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Abstract

As Chip Multiprocessors (CMPs) scale to tens or hundreds of nodes, the interconnect be-
comes a significant factor in cost, energy consumption and performance. Energy efficiency of
the underlying communication framework plays a major role in the performance of multi-core
systems. Recent work proposes buffer-less deflection routing as a cost effective alternative.
First, this work presents literature review on the conventional on chip router architecture fol-
lowed by a literature review on buffer-less router designs. Then, buffer-less routing algorithms
are discussed. The main contribution of this thesis work is the development of a buffer-less
router. The router is a modified version of CONNECT (CONfigurable Network Creation Tool).
Modified CONNECT is efficient and lightweight. It achieves better throughput than the avail-
able buffer-less routers. It occupies less area than the available buffer-less routers. Modified
CONNECT occupies 30% area less than original CONNECT and achieves competitive perfor-
mance to CONNECT.

Buffer-less networks in general obtain good performance at low traffic loads as the traf-
fic load increases, the performance of the network degrades. The performance becomes even
worse as the network diameter increases. 3D architecture enhances the performance; therefore,
this work is extended to three dimensions. 3D Modified CONNECT uses the same routing
algorithm as CONNECT and offers better performance and less power consumption than the
available 3D buffer-less routers.

A brief study is included in this work in which network parameters are evaluated in order
to find the optimum match for 3D buffer-less network. The mesh size, number of tiers, number
of 3D routers per each tier and the location of the 3D routers have been simulated against a
figure of merit (FOM). The four mentioned parameters have been simulated for five different
buffer-less 3D routers. The chosen figure of merit (FOM) equals to throughput per dynamic
power, occupied area and average network latency. It is observed that the optimum values of
the mentioned parameters actually depend on the architecture of each router, they could not be
general to all buffer-less routers.
Finally, a new flexible CAD tool (Computer Aided Design) is proposed to evaluate different 3D
buffer-less networks. It is an easy way to performmore experiments on buffer-less 3D networks.
It allows the user to heavily configure the buffer-less network. The user configures the mesh
size, number of tiers, the number of 3D routers and their location. Also, the user selects the
buffer-less router. The traffic injection rate can also be configured. The tool allows the network
to be implemented. The generated code is sent to the user as an attachment to the provided user
email.
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Chapter 1: Introduction

As VLSI technology scales and processing power continues to improve, inter-processor
communication becomes a performance bottleneck. Interconnects also play a significant fac-
tor in cost and energy consumption. This chapter explains the difference between ASIC and
FPGA, and the merits of using networks on chip on FPGA. Here is a brief discussion on basic
regular network topologies, how to evaluate the performance of a network on chip, the basic
concepts of switching, routing and flow control used in any network and the buffering resources
available on FPGA. General speaking, FPGA has a simple design cycle what makes it more
suitable for research. Also, it has shorter time to market than ASIC. ASIC has complex floor
planning, because ASIC generates specific layout for a certain application. FPGA has a fixed
layout, the design tends to make the best use of the floor area and the best utilization of the
FPGA resources.

1.1 FPGA vs ASIC
FPGA is replacing ASIC in many applications. Though, ASIC is more efficient in power, area,
performance and even the cost, FPGA is pushing ASICs out of the market. FPGA provides
programmable logic during run time. It offers quick time to market. FPGA actually replaces
ASIC in research. The standard cells in ASIC are faster than look up tables in FPGA. There-
fore, ASIC has higher operating frequency. ASIC implements the logic efficiently occupying
less resources. The standard cells of the basic gates(and, or, not) are used to build any logic.
Once the logic is implemented and fabricated, it can not be changed. ASIC is suitable for high
volume designs; because ASIC occupies less area resources. FPGA maps the logic truth table
in the look up tables. FPGA could be reconfigured, as the look up tables are reprogrammed to
hold a truth table of another logic. the system implemented on FPGA will be slower than hard
implementation (ASIC design); because look up tables are slower than the standard cells. Many
FPGA designs tend to pipeline their architecture in order to enhance the operating frequency.
The designs in ASIC are more complex, it takes large compile time. Designs on FPGA will
consume also more power and occupies larger area.

1.1.1 Cost
ASIC has lower manufacturing costs. ASIC is more efficient in the production of large number
of chips. The non-recurring costs of ASIC are larger than FPGA, the total cost of ASIC de-
creases with mass production. FPGA has lower recurring costs; therefore, it is used in research.
As shown in 1.1 the increase in the cost of ASIC forces the manufacturers either to use older
technologies or to use FPGAs instead of ASIC.

1.1.2 Time to market
FPGA has lower recurring cost and shorter design cycle. The product is ready to market before
ASIC products. Long time tomarket is a cost. The profit is much larger if you come to themarket
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Fig. 1.1: ASIC Cost Analysis [1]

Fig. 1.2: Time to Market Cost [11]

early as in Fig.1.2. Missing the market window will wipe out all the savings from development
and production.

1.1.3 Reconfigurability
FPGA offers a flexible life cycle management. In ASIC once the layouts are constructed, they
can not be changed. However, the design is more flexible on FPGA. FPGA offers dynamic
partial configuration where look up tables could be configured while others are running. Par-
tial reconfiguration saves the area as it programs only the needed physical resources in each
phase.[24] Partial reconfiguration is achieved by loading the partial bitstream of a new design
into the FPGA configuration memory. The reconfigurable portion cannot work at that time due
to the incompleteness of the configuration data. It has to wait till the data is loaded. Fast appli-
cations, which need switching between multiple IPs frequently, require small reconfiguration
time. The network size and the number of parallel DPRs depend on the desired reconfigura-
tion time. Supporting more simultaneous DPRs needs more area resources such as decoupling
buffers and controlling units; however, the network size does not change and the reconfiguration
time does not change. The NoC based FPGA has reconfiguration time 1.25 times better than
conventional SRAM based FPGAs [35].
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1.1.4 Design Cycle
The design cycle is easier on FPGA. Placement and routing stages are automated. Therefore
late design changes are easy and the software is extremely fast. The design is flexible. In ASIC
the floor planning is complex. The process issues affect the design cycle.

Fig. 1.3: Design Cycle [38]

1.1.5 Summary
Here is the summary of the previous items.

Fig. 1.4: FPGA vs. ASIC [10]

1.2 Why network on chip on FPGA
Network on chip implemented on FPGA offers component re-use and partial configuration. This
is a very promising approach. The application could be changed during run time. A block could
be replaced while other blocks are functioning this is called dynamic partial configuration(DPR).
It opens a new way for dynamic multitasking applications. Programmed FPGA is used to pro-
vide flexibility and fast prototyping implementation. Network on chip on FPGA solves the
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Fig. 1.5: Buses and networks

problem of frequency requirements for different peripherals connecting different IPs. However,
the nature of networks perfectly suits the FPGA. The scalability and path diversity offered by the
network allow parallel communication between different modules. They offer concurrent con-
nections between nodes, parallel compilation, dynamic configuration and dynamic multitasking.
The main advantage of NoC based FPGAs over the conventional SRAM-based FPGAs is the
ability to perform multiple simultaneous DPRs (dynamic partial reconfigurations). It reduces
the run time for high level abstraction. The re-configuration time of DPR with NoC is bet-
ter than the reconfiguration time on conventional FPGAs considering applications that concern
configuration time over area overhead [35].

1.3 Why network on chip
As the number of processors per chip increases, the dynamic energy consumed in the routes is
higher than that inside the logic. Designing the routes between different IPs is very critical. Net-
work scales better with the increase in the number of nodes. NoCs are suitable to connect this
large number of components, due to their modular design and their scalability. The short wires
used in NoC between the cores decrease the capacitance and resistance of the routes. Therefore,
the delay decreases. NoC replaces the global long wires with short segmented wires and router
nodes. Network on chip becomes a parallel, concurrent, scalable and modular alternative to
traditional buses.
Parallel and Concurrent: In shared bus, there is only a shared link common to all nodes. It does
not support any parallelism, unlike NoC which offers concurrent connections between cores
and parallel compilation. A topology dictates the number of nodes and the number of alternate
paths between nodes, and thus how well the network can handle contention and different traffic
patterns.
Scalability: Shared buses are area efficient but buses do not scale with the increase in the ca-
pacity neither in terms of performance nor power. Network on chip is easily scalable in per-
formance, complexity is proportional to number of nodes unlike fully connected connections,
it is proportional to its square; and the design is easily scalable. Point-to-point interconnec-
tions (PTP) scale the total bandwidth, but the O(n2) scaling in connection area is in-feasible
for large designs. NoC interconnects balance bandwidth scaling and area consumption be-
tween these two options. The complexity and the costs functions associated with the increase
in the number of nodes is illustrated in Fig.1.5. The figure demonstrates the complexity of non-
segmented buses(NS-Bus), segmented buses(S-Bus), NoC and point-to- point connection(PTP).
The NoC architecture uses layered protocols and packet switched networks which consist of on-
chip routers, links, and well-defined network interfaces.

There are some differences between the nature of the conventional networking and network
on chip. Routing schemes are either buffering, dropping or deflection. Dropping is used in net-
working. TCP uses this scheme however to avoid congestion. Each node can set the maximum
number of packets that it can receive. This window is sent as part of the ack reply. In TCP
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Table 1.1: Cost Function [15]

Architecture Total Area Power Dissipation Operating Frequency
NS-Bus O( n3√n) O( n

√
n) O( 1

n2 )
S-Bus O( n2√n) O( n

√
n) O( 1

n )
NoC O(n) O(n) O(1)
PTP O( n2√n) O( n

√
n) O( 1

n )

Fig. 1.6: Average Network Latency in NoC [29]

there is no way for the sender to know the maximum bandwidth. Therefore, it starts with four
segments. If it receives an ack, it doubles the number of segments. When it does not receive an
ack, it reduces the congestion window once again. However, buffering and deflection achieve
better performance on NoC routing. Network on chip is restricted with chip area and power con-
straints. The allowable window of in-flight data is much smaller than in a large-scale network
because buffering structures are smaller. Implementing complicated schemes on Noc would
occupy area that should be dedicated to IPs. Unlike conventional networking, per-flit network
latency in NoC generally remains stable even under heavy load as shown in 1.6. Therefore,
latency can not be a core metric to measure congestion. The congestion in network on chip is
moved from inside the network to the input queues of the network. Therefore, the congestion in
network on chip is represented by the starvation rate at each node.

1.4 Network topologies
Network offers multiple concurrent links which differs for each topology. The bisection band-
width and the diameter set the bounds for overall network performance and energy efficiency.
In semiconductor manufacturing, NoCs typically favour using the two-dimensional topology
like mesh. NoCs also favor flattened butterfly.
Radix denotes to the router degree. It is the number of I/O ports. The complexity and the cost of
the router increases by increasing the radix; because the number of buffers and arbiters increases
and the size of the switch increases. For a topology with many links, the average routing distance
between two cores is small and the latency through it is low, however it is hard to layout and
it consumes large area. Topologies with relatively few links are easy to layout such as meshes,
tori, and trees[31].

•Butterfly network : has no path diversity. It is rarely used in NoCs. The hop count is constant.

•Ring networks : Nodes are connected in a simple circular way. Ring networks are not scalable
networks. The bisection bandwidth is constant.
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Fig. 1.7: Network Topology[18]

•Mesh networks : Have good path diversity and connection redundancy without being totally
connected. Mesh topologies have high bisection bandwidth and sustain high traffic loads
before their saturation points. Mesh topology is expected to perform better under neigh-
bour to neighbour traffic (unbalanced traffic).

•Octagon network : begins routing packets along the ring using the first crossbar before using
the second crossbar for either cross-connection routing or final packet transfer to the at-
tached node.

•Torus : Just like mesh topology but the routers at the edge are connected to routers at the op-
posite edge via wrap-around channels. Torus provides higher path diversity and bisection
bandwidth than mesh topology. It has higher cost than mesh topology. However, it is
harder to layout on chip.

•Folded torus : doubles the bandwidth bywrapping leftmost routers to rightmost ones and from
top component to bottom.

•Tree : is a hierarchical topology that begins with a node connected to more than one node
(children) at the lower level. This scheme continues to k levels, where each node has m
nodes. An enhanced version of tree topology is fat tree (butterfly tree).

•Fat tree : Each node has four children and a parent. This is replicated four times at any level
of the tree. Have low hop count.

Irregular network topologies could be formed by altering connections in these regular network
topologies, or they could be formed as hybrid of regular topologies. Irregular topologies are
used to get better result for certain application.
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Table 1.2: Topologies metrics N is the number of nodes[6]

Ring 2D mesh nxn 2D torus nxn
Number of nodes N n2 n2

Number of links N 2N-2n 2N
Router degree/ radix 2 4 4

Diameter N/2 2
√

N
√

N
Bisection bandwidth 2

√
N 2

√
N

Fig. 1.8: Throughput Load Plot

1.5 Network metrics
Network is measured in terms of performance which is described as latency, throughput and
path diversity. On the other side, the network architecture is restricted by area and power.
1. Latency: average delay of a packet/flit traversing the NoC. It is the packet delay represents
the elapsed time from the cycle the first flit of a packet is injected into the network until the
cycle its last flit is delivered. The lower bound of average latency is when the network has no
packet blocking, in this case the latency is called the best case latency or zero load latency. The
zero load latency is the head latency and serialization. The head latency is measured by number
of hops between nodes as well as the time required to traverse a router and the corresponding
link. The number of hops between two nodes depends on the chosen path and the chosen rout-
ing algorithm. The total average number of hops is determined by the diameter and size of the
network; where the diameter is the highest minimum hop count. The delay of one hop depends
on the complexity of the router and its critical path.

2. Throughput: is the rate of transfer of data in run time. In simple bus topology, throughput
is simply the reciprocal of the latency. This is not the case in a network where the throughput de-
pends on the path diversity between the source and destination. It is equal to a parallelism factor
times the reciprocal of latency. Throughput depends on the traffic patterns. As the number of
paths connecting two nodes increase, adaptive routing could be used to increase the throughput.
Throughput is the measure of the maximum sustainable traffic.
The injection load is the number of flits injected in a network. The number of injected flits is
equal to the number of ejected flits in the network. Once the injection rate reaches the saturation
point, the network can not deliver the flits as fast as they are created anymore. Therefore, the
packets will be queued in injection buffer and not injected. Thus, the throughput saturates after
the saturation throughput Fig.1.8.

3. Maximum operating frequency is one of the important factors that influences the speed of
message delivery. It defines the bandwidth of a channel; which is the channel bit width times the
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Table 1.3: Traffic patterns si i-th bit of the source and di i-th bit of the destination [7]

Name Pattern
Bit complement di=s̄i
Bit reverse di= sb−i−1
Shuffle di= si−1modb

Transpose di= si+(b/2)modb

maximum operating frequency. Bisection width is the minimum bandwidth over all bisections
of the network. Bisection width influences both the power and the performance of each network
topology.
The cost is measured in terms of power and area. Area is the number of look up tables occupied
on the FPGA.

Load-latency curve: The latency is shown versus the throughput. The latency in cycles is
shown at each throughput. The maximum throughput is the maximum injection rate. As the
injection rate is the throughput until the network saturates.

Inmesh network, though increasing the number of nodes decreases themaximum throughput
per node, it increases the overall network throughput. The latency increases as the number of
nodes increases. Selecting the number of nodes, there is a compromise between the latency and
the total network throughput.[31]

The synthesis traffic used to evaluate the network mainly in this work is uniform traffic
pattern. Uniform is a random spatial distribution. The destination for each source is chosen
randomly. Table.1.3 illustrates different traffic patterns. Another important traffic pattern is hot
spot, in which many packets from multiple sources destine the same node.

1.6 Soft NoC or Hard NoC
Designer should choose whether to implement the router using hard or soft implementation.
Hard router is implemented as silicon design embedded on the FPGA. This is more area ef-
ficient and power efficient. The hard IPs also provide higher performance. Soft routers are
implemented by the configurable resources in the FPGA. They are larger, slower however they
are more flexible. The hard router would consume less than 1% of the silicon area. The soft net-
work would consume less than 5% of the silicon area. The crossbar is the smallest module in an
ASIC router; however, it is critical in soft implementation and it occupies 26% of the area[12].
The area occupied by each module is shown in Fig.1.9 and Fig.1.10.

1.7 Switching Techniques
Switching techniques show how the data flow through a switch in a router.

1.7.1 Circuit Switching
It means creating a dedicated permanent link between the source and destination. The merit is
the ability to keep a guaranteed throughput between nodes in real time. Circuit switching also
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Fig. 1.9: Hard Router Area Composition Starting from the bottom: Input module crossbar, switch allo-
cator, VC allocator, and output module[12]
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Fig. 1.10: Soft Router Area Composition Starting from the bottom: Input module crossbar, switch al-
locator, VC allocator, and output module[12]
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minimizes the area of buffers. On the other side, resources are wasted and power is consumed
when the link is idle. This happens when there is an established connection and no data transfer
takes place. There is additional delay added each time a connection is being established before
sending a burst of information called set up delay; also, there is additional delay added after the
sending is over called tear down delay. However, the resources are allocated and maintained
during data transfer, then deallocated once the last packet is received. Therefore, the streaming
latency of all the data is low.

1.7.2 Packet Switching
Packet switching offers a higher throughput. Packet switching tends to route each packet inde-
pendently. Channel utilization is better. The resource is deallocated once the packet moves to
the next node. In circuit switching, the header only is buffered. However in packet switching,
the whole packet is buffered. Packet switching improves the throughput, but occupies large
buffering area. These buffers and queues are implemented as embedded memories or flip flops.
Buffering schemes used in packet switching:
a. Store and forward: For the packet to be sent to the next node. The packet should be entirely
received and stored by the current node. The node decodes the header after the whole packet is
received. The output channel must be available and packet buffer space must be free at the next
node.
b. Virtual Cut through: It reduces the latency. It is similar to the store and forward, but the packet
is divided into smaller flits. The header flit can be forwarded as soon as it has been granted ac-
cess to the switch, the channel, and a flit sized buffer on the next node. Transfer latency can be
reduced by interpreting the header as soon as it is received. Still, Virtual cut through needs the
same buffer size of store and forward.
c. Wormhole: Wormhole uses virtual channels to share the physical link between two nodes.
Physical resources are allocated at flit level rather than packet level. FIFO storage is smaller
than packet based storage. Packets passing through the network are divided into flits. Flit is the
basic unit of the network. Each flit has the routing information. Flit can roam through the net-
work independently. To avoid the head of line blocking (HOL) of packets in the queue, virtual
channels are used. If the packet at the head of the queue can not cross the switch to its destina-
tion, another packet in the queue would take the chance. Virtual channels allow parallel queues
(logical channels) to use the same physical channel. The throughput increases at the expense
of the area. Virtual channels are used first with wormhole routing, but they can be used with
any other routing scheme. VC requires buffer allocation for each logical channel. Multiple vir-
tual channels represent one physical channel. Because each input port is divided into a number
of queues, and each queue represents a virtual channel or a logical channel. Virtual channels
improve link utilization, and therefore, it is used to improve the throughput. A large number
of virtual channels may have an adverse effect on network performance due to the overhead in
control logic and in multiplexing of the additional channels. ”The virtual channels could be used
with applications that require traffic isolation”[45].

1.8 Flow Control
It governs how the routers communicate with each other and manages the buffer storage. It has
a significant impact on the performance.
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Flow control is a back pressure mechanism, to avoid buffers overflow. Therefore, Flow control
prevents packet dropping. Upstream nodes should know the buffer availability of the sink node
(downstream node). Flow control is performed on a per VC basis.

a. Handshaking: Flits are sent regardless of the state of the buffer capacity. Upon receipt
of a flit, the sink node issues an acknowledgement(ack) or buffer-full(nack) signal to indicate
successful traversal of the channel or the failure traversal of the channel. Packets may have to
be sent many times in a congested network, which increases power consumption at times of
high activity. This used mostly in lossy systems, where packets are allowed to be dropped and
re-transmitted.

b. Credit based control: The channel sink is count at both ends of the channel. The counter
represents the number of vacant slots at the corresponding port buffer. At the sink the channel
count is incremented when a flit is sent and decremented when a flit is received. After the sink
node sends the flit, it sends a credit signal to the upstream node (source). The source buffer
count is incremented. No flits are sent unless the buffer count is non-zero. The latency to restart
the channel is twice the channel latency because a credit must be sent and acted upon.

c. On and Off flow control: There are no counters; instead the sink node signals the flow to
be either on or off. The off signal must be sent before the buffer is full in order to make space for
the flits sent, while the off signal reaches the channel source. The sink node sends an off signal
when the number of the free entries in the corresponding buffer reaches a minimum threshold.
So, the upstream nodes connected to the input port stop sending flits until they receive on sig-
nal. The sink node sends on signal when the free number of entries in a certain buffer exceeds
a maximum threshold.

d. Peek flow control: Routers effectively expose the occupancy information of all its buffers
to its upstream sending routers. Sending routers can continuously observe the buffer availability.
Peek flow control reduces storage requirements by eliminating the multiple credit counters that
are normally maintained for each output and VC pair.

1.9 Routing
The routing function selects the path that a given packet must take from its source to its des-
tination endpoint. It directly affects the average hop count, latency and the dynamic power
consumed by the network. The used routing algorithm affects the degree to which load is bal-
anced across network channels. NoCs typically use simple routing logic to decrease the cost and
the critical path delay. Deterministic routing keeps a predefined path between a given source
and destination independent of the current network status. XY is an easy routing algorithm and
it is used for mesh and torus topologies. XY routing is deadlock free. It makes decisions based
on the source and destination addresses. However the network suffers from throughput degra-
dation as the packet injection increases.
Adaptive routing makes decisions based on source and destination as well as dynamic network
indicators. This routing strategy can adapt itself to the changes in the network conditions. Adap-
tive routing can be based on power model which adapts routing according to power conditions
in order to optimize power distribution. Routing decisions are made on a per-hop basis at each
routing node. Toggled-XY algorithm is adaptive routing. It toggles between XY and YX algo-
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rithms. Weighted-ordered-toggle is also an example of adaptive routing. It assigns XY or YX
routes based on source-destination pairs.

a. Source routing: Source routing derives its routing decision from a pre-computed global
routing table, such that all the necessary routing decisions are embedded in the header to guide a
packet to the receiving node. It reduces the latency through the switch nodes. However, source
routing is not considered in NoCs due to its large overhead.

b. Table based routing: Only the section of the routing table pertaining to the current node
is stored in the local table at each router. It can store multiple paths for the packet as well.

c. Algorithmic routing: Computes the output port from the destination ID. For example, in
a mesh network the node needs to determine only the relative direction of the destination from
the destination ID and the current node ID if absolute addressing is used. Each router is iden-
tified by its coordinates Cx and Cy. The algorithm compares router coordinates to destination
coordinates Dx and Dy. When (Cx, Cy) match (Dx, Dy), the packet is transferred to local router
port which means that packet reaches its destination core.

X-Y routing is algorithmic routing where a packet is first routed through the horizontal di-
rection of the mesh until the target column is reached, then routed vertically to its destination,
this routing algorithm is widely used for mesh topology, because of its low logic overhead and
deadlock-free operation. X-Y routing is deadlock free. In order to avoid deadlock all cyclic
dependencies must be eliminated; although it decreases the path diversity. No dependent cycles
are formed, because some packet turns are not allowed. Packet turns from north-south to east-
west are banned. Also, toggle X-Y routing and Odd-even are examples of algorithmic routing.
Odd even prohibits the East to North-South packet turns in even columns and north-south to
west turns in odd columns.

The routing logic selects the productive output port and the appropriate output VC, based
on the used routing algorithm. Routing could be classified also as minimal and non-minimal.
Minimal routing tends to choose the shortest available path between source and destination.
Also, it could be classified as loss model and delay model. Loss model solves the contention
between packets by dropping one of them, after a time-out. If the source node has not receive
an acknowledgement, the dropped packet is re-transmitted. The second scheme is delay model,
it solves contention between packets by buffering one of them packets at the router and tries to
direct it to its productive direction later.

1.10 Unicast and multicast Routing
There are two ways of communication. Unicast which means that one node is sending packet
to another node. In multicast there is one sender and more than one receiver. Multicast is used
when more than one flit are destined to the same direction. They propagate through the network
as one packet. The packet splits when it reaches one of its destinations, and ends when the last
flit reaches its destination. Another approach to multicast routing, Each router gathers flits to
form a multicast packet if they have similar direction, and split multicasted packets if their flits
should diverge according to their destination bits found at the packet’s header.
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(a) FPGA Architecture

(b) Slice Structure

Fig. 1.11: FPGA Architecture

1.11 FPGA architecture
FPGA is divided into CLBs. Each CLB ”configurable logic block” in Virtex 7 contains two
slices. Each slice has 4 lookup tables, 2 flip-flops and a multiplexer. Each 6 input LUT acts as
two 5 input LUT with two outputs. This is called dual mode operation. The configurable logic
blocks are connectedwith programmable interconnects (switch blocks). The tile is the number of
CLB, switch and the area of the via in 3D. Programmable interconnects are implemented as pass
transistors, multiplexers or tri-state buffer[43]. The area utilization is measured by the number
of the occupied look up tables, the occupied number of flip flops and the multiplexers. However,
the area utilization in ASIC is measured by the gate count. The look up table equivalence of
ASIC gate counts differs from one technology to another.

To enhance the performance of the FPGA, the recent released FPGAs are either heterogenous
FPGAs or 3D FPGAs. Xilinx holds the biggest share in FPGAmarket. According to [8], Xilinx
holds 53% of the market in 2016. Altera holds 36% of the market. Xilinx offers 7 series FPGA
28nm. Figure 1.12 illustrates the difference between FPGAs in 7 series family. Xilinx also
introduces the Zynq family which integrates ARM processor with 28 nm FPGA. SPARTAN 7
is the lowest priced device in 7 series family. It is equipped with MicroBlaze soft processor IP.
It lacks high bandwidth transceivers. Virtex 7 offers the highest performance. In 2016 Xilinx
shipped their first FinFET (16nm) 3D FPGA Virtex ULTRASCALE+. The device is equipped
with up to 3.6 million logic cell. This work uses Virtex 7 as it is available and its tool is available.
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Fig. 1.12: FPGA 7 series [2]

Fig. 1.13: Logic cells [2]

1.12 Power Consumption
Technology scaling reduces the power supply voltage therefore, the static power consumption
decreases. Also the capacitance decreases and therefore the dynamic power decreases. How-
ever, static power consumption increases due to the transistor leakage. According to Altera
report [3], as shown in Fig.1.14 at 65nm the static power overtakes the dynamic power. The
main source of leakage current is the sub-threshold current.

Sub-threshold current:
When Vgs < Vt , current flows from source to drain IOFF. From the equation of the current driven
in [36]. There are two ways to reduce the sub-threshold current either by increasing Vt or by
reducing the oxide thickness. Low threshold voltage is essential to have high speed. Also the
Vt rolls off in recent technologies. This is because as the transistor channel length decreases,
the drain voltage has a similar effect on the channel as the gate voltage. Therefore, less Vgs is
needed to turn the transistor on. Vt is lower by definition. Therefore, the vertical dimensions
are reduced in order to support in the reduction in the channel length. Up to a certain limit the
thickness of the insulator could not be decreased anymore. Oxide breakdown is a limiting factor.
Also, time dependent breakdown is also a limiting factor.
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Fig. 1.14: Static power vs. Dynamic power [3]

Even at small oxide thickness, the gate would have control at the channel; but deep inside
the silicon far away from the gate voltage, the drain would still have more control on the a sub-
merged leakage path. To solve this problem, the mosfet is built on a thin silicon film. The sili-
con depth should not exceed quarter the gate length. Another approach to eliminate the leakage
current is to provide gate control over the channel frommore than one side as shown in Fig.1.15.

Fig. 1.15: Multi-gate Structure [37]

Gate Leakage:
The leakage gate current appears when the insulator thickness decreases. Gate leakage current
increases marginally with increased temperature.
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Chapter 2: Literature Survey on the Buffered NoC

2.1 Simple Router architecture

2.1.1 Buffering
Buffering in the router on FPGA could be implemented by block RAMs(BRAMs), distributed
RAMs (DRAMs) or registers. Block RAMs are SRAMswith tens of kilo bits of capacity embed-
ded on the FPGA for storing data. BRAMs are implemented on ASIC 2D array flip-flops[34].
Distributed RAMs are small tens of bits SRAMs based on look up tables. Look up tables, used
to implement functions, act as memory elements that hold the truth table of the function. Dis-
tributed RAMs are expensive as they occupy the look up tables used to implement the logic
gates. Block RAMs and LUTRAMs are consumed once they are used even if only a small por-
tion is occupied. Buffer based routers use one of these schemes. Distributed RAM is typically 1
bit wide with 16 to 64 entries. Virtex 7 has 5 address lines. It has twomodes, In the first one there
are two RAMs each has 5 address lines; in the second one there is only one RAMwith 6 address
lines. Registers make no waste in memory elements unlike BRAMs and DRAMs. Buffers could
be implemented as embedded memory or flip-flops. Registers/Flip flops are rare resources on
FPGA as well. Buffering is either centralized, input or output buffering scheme. Output buffers
use the buffers after the allocation and switching stages; where packets are buffered in an output
port of a certain router until the input port of the downstream router is ready to accept packets.
Centralized buffering shares buffers between input buffers and output ones. In the routers that
use virtual channels, each virtual channel is implemented by a separate buffer or queue, this to
avoid head of line blocking and enhance the performance. The improper allocation of VCs can
decrease the performance.

2.1.2 Arbiter
Arbiters are used to choose an agent and grant access to it in order to use a shared resource.
It must ensure that only those agents that actually requested the shared resource can receive a
grant. It must also ensure that in case of conflict, only a single agent can receive a grant. Arbiter
can use a fixed scheme to prioritize the agents; and grant the highest priority agent out of all
requesting agents. Fixed arbiter is a simple arbiter. Round robin arbiter changes the priority
scheme each cycle. If the arbiter is choosing out of N agents through N cycles every user will
be the highest priority user once the second in priority order once,... and so on. Finally, Matrix
arbiter generates thematrix upon input and output port. Thematrix arbiter sets the corresponding
bit which is requested for the same output port. It provides strong fairness. It serves the agents
by a least recently served policy. The precedence of each pair of inputs is saved in a register, the
arbiter tracks these registers and updates it. Matrix arbiter is scalable than round robin arbiter.
It grows logarithmic with the increase in the number of inputs. It occupies less area.

2.1.3 Allocator
Allocator is used to coordinate access of multiple agents to multiple resources. Separable allo-
cator is splitting the allocator into two successive independent arbiters. For Separable input-first
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(a) Round robin arbiter

(b)Matrix arbiter

Fig. 2.1: Arbiters[41]

allocator, the first arbiter guarantees that each agent chooses only a single resource to request.
The second arbiter lets every shared resource selects a wining agent, if there is more than one
agent requesting the same resource. For Separable output-first allocator, all agents send their
requests to the first arbiter which lets every shared resource chooses a winning agent, the second
arbiter guarantees that each agent will finally be granted a single resource, in case of two shared
resources selected the same agent. However, the two successive stages in allocator might not
work in phase, in this case agents might not get the best usage of resources.
Wave-front allocator is implemented as a square matrix, horizontal lines represent the requests
and vertical lines represent the resources. The requests on the diagonal can be granted indepen-
dently. “This allows the maximal matching by first granting all requests on the highest priority
diagonal” [13]. If the resource is granted, a signal is transmitted downwards to ban any other
agent from using this resource. The wavefront allocator by this connection supports a sort of
sequential assignment of resources. As for a single resource ”a single column” the first agent
” the highest priority” checks the resource first, if it does not need it, the second agent checks
it and so on. Therefore, the lower rows are masked by prior grants. The agents are sorted in a
fixed order, to change the order of agents you can either change the cyclic connection or set the
highest priority user at the first low.

2.1.4 Fault tolerance
A fault might appear in the network from manufacturing process due to the failure of links,
buffers, allocator or the switch. Failure might be permanent static or dynamic faults. Static
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Fig. 2.2: Separable output first allocator[4]

faults like open circuit or short circuit. Dynamic faults can appear at any time. The routing
algorithm should tackle this fault and keep the network running.

2.2 CONNECT
This work targets FPGA platforms in order to get use of the partial reconfiguration property of
the FPGA. The user could dynamically add new routers to the design according to the density
of the traffic and the complexity of the running application. Few number of designs target
FPGA; most of the previous routers were ASIC oriented designs mapped on FPGA. The ASIC
oriented designs does not make the full advantage of the FPGA resources. ASIC designs always
achieve better performance than FPGA designs. However, if the router was designed to work on
FPGA from the very beginning, it would achieve competitive performance results and occupy
less area. CONNECT [45] CONNECT ”Configurable Network Creation Tool” is a network
on chip generator that produce RTL specially tuned for FPGA. CONNECT offers open source
verilog router code and it is specially tuned for FPGAs. Fortunately, [24] discusses adding
partial configuration to the design of CONNECT mesh network. This makes CONNECT a
good choice. It can have the best of the two worlds; It can achieve high performance and it
can be re-configurable. The target is to create a buffer-less on-chip router that can achieve
competitive performance to buffered routers. The next subsection discusses FPGA resources
and how CONNECT makes the best use of it.

2.2.1 FPGA resources
a. The operation of ASIC standard cells is faster than that of look up tables in FPGA. Most of
the FPGA systems tend to pipeline the design to obtain higher frequency. It is not often practical
to chain up the system to large number of stages. CONNECT router is a single stage router. It
makes up the FPGA low operating frequency by using wider data paths. The single stage router
has added a benefit of reducing the network average latency. The design performance is better
at wide data path. The single cycle helps minimizing the area occupied by the router. This is the
main factor that helps reducing the hardware costs. Single stage routers also simplify the flow
control.

b. FPGAs normally include:
1. Block RAMs contain tens of kilos of bits.
2. Distributed RAMs that contain tens of bits. They are implemented by filling lookup tables.
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Fig. 2.3: Wavefront allocator [13]

Distributed RAMs are scarce resources as they consume lookup tables that are used to implement
logic.
3. Registers are rare resources as well. Registers efficiently implement single buffers with wide
datapath as mentioned in [45]. However, distributed RAMs are better in implementing buffers
of large depth and narrow datapath as mentioned in [45].

CONNECT uses distributed RAMs to implement buffers and look up tables for routing algo-
rithm. Although, routing algorithm could be replaced by routing functions especially for mesh
topology, CONNECT uses lookup tables as they consume less resources than the implemented
routing functions as mentioned in [45]. CONNECT implements buffers as distributed RAMs
where each RAM is divided into number VCs. Each VC is implemented as a circular FIFO.

c. Reconfigurability: The design of FPGAmakes it easier to remove one block and replace it
with another one during the run time. This is very useful in implementing specific applications.
CONNECT has multiple topologies that could be easily investigated thanks to this property.

d. Abundance of wires: CONNECT is designed to use wide datapath to make the best use
of the available wires.

2.2.2 CONNECT generator
CONNECT [45] is a RTL generator that is based on Bluespec system verilog. The network is
fully synthesizable. It is heavily configured.
The user can configure the following parameters:
1. Topology: Bidirectional: Line, ring, double ring, star, mesh, torus, fat tree, fully connected.
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Unidirectional: butterfly, aggregation tree and distributed tree.
2. Number of routers: up to 128 routers.
3. Router type: simple input queued, virtual output queued, and virtual channel.
4. Number of virtual channels: up to 8.
5. Flow control: credit based control and peek flow control.
6. Flit width: up to 1024 bits.
7. Flit depth: up to 64 slots.
8. Allocator type: separable input first static, separable input round robin, separable output first
and separable output round robin.

The generated code is sent to the provided mail address.

In peek flow control each router exposes the occupancy of its input buffers to its upstream
routers. Sending routers observe the buffer availability. The peek flow control scheme reduces
the storage requirements by eliminating the multiple counters that are normally maintained for
each output and VC pair. CONNECT also single bit peek flow control which is a ON/OFF flow
control.

Fig. 2.4: CONNECT Generators [45]

2.2.3 Router architecture
This study is interested in CONNECT with this configuration.
Flit width: 64 bit wide.
Router depth : 8 slots.
Router type: simple input queued. This router has only one virtual channel per each physical
channel.
Allocator: static input first allocator.
Mesh topology: 4x4 mesh.
Flow control: credit based flow control.

Basically the incoming flits access the routing tables at the routing logic to fetch their output
ports. The incoming flits are registered at (input buffers) corresponding to each input port also
the tags of their output ports are registered at (output module). The incoming flits use their valid
bits and the output ports to arbitrate for their output ports at the (allocation logic). Then, the flits
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traverse the switch to their granted output ports.

Fig. 2.5: CONNECT Router [45]

Routing

The packet is divided into number of flits. The flit is the basic building unit of routing in a
network. The flit consists of data, destination, VC number, tail bit and valid bit. Incoming flits
at each input port are processed with input buffers as shown in Fig. 4.16. The logic of input
buffering fetches the destination bits in the incoming flit. Routing logic is look up tables that
store the corresponding output port for each possible destination. Routing logic appends the
output port to the flit. Look up tables are implemented as DRAMs in CONNECT. For Mesh
and torus networks these look up tables could be replaced by XY routing function. However,
routing tables occupy less area. They exploit FPGA resources efficiently.

Buffering

The Incoming flits are registered in the input buffers at each input port and the corresponding
virtual channel. The appended output ports are registered in a circular FIFO at the corresponding
input port and the corresponding virtual channel. This FIFO is called (output port module). The
flit at the head of the FIFO requests its desired output port at the allocation logic. However, flits
never propagate down the router logic, flits are saved in the input buffers. Number of VCs does
not affect the output port module. The number of output port modules depends on the number
of VCs [34]. Input buffers are implemented as DRAMS in CONNECT. In almost all the possi-
ble cases of CONNECT distributed RAM occupies less than 10 LUTS. Using virtual channels
increases the performance of the router. Each virtual channel or logic channel is implemented
as a circular FIFO. The distributed RAM is split into several fixed regions. The head and tail
for each FIFO are implemented as discrete registers. This design allows the number of VCs
to scale easily. This makes CONNECT a flexible design. CONNECT offers a feature ”virtual
link”. This feature allows the packet to be sent continuously. It guarantees that when a packet
starts sending its flits, it will not be interrupted by another packet. Therefore, flits can reach the
destination in order. There is no need to use assembly buffers at the nodes.

Allocation

To determine which flit departs the router flit header, buffer occupancy of the corresponding
input port and the credit availability are forwarded to the allocation logic to arbitrate for the
output port. CONNECT supports four different allocators. Discussing the separable input first
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allocator as an example, the allocator has two arbiters. Input arbiter where each incoming flit
from each input port requests its desired output port. Each input chooses its most appropriate
output port according to a fixed priority scheme. The output of the input arbiter is fed to the
output arbiter. The output arbiter allows each output port to choose the input port. Each output
port prioritizes input ports in a fixed order. So that if more than one input port request the same
output port, only one input port is granted the permission to use this output port. The arbitration
logic respects the port priorities and VC priorities.

Switch

The switch allows the flit registered at the input buffer to pass through the granted output port.
Switch output triggers the input buffer to shift and to receive new data. Switch output triggers
five multiplexers to direct the flit to its granted output port. The switch is implemented as an
encoder.

CONNECT uses two channels. One for data and the other for control(backpressure bits).
Both channels are bidirectional.

2.2.4 Simulations
CONNECT is evaluated against network on chip designed for ASIC. CONNECT achieves bet-
ter performance than SOTA while reducing logic utilization. CONNECT routers use between
40% and 50% fewer LUTs. When both CONNECT and SOTA operate at the same frequency
100MHz, CONNECT achieves lower latency and better saturation throughput with less than half
area utilization. CONNECT achieves three to four times saturation throughput of SOTA. On
the other hand when each router operates at its maximum frequency, SOTA outperforms CON-
NECT because of its higher operating frequency. Different network topologies are simulated to
demonstrate the flexibility of CONNECT. The performance depends on network topology and
configuration; it depends on the traffic as well. This demonstrates that designs implemented
especially for FPGA can take advantage of FPGA resources and obtain comparable results.

2.2.5 Parameters
Increasing the buffer depth, number of VCs, the number of output ports or the flit width have
negative impact on the frequency. Distributed RAMs are used to implement look up tables that
save the output port. It is recommended to use BRAMs at input buffers instead of DRAMs to
speed up the router. Block RAMs are totally consumed if only small portion of it is used. These
recommendations target saving the performance and area utilization. If the reduction of power is
the target, it is recommended to use DRAMs in implementing input buffers instead of BRAMs.
BRAMs consume more power than DRAMs. BRAM gives the best area utilization. DRAM
starts to occupy more area as the data width becomes wider. DRAM starts to occupy more area
also as the buffer depth increases or as the number of VCs increases. Increasing the buffer depth
have strong impact on the area of the distributed RAM. Wider area resources scale smoothly,
while taller memory arrays scale in an abrupt step-wise manner.[45] Increasing the number of
VCs makes the BRAMs more efficient. If the buffers are replaced with a single pipeline regis-
ter, the pipeline register is better implemented as a register. Increasing the data width of the flit
reduces the area utilization. Number of input buffers equals to number of input ports.
Number of encoders (switches) is equal to the number of input ports. The encoder is purely
combinational logic, therefore the area occupied by the switch on FPGA NoC is larger than that
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in ASIC.
There is only one allocator. The number of inputs to the allocator is equal to the number of
input ports times number of output ports. The allocator consists of two arbiters, the static output
arbiter consists of a group of multiplexers. The number of multiplexers is equal to the number
of output ports. Each multiplexer has inputs equal to the number of input ports.
Number of output modules is equal to the number of input ports times the number of virtual
channels. The depth of the output port FIFO is equal to the depth of the input buffer. The width
of the output module is equal to the number of bits needed to represent the number of output
ports of the router. The Number of lookup tables increases as the number of input ports increases
and as the number of output ports increases.

From this discussion, it is clear that the number of input ports has the largest impact on the
hardware cost followed by the number of VCs. Changes in the buffer depth or the flit width
have a lower impact, basically they influence the buffer resources only.

A study is conducted to compare two software configurations with hard implemented CON-
NECT [23]. In each configuration area, power and speed are measured. The first soft imple-
mented targets the speed and the second configuration targets the power. In the study the FPGA
synthesis, mapping and place and routing are changed to decrease the gap between soft and hard
implementations. For example DRAMs are used in power configurations while BRAMs are
used in speed configurations. In the configuration that targets the speed, the minimum delay
gap between ASIC and FPGA is 5.5, power gap 12.2 and area gap 5.9. In the second configura-
tion that targets the power, the minimum delay gap is 6.3, power gap is 4.5 and area gap is 6.9.
The mentioned gaps are the ratio between the geometric means of each of delay, power and area
on FPGA and the corresponding value on ASIC.
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Chapter 3: Comparative Study of Buffer-less NoC

Network designs assume that each router needs to contain a buffer to hold flits. Actually,
buffering the flits improves the throughput. However, buffers are eliminated to decrease the
area utilization of the network. Each node has the injection buffer; there are no buffers aside
from the pipeline registers. Although buffers give large bandwidth. They consume huge area.
Any buffered routing needs a control flow or some sort of communication between routers to
avoid buffer overflow. In buffer-less systems there is no need to any control flow, as there are no
buffers; and any link is available at each clock cycle. So, it is proposed to eliminate the buffers.

There are two approaches to create a buffer-less system. Either Drop or Deflection routing.
When two flits contend for the same output port, the router drops one of them. If the timeout
is over and the source has not received an ack from the destination. It sends the packet again.
Deflection routing achieves better performance than the dropping approach.

When two flits contend for the same output port, one is directed to its productive direction
and the other is deflected to any other available output port. Deflections spread traffic away
from hotspots and balance load in unbalanced traffic patterns. It is a sort of adaptive routing.

Buffer-less router trades performance for low area and less power overhead. Buffer-less
routers can obtain 40% savings of buffer-less router power [44]. For Routers on FPGA around
30-40% of their area resources are consumed by the crossbar and 20-40% by the buffering logic
[40]. Flits are temporarily held in pipeline registers within each router and between each router
pipeline stage, until an output port is allocated. If the assigned output port is not the desired one,
it is known as a deflection. To apply buffer-less algorithm, the number of output ports should be
equal to the number of input ports. The router should be reachable from other routers. The com-
mon node injects as long as there is at least one free output port. Buffer-less networks provides
backpressure only at the local injection queue. Allocation logic in buffer-less designs is slightly
more complex than that in buffered designs. As input flits must be ordered and prioritized to
avoid live lock problem. Flits with higher priority are served first and they are granted their
requested output ports. Allocation logic should guarantee that low priority flits are deflected to
any output port. At each clock cycle, the router should be ready to receive new input flits at each
input port, if the router is a single stage pipeline. Generally, the flits that arrive in a given cycle
can always leave exactly N cycles later. Each buffer-less architecture should address explicitly
how to solve live-lock. As flits might roam continually through the network, they might never
reach the destination.

Buffer-less designs work efficiently at low traffic loads. However, they have lower satura-
tion than buffered designs. Buffer-less system can not sustain high real time traffic. Both the
latency and the throughput degrade as the traffic increases. Many designs have been proposed
to improve the performance at high injection rates. Another main disadvantage for buffer-less
router designs is that buffer-less routing can not use pure wormhole routing algorithm; because,
packets are divided into flits, each flit travels through the network independently. When two
flits contend for one output port in a router, the buffer-less router avoids the need to buffer by
misrouting one flit to another port. The flits travel through the network until ejected at their
destinations, possibly out of order. Therefore, packet’s flits might reach the destination out of
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order. This is why assembly buffers are used at the nodes or IPs.

Reassembly buffers: The buffer-less routers need assembly buffers at each node. Packets
are divided into flits. The header information is attached to each flit. Each flit is routed indepen-
dently. Each flit may follow different path. Therefore, flits of the same packet do not reach their
destination in order. The node receives the flits interleaved and each node needs buffers to re-
assemble the flits of the same packet. Small assembly buffers could cause deadlock. Flits might
be dropped because of these assembly buffers; as there is no backpressure for these buffers. In
Chipper [20] the source router waits for acknowledgement from the sink node. If the source
node haven’t received an ack and the timeout has passed, the source node re-transmit the flit
again. However, there is a separate network links for these acks transmitted between sources
and receivers to guarantee that the flit is not dropped.

Mesh topology is preferred in implementing buffer-less network; because it offers paral-
lelism. Generally, any topology that is used in buffer-less NoC should satisfy these two condi-
tions. First, the number of input ports in every router is equal to the number of output ports, this
is essential to prevent flit drop. Second, Every router is reachable from every other router.

A brief overview on different router architectures.

3.1 BLESS Architecture
BLESS [44] is a three stage pipeline buffer-less router. The router uses age priority. Incoming
flits are kept in pipeline registers till output ports are allocated. Requests are fully sorted ac-
cording to their age by sorting blocks, each of which sorts two requests as shown in Fig.4.10. A
time stamp is added to each flit. The allocator assigns each input flit an output port, where the
oldest flit is guaranteed not to be deflected in order to avoid live-lock. The allocator is divided
into simple arbiters as shown in Fig.4.10 where the oldest flit is granted its requested output
port, and the conflicting flit is forwarded to the next arbiter to be deflected to another output
port. Each small output port arbiter should wait for the previous output port arbiter. This se-
quential logic creates a long critical path; the critical path scales with the number of input and
output ports. Critical path degrades the network frequency and increases the average network
latency. BLESS has the highest throughput in terms of cycles and the highest saturation out of
the currently proposed buffer-less routers. This router guarantees that the maximum number of
flits will get their requested output port; however in case of contention some flits are obligated
to be deflected away from productive direction. BLESS is a three stage buffer-less router. Here
is the description of the router pipeline. First, the router computes the requested port of each
incoming flit. The route computation logic computes the requested output port based on XY
routing algorithm. The router compares its index with the destination index. The router picks
the x direction over the y direction. Then, the incoming flits are directed to the routing logic that
sorts the flits and grants output ports. The flits must be sorted before arbitration. Later, incoming
flits are directed to the switch (crossbar) which consists of multiplexers that direct the incoming
flits to the granted output ports. The header and the payload of each flit, both travel through
the network. The packet is divided into flits. Buffers and router resources are assigned per flit
basis. The flit is the building block of the network; the header of each flit contains the age, the
destination, the source and a valid flag. There is no pure wormhole switching; each flit is routed
independently. Age priority prevents live-lock. The router occupies large area, because it has
many comparators, as the router makes full sorting to the incoming flits by the age priority. Age
priority is expensive in header information and the critical path circuit. Though the operating
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(a) BLESS Allocator
(b) BLESS Priority Sorting Logic

Fig. 3.1: BLESS Architecture [44]

frequency is low, the router is used as a basis router to buffer-less routers in simulations. Also,
the network saturation throughput of BLESS is less than that of buffered routers. The average
packet latency increases because of the deflections and the long critical path. BLESS can cope
with the bursty traffic as the network is self-throttling. Deflection algorithm behaves similar to
adaptive routing algorithms as it avoids congested paths and deflects flits towards other parts of
the network. The router can not inject any new flits unless there is a free channel. The router
takes the injection decision independently. It is purely local. There is significant energy saving
at small performance loss. In deflection routing the body flit might not follow the head flit; as
every router is routed independently. In order to use wormhole routing, every router stores the
header information of all worms in transit as well as their allocated output ports to allocate the
body flits. The router assumes that the reassembly buffers are infinite. The author proposes a
reduced latency BLESS. Reduced latency BLESS is two stage pipeline router.

3.2 Chipper Architecture
Chipper [20] is a three stage buffer-less router. It solves the basic drawbacks of BLESS router.
The main contribution is a cheap deflection router. Chipper replaces the sequential allocator
with a parallel permutation network.

3.2.1 Permutation network
Sequential allocator is not essential for ensuring mutual exclusion on output ports. Parallel per-
mutation network occupies less area than the sequential allocator logic also the permutation
network deals with flits in parallel way. It has smaller critical path. Chipper can work with
high frequencies. Permutation network can send a flit on any input to any output. It can give
a 1-to-1 mapping of inputs to outputs. However, it cannot perform all possible permutations of
inputs and outputs. The proposed permutation network is 2-stage network. Every router in the
network even those at the edge of the network should have all their output ports available. For
the routers at the edge of the network, the output port is also the input for the same router as
illustrated in Fig.3.2. This is a key insight that significantly decreases the number of stages of
the permutation network from three stages to two stages. The network sorts the input flits then
allocates the ports. The permutation network is composed of 2x2 arbiter blocks that either pass
or swap their arguments. Each arbiter block has two inputs, arbiter logic must allocate ports in
priority order. The arbiter sorts the two flits then pass or swap. The arrow direction in each
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2x2 module indicates the sort direction (increasing or decreasing). The steering function in the
arbiter block is simply done by a 2x2 multiplexer to allow the block to either pass or swap. If
the winner flit requests the corresponding output port, the steering function pass the input flits to
output directions. If the winner flit requests the opposite direction, the steering function swaps
the input then directs it to the output directions. Pass means passing the first input to the first
output and the second input to the second output. Swap refers to passing the first input to the
second output and the second input to the first output. The steering function depends on the
requested output ports of the winner flit only. The other flit if it exists takes the remaining port.
Ruleset 1 describes how the arbiter logic sorts the two flits and determines the winning flit. The
permutation network does not perform full sorting of the incoming flits. Chipper relaxes the
constraint and sorts the incoming flits partially. It guarantees that only the highest priority flit
is granted an output port in its productive direction. This constraint is sufficient to make the
network live-lock free. However, the arrangement of the I/O ports of the permutation network
highly influences the performance.

Fig. 3.2: Edge Routers in Chipper NoC

Fig. 3.3: Chipper permutation network [20]

3.2.2 Golden Flit
Chipper also uses a cheap priority scheme. Instead of using the age comparison as used in
BLESS, Chipper uses a golden flit. Where for certain period of time, a single flit is prioritized
over all flits in the network, this period is long enough to ensure its delivery. This assignment
rotates through all possible packet IDs. Therefore any stuck flit will eventually be golden. The
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Ruleset 1 Golden Packet Prioritization Rules
Golden Tie: If two flits are golden, the lower-numbered flit (first in the golden packet) wins.

Golden Dominance: If one flit is golden, it wins over any non-golden flit.
Common Case: Contests between two non-golden flits are decided pseudo-randomly.

golden flit wins the arbitration over all the common flits. The logic ,which calculates the golden
epoch and determines the golden flit, is either a central logic or distributed logic. This work uses
a pseudo random function at each router to calculate the golden flit. This work uses distributed
logic. This simple priority scheme guarantees that the network is live-lock free.

The router is three-stage router. The longest path is the permutation path. Therefore, eject
and inject units do not affect the frequency. After Eject and Inject units, the route computation
logic is used to determine the requested port of each flit. The router determines the golden-status
of a packet in parallel with route computation.

As Chipper guarantees only one flit to be directed to its requested output port, the throughput
of the network is low compared to BLESS and buffered architecture. Chipper has high deflection
rate. It saturates faster than BLESS. Chipper can work on high frequencies, therefore the overall
performance of Chipper is better than BLESS. Chipper reduces the average network power by
54.9% in a 64-node system compared to a conventional system. It reduces the power by 8%
compared to BLESS. Chipper is the only router that addresses the assembly buffers problem.
The flits do not reach the destination in order because of the deflections. Chipper uses cache
registers as assembly buffers at each node.

3.3 MinBD Architecture
MinBD [21] is a 2-stage buffer-less router. MinBD only enhances the throughput of Chipper.
Chipper performance degrades at high traffic. The rate of deflected flits increases at high in-
jection rates, therefore the performance degrades and the dynamic power increases. Therefore,
MinBD proposes using a side buffer. The side buffer is a small buffer that keeps flits rather than
deflecting it. The router examines the flits at the output of the permutation network, if the flits
are deflected the router chooses one of the deflected flits and saves it in the side buffer. It is
mentioned in the paper, that the presence of the side buffer actually decreases the throughput,
as the increased throughput places more ejection pressure on the nodes, so it should be used
with dual eject unit. Therefore, MinBD increases the throughput of Chipper and it increases
the area only by 3%. Also, the critical path does not increase, as the longest path is still in the
permutation network. Adding dual ejection to the side buffered system to address the ejection
bottleneck increases performance to 5.8% above baseline Chipper.

The presence of the size buffer is more important than its size; as its utilization is low. The
injection of flits from the side buffer has higher priority than the injection of new traffic. To
avoid starvation of flits inside the side buffer, a threshold is determined. If the time exceeds this
threshold, the flit is injected and another is placed in the side buffer. The golden epoch time is
equal to the threshold of the side buffer. The buffer depth is chosen to be 4 flits. As the size of
the buffer increases, the consumed power increases without any significant improvement in the
performance. MinBD increases the critical path relative to Chipper by adding the redirection
and re-injection logic.
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Fig. 3.4: MinBD Flit Sorting Algorithm [21]

The second contribution is the silver flit. When no flits are golden, unnecessary deflections
take place because the permutation network stages are not coordinated. A flit might win the
arbitration at the first stage and let another flit be deflected and then loses the arbitration at
the second stage and also be deflected. The router adds the silver flit to ensure that at least a
flit will certainly not be deflected when there is no golden flits. The silver priority level wins
arbitration against common cases and lose to the golden flits. It guarantees that at least one flit
is prioritized over all flits in every router. After adding the silver flit, the sorting is done as
illustrated in ruleset1.

Fig. 3.5: MinBD router architecture [21]

3.4 SCEPTER
Scepter [17] is a 3-stage buffer-less router.

3.4.1 SMART INTERCONNECT
Scepter tries to make latency independent of hop count. The flit sends an arbitration request to
more than one router along the path of the flit. This look ahead arbitration allows the flit to make
multiple hops in one cycle. It allows the flit to cross multiple routers in one cycle. This idea
was used before by SMART buffered router. And it is useful to be used in deflection routing.
A smart hop setup request is sent a cycle in advance along the path to destination to arbitrate
for the crossbar switches. There is a maximum number of hops that could be covered in one
cycle. The SSRs travel through dedicated wires. A flag is saved in each router the smart hop
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setup request (SSR) passes by to indicate whether the arbitration succeeded or not. The flit does
not need to wait for a grant signal to indicate the arbitration success. The router prioritizes flits
from neighbourhood over far requests. SSR requests are prioritized using a fixed scheme. SSR
requests are prioritized by the distance to the destination.

3.4.2 Routing Logic
At the end of first arbitration stage, the local flits are assigned output ports. The highest priority
flit picks the output port first. If the assigned output port is in progressive direction, SSRs are
sent along the path to the destination. The second arbitration stage arbitrates between SSRs,
local injected flits and flits from the neighbourhood. In the common case, flits nearer to the
destination are prioritized in order to be drained out of the network faster. This priority scheme
is used to make the average network latency short. The sorting of SSR depends on the nearer
to the destination. The destination proximity scheme is used to drain the flits quickly out of the
network and reduce the average latency of the network. To avoid starvation of injection when
the injection queue depth is larger than certain number of entries, priority order changes to pri-
oritize injection over far SSRs. The maximum number of inputs is four whether SSRs or flits
from neighbouring routers. Therefore, if an incoming flit and a SSR come from the same input
direction, the router prioritizes the neighbouring flit over the SSRs and SSR over local injected
flits. To arbitrate between neighbouring flits, flits closer to the destination are prioritized over
far flits. The flit chooses the shortest path to destination. Therefore, it toggles between XY and
YX directions continuously. The flit chooses the minimal path as long as it is not deflected more
than once. The network toggles between XY and YX priority scheme to avoid ping pong effect
and dynamic power loss. This is applied when the flit is deflected more than once(ping pong),
the router increases the priority of the flit and directs it to another output port.

3.4.3 The Highest priority source ID
To avoid live-lock problem a synchronized time window at each node in the network is calcu-
lated, and a consistent highest priority source ID at each time window is enforced. ”Flits in the
NoC that originate from this source are prioritized over others. The highest priority source ID
rotates each time window, where the time window length is sufficient to drain the network of a
request from this source.” [17]

3.4.4 Throttling techniques
Adjusting the global throttle rate does not relieve the congestion at all the nodes in the network
especially the nodes at the center. Therefore, using a distributed throttling is more effective
as each node can rely on both the global throttle flag and also on its experience. A starvation
flag is set when the number of flits in the injection queue exceeds a certain threshold. To avoid
starvation of the nodes in the network. The most straightforward is ON/OFF throttling. It stops
the non-starved nodes from injection and allows the starved nodes to inject. SCEPTER uses Q
learning algorithm. Q learning helps the node to take the best action for an environmental state.
For each node, there is a table of states and actions. State is the state of starvation for the local
node and across the network. Every L cycles a global starvation flag is sent. There are 8 states
for the network. Action is whether to increase or decrease the throttle rate. There are 5 possible
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Fig. 3.6: Scepter router architecture [17]

Fig. 3.7: Opportunistic Bypassing [17]

actions. The 5 actions are to increase, decrease or to retain the throttling rate. There are two
degrees to increase, either to increase slowly with small step or to increase largely with a large
step. The state of the node is calculated according to a throttling equation and Q table is checked.
The action that has the maximum Q value is chosen. The throttling rate converges according
to the equation. The throttling equation is function of the learning rate which indicates ”how
quickly new congestion information is factored in update” [17].

3.4.5 Opportunistic Bypassing
A flit can take advantage of a pre-reserved path to another flit that could not arrive at this clock
cycle. If both flits destine the same direction. Fortunately, this flit could make multi hops in a
single cycle taking advantage of a path reserved by SSR of another flit. At T0, Flit A sends SSR
from node 9 to 4. Another flit B reaches 10. SSR could reserve the whole path for flit A except
router 10. At T1, flit A reaches router 10. Flit B uses the path and reaches router 4.

SCEPTER is compared to BLESS and a buffered router. It reduces the average latency by
62% compared to BLESS. It has 1.3 higher saturation throughput. SSRs are 10% of switch allo-
cation. Half of them is wasted. In the other half a flit actually traverses the crossbar. Self throt-
tling algorithm affects the large network diameter more than the small network. It reduces the
starvation rate of 256 nodes by 38%. It reduces the average latency by 24%. The self throttling
is used to achieve equal bandwidth at network nodes by calculating the per-node throughput.
”ON and OFF throttling does not provide any fairness improvement.”[17] SCEPTER occupies
less area than buffered baselines. SCEPTER occupies 16% area more than BLESS and 13%
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power higher than BLESS. SSR creates dynamically multi hop paths. The router ensures high
throughput and fairness.

3.5 Carpool
This buffer-less router supports multicast forking and hot spot merging. Carpool [30] is a mod-
ified version of NOCulator, an open source network on chip simulator.
Carpool merges flits sent by multiple nodes to a common destination node. The intermediate
routers between source and destination can decide to fork new replicas of the flit only if there is
available output port for each copy of the flit to avoid dead lock problem. The replicas of the flit
are produced based on the destination list in the header of the multicast flit. The intermediate
routers between source and destination can also merge multiple flits into a single flit if they are
on their route to the same destination.

3.5.1 Forking Flits
Injecting a multi-cast flit with m destinations can take m cycles. Because there is no hardware
to support m parallel injection. There must be output port for every copy to fork a multi-cast
flit. So generally, this equation must be satisfied.
The incoming flits - removed flits (either ejected or merged)+ replicas should be less than or
equal the number of output ports.
The forking of multi-cast flits increases the number of flits in the network. Forking is suitable for
low load applications. It decreases the network latency and improves the frequency. However,
at congestion the forking is disabled. As Forking increases the number of flits in the network,
and this may decrease the saturation throughput. If the network is congested, the router disables
the forking property. If the multi-cast flit is not forked, it travels to its destinations sequentially.
If a multi-cast flit passes by a router that has disabled the forking, a single port is allocated to
the multi-cast flit and the flit travels sequentially to each of its destinations. A copy of the flit
is ejected and another continues to the next destination. The flit is copied at each destination
except the last one. The congestion is measured by the starvation rate. Starvation rate is the
measured by a counter in each router to count the number of cycles that the router could not
inject any flits in the network.
To avoid the high network latency, the re established path can not be used. The destination list
becomes larger when merging multiple flits. To avoid scaling up of the header bits, the network
is divided into clusters, the destination list is represented by clusterID, destID. The header bits
have cbits to encode the cluster and m bits to encode multiple routers. The destination bits are
c+m bits. A single multi-cast flit can destine m routers inside the same cluster. The destination
routers must be in the same cluster. Carpool uses fewer flits in sending multi-cast than using
unicast flits as traditional buffer-less networks. The number of flits in a single multi-cast flit
sent to d nodes is b(h-m), where b is the size of the request and h is the data size. In traditional
buffer-less network the number of flits sent to d nodes is d*(b/h).

3.5.2 Merging Flits
In order to merge two flits the router should check that the two flits have the same payload and
the same destination and come from the same cluster. When a flit is at certain input port, the
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Fig. 3.8: Carpool router architecture [30]

router checks the flits at all the higher input ports searching for a flit to merge with. For hotspot
request when an intermediate router detects two requests destine the same node and have the
same payload, the router merges them into one request. The router uses the same encoding to
encode the source nodes used with destinations in flit forking.

3.5.3 Router Architecture
First, the router merges any flits could be merged. The merge logic is followed by the eject unit.
It ejects up to one flit. Followed by the inject unit, if there is an available channel, the local node
injects flits. Then the router computes the route. Carpool performs XY routing to determine
the desired output port. Then the router sorts the incoming flits. It arranges the flits using the
age, based on flit time-stamp. After sorting the flits, the router allocates the output ports to the
incoming flits based on their priority. The first step in port allocation, the router allocates as
many uncontended productive ports as possible to the flits. The second step is if the flit has not
been assigned any output port, the flit is assigned an output port if the port has not already been
allocated by a higher priority flit and higher ranked flits are not deflected. if either conditions
is fault, the flit is deflected. The latency of the critical path of the parallel port allocation is half
that of the sequential port allocation.

Carpool reaches higher saturation throughput than BLESS. The average network latency is
lower than BLESS. Forking the flits reduces the average latency and the network congestion
despite producing high deflection rates. Without forking the network saturates at 0.12. The
router is synthesized with Cadence Encounter at 35 nm standard library.

3.6 Hoplite
Hoplite designs a lightweight crossbar that suits the nature of the FPGA. This is the only one
that targets FPGA platform. Hoplite [40] is a lightweight efficient buffer-less router. The router
deals on flit basis. The assembly of flits is not addressed in [40]. The single flit carries the
destination and the payload. BLESS occupies less area than buffered routers but it still occupies
large area as it does not target the FPGA platform. Basically buffers and crossbar occupy the
heavy resources in any network on chip router.
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3.6.1 The crossbar
It is observed that changing the network topology or modifying it could simplify the crossbar
greatly. This is actually what simplifies the permutation network in CHIPPER. Setting all the
output ports valid even for the routers at the edges simplifies the permutation network in the 2D
network from three stages to two stages only. Similarly, modifying the network topology here
in Hoplite from mesh to torus simplifies the crossbar significantly. Using directional network
such as torus reduces the complexity. The routing function in certain region could be changed
in order to throttle the injection rate. This property takes advantage of the re-configurability.

Figure 3.9 shows how hoplite tends to decrease the complexity of the crossbar. Unidirec-
tional torus reduces the crossbar complexity from 5x5 to 3x3. Hoplite uses dimension ordering
where the input ports are statically ordered as shown in c. Hoplite removes the ejection port
from the crossbar as illustrated in d. Hoplite removes the pipeline register used after the in-
jection queue as shown in e. Finally, Hoplite uses the pipeline registers after the multiplexers
as illustrated in g. The pipeline registers are placed after the switch in order to make the two
multiplexers and the register fit in a single 6-input LUT in a 5-5 mode on Xilinx FPGA. Since,
the router is single pipeline router; the dominant contributor to the critical path is the long wire
delay from one router to another. Floor planning generator produces constraint file that floor
plans the cluster.

Fig. 3.9: Hoplite Crossbar [40]
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Fig. 3.10: Debar Architecture [25]

3.6.2 Result
Hoplite achieves lower saturation throughput than buffered routers. It has higher latency than
buffered routers. However, it has higher operating frequency. Hoplite occupies less LUT re-
sources for small networks. ”Deflection torus is only superior to the mesh for small PE sizes
below 2K LUTs”.

3.7 Debar
Debar is a 2-stage buffer-less router. Debar [25] uses a central buffer pool to hold a fraction of
the deflected flits. Debar proposes a new adaptive routing algorithm and a selective flit buffer-
ing based on flit marking. Resolving arbitration by random selection of flits at various stages of
the router pipeline in MinBD and Chipper affects the network latency badly.

Debar shows a lower average latency than MinBD. Debar achieves less deflection rate as
compared to MinBD for all synthetic traffic patterns. This is due to the priority scheme that
prevents the deflection of flits once they are near to the destination.

Debar is synthesized by synopsys design compiler with 65nm library. Debar without the
dual ejection unit property has the same router area and power dissipation as Minbd. Debar and
MinBD can work on the same operating frequency.

To model two cycle deflection router Chipper for experimental analysis, Booksim simulator
is used.

Router architecture:
A hybrid flit ejection mechanism that gives the effect of dual ejection with a single ejection port.
Hybrid ejection unit identifies the flits intended to the local core. When there is a single ejec-
tion flit in the current cycle, the flit is removed from the internal flit channel and is forwarded
to the ejection port. If the Ejection Bank in the central pool buffer is empty, HEU can handle at
most two flit ejections at the same cycle.
Dual Injection unit (DIU):
Debar can inject from both the central pool buffer and the core buffer. Debar uses double inject
unit DIU to inject flits.
Flit preemption unit (FPU):
When the channels are busy for a while (2 cycles), both the central pool buffer and the core
buffer saturate. As the central pool buffer saturates, the deflection rate increases. To prevent
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this saturation, the router uses flit preemption unit. When either the core buffer or the central
buffer pool reaches a certain threshold. The router preempts one flit from the internal flit chan-
nel and places it in the central buffer pool. By this preemption, an empty slot is created in the
internal flit channel so that the injection and re-injection from the respective buffer can be re-
sumed, thereby avoiding starvation.
Priority fixer unit (PFU):
Debar prioritizes flits that are nearer to the destination. The flits are sorted into three levels.
0-flits whose destination are within 2 hops.
1-flits whose destination are between 2 and 4 hops.
2-flits whose destination are more than 4 hops away.
Quadrant routing unit (QRU):
Based on the destination address of the flit, an output vector is computed. It indicates the pos-
sible productive ports for the flit. If the source and destination are on the same row or colomn.
The flit will have one productive output port. However, if they have different row and colomn
therefore it will have two productive output ports.
Permutation deflection network:
It is the same unit used in Chipper and MinBD. However, Debar has two additional control units
to it. The header enhancer circuit that adds the priority value and the output vector to the flit
header, and the flit marking circuit that identifies the misrouted flits from others. It compares
the allocated output port with the productive output port attached to the header. Flits marked
with one indicate that they are assigned non-productive which take them away from destination.
Buffer ejection unit(BEU): selects at most one flit marked with one for storing into the forward
bank of CBP. This is just like the side buffer used in MinBD in order to reduce the deflection
rate. Once the flit leaves the router to the output ports, the marking bit is cleared.

The depth of the central buffer pool in the routers at the centre of the mesh network is 4, at
the edge of the network is 3 and at the corners of the network is 2. The corner and edge routers
carry less traffic than the centre routers. The simulation is conducted on 8x8 network.

3.8 SLIDER
Smart late injection deflection router uses side buffer for accommodating a fraction of deflected
flits. The main contributions are smart late injection and selective flit preemption.

Smart Late Injection: Slider [19] was used to enhance the performance of Debar. First
the channel wastage in Debar. A case in Debar when all the four input channels of a router are
busy, the local inject unit can not inject. When a new flit is injected after permutation deflection
network (where the flits are allocated), if it does not get its productive output port, it may be
selected out of the router pipeline and buffered in the central buffer pool. Slider gets rid of this
inner cycle in order to save the dynamic power. Slider uses the injection to the end of the router
pipeline to utilize the idle output channels already existing in the router pipeline or created by
flit preemption. The channel wastage is 18% for Debar, by using late injection in Slider the
wastage drops to 6% only.
If this newly injected flit is selected after the permutation network, it will be buffered in the
central buffer pool. The movement from one buffer to another leads to unnecessary power con-
sumption without any forward progress for the flits. Sliding the injection logic at the end of
the router pipeline prevents intra router movements completely. The late injection tackles live-
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Fig. 3.11: Slider Architecture [19]

Fig. 3.12: Percentage of deflected flits [19]

lock problem that happens in these situations.” When these high priority newly injected flits
can have port conflicts with incoming older flits from the neighbors and the older flits may get
deflected”[19]. From figure 3.12 it appears that 10% of the flits are deflected because of high
priority new flits.

Selective Preemption:
While MinBD uses two eject units and Debar uses a dual ejection with a single ejection unit,
Slider ejects at most one flit each cycle. Slider uses XY routing algorithm and a hop based
priority scheme. Slider uses selective preemption of flits. Selective preemption is the process of
preventing a flit from moving out through its assigned output port. This preemption is done to
prevent a flit from moving out through a nonproductive port or to make space for a starving flit
waiting in the router buffers either core buffer or side buffer. When the number of flits exceeds
a certain threshold, Slider injects flits into the available channel irrespective of whether they
have productive port or not. This is called non-restricted injection. On the other hand, restricted
injection injects flits only if a productive channel is available. It may slowly increase the number
of flits waiting in the respective buffers; but it results in proper utilization of the channel. The
threshold is chosen to be 2 flits per buffer as it gives the furthest saturation point for the given
circumstances.

Parallel Operations: These three operations, ejection, routing and prioritization. Three of
them are independent, therefore,Slider makes them work in parallel.

Slider occupies less area than DEBAR and MinBD. Also, it consumes less static power con-
sumption. It has higher saturation point than Debar and MinBD. Slider is capable of supporting
higher injection rates and higher traffic. The deflections decrease with respect to Debar and
MinBD. Therefore, the average latency decreases than both routers. Slider supports higher op-
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(a) Single Pipeline
(b) Two Stage Pipeline

Fig. 3.13: Cascade Router Architecture[39]

erating frequency than Debar and MinBD. Also, Slider can deal efficiently with different traffic
forms.

3.9 Cascade
The main idea is to design a router that dynamically configures itself based on the router conges-
tion level. The router [39] switches from single-cycle buffer-less router to two cycles minimally
buffered router and vice verse. Each router can switch independently. There is no switching
overhead.

At low loads, a simple single cycle router is preferred over k cycle router. Because it can
reduce latency, area and power consumption. At high loads, as port contention can be high, a
simple single cycle router without any flit management provisions leads to heavy deflection rate,
longer delay, and increased network activity, which in turn cause early saturation. The router
uses two stages at high load. The side buffer is used only at high loads. At low loads side buffer
is underused, so it is bypassed in Cascade design.

Slider and Debar are two-cycle pipeline routers. Thus, Cascade manages flits more effi-
ciently adapting to the traffic, accommodates more load and extends the saturation point. The
router reduces power consumption by 19% on average with area overhead 9%.The deflection
rate of the Cascade router is high compared to other routers initially. As the injection rate in-
creases further, the deflection rate reduces further and becomes stable, unlike networks of other
routers where the deflection rate increases gradually at initial periods and exponential after-
wards.

Router architecture:

The router takes the occupancy bit of each channel from the pipeline register, as an input
and monitors the congestion level in that particular router. Every input port has an occupancy
bit which is set when the channel is occupied, otherwise it is reset. The router decides whether it
is congested or not by two threshold values. If the number of busy channels exceeds a threshold
(CT) during certain window (CW), the congestion monitoring and triggering circuit (CMTU)
enables the two stages. If it is less than a threshold (CFT), it is congested and in the single-cycle
mode, the router (CMTU) enables the trigger to convert it into the two cycle mode. Under single
cycle mode, pipeline register B is bypassed and power-gated. Routing logic(RU) in the router
uses X-Y routing.The router computes the priority for each incoming flit in the prioritization
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unit (PU) based on hops to the destination.

Eject bit set unit (ESU): It sets an eject flag, for the outgoing flit. If the assigned port is the
same as the productive port and it is one step away from destination.
Eject Bypass unit (EBU): It checks the eject flag of the incoming flit. If the eject flag is set. It
bypasses input flits with ejection flag set to the eject unit (EU) and sets the occupancy bit of this
channel; if more than one flit needs to be ejected, one is chosen randomly.

The router performs port allocation by permutation deflection network. The permutation
network has 4 arbiters. The router uses a side buffer(SB) to store the preempted flits. Centre
buffer(CB) is used to store the flits injected by the local node. Both, the side buffer and the
centre buffer are non-FIFO queues. Thus, every flit in these buffers are given a chance to be
injected. This is implemented by using a 2-bit flag for each flit in these buffers to represent the
desired output port.

PLU is the preemption logic unit one among the deflected flits is buffered in the side buffer.
BM is a bypass multiplexer. It receives the flits and directs them based on the select trigger from
(CMTU) unit in order to facilitate switching between the two modes.

Under single cycle buffer the preemption logic is bypassed and power-gated. The preemp-
tion logic forcefully preempts a flit from the router pipeline to allow the starving flits in the core
buffer to be injected. Injection unit in this router injects from both the side buffer and the center
buffer. If more than one link is idle, both buffers can inject. In the center buffer, if the num-
ber of flits is less than half its capacity, the router injects flits only if they got their productive
output port. If the number of flits is more than half its capacity, the router injects flits even in
non-productive directions.

3.10 Q-BLESS
This router is based on BLESS router. It enhances the performance of the deflection based
router. As buffer-less router occupies less area and consumes less power. Q-bless adopts source
throttling to control congestion. Q-bless prioritizes the running applications on the network.
Flits of high priority applications are never throttled. Source throttling means that the node is
ordered to stop injection when the network is congested, and the other starving nodes are al-
lowed to inject.

During each epoch, each node calculates the congestion by recording the throttling rate and
counting the number of starvation cycles, if the node is starving. A node is considered starving if
the time period at which the node has not inject any flits exceeds a certain threshold. Each node
has its own threshold. A global controller gathers this information, and determines the throttling
rates. The global controller selects the nodes that run low priority application to throttle. This
picky throttling improves the performance at high load in buffer-less network. It has a higher
saturation point than simple source throttling.
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3.11 Opensource simulators

3.11.1 Noculator
”NOCulator is a network on chip simulator providing cycle accurate performance models for
a wide variety of networks (mesh, torus, ring, hierarchical ring, flattened butterfly) and routers
(buffered, bufferless, Adaptive Flow Control, MinBD, HiRD).” [21][28]. Noculator provides
the RTL of buffer-less BLESS and Chipper and a buffered design. It also provides a simulator
in C# for all the above topologies and routers.

3.11.2 Booksim
A flexible simulator with the following parameters topology, routing algorithm, flow control
and allocation scheme[27].

3.12 Network metrics in Buffer-less Networks
In buffer-less networks the router can not inject unless there is free channel. Therefore, the la-
tency does not increase with the increase in congestion, in case that the latency is calculated
from the time the flit is injected not from the time it is generated. The proper metric to represent
congestion at each node is the injection starvation. Injection starvation is the number of cycles
the router could not inject in.

[22] mentions that the flits are not created equal. The throttling of applications have dif-
ferent impact on the overall network throughput. The author conducts an experiment of two
applications. The author concludes that the control mechanism on application level should have
instruction/flit IPF. As the throughput of flits depends on the cache miss rate of each application.
However, this work has nothing to do with congestion control on application level.
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Chapter 4: Buffer-less Modified CONNECT Router for 2D
and 3D NoC

This chapter discusses Modified CONNECT. Modified CONNECT is the main contribution
of this work.

4.1 Modified CONNECT
Modified CONNECT [47] is a lightweight and efficient buffer-less router. Modified CONNECT
is a modified version of CONfigurable NETwork Creation Tool(CONNECT). Modified CON-
NECT saves 30% area compared to CONNECTwhile employing competitive performance. The
router is compared against the available buffer-less routers BLESS and CHIPPER.
At each clock cycle, the router could receive new flits at each input port. At the end of each cycle,
the flits should be delivered despite contentions. Modified CONNECT has the same pipeline
architecture as that of CONNECT 4.1. However, at each input port the buffers are replaced with
pipeline registers. Similarly, the output FIFO module is replaced with pipeline register at each
input port. The input pipeline register senses whether there is a valid incoming flit. Input flit
fetches the look-up table using destination to get its output port. The output port is appended
to the flit. The flit is saved in the pipeline register and the appropriate output port is saved in
its pipeline register. The flit header (the requested output port) and the input buffer occupancy
are fed to the allocation logic to arbitrate for the appropriate output. It is worth mentioning that
there is no credit handling or backpressure in buffer-less designs except at the local (injection)
node. CONNECT can eject one flit only per cycle.

Fig. 4.1: CONNECT Router [45]

Allocation is divided into two sequential stages. Eject logic unit uses round robin to give
priority to the input ports. Static input arbiter is removed as it is useless in this design spec-
ification(mesh network). Static output arbiter is used as it occupies less area utilization than
round robin arbiter. Static output arbiter is used in order to maximize the number of flits di-
rected to their productive direction. This simple fixed priority grants the highest priority flits
their requested output ports. As each flit arbitrate to its desired output port. The flit of the higher
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priority is granted its desired output port. Each output port has a fixed sorting for flits of each
input port; flits that are not assigned any output ports are forwarded to the next stage.

The allocation logic of Modified CONNECT Fig.4.3 improves the performance as it allows
the maximum number of flits to be directed to its productive output port and it prevents unnec-
essary deflections. Reducing the deflection rate, reduces also the dynamic power dissipated as
well.

At contention, flits of lower priority are not granted any output port, therefore they are di-
rected to deflection logic. The available output ports are directed to the deflection logic as
well. The available output ports propagate vertically as shown in Fig.4.2, until they meet the
requests from the incoming input ports. The requests are kept on the diagonal to keep the delay
of propagation delay symmetric. The deflected flit is granted an output when the request which
travels horizontally meets an available output port. The deflection unit allocates free ports to
the unassigned flits through an efficient parallel way.

The router injects flits whenever there is at least one free channel after the allocation of
output ports to the incoming flits. The inject unit injects flit even it is not in its productive
direction. The late injection of flits decreases the average latency and increases the average
network throughput. It also prevents any inner loops and dynamic power dissipation.

CONNECT and Modified CONNECT use encoder logic as a crossbar. Encoder logic oc-
cupies less area than traditional switches. The flit payload does not propagate down the router
pipeline. Only header arbitrates for the output ports. Finally, the flit traverses a multiplexer to
the output port. Five multiplexers are used to allow the pipeline registers to receive new input
flits; and to allow these flits reach the neighbor routers.

A comparison is conducted between distributed RAMs and registers in ordet to choose the
appropriate implementation of the pipeline register. It is found that for a single pipeline register
of wide data path (around 71 bit wide), registers are more efficient because distributed RAMs
are consumed even if they are not totally occupied. However, it is found that for long buffers it
is more efficient to use distributed RAMs as found in [34].

Modified CONNECT implements the pipeline registers as hardware registers. Modified
CONNECT does not use distributed RAMs nor block RAMs in implementing the pipeline reg-
isters. Modified CONNECT uses the discrete registers in each slice. However, Modified CON-
NECT implements the injection node buffer as distributed RAM.

Modified CONNECT is a single pipeline router. FPGA operates at lower frequency than
ASICs. Modified CONNECT overcomes this drawback of FPGA, by using wide datapaths.
This shallow pipeline decreases the average network latency as it shortens the critical path of
the router. The shallow pipeline also consumes less number of flip flops.

Modified CONNECT is evaluated against two metrics performance and hardware cost.
The allocation unit is implemented by another architecture. The second architecture is a

permutation network 4.4. It is totally connected permutation network that uses fixed sorting in
each arbiter. It is deadlock free. Each arbiter has two inputs. There are 6 arbiters in 3 stages.
The architecture is based on the architecture of CHIPPER. However, that of CHIPPER is more
area efficient. This architecture achieves exactly the same throughput and latency as the first
allocation architecture. It occupies the same area.

Figure 4.5 is a walk through example to clarify the pipeline of Modified CONNECT.
At the first instant, the flit accesses the logic tables with the address of the destination
(ADDR_1) and return back the output port number (D_OUT_1). At the same instant, Router0
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(a) Deflection Unit (b) Single Element

Fig. 4.2: Deflection Unit

Fig. 4.3: Proposed Allocation Logic

Fig. 4.4: Another Architecture to the Allocation Unit

receives a flit at input port 1 (in_ports_1_putRoutedFlit_flit_in).
(in_ports_1_putRoutedFlit_flit_in) is the input to the router and it is the concatenation of the
(D_OUT_1) with the flit. The flit is saved at the (flitBuffers_1) pipeline register and the output
port is saved at (outPortFIFOs_1) pipeline register. At the next clock cycle, the router con-
catenates the output of (flitBuffers_1) register with the output of (outPortFIFOs_1) register in
(hasFlitsToSend_perIn_1$wget); and the flit arbitrates for its desired output port. The input for
the allocation logic is (allocate_alloc_input)signal. In (allocate_alloc_input) the first five bits
refer to the output port requests of the incoming flit from input port 0 and the second five bits
refer to the requests of the incoming flit from input port 1 etc. In this example flit at input port
1 requests output port 4, therefore the second five bits in (allocate_alloc_input) are 10000. As
the first bit is the request to output port 0, the second is the request to output port 1, the third is
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Fig. 4.6: Load Latency Curve

the request to output port 2 etc. There is no contention in this example therefore, the output of
the allocation unit is the same as its input. CONNECT has five encoders. One for each input
port. Each has five input ports. The output of input port 1 encoder is (outputencoder__d963).
The highest significant bit is used to dequeue the input port buffer. The next three bits refer to
the output port that the flit should be directed to, which is port 4 in this example . Output port 4
is (out_ports_4_getflit) signal.

Fig. 4.5: Modified CONNECT waveform

4.1.1 Performance Analysis
Basically, buffer-less routers have high performance close to conventional routers at low traffic;
however, the performance degrades at high traffic loads. Modified CONNECT has competitive
throughput as shown in Fig.4.6.

Modified CONNECT is evaluated against the available buffer-less designs BLESS andChip-
per. The designs are evaluated using uniform, transpose and inverse traffic patterns. The RTL
of BLESS and CHIPPER routers is available at [21]. The simulation is conducted on 4x4 mesh
network with the same testbench used in simulating CONNECT and Modified CONNECT. The
simulation is carried for 3000 cycle. Modified CONNECT has lower throughput than CON-
NECT. The same throughput as BLESS and higher than CHIPPER as illustrated at Fig.4.7.
However, Modified CONNECT has higher maximum operating frequency than BLESS. Mod-
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(a) Uniform Traffic Pattern

(b) Transpose Traffic Pattern

ified CONNECT has lower average latency than BLESS as illustrated at Fig.4.8. Modified
CONNECT has the lowest deflection rate as illustrated in Fig.4.9.

4.1.2 Hardware Analysis
The four designs are synthesized using Virtex 7 evaluation kit(xc7vx485tffg1761-2). The area
utilization of the whole 4x4 network is illustrated in Table.4.1. The percentage of the reduction
in the total area is calculated using the resource utilization table in [34]. The resource utilization
table in [34] is calculated for Virtex 5. This work assumes that the register area is approximately
3.6 times the LUT area for Virtex 7.

Modified CONNECT has 30% area less than CONNECT. Modified CONNECT reduces
area compared to BLESS by 24% and reduces the area compared to CHIPPER by 18%. The
reduction in the area of Modified CONNECT is due to the routing tables algorithm and the shal-
low pipeline. Dynamic power is calculated at maximum injection rate. Though the dynamic
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(c) Inverse Traffic Pattern

Fig. 4.7: Traffic Evaluations for Network-Level Throughput

Fig. 4.8: Average Network Latency vs. Injection rate

Table 4.1: Area and Power Analysis

Router LUT register Dynamic Power
CONNECT 14211 2624 0.003 (W)

Modified-CONNECT 8850 4144 0.035 (W)
BLESS 24814 33584 0.34 (W)
CHIPPER 20852 26784 0.075 (W)
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Fig. 4.9: Deflection rate for Buffer-less Designs

power in Modified CONNECT is higher than that of CONNECT for 4x4 mesh as shown in ta-
ble4.1, Modified CONNECT scales better. In 12x12 mesh the dynamic power of CONNECT
is 3.375 and that of Modified CONNECT is 0.769. Modified CONNECT keeps the same area
savings at high dimensions. This is to clarify why Modified CONNECT has greater number of
registers than CONNECT. The registers in CONNECT are used in the credit handling flow at
each input port, they are used to control the FIFOs of both (flits and output ports) at each input
port. Though the FIFOs are implemented as distributed RAMS, there is still a need for empty,
full etc registers. All the previous registers are not used in Modified CONNECT, however Mod-
ified CONNECT saves the incoming flits from the four input ports in registers not in distributed
RAMs. The number of registers in Modified CONNECT (in a single router) is approximately
equal to the (number of ports -1) times the width of flit. The LUT area is approximately 3.6
times the register area, therefore the overall area occupied by Modified CONNECT is lower
than than of CONNECT.

4.2 Introduction to Three Dimensional Networks
The speed of ASIC is higher than FPGA. ASIC occupies less area than FPGA. This is because
standard cells have less area than look up tables. Because FPGA often needs to chain a large
number of LUTs with long interconnects to emulate a logic block[45]. Also, the switches in
FPGA consume more area and have larger capacitance than wires in ASIC[43]. The speed, area
and power consumption of FPGA need to be improved. Three dimensional networks can im-
prove the speed by 31% to 56% [43].

4.2.1 Performance and Dynamic Power
Three dimension network enhances the capabilities of stacking a larger number of processors.
It increases the density of interconnects and IPs in the system. Two dimensional network is
restricted by floor planning. Three dimension increases the capabilities to embed more IPs. 3D
allows the possibility of integrating different technologies in one product. Another advantage
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of 3D is to provide substrate isolation between different blocks. Three dimensional network
decreases the number of stages between the nodes, so the average throughput increases. The
longest critical path shortens. It achieves higher performance and parallelism. Also less dy-
namic power. The consumed power per a single packet transmission is lower. 3D offers low
cost scaling. The drawbacks of 3D are mainly the area overhead and the fabrication challenges
in bonding the dies. Another restriction is the heat transfer. The temperature increases specially
to the dies at the middle of the 3D structure.

The throughput of the 3D network is higher than that of 2D networks for these reasons [33].
First, for the same number of routers the number of links in 3 dimensional network is greater
than that in 2D network. The number of links in 4x4x4 is 144. The number of links in 8x8
network is 112. Increasing the number of links increases the parallelism.

Links2D mesh = Nx ∗ (Ny − 1) + Ny ∗ (Nx − 1) (4.1)

where Ni is the number of routers in i dimension.

Links3D mesh = NxNy ∗ (Nz − 1) + NyNz ∗ (Nx − 1) + NxNz ∗ (Ny − 1) (4.2)

The number of hops in 3D network is basically less than that in 2D network. The number
of near neighbors in 3D network is greater. Therefore, in general the average number of hops
in the path of a packet from source to destination decreases in 3D networks. This means that
the average latency decreases in 3D network and the throughput increases. The latency im-
proves in 3D NoC up to 33% compared to 2D NoCs.[46] The path from source to destination
becomes shorter. The dynamic power consumed through the path from the source to destination
decreases. It takes less power to transmit a single flit in a 3D network. However, the total power
consumed in 3D network is higher because 3D network transmits more flits.

Finally, each router in the 3D networks has 7 ports. Routers in 2D networks has 5 ports. The
number of flits that cross the crossbar is greater in 3D network. The greater number of ports in
each router enhances the throughput.

The delay of the interconnects is an important factor in the performance of the FPGA. The
interconnect delay is more significant in the new technology. Since the transistor size scales
down and the wire length remains as it is. The delay of the wires equals RC and the length
of the wire remains as it is and the transistor delay decreases as the transistor scales down.
However, the average wire length decreases in 3D network. The resistance of the wire with
repeaters decreases. The capacitance of the wire decreases. The delay equals RC. Therefore,
the delay of the wire with the repeaters decreases. The reduction in the wire delay contributes
in the improvement of the performance. The dynamic power [26] also decreases as the wire
length decreases, because the capacitance decreases as shown in eq.(4.3). Also the power supply
decreases as a result of the scaling down of transistors in new technology generations.

P = α.CL. f .V2
dd (4.3)

The zero load latency depends on the latency of the router and that of the channel. The
zero load latency characterizes the performance of the 3D topology. If the channel delay is the
dominant, it is better to decrease the channel length. If the delay of the router is dominant, it is
better to decrease the number of hops that the flit traverses through its journey from source to
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destination. 3D routing reduces both the average number of hops and the wire length. Though
the router delay increases as the number of ports increases, the increase in the router delay is
small. The router delay increases logarithmically with the increase in the number of ports. The
router delay is independent of the network size[46]. The 3D network enhances the performance
and consumes less dynamic power per flit. It occupies more resources. 3D network that is
discussed here is where the nodes are scattered in the three dimensions and the interconnects
span the three dimensions.

4.2.2 Physical design
The manufacturing of 3D connections is illustrated in [32]. FPGAs are stacked on die or wafer
scale. In Die Stacking the 3D connections are done through micro bumps. Wafer stacking the
3D connections are done using through silicon vias (TSV). The die stacking takes place by 3D
package or by face to face micro-bumps. Micro bumps place gold bumps on the surface of each
die. Micro bumps bring the signals to the edge of the die. The edge of the die that connects the
tiers is metal. The 3D package offers high density connections. The bumps connect the signal
from the edge to the IP. Face to face micro bumps shorten the wires and decrease the parasitic
capacitance. Actually, what limits the number of tiers that could be used in 3D package is heat.
The assembly process does not limit the number of tiers. The system is limited by the heat. Heat
could degrade the system performance. High power designs need a cooling system with small
area. The designs that benefit from the wire reduction are actually the hottest designs. This
technology is limited to 2 tiers [32].

(a) Die stacking by Micro
Bumps

(b)Wafer Bonding by
TSV

Fig. 4.10: 3D Manufacturing [32]

Wafer stacking uses the through silicon vias (TSV).Wafer stacking stacks thewafers together
then cuts the wafers into dies. Wafer stacking has worse yield. The first wafer is placed, the
second is placed face to face. The third is placed face to back and so on. Holes are created
from the upper wafer to the lower. The holes are filled with tungsten for connectivity. The
through silicon via enhances the connectivity. However, the increase in the number of tiers is
restricted by the yield. As the wafers are assembled then cut, the vias decrease the wire length
and so decrease the parasitic resistance and capacitance created by the wire. Therefore, the total
average delay decreases. The decrease in dynamic power is more achievable than the increase
in the speed. This is because of the parasitic capacitance and resistance of the via affects the
speed. The mobility of electrons is affected by heat. Actually doubling the heat could produce
30% degradation in the performance. Fortunately, the reduction in the wire length makes up the
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heat effect on the mobility. Therefore, basically what limits the system is the yield. If the yield
of the system is low, the cost of the system will be high. Beyond a threshold the yield decreases
exponentially with the increase in the number of TSVs. The wafers are bound together before
examining them. Therefore, a good die could be bonded with bad one. Though, vias have their
parasitic capacitance and parasitic resistance, the parasitic capacitance is low. It does not affect
both the delay and the power; however, it adds area overhead.

Fig. 4.11: Comparison of 3D connections [32]

3D adds area overhead because inter-layer vias need dedicated area as shown in Fig.4.12.
Three dimension network uses either grid based topology or Fat tree topology. Mesh topology
is the common used topology. It is implemented by Through Silicon Via (TSV). Tree topology
layout divides the planar network into parts and connect them vertically as well.

Fig. 4.12: Area occupied by TSV [42]

Overview on Packaging used in 2D IC

This is an overview on packaging of 2D ICs. First, wire bond ball grid array (BGA) Fig.4.13a is
adopted. The wires are typically 15-35 µm. In order to increase the speed and to reduce wire in-
ductance, flip chip connectivity is used instead of wire bonding. FlipChip offers high pin count,
high signal density, better power dissipation, low signal inductance and good connectivity. Flip
chip is not a package, it describes the method of electrically connecting the die to the package
carrier. Flip Chip is used in order to increase the speed. It offers better power dissipation, low
signal inductance and good connectivity. Flip chip uses conductive bumps, the bumped die is
flipped over so that the bumps face the package carrier as shown in Fig.4.13b. After the die is
soldered, underfill is used between the die and the substrate. The under fill is used to reduce the
stress on the soldered joints. Flip chip package is an extension to flip chip where the package
may contain multiple passive components. Silicon devices are bumped and embedded into 2 or
4 layer substrate. Flip chip family contains bumps with different shapes and sizes and different
materials. Chip scale package is 1.2 times the size of the die inside. Chip scale package may
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(a) 2D wirebond packaging[48]
(b) Flip Chip Connectivity[9]

Fig. 4.13: 2D Packaging

Fig. 4.14: 2.5 Packaging[5]

use wire bonding, flit chip or wafer bonding. Die stacked chip scale package is the process of
mounting multiple chips on the top of each other. The chips used to be of different sizes and
wire bonding was used to connect the chips. Package on package packaging is where individual
packages are stacked on the top of each other. System in Package packaging is where multiple
bare dice are mounted on a top of the same substrate to connect them all.

The packaging is upgraded to 2.5 packaging. It allows the usage of chips with different
technologies. As chips are not connected directly to the substrate, there is an interposer between
the chips and the substrate as shown in Fig.4.14. It decreases the wire length between multiple
dies.

4.3 Three-dimensional Modified CONNECT
Three-dimensional network might be a reasonable solution to the performance limit. The per-
formance degrades as the network diameter increases. The comparison between 8x8 Modified
CONNECT and 4x4x4 3D Modified CONNECT shown in Fig.4.15 shows that the area over-
head is small compared to the performance gain in 3D network. This metric (throughput/ area.
power. latency) of 4x4x4 Modified CONNECT is higher than that of 8x8 Modified CONNECT
by a decimal point.

4.3.1 Routing algorithm
Modified CONNECT is extended to be used in three-dimensional network. The router has seven
ports with a single allocator and a switch. The router picks the z direction first. The router at
each node decides whether the destination of the flit exits on the same layer or not. Then, it
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Fig. 4.15: Modified CONNECT in 2D and 3D NoC

prioritizes x direction over y direction if both are valid. Homogeneous 3D network acts as
vertically connected layers.

4.3.2 Router Architecture
3D Modified CONNECT has 7 input/output ports. Modified CONNECT has 5 input/output
ports. The input ports are East, West, North, South and node. 3D Modified CONNECT has two
additional input/output ports which are up and down. This is the main difference between Mod-
ified CONNECT and 3D Modified CONNECT. The router uses routing tables that prioritize
x direction over y direction if both are valid. Modified CONNECT prioritizes the x direction
over y direction as well. The routing algorithm is implemented in both by routing tables not by
routing function. Each input port has its distributed RAM. The distributed RAM is the routing
table of this port; therefore, the number of routing tables per router is seven instead of five. The
size of every single RAM increases as it has entries equal to the number of routers in the whole
network. There is a single pipeline register for each input port. The allocator logic is divided
into two blocks just like Modified CONNECT. The input to the allocator logic is 49 bit, seven
input ports and each one of them has 7 bits to represent the output port that it requests. The first
block is the static output arbiter in which each output port chooses an input port out of the input
ports requests. This is implemented as 7 multiplexers each has 7 inputs instead of 5 multiplex-
ers each has 5 inputs. The size of this block is insignificant, it is approximately 10 LUTs. The
second block is the deflection unit. The deflection logic is waveform allocator. The deflection
unit is 6x6 matrix of small arbiters. In Modified CONNECT the deflection unit is 4x4 matrix
of small arbiters. The deflection unit works with the same logic used in Modified CONNECT.
Finally, Modified CONNECT uses encoder to trigger each input port to receive new data. The
encoder also enables a multiplexer which directs the flit to its allocated output port. Therefore,
3D Modified CONNECT has 7 encoders instead of 5 and 7 multiplexers instead of 5.
The flit width of 3D Modified CONNECT is greater than that of Modified CONNECT as the
number of address bits in 3D Modified CONNECT most probably is greater than that of Modi-
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Fig. 4.17: 3D Buffer-less PERM [16]

fied CONNECT.

Fig. 4.16: CONNECT Router [45]

4.3.3 Discussion
It is clear from the previous discussion on CONNECT architecture that as the number of ports
increases, the size of routing logic tables increases. Also, the number of logic tables per each
router increases; because the number of routers in the network increases. The size of the allocator
increases as well. The deflection matrix arbiter becomes 6x6 instead of 4x4 in 2D Modified
CONNECT. The static output arbiter also increases. The size of the static arbiter is insignificant.
It is approximately 10 LUTs. The number of encoders in the switch module increases. 3D
Modified CONNECT offers flexible number of 3D routers. Any router could be 3D router or
2D router.

Three-dimensional Modified CONNECT is an efficient three-dimensional router. It outper-
forms the available 3D buffer-less routers. BelowModified CONNECT is evaluated against the
available three-dimensional routers 3DAPBLESS [49], 3D-PERM [16] and 3D-BLESS. 3D-
BLESS is the three-dimensional version of BLESS. 3D-BLESS operates at less than 100MHz.

3D-PERM [16] is a single cycle buffer-less router. Three-dimensional PERM adheres to the
architecture of 3D-CHIPPER. The key difference between 3D CHIPPER and 3D-PERM is the
way each addresses live-lock problem. 3D CHIPPER uses the golden flit rule, where pseudo
random flit is chosen to be prioritized for a long enough time to be delivered to its destination.
3D-PERM sorts the incoming flits by the age priority. The oldest flit chooses its requested out-
put port. 3D-PERM guarantees the delivery of the oldest flit only, as the router partially sorts
the flits. The router uses the permutation network in sorting and arbitration. The permutation
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network has three stages of small units. Each unit has two inputs. The unit sorts the two incom-
ing flits. The older chooses its requested output direction and therefore the unit either swaps the
inputs or passes it. The permutation network of 3D-PERM is the same as that of 3D-CHIPPER.
It is not fully connected; however, it deflects less number of flits. Because ”golden flit” sorting
ensures that a single flit is directed to its productive output port. On the other side age priority
guarantees that more than one flit is directed to its output port, the actual number of flits that this
permutation network can direct it to its productive output port depends on the tree of the per-
mutation network. The multiplexer shown in Fig.4.17 is the injection logic. Flits are injected
whenever there is a vacant link. Flit traverses the permutation logic. It traverses the router
pipeline. Comparing 3D PERM to 3D BLESS, 3D-PERM has a shorter critical path thanks to
the permutation network. The permutation network solves the problem of the low operating
frequency of BLESS.

Though the permutation network improves the critical path, the arbitration path still domi-
nates the critical path. According to [49] the permutation network represents a 71% delay out
of the delay of the critical path. The router critical path is ineffeciently long for most cases,
as permutation networks are effiecient at low injection rate. At low injection the input of the
permutation network is at mostly one flit. Therefore, 3DAPBLESS [49] replaces the large com-
parator inside each unit in the permutation unit with a smaller one. 3DAPBLESS compares only
the five most significant bits in the two incoming flits. 3DAPBLESS_Lite is the second version
of 3DAPBLESS. It compares only the most significant bit in the age field of the incoming flits.
Both 3DAPBLESS and 3DAPBLESS_Lite outperform 3D-PERM, and they occupy less area.

4.3.4 Simulations and Results
Modified CONNECT, 3DAPBLESS, 3D BLESS and 3D-PERM are synthesized on Virtex 7
evaluation kit(xc7vx485tffg1761-2). Modified CONNECT, 3DAPBLESS and 3D PERM op-
erate at 100 MHz. 3D BLESS operates at 10 MHz. 3D-PERM and 3DAPBLESS are the only
two available 3D buffer-less routers. To evaluate 3D Modified CONNECT, it was essential to
extend the design of both routers BLESS and CHIPPER to be used in 3D network. The RTL
of 3D-PERM is not open source, therefore, its RTL is built by using the permutation network
of 3D CHIPPER and modifying it. Similarly, the RTL of the pipeline of 3DAPBLESS is built.
Modified CONNECT throughput is 27% higher than 3DAPBLESS throughput and 42% higher
than 3D PERM throughput as illustrated in Table4.2.

The area occupied by each router is illustrated in Table 4.3. The area resources occupied by
each router is calculated at its maximum operating frequency. These designs are implemented
on Virtex 7. Virtex 7 is a 2.5 technology. It supports TSVs but not in the third dimension. The
calculations might not be precise. However, the tool performs design route checks and total
parasitic extraction after routing. Therefore, the delay and power calculations have taken the
parasitics in their considerations. It is clear that though 3DAPBLESS can reach to a slightly
higher frequency, Modified CONNECT achieves competitive frequency and it saves area re-
sources significantly.

When Modified CONNECT operates at 125 MHz and 3DAPBLESS operates at 142 MHz,
Modified CONNECT achieves 65.5 MHz and 3DAPBLESS achieves 67 MHz. In this case,
Modified CONNECT occupies 54% area less than 3DAPBLESS. 3D BLESS has the lowest la-
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tency in ns and the lowest throughput. The estimated resources benefit obtained by 3DModified
CONNECT is calculated using area resources table in [34].

Table 4.2: Performance Analysis

Router Maximum throughput (Flit/cycle) Latency (cycle) Maximum frequency (MHz)
3D Modified CONNECT 0.524535 21 125

3DAPBLESS 0.471854 23 142
3D-PERM 0.479521 23 100
3D-BLESS 0.497375 16 less than 100 MHz

Table 4.3: Area Utilization

Router LUT Register
3D Modified CONNECT 51783 17168

3DAPBLESS 107728 57936
3D PERM 115837 64562
3D BLESS 121017 129632

4.4 Flit Structure and testbench
CONNECT generator uses the flit with the below structure 4.18. The structure of the flit of
BLESS is shown in Fig.4.19. The testbench consists of a packet generator that generates the
packet according to the packet injection rate chosen by the user. The router sends credit to the
credit handling that counts the empty slots in the injection buffer. If the number of empty slots
is greater than 3 slots the credit handling module sends to the packet generator to send a new
flit. The packet generator stops packet generation when the local injection queue is nearly full.
The state of the injection queue whether it is full or empty is the starvation index. The starvation
index is local, it does not represent the network state. The valid bit, tail bit and destination fields
are filled by the packet generator unit. There are packet generator and credit handling modules
for each router in the network. This testbench was designed in [31].

Fig. 4.18: Flit Structure of CONNECT

56



Fig. 4.19: Flit Structure of BLESS

In order to use the testbench with BLESS and CHIPPER. It is essential to use positive edge
counter as both BLESS and CHIPPER are three stage routers. The RTL of BLESS is attached
in the appendix. The backpressure signal is “port4_ ready”.
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Chapter 5: CAD Tool for the 3D NoC Parameters
Optimization

5.1 Optimum Size
In this chapter simulations are conducted in order to find the optimum size of a square mesh,
the optimum number of layers, the optimum number of three-dimensional routers and their lo-
cations. The target is to generalize the optimum number of three-dimensional routers per mesh
for three-dimensional buffer-less networks. The five buffer-less designs and CONNECT are
evaluated against a chosen metric (figure of merit).

Figure o f Merit =
Throughput

Area ∗ Power ∗ Latency
(5.1)

The operating frequency of 3D BLESS is 10 MHz and the operating frequency of the all the
other routers is 100 MHz. In the figure of merit (FOM), the throughput and the latency are in
terms of cycles. The power term is the dynamic power. The static power is 0.24 (W) for all the
designs.

5.1.1 Optimum Size of Square 2D Mesh
The FOM decreases as the size of the square mesh increases as shown in Fig.5.1. Because
the area increases, the number of flits per network increases and therefore the dynamic power
increases, the diameter of the tier increases and therefore the latency increases, and finally the
throughput decreases as the core of the each single tier becomes more congested. The FOM
saturates nearly at mesh size 4x4.

5.1.2 Optimum Number of Tiers
The single tier is 4x4 square mesh. Each and every router in the mesh is a 3D router. It is
observed that the FOM decreases as the number of layers increases. Because the area occupied
by network increases, the dynamic power increases, latency of flits increases and the throughput
decreases in all the designs except in BLESS, it saturates. The FOM saturates after 4 layers.

It is noticed that placing the new IP cores vertically by increasing the number of tiers is better
than placing the new IP cores horizontally by using a larger mesh network. It is noticed that the
increase in mesh diameter, degrades the performance. The slope of Fig.5.2 is less than the slope
of Fig.5.1. It is worth mentioning that the scale of Fig.5.2 is larger than that of Fig.5.1, because
the number of routers in the network in Fig.5.2 is greater than that in Fig.5.1. For the same
number of routers placing the routers vertically gives smaller decrease in the figure of merit.
The 3-dimensional network could be a solution to the performance limit.

5.1.3 Optimum Number of 3D Routers
The target is to generalize the optimum number of 3D routers in a buffer-less 3D network. How-
ever, it is noticed from Fig.5.3 that, there is correlation between the results of CONNECT and
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Fig. 5.1: Optimum Size for Square 2D mesh

Fig. 5.2: Optimum Number of Tiers
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Fig. 5.3: Optimum Number of Three-Dimensional Routers

Modified CONNECT; otherwise, there is no correlation. The optimum number of 3D routers
depends on the architecture of the router. The simulations are conducted in a 4x4x3 network
using uniform traffic pattern. The optimum number of 3D routers for 3D BLESS is 16 routers.
The optimum number of 3D routers for CONNECT andModified CONNECT is 10 routers. The
optimum number of 3D routers for PERM is 10 and 12 for Lite. This is illustrated in Fig.5.3. It
is noticed that Modified CONNECT has the highest FOM. Taking the operating frequency into
account, Modified CONNECT has FOM higher than BLESS and Lite.

The optimum location of 3D routers depends on the traffic pattern. Simulations are con-
ducted using uniform traffic pattern to find the optimum locations of 3D routers. The simula-
tions included CONNECT, Modified CONNECT, 3D-BLESS, 3D-PERM, and Lite. The 4x4x3
NoC of these routers are synthesized on Virtex 7 evaluation kit(xc7vx485tffg1761-2). The sim-
ulations are conducted with respect to the FOM. Below are the cases which are included in the
simulations. The target was to find the locations of 3D routers that maximize the FOM, if the
number of 3D routers in the network is 1, or 2, or 4, or 6 or 8. The simulation is repeated for
each router design. The five routers obtain the same results. The router indices are ordered as
shown in Fig.5.4.

• Single 3D router: The best location for a single 3D router is at the middle of network to boost
the performance. The nodes at the middle of the network are the most congested ones.
The optimum choice is router 5 as shown in Fig5.4.

• Two 3D routers: The best location is also at the middle of network, where the two routers
are on the diagonal of the mesh. However, the performance is better using router 5 and
router 10 as three-dimensional routers rather than using router 6 and router 9 as three-
dimensional routers.

• Four 3D routers: The best location for the four 3D routers is at the middle of the network.
The next best location is at the corners of the network, where router 3, router 12, router 0
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Fig. 5.4: Routers Indices in 4x4 Mesh Network[45]

and router 15 are the 3D routers.

• Six 3D routers: The best location is the four corner routers and the two on the diagonal espe-
cially router 5 and router 10.

Therefore, it is concluded that the locations depend on the traffic pattern. It is concluded
also that 3D routers should be placed at the hotspots. Therefore, if the traffic is uniform, the
optimum locations of the 3D routers is at the middle of the mesh.

5.2 CAD TOOL
A new CAD tool is proposed in Fig.5.5. The tool enables the user to configure the network,
simulate it and easily synthesize it. The tool is developed to allow more experiments to be con-
ducted on buffer-less 3D network. The tool allows the user to choose one of the buffer-less
3D routers 3D BLESS, 3D PERM, 3D CHIPPER and 3D Modified CONNECT. The routers
are synthesized on Virtex 7. Modified CONNECT operates at 100 MHz, while the other four
routers operate at 10 MHz.

The user can configure these parameters. 3D Nocet [14] uses one 3D router per mesh where
the user could change the topology. The user could choose mesh or ring topology. The router
uses elevator first algorithm.

•Buffer-less Router.
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•Mesh Size.

•Number of tiers.

•Number of 3D routers.

•3D Routers.

•Injection rate.

Fig. 5.5: The GUI of CAD Tool

Fig. 5.6: Network code received by mail

Fig. 5.7: Performance

The tool uses mesh topology. The square mesh size could be changed from 2x2 to 12x12.
The number of tiers varies from 1 to 8. The user could choose the number of 3D routers per mesh.
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All the mesh layers are exactly identical. They have the same size and the same number of 3D
routers. The 3D routers exist exactly at the same locations on each tier. The user can simulate
the network. The tool uses uniform traffic pattern. However, the user could choose the average
packet injection rate. To start simulation press “Start simulation” button. Once the network is
simulated, the tool displays the average network latency and network throughput as shown in
Fig.5.7. The user could choose one of these routers: Modified CONNECT, BLESS, Perm, Chip-
per and Lite. The generated code could be sent to the provided email address as an attachment
5.6. The user should disable the anti-virus protection to receive the attachment. The generated
code is in Verilog. The user can synthesize the network and implement it. To synthesize the
network press the “Synthesize the design” check box. Implementation starts automatically once
the synthesis completes. While the network is being synthesized and implemented, “Synthesis
state” displays “Running”. Once the network is implemented, “Done” is displayed. Later, the
user could open the reports by pressing “Open Utilization Report” to open the area utilization
report; and “Open Power Report” to open power report.

As the user chooses the buffer-less router, the tool displays a recommended number of 3D
routers in “Optimum number of 3D routers”. The user could enter the number of 3D routers in
“Number of 3D Routers”. Then the user could enter the index of 3D routers in “Enter3DRouter”
edit field. To enter the index of 3D router, the user should type the index then press enter. If
the user wants to add another router, omit the previous index, type the index and press enter.
The chosen 3D routers appear at “Chosen 3D routers”. It is recommended to follow the order of
buttons while configuring the network. The user should choose first the router, then the number
of tiers, then the number of routers per mesh as shown by the numbers on Fig.5.8. The CAD
tool is created using Matlab app designer unlike 3D-NOCET, it is created by Linux commands.

A walkthrough example
In the figure 5.8 the user has selected Modified CONNECT router. The user has selected 3

tiers. The single tier is 2x2 mesh; that is why ”Number of routers per tier” is 4 and ”size of the
mesh” is 2. The user has selected one 3D router per tier. The 3D router is that of index 2. The
“chosen 3D routers” displays all the possible router indices in a mesh layer and the 3D ones are
shaded; therefore in this example the four indices 0,1,2,3 are displayed in “chosen 3D routers”
and index 2 is shaded. The injection rate used in simulation is flit per cycle. The injection rate
represents the rate of injection of packets which is 50%. As the packet consists of two flits.
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Fig. 5.8: Walkthrough example
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5.2.1 The execution flow of the CAD Tool
This diagram illustrates the callback functions of the matlab tool and the execution flow of the
tool and the execution of the tcl codes.

Router
callback

Display optimum number of 3D routers in 4x4 mesh

Select
Number
of tiers

Enter tier
size callback

Select the
number of
3D routers

Error number of 3D routers > numberof routers per tier

Enter the
index of
3D router
callback

Display selected 3D routers shaded in ”chosen routers”

Select the
injection rate

Enter the
dimension
of the

square mesh

Call back function creates
a matrix of all the previous
paramters and saves it
in connect_parameters.v

Start Sim-
ulation

Call back function runs a
tcl script to open model-
sim and start simulation

Start Syn-
thesis and
Imple-

mentation

Call back function runs
a tcl script to open vi-
vado and start synthesis
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This tool is designed to run 3D buffer-less network with generic parameters. The network
could have been created using matlab and implemented using HDL coder, however HDL coder
creates RTL designs with poor specs. Therefore, the proposed tool simulate and synthesize RTL
networks. it does not generate any RTL blocks.

The callback functions of the buttons and the edit fields can be found in Appendix A. This
tool edit the generic parameters in verilog parameters file. Each button edit a certain parameter
in a matrix of generic parameters at the end “Size of a Square mesh” uploads this matrix in
verilog parameter file. This is why “Size of a Square mesh” should be the last parameter that
the user could edit in the network before synthesis or simulation. This tool allows the user to
perform behavioral simulation on modelsim, it does not allow the user to perform post-synthesis
simulation. The callback of “Start Simulation” opens a tcl script which compiles the verilog
design and simulate it. However, Matlab has this command that can execute more than one tcl
instruction.

vsim('tclstart',{'vlog *.v','vsim work.CONNECT_testbench_sample','run -all'});

After the simulation the results (performance and latency) are written in a txt file that matlab
opens and displays as in Fig.5.7.

The callback function of “Size of a Square mesh”:
If the chosen router is CONNECT or Modified CONNECT, this callback function creates the
routing tables of each router in the network. The tool creates routing tables equal to the num-
ber of routers in the network. Each routing table has number of entries equal to the number
of routers in the network. In each entry is saved the port number to reach the corresponding
destination. The destination is the address number in this RAM. Attached in APPENDIX A, a
matlab function that compares the current router with every possible destination.
If the destination is on the left, it is given port 1.
If the destination is on the right, it is given port 3.
If the destination is on the top, it is given port 4.
If the destination is on the bottom, it is given port 2.
If the destination is on another tier, it is routed to the nearest 3D router.
If the current router is a 3D router & the destination is in a tier above the current one, it is given
port 5.
If the current router is a 3D router & the destination is in a tier below the current one, it is given
port 6.

Attached in Appendix A, a function that calculates the nearest 3D router to the given router.
The function receives an array of the indices of all the 3D routers per mesh and the index of the
current router. It calculates the number of hops separating the current router and each of them.
Then it returns the nearest one.

Figure 5.9 shows the routing tables created by the tool. These routing tables are created for
CONNECT or Modified CONNECT only. These routing tables are implemented as distributed
RAMs.
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Fig. 5.9: Routing tables Created by the CAD Tool

This tool uses two projects, the first one when it compiles CONNECT or Modified CON-
NECT; the other when it compiles 3D-PERM, 3D-BLESS, 3D-CHIPPER or 3DAPBLESS. In
order to specify which router is the 3D router and which is not, a stream of bits is created by the
tool, the number of bits equal to the number of routers. 1 is denotes to 3D router and 0 denotes
toa 2D router. This stream of bits is converted into decimal and saved in the parameter file. RTL
deals with this decimal number as an array of signals.

In order to display the “Chosen 3D routers”, a function is available in APPENDIX A. This
function is the callback of “Enter3DRouter”. An array is created if the number of tiers is greater
than one. This array has the indices of the 3D routers per the first tier from 1 to N. Every time
the user enter the index of a new router, the index is incremented and the value is shaded.
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Recommendations for Future Work

• Discuss a new mechanism in assembly buffers.
Chipper is the only design that addressed assembly buffers problem. As long as each flit
in the packet is routed independently, flits will reach the destination nodes out of order.
The router should have a large buffer to assemble the packets. There is a cost penalty to
this buffer-less schemes. It is more efficient to force flits of the same packet to use the
same path.

• Design a 3D buffer-less FPGA where the 3D routers are hardwired.
The performance of the system depends on the location of the 3D routers. It is better to
place the 3D routers at the hotspots. Therefore, this FPGA would probably be suitable for
a specific application and with a specific traffic pattern.

• Design a new FPGA that will use dynamic partial reconfiguration (DPR) with the buffer-
less routers in order to use the FPGA properly according to the running application. The
challenge is to make all the buffer-less routers have the same packet format and the same
interface.

• Discuss another topology that could help reduce the area occupied by the switch. In order
to reduce the complexity of the switch, the switch should not allow the full mapping of the
input ports to the output ports. Changing the number of ports and the network connectivity
would help decrease the set of combination inside the switch. There is a trade off between
the performance and the area of the switch. Also, livelock and deadlock will be critical
concerns in the design. This approach is used in CHIPPER and it reduces the permutation
network from three stages to two stages only.

• Apply a generic algorithm not a heursitic one to optimize the figure of merit with respect
to the parameters.

68



Discussion and Conclusion

Interconnects occupy significant area of on chip networks. Interconnects control the through-
put of the network especially for new technologies. Buffer-less NoCs have been proposed as an
alternative to buffered NoCs tackling the high network power head-on by eliminating buffers.
Buffer-less routers are efficient at low and medium traffic loads; however they have low satu-
ration throughput.
The main contribution of this work is listed as follows:

• Introduction of a new efficient lightweight buffer-less router ”Modified CONNECT”.
This work is published in [47].

• Introduction of Modified CONNECT in 3D networks.

• Investigation of 3D buffer-less network parameters.

• Introduction of a new CAD Tool that enables the user to perform more experiments on
3D buffer-less networks.

In this thesis, A brief introduction on networks on chip is discussed in Chapter1. Chapter2 il-
lustrates the conventional buffered router on chip; it illustrates the design and the architecture
of CONNECT. A short survey follows in Chapter 3. The survey includes the related work in
buffer-less routers. The Survey includes BLESS, Chipper, Minbd, Scepter, Carpool, Slider,
Cascade and QBLESS. Chapter 3 includes also the open source simulators Noculator, Booksim
and Notsrum. Chapter 4 describes the contribution of this work. It illustrates the architecture of
Modified CONNECT; It also includes an introduction to 3D NoCs. It describes the fabrication
of 3D NoCs and the 3D routing techniques. Also, it describes the pros and cons of 3D NoCs.
It presents 3D Modified CONNECT architecture. 3D Modified CONNECT is evaluated in 3D
NoCs against the other buffer-less designs in Chapter 4 as well. In Chapter 5 there is a brief
study on the optimum size of the 3D NoCs. The optimum number of layers, the optimum size
of mesh and the optimum number of 3D routers per mesh and their locations. Finally, Chapter
5 presents a CAD tool that summarize this work. The user could choose the buffer-less router,
the size of mesh, the number of layers, the number of 3D routers and their locations. The tool
could synthesize and simulate the network. The code could be sent to the provided email address.

These are the main results that could be concluded:

• Modified CONNECT has the minimal cost, where it achieves 30% reduction in area com-
pared to CONNECT, 24% compared to BLESS and 18% compared to CHIPPER.

• Modified CONNECT achieves a comparative performance to the buffered original CON-
NECT.
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• Modified CONNECT is suitable for wide datapath data.

• Modified CONNECT has small area because the router uses the routing tables instead of
routing functions; and because it is a single stage pipeline.

• Three-dimensional network might be a reasonable solution to network performance limits
in NoC. The performance is degraded by increasing network diameter much more than
by increasing the number of layers.

• 3D-ModifiedCONNECToccupies half the area consumed by 3DAPBLESS. 3D-Modified
CONNECT outperforms 3D-Perm.

• The switch occupies the largest area by the router on FPGA.

• The topology can decrease the complexity of the switch significantly. This is used in
Chipper and Hoplite.

• The optimum number of 3D routers in a network actually depends on the architecture of
the router.

• The optimum number of 3D routers in a 4x4 mesh for BLESS, Chipper, Perm, 3DAPB-
LESS, CONNECT and Modified CONNECT is 16, 6, 10, 12, 10 and 10 respectively.

• As the size of the mesh increases, the FOM decreases. Details are included in Chapter 5.

• As the number of layers increases, the FOM 3D NoC decreases. Details are included in
Chapter 5.
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AppendixA

A.1 TCL Command
The tcl commands used to synthesize the network RTL by Vivado.

open_project E:/simulink_work/type/project_1/project_1.xpr
reset_run synth_1
launch_runs synth_1
wait_on_run synth_1

launch_runs impl_1
wait_on_run impl_1

open_run impl_1

set_switching_activity -deassert_resets
report_utilization -file report1
report_power -name {power_1}

exit vivado

The tcl command used to simulate the network RTL by modelsim.

project open E:/simulink_work/typ/project1
vlog *.v
vsim work.testbench
run -all

A.2 Matlab
The callback of Simulate button
Once the simulation completes, the message in Fig.5.7 appears.

if strcmp(app.RouterDropDown.Value,'Modified Connect')
cd ('E:\simulink_work\mc2')

% vsim('tclstart',{'vlog *.v','vsim
work.CONNECT_testbench_sample','run -all'});

system('vsim -c -do E:/simulink_work/mc2/model.tcl');
data = importdata('E:\simulink_work\mc2\Results','\n');
message = sprintf('%s \n',data{:});
f2 = uifigure;
uialert(f2,message,'performance','Icon','success');

else
cd ('E:\simulink_work\typ')
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% vsim('tclstart',{'vlog *.v','vsim work.testbench','run
-all'},'runmode','Batch');

system('vsim -c -do E:/simulink_work/typ/model.tcl');
data = importdata('E:\simulink_work\typ\Results','\n');
message = sprintf('%s \n',data{:});
f = uifigure;
uialert(f,message,'performance','Icon','success');

end

Below is the code used to configure Modified CONNECT network and change the de-
sign parameters in connect parameters.v.

M = importdata('E:\simulink_work\mc2\connect_parameters.v','`');
M(1,1) = {['`define inj_rate',' ',app.InjectionrateDropDown.Value]

};
M(2,1) = {['`define Up',' ',linkD] };
M(3,1) = {['`define Down',' ',linkD] };
M(5,1) = {['`define Tier_Num',' ',app.NumberoftiersDropDown.Value]

};
M(7,1) = {['`define Mesh_Square','

',app.SizeofaSquaremeshDropDown.Value] };
M(6,1) = {['`define Mesh_Size',' ',mesh_Num] };
M(10,1) = {['`define dest_bits',' ',dest_str] };
M(11,1) = {['`define High',' ',Routers_Num] };
M(8,1) = {['`define addr_bits 68:',addr_str]};
M(12,1) = {['`define FLIT_DATA_WIDTH',' ',flit_width_str]};
filePh = fopen('E:\simulink_work\mc2\connect_parameters.v','w');
fprintf(filePh,'%s\n',M{:});
fclose(filePh);

The distributed RAMs are updated for Modified CONNECT.

layer= floor((myrouter-1)/Numpertier);
Rout3D = GetNearestRouter(app,myrouter-1,size);
R3D = ((Rout3D) + (layer*Numpertier));
if((myrouter-1 == R3D)&&

(floor((dest-1)/Numpertier)>floor((myrouter-1)/Numpertier)))
F(dest,myrouter)=5;

elseif((myrouter-1 == R3D)&&
(floor((dest-1)/Numpertier)<floor((myrouter-1)/Numpertier)))
F(dest,myrouter)=6;

elseif(mod(myrouter-1,size)<mod(R3D,size))
F(dest,myrouter)=3;

elseif(mod(myrouter-1,size)>mod(R3D,size))
F(dest,myrouter)=1;

elseif((mod(myrouter-1,size)==mod(R3D,size))&&
(R3D)>(myrouter-1))
F(dest,myrouter)=4;

else
F(dest,myrouter)=2;

end

75



A function to get the nearest three dimensional router.

function nearest3Rout = GetNearestRouter(app,mypos,mesh)
% datarr = getappdata(routers3,Dim3);
datarr=app.router3D;
msize = mesh*mesh;
i= int16(mod(mypos,mesh));
j= int16(floor(mod(mypos,msize)/mesh));
%sz = repmat(mypos,1,str2num(app.Numberof3DroutersDropDown.Value));
J = int16(floor(datarr/mesh));
I = int16(mod(datarr,mesh));
hop = abs(I-i)+ abs(J-j);
[M ,Index] = min(hop);
nearest3Rout = datarr(Index);

end

The callback function of Send Code button

UserName = 'mro.isp@gmail.com';
passWord = 'greenblue';
setpref('Internet','E_mail',UserName);
setpref('Internet','SMTP_Server','smtp.gmail.com');
setpref('Internet','SMTP_Username',UserName);
setpref('Internet','SMTP_Password',passWord);
props = java.lang.System.getProperties;
props.setProperty('mail.smtp.auth','true');
props.setProperty('mail.smtp.socketFactory.class', ...

'javax.net.ssl.SSLSocketFactory');
props.setProperty('mail.smtp.socketFactory.port','465');

if strcmp(app.RouterDropDown.Value,'Modified Connect')

if isfile('E:\simulink_work\new')
cd('E:\simulink_work');
delete('new');
end
cd('C:\');
system('"Program Files\WinRaR\WinRaR.exe" a

-x"E:\simulink_work\mc2\project_1"
-x"E:\simulink_work\mc2\project.mpf"
-x"E:\simulink_work\mc2\project.cr.mti"
-x"E:\simulink_work\mc2\vsim.wlf" "E:\simulink_work\new"
"E:\simulink_work\mc2\"');

sendmail(app.EmailEditField.Value,'Hello from MATLAB!','Thanks for
using Tool.','E:\simulink_work\new.rar');

else

if isfile('E:\simulink_work\newtyp.rar')
%cd('E:\simulink_work');

delete('E:\simulink_work\newtyp.rar');
end
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cd('C:\');
system('"Program Files\WinRaR\WinRaR.exe" a

-x"E:\simulink_work\typ\project_1"
-x"E:\simulink_work\typ\project1.mpf"
-x"E:\simulink_work\typ\project.cr.mti"
-x"E:\simulink_work\typ\vsim.wlf" "E:\simulink_work\newtyp"
"E:\simulink_work\typ\"');

sendmail(app.EmailEditField.Value,'Hello from MATLAB!','Thanks for
using Tool.','E:\simulink_work\newtyp.rar');

end

The callback function of the list box “Enter3DRouter”

app.router3D(app.index3D) = value;
app.index3D = app.index3D +1;
app.Chosen3DroutersListBox.Value = string(app.router3D);

A.3 Verilog
The small block in the Deflection Unit of Modified CONNECT allocator

This block is connected in a matrix form as shown in Fig.4.2.

`ifdef BSV_ASSIGNMENT_DELAY
`else
`define BSV_ASSIGNMENT_DELAY
`endif

module grantport(CLK,
RST_N,
notgranted,
notlocked,
grant,
carryhorizontal,
carryvertical
);

input CLK;
input RST_N;

input notgranted;
input notlocked;

output grant;
output carryhorizontal;
output carryvertical;

wire grant;
wire carryhorizontal;

77



wire carryvertical;

assign grant = notgranted && notlocked;

assign carryhorizontal = notgranted && !notlocked;

assign carryvertical = !notgranted && notlocked;

endmodule

Another way to implement the deflection block is to use these three successive stages

module outputarbiter(CLK,
RST_N,
notgrant1,
notgrant2,
notgrant3,
notgrant4,
output_1_select,
EN_output_arbs_1_next,
output_2_select,

EN_output_arbs_2_next,
output_3_select,

EN_output_arbs_3_next,
output_4_select,
EN_output_arbs_4_next);

input CLK;
input RST_N;

input EN_output_arbs_1_next;
input EN_output_arbs_2_next;
input EN_output_arbs_3_next;
input EN_output_arbs_4_next;

input notgrant1, notgrant2, notgrant3, notgrant4;

output [4:0] output_1_select,
output_2_select,
output_3_select,
output_4_select;

// signals for module outputs
wire [4 : 0] output_1_select,

output_2_select,
output_3_select,
output_4_select;

wire notgrantpA, notgrantpB, notgrantpC, notgrantpD;
wire [4:0] forport1or2A, forport3or4A, forport3or4B, forport1or2B;
wire [3:0] inforport1or2, inforport3or4,inforport3or4B, inforport1or2B;
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wire [1:0] numout1, numout2, numout3, numout4;
wire [1:0] numout3or4, numout1or2, numout3or4b, numout1or2b;
wire [1:0] port1num, port2num, port3num, port4num;
wire EN1, EN2, EN3, EN4;

stage2 stC(.notgrant1(notgrant1),
.notgrant2(notgrant2),
.EN1(!EN1),
.EN2(!EN2),
.num1(2'd1),
.num2(2'd2),
.numA(numout1),
.numB(numout2),
.defnum(numout3or4),
.defnum1(numout3or4b));

stage2 stD(.notgrant1(notgrant3),
.notgrant2(notgrant4),
.EN1(!EN3),

.EN2(!EN4),

.num1(2'd1),

.num2(2'd2),

.numA(numout3),

.numB(numout4),

.defnum(numout1or2),

.defnum1(numout1or2b));

stage3 sTE(.num1(numout3or4),
.num2(numout3or4b),
.notgrant1(|numout3or4),
.notgrant2(|numout3or4b),
.EN1(!EN3 && !(|numout3)),
.EN2(!EN4 && !(|numout4)),
.numA(port3num),
.numB(port4num));

stage3 sTF(.num1(numout1or2),
.num2(numout1or2b),
.notgrant1(|numout1or2),
.notgrant2(|numout1or2b),
.EN1(!EN1&& !(|numout1)),
.EN2(!EN2 && !(|numout2)),
.numA(port1num),
.numB(port2num));

assign output_1_select= {port1num,numout1,1'd0};
assign output_2_select= {port2num,numout2,1'd0};
assign output_3_select= {numout3,port3num,1'd0};
assign output_4_select= {numout4,port4num,1'd0};
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assign EN1 = EN_output_arbs_1_next ;
assign EN2 = EN_output_arbs_2_next ;
assign EN3 = EN_output_arbs_3_next ;
assign EN4 = EN_output_arbs_4_next ;

endmodule // mkRouterOutputArbitersStatic

Stage 1

`ifdef BSV_ASSIGNMENT_DELAY
`else
`define BSV_ASSIGNMENT_DELAY
`endif

module stage1(num1,
num2,
notgrant1,
notgrant2,
Enable1,
Enable2,
numA,
numB,
notgrantA,
notgrantB);

// value method gen_grant_carry
input Enable1;
input Enable2;
input [3:0] num1, num2;
input notgrant1, notgrant2;
output [3:0] numA, numB;
output notgrantA, notgrantB;

wire [3:0] num1, num2;

// value method gen_grant_carry
assign numA= notgrant1 &&(Enable1 || Enable2)? num1: num2;
assign numB= notgrant1 &&(Enable1 || Enable2)? num2: num1;

assign notgrantA = ( notgrant1 &&(Enable1 || Enable2))? notgrant1: notgrant2;
assign notgrantB = ( notgrant1 &&(Enable1 || Enable2))? notgrant2: notgrant1;

endmodule // module_gen_grant_carry

Stage2

`ifdef BSV_ASSIGNMENT_DELAY
`else
`define BSV_ASSIGNMENT_DELAY
`endif

80



module stage2(notgrant1,
notgrant2,
num1,
num2,
EN1,
EN2,
numA,
numB,
defnum,
defnum1);

// value method gen_grant_carry
input EN1,EN2;
input num1, num2;
output [1:0] numA, numB;
output [1:0] defnum, defnum1;
input notgrant1, notgrant2;
wire [1:0] num1, num2;

assign numA = {EN1&& notgrant2 && !notgrant1 ,
EN1 && notgrant1};

assign numB = {!(!EN1 && notgrant1 && EN2)&&
((!EN1 && notgrant2 && EN2) ||
(EN1 && EN2 && notgrant1 &&notgrant2))
,!EN1 && notgrant1 && EN2};

assign defnum= (!EN1&& !EN2 && notgrant1)? num1:
(!EN1&& !EN2 && notgrant2)? num2:
(!EN1 && EN2 && notgrant1 && notgrant2)? num2:
(EN1 && !EN2 && notgrant1 && notgrant2)? num2:2'd0;

assign defnum1 = (!EN1&& !EN2 && notgrant2 && notgrant1)? num2: 2'd0;

endmodule

Stage3

`ifdef BSV_ASSIGNMENT_DELAY
`else
`define BSV_ASSIGNMENT_DELAY
`endif

module stage3(notgrant1,
notgrant2,
num1,
num2,
EN1,
EN2,
numA,
numB);
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// value method gen_grant_carry
input EN1,EN2;
input num1, num2;
output [1:0] numA, numB;
input notgrant1, notgrant2;
wire [1:0] num1, num2;

assign numA= (EN1 && notgrant1)? num1: (EN1 && notgrant2)?num2 : 2'd0;
assign numB= (!EN1 && notgrant1 && EN2)? num1 : (!EN1 && notgrant2 && EN2)?

num2:(EN1 && EN2 && notgrant1 &&notgrant2)?num2:2'd0;

endmodule

2D BLESS

`include "defines.v"

module brouter_bless2D
#(parameter addr = 6'b000101,
parameter noc = 0)

(
input `control_w port0_ci,
input `control_w port1_ci,
input `control_w port2_ci,
input `control_w port3_ci,
input `control_w port4_ci,
input `data_w port0_di,
input `data_w port1_di,
input `data_w port2_di,
input `data_w port3_di,
input `data_w port4_di,
input clk,
input rst,
output `control_w port0_co,
output `control_w port1_co,
output `control_w port2_co,
output `control_w port3_co,
output `control_w port4_co,
output `data_w port0_do,
output `data_w port1_do,
output `data_w port2_do,
output `data_w port3_do,
output `data_w port4_do,
output port4_ready);

// Config
wire `addrx_w addrx, max_addrx;
wire `addry_w addry, max_addry;
wire `addrz_w addrz, max_addrz;
wire [`Mesh_Size -1:0] enable_Dim;
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assign addrx = addr[`addrx_f]; // This nodes x address
assign addry = `Mesh_Square -1 - addr[`addry_f]; // This nodes y address
assign addrz = addr[`addrz_f]; // This nodes y address
assign max_addrx = `addrx_max;
assign max_addry = `addry_max;
assign max_addrz = `addrz_max;

// Input wires for reset
wire `control_w port0_cin, port1_cin, port2_cin, port3_cin, port4_cin;

assign port0_cin = (rst) ? `control_n'd0 : port0_ci;
assign port1_cin = (rst) ? `control_n'd0 : port1_ci;
assign port2_cin = (rst) ? `control_n'd0 : port2_ci;
assign port3_cin = (rst) ? `control_n'd0 : port3_ci;
assign port4_cin = (rst) ? `control_n'd0 : port4_ci;

// Resource Ready Wires
wire all_valid;
wire resource_go0, resource_go1, resource_go2, resource_go3;
wire validin;
wire port4_read;

// Cross Stage Wires
wire `control_w port0_c1, port1_c1, port2_c1, port3_c1, port4_c1;
wire `data_w port0_d1, port1_d1, port2_d1, port3_d1, port4_d1;
wire `control_w port0_c2, port1_c2, port2_c2, port3_c2, port4_c2;
wire `data_w port0_d2, port1_d2, port2_d2, port3_d2, port4_d2;

// Routing Matrices
wire `rmatrix_2w rmatrix0, rmatrix1, rmatrix2, rmatrix3, rmatrix4;

// Final Route
wire `routecfg_2w route_config;

reg port_ready_d;

/************* STAGE 1 *************/
reg `control_w port0_r, port1_r, port2_r, port3_r, port4_r;
always @(posedge clk) begin

port0_r <= port0_cin;
port1_r <= port1_cin;
port2_r <= port2_cin;
port3_r <= port3_cin;
port4_r <= port4_cin;

end

assign enable_Dim = `UP;
// Route Computation
route_bless2D rc0(.control_in(port0_r),

.enable(enable_Dim),

.addrx(addrx),
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.addry(addry),

.addrz(addrz),

.addrx_max(max_addrx),

.addry_max(max_addry),

.addrz_max(max_addrz),

.clk(clk),

.rst(rst),

.resource_go(resource_go0),

.rmatrix(rmatrix0));

route_bless2D rc1(.control_in(port1_r),
.enable(enable_Dim),
.addrx(addrx),
.addry(addry),
.addrz(addrz),
.addrx_max(max_addrx),
.addry_max(max_addry),
.addrz_max(max_addrz),
.clk(clk),
.rst(rst),
.resource_go(resource_go1),
.rmatrix(rmatrix1));

route_bless2D rc2(.control_in(port2_r),
.enable(enable_Dim),
.addrx(addrx),
.addry(addry),
.addrz(addrz),
.addrx_max(max_addrx),
.addry_max(max_addry),
.addrz_max(max_addrz),
.clk(clk),
.rst(rst),
.resource_go(resource_go2),
.rmatrix(rmatrix2));

route_bless2D rc3(.control_in(port3_r),
.enable(enable_Dim),
.addrx(addrx),
.addry(addry),
.addrz(addrz),
.addrx_max(max_addrx),
.addry_max(max_addry),
.addrz_max(max_addrz),
.clk(clk),
.rst(rst),
.resource_go(resource_go3),
.rmatrix(rmatrix3));

route_bless2D rc4(.control_in(port4_r),
.enable(enable_Dim),
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.addrx(addrx),

.addry(addry),

.addrz(addrz),

.addrx_max(max_addrx),

.addry_max(max_addry),

.addrz_max(max_addrz),

.clk(clk),

.rst(rst),

.resource_go(),

.rmatrix(rmatrix4));

age_calf2D age_s1 (.control0_in(port0_r),
.control1_in(port1_r),
.control2_in(port2_r),
.control3_in(port3_r),
.control4_in(port4_r),
.control4_ready(port4_ready),
.clk(clk),
.control0_out(port0_c1),
.control1_out(port1_c1),
.control2_out(port2_c1),
.control3_out(port3_c1),
.control4_out(port4_c1));

//always @(*) $display("RC out: %x %x %x %x (rmat %x %x %x %x)", port0_c1,
port1_c1, port2_c1, port3_c1, rmatrix0, rmatrix1, rmatrix2, rmatrix3);

assign all_valid = port0_r[`calf_valid_f] &
port1_r[`calf_valid_f] &
port2_r[`calf_valid_f] &
port3_r[`calf_valid_f];

assign validin = port4_cin[`calf_valid_f] & port4_cin[`calf_valid_f];

assign port4_ready = ( ~(all_valid) |
resource_go0 |
resource_go1 |
resource_go2 |
resource_go3)& port4_r[`calf_valid_f]& port_ready_d;

data_buf2D data_s0(.data0_in(port0_di),
.data1_in(port1_di),
.data2_in(port2_di),
.data3_in(port3_di),
.data4_in(port4_di),
.clk(clk),
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.data0_out(port0_d1),

.data1_out(port1_d1),

.data2_out(port2_d1),

.data3_out(port3_d1),

.data4_out(port4_d1));

/******** Stage 2 ********/
wire `routecfg_2w route_config_unbuf;
arbitor2D arb(.rmatrix0(rmatrix0),

.rmatrix1(rmatrix1),

.rmatrix2(rmatrix2),

.rmatrix3(rmatrix3),

.rmatrix4(rmatrix4),

.control0_in(port0_c1),

.control1_in(port1_c1),

.control2_in(port2_c1),

.control3_in(port3_c1),

.control4_in(port4_c1),

.clk(clk),

.route_config_unbuf(route_config_unbuf),

.route_config(route_config));

ctl_xt2D cx(
.control0_in(port0_c1),
.control1_in(port1_c1),
.control2_in(port2_c1),
.control3_in(port3_c1),
.control4_in(port4_c1),
.route_config(route_config_unbuf),
.clk(clk),
.control0_out(port0_co),
.control1_out(port1_co),
.control2_out(port2_co),
.control3_out(port3_co),
.control4_out(port4_co));

data_buf2D data_s1(.data0_in(port0_d1),
.data1_in(port1_d1),
.data2_in(port2_d1),
.data3_in(port3_d1),
.data4_in(port4_d1),
.clk(clk),
.data0_out(port0_d2),
.data1_out(port1_d2),
.data2_out(port2_d2),
.data3_out(port3_d2),
.data4_out(port4_d2));
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/*********** Stage 3 **********/
crossbar2D xbar(.data0_in(port0_d2),

.data1_in(port1_d2),

.data2_in(port2_d2),

.data3_in(port3_d2),

.data4_in(port4_d2),

.route_config(route_config_unbuf),

.clk(clk),

.data0_out(port0_do),

.data1_out(port1_do),

.data2_out(port2_do),

.data3_out(port3_do),

.data4_out(port4_do));

always@(posedge clk)begin
if(!rst)
port_ready_d <= port4_ready? 0:1;

end

endmodule
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الشبكة. و يلاحظ أن قيم المعاملات المذكورة لا يمكن ان تكون عامة و ثابتة لكافة اجهزة التوجيه بدون  
أخيرا تم اقتراح أداة تصميم بمساعدة الكمبيوتر مرنة لتقييم   .مخازن و لكنها تعتمد على بنية جهاز التوجيه

الاداة هى وسيلة بسيطة لاجراء المزيد من التجارب الشبكات الثلاثية الابعاد التى لا تحتوى على مخازن. هذة 
على الشبكات ثلاثية الابعاد بدون مخازن فهي تتيح للمستخدم ضبط و اختيار حجم الشبكة للطبقة الواحدة و  

اختيار عدد اجهزة التوجيه ثلاثية الابعاد و مواقعها. يحدد المستخدم أيضا جهاز التوجيه و معدل ارسال 
لاداة بتنفيز الشبكة كما أنه من الممكن ارسال مدونة الشبكة الي المستخدم كمرفق برسالة  البيانات. تسمح ا 
 .البريد الالكترونى
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 الملخص
 

مع الزيادة فى عدد المعالجات المتعددة على الرقائق الي العشرات و المئات. اصبح لشبكة الوصل بين  
تاثير كبير علي سرعة اداء الرقائق و الطاقة المستهلكة و التكلفة. بما ان الطاقة المستهلكة فى  المعالجات 

اطار التواصل بين المعالجات تؤثر فى اداء الانظمة متعددة النواة. لذلك فقد تم طرح اسلوب توجيه جديد  
 .يعتمد علي صرف او تحويل مسار المعلومات كبديل أفضل من حيث التكلفة

يقدم هذا العمل مراجعة علي ادبيات البنية التقليدية لجهاز التوجيه ثم مراجعة علي أادبيات التصميمات  اولا 
التي لا تحتوى علي ذاكرة بعد ذلك تم مناقشة خوارزميات التوجه الخالية من المخزن المؤقت. المساهمة 

رة او مخزن. تقدم هذة الاطروحة  الرئيسئة لهذة الاطروحة هي تطوير جهاز التوجيه الذى لا يحتوى على ذاك
هذا الراوتر الجديد ذو أداء فعال و يشغل مساحة صغيرة.  .CONNECTجهاز توجيه هو نسخة معدلة من 

هو يحقق أداء افضل من أجهزة التوجيه المتاحة التى لا تحتوى على مخزن كما انه يشغل مساحة أقل منهم.  
و يحقق أداء متقارب منه.  30ب %  CONNECT مساحة اقل من  Modified CONNECTيشغل 

غالبا ما تحقق الشبكات التي تتكون من اجهزة توجيه بدون مخازن أداء جيد عند انخفاض حركة مرور 
البيانات و على أداء منخفض عند ارتفاع حركة مرور البيانات و يزداد الامر سوءا عندما يزيد قطر الشبكة.  

ليستخدم في   Modified CONNECT  داء و لهذا فقد تم تطويرلذلك تستخدم البنية الثلاثية لتعزز الا
الشبكات الثلاثية الابعاد. تستخدم النسخة ثلاثية الابعاد من جهاز التوجيه المقترح نفس خوارزمية التوجيه  

و يستهلك جهاز التوجيه طاقة اقل من تلك المستهلكة فى انظمة   Modified CONNECT المستخدمة في
 .الابعاد المتاحة كما انه يقدم أداء أفضل منهمالتوجيه ثلاثية 

 

يتضمن هذا العمل دراسة موجزة يتم فيها تقييم عوامل متغيرة في الشبكة من اجل الحصول على القيم الانسب  
للحصول على افضل قيم يتم محاكاة   لحجم الشبكات ثلاثية الابعاد في كل طبقة و مواقع اجهزة التوجيه.

خمس شبكات لخمسة اجهزة توجيه مختلفة. معيار الجودة المستخدم في هذة الدراسة يساوى الانتاجية بالنسبة  
للطاقة الديناميكية المستهلكة في الشبكة و المساحة المشغولة بالشبكة و متوسط زمن انتقال البيانات فى  
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