure 5.2 shows a general block

diagram for “base-delta-immediate compression” Compressor Unit (CU). They observe

that each cache line has low dynamic range. For each cache line, they use eight parallel

compressor units; six for different base and delta sizes and two for zeros and repeated

values. Then select the best one of them to output the compressed cache line, Figure

5.3. The decompression latency is similar to an integer vector addition. However, the

design complexity is higher than that used in [80] due to the parallel six units.

Moreover, Pekhimenko et al. [83] note that variable-length compressions provide

address computation overhead which lead to more complicated address translation.

They propose a memory framework that compresses the cache lines of each page to the

same length. Their linearly compressed pages approach simplifies the physical address

computation of the cache line to only shift operation.

first 4-Byte

Cache line (16B)

4-Byte 4-Byte 4-Byte

4-Byte

Subtractor

(a - b)

b a

4-Byte

Subtractor

(a - b)

b a

4-Byte

Subtractor

(a - b)

b a

non-zero

k-bits

non-zero

k-bits

non-zero

k-bits
first 4-Byte

 If its # of bits

≤ 12B

yes

no

compress

the line

didn't compress the line

5-bit

(k-value)

49

Figure 5.2 General block diagram for “base-delta-immediate compression”

Compressor Unit (CU)

Figure 5.3 “Base-delta-immediate compression” block diagram

On the other hand, Miguel et al. in [84] and [85] observe that many similar or

identical memory lines are stored in the cache which may be a redundant data and

waste cache capacity. They suggest saving area and power by storing similar cache

lines one time where some applications can tolerate exactness. They assume that when

every element in the cache line is within a specified threshold, T, of its corresponding

element in another cache line, the two cache lines are approximately similar. And they

can be stored in the same cache location. Their maximum T value is 10% of each

application data range of values. For example, data range from 1 to 150 gives

maximum threshold value of 15. They tradeoff acceptable inexact data and energy

saving with performance.

In this thesis, a lossless compression/decompression design is suggested between

main memory and cache interface. The proposed approach depends on the delta coding

and the observation that, for many applications, the lines of the main memory pages are

V0

Cache line (32B)

V1 V2 Vn

Subtractor

(a - b)

b a

Subtractor

(a - b)

b a
Subtractor

(a - b)

b a

non-zero

Bytes (Δ1)

non-zero

Bytes (Δ2)

non-zero

Bytes (Δn)
V0

………

………

V = 8 Byte

Δ = 1 Byte

CU

V = 8 Byte

Δ = 2 Byte

CU

V = 8 Byte

Δ = 4 Byte

CU

V = 4 Byte

Δ = 1 Byte

CU

CU = Compression Unit

V = 4 Byte

Δ = 2 Byte

CU

V = 2 Byte

Δ = 1 Byte

CU

Zero

CU

Rep.

values

CU

Cache line (32B)

Choose smallest one

50

mostly similar. The target is to achieve a simple low power compression design for

main memory data without any approximation in data storage. The design depends on

simplicity and low latency, which in turn reduces the energy consumption with proper

compression ratio. The suggested design reduces decompression latency which is more

critical as data pass through it when processor misses data in cache memory. Whereas,

compression is necessary in returning data back from cache to main memory or getting

data from secondary storage.

5.2. Suggested Methodology for Low Energy Main Memory

Compression

Main memory data is periodically changed which will make statistical and

dictionary based coding techniques have high overhead if used in main memory

compression. They depend on the estimated probabilities of data symbols or complex

arithmetic calculations as it includes multiplication or division operations. Contrary to

this thesis work which has a significant constraints in compression/decompression

processing time and energy. That led to choose delta coding which needn’t high

processing like Huffman, LZ, and arithmetic compression techniques. The target is to

propose a generic low energy compression/decompression approach for main memory

data. A low latency, low complexity, and fixed-length compression approach is

designated for main memory compression/decompression to reduce the costly accesses

of secondary storage, when page fault occur. Delta compression is chosen due to its

simple architecture design and low decompression latency. In many applications, data

stored in each main memory page are probably similar. In this work, two memory lines

are similar within x% means they are different within (100 ̶ x)%. The similarity here is

defined as the difference between each and every corresponding 1-Byte elements of the

two lines, (li - fi), are less than or equal (2
8
 * x/100 ̶ 1) where i is the element index, fi

is the i
th

 element of first line, and li refer to the i
th

 element of certain line in the memory,

as shown in Figure 5.4. The suggested design stores the first line, 32B, of the page then

for each next line; differentiate between each byte, 8-bits, of that line and its

corresponding byte in the first page line to get a set of deltas, ∆s. If all the ∆s of the line

are less than or equal to 6-bits, the line is compressed into 24B fixed-length compressed

line. Figure 5.5 shows the compression block diagram for a 32B memory line. The

design consists of 32 parallel 8-bits subtractors, each one handling one byte of memory

line. The compressed/uncompressed flag (C/U flag) value is the selector for the

multiplexer. It selects whether the line will be compressed or not. If all 32 subtractors

outputs can be stored in 6-bits each, then the C/U flag will be set to ‘1’ and the 24B

compressed line will be output. Otherwise, the line is not compressed and the 32B line

will be output. An extra one bit for the C/U flag is added at the beginning of the

compressed line “Tag bit”. The subtractors are implemented based on the parallel prefix

Kogge-Stone carry look-ahead adder which has low fan-out at each stage to increase

the performance. The subtractors’ scheme of two 8-bits elements (a ̶ b) is shown in

Figure 5.6.

51

Figure 5.4 Block diagram of 4KB memory page

Figure 5.5 Compression block diagram for a 32B memory line

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

.

1B

Line 128

Line ll1 l2 l32l3 l4 l5 l6 l7 l8 l25l26 l27l28l29 l30l31

. . . .f1 f2 f32f3 f4 f5 f6 f7 f8 f25f26f27f28f29f30f31first Line

Compression Stage

C_line: compressed line

C/U flag: Compresded/Uncompressed flag

C/U line: Compresded/Uncompressed line

A

24B/32B+1bit

C/U_Line

32B

24BC_line

A

2:1

MUX

S

In0

In1

C/U flag

B

line register (32B)

32 parallel

8-bit Subtractors

(A - B)

first line register (32B)
o

u
tp

u
t
lin

e
 d

a
ta

re
g

is
te

r

52

Figure 5.6 Details of the 8-bits subtractor, the basic unit of the compression design

In the decompression stage, Figure 5.7, firstly, the first bit of the memory line is

checked. If its value is ‘1’, the line is compressed and the line data is stored in the next

24B. So, each byte of the compressed line data is added to its corresponding byte of the

first line of this memory page. The critical latency of the decompression hardware

design is simply 8-bits Kogge-Stone addition followed by a multiplexer.

Also, a variable-length design is implemented for the suggested approach. It has

five checks after the subtractors’ block. It checks that all the ∆s of the line are less than

or equal 3-bits, 4-bits, 5-bits, 6-bits, and 7-bits, then compresses the line in the smallest

possible length. However, a 3-bits tag is added to each compressed line.

 Sign
 _ _ _ _ _ _ _ _

0/1 a7/b7 a6/b6 a5/b5 a4/b4 a3/b3 a2/b2 a1/b1 a0/b0 cin = 1

P0 GP7 G P6 G P5 G P4 G P3 G P2 G P1 G
P=1

G=0

G0P G P G P G P G P GP GP GP G

G2P G P G P G P GP GP G G1

P GP G G4 G3G6 G5

=0 G7

= 0 sign

bit

 P8 G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0 cin

P G P G
P = Ai xor Bi

G = Ai and Bi

 Ai Bi

P = Pi and Pi-1

G = (Pi and Gi-1) or Gi

 Pi Gi Pi-1 Gi-1

Si = Pi xor Gi-1

 Pi Gi-1

S0S7 S6 S5 S4 S3 S2 S1

53

Figure 5.7 Decompression block diagram for 32B memory line

5.3. Comparison and Results

Compression and decompression have latency, energy and area overheads, which

may affect the compression impact. In other words, the main tradeoffs for compression

and decompression are compression ratio, latency and hardware complexity. The

suggested design’s advantages lie in its low latency and energy consumption if

compared to available designs in literature. Also, the compressed line is fixed-length

which provides less number of tag bits. Furthermore, delta compression has a good

tradeoff between compression ratio, latency, and hardware complexity. The work of

approximate computing in cache memory in [84] and [85] points similar cache lines to

the same location in cache memory at the expense of small variations in applications

last output. Nevertheless, the percentage of similarity, which is up to a maximum of

10%, in [84] is calculated by the average of differences between the two lines

corresponding elements, [(Σ(li ̶ fi))/32] according to Figure 5.4 symbols. Thus, it is

possible to have more than 10% difference between two corresponding line elements.

This work suggests storing delta between similar lines in the main memory with

similarity up to 37.5% between memory lines, and retrieves exact data values for main

memory storage.

A comparison between suggested approach and literature approaches, Benini et al.

[80] and base-delta-immediate [82], is obtained. They both use delta compression but

depend on similarity within each data line. Benini et al. divide the 32B memory line to

eight parts, each of length 4-Bytes/32-bits, then calculate the delta between the first part

and the other parts. Furthermore, Base-delta-immediate methodology uses eight

different compression blocks with different division of the memory line and delta

length then chooses the smallest compression line.

Firstly, a statistics for the applications data similarity between memory lines is

performed for 64B memory line using MATLAB and the results is shown in Table 5.1.

A sample of different applications data is chosen. From PARSEC benchmark [86], the

blackscholes application, an option pricing kernel that uses the blackscholes partial

differential equation (PDE), data is a combination between floating point numbers and

2:1

MUX

32B+1b

C/U_line

C/U flag

Decompression Stage

S

In1

In0

32 parallel

8-bit Adders

(C + B)

B C

first line register (32B)

32B

32B

1b

U
n

c
o

m
p

re
s
s
e

d
 l
in

e

re
g

is
te

r

54

characters. The canneal application, a simulated cache-aware annealing kernel which

optimizes the routing cost of a chip design, data is small integers and characters.

PERFECT application 1 (Pa1) kernel benchmark is used for images binary file testing

[87]. The applications data size is up to 16MB and the chosen page size is 4K page.

Then, the designs are implemented using VHDL for 32B line and synthesized in

Synopsis Design Compiler B-2008.09 with NanGate 45nm Open Cell Library [55] at its

typical operating voltage 1.1V. All simulation results are generated using default design

compiler timing script with clock, load, and wire load constraints. Clock uncertainty is

set to 10% of the clock period. For power analysis, a switching activity toggle rate of

75% is used. Table 5.2 shows that the suggested fixed-length approach decreases the

latency by 67% and 83% than the two previous designs. The latency of the proposed

compression stage is proportional to the latency of 8-bits parallel prefix subtractor

delay and some logic for MUX and compression decision while the decompression has

only 8-bits parallel prefix adder latency. However, the Latency of Benini et al., and

Base-delta-immediate compression approaches are proportional to 32-bits, and 64-bits

subtraction, respectively. And the logic for the compression decision according to their

approaches. The proposed design low latency leads to high reduction in energy

consumption, 66% and 43% less than the two previous designs. The frequency of

operation is increased from 150 MHz, and 300MHz for Base-delta- immediate, and

Benini et al. designs to 800MHz. The area of the suggested design and consequently

power is increased slightly according to the usage of Kogge-Stone subtraction. Also,

working on two lines has small effect in non-combinational area increment.

Nevertheless, the fan-out is decreased which has noticeably an effect in latency

reduction. The complex logic of the compression decision, which compares between

five different outputs, increases the suggested variable-length design latency and

energy. It is also one of the reasons of the high latency of Benini et al. and Base-delta-

immediate approaches.

The compression ratio of the proposed approach for different applications is shown

in Table 5.3 for alternative number of fixed-lengths compressed line and the variable-

length design.

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 (𝐵𝑦𝑡𝑒)

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 (𝐵𝑦𝑡𝑒)
 (5.1)

The simulations show good compression ratio of 1.3x for small integers and character

data and of 1.16x for image applications. However, blackscholes application has a very

low percentage of similarity, so extra tag bits in fact increase the file size. Also,

comparisons between the compression ratios of the suggested design with the literature

ones are shown in Table 5.4 for different benchmark applications.

55

Table 5.1 Similarity between memory lines (reference: 1
st
 line of each 4K page)

 Similarity between lines within
approximate

computing

(T = 10%)

 100% 62.5% 50% 37.5% 25%

Compressed Byte 0-bit 4-bit 5-bit 6-bit 7-bit

Blackscholes application 0.4% 0.4% 0.4% 0.5% 1.1% 0.4%

Canneal application 0% 0% 2% 99% 99% 2.2%

Pa1 kernel benchmark 0% 7% 11% 23% 51% 23%

 Table 5.2 Compression performance for different designs.

 Design Area (mm
2
) Latency (ns) Power (mW) Energy (pJ)

v
ar

ia
b
le

-l
en

g
th

Benini et al. [80] 5.66 3.55 1.2 4.26

Base-delta-immediate [82] 4.64 6.77 1.06 7.18

Proposed variable-length 7.52 2.41 2.24 5.39

Proposed fixed-length 7.04 1.16 2.11 2.44

Table 5.3 Compression ratios for different benchmark applications for the

suggested approach.

 fixed-length approach

variable-

length

approach

 Similarity between lines within

 62.5% 50% 37.5% 25%

Compressed Byte 4-bit 5-bit 6-bit 7-bit

Blackscholes application 1.00 1.00 1.00 1.00 1.00

Canneal application 1.00 1.00 1.32 1.13 1.30

Pa1 kernel benchmark 1.02 1.04 1.06 1.06 1.11

56

Table 5.4 Compression ratios for the different designs

 Benini et al. [80]
Base-delta-

Immediate [82]

Proposed

fixed-length

Proposed

variable-length

Blackscholes

application
1.00 1.00 1.00 1.00

Canneal

application
1.00 1.00 1.32 1.3

Pa1 kernel

benchmark
1.04 1.00 1.06 1.11

5.4. Preparing design for fabrication

In order to prepare the design for fabrication, the compression block diagram is

designed as shown in Figure 5.8. The memory lines are read 8-bits by 8-bits so every

32 clock cycles, new line (row) is read. The design has three inputs; reset, clk, and line

element (L_e). It has five outputs; first line and its enable bit,

compressed/uncompressed line (C/U_Line) and its enable bit, and flag bit shows that

the output (C/U_Line) is compressed or not (C/U_f). Six extra outputs is added for

testing.

The compression block diagram design post translate functionality is firstly

checked with FPGA post translate simulation model to edit any faults in the design

after adding the gates delays. Then the design is checked after the post synthesis ASIC

simulation where the output files from the synopsis design compiler are linked with the

UMC-130nm technology library files. The hdl file, which contain hardware

implementation of the design using technology gates description, and the sdf file, which

contain the technology gate delays is simulated using ModelSim. The following

simulation results are for four memory lines from the Canneal application. The four

testing lines are

1) 61 02 67 61 68 64 68 62 02 63 6A 67 6A 61 63 02 68 65 63 61 66 64 01 6A 67

62 66 6A 00 00 00 00; first line

2) 65 01 69 67 63 64 63 66 01 61 63 6A 61 67 67 02 64 65 62 68 6A 68 01 66 63

65 62 63 00 00 00 00; will be compressed

3) 69 01 65 63 69 63 68 6A 02 69 66 68 61 64 61 02 67 61 68 64 68 62 02 63 6A

67 6A 61 00 00 FF 00; can’t be compressed

4) 69 01 65 63 69 63 68 6A 02 69 66 68 61 64 61 02 67 61 68 64 68 62 02 63 6A

67 6A 61 00 00 00 00; will be compressed

57

After reading the last element of a line, the compression takes one clock cycle and the

result is stored in the output register (output line data). Then the outputs, C/U_f,

C/U_Line and its enable, are output in the next clock as shown in Figure 5.9 and Figure

5.10 for FPGA and ASIC simulation results, respectively. Lastly, Figure 5.11 shows the

ASIC post synthesis simulation results for the above four testing memory lines of

Canneal application.

58

Figure 5.8 Compression design block diagram after editing for fabrication

59

Figure 5.9 FPGA post translate simulation results

60

Figure 5.10 ASIC post synthesis simulation results

61

Figure 5.11 ASIC post synthesis simulation results for four memory line

62

5.5. Summary

This chapter introduces a detailed explanation for the recent memory compression

approaches in literature. Then the suggested methodology for main memory

compression and decompression is discussed. A comparison for the compression ratio

and performance of the different designs shows reduction in energy up to 66% for the

suggested design when compared to literature designs. And the frequency of operation

is increased from 300 MHz to 800 MHz. Also, the new design allows the main memory

to store up to 30% more data. Finally, the preparation of the suggested design for

fabrication is presented.

63

Conclusions and future work

Low power/energy has been a major design constraint. The explosion in digital

communications and the desire to preserve battery life time, improve system reliability,

and reduce cooling costs has pushed for extensive research in low power/energy digital

designs. Processing unit is the dominant part of our Information and Communications

Technologies (ICT). ICT is mainly composed of our computers, smart phones and

digital TVs along with its supporting computer server farms which support the cloud.

The real cost of computation in our exploding ICT world is simply the cost of energy

(power * latency) consumption. Making this cost cheaper is very important. This thesis

proposes two low energy designs at circuit, and architecture levels of abstraction for

multiplier in the arithmetic and logic unit (ALU), and main memory storage data,

respectively.

The first suggested design is a low energy dual base multiplier design. It modifies

existing architectures at the partial products accumulation stage. Partial products

accumulation stage is the most significant stage of the multiplier as it has the largest

area and delay. The suggested DBM divide the accumulation stage into two parts. The

first part is the main tree, which is designed using a binary column tree. Binary column

tree usage in dual binary/decimal accumulation stage is very efficient. Binary addition

in the main accumulation part for binary and decimal accumulation decreases the area

and power of the multiplier. The second part is a clock gated split binary/decimal tree.

Splitting the accumulation stage at the last few addition levels decreases the area of the

accumulation stage, and separates decimal overhead delays from the binary

multiplication path. Decimal correction blocks are gathered and implemented after the

binary column tree, at the beginning of split decimal path. The decimal correction

blocks are represented in binary to decimal conversion blocks, maximally 9-bits B/D

conversion tree. Besides, pipelining and clock gating decreases the dynamic power

dissipation further. The proposed pipelined multiplier design provides significant

reductions in area, power, and energy with acceptable delay. For more power reduction,

power gating is suggested to significantly reduce internal and leakage power. Also,

adopting one of the low power/delay full adder cell designs in the critical path will

decrease the total power/delay of the multiplication operation even more.

The second suggested design is a low latency and low energy

compression/decompression approach for main memory data. The performance of the

proposed algorithm is evaluated according to compression ratio and implementation

complexity which affects latency and energy overhead. If compared to other designs in

literature, the design offers small latency and high reduction in energy consumption.

The design achieves good compression ratios for applications that have integer or

character data types with small to medium differences between its data values. An extra

hardware can be added to increase the compression ratio if the data type is taken into

consideration. For example, the memory line might be divided into elements of 4B for

floating point data. Taking into consideration that the Kogge-stone addition will

guarantee a small increase in latency. Also, run length encoding can be used after the

delta compression to improve the compression ratio.

There are various solutions for low power/energy designs at all levels of

abstraction such as system and architecture framework, circuit design, power gating,

and new low energy materials and technologies. The improvement at higher levels of

abstraction needs lower-cost design engineers and affects all subsequent abstraction

64

levels to comply with the changes at that higher level. However, new technologies take

us to a new significant level of performance improvement despite it needs higher-cost

design engineers and a long period of time compared to higher levels of abstraction.

65

References

[1] G. E. Moore, “Cramming more components onto integrated circuits,”

Electronics, pp. 52–59, 1965.

[2] G. E. Moore, “Progress In Digital Integrated Electronics,” in Technical Digest,

International Electron Devices Meeting, 1975, pp. 11–13.

[3] G. E. Moore, “Lithography and the future of Moore’s law,” in Symposium on

microlithography (SPIE’S), 1995, vol. 2438, pp. 2–17.

[4] P. R. Panda, B. V. N. Silpa, A. Shrivastava, and K. Gummidipudi, Power-

efficient system design. Springer, Boston, MA, 2010.

[5] A. Jain et al., “Concise loads and stores: The case for an asymmetric compute-

memory architecture for approximation,” in Proceedings of the Annual

International Symposium on Microarchitecture, MICRO, 2016.

[6] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate Computing: A Survey,”

IEEE Des. Test Test, vol. 33, no. 1, pp. 8–22, 2016.

[7] D. A. F. El-dib, “Low Power Register Exchange Viterbi Decoder for Wireless

Applications,” Ph.D. dissertation, University of Waterloo, 2004.

[8] M. Anis and M. Elmasry, Multi-threshold CMOS digital circuits-managing

leakage power. Kluwer Academic Publishers, 2003.

[9] S. Gupta and S. Padave, “Power Optimization for Low Power VLSI Circuits,”

Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 6, no. 3, pp. 96–99, 2016.

[10] R. Santhiya and M. T. Thamaraimanalan, “Power Gating Based Low Power 32

Bit BCD Adder using DVT,” Int. J. Sci. Res. Dev., vol. 3, no. 02, pp. 802–805,

2015.

[11] Y. Li, “Memory-centric low power digital system design,” Ph.D. dissertation,

Rensselaer Polytechnic Institute, 2012.

[12] D. J. Moni and P. E. Sophia, “Design of low power and high speed configurable

booth multiplier,” in 3rd International Conference on Electronics Computer

Technology (ICECT), 2011, vol. 6, pp. 338–342.

[13] C. Sharma, “Power Reduction in VLSI chips by Optimizing Switching Activity

at Test Process , Architecture & Gate Level,” Int. J. Eng. Sci. Technol., vol. 3,

no. 4, pp. 3256–3259, 2011.

[14] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for

energy-efficient design,” in 18th IEEE European Test Symposium (ETS), 2013,

pp. 1–6.

[15] Q. Guo, K. Strauss, L. Ceze, and H. S. Malvar, “High-Density Image Storage

Using Approximate Memory Cells,” in Proceedings of the Twenty-First

International Conference on Architectural Support for Programming Languages

and Operating Systems, 2016, pp. 413–426.

[16] B. Holt, J. Bornholt, I. Zhang, D. Ports, M. Oskin, and L. Ceze, “Disciplined

Inconsistency with Consistency Types,” in Proceedings of the Seventh ACM

Symposium on Cloud Computing, 2016, pp. 279–293.

[17] J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms

from unreliable components,” Autom. Stud., vol. 34, no. 34, pp. 43–98, 1956.

[18] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Trans.

Embed. Comput. Syst., vol. 12, no. 2s, p. 92, 2013.

66

[19] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Optimization of Floating-

point Programs with Tunable Precision,” in Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

2014, pp. 53–64.

[20] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-Power Digital

Signal Processing Using Approximate Adders,” IEEE Trans. Comput. Aided

Des. Integr. Circuits Syst., vol. 32, no. 1, pp. 124–137, Jan. 2013.

[21] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-

scalable meta-functions for approximate computing,” in Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2011, pp. 1–6.

[22] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and Synthesis of

Quality-energy Optimal Approximate Adders,” in Proceedings of the

International Conference on Computer-Aided Design, 2012, pp. 728–735.

[23] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design of low-

power high-speed truncation-error-tolerant adder and its application in digital

signal processing,” IEEE Trans. Very Large Scale Integr. Syst., vol. 18, no. 8,

pp. 1225–1229, 2010.

[24] Y. Kim, Y. Zhang, and P. Li, “Energy Efficient Approximate Arithmetic for

Error Resilient Neuromorphic Computing,” IEEE Trans. Very Large Scale

Integr. Syst., vol. 23, no. 11, pp. 2733–2737, 2015.

[25] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and Analysis of

Approximate Compressors for Multiplication,” IEEE Trans. Comput., vol. 64,

no. 4, pp. 984–994, 2015.

[26] A. Yazdanbakhsh et al., “Axilog: Language support for approximate hardware

design,” in Design Automation and Test in Europe (DATE), 2015, pp. 812–817.

[27] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A technique for

automated behavioral synthesis of approximate computing circuits,” in Design

Automation and Test in Europe (DATE), 2014, pp. 1–6.

[28] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision optimization and

high level synthesis for approximate computing,” in 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC), 2015, pp. 1–6.

[29] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture Support

for Disciplined Approximate Programming,” in Proceedings of the Seventeenth

International Conference on Architectural Support for Programming Languages

and Operating Systems, 2012, pp. 301–312.

[30] U. R. Karpuzcu, I. Akturk, and N. S. Kim, “Accordion: Toward soft Near-

Threshold Voltage Computing,” in IEEE 20th International Symposium on High

Performance Computer Architecture (HPCA), 2014, pp. 72–83.

[31] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for

system-level dynamic power management,” IEEE Trans. Very Large Scale

Integr. Syst., vol. 8, no. 3, pp. 299–316, Jun. 2000.

[32] J. Antony and J. Pathak, “Design and implementation of high speed baugh

wooley and modified booth multiplier using cadence RTL,” Int. J. Res. Eng.

Technol., vol. 3, no. 8, pp. 56–63, 2014.

[33] J.-T. Yan and Z.-W. Chen, “Low-power multiplier design with row and column

bypassing,” in IEEE International SOC Conference SOCC, 2009, pp. 227–230.

[34] M.-C. Wen, S.-J. Wang, and Y.-N. Lin, “Low-power parallel multiplier with

column bypassing,” in IEEE International Symposium on Circuits and Systems

ISCAS, 2005, vol. 2, pp. 1638–1641.

67

[35] Z. Abid, H. El-Razouk, and D. A. A. El-Dib, “Low power multipliers based on

new hybrid full adders,” Microelectronics J., vol. 39, no. 12, pp. 1509–1515,

Dec. 2008.

[36] M. A. Valashani and S. Mirzakuchaki, “Two new energy-efficient full adder

designs,” in 24th Iranian Conference on Electrical Engineering (ICEE), 2016,

pp. 655–660.

[37] I. S. Abu-Khater, A. Bellaouar, and M. I. Elmasry, “Circuit techniques for

CMOS low-power high-performance multipliers,” IEEE J. Solid-State Circuits,

vol. 31, no. 10, pp. 1535–1546, 1996.

[38] J. B. Kim, “An area efficient multiplier using current-mode quaternary logic

technique,” in 10th IEEE International Conference on Solid-State and Integrated

Circuit Technology (ICSICT), 2010, pp. 403–405.

[39] P. Kimfors et al., “Custom layout strategy for rectangle-shaped log-depth

multiplier reduction tree,” in 16th IEEE International Conference on Electronics,

Circuits, and Systems, 2009, vol. 1, no. c, pp. 77–80.

[40] Q. Tong, K. Choi, and J. D. Cho, “A review on system level low power

techniques,” Pervasive Technol., vol. 1, no. 1, 2015.

[41] “Decimal Arithmetic FAQ, Part 1 – General Questions.” [Online]. Available:

http://speleotrove.com/decimal/decifaq1.html. [Accessed: 17-Jan-2016].

[42] M. F. Cowlishaw, “Decimal floating-point: algorism for computers,” in 16Th

IEEE Symposium On Computer Arithmetic, 2003, pp. 104–111.

[43] E. M. Schwarz, “Decimal Multiplication with Efficient Partial Product

Generation,” in Proceedings of the 17th IEEE Symposium on Computer

Arithmetic, 2005, pp. 21–28.

[44] M. A. Erle and M. J. Schulte, “Decimal multiplication via carry-save addition,”

in Proceedings IEEE International Conference on Application-Specific Systems,

Architectures, and Processors. ASAP 2003, 2003, pp. 348–358.

[45] T. Lang and A. Nannarelli, “A Radix-10 Combinational Multiplier,” in Asilomar

Conference on Signals, Systems and Computers, 2006.

[46] A. Vázquez, E. Antelo, and P. Montuschi, “A new family of high performance

parallel decimal multipliers,” in 18th IEEE Symposium on Computer Arithmetic,

2007, pp. 195–204.

[47] R. D. Kenney, M. J. Schulte, and M. A. Erle, “A high-frequency decimal

multiplier,” in IEEE International Conference on Computer Design: VLSI in

Computers and Processors, 2004. ICCD 2004. Proceedings., 2004, pp. 26–29.

[48] L. Dadda, “Multioperand parallel decimal adder: A mixed binary and BCD

approach,” IEEE Trans. Comput., vol. 56, no. 10, pp. 1320–1328, 2007.

[49] B. Hickmann, M. Schulte, and M. Erle, “Improved combined binary/decimal

fixed-point multipliers,” in IEEE International Conference on Computer Design,

2008, pp. 87–94.

[50] M. Mahmoud and H. A. H. Fahmy, “A parallel combined binary/decimal fixed-

point multiplier with binary partial products reduction tree,” in 21st International

Conference on Computer Theory and Applications (ICCTA), 2011.

[51] A. Vazquez and E. Antelo, “Improved Design of High-Performance Parallel

Decimal Multipliers,” IEEE Trans. Comput., vol. 59, no. 5, 2010.

[52] G. Jaberipur and A. Kaivani, “Improving the Speed of Parallel Decimal

Multiplication,” IEEE Trans. Comput., vol. 58, no. 11, pp. 1539–1552, 2009.

[53] P. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a

general class of recurrence equations,” IEEE Trans. Comput., vol. C-22, no. 8,

pp. 786–793, 1973.

68

[54] B. M. Benedek, “Developing large binary to BCD conversion structures,” in

IEEE 3rd Symposium on Computer Arithmetic (ARITH), 1975, pp. 188–196.

[55] “NanGate 45nm Open Cell Library.” [Online]. Available:

http://www.nangate.com/?page_id=2325. [Accessed: 17-Jan-2016].

[56] “NanGate 15nm Open Cell Library.” [Online]. Available:

http://www.nangate.com/?page_id=2328. [Accessed: 17-Jan-2016].

[57] O. Mutlu, J. Meza, and L. Subramanian, “The main memory system: challenges

and opportunities,” Communications of the Korean Institute of Information

Scientists and Engineers, pp. 16–41, 2015.

[58] D. A. Patterson and J. L. Hennessy, Computer organization and design, the

hardware/software interface, 5th ed. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2013.

[59] H. Geng, Semiconductor Manufacturing Handbook, Second Edition. McGraw-

Hill Education, 2017.

[60] I. Corporation, “Intel® Solid-State Drives in Server Storage Applications,” 2014.

[61] S. Lehmann and F. Gerfers, “Channel analysis for a 6.4 Gb/s DDR5 data buffer

receiver front-end,” in 15th IEEE International New Circuits and Systems

Conference (NEWCAS), 2017, pp. 109–112.

[62] J. He, S. Kannan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “The

Unwritten Contract of Solid State Drives,” in Proceedings of the Twelfth

European Conference on Computer Systems, 2017, pp. 127–144.

[63] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, “MemZip:

Exploring unconventional benefits from memory compression,” in Proceedings

of the International Symposium on High-Performance Computer Architecture,

2014, pp. 638–649.

[64] S. Mittal and J. S. Vetter, “A Survey Of Architectural Approaches for Data

Compression in Cache and Main Memory Systems,” IEEE Trans. Parallel

Distrib. Syst., vol. 9219, no. c, pp. 1–14, 2015.

[65] D. Salomon and G. Motta, Handbook of Data Compression, Fifth Edit. Springer-

Verlag London Ltd, 2010.

[66] Z. M. D. Dasgupta, Evolutionary Algorithms in Engineering Applications.

Springer-Verlag Berlin Heidelberg, 1997.

[67] K. SAYOOD, INTRODUCTION TO DATA COMPRESSION. MORGAN

KAUFMANN PUBLISHER, 2017.

[68] A. T. Alistair Moffat, Compression and coding algorithms. Springer

Science+Business Media, LLC, 2002.

[69] M. Borda, Fundamentals in Information Theory and Coding. Springer-Verlag

Berlin Heidelberg, 2011.

[70] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”

IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343, 1977.

[71] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate

coding,” IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 530–536, 1978.

[72] G. Pekhimenko et al., “Exploiting compressed block size as an indicator of

future reuse,” in 21st IEEE International Symposium on High Performance

Computer Architecture, HPCA, 2015, pp. 51–63.

[73] B. Falsafi and T. F. Wenisch, A Primer on Hardware Prefetching. Morgan &

Claypool Publishers, 2014.

[74] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level Cache

Deduplication,” in Proceedings of the 28th ACM International Conference on

Supercomputing, 2014, pp. 53–62.

69

[75] A. Arelakis and P. Stenstrom, “SC2: A Statistical Compression Cache Scheme,”

in 2014 ACM/IEEE 41st International Symposium on Computer Architecture

(ISCA), 2014, pp. 145–156.

[76] M. Ekman and P. Stenstrom, “A robust main-memory compression scheme,” in

Proceedings - International Symposium on Computer Architecture, 2005, pp.

74–85.

[77] B. Abali et al., “Memory expansion Technology (MXT): software support and

performance,” IBM J. Res. Dev., vol. 45, no. 2, pp. 287–301, 2001.

[78] J. Dusser, T. Piquet, and A. Seznec, “Zero-content Augmented Caches,” in

Proceedings of the 23rd International Conference on Supercomputing, 2009, pp.

46–55.

[79] J. Dusser and A. Seznec, “Decoupled zero-compressed memory,” in HiPEAC’11

- Proceedings of the 6th International Conference on High Performance and

Embedded Architectures and Compilers, 2011, pp. 77–86.

[80] L. Benini, D. Bruni, A. Macii, and E. Macii, “Memory energy minimization by

data compression: algorithms, architectures and implementation,” IEEE Trans.

Very Large Scale Integr., vol. 12, no. 3, pp. 255–268, 2004.

[81] A. Alameldeen and D. Wood, “Frequent Pattern Compression : A Significance-

Based Compression Scheme for L2 Caches,” 2004.

[82] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.

Mowry, “Base-delta-immediate Compression: Practical Data Compression for

On-chip Caches,” in Proceedings of the 21st International Conference on

Parallel Architectures and Compilation Techniques, 2012, pp. 377–388.

[83] G. Pekhimenko et al., “Linearly compressed pages: A low-complexity, low-

latency main memory compression framework,” in Proceedings of the 46th

International Symposium on Microarchitecture, 2013, pp. 172–184.

[84] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppelgänger: A

Cache for Approximate Computing,” in Proceedings of the 48th International

Symposium on Microarchitecture, 2015, pp. 50–61.

[85] J. S. Miguel, J. Albericio, N. E. Jerger, and A. Jaleel, “The Bunker Cache for

spatio-value approximation,” in 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2016, pp. 1–12.

[86] C. Bienia and K. Li, “ PARSEC 2.0: A New Benchmark Suite for Chip-

Multiprocessors ,” in Proc. of the 5th Annual Workshop on Modeling,

Benchmarking and Simulation, 2009.

[87] K. Barker et al., “PERFECT (Power Efficiency Revolution For Embedded

Computing Technologies) Benchmark Suite Manual.” 2013.

70

71

Appendix A: RTL synthesis flow commands using

Synopsys Design Compiler (DC)

To execute any UNIX command in dc shell:

» sh <UNIX_command>

Main Steps:

1. Library setup

» set search_path “$search_path”

DC looks for specified design and library files in the search_path directories

Default path is the current work directory (CWD): The directory that dc_shell

is invoked from

» link_library=target_library={65nm.db}

or

» set target_library 65nm.db

» set link_library “* $target_library”

2. Analyze.

Load all VHDL code

» define_design_lib WORK –path ./work

» read -f vhdl {arbiter.vhd top.vhd}

read_vhdl command creates several intermediate files and directories which

collectively form the “VHDL Design Library”.

3. Elaborate.

Choose top level vhdl file.

» current_design TOP

4. Link Design with library

» link

72

5. Setting up the clock

If the design doesn’t have a clock:

» create_clock -period 40 -waveform {0 20} -name sys_clk

If the design does have a clock pin:

» create_clock clk -period 40 -waveform {0 20}

» set_clock_uncertainty 0.14 clk

uncertainty models the maximum delay difference between the clock network

branches, known as clock skew, but can also include clock jitter and margin

effects

» set_clock_latency -max 0.3 clk

Network latency models the average ‘internal’ delay from the create_clock

port or pin to the register clock pins

it is useful when clock generation circuitry is not part of the design, or for

derived clocks

» set_clock_transition 0.08 CLK

Transition models the rise and fall times of the clock waveform at the register

clock pins

» set_input_delay 2.0 -clock clk [all_inputs]

73

depend on the slowest DFF in the library (i.e. The DFF has a clock-Q delay of

1.75ns + 0.25ns for wiring delay = 2.0 ns)

» remove_input_delay Clk

» set_output_delay 1.65 -clock clk [all_outputs]

depend on the slowest DFF in the library (i.e. the DFF has a setup time of

1.4ns + 0.25 for wiring delay = 1.65ns)

» set_load 0.1 [all_outputs]

#for Registered Outputs, load capacitance

» set_max_fanout 1 [all_inputs]

» set_fanout_load 8 [all_outputs]

6. Constraints

» dont_touch_network B_D_control

» set_wire_load_mode enclosed

» set_wire_load_model –name 1.6MGates

Technology library may have a default wire load model specified, which will

be used if no wire load model is manually or automatically applied. To find out

what the default model is use one of the following commands:
 » get_attribute <lib_name> default_wire_load
 » report_lib <lib_name>

7. Check Design

» check_design

8. compile_ultra

» compile_ultra –scan –retime –timing

74

9. Store all of the results.

» write -format ddc -output project_name.ddc

» read_ddc project_name.ddc

» set_switching_activity -toggle_rate 0.75 -select inputs -hier -clock clk

#75% toggle rate of inputs with all nets annotation in saif file

or

» read_saif -input name.saif

» report_power -analysis_effort high > name_power_report_log.txt

» report_power -analysis_effort high > name_log_file.txt

» report_power -analysis_effort high -hierarchy -levels 2 > output_log_file.txt

» report_timing -path_type full -max_paths 10 -significant_digits 5 >
name_timing_power_report.txt

» report_area

10. reset_design

 ‌أ

ملخصال

 تصميمبها جعل المرتبطة الطاقة استهلاكو الرقائق تكامل في المستمرة الزيادةإن
 فائفة المتكاملة الَلكترونية الدوائر تواجه التي التحديات أهم من قدرةال/الطاقة منخفضةالدوائر
 استهلاكارتفاع للنقل هو ةقابلأجهزه نحو تحركلل الرئيسي العائقحيث أن .الَخترال
. الدوائر المتكاملة تصميم راحلم جميع على متعدده استراتيجياتلها الطاقة إدارة. قدرةال/الطاقة

 يحقق مراحل تصميم الدوائر أو بنيتها أو نظامها في قدرةال/الطاقةمستوى تحسينومع ذلك،
 تصميمين نقدم ،الرسالة هذه في. الأخرى المستويات بتقنيات مقارنة القدرة/تقليل كبير في الطاقة

 استهلاك ليتقلل مرحلة التصميم والبنية الخاصة بالأجهزه في ميماتمن التص ينمختلف
 .الرئيسية الذاكرة نظاملو عشري/ثنائي مضاعفل قدرةال/الطاقة

 الأمثل والعشري في تصميم الوحدات الحسابية للحاسب هو ثنائيال تجميع النظام
 منخفضلمضاعف تصميم تم اقتراح. الطاقة منخفضةو السرعة عالية تطبيقاتللحصول على

التصميم على شاملة دراسة جريتأُ . عشري/ثنائي مزدوج معالج بالتجزئة ذو اساس طاقةال
. ساحةوالم لقدرةوا الطاقة استهلاك في هائل انخفاض تثبتالسابقة والتي أ اتيممالتصالمقترح و

التصميم يسمح باستخدام . قدرة منخفضة/طاقةطريقة تجزئة التصميم للحصول على اختيار تم
التصميم المقترح نانومتر. 15جيجاهرتز باستخدام تكنولوجيا ذات طول 4ترددات تصل إلى

 %.43يصل إلى لطاقةل تخفيضو % 37تخفيض في المساحه يصل إلى قدمللمضاعف

 باستخدام تصميم بسيط منخفض الطاقه لضغط الذاكرة الرئيسيةنهج تم اقتراح أيضا،
. المساهمة الرئيسية للتصميم نتائج دقيقةلتطبيقات التي تحتاج إلى لعالية بجودة بياناتلتخزين ال

نظراً لبساطته 66%السابقة بحوالي اتميمالتص عناستهلاكها للطاقة انخفاض المقترح هو
تم تحسين تردد التصميم المقترح عن التصميمات . بين المدخلات والمخرجاتزمن الانخفاض و

بيانات تخزين بلذاكرة الرئيسية لميجاهرتز. التصميم يسمح 800 ميجاهرتز إلى 300من السابقة
.التطبيقات بياناتالخاصة ب لمؤشرات الأداءوفقا %30تصل إلى نسبة ب أكثر

‌

 لبنية الحاسب الطاقة منخفضة تصميمات

‌

‌اعداد‌

 مرفت محمد عادل محمود

‌

‌القاهرة جامعة –الهندسة‌ كلية إلى مقدمة رسالة

‌الفلسفة دكتوراه‌درجة على الحصول متطلبات من كجزء

‌في

‌والاتصالات الكهربيةالالكترونيات هندسة

‌

‌تحت‌اشراف‌

‌

 فهمي حسن علي حسامأ.د. الديب فؤاد الواحد عبد داليا د.

قسم‌الهندسة‌الكهربائية‌وهندسة‌

الحاسبات،‌كلية‌الهندسة،‌جامعه‌

 دالهوزي‌،‌كندا

قسم‌الالكترونيات‌والاتصالات،‌

 كلية‌الهندسة،‌جامعة‌القاهرة

‌

‌

‌

‌

‌القاهــرة جامعــة - الهندســة كليــة

‌العربيــة مصـر جمهوريـة - الجيـزة

‌ 2019 سنة

‌‌
‌

‌

‌

‌

 بلبنية الحاس الطاقة منخفضة تصميمات

‌

‌

‌اعداد‌

‌

‌

 مرفت محمد عادل محمود

‌

‌

‌القاهرة جامعة –الهندسة‌ كلية إلى مقدمة رسالة

‌الفلسفة دكتوراه درجة على الحصول متطلبات من كجزء

‌في

‌والاتصالات الكهربيةالالكترونيات هندسة

‌

‌

‌

‌

‌

‌

‌

‌القاهــرة جامعــة - الهندســة كليــة

‌العربيــة مصـر جمهوريـة - الجيـزة

‌

‌ 2019 سنة

