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Abstract
Computing systems become progressively substantial with media and data handling.

An accurate result is not necessary in media processing such as in audio, image, video,
graphics, pattern recognition, and data mining. In these applications, it is adequate to
obtain approximate or less-than-optimal result. For example, Human recognition is not
sensitive to the high frequency variations in signal processing applications. Also, there is
no need to quantize the signal in higher bits once the noise floor is acceptable.

There are many sources to tolerate the imprecise results as the ability of human
brain to detect the missing information, and the redundancy of input data which allows
the algorithm to be adequate despite being lossy. This imprecise-tolerance is proved to
be helpful in energy reduction for these applications. Different computing systems are
introduced for this purpose as approximate, probabilistic , and stochastic computing.

In this thesis, a literature review for different error-resilient paradigms in computing
systems is presented. Also, an investigation for the effect of probabilistic behavior is
introduced for some devices as memrsitor, and probabilistic CMOS. We propose an
abstract model for inexact gates with new metric, output percentage error, that gives a
percentage result for the total inexact outputs compared with the generated ones in accurate
logic gates. This model can be useful for EDA tools in modeling the effect of these inexact
logic gates on the performance of complex applications.

We discuss the proposed approximate and stochastic gate models, as well as the
modeling of different simple gates, and four complex XOR topologies. Furthermore, a
detailed analysis for different chains as inverter, and XOR gates connected serially to
examine dependencies over the chain is provided. Two different applications are discussed;
the realization of adder model, and the performance of programmable true random number
generator using simple stochastic XOR gates. Finally, some potential areas are stated for
future work.

xiv



Chapter 1

Introduction

1.1 Inexact Computing

There is a vital concern about the future computing system that can solve difficult
problems in an energy-efficient manner. Many features need to be granted in the next
computing system according to the target application. To get the better usage of the system,
it is essential to understand the application’s requirements as some applications can tolerate
some error in their arithmetic units to get low-power consumption. For example, allowing
about 5% loss in classification accuracy for k-means clustering algorithm can lead to 50x
improvement in energy saving compared to the fully accurate classification [1]. In many
fields as machine learning, pattern recognition and signal processing, accurate results are
not necessary and they can accept some error in the results.

The error in logical gate may be deterministic or non-deterministic depending on its
source. In fact, this is the fundamental concept of imprecise or inexact computing which
indicates that the system either hardware or software does not produce the exact result
at each run, and the level of application will tolerate this error. In contrast, the exact
computing techniques will guarantee to deliver correct data to the application layer, such
as using correction mechanisms to identify and correct any faulty bits in communication
data streams. Several recent researches have explored imprecise computing in both hard-
ware and software, figure 1.1 shows the classification of different methods for imprecise
computing [2].

Computing

Exact Inexact

Soft Variable
precision Approximate Probabilistic Stochastic Quantum Non-Boolean

Figure 1.1: Different imprecise computing techniques

1.1.1 Approximate Computing
Approximate computing is considered the generic technique for all imprecise com-

puting techniques, and a very promising approach to energy-efficient design. It utilizes
deterministic hardware designs that produce imprecise results with little accuracy loss,
and allows improvement in energy and performance efficiency by involving the statistical
properties of the data or algorithms. The same answer is always can be detected after the
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same number of iterations.
Approximate computing has been used in a variety of domains where the applications

are error-tolerant, as: noisy inputs in sensors, probabilistic outputs in machine learning,
and face-detection applications. Recently, Google uses approximate computing in their
custom ASIC Tensor processing units (TPU) which operates as an accelerator for machine
learning on Google cloud [3].

For approximation techniques, many researches concentrate on the characterization
concepts for these techniques as correctness, controllability, and reproducibility [4]. Sev-
eral techniques can be used for manipulating approximate computing on different levels, as:
Loop perforation [5,6] in Software layer which is done by skipping some iterations of the
loop, or function substitution to increase the performance of target application. For system
architecture, many applications do not need all bits for data of floating point arithmetic,
so accuracy reduction is done by removing lower bits in architecture layer [7, 8]. Also, it
is achieved on device level by using new memory technology to store data approximately,
as memristor.

1.1.2 Probabilistic (Stochastic) Computing
Stochastic computing is the general methodology of the probabilistic computing.

The initial concepts of this technique were proposed in the 1950s as an alternative to
conventional computing. It is a non-deterministic methodology to computation, which can
be implemented in hardware or software. The specific probabilistic computing leverages
the physical limits relating to the scaling down of feature size which cause intrinsic
probabilistic behavior of the underlying circuit fabric, or the stochastic nature of a binary
switch under the effect of thermal noise [9].

Stochastic computing uses random binary bit streams that are executed in time and in
series. The computation is performed by applying these streams on the gate and measuring
its statistic. Stochastic computing gets different answers every time which mean it has a
loss of precision.

1.1.3 Comparison Overview
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Precision

Results

Target
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Figure 1.2: The relation between probability density of generated imprecise results and target value
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Accuracy and precision [10] are the most important metrics that show the difference
between approximate and stochastic computing. For different results of measurements
with errors related to each result, precision is used to describe the dissemination of these
errors corresponding to each other. Precision depends on the number of digits to present
the result as increasing these numbers will make a better precision for the result. On
the other hand, accuracy is an indicator for the correctness of a measurement, simply it
describes how close the average approximate results to the accurate result. The relation
between the generated results and the target (reference) value is shown in figure 1.2.

Approximate computing points to how close results are to each other every run, while
stochastic computing calculates close results to the true value. Table 1.1 shows the relation
between precision and accuracy as independent quantities which means the results can
be precise but not accurate as the case in approximate computing, or using hardware
which provides almost accurate but imprecise results as in stochastic computing. Table 1.2
presents the comparison between approximate and stochastic computing from different
aspects as error type, accuracy, and precision [11].

Accurate Not Accurate

P
re
ci
se

N
o
t
P
re
ci
se

Table 1.1: The relation between accuracy and precision

Approximate Computing Probabilistic Computing
Deterministic Error Not-deterministic Error
Precise but not accurate Accurate but not precise
The same answer after the same
number of iterations

Different answer every time

Can give low power consumptions, better resilience

Table 1.2: Comparison between approximate and probabilistic computing
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1.2 Thesis Contributions
The contributions of the thesis can be summarized as follows:

1. An abstract model for imprecise computing (approximate and probabilistic) which
can be useful in modeling their effects in EDA tools.

2. Investigation for different circuits as: chain of gates, adders, and random number
generator to check the injected stochastic behavior error effect on the functionality
of these circuits.

3. Analysis of proposed random number generator which is implemented using generic
pseudo implementation to generate fully digital true random sequences.

1.3 Thesis Outline
This thesis is organized as follows:

• Chapter 2: provides a literature review for stochastic and approximate computing.
Also, investigating the effect of probabilistic behavior for some devices as memristor.
Furthermore, an overview for different imprecise applications is introduced.

• Chapter 3: discusses the proposed approximate and stochastic gate models, as well
as the modeling of different simple gates, and four complex XOR topologies. Also,
simulation results are presented with a comparison for the provided XOR topologies.

• Chapter 4: provides a detailed analysis for different chains as inverter, and XOR
gates connected serially to examine dependencies over the chain. Also, The results
for adder models are investigated.

• Chapter 5: shows the realization of programmable true random number generator
using stochastic XOR gates, and investigates different histograms of the generated
random sequences. Also, it presents the test results of output analysis using the
NIST Sp. 800-22 statistical tests.

• Chapter 6: concludes the thesis and shows potential areas for future work.
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Chapter 2

Background and Literature Review

This chapter reviews important concepts of stochastic, probabilistic, and approximate
computing. It surveys the features of stochastic computing, as: the error flexibility, small
size, and probabilistic forms which make stochastic computing able to replace conventional
techniques in certain applications. Then, the probabilistic behavior of some promising
devices for the probabilistic computing is reviewed. Also, an application literature is
presented for inexact adder techniques beside the random number generator.

2.1 Stochastic Computing
The paper of Von Neumann [12] introduced basic concepts about stochastic computing

but the theory was fully improved in the 1960s [13,14]. SC was proposed as an alternative
low-cost computing system rather than traditional binary system using logic elements. It
represents and forms data in the scheme of digitized probabilities. SC utilizes high-ease
arithmetic units which were the main design concern in the past. Regardless of this
advantage, SC was considered as unfeasible cause of low precision and long calculation
times. However, modern computing systems are subjected to two factors which limit the
system implementation: (1) Application specifications as high reliability, and low power
consumption. (2) Physical phenomena like manufacturing defects, process variations,
and soft errors. These aspects make an advantage for error resilience which is a behavior
of probabilistic computing technique. Many surveys and approaches were presented to
discuss benefits and drawbacks of stochastic computing and its history [15–17].

2.1.1 Stochastic Number (SN)
Numbers in SC are described as probabilities instead of arithmetic under normal and

faulty condition that can be processed by simple circuits. This probability can be denoted
as a number p which shows the probability of detecting 1’s in a stream of bits with length
N, it depends only on this ratio Numb.o f 1′s

N not on their positions in the stream which means
they have equal weights in the representation. For example, 12-bits stream (0001 0000
0110) has p = 0.25. It is important to note that there are no constraints on the length or
bit’s weight of bit-stream which means 0.25 can have many representations as (0100),
(0001), and (0001 0100). Despite this feature makes the representation of stochastic
number flexible and error tolerant, it forces a limitation for the accuracy of SC. Increasing
the length of bit stream can be a good solution to get a higher accuracy for SC but it will
affect the runtime.

Conversion between binary numbers and stochastic numbers, and vice versa, are
important factors in SC. The simple model which widely used for conversion between
binary to stochastic is shown in figure 2.1i. SC operates on n-bit long sequences generated
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from random source as pseudo random number generator. These sequences are compared
with n-bit binary input to produce sequence denoted by S of stochastic number. The
mechanism of comparison is if the binary number is less than the generated random
number, the result will be 0. and 1 otherwise. It is simple to generate binary number from
stochastic number. As the representation of probability p depends on number of 1s in the
stochastic sequence, so only a counter can be used to calculate number of these 1s and get
p as shown in figure 2.1ii.

Random input
source

Clock

Comparator

A

B

B < A

Binary
number

Stochastic
number

n

n

(i)

Counter

Clock

Binary
number

Stochastic
number

n

(ii)

Figure 2.1: Conversion circuit (a) binary to stochastic, and (b) stochastic to binary

Using simple logic gates to calculate complex computations was the main interest
of SC. For example, suppose that there are two bit-steams S 1, S 2 which are random,
independent streams with probabilities p1, p2 respectively, and a multiplication operation
will be computed. SC circuit of simple logical AND gate can be used to perform the multi-
plication and the generated sequence will have output probability p1 ∗ p2. Figure 2.2 shows
the utilization of AND gate as a stochastic multiplier between different representations of
2
8 and 4

8 for exact and approximate computation, as follow:

• Figure 2.2ii represents the exact multiplication as the output probability is 1
8 .

• Two different representations for 2
8 are used in figures 2.2iii, 2.2iv to show the effect

of alternative stochastic number representation. The output probabilities are 0
8 and 2

8
can be explained as approximation to the exact result. However, this example show
the accuracy problem in SC so generating good stochastic numbers is a fundamental
feature to use SC in different applications.
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S1

S2

S3

p1

p2
p1 ∗ p2

(i)

S1

S2

S3

0001 0100 (28)

0100 1101 (48)
0000 0100 (18)

(ii)

S1

S2

S3

0010 0010 (28)

0100 1101 (48)
0000 0000 (08)

(iii)

S1

S2

S3

0000 1001 (28)

0100 1101 (48)
0000 1001 (28)

(iv)

Figure 2.2: Stochastic multiplier using AND gate : (a) model, (b) exact, and (c,d) approximate

2.2 Probabilistic Computing
Development rate in semiconductor industry is depending on Moore’s law which state

that every 18 months the number of transistors will be doubled for the same area [18, 19].
Now, there is a need to keep the same rate of development so we have to use new computing
methods and develop new devices due to the physical constraints. Probabilistic computing
is one of these promising techniques which can provide acceptable incorrect results for
applications that can tolerate some errors. Also, using probabilistic computing can improve
other aspects of design such as power consumption. There are many methods introduced
to improve probabilistic computing from the level of devices till block’s structure. In
this section, two promising devices are reviewed: Probabilistic CMOS (PCMOS), and
Memristor.

2.2.1 Probabilistic CMOS
Term probabilistic CMOS (PCMOS) appeared as a result of scaling CMOS device into

the nanoscale regime. This scaling which represents an end of Moore’s law [20, 21], leads
to probabilistic behavior in the device operation cause of process variations and noise
fluctuations which show challenge in the traditional design methodologies. Therefore,
researchers have worked on the characterization of these probabilistic CMOS devices to

7



overcome this challenge at different levels, as using these devices in conventional design
circuits is unsuitable cause they depend on deterministic behavior for the used devices.
This work of Borkar et al. [22] shows the impact of probabilistic behavior on design
circuits.

In this section an overview for the modeling and probabilistic behavior of PCMOS is
presented. The concern will be about the reduction of supply voltage Vdd in these CMOS
devices which make the probabilistic behavior controlled by this reduction and the effect
of thermal noise. An abstract clarification for probabilistic switches which can be useful
in the implementation of imprecise logic is presented in [23]. Figure 2.3i shows a simple
inverter CMOS whose output Vout probabilistic behavior is controlled by thermal noise
only, this is the modeling of PCMOS switch.

The digital representation for logic ’0’ and ’1’ is presented in figure 2.3ii as logic ’0’
is represented by a Gaussian distribution whose mean value is 0 and variance is σ, in this
case, the correct output will be 0. Same for logic ’1’, as it can be mapped to a normal
distribution with a mean value Vdd and variance σ, the correct output will be 1 in this case.
The dark gray in the graph shows probability of ’1’ to be treated as ’0’, and the light gray
shows the probability of ’0’ to be treated as ’1’ which means the gray region represents the
probability of error in case of switching for a PCMOS inverter. From this representation,
probability of correctness indicated by p can be expressed as follow:

p = 1− 1
2er f c( Vdd

2
√

2
)

Vin

Vout

Vdd

Vn

Thermal
Noise

(i)

Digital 1Digital 0

σσ

Vout

Probability
density

0 Vm Vdd

(ii)

Figure 2.3: (a) PCMOS switch (b) The digital representation for ’0’ and ’1’ with the switching
probability of error for a PCMOS

2.2.2 Memristor
Memristor is a new element in electrical circuits. Scientists consider it as the fourth

element beside resistor, capacitor, and inductor which clarify the relation between flux and
charge as shown in figure 2.4 which describes relationship between the four elements [24].
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One of memristor’s unique features is that computing inside the memory that decreases
time to transfer data between arithmetic unit and memory.

Memristor changes its resistance according to the applied input between 2 states: low
resistance Ron and high resistance Ro f f . The switching of resistance is another important
feature in memristor as it is stochastic in terms of the time period and level of the input
voltage. Different methods for using memristor in a logic domain are proposed in [25–27].
Memristor can be used in both approximate and stochastic computing [28, 29]. Sequential
memristor logic method is reviewed in this section.

i v

qφ

Resistor
R = dv

di

Memristor

M = dφ
dq

Capacitor

C = dq
dv

Inductor

L = dφ
di

v
=
dφ
dt

i =
dqdt

Figure 2.4: The relation between four fundamental elements

2.2.2.1 Sequential Memristor Logic

The memristor has two state of resistance switching Ro f f and Ron which are treated as
logic ’0’ and ’1’ respectively in the digital domain [25]. In sequential memristor logic, the
hardware of any logic gate is very simple as it uses only memristors. A sequential voltage
levels are applied into the top and bottom electrodes of the memristor which are used as
memristor’s terminals depending on the logical inputs for the gate. One memristor can
give 14 out of 16 logical operations [30]. The concept depends on the voltage difference
between memristor’s terminals, as follow:

• The terminals of memristor are indicated as T1 and T2. The threshold voltage defines
the polarity of applied input voltage, if it is above threshold, the input voltage will
be positive and vice versa.

• If the applied input voltage is positive, the resistance state of memristor will be ON
or logically ’1’.

• If the applied input voltage is negative, the resistance state of memristor will be OFF
or logically ’0’.

• Zero-input voltage makes no change in the state of memristor.
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The basic 2-inputs logical operations (AND, OR, NAND and NOR) which has inputs
in1, and in2 can be obtained by applying sequential voltage levels corresponding to these
inputs into memristor’s terminals through 3 cycles, and the logical output is determined
by the final resistance state. The operations through three cycles are as follows:

1. The initialization cycle to confirm the resistance state is OFF.

2. The first logical input (in1) as a voltage level is applied.

3. The second logical input (in2) as a voltage level is applied, the output logic after the
third cycle is based on the resistance state either ON or OFF.

T2 has different voltage in each cycle to obtain the desired logical operation as shown
in table 2.1 [31]. The cycles show DeMorgan’s theorem rules of breaking NAND to
negative OR, and vice versa. Another approach by initializing the first cycle as ON state
and applying different values for T2 is presented in [29].

T1

T2

Operation Terminal Cycle 1 Cycle 2 Cycle 3

AND
T1 0 in1 in2

T2 1 0 1

OR
T1 0 in1 in2

T2 1 0 0

NAND
T1 0 1 1

T2 1 in1 in2

NOR
T1 0 1 0

T2 1 in1 in2

Table 2.1: Applied voltages across terminals through the cycles for sequential AND, OR, NAND,
and NOR logic gates

2.2.2.2 Deterministic AND Logic Gate

A detailed demonstration for AND logic gate is presented to clarify the operation
of deterministic sequential logics. The diagram in figure 2.5 shows the used cycles to
implement the sequential AND logic gate. Starting from the left symbol which describes
the used model through the operation, it shows the memristor device as a square block
and inside it the previous state of memristor. The logic gate inputs will be applied across
the terminals T1 and T2 of the memristor. Cycle 1 doesn’t care about the previous state of
the memristor as a negative voltage is applied to switch the memristor’s resistance into
OFF state. In cycle 2, in1 is applied to T1, and ’0’ is connected to T2 which will make
the resistance state ON in case of in1 = 1 as the memristor will have a positive voltage. If
in1 = 0 is applied, zero potential difference across memristor’s terminal is the result which
makes no change in the state of memristor and keep the previous state OFF. Similarly
in cycle 3, in2 is applied to T1, and T2 is driven by ’1’ which will make the state either
maintain its state in case of in2 = 1 or OFF for in2 = 0. The last cycle, the resistance
state can be read by applying a small signal S r to T1. Table 2.2 shows the truth table
for sequential AND gate with resistance states through the operational cycles for all the
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combinations of inputs. Truth tables for sequential OR, NAND, NOR logic gates are in
Appendix A.

Model

Prev.
State

T1

T2

Cycle 1

X

0

1

Cycle 2

OFF

in1

0

Cycle 3

State1

in2

1

Cycle 4

State2

Sr

0

Figure 2.5: Diagram for the applied inputs through the cycles of sequential AND logic gate

Operation Terminal Cycle 1 Cycle 2 Cycle 3

AND T1 0 in1 in2
T2 1 0 1

in2 in1 State0 State1 State2
0 0 OFF No change OFF
0 1 OFF ON OFF
1 0 OFF No change No change
1 1 OFF ON No change

Table 2.2: The truth table for sequential AND logic gate

2.2.2.3 Probabilistic Sequential Logic

Due to the stochastic behavior in the resistance switching of memristor, the sequential
logic has been improved and combined with probability theory to deal with the proba-
bilistic memristor. The differentiation between deterministic and probabilistic domains
depends on the applied input voltage levels according to the threshold voltage. To guar-
antee switching of memristor to the correct states, the input voltage is applied above
the threshold voltage in deterministic domain, as shown in [32], for a bipolar memristor
which has a threshold voltage of 4.6V, the input voltage applied should be ±5V. On the
other hand, the input voltage is applied below the threshold voltage in the probabilistic
domain which cause uncertainty in switching. The switching probability Ps(t) defines the
probabilistic behavior of memristor. Integrating this behavior in the operation of sequential
logic gates introduces errors into the output.

The proposed model for sequential logic in probabilistic domain is reviewed for this
work [31]. The are some assumptions placed to ensure model analysis is defined. They
are as follow: The starting cycle of the model is OFF state, the inputs in1 and in2 are
deterministic, and only switching probability Ps(t) that models the stochastic behavior.
Thus, the accuracy of probabilistic sequential logic gate depends on the applied input
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voltage through the cycles of the operation, and the switching probability of the memristor.
The definition of accuracy is stated as getting the correct output for its corresponding
input. For example, AND gate is precise when output is ’1’ for both inputs in1 and in2
are ’1’, and ’0’ otherwise. The measurement of any gate’s accuracy which has total input
combinations N, N0 number of inputs to get a ’0’ output, and N1 number of inputs to get a
’1’ output is determined using the following equation:

Accuracy(Gate) =
N0

N
Pout(0) +

N1

N
Pout(1) (2.1)

2.2.2.4 Probabilistic AND Logic

The analysis diagram for probabilistic sequential AND gate is shown in figure 2.6.
There are 3 events through the operation: (1) No change in case of applying zero-input
voltage, (2) No switching which its applied input difference generates state same as the
previous one, the probability of these events is 1, and (3) Switching which may occur with
probability Ps(t) or not occur with probability 1−Ps(t). Similar to the characterization of
AND gate, the analysis diagrams for probabilistic sequential OR, NAND, and NOR logic
gates are presented in Appendix A.

Cycle 1

T1 = 0 T2 = 1

(OFF)

Cycle 2

T1 = in1 T2 = 0

No Change
(OFF)

Switching
(ON)

Cycle 3

T1 = in2 T2 = 1

No Switching
(OFF)

No Change
(OFF)

Switching
(OFF)

No Change
(ON)

0

1

0

1

0

1

Figure 2.6: Analysis diagram for probabilistic sequential AND logic gate

The operation of probabilistic sequential AND logic gate is clarified by applying all
inputs combination in the form (in2, in1) to the diagram in figure 2.5. Investigating the
effect of all input combinations on the AND operation through different cycles as follows:

• The first output should be ’0’ for the input combination (0,0). Memristor is on
the OFF state for the first cycle, the second cycle does not change the state of
the memristor as in1 is 0 which makes zero voltage difference across memristor’s
terminals, and similarly in the third cycle no switching will happen cause of in2 is 0
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so a negative voltage is applied. Thus, the probability to reach a correct ’0’ output is
independent of switching:

P(0,0)(0) = 1

• The second output for input combination (0,1) should be ’0’. The first cycle
initializes the OFF state, and since the difference-voltage inputs are zero on both
the second and third cycles, there is no change for the resistance state. Thus, the
probability to reach a correct ’0’ output for input combination (0,1) is as (0,0):

P(0,1)(0) = 1

• The correct output for the third input combination (1,0) should be ’0’. After the
OFF state, there are two scenarios to get the correct output: (1) If the memristor
switches in the last cycle Ps(t) , or (2) it does not switch in the second cycle 1−Ps(t)
and third cycle 1−Ps(t). Hence the probability to get a correct ’0’:

P(1,0)(0) = Ps(t) + (1−Ps(t))(1−Ps(t))
P(1,0)(0) = 1−Ps(t) + P2

s(t).

• The last input combination (1,1) should switch the output to ON state and get a
logic ’1’. The switching will happen only in the second cycle so the probability to
get a correct output ’1’ is:

P(1,1)(1) = Ps(t)

• Adding all of these probabilities to get the final output probability for sequential
AND gate, as: Pout(0) which is the probability to get a correct ’0’ output, and Pout(1)
which is the probability to get a correct ’1’ output for all input combinations as
follows:

Pout(0) = 1
3 (3−Ps(t) + P2

s(t))
Pout(1) = Ps(t).

• The measurement of AND gate’s accuracy is determined using equation 2.1 as
follow:

Accuracy(AND) = 1
4 (3 + P2

s(t))

The final probabilistic behaviors of different sequential logic gates are presented in
table 2.3 [31]. As shown, AND and NOR gates have the same probabilistic behaviors.
Also, OR and NAND are typical in their behaviors. There is higher accuracy for AND and
NOR which have ’0’ output in 3 out of 4 input combinations cause of the initial state is
OFF which makes the memristor have higher probability to get ’0’ rather than ’1’.

Gate P(0) P(1) Accuracy
AND 1

3 (3−Ps(t) + P2
s(t)) Ps(t) 1

4 (3 + P2
s(t))

OR 1 1
3 (4Ps(t)−P2

s(t)) 1
4 (1 + 4Ps(t)−P2

s(t))
NAND 1 1

3 (4Ps(t)−P2
s(t)) 1

4 (1 + 4Ps(t)−P2
s(t))

NOR 1
3 (3−Ps(t) + P2

s(t)) Ps(t) 1
4 (3 + P2

s(t))

Table 2.3: P(0), P(1), and accuracy of sequential AND, OR, NAND, and NOR logic gates based
on stochastic memristors
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2.3 Applications Overview

This section investigates different applications can be utilized using imprecise com-
puting: addition operation and generation of random numbers. Two implementations for
imprecise adders are introduced. Also, an overview about random number generator types
and implementation is presented later.

2.3.1 Adder
Adder is the most important arithmetic component in soft computing systems which is

sometimes known as computational intelligence (CI). This computing systems depends on
that many applications can accept degree of uncertainty, and tolerate loss of precision in
their arithmetic outputs without effecting the system performance . These features are the
main differences between imprecise and conventional computing.

Different techniques have been proposed to model approximate adders. For example,
voltage over-scaling (VOS) for CMOS circuits [33–35], this technique reduces the supply
voltage to achieve low-power consumption. Another method relies on redesigning the
circuits by removing some of their components, as approximate mirror adder (AMA)
which is based on removing some of its transistor as proposed in [33] for three different
implementation. Also, paper [36] presents pass transistors utilized to implement three
adders using the implementation of approximate XOR/XNOR gates with multiplexers.
Moreover, transmission gates (TGs) are used as a component replacement for pass transis-
tors to propose two multiplexer-based approximate adders in [37]. Figure 2.7 shows an
exact ripple-carry adder (RCA) which is a common conventional full adder (CFA) which
is implemented by cascaded full adder components.

cout

s

cin

ba

cout

s

cin

ba

cout

s

cin

ba

cout

s

cin

ba

a0 b0a1 b1a2 b2aN−1 bN−1

0Cout

S0S1S2SN−1

RCA

Figure 2.7: Block diagram for simple ripple carry adder

Imprecise adders can be categorized into run-time and design-time techniques which
are useful for biomedical applications [38]. These techniques are so promising for low-
power consumption applications. They are based on the operation of: (1) deterministic
approximate logic, as replacing XOR gate with OR gate for the least significant bits
(LSBs) of the adder which is known as bio-inspired Lower-part OR Adder (LOA), or
(2) imprecise arithmetic, as Probabilistic Full Adder (PFA) which is implemented using
nanometric devices (Probabilistic CMOS). A review for these papers [39, 40] about
different conventional and soft adders is introduced in this section. Error Distance (ED)
and Mean Error Distance (MED) are metrics used in these papers [36, 39] to assess
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reliability of the proposed adders. Paper [39] compares between different approximate
and probabilistic adder implementations as AMA, LOA and PFA which will be reviewed.

2.3.1.1 Lower-bit OR Adder (LOA)

a0b0ak−1bk−1

s0sk−1

Cinm− bit

Exact Adder

a(k − 1 : 0)b(k − 1 : 0)a(n− 1 : k)b(n− 1 : k)

S(k − 1 : 0)S(n− 1 : k)

kk

k

mm

m

Figure 2.8: Block Diagram of LOA

The hardware structure of LOA is shown in Figure 2.8. LOA adder with size n-bits is
divided into two smaller adders:

• Exact m-bits Adder for the most significant bits (MSBs) to compute the precise
calculations for higher part.

• Approximate k-bits adder for the least significant bits (LSBs) using OR gates rather
than XOR gates, with an additional AND gate for the MSB in the lower part to
generate carry in signal (Cin) for the higher part.

2.3.1.2 Probabilistic Full Adder (PFA)

The hardware structure of PFA is same as LOA as shown in Figure 2.9. The difference
is in the implementation of lower part, as PFA is used probabilistic CMOS (PCMOS) to
implement it. PCMOS is a nanoscale device which can achieve low-power consumption.
Table 2.4 shows a the elements, advantages and disadvantages between LOA and PFA.

Cin k − bit

Probabilistic Adder

m− bit

Exact Adder

a(k − 1 : 0)b(k − 1 : 0)a(n− 1 : k)b(n− 1 : k)

S(k − 1 : 0)S(n− 1 : k)
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Figure 2.9: Block Diagram of PFA
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LOA PFA
Element Approximate Logic Probabilistic CMOS

Advantages Balance precision with other per-
formance metrics

Balance performance at nanomet-
ric scales

A good trade-off between relia-
bility, area, power

Better reliability at a small gate
error rate

Drawbacks Loss of precision cause of ig-
noring the normal carries in the
LSBs

Larger overhead in area and static
power consumption

Table 2.4: Comparison between LOA and PFA

2.3.2 Random Number Generators
Random numbers are critical elements for an entire scope of applications, including:

cryptography, gaming, computer simulation and statistical sampling. The generators of
these numbers are required to produce secure long sequences of random values. An
investigation for different types of random number generators is presented. Also, a study
for more randomness generator is clarified in chapter 5. There are basically two sorts of
random number generators - true random number generators (TRNGs) and pseudo random
number generators (PRNGs). The main contrast between TRNGs and PRNGs is that:
TRNGs sample a source of entropy, in other words, they utilize unpredictable physical
means to produce numbers. On the other side, PRNGs use deterministic mathematical
algorithms which are totally computer-generated to create the numbers. A brief summary
of TRNGs and PRNGs is explained below.

2.3.2.1 True Random Number Generators

A true random number generator needs a normally happening source of randomness,
as: entropy, to produce arbitrary numbers. It tests this source of entropy and procedures
it through a computer to create an arrangement of random numbers. The entropy source
regularly comprises of some physical amount, for example, the noise in an electrical circuit
(e.g., variance in fan noise), the quantum consequences in a semiconductor, or the timing
of user processes (e.g., mouse movements). Different generators of these sources may be
used. A TRNG generates randomness introduced in the fundamental physical source and
the state of a TRNG is independent of the previous states which makes the prediction of
generated random sequence impossible. Three elements are the main components of a
basic TRNG circuits, the source of randomness, the extraction circuit (sampler) and the
post-processing unit [41], as shown in figure 2.10.

1. Random source: is the main component as it decides the randomness of TRNG.
Various sources are introduced, for example, clock jitter [42, 43], thermal noise
[44, 45], and metastability of the circuit [42]. The random source is mainly an
analog circuit that produces analog signal which has a random property inside as
the white noise.

2. The extraction circuit (Sampler): As the random source generates an analog
signal, there is a need for sampler to the generated signal into random number binary
sequences. There are different sampler methods, as, using a D flipflop to sample
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Figure 2.10: Block Diagram of TRNG

the signal generated from random source as clock jitter. Anyway, it is required to
gather the oscillation time of the random source by a counter. The extraction circuit
impacts the speed of TRNG, as generating higher bit rates will need to use higher
sample frequency which can decrease the randomness of TRNG. This is the reason
that TRNG is slower than PRNG.

3. Post-processing unit: It is a technique to pack the output sequence after sampler
unit. It will increase the strength of TRNG but also decrease the output bitrate. This
part is not essential for TRNG as sometimes the random source is powerful enough.
However, the output of random source may have some unsatisfactory properties, as
the proportion of zeros and ones in the sequence. Using post-processing unit can
eliminate these bad properties and provide great randomness in the generated pattern.
There are different techniques for post-processing unit such as XOR trees [46], and
Von Neumann Extractor [47, 48]

2.3.2.2 Pseudo Random Number Generators

The second technique utilizes computational calculations that can create long suc-
cessions of obviously arbitrary outcomes, which are in actuality totally controlled by an
introductory value, known as a seed or initial key. Thus, the whole apparently random
string can be duplicated if the seed is known. This kind of arbitrary number generator
is frequently called a pseudo random number generator, also known as a deterministic
random bit generator (DRBG). PRNG commonly does not depend on origin of normally
happening entropy, however it might be occasionally seeded by characteristic sources.

The periodicity of generated sequence is another important feature in PRNG. As once
the initial key (seed) is fixed, the output sequence will repeat after specific periods. For
example, n-bits PRNG will generate its random pattern after period 2n−1. Also, the seed
selection is so important for the period’s length, as it can be so short if the initial seed
isn’t suitable for the used implementation of PRNG (such seeds may be called weak).
Linear congruential generator (LCG) [49], Lagged Fibonacci generator (LFB or LFib),
and Linear feedback shift register (LFSR) are different techniques to implement PRNG.

2.3.2.3 Comparison between TRNG and PRNG

In looking at TRNGs and PRNGs, each have their benefits and drawbacks which are
summarized in table 2.5.
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Implementation TRNGs PRNGs
Sequence Non-deterministic Deterministic

Complexity Complex Simple
Efficiency Low Excellent

Speed Slow Fast
Cost Expensive Cheap

Table 2.5: Comparison between true and pseudo random number generators

There are many imprecise computing techniques which show a promising performance
in trade off between accuracy and power consumption. The source of error can be
modeled in different levels from devices till system architecture. A review for Stochastic
computing features and model was clarified to show the source of error in this imprecise
computing technique. Also, devices which have probabilistic error behavior in their states
were introduced, as memristor and PCMOS which can be classified into probabilistic
computing. Moreover, a study for different applications was presented as approximate and
probabilistic adder techniques which will be analyzed in chapter 4.

Finally, a review on different random number generator was discussed as programmable
LFSR technique will be introduced and analyzed later. Programmable LFSR is the main
block to implement pseudo random number generator with different orders based on
specific polynomials. Using probabilistic AND, XOR logic gate models which will be
proposed in the next chapter to replace the conventional gates in this programmable LFSR
is an interest of thesis work. The generated sequences from the LFSR model with these
imprecise gates will have a characteristic of true random patterns which will make the
modified LFSR worked as a Quasi-TRNG generator. More details about the analysis is
provided in chapter 5.
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Chapter 3

Inexact Gates Modeling

The models of approximate and probabilistic or Stochastic gates are introduced in this
chapter to show the proposed method for error injection in the logic gate for both cases.
Figure 3.1 shows these different inexact computing methodologies with paradigms for
them to distinguish between the source of error in each computing technique. For instance,
a lower-bit OR adder (LOA) represents the approximate computing on the level of system
architecture for adders. The probabilistic switching behavior in PCMOS is an example for
the devices level of probabilistic computing. Also, a stochastic multiplier with inputs and
output mapped into probabilities is a model for stochastic computing.

Inexact
Computing

Approximate Probabilistic Stochastic

a0b0ak−1bk−1

s0sk−1

a(k − 1 : 0)b(k − 1 : 0)

S(k − 1 : 0)Cin

kk

k

Digital 1Digital 0

σσ

Vout

Probability
density

0 Vm Vdd

S1

S2

S3

p1

p2
p1 ∗ p2

Figure 3.1: Classification and paradigm for inexact computing techniques

The proposed models are applied on various simple logic gates to prove the validity of
error injection method by calculating a simple metric referred to as output percentage error
(OPE) which is similar to error distance (ED) metric proposed in [50]. OPE relates outputs
of N random inputs for the imprecise gate to the relative outputs from the accurate gate,
then accumulates the number of differences between precise and imprecise outputs, and
calculates the percentage error as clarified in figure 3.2. The main usage for OPE is being
an indicator for the behavior of any gate’s output in case of injecting it by a probability
distribution function or deterministic error which models the injected error inside this gate
for either probabilistic or approximate computing respectively. In general, OPE for any
compared outputs is given by:

OPE = (
∑N

i=0 |out(i)acc−out(i)imprecise|

N
)∗100% (3.1)
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in1(i)

in2(i)

ε

Accurate

Gate

Inaccurate

Gate

Comparator + OPE(i)

Figure 3.2: Output percentage error model

In figure 3.2, ε is the metric to model gate error which depends on the type of the
injected data. It could be correlated or uncorrelated to the inputs of gate. Also, ε can be
dependent or independent on the gates’ type. For approximate mode, the injected error is
dependent on inputs combinations, but it is independent on gate type and uncorrelated to
input data in probabilistic model. The error in probabilistic gate is modeled as a probability
function as in PCMOS, it is modeled as the intersection between two normal distribution
which are the logical representation for logic ’0’ , and ’1’. The probability distribution
function (PDF) shows the number of times a specific discrete probability value pi of
the random variable A occurs. On the other side, CDF is the cumulative distribution
function F(x) that shows the probability of random variable being less than a specified
value x. From the definitions of PDF and CDF, the distribution of any device error can
be represented as a PDF, and accordingly, the gate’s OPE of gates using single device to
operate is supposed to be same as the CDF.

3.1 Approximate Gate

in1(i)

in2(i)

err(in1)
err(in2)

Accurate

Gate

Comparator

0
1

out(i)

Approximate Gate Model

Figure 3.3: The model for approximate logic gate
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The source of error in any approximate logic gate is deterministic which means for
specific inputs the gate will get a wrong output. It can be as a result of the system or
transistor level. For example, using OR gates rather than XOR gates in least significant
bits (LSBs) of n-bit adder, known as Lower-Part-OR Adder (LOA) [8], is a common
method for injecting a deterministic error to balance precision with other performance
metrics such as power consumption as in biomedical applications. For one of these LSBs,
If we apply two independent streams for the inputs in1, in2 with uniformly distributed
combinations of 00,01,10, and 11, the output is supposed to have a fixed probability of
error Pe = 0.25 for sufficient N samples. Also, logic reduction at transistor level to get a
lower power consumptions, as in the approximate mirror adder (AMA) [51], is another
source of error for the approximate gate. Fig. 3.3 shows a model for the approximate logic
gate.

For 2-input logic gate, the error is injected by comparing the desired err(in1),err(in2)
with the time space gates’ inputs in1(i), in2(i) respectively. If both values are equal the
gate will generate incorrect output for the inputs. Figure 3.4 presents the flow chart of
error injection in approximate gate model.

Start

Assume n = Number of
samples within time t

Sapmle
in1(i), in2(i),

err(in1), err(in2)

Correct(i) = in1(i) Logic in2(i)
InCorrect(i) = 1-Correct(i)

in1(i) = err(in1) &&
in2(i) = err(in2)

Out(i) =
Correct(i)

Out(i) = In-
Correct(i)

Stop

no yes

Figure 3.4: The flowchart for approximate logic gate
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The injected error is function of the inputs combination; The location of error in logic
gate is modeled by the terms err(in1), err(in2). For instance, The error can be located for
in1 = 0 and in2 = 0 so the output will be 1 as shown in table 3.1 which presents the truth
table for OR gate and its approximate with injected error for different inputs. The results
can be clarified, as:

• Error in inputs 00 can be modeled as stuck at 1 for OR gate.

• Detection of odd numbers in case of approximate OR gate with error in 10.

• Faults case of 11 is so useful to generate the correct outputs of XOR gate with
approximate OR gate implementation which leads to reduce power consumption.

in2 in1 Acc
Approximate

00 01 10 11
0 0 0 1 0 0 0
0 1 1 1 0 1 1
1 0 1 1 1 0 1
1 1 1 1 1 1 0

Table 3.1: Truth table for conventional OR gate and its approximate implementations with
different errors

3.2 Probabilistic Gate
The proposed Probabilistic gate model in figure 3.5 is an abstract model and includes a

novel contribution in the error injection which is non-deterministic. This error is as a result
of the physical behavior of the implementing device, such as transistor in small scaling,
or memristor. There is an assumption that the probabilistic behavior of the device can be
modeled as a probability distribution function that is between [0,1]. Actually the proposed
model is analogous to Probabilistic computational models (SCMs) that is proposed in [52]
with a difference of the error meaning in the model.

in1(i)

in2(i)

error(i)

TPe

Accurate

Gate

Comparator

0
1

out(i)

Probabilistic Gate Model

Figure 3.5: The model for probabilistic logic gate
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Start

Assume n = Number of
samples within time t,
error(i) = Probability

ditribution function of error

Sapmle
in1(i), in2(i), Pe

Correct(i) = in1(i) Logic in2(i)
InCorrect(i) = 1-Correct(i)

error(i) ≤ Pe

Out(i) =
Correct(i)

Out(i) = In-
Correct(i)

Stop

no yes

Figure 3.6: The flowchart for probabilistic logic gate

Within a specific time t, the logic gate has a finite number of inputs and outputs N.
According to the error distribution and the probability of error, the model forces gate’s
output to be correct or incorrect. The model consists of three main components:

1. Accurate gate which defines the main required functionality of the model based on
its inputs.

2. Comparator between the desired probability of error in the model and the estimated
physical noise PDF. The result of comparator depends on the probability distribution
function of the noise.

3. Multiplexer selects between result of the accurate gate or its inversion based on the
output of the comparator.

Unlike the traditional stochastic approaches that use the numbers which are represented
as a bit-streams and process these numbers as probabilities [53], the source of error in
our probabilistic gate model (ε) is a function of error and Target Probability Error (TPE)
which are characteristics of the physical error of the device. Term error declares the
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probability distribution function of the device physical error, and TPE is related to the
target number of outputs forced to be incorrect for a set of inputs. Therefore, OPE of logic
circuit will depend on the injected distribution. Table 3.2 shows the effect of ε when it is 0
and 1 on different gates.

Inputs
AND OR XOR

ε B A

A
cc

ur
at

e 0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 1 0

Pr
ob

ab
ili

st
ic 1 0 0 1 1 1

1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 0 1

Table 3.2: Truth table for AND, OR, XOR logic gates with their Pe = 0 and 1

It is clear that in case of Pe is ’0’ the gate will behave normally and its functionality
will be correct. In case of Pe is ’1’ for all inputs combination, it will behave normally too
but with inverted functionality. ε may be 1 or 0 through the time space which will affect
different input combinations with various probability. Figure 3.6 clarifies the model.

3.3 Simple and Complex Gates

in1

in2

out

in1

in2

out

(a) (c)

in1

in2

out

in1

in2

out

(b) (d)

Figure 3.7: Different Topologies for XOR gate

In this section, there is an assumption that there is a device that can assemble all
different simple logic gates, as: NOT, AND, OR, NAND, NOR, ... etc by arranging
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components in different architecture. Then, applying the approximate and Probabilistic
models on these gates to investigate the effect of incorrect outputs in the gate’s functionality.
Four different XOR topologies are investigated to check the effect of simple gates from
aspects as: gates count, structure, and logic levels on complex XOR gate. Figure 3.7 and
table 3.3 show these topologies with their characteristics.

Topology Gate Counts Structure levels
a 5 Symmetric 3
b 4 Symmetric 3
c 5 Symmetric 4
d 3 Non-Symmetric 2

Table 3.3: Characteristics of XOR topologies

3.4 Results
In this section, the proposed models are assessed for approximate and probabilistic

gates using Matlab. There are two sections of results: (1) Simple and Complex gates based
on approximate model, and (2) Simple and Complex gates based on probabilistic model,
Six simple logic gates are used in the evaluation of models (AND, NAND, OR, NOR,
NOT, and XOR).

3.4.1 Approximate Gates
For approximate gates, two independent random inputs are applied to simple and

complex gates. The error is injected as a combination of the inputs representations to
prove the statistical properties of approximate gate, as: the result will be the same over
time.

3.4.1.1 Simple Approximate Gates

Injecting error in simple approximate gates by applying err(in1) and err(in2) to
00,01,10, and 11 is the first technique to prove the validity of approximate gate model.
Figure 3.8 shows that OPE of simple gates is dependent only on the source of error which
represents one of inputs combination. In this case, input combination is selected. OPE
is proved to be fixed over time so 25% of outputs will be incorrect as the error is in only
one combination and independent on Pe. The error could be in any numbers of inputs
representation which leads to change OPE.

3.4.1.2 Complex Approximate Gates

Investigating the results in figure 3.9 for complex approximate XOR gates shows that:

• Blackbox topology is a representation for XOR gate in case it can be implemented
as a simple gate which is the reference to measure the complex approximate gate
performance.

• OPE in gates with source of error in 00 for topologies 3 and 4 is 0% due to the effect
of NAND gate as in topology 3 the error will propagate in each NAND gate, but on
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Figure 3.8: OPE for AND, NAND, OR, NOR, and XOR with error in input combination "00"

topology 4 OR gate will be always ’1’ which prevents the error occurrence in AND
gate.

• For the gates with error in 10, 01, and 11, OPE is 50% which declares that half of
the samples will be wrong.
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Figure 3.9: OPE for different XOR topologies with error in gates input combinations: (a) "00", (b)
"01", (c) "10", (d) "11", (e) fixed for gates of same type , and (f) random for different gates
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3.4.2 Probabilistic Gates
We apply uniform and normal distributions by generating sufficient number of random

data and fit probability distribution function to these data. As there is no control on the
physical error in the real device, we sweep Pe from [0 : 1] to get the corresponding OPE.
The generated random data are fitted to its corresponding probability distribution function.
Then, OPE is calculated over Pe range to check the effect of added noise on simple and
complex gates. OPE is compared with the cumulative distribution function.

3.4.2.1 Simple Probabilistic Gates

For any Probabilistic gates, P(0) is the probability of correct ’0’ output, and P(1) is the
probability of correct ’1’ output. The results of OPE are found to be identical with CDFs
of fitted PDFs for the injected noise either as uniform or normal distribution as shown in
figure 3.10. This proof is very useful to check the effect of different noise distributions in
less reliable components in complex systems. OPE equation 3.1 can be re-written for N
input samples as:

OPE = (
∑
i≤Pe

|error(i)|
N

)∗100% (3.2)
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Figure 3.10: OPE for simple gates, and CDF of the injected noise (on the right), and histogram of
the injected noise with the fitted PDF of it (on the left) are plotted for: (a) uniform, and (b) normal

distributions
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Figure 3.11: P(0), P(1), and OPE for each simple gate for: (a) uniform, and (b) normal distributions
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For any simple gate, applying equally weighted input combinations on the input will
make output P(0) and P(1) fixed as in the truth table of this gate. Figures 3.11i, and
3.11ii show P(0), P(1), and OPE for different simple gates for uniform and normal error
distribution respectively, investigating the graphs shows that:

• P(0) + P(1) = 1 for any Pe.

• P(0|Pe = 0) = P(1|Pe = 1), P(0|Pe = 1) = P(1|Pe = 0), OPE(Pe = 0) = 0%, and
OPE(Pe = 1) = 100% for same input combinations which means that simple gates
behave in normal mode when Pe = 0 and inverted when Pe = 1.

• OPE for simple gates is independent of the functionality of these gates, as it is only
effected by the noise distribution in the gate

• De Morgan’s theorems are valid on the simple gates as shown in (AND, NOR),
(NAND, OR) P(0) + P(1) = P(0).P(1), P(0).P(1) = P(0) + P(1)

• Tables 3.4 and 3.5 show the numerical values for the output percentage error to each
simple gate in the full range for probability of error.

Pe AND NAND OR NOR NOT XOR
0 0 0 0 0 0 0

0.1 9.96 9.96 9.98 10.00 9.94 9.97
0.2 20.03 19.98 20.01 20.09 19.92 20.09
0.3 30.07 30.03 30.00 30.09 29.89 30.25
0.4 40.06 39.94 39.99 40.06 39.93 40.38
0.5 50.07 50.07 50.07 50.09 50.05 50.21
0.6 60.07 60.06 59.90 60.13 60.13 60.22
0.7 70.08 70.06 69.84 70.08 70.14 70.20
0.8 80.01 80.02 79.87 80.01 80.14 80.10
0.9 89.94 90.01 89.96 90.02 90.04 90.01
1 100 100 100 100 100 100

Table 3.4: OPE in simple logic gates with error as uniform distribution

Pe AND NAND OR NOR NOT XOR
0 0 0 0 0 0 0

0.1 0.08 0.07 0.07 0.06 0.07 0.06
0.2 0.78 0.82 0.79 0.80 0.82 0.80
0.3 5.42 5.58 5.43 5.48 5.45 5.50
0.4 21.14 21.35 21.18 21.11 21.15 21.21
0.5 50.06 50.11 50.02 49.98 49.86 50.00
0.6 78.81 78.96 78.70 78.79 78.81 78.82
0.7 94.53 94.55 94.44 94.51 94.46 94.55
0.8 99.20 99.18 99.17 99.19 99.19 99.18
0.9 99.93 99.93 99.93 99.93 99.94 99.93
1 100 100 100 100 100 100

Table 3.5: OPE in simple logic gates with error as normal distribution
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3.4.2.2 Complex Probabilistic Gates

The uniform and normal distributions of the injected noise are applied on the four
XOR topologies to check the effect of simple unreliable gates on complex ones. The last
gate relates its output probability to the input which is affected by the first gates and error
distribution. Figure 3.12 shows different OPE for the XOR topologies, as follow:

• The results for complex Probabilistic xor gates show great improvement in OPE for
Pe higher than 0.5 and little degradation in the performance for Pe less than 0.5.

• Third topology which has the largest level of gates and the highest count has the best
OPE among other topologies cause of the last NOT gate in the constellation which
has the great impact on OPE improvement as presented in figures 3.15i, 3.15ii.

• First and second topology has the same OPE despite the difference constellation as
the identical OPE between each level in first topology with its analogous level in
second topology as shown in figures 3.13i, 3.14i for uniform distribution, and 3.13ii,
3.14ii for normal distribution.

• All levels of gates in the XOR topologies have the same OPE. Topologies with
even levels (3, 4) show better OPE rather than that with odd levels (1, 2).
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Figure 3.12: OPE for different XOR topologies, and CDF of the injected noise (on the right), and
histogram of the injected noise with the fitted PDF of it (on the left) are plotted for: (a) uniform,

and (b) normal distributions
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PE XORBB XORImp1 XORImp2 XORImp3 XORImp4
0 0 0 0 0 0

0.1 10.03 26.92 25.76 30.52 21.22
0.2 20.06 41.18 40.39 43.99 35.68
0.3 29.95 47.53 47.20 48.69 44.45
0.4 40.05 49.61 49.67 49.88 48.86
0.5 50.01 49.92 50.00 49.93 50.08
0.6 60.03 50.21 50.26 49.82 49.22
0.7 69.91 51.88 52.06 49.23 47.65
0.8 80.01 55.77 56.47 46.12 46.47
0.9 90.06 63.07 64.09 38.90 46.76
1 100 75.13 75.13 25.06 49.93

Table 3.6: OPE in different complex XOR logic gate with error as uniform distribution

PE XORBB XORImp1 XORImp2 XORImp3 XORImp4
0 0 0 0 0 0

0.1 0.07 0.24 0.24 0.29 0.17
0.2 0.82 2.78 2.60 3.40 2.04
0.3 5.57 16.53 15.60 19.39 12.50
0.4 21.30 42.19 41.37 45.05 36.94
0.5 50.21 49.94 49.90 49.90 49.90
0.6 78.99 54.99 55.98 46.67 46.37
0.7 94.48 67.77 68.71 33.45 47.80
0.8 99.16 73.81 74.01 26.45 49.68
0.9 99.93 74.94 74.95 25.17 50.01
1 100 75.02 75.02 25.07 50.03

Table 3.7: OPE in different complex XOR logic gate with error as normal distribution

The simulation results in this chapter show the correctness of proposed imprecise
models for either approximate or probabilistic gates as OPEs for the injected PDFs are
shown to be as CDFs of the distributions for simple logic gates. A study on different
complex XOR logic gates was provided to check the effect of error distribution in these
topologies. Next chapters will discuss the development of using the simple and complex
models in different applications, as: chapter 4 will present the reaction of these imprecise
gates in chain of independent gates, and analyze the simulation results of imprecise adders.
Also, these XOR models will be involved to generate random number sequence which
have properties of true randomness in chapter 5.
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Figure 3.13: P(0), P(1), and OPE for each gate in XOR topology-i for error as distribution (a) Uniform, and (b) Normal
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Figure 3.14: P(0), P(1), and OPE for each gate in XOR topology-ii for error distribution (a) Uniform, and (b) Normal
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Figure 3.15: P(0), P(1), and OPE for each gate in XOR topology-iii for error distribution (a) Uniform, and (b) Normal
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Figure 3.16: P(0), P(1), and OPE for each gate in XOR topology-iv for error distribution (a) Uniform, and (b) Normal
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Chapter 4

Analysis of Chains and Adder Models

This chapter investigates the effect of connecting couple gates serially with inputs
applied to the first gate to examine dependencies between the gates. This study is applied
on a chain of NOT gates, and different architectures of XOR gates introduced in chapter
3 to mimic sum of full adder (FA) model. Moreover, an analysis for approximate and
various probabilistic 8-bit adders is introduced with the results of applying uniform and
normal error distributions on these probabilistic and approximate adder models.

4.1 Chain of Gates

Two chain of gates are investigated in this section to check the effect of error in
the first gate on the rest gates in the chain. 5 stages of inverters connected in series,
and 2-XOR chain are presented and clarified. The chain of XOR is examined for the
different topologies presented in chapter 3. These chains are tested by applying uniformly
distributed 0,1 stream for the chain inputs.

4.1.1 Inverter Chain

in

1st 2nd 3rd 4th 5th

out

Figure 4.1: 5-stages chain of inverters

Chain of 5 inverters connected serially is shown in figure 4.1. Uniform and normal
distributions are applied to model error on each stage of these stages. Independent input
of the generated distribution is applied on the input port. Figure 4.2 presents the output
of each stage is observed to show the effect of its error and previous stage’s output. The
results from the plotted graphs can show:

• The effect of injected error in each stage has the same behavior for either normal or
uniform distribution.

• When probability of error is in the range 0 : 0.5, the output percentage error in each
stage is increased for the same Pe which means there is a small degradation in the
performance of gates.
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Figure 4.2: OPE(%) for each stage in the inverter chain (on the right) and Histogram of the
injected noise with the fitted PDF of it (on the left) are plotted for, (a) Uniform Distribution, and

(b) Normal Distribution

• When probability of error is in the range 0.5 : 1, the output percentage error in each
stage is decreased for the same Pe in even and odd stages which means there is an
improvement in the performance of gates.

• For normal distribution, OPEs for all the stages are almost the same in case of Pe is
in the range 0 : 0.2, and for the even and odd stages in the range 0.8 : 1.

• The probability of error = 0.5 can be considered as an equilibrium point for all the
stages. As whether the stage is odd or even, and the error distribution is uniform or
normal, the output percentage error of the gates will be equal 50%.

• Tables 4.1 and 4.2 show the numerical values for the output percentage error to each
stage in the full range for probability of error.

PE 1ststage 2nd stage 3rd stage 4thstage 5thstage
0 0 0 0 0 0

0.1 9.989 17.95 24.40 29.50 33.62
0.2 19.90 31.93 39.19 43.41 46.08
0.3 29.82 41.92 46.77 48.86 49.59
0.4 39.78 48.02 49.54 49.85 49.95
0.5 49.8 50.02 49.99 50.03 49.98
0.6 59.805 48.08 50.44 49.89 49.93
0.7 69.84 42.086 53.08 48.72 50.53
0.8 79.96 32.06 60.69 43.62 53.86
0.9 89.97 18.06 75.45 29.69 66.21
1 100 0 100 0 100

Table 4.1: OPE for error uniform distribution in chain of inverters

38



PE 1ststage 2nd stage 3rd stage 4thstage 5thstage
0 0 0 0 0 0

0.1 0.06 0.14 0.213 0.29 0.359
0.2 0.782 1.587 2.37 3.14 3.89
0.3 5.452 10.3 14.60 18.48 21.94
0.4 21.20 33.32 40.38 44.38 46.80
0.5 49.94 50.17 49.86 49.96 49.97
0.6 78.78 33.51 59.65 44.44 53.16
0.7 94.48 10.38 85.31 18.55 78.03
0.8 99.15 1.649 97.57 3.18 96.05
0.9 99.93 0.136 99.79 0.27 99.65
1 100 0 100 0 100

Table 4.2: OPE(%) for Normal Distribution in Chain of Inverters

4.1.2 XOR chain

in1
in2

1st 2nd

out

(i)

in1
in2

in3

1st 2nd

out

(ii)

Figure 4.3: (a) 2-stages XOR chain, and (b) Sum function in Full adder

Figure 4.3i presents 2 XOR gates connected serially by applying the output of first
stage into both inputs of the second stage. This is the basic method to implement sum
function in full adder which is shown in figure 4.3ii and its truth table is presented in table
4.3. in1 and in2 for the first stage represent the wighted bits of the numbers to be add, and
in3 is driven to add Cout from the previous full adder. For example, adding A, B which are
n bits is done by applying A(i) in in1, B(i) in in2, Cout(i−1) in in3 where i is the location
of bit in the stream.

For simplicity, the output of first stage is connected to both inputs of the second stage
which will add some dependency in the this stage. Two uniform random input streams
are applied for in1 and in2 for independent uniform and normal error distributions in each
stage. The chain is tested for the simplest XOR gate and the four proposed topologies of
XOR gate in chapter 3 to study the effect of probabilistic error in XOR chain.
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in1 1 0 1 0 1 0 1 0
in2 1 1 0 0 1 1 0 0
in3 1 1 1 1 0 0 0 0

Sum 1 0 0 1 0 1 1 0

Table 4.3: Truth Table of SUM in FA for different input combinations

4.1.2.1 Chain of simple XOR

Investigating the effect of Uniform and Normal error distributions in the chain of
simple XOR gates is shown in figure 4.4. Also, table 4.4 presents numerical values
for output percentage error in first and second stages. For both distributions, OPE is
symmetrical in the second stage. As in the chain of simple inverters, the lower Pe has less
degradation in OPE. On the other side, there is a great improvement in OPE for higher Pe.
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Figure 4.4: OPE(%) for each stage in the chain of simple XOR gate (on the right) and Histogram
of the injected noise with the fitted PDF of it (on the left) are plotted for, (a) Uniform Distribution,

and (b) Normal Distribution

PE 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ni

f 1st 0 10.04 20.09 29.99 40.01 49.98 60.17 70.09 80.01 89.99 100
2nd 0 17.99 32.04 42.2 48.21 50. 48.1 42.2 32.15 18.07 0

N
or

m 1st 0.01 0.07 0.77 5.38 21.19 50.04 78.78 94.52 99.17 99.93 99.99
2nd 0.01 0.15 1.59 10.26 33.47 49.73 33.20 10.33 1.63 0.13 0.01

Table 4.4: OPE(%) for uniform and normal distributions in the chain of simple XOR
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4.1.2.2 Chain of topology-I XOR

For a chain of XOR from topology-i, the results shown in figure 4.5 can be concluded as
follow: For uniform distribution error, OPE in the second stage is almost the same as first
stage for Pe in the range of [0.3 : 0.7] which equals 50% from the total n input combinations.
Error of normal distribution shows better performance than uniform distribution for OPE
in the first and second stage of the chain in lower Pe. On the other hand, for higher Pe the
OPE shows better performance in the second stage only. Table 4.5 shows the numerical
values for OPE in different stages of the chain for both distributions.
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Figure 4.5: OPE(%) for each stage in the chain of topology-i XOR gate (on the right) and
Histogram of the injected noise with the fitted PDF of it (on the left) are plotted for, (a) Uniform

Distribution, and (b) Normal Distribution

PE 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ni

f 1st 0 26.82 41.12 47.66 49.82 50.01 50. 51.7 55.52 62.77 74.92
2nd 0 39.08 48.35 49.55 49.75 49.63 49.79 49.82 49.32 46.54 37.67

N
or

m 1st 0.02 0. 2.76 16.55 42.33 50.03 54.99 67.54 73.68 74.74 74.83
2nd 0.03 0.50 5.32 27.63 48.91 50.09 49.32 43.67 38.66 37.58 37.49

Table 4.5: OPE(%) for uniform and normal distributions in the chain of topology-i XOR

4.1.2.3 Chain of topology-II XOR

Figure 4.6 shows OPE for the first and second stage in the chain of topology-ii XOR
for uniform and normal error distributions. Also, the numerical values are presented in
table 4.6. For the applied error with uniform distribution, OPE in both stages are the for
Pe range [0.35 : 0.65]. For Pe less than 0.35, OPE has a little degradation in the second
stage, and better performance for Pe higher than 0.65. OPE in the second stage for normal
distribution error show better performance in full range of Pe rather than the uniform
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distribution. Also, for both distributions the higher Pe, the better OPE in the second stage
of the chain.
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Figure 4.6: OPE(%) for each stage in the chain of topology-ii XOR gate (on the right) and
Histogram of the injected noise with the fitted PDF of it (on the left) are plotted for, (a) Uniform

Distribution, and (b) Normal Distribution

PE 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ni

f 1st 0 .59 40.18 46.95 49.5 49.86 50.29 52.16 56.46 63.86 74.92
2nd 0 38.27 48.16 49.87 49.99 50.12 50.04 49.98 49.18 46.08 37.67

N
or

m 1st 0.02 0.24 2.58 15.57 41.65 49.78 55.54 68.44 73.86 74.75 74.82
2nd 0.03 0.46 5.01 26.37 48.68 50.14 49.06 42.88 38.47 37.57 37.50

Table 4.6: OPE(%) for uniform and normal distributions in the chain of topology-ii XOR

4.1.2.4 Chain of topology-III XOR

Chain of XORs from topology-III shows better performance in both stages as the max
OPE is about 50% for the total number of tested inputs when Pe = 0. Also, the first and
second stages are almost following each other with lower performance at higher Pe in
the second XOR gate. Therefore, the OPE performance is expected for longer chain with
this type of XOR logic gate to follow the previous gates as concluded from the OPE for
uniform and normal distributions in figure 4.7. The numerical results of OPE for the full
range of Pe is presented in table 4.7 for normal and uniform distributions.
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Figure 4.7: OPE(%) for each stage in the chain of topology-iii XOR gate (on the right) and
Histogram of the injected noise with the fitted PDF of it (on the left) are plotted for, (a) Uniform

Distribution, and (b) Normal Distribution

PE 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ni

f 1st 0 30.68 44.05 48.85 49.84 50.02 50.16 49.35 46.18 38.85 24.91
2nd 0 42.57 49.35 49.83 50.05 50.08 50.09 50.05 49.8 47.49 37.45

N
or

m 1st 0.02 0.30 3.35 19.45 45.10 50.00 46.59 33.45 26.41 .06 24.94
2nd 0.03 0.58 6.48 31.38 49.45 50.17 50.08 44.49 38.82 37.51 37.41

Table 4.7: OPE(%) for uniform and normal distributions in the chain of topology-iii XOR

4.1.2.5 Chain of topology-IV XOR

PE 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ni

f 1st 0 21. 35.59 44.2 48.7 49.92 49.1 47.59 46.42 46.83 49.99
2nd 0 33.49 45.9 49.55 50.02 50.01 50.06 50.02 49.71 49.91 49.94

N
or

m 1st 0.01 0.17 1.97 12.41 37.09 50.05 46.39 47.95 49.72 50.07 50.10
2nd 0.02 0.33 3.87 21.87 46.71 49.87 49.76 49.94 50.07 50.05 50.06

Table 4.8: OPE(%) for uniform and normal distributions in the chain of topology-iv XOR

For chain of XOR from topology-IV, figure 4.8 presents output percentage error vs
probability of error for first and second stages of the chain for error as uniform and normal
distribution. It is clear the maximum OPE is 50% of total number for N bit stream. Also,
the OPE for both stages are almost identical for higher Pe once it settled on Pe of 0.5 for
any of the applied distributions. There is a little degradation for lower Pe in both stages.
For normal distribution, this degradation is in the region of [0.2 : 0.5] of Pe range. The
OPEs for full range of Pe is presented in table 4.8 for both distributions.
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Figure 4.8: OPE(%) for each stage in the chain of topology-iv XOR gate (on the right) and
Histogram of the injected noise with the fitted PDF of it (on the left) are plotted for, (a) Uniform

Distribution, and (b) Normal Distribution

4.1.2.6 Comparison between different topologies of XOR
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Figure 4.9: OPE(%) for 2nd stage in different XOR chains, and CDF of the injected noise in this
stage (on the right) and Histogram of the injected noise with the fitted PDF of it (on the left) are

plotted for, (a) Uniform Distribution, and (b) Normal Distribution
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A detailed analysis for the different XOR chains is clarified based on figure 4.9 that
shows the output percentage error for each XOR topology in the second stage of the chain
for both uniform and normal distributions beside the CDF of a single gate error. Moreover,
numerical values for output percentage error in the second stage for these chains are
presented in table 4.9 for uniform and table 4.10 for normal distributions. The results can
be concluded as follow:

PE XORBB XORImp1 XORImp2 XORImp3 XORImp4
0 0 0 0 0 0

0.1 17.99 39.08 38.27 42.57 33.48
0.2 32.04 48.35 48.16 49.345 45.89
0.3 42.19 49.55 49.87 49.83 49.54
0.4 48.21 49.74 49.98 50.04 50.02
0.5 50. 49.62 50.12 50.075 50.00
0.6 48.10 49.79 50.03 50.08 50.05
0.7 42.20 49.82 49.975 50.05 50.01
0.8 32.15 49.32 49.18 49.8 49.71
0.9 18.07 46.53 46.07 47.49 49.91
1 0 37.67 37.67 37.45 49.935

Table 4.9: OPE(%) for uniform distribution in the second stage for XOR chain

PE XORBB XORImp1 XORImp2 XORImp3 XORImp4
0 0.006 0.023 0.0275 0.03 0.016

0.1 0.1475 0.493 0.463 0.58 0.334
0.2 1.586 5.32 5.013 6.483 3.868
0.3 10.26 27.62 26.37 31.38 21.865
0.4 33.46 48.90 48.68 49.45 46.71
0.5 49.73 50.09 50.1 50.17 49.86
0.6 33.19 49.32 49.05 50.0775 49.76
0.7 10.3275 43.66 42.87 44.48 49.94
0.8 1.633 38.65 38.47 38.815 50.07
0.9 0.13 37.575 37.57 37.51 50.045
1 0.008 37.48 37.49 37.41 50.05

Table 4.10: OPE(%) for normal distribution in the second stage for XOR chain

• The best OPE performance is in simple XOR logic gate either in the first stage or in
the second stage, cause the error distribution is applied only for single logic gate.

• Chains with simple XOR logic gates show a symmetric OPE which mean the second
stage is working as an inverter for the first stage which leads for example to have
0% OPE when Pe is ’1’.

• The first and second topologies of XOR logic gate show same performance in both
stages of the chain for uniform and normal distributions which is as a result of the
gates structure in these topologies.
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• for lower range of Pe, the third topology achieves best performance for OPE, but for
higher range it is almost settled on 50% which mean half of the generated outputs
will be wrong.

• For Normal distribution, the applied data has µ = 0.5 and σ = 0.125 which shows
the reason that all generated CDFs are centered around Pe = 0.5.

4.2 Analysis of ripple carry adder
In this section, an analysis for 8-bit ripple carry adder (RCA) is introduced using model

from approximate and probabilistic gates. As discussed previously, full adder (FA) is the
main component to build RCA, so 8-bit ripple carry adder consists of 8 full adder blocks.
The model and logic gate combinations for FA is presented in figure 4.10. Adder models
are tested by generating around 12000 numbers for the inputs to calculate a reasonable
OPE and MED as a,b inputs are in the range [0,5], and Cin is 0,1. Two simulation results
proposed to assess the model performance for adder are:

1. OPE vs Pe for different RCA models using simple and the four complex topologies
for XOR logic gate in the full adder while varying the number of incorrect bits for
the lower part till all adder bits be covered.

2. MED vs number of incorrect lower bits in the adder for probabilistic adder model
with probability of error 0.1,0.2 for uniform and normal distributions while using
approximate adder model as a reference.

cout

sum

cin

ba a

b

Cin

Cout

sum

Figure 4.10: Full adder model and its logic gates combinations

4.2.1 Output percentage error versus probability of error
Figure 4.11 shows the simulation results for OPE vs Pe for different 8-bits RCA using

various XOR topologies. Also, the number of inexact bits in the adder is covered for all
the cases from no faulty bits to all wrong bits in the adder. These adder models are applied
to uniform and normal distributions as error function across their bits. The simulation
results are analyzed and concluded as follow:

• Increasing number of imprecise bits in the lower part leads to higher OPE which
means more wrong calculations for both sum and Cout.

• For both distributions, RCAs with XOR topologies I, II still have the same OPE
across the full range of Pe and for any number of incorrect bits.
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• simple XOR and topologies II, IV show almost same OPE performance which
always have the worst OPE for error with normal distribution is when Pe = 0.5 as
this 0.5 is the mean of this normal distribution.

• Another proof for the validity of proposed model is that the models with errors as
uniform distributions across the gates tend to have OPE almost uniform, the same
corresponding to errors with normal distributions. This is a main theory in statistics
named mixture distribution [54, 55].

• All topologies have almost the same OPE for Cout as there are 4 different sources
to calculate it: the external inputs (a, b, and Cin) beside the first XOR logic gate
output. Also, the logic gates (AND, OR) used to generate Cout are simple.

(i) RCA using probabilistic simple XOR logic gate

(ii) RCA using probabilistic topology-I XOR logic gate
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(iii) RCA using probabilistic topology-II XOR logic gate

(iv) RCA using probabilistic topology-III XOR logic gate

(v) RCA using probabilistic topology-IV XOR logic gate

Figure 4.11: OPE for sum and Cout in RCA with different imprecise bits using different XOR
topologies for error distribution as: uniform (on the left), and normal (on the right)
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4.2.2 Mean error distance versus imprecise bits

(i) Normal error distribution

(ii) Uniform error distribution

Figure 4.12: MED vs the number of imprecise lower bits in different adders with Pe = 0.1 (on the
left), and Pe = 0.2) on the right

The simulation results in figure 4.12 shows the mean error distance while varying the
number of imprecise bits from the lower part in 8-bit RCA. The purpose of these results
is to determine efficiency of the model by comparing the generating MED results with
these in Liang at el. [40]. Probabilistic adder model using error distribution as normal can
approximately be an example for probabilistic full adder (PFA) where the error probability
is the intersection of two normal distributions. Also, an approximate adder model is used
to mimic lower OR bit adder (LOA) by injecting fixed error for the inputs combination
a = 1,b = 1. Moreover, this model will be used as a reference between probabilistic adder
models with uniform and normal distributions. These results prove that the proposed
model for approximate and probabilistic gates are efficient as:

• For both adder models, MED is increasing exponentially by forcing more number
of bits in the lower part to be incorrect.

• Comparing MED generated from the suggested models with those from Liang
work [40] shows almost the same MED performance for LOA model, and deviation
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in the results of PFA as a result of using normal distribution not the intersection
between two normal distributions.

• The first and second XOR topologies shows the worst MED measurements while
the third and fourth show better performance with advantage for the third topology
in increasing the number of imprecise bits.

• MEDs of all topologies for uniform distribution error are almost the same, cause the
data is equally weighted in the distribution.

• Cout for LOA is isolated as the injected error is in input combination a = 1,b = 1
which makes Cout in this case always ’1’ regardless the wrong output generated
from the first XOR logic gate.

4.3 Conclusion
In this chapter, simulation results for the stages in XOR and inverter chains were

presented to clarify the result of connecting gates from same type in series, and study the
dependencies between these gates. The chain of simple logic gate confirmed the exactness
of suggested models as measured OPEs tend to follow the injected error for uniform and
normal distributions. Also, a ripple carry adder were investigated using approximate and
probabilistic models. The effectiveness of these imprecise adder models were confirmed
by comparing the generated MEDs with another work.
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Chapter 5

Quasi-TRNG implementation

This chapter discusses a combination of the proposed probabilistic XOR gate models
in one of random number generator’s implementation to check the effect of these imprecise
gates on system’s properties. The histograms and outputs probability are investigated for
both accurate and probabilistic models. Also, NIST statistical tests are applied on the
generated sequences from the implementation to check its performance.

5.1 Linear Feedback Shift Register
A Linear Feedback Shift Register (LFSR) is a common technique to implement

pseudo random number generators (PRNGs). It can be implemented in both hardware and
software [56]. A LFSR is a sort of shift register which has a linear function of its previous
states using a feedback. Inserting XOR gates in the feedback is the most common method
to represent the desirable linear function. The initial value for the shift register is known
as seed. For any n-order LFSR, some bits are engaged in the feedback polynomial to
determine the linear function. Choosing the locations of these bits (Called Taps) are so
important to achieve the maximal sequence length 2n−1.

There are two different kinds of LFSR structure: Fibonacci LFSR and Galois LFSR.
The main difference between both structures is based on the location of taps, for Fibonacci
configuration, the taps are located externally which mean each tap’s output is connected to
the next tap. In other words, the XOR taps are cascaded so the generation of data in the
sequence depends on the taps connections. In Galois configuration, there are internal taps
between the registers which means no XOR gates run in serial, therefore the delay time is
reduced compared with Fibonacci configuration, thus Galois is more efficient in random
number generation. Applying the same feedback polynomial for both configuration will
produce the same length of state period. 10-bit programmable Galois LFSR is introduced
in figure 5.1. This implementation can achieve PRNG with orders from [2 : 10]. Table 5.1
defines the best polynomials to get maximal sequence length [57].
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D9 + D8 + D1 + D0

P9 P8 P7 P0

Figure 5.1: Block Diagram of 10-bit generic LFSR

Resolution Sequence Length Feedback Taps 10-bit Polynomial
2 3 1, 2 10’b00 0000 0011
3 7 2, 3 10’b00 0000 0110
4 15 3, 4 10’b00 0000 1100
5 31 2, 3, 4, 5 10’b00 0001 1110
6 63 2, 3, 5, 6 10’b00 0011 0110
7 127 4, 5, 6, 7 10’b00 0111 1000
8 255 4, 5, 6, 8 10’b00 1011 1000
9 511 5, 6, 8, 9 10’b01 1011 0000

10 1023 6, 7, 9, 10 10’b11 0110 0000

Table 5.1: 10-bit Programmable LFSR Polynomials
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5.2 Statistical Tests

Different statistical testing environments can be applied to the generated sequences of
random generator to detect the specific characteristic expected of truly random sequences,
and ensure that the source of randomness is operating in sufficient way. For example, it
is important to check the randomness of random generator in computer security which
required convenient metrics to test the used generator. There are many statistical tests,
each of them depends on some function of the generated sequences. A literature survey
for different randomness tests is presented in [58]. It can not be considered that there
is a complete statistical test of randomness. These statistical tests - like Diehard [59],
NIST [60], and FIPS [61] - check the validity of randomness properties related to the
sequence. At the end of chapter, a detailed results of the statistical testing on generated bit
sequences, NIST Sp. 800-22 statistical tests, are presented.

5.3 Results

This section introduces the results of three different histograms for tests applied on the
programmable LFSR. These tests are generated to check the simulation results as follow:

1. Checking the effect of different probabilistic XOR topologies on the randomness of
LFSR compared with the accurate XOR logic gate, Histograms for programmable
LFSR with order-8 is presented and tested using NIST tests. Also, output probability
for the generated numbers of order-4 with different statistical quantities as mean,
deviation, and median are introduced.

2. Applying the probabilistic LFSR with different XOR models on various orders as
(4, 6, 8, and 10) to confirm the distribution of generated sequences have specific
manner regardless the selected order.

3. Choosing XOR topology from previous tests to check the randomness of gener-
ated sequences using different polynomials for order-4 LFSR rather than the best
polynomial given in tab 5.1.

There are three different sources of error in the programmable PRNG which can
be investigated through the implied tests: probabilistic logic gates (XOR, AND), and
registers. The simulation results concern about the probabilistic logic gates in the model
with accurate registers. Also, the uniform distribution is chosen to be applied on these
probabilistic gates. Another important metric is Pe which is fixed across all the probabilis-
tic gate through the simulations by a value 0.1. The generated numbers are in the range of
105−106 samples to evaluate the probabilistic model.

For programmable LFSR, the selected n-bits polynomial for any order-n will not
isolate the higher probabilistic bits from propagating to the target bits in case of using
probabilistic AND logic gate in the feedback. As in the accurate programmable LFSR
technique, the AND gates between the polynomial and feedback from the output force
propagation of 0’s in the XOR gates for higher bits based on the target order.
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5.3.1 Different Topologies

5.3.1.1 Histograms of Order-8 LFSR

The histograms for order-8 programmable LFSR with different topologies of prob-
abilistic XOR logic gates as a taps between registers are presented for two cases: (1)
accurate AND gates, and (2) probabilistic AND gates in the feedback as shown in figures
5.2i, 5.2ii respectively. From these histograms, it is clear that probabilistic XOR is the
dominant logic gate in the programmable LFSR model, as the generated numbers distribu-
tion in both graphs is almost the same. The obtained histograms for order-8 probabilistic
LFSR model can be concluded as follow:

• The sequence distribution of the LFSR model with Pe = 0 in the probabilistic logic
gates is uniform which confirms the exactness of proposed models to be free from
error and mimic accurate model in case of Pe is ’0’.

• The effect of probabilistic AND logic gate in the accurate model is shown in figure
5.2ii(a). The histogram shows that the probability of getting number ’0’ is higher
than 2x the other numbers’ probability. This is one of the drawbacks for accurate
LFSR which it can not cover from state ’0’ or the maximum value ’255’ for order-8
in case of using XOR or XNOR gates respectively as taps. This is another proof for
the dominance of XOR gate in the model.

• For probabilistic XOR with Pe = 0.1, The histogram for simple model shows a little
deviation in the distributed probability for generated numbers. On the other hand,
complex models show almost an analogous histograms as there are about 8 regions
in the histograms of topologies I, II, and IV which indicate higher probability for
some numbers rather than the others within these regions. Topology III shows
almost the better histogram distribution among the other topologies.

5.3.1.2 NIST tests results

The LFSR models with these probabilistic XOR logic gates are applied for NIST tests
to determine the randomness efficiency of the generated sequences for accurate and all
probabilistic XOR topologies. Tables 5.2, present the results of NIST tests in two ways:
proportion value (PP) which is normalized to one, and the availability of P-values (PV)
distribution which is acceptable for values higher than 0.0001 as clarified in [60]. For
NIST sp800-22 platform, 10 bit streams are tested which limit pass rate for statistical test
to 8 streams. Each stream has 10000 random bits obtained from the probabilistic LFSR
models Random executions, and random executions variant tests are not involved in the
results. α is set to 0.01 through the statistical tests.

Table 5.2 shows an improvement in the PV-values in non-overlapping template test
for probabilistic LFSR over the accurate model. Also, it is clear that linear complexity
-an important test for many key generators- is passed for both PV-values and PP which
confirms the complexity ins generated sequences. Some tests related to 1’s and 0’s
distributions are failed for complex XOR topologies, post processing techniques [47, 48]
can be used to improve the number’s distribution and these tests. According to table
5.3 Topology III shows the better performance among the other probabilistic topologies.
Therefore, it will be used in testing the probabilistic LFSR for different orders and
polynomials.
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Figure 5.2: Histogram of the symbols is plotted for different XOR topologies with, (a) Accurate,
(b) Probabilistic Simple, (c) Probabilistic Topology-I, (b) Probabilistic Topolgy-II, (c) Probabilistic

Topology-III, and (d) (b) Probabilistic Topology-IV
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NIST tests
Accurate S imple Topol1 Topol2 Topol3 Topol4
PV PP PV PP PV PP PV PP PV PP PV PP

Frequency 3 1 3 0.8 7 0 7 0 7 0 7 0
B. Frequency 7 0 7 0 7 0 7 0 7 0 7 0

C. Sums 3 1 7 0.6 7 0 7 0 7 0 7 0
Runs 3 1 3 1 7 0.1 7 0 7 0 7 0

Longest Run 7 0 7 0 7 0.3 7 0.4 3 0.8 7 0
Rank 7 0 7 0 7 0 7 0 7 0 7 0
FFT 7 0 7 0 7 0 7 0 7 0 7 0

N. O. Temp. 7 1 3 1 3 1 3 1 3 1 3 1
O. Temp. 7 0.3 3 1 7 0.4 7 0.2 3 0.8 3 1
Universal 7 0 7 1 7 1 7 1 7 0 7 1

Serial 7 0 7 0 7 0 7 0 7 0.2 7 0
L. Complex. 7 0 3 1 3 1 3 1 3 1 3 1

Table 5.2: The proportion value (PP), and the availability of p-values (PV) of the NIST tests
showing results for probabilistic LFSR model with accurate AND gate in the feedback

NIST tests
Accurate S imple Topol1 Topol2 Topol3 Topol4
PV PP PV PP PV PP PV PP PV PP PV PP

Frequency 3 0.9 3 1 7 0 7 0.1 7 0 7 0
B. Frequency 7 0 7 0 7 0 7 0 7 0 7 0

C. Sums 3 0.9 3 1 7 0 7 0 7 0 7 0
Runs 3 0.9 3 1 7 0 7 0.1 7 0.1 7 0

Longest Run 7 0.2 7 0.2 7 0.4 7 0.6 3 0.8 7 0
Rank 7 0.5 3 1 3 0.9 3 1 3 1 3 1
FFT 7 0 7 0 7 0.2 7 0.1 3 0.9 7 0.1

N. O. Temp. 3 1 3 1 3 1 3 1 3 1 3 1
O. Temp. 3 0.9 3 0.9 3 0.8 7 0.6 3 0.8 3 1
Universal 7 1 7 1 7 1 7 1 7 1 7 1

Serial 7 0 7 0 7 0.3 7 0.4 3 0.8 7 0
L. Complex. 3 1 3 1 3 1 3 1 3 1 3 0.9

Table 5.3: The proportion value (PP), and the availability of p-values (PV) of the NIST tests
showing results for probabilistic LFSR model with probabilistic AND gate in the feedback

5.3.1.3 Probabilities of Order-4 LFSR

This part investigates the probability of LFSR outputs for various probabilistic XOR
models and accurate AND gates, and the statistical quantities of each topology. Order-4 is
selected for this test to cover all of the generated data from [0 : 15]. Figure 5.3i show the
number probabilities of all different XOR topologies in one diagram which show that the
simple XOR model almost have a uniform probability for all the numbers beside accurate
XOR. There is an advantage for the probabilistic models over the accurate one represented
in the generation of ’0’ in the sequence with capability to cover from it, conversely to the
accurate model which considers ’0’ as a forbidden state which will lock it from random
numbers generation.
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Figure 5.3: Diagrams for number probabilities of order-4 programmable LFSR
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The detailed diagrams for each topology is shown in figure 5.3ii which clearly presents
the number probabilities is uniformly distributed for the accurate model with zero probabil-
ity for ’0’. The simple probabilistic model shows probability 0.06 for number ’13’ which
is the minimum, maximum probability 0.064 for ’1’, and same probability for most of the
numbers between {0.062,0.063}. These probabilities show almost the equally probability
for 16 numbers which is 0.0625. Table 5.4 presents the probabilities of generated numbers
and some statistical key values to describe these probabilities.

The mean value which interprets the average of these probabilities is the same for
all data as they have the same number of iterations and the probabilities are distributed
between 16 numbers. The midpoint of the data is explained by median value, it is clear
the probabilities in LFSRs with accurate, simple probabilistic, complex topology-III
XOR models are balanced which means the equally weighted probability is in the middle
between the other probabilities in case they aren’t distributed equally. Topologies I and
II are still have better median rather than topology-IV. The assumption for these median
values are related to the symmetry in the complex XOR gates. The standard deviation
shows the variation in obtained probabilities around the mean, LFSR with the accurate
model shows greater spread in these probabilities cause ’0’ can not determined in the
sequence at all. In contrast the variation in LFSR with simple probabilistic model is the
least cause the generated data are almost equally distributed.

Number XORacc XORBB XORImp1 XORImp2 XORImp3 XORImp4

0 0.000 0.063 0.049 0.052 0.047 0.101
1 0.067 0.064 0.052 0.053 0.056 0.075
2 0.067 0.063 0.054 0.056 0.054 0.076
3 0.067 0.062 0.063 0.062 0.058 0.069
4 0.067 0.062 0.055 0.058 0.054 0.077
5 0.067 0.062 0.059 0.059 0.064 0.058
6 0.067 0.062 0.063 0.063 0.061 0.061
7 0.067 0.062 0.071 0.071 0.066 0.052
8 0.067 0.063 0.056 0.057 0.055 0.075
9 0.067 0.063 0.059 0.059 0.068 0.057

10 0.067 0.063 0.060 0.061 0.064 0.058
11 0.067 0.062 0.073 0.070 0.066 0.051
12 0.067 0.063 0.063 0.065 0.063 0.058
13 0.067 0.061 0.069 0.067 0.075 0.044
14 0.067 0.061 0.071 0.069 0.073 0.047
15 0.067 0.063 0.083 0.077 0.078 0.041

Mean 0.063 0.063 0.063 0.063 0.063 0.063
St. Dev. 0.016 0.001 0.009 0.007 0.008 0.015
Median 0.067 0.063 0.061 0.061 0.063 0.058

Table 5.4: Number probabilities for different topologies of order-4 programmable LFSR with
important statistical values
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5.3.2 Different Orders

Programmable LFSRs with different complex probabilistic XOR gates tested for
orders (4, 6, 8, and 10) to check if there is an effect for LFSR order width on the obtained
histograms in different topologies section. Figure 5.4 shows the histograms for various
complex XOR models used in the probabilistic LFSR. All of the histograms show same
distribution behavior in different orders for the probabilistic models which confirms that
there is no effect for LFSR order in the generated numbers distribution. On other words,
the shown histograms are impacted by the probabilistic gates only, and there is no effect
for the applied order in the distribution of generated data.

Same environment (number of bits and streams) used in testing different topologies
is established for The NIST test results for these different orders of LFSR with the
probabilistic complex XOR topology-III as shown in table 5.5. Linear complexity test
for all the orders is perfect and this confirms the generated sequences of these topologies
are complex to be treated as true random numbers. Most orders passed same NIST tests
which means that the probabilistic LFSR implementation will be stable.
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Figure 5.4: Histogram of the symbols is plotted for different PRNG Orders, (a) Order-4, (b)
Order-6, (c) Order-8, and (d) Order-10

NIST tests
Order 4 Order 6 Order 8 Order 10
PV PP PV PP PV PP PV PP

Frequency 7 0 7 0 7 0 7 0.1
B. Frequency 7 0 7 0 7 0 7 0

C. Sums 7 0 7 0 7 0 7 0
Runs 7 0 7 0.1 7 0 7 0

Longest Run 7 0.1 3 0.8 7 1 3 0.8
Rank 7 1 3 1 3 1 3 1
FFT 7 0.3 3 0.9 3 1 7 0.7

N. O. Temp. 3 1 3 1 3 1 3 1
O. Temp. 3 0.5 3 0.9 3 0.9 3 0.8
Universal 7 0 7 1 7 1 7 0

Serial 7 0 3 0.6 3 0.6 3 1
L. Complex. 3 1 3 1 3 1 3 1

Table 5.5: The proportion value (PP), and the availability of p-values (PV) of the NIST tests
showing results for probabilistic LFSR model for different orders
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5.3.3 Different Polynomials
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Figure 5.5: Histogram of the symbols is plotted for different polynomials, (a) 1000, (b) 1001, (c)
1010, (d) 1011, (e) 1100, (f) 1101, (g) 1110, and (h) 1111
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Figure 5.5 presents the histograms for some polynomials to test order-4 LFSR with
XOR topology-III. These histograms show almost same distribution of the data as 4
regions can be noticed. Any polynomial can be used in the sequence generation which
means the LFSR is not restricted with specific polynomial to achieve maximal sequence
length as while using LFSR in PRNG. Using accurate AND logic gates in the feedback
may be useful to control the propagation of probabilistic XOR through the chain of LFSR.

5.4 Conclusion
This chapter introduced programmable LFSR technique which is a method to imple-

ment PRNG. It was tested by replacing its logic gates by the proposed probabilistic models
for simple (AND, XOR), and complex (Four XOR topologies) to check the effect of these
models on the generated sequences. Three different histograms were obtained to assess
the probabilistic LFSR model. Also, NIST statistical tests are applied on the model which
show better results specially in linear complexity feature rather than the accurate model.
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Chapter 6

Conclusion and Future Work

6.1 Summary of The Work
The main objective of this thesis is to present a model that can describe inaccurate

approximate gates and imprecise probabilistic gates in various inexact computing systems.
Such model can be useful in modeling the effect of these computing systems in EDA tools,
which will help in designing different circuits and implementation on abstract level based
on either injecting the probability distribution for physical error of the used device, or
mapping the wrong inputs combination for a gate which replace the accurate one. In this
thesis the following objectives were accomplished:

• A new metric (OPE) that helps in the model definition by giving a percentage for
the inexact output results compared with accurate model.

• An abstract model for inexact gates which depends on a source of error that is
injected in the model. This error can be deterministic related to input combinations
or non-deterministic as a probability distribution function that describes the physical
behavior in a device.

• The proposed model is extended to proof its validity on basic simple gates and four
different complex XOR topologies. Simple gates show the correctness of the model
by generating OPEs same as CDFs of the fitted PDFs for the injected probabilistic
distributions. Also, complex gates extend the exactness of the model to show almost
identical OPEs for the same type gates under the same conditions as the previous
OPE shape and stage location.

• The inexact models utilized in chain of logic gates from the same type. OPE for the
final stage show performance same as the probabilistic distribution injected as error
in the logic gate.

• Different application as RCA and RNG are tested using the proposed probabilistic
models to check their performance. The inexact RCA models show a correct behav-
ior in MED for two different types of adders: LOA as an approximate techniques,
PFA as a probabilistic technique.

• The programmable LFSR which is the key element in PRNG implementation is
utilized by adding the imprecise XOR models rather than the accurate ones, tested
for different topologies, orders, and polynomials to check the generated histograms
and the effects of these characteristics on the data distribution, and examined for
NIST tests that confirm a higher complexity and true randomness in the generated
sequences.
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6.2 Impact on The Digital Flow
There is a great motivation to utilize the inexact effects in latest technologies according

to the road maps reports issued by International Technology Roadmap for Semiconductors
(IRTS) [62], and study effects on CAD digital design flow from different perspectives, as
follows:

1. RTL Implementation: The proposed model may be so useful in RTL implementa-
tion. It is so promising to integrate different logic gates in a library or package for
HDL languages. Once adding this library, the inexact gates can be used in a simple
way to model different real data sets of these gates on RTL level.

2. RTL Verification: Modeling the inaccuracy in different verification methodologies
is investigated specially how to use monitor and scoreboard in checking accuracy of
the generated outputs. This may need a new definitions and parameters to make the
verification methodology behaves in the correct way.

3. Standard Cells: It is expected that using these inexact logic gates will make the
standard cell definition different as there is a need to model the effect of error, and
if it will change the static timing analysis in the internal paths which may lead to
different slacks and critical paths cause of the inaccuracy.

4. Gate Level Synthesis: Different Algorithms were proposed to synthesize the design
such as: automatic pruning tool which depends on editing the netlist according to
studying the effect of switching activity, and ranking the nodes according to their
activity product.

5. Place and Route: Modeling power of the placed cells, and the delays of intercon-
nects between these cells. As interconnect becomes a dominant factor in this step
which requires different wire models.

6.3 Future Work
In this thesis the modeling of different inexact computing techniques was studied. The

suggested future work is:

• Extend the model to determine the number of wrong 0’s and 1’s then mapping them
to probabilities which can be involved in defining OPE equations for each gate based
on these probabilities.

• Apply extracted data sets that represents real distributions for switching probability
of devices as error function in the model, this will add more reliability to the adder.

• Use post processing techniques to random number generator to get uniform results.

• Model the delay and power to mimic device in real operation.
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Appendix A

Memristive Logic Gates

This appendix shows the truth tables for sequential OR, NAND, and NOR as memris-
tive logic gates in deterministic mode. Also, it presents the analysis diagrams for these
gates in probabilistic mode.

A.1 Deterministic Sequential logic

Operation Terminal Cycle 1 Cycle 2 Cycle 3

OR T1 0 in1 in2
T2 1 0 0

in2 in1 State0 State1 State2
0 0 OFF No change No change
0 1 OFF ON No change
1 0 OFF No change ON
1 1 OFF ON ON

Table A.1: The truth table for sequential OR logic gate

Operation Terminal Cycle 1 Cycle 2 Cycle 3

AND T1 0 1 1
T2 1 in1 in2

in2 in1 State0 State1 State2
0 0 OFF ON ON
0 1 OFF No change ON
1 0 OFF ON No change
1 1 OFF No change No change

Table A.2: The truth table for sequential NAND logic gate
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Operation Terminal Cycle 1 Cycle 2 Cycle 3

AND T1 0 1 0
T2 1 in1 in2

in2 in1 State0 State1 State2
0 0 OFF ON No change
0 1 OFF No change No change
1 0 OFF ON OFF
1 1 OFF No change OFF

Table A.3: The truth table for sequential NOR logic gate

Tables A.1, A.2, and A.3 show the the truth tables for sequential OR, NAND, and
NOR respctively as memristive logic gates in deterministic mode.

A.2 Probabilistic Sequential logic

The detaied analysis diagrams for the different applied inputs in probabilistic sequential
OR, NAND, and NOR gates through the operating cycles are presented in figures A.1,
A.2, and A.3 respectively.

Cycle 1

T1 = 0 T2 = 1

(OFF)

Cycle 2

T1 = in1 T2 = 0

No Change
(OFF)

Switching
(ON)

Cycle 3

T1 = in2 T2 = 0

No Change
(OFF)

Switching
(ON)

No change
(ON)

No switching
(ON)

0

1

0

1

0

1

Figure A.1: Diagram for the applied inputs through the cycles of sequential OR logic gate
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Cycle 1

T1 = 0 T2 = 1

(OFF)

Cycle 2

T1 = 1 T2 = in1

Switching
(ON)

No Change
(OFF)

Cycle 3

T1 = 1 T2 = in2

Switching
(ON)

No Change
(ON)

Switching
(ON)

No Change
(OFF)

0

1

0

1

0

1

Figure A.2: Diagram for the applied inputs through the cycles of sequential NAND logic gate
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Cycle 2
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No Change
(OFF)

Cycle 3
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No Change
(ON)

Switching
(OFF)

No Change
(OFF)

No Switching
(OFF)

0

1

0

1

0

1

Figure A.3: Diagram for the applied inputs through the cycles of sequential NOR logic gate
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 ملخصال
 

  حيست لحنتيج  لحدقيق لحتعامل مع لحسبائط ولحبيانظات. فىكبيرة  أهةي  نظمة  لححسبب لأصبحت أ 
لبتخرلج و ضروري  في معاحج  لحسبائط مثل لحصست ولحصسرة ولحفيديس ولحربسمات ولحتعرف على للأنظةاط 

لى ببيل ع في هذه لحتطبيقات، يكفي لححصسل على نظتيج  تقريبي  أو أقل من لحةستسى للأمثل. لحبيانظات.
، ايضً أ للإنظسان حسابًا حلتغيرلت عاحي  لحتردد في تطبيقات معاحج  للإشارلت. ، لا يعتبر تعرفلحةثال

 سن أرضي  لحضسضاء مقبسح .أعلى بةجرد أن تك كةياتحيست هناك حاج  حتحديد كةي  للإشارة في 
 

اف ي على لكتشهناك لحعديد من لحةصادر لحتي تتحةل لحنتائج غير لحدقيق  مثل قدرة لحدماغ لحبشر 
دم ع، وتكرلر بيانظات للإدخال لحتي تسةح حلخسلرزمي  أن تكسن كافي  على لحرغم من لحةعلسمات لحةفقسدة

تم تقديم أنظمة  ي مفيد في تقليل لحطاق  حهذه لحتطبيقات.  غير لحدقيق حلنتائج ت أن هذل لحتحةلب  ث   .كفاءتها
 ، عشسلئي .ي ، لحتةاحي لححسبب  لحةختلف  حهذل لحغرض كحسبب  تقريب

 
ا، يتم ضً أي حنةاذج مختلف  من للأخطاء في أنظمة  لححسبب . بحثي ، يتم تقديم مرلجع  حرباح في هذه ل

 ةمقاوم لحذلكر  مثل ةكسنظات للاحكترونظي حبعض لحإجرلء تحقيق حةعرف  تأثير لحسلسك للاحتةاحي 
(Memristor)  للاحتةاحي شبه مسصل أكسيد لحفلز لحةكة ـِّلو (PCMOS).  نظقترح نظةسذجًا تجريديًا

مئسي   ، ولحذي يعطي نظتيج في لحنسب  لحةئسي  حلةخرجات حلخطأ جديد قياسحلبسلبات غير لحدقيق  مع 
يةكن أن يكسن هذل  باحنسلتج لحةسحدة في بسلبات منطقي  دقيق . لإجةاحي لحةخرجات غير لحدقيق  مقارنظ 

ر بسلبات لحةنطق غير لحدقيق  في نظةذج  تأثي (EDAحتصةيم للاحكترونظي للأحي )لحنةسذج مفيدًل لأدولت 
 على أدلء لحتطبيقات لحةعقدة.

   
 بنيات، وأربع  ف لحبسيط  لحةختلنظةذج  لحبسلبات ، وكذحك لحةقترح  عشسلئي نظناقش نظةاذج لحبسلب  لحتقريبي  ولح

 ل مفصل حسلابل مختلف  مثل، يتم تسفير تحليعلاوة على ذحك .(XOR) من بسلبات عدم لحتطابق معقدة
متصل  بشكل تسلسلي حفحص لحتبعيات  (XOR) عدم لحتطابق ، وبسلبات(Inverter)بسلب  لحعاكس 

شسلئي  ، وأدلء مسحد للأرقام لحعحسابى حلجةع ؛ تحقيق نظةسذجبيقين مختلفينناقش تطنظو  .بللحسلاتلك على 
ل، تم أخيرً  لحعشسلئي . (XOR)عةلي  عدم لحتطابق بسيط  من لححقيقي  لحقابل  حلبرمج  بابتخدلم بسلبات 
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