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Abstract
Generalized and controllable chaotic systems are highly required for various engineer-

ing applications such as: Pseudo-Random Number Generation (PRNG) for chaos-based
communication, motion planning and natural phenomena and behavior modeling. In this
thesis, various chaos generalization and control approaches are presented highlighting
their advantages and discussing their limitations.

The first approach controls jerk-based attractors by employing generalized discrete
maps with extra parameters as their nonlinear terms. The effect of different implementation
factors on traditional chaotic ciphers is uncovered and reproducibility rules are recom-
mended. The mismatch signals between slightly different implementations are consciously
utilized in PRNG and encryption applications. The second approach is suitable for any
chaotic system, where two-dimensional affine transformations provide scaling, reflection,
rotation, shearing, translation and multi-scroll generation from the traditional systems
with single or limited attractors. An encryption application is presented to validate the
good cryptographic properties of and the role of the proposed generalization in enhancing
the key space and, hence, the robustness against brute force attacks. This approach is
further extended to cover three-dimensional transformations and control fractional-order
systems with hidden attractors with challenging properties. Using affine transformations,
non-autonomous trajectory control and distributed self-reproduced attractors generation
along an arbitrary line, curve or surface are achieved through dynamic parameters.

A slightly modified approach focuses on planar rotation followed by translation and
scaling and is applied to multi-scroll systems with already wide basin of attraction to
be capable of covering the whole space. A multi-character chaotic writer is designed
by a planarly rotating V-shape system with amplitude control and offset boosting. A
rotating translational fractional-order multi-scroll grid attractor is also presented, utilized
successfully in speech and image encryption applications and verified experimentally on
Field Programmable Gate Arrays (FPGAs). A novel generalized switched synchronization-
dependent secure communication setup is proposed accordingly, which is suitable for
one-to-one, one-to-many, mutual interconnection and role switching. An image encryption
scheme is proposed, which modulates the rotation angle of a fractional-order chaotic
system using the plain image and uses this system as a PRNG in data substitution. The
scheme successfully passes the standard performance tests. The rotation transformation
is extended to three-dimensions presenting spatially rotating chaotic attractors. Three
different implementations of three-dimensional rotation are presented: matrix-based,
quaternions-based and shearing-based. The matrix-based implementation is verified exper-
imentally as well. Preliminary results on chaotic systems in polar and spherical coordinate
systems are also presented.
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Chapter 1: Introduction
1.1 Background and Motivation
Interest in chaos theory and chaotic systems research dates back to 1963 [1]. Chaotic
systems may given by discrete-time difference equations or continuous-time differential
equations with nonlinear terms, which are deterministic on the short term. Yet, for specific
parameter ranges, their outputs are nearly aperiodic, random and unpredictable on the long
term evolution. In addition, they exhibit increased sensitivity to the initial conditions, or
the so-called butterfly effect [1]. That is, initially nearby points can evolve quickly into
very different states.

Such randomness, complexity, sensitivity and unpredictability properties are exten-
sively required in many fields of applications. Consequently, chaotic systems are used
to mathematically model behaviors of natural phenomena, physical systems and real-life
applications in many fields such as: physics, electronics, circuit theory, biology, chemistry,
meteorology, traffic and finance [2]. In addition, many applications utilize their output se-
quences as PRNGs in engineering and telecommunications applications such chaos-based
secure communication, modulation, synchronization, compression and cryptography.

To fulfill the needs of all these multidisciplinary fields, there is a continuous need to
come up with modified, generalized and novel chaotic systems. These newly proposed or
modified systems should at least preserve the chaotic dynamics of the original systems, if
they do not boost them. They act as alternative models in modeling applications and novel
sources of randomness in PRNG applications, which pushes forward the research in these
fields as well. Chaotic systems with enhanced properties eventually improve the overall
system’s performance in their application fields. Meanwhile, and since chaotic systems
are deterministic difference or differential equations, they are relatively simpler sources of
randomness to study and implement. Consequently, their mathematical analysis, software
numerical simulation, hardware analog and digital realization have been flourishing
research fields in the last few decades.

The state-of-the-art on generalization and control of chaotic systems reveals a great
deal of research that ranges from simple to more complicated methods of modification,
generalization, control and searching for novel chaotic systems. After presenting the new
equations, researchers target different perspectives of the topic, for example, they may carry
out the mathematical analysis, study different chaotic properties, provide simulation-based
validation of them, propose potential applications and/or present hardware realizations of
their proposed systems.

This thesis proposes several generalization and non-autonomous control approaches of
chaotic systems using extra parameters and affine transformations. In addition, the thesis
uncovers another source of sensitivity besides the well-established parameters and initial
values sensitivity, which is the implementation sensitivity and its potential applications.
Having set the rules for reproducibility, digital applications and implementation of the
proposed generalized systems are presented. The proposed generalization and control
approaches enhance the chaotic properties and performance in such applications compared
to recent related works.
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1.2 List of Main Contributions
In this section, the main contributions of the thesis are listed briefly giving what is
presented and clarifying how it is performed.

• A literature survey of generalized chaotic systems that control the chaotic output
through parameters and/or transformations is presented.

• The first proposed generalization approach is specific for jerk-based chaotic systems.
It makes use of generalized chaotic maps with extra parameters as the nonlinear
term.

• Implementation sensitivity, specifically, the algebraic associativity property is as-
sessed on changing the order of terms addition and multiplication in a digital
implementation.

– Floating-point software and fixed-point hardware implementations of several
systems are considered.

– Implications of this sensitivity on chaos-based communication applications
are discussed.

– The mismatch between different implementations is used as an alternative ran-
domness source and successfully passes several well-established performance
metrics. Reproducibility rules are set accordingly.

• A more generic framework for generalization and control of chaotic systems using
affine transformations is presented, mathematically analyzed and validated for
several systems through numerical simulations. The proposed generalized chaotic
systems range from integer-order systems with self-excited attractors to fractional-
order systems with hidden attractors.

– Special cases of the affine transformations (scaling, reflection, rotation, transla-
tion and shearing) are studied thoroughly, which provides simpler alternatives
serving different purposes and applications.

– The introduced parameters represent dimensions for increased sensitivity and
controllability preserving the chaotic dynamics.

– Complicated forms of chaotic dynamics such as self-reproducing attractors,
multi-scroll strange attractors and robust chaos are proposed using the forms
of generalization presented.

– Non-autonomous trajectory control and distributed self-reproduced attractors
generation along an arbitrary line, curve or surface are achieved through
dynamic parameters.

– Encryption applications of the proposed generalized systems are presented and
shown to perform well compared to the original systems.

• Since the rotation angle is the parameter corresponding to robust chaos generation,
specific attention and a big portion of the thesis is dedicated to rotation transforma-
tion, followed by translation and scaling.

2



– Analysis, simulation, implementation and applications of dynamically planarly
rotating systems are presented.

– A multi-character writer is proposed and employed in writing letters, words
and sentences.

– The fractional-order system is utilized successfully in speech and image en-
cryption applications and verified experimentally on FPGA using GL technique
and CORDIC algorithm.

– A novel synchronization-dependent secure communication and RGB image
encryption application is proposed. The encryption scheme employs rotation
angle modulation using the plaintext and XOR logic operation for plaintext
image substitution. The encryption scheme performs well for three synchro-
nization scenarios.

– Three different implementations of spatially rotating simplest chaotic sys-
tem: matrix-based, quaternions-based and shearing-based are presented and
validated.

– The rotation matrix-based implementation is experimentally verified for a
fractional-order system.

• Preliminary results on generalized chaotic systems in polar and spherical coordinate
systems are also presented with fewer number of terms than recent related works.

1.3 Publications out of this Thesis
The following international journal, conference papers and book chapter have been pub-
lished out of this work.

1. Sayed, W. S., Radwan, A. G., Fahmy, H. A., and Elsedeek, A. “Trajectory control
and image encryption using affine transformation of Lorenz system.” Egyptian
Informatics Journal (2020) [3] (IF: 3.119)

2. Sayed, W. S., and Radwan, A. G. “Generalized switched synchronization and
dependent image encryption using dynamically rotating fractional-order chaotic
systems.” AEU-International Journal of Electronics and Communications (2020),
153268 [4] (IF: 2.924)

3. Sayed, W. S., Radwan, A. G., Fahmy, H. A., and Elsedeek, A. “Software and
hardware implementation sensitivity of chaotic systems and impact on encryption
applications.” Circuits, Systems, and Signal Processing, 39, 11 (2020), 5638–
5655 [5] (IF: 1.681)

4. Sayed, W. S., Radwan, A. G., Fahmy, H. A., and Elsedeek, A. “All-dynamic
synchronization of rotating fractional-order chaotic systems.” Novel Intelligent and
Leading Emerging Sciences Conference (NILES) (2019), vol. 1, IEEE, pp. 226–
229 [6]
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5. Sayed, W. S., Radwan, A. G., Elnawawy, M., Orabi, H., Sagahyroon, A., Aloul, F.,
Elwakil, A. S., Fahmy, H., and El-Sedeek, A. “Two-dimensional rotation of chaotic
attractors: Demonstrative examples and FPGA realization.” Circuits, Systems, and
Signal Processing 38, 10 (2019), 4890–4903 [7] (IF: 1.681)

6. Sayed, W. S., Radwan, A. G., and Fahmy, H. A. “Chaos and bifurcation in con-
trollable jerk-based self-excited attractors.” Nonlinear Dynamical Systems with
Self-Excited and Hidden Attractors. Springer, 2018, pp. 45–70 [8]

7. Sayed, W. S., Radwan, A. G., and Fahmy, H. A. “Chaotic systems based on jerk
equation and discrete maps with scaling parameters.” 6th International Conference
on Modern Circuits and Systems Technologies (MOCAST) (2017), IEEE, pp. 1–
4 [9]

8. Sayed, W. S., and Radwan, A. G. “Self-reproducing hidden attractors in fractional-
order chaotic systems using affine transformations,” IEEE Open Journal of Circuits
and Systems (Accepted)

1.4 Thesis Organization
First, Chapter 2 presents a literature review on generalization and non-autonomous control
of chaotic systems using extra parameters, transformations and other similar approaches.
In addition, it reviews the implementations and applications of these approaches and other
recent research on digital implementation and applications of chaotic systems. Then, Chap-
ter 3 proposes our first generalization approach for jerk-based attractors and their control
by employing generalized discrete maps with extra parameters as their nonlinear terms. In
addition, it uncovers the impact of implementation sensitivity property on traditional chaos-
based encryption schemes and utilizes the mismatch signals between slightly different
implementations in PRNG and encryption applications. Moreover, it sets reproducibility
rules to avoid this “chaotic” error. Then, Chapter 4 proposes the second approach suitable
for any chaotic systems, where two-dimensional affine transformations provide scaling,
reflection, rotation, shearing, translation and multi-scroll generation from the traditional
systems with single or limited attractors. An encryption application is presented to val-
idate the good cryptographic properties of and the role of the proposed generalization
in enhancing the key space and, hence, the robustness against brute force attacks. In
addition, Chapter 4 extends this approach to cover three-dimensional transformations and
control hidden attractors in fractional-order systems. Using affine transformations, non-
autonomous trajectory control and distributed self-reproduced attractors generation along
an arbitrary line, curve or surface are achieved through dynamic parameters. Then, Chap-
ter 5 focuses on planar rotation followed by translation and scaling and applies this
modified approach to multi-scroll systems with already wide basin of attraction to be capa-
ble of covering the whole space. A multi-character chaotic writer is designed by a planarly
rotating V-shape system with amplitude control and offset boosting. A fractional-order
rotating translational system is also presented, utilized successfully in speech and image
encryption applications and verified experimentally on FPGAs. In addition, Chapter 5
proposes a novel generalized switched synchronization-dependent secure communication
setup, which is suitable for one-to-one, one-to-many, mutual interconnection and role
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switching. An image encryption scheme is proposed, which modulates the rotation angle
of a fractional-order chaotic system using the plaintext image and uses this system as a
PRNG in data substitution. The scheme successfully passes the standard performance
tests. Moreover, Chapter 5 extends the rotation transformation to present spatially ro-
tating chaotic attractors. Three different implementations of three-dimensional rotation
are presented: matrix-based, quaternions-based and shearing-based. The matrix-based
implementation is verified experimentally as well. Preliminary results on chaotic systems
in polar and spherical coordinate systems are also presented. Finally, Chapter 6 provides a
discussion of the results, a conclusion of their implications, and suggestions for possible
future work directions.
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Chapter 2: Review of Literature
Chaotic systems are highly sensitive to initial conditions, system parameters and imple-
mentation. The significant properties of chaotic systems are highly required in many
applications such as: modeling [2], motion control [10] and cryptography [11]. Several re-
cent PRNG and encryption applications utilized discrete chaotic maps [12] and continuous
chaotic systems [13].

To fulfill the needs of all these multidisciplinary fields and others, there is a continuous
need to come up with controllable modified, generalized and novel chaotic systems.
Such systems are expected to at least preserve the chaotic dynamics and even exhibit
more complex dynamical behaviors with higher degree of disorder and randomness.
The broadband nature of chaotic signals imposes some limitations on implementation
and applications. Controllability of the amplitude of chaotic signals overcomes such
limitations, e.g., linear amplifier design and threshold voltage of operational amplifiers in
an analog implementation [14]. Polarity control enables utilization in applications that
need a unipolar signal [15, 16]. Having the capability of moving the chaotic attractor to
multiple locations on the phase space is a challenging goal and an opportunity for various
practical applications, e.g., phenomena and behavior modeling, motion control and secure
communication. A number of recent research works provided various controllable strange
attractors and are reviewed in this chapter. Yet, we start by reviewing earlier foundations
of this research field.

2.1 Evolution of Chaotic Generators
The foundation of chaos theory dates back to Lorenz in 1963 [1], who described the
butterfly effect, i.e., how a slight change in a single state of a deterministic nonlinear model
(a butterfly flapping its wings in China) can lead to massive differences in a future state
(a hurricane in Texas). Since then, this apparently random behavior from deterministic
relations and initial conditions sensitivity were pointed out in many nonlinear systems.
Numerous researches were conducted on chaotic systems, the construction of chaotic
models, their mathematical analysis, implementation and applications. The two main
categories of chaotic systems are discrete chaotic systems based on difference equations or
iterative maps and continuous ones based on differential equations with examples shown
in Table 2.1.

2.1.1 Discrete-Time Chaotic Maps
Discrete chaotic systems based on difference equations or iterative maps, in the form

xn+1 = f (xn), (2.1)

with nonlinear term(s). They generally have low dimension and are simple and easy to
implement. One-dimensional maps include one iterative variable that change its value
each iteration giving a time series. For example, Bernoulli shift map, the triangular (tent)
map, the logistic map and the sine map. Higher-dimensional maps with more than one
iterative variable were also presented [17]. There are continuous research advances in
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Table 2.1: Examples of chaotic generators

Logistic map Lorenz system

xn+1 = λxn(1− xn)

ẋ =σ(y− x)
ẏ =x(ρ− z)− y
ż =xy−βz

(σ = 10, ρ = 28, β = 8/3)
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V-shape multi-scroll system

ẋ =y− x
ẏ =sgn(x)[1−mz +G(z)],
ż =|x| − rz

G(z) =


0 z < s0

d1 s0 < z < s1
...

dN−1 z < sN−1

presenting novel chaotic maps with enhanced properties as will be explained in Chapter 3,
which utilizes two examples of them in constructing continuous chaotic systems.

2.1.2 Continuous-Time Chaotic Systems
Continuous chaotic differential equations are more capable of modeling the continuity of
natural phenomena and real world behaviors. In addition, they overpass discrete maps
in performance because they have higher dimension, exhibit more complicated chaotic
dynamics, richer chaotic properties and generally more suitable for applications that
require multiple dependent chaotic outputs such as color image encryption. Continuous
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chaotic systems require the implementation of integration/differentiation operations in
analog circuits and discretization using numerical techniques in digital platforms.

Solving the system numerically results in chaotic time series corresponding to each
state variable and a strange attractor in the phase space. Basic mathematical analysis of
continuous chaotic systems start by finding the equilibrium points at which the derivatives
equal zero. Then, the stability of the system is studied using the eigenvalues of the Jacobian
matrix, which are evaluated at the equilibrium points [17]. It has been conceived for a
long time that strange attractors can only be located near unstable equilibrium point(s)
of type saddle focus, i.e., when the equilibrium point has one real eigenvalue whose
sign is opposite to the sign of a pair of complex conjugate eigenvalues. The number of
eigenvalues with positive real part is called the index and determines whether the resulting
strange attractor has one or two scrolls. Such systems are called self-excited attractors;
however, new types of attractors with different conditions were discovered in the last
decade [18] as detailed in Subsection 2.1.2.3.

One of the more advanced measures to quantify chaotic behavior are the Lyapunov
Exponents (LE), which measure the sensitivity to initial conditions through the exponential
divergence of nearby trajectories. The Maximum Lyapunov Exponent (MLE) should be
finite positive for chaotic systems and systems with more than one positive Lyapunov
exponents are called hyper-chaotic systems.

2.1.2.1 Multi-Stability and Co-existing Attractors

An attractor’s basin of attraction means all the initial conditions that converge to this attrac-
tor. Multi-stability is the co-existence of different attractors when starting from different
initial conditions for a given set of parameters. The range or set of parameter values that
converge to an attractor are also referred to as its parameter basin of attraction [19].

2.1.2.2 Multi-Scroll and Multi-Wing Chaotic Attractors

Chaotic systems exhibit interesting and more complex topologies when they generate
a larger number of scrolls. Various nonlinear signals with breakpoints were utilized as
methods of multi-scroll and multi-wing generation, where both expressions are used
interchangeably [20]. Other papers [21, 22] described systems based on Chua family with
piecewise nonlinearity as multi-scroll attractors and those based on Lorenz family with
quadratic nonlinearity as multi-wing attractors.

For a relatively long time, these methods depended only on the phase space or state
variables not time to maintain the autonomous, i.e., time invariant, characteristic. The
state-of-the-art multi-valued nonlinear signals utilized in multi-scroll generation include
piecewise-linear, saturated sequence, sawtooth, step wave, hysteresis series, switching,
sine, and hyperbolic tangent signals, which are functions of the state variables [20]. The
construction of these nonlinear signals generally involves one or more challenges such
as: unsystematic complicated design, calculations, circuit realization, difficulty of scrolls
regulation and the dependence on extending unstable equilibrium points, which is not
generally applicable to hidden attractors [23]. Systems with grid scroll attractors and
scrolls extending in multi-dimensional-planes are also generated when the nonlinear
functions involve more than one state variable simultaneously.

8



Compared to autonomous multi-scroll generation methods, fewer researches employed
non-autonomous methods to autonomous chaotic systems. Parameter sign switching by a
square wave was utilized in [24]. A composite multilevel signal, which is constructed by
applying a signum function on a sinusoidal function of time, was applied in [25], yet, to
already non-autonomous chaotic oscillators. Switching methods based on thresholding
using non-autonomous signals inspired by [25] were presented afterwards for autonomous
chaotic systems and will be reviewed in Section 2.2.

2.1.2.3 Hidden Attractors

Attractors that can be located in the vicinity of unstable equilibrium points are called
self-excited. Hidden attractors are computationally “hidden” because they can not be
located using the same method. Their basins of attraction do not intersect with small
neighborhoods of the unstable equilibrium point. Their types include systems without
equilibria, with stable equilibria whether a single point or a line, and infinite number of
equilibria [26].

2.1.2.4 Fractional Calculus and Chaotic Systems

Fractional-order calculus, which is the non-integer counterpart of the classical integer-order
calculus, has a relatively long history in theory than applications. The fractional orders
provide more controllability of the governing mathematical relations. Fractional-order
chaotic systems exhibit the interesting aperiodicity, ergodicity, randomness, and sensitivity
properties of their integer-order counterparts and more [27]. Fractional-order extensions
of both discrete [28] and continuous chaotic systems [27] were presented. In this thesis,
we focus more on continuous ones owing to their previously mentioned complexities and
advantages. The derivative, e.g., Dx becomes Dαx, where α can take non-integer values.
Fractional calculus has always been known for its capability of describing and modeling a
real object more accurately since it includes memory effect. That is, the solution of such
equations does not only depend on the previous state, but also all the system’s states since
its initial state. However, the solution and implementation of fractional-order systems
started to flourish only a few decades ago with the advances in digital computers and
digital realization technologies [29, 30]. Digital hardware realizations can use the short
memory principal to reduce the number of terms to be summed and, hence, the hardware
resources utilization and efficiency [31–34].

2.2 Generalization and Control of Chaotic Systems: Mo-
tivation and Review

This work was initiated based on the research questions: To what extent can we control the
size, location and repetition of a strange attractor of a given chaotic system? Is it doable
without modifying the nonlinear terms of its state variables similar to many multi-scroll
generation approaches? and how can this be formulated and implemented? Collecting the
relevant state-of-the-art researches was challenging and required continuous follow-up
for the recently published papers, especially the ones citing the papers that we already
reached. However, the terminologies are not unified between papers and use common
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words such as: displacement, control, transform, transformation, novel system, method,
technique, framework instead of clear unique techniques names. Instead, they focus on
their objectives in the title and keywords of their articles such as multi-scroll generation
or circuit realization. Consequently, they can not be easily identified among the flood of
publications on novel chaotic systems.

Besides the conventional and emerging types of chaotic systems reviewed in the
previous section, other attempts have flourished recently. Generalization results in a novel
chaotic system with various cases of operation such that the unique attractor of the original
system becomes a special case of the generalized one. When generalization involves
additional control parameters, they provide extra degrees of freedom and controllability.
Hence, several properties of a chaotic system, its time series, and hence, strange attractor
can be controlled, e.g., the attractor’s size, location and shape. The displacement or
allocation of equilibrium points can be either static or dynamic. Static allocation preserves
the same number of equilibria, but enables different combinations of initial values and/or
parameters. That is, it widens the basin of attraction and/or parameter basin of attraction.
Dynamic allocation results in systems with a variable or infinite number of equilibria
and, hence, it can be further used in multi-scroll attractors generation. The researches
reviewed in this section address different combinations of these controllable properties of
the strange attractor.

2.2.1 Amplitude Control
Amplitude control or rescaling of the chaotic time series and/or chaotic attractor usually
takes place through multiplicative parameters or coefficients. J.C. Sprott initiated this
approach for simple jerk-based chaotic systems that involve a differential equation of at
least third order

...x = f (ẍ, ẋ, x) (2.2)

and a nonlinearity [35–37]. The nature of the systems such as simplicity and mostly
unified degree enabled the appearance of such terms. These scales were employed in the
proposed implementation to guarantee suitable voltage level that is immune against noise
and opamps saturation, but not utilized in applications.

Amplitude control of systems with quadratic nonlinearities was presented in [38] by
introducing control functions in the form of m, 1/m and em to these quadratic nonlinear
terms as their coefficients. This results in the control of the size of the attractor making it
larger or smaller with the same topological properties and geometric structure. It has three
modes: total amplitude control where there are unified coefficients for all quadratic terms,
composite amplitude control where the coefficients are different and partial amplitude
control where some quadratic terms have coefficients equal to unity. In all cases m is a
fixed number. In addition, [39–41] investigated the opportunities offered by amplitude
control technique to identify and study multi-stability with coexisting, sometimes hidden,
attractors through exploring all possible initial conditions. The effects of amplitude control
parameters on the frequency of the chaotic signals and rescaling the basins of attraction
were shown to endanger the system chaotic dynamics imposing some complications in
practical applications.

The same amplitude control modes of [38], led by Li and Sprott, were applied in
subsequent researches to different chaotic systems alone [42] or combined with offset
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boosting and/or frequency control as discussed in the following subsection. Yet, only
very few recent papers have modified or generalized the idea instead of applying the
same procedure. For example, [43] applied them to their proposed system with single
quadratic nonlinearity. Amplitude control parameters enabled equilibrium points and
strange attractor allocation.

Dynamic amplitude control for multi-scroll attractors generation has also been recently
applied in [23], yet, formulated as a transformation. This paper is different from other
amplitude control papers because scaling is performed via transformation of each state
variable by a new one multiplied by a variable parameter in the form of a multilevel pulse
signal. Similar to [43], this enables generating a number of scrolls without redesigning
the nonlinear function of the original system, but via changing the dynamic parameter.
Yet, regulating the number of scrolls through the amplitudes of the pulse signals in [23]
can be considered more generic. Although the authors did not consider this comparison,
their transformation approach may also overcome the limitations of the amplitude control
in [38] as detailed in our related work throughout the rest of the thesis. Other more
complicated forms of transformations are soon reviewed in Subsection 2.2.4.

2.2.2 Offset Boosting
Constant additive thresholds were added to the state variables in [21], which will be
reviewed in Subsection 2.2.4 as it applied other transforms as a part of a multi-wing
construction method. More recently, additive parameters and their usage for offset or
translation of the chaotic attractor has flourished under the title “Offset Boosting”. It
generally aims at generating attractors of the same size and shape but distributed in
different spatial positions or shifted in any desired direction.

Firstly, [44] combined amplitude control with offset boosting for chaotic systems
satisfying specific conditions such as: only quadratic nonlinearities and the presence of
some terms in only one of the equations such that it has no self feedback and affects only
one of the state variables directly. Offset boosting of other chaotic systems [45–47] that
share the same specific conditions was also presented. The parameters affected different
state variables such as an amplitude control parameter kxy for th term xy and an offset
parameter kw for the state variable w in [45]. Such researches did not present a generic
procedure or analysis why the parameters are inserted in these terms of the equations
specifically; only some characteristics that give the selected system amplitude control
and/or offset boosting potential.

One offset parameter used to boost a state variable enables attractor location control
along a line in the direction of this state variable. The possibility of line (across direction),
lattice (plane) and grid (space) of variable attractors was discussed in [48]. This allows
propagation in as many directions as its degrees of freedom, i.e., number of offset state
variables, provide. The utilized system is a fractional-order extension of a special case
of the financial chaotic system setting some of its parameters to fixed values. It is
worth mentioning that the systems exhibits chaotic behavior for fractional-orders only.
Control/offset was enabled by the unique properties of the system itself to be valid for any
value of the systems’ parameters. In these works [44–48], no switching, dynamic change
of the offset parameters, multi-scroll generation or simultaneous attractors replication
were proposed and they were limited to static offset boosting.
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Similar to [39–41] in the case of amplitude control, [49] investigated the opportunities
offered by offset boosting technique to identify and study multi-stability with coexisting
attractors through exploring all possible initial conditions.

Several researches utilized the same idea of static parameter without modification as a
part of illustrating the offset boostable capability of their proposed chaotic systems [50–
53]. Yet, fewer papers have modified or generalized the idea similar to what happened
with amplitude control. For example, Hong et al. led a concurrent research on non-
autonomous or dynamic offset boosting control [54–57] for multi-scroll generation. The
same composite function of [25] was utilized in [54] as a multilevel pulse excitation
for multi-scroll generation, where the number of scrolls increases with increasing these
levels. It was applied to three self-excited chaotic systems with double-scroll attractors,
where the signal was added to one of the chaotic equations instead of a state variable.
The same multilevel signal approach was utilized in [55], but for the three state variables
simultaneously, to generate multi-directional multi-scroll attractors. The method was
validated for a very simple Sprott system and Chua’s circuit in [55] and more systems
in [56, 57]. Particularly for Sprott C system in [57], the authors suggested converting
such non-autonomous chaotic systems to autonomous ones through defining time as
an additional state variable and presented the consequent analysis. They showed that,
theoretically, constant offset boosting changes the distribution of equilibria keeping the
chaotic dynamics, i.e., eigenvalues, stability and Lyapunov exponents. On the other hand,
dynamic offset boosting can result in systems with no equilibria; not only converting
the system to be autonomous, but also converting its attractor type from self-excited to
hidden. Recently, [26] extended the idea to chaotic systems with hidden attractors. The
authors utilized a multilevel signal as the offset parameter to generate multi-scrolls. This
composite multilevel signal is constructed by applying a sigmoid function, instead of
signum as in [25], on a sinusoidal function of time. In this set of researches, except [55],
neither the conditions on the state variable or chaotic equation to add the multilevel signal
nor the limiting conditions were discussed.

All these controllable systems with offset boosting move the strange attractor along
a line, a lattice or a grid. Alternatively, [58] proposed a novel idea that moves the
equilibrium points of a given system and, hence, its strange attractor along a curve. The
utilized system was a four-wing modified Lorenz attractor formed by a multilevel pulse
signal as a coefficient for xy term, which is the same composite function [25]. An offset
transformation is used to simply move state variables and, hence, equilibrium points
and attractor’s origin point, to new coordinate points, on condition that these points lie
on a given curve. This offset is applied to two or three state variables according to
the required propagation directions. Hence, the proposed approach represents a non-
autonomous dynamic offset control. The procedure was validated to produce oval-shaped
(ellipse), circular, piecewise-linear (triangular), heart-shaped (two ellipses), and cube-
shaped distributed attractors. This should not be confused with being interested in the
shape of equilibrium points curve only. The later approach does not modify an existing
attractor but construct novel system equations resulting in a new strange attractor as
will be discussed in Subsection 2.2.3. Other applications of composite functions and
transformations, yet, of state variables instead of time, in proposing novel and modified
chaotic attractors are soon reviewed in Subsection 2.2.4.

Sometimes, both amplitude and offset control can be referred to as polarity control
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when the polarity of the chaotic signal is the main concern of analog implementations.
Amplitude control with negative scales has also been referred to as phase reversal, mirror
image versions, or reflections. Frequency control was also presented [59] by rescaling
the independent time variable or index in case of discretized solutions. Other works
such as [60–63] presented systems with each of the state variables that are controllable
in different ways, similar to [45]. These researches and others again emphasized the
special characteristics required in the system equations to be capable of inserting such
extra parameters without affecting the chaotic dynamics. The selected systems should
exhibit the special features of amplitude control and/or offset boosting. As elaborated
in [39–41, 49] and other papers, there is a possibility of different dynamical behaviors
corresponding to different settings of the introduced parameters in most of these reviewed
papers. Preserving the chaotic dynamics requires experimental adjustment of parameters
and initial conditions. That is, the initial conditions in the state variables affected by
amplitude control or offset boosting may need to be correspondingly adjusted to remain
in the basin of attraction. Moreover, the authors of [64] referred to the process of state
variables shifting or translation and similar changes in the coordinates as a self-reproducing
system.

2.2.3 More Systems with a Variable/Infinite Number of Equilibrium
Points

Several recent researches started referring to the systems formed by the previously re-
viewed techniques as systems with a variable or infinite number of equilibrium points.
Whether they perform rescaling, reflection by negative scaling parameters or offset by
additive parameters on the state variables, this affects the location of the equilibrium points
and it becomes no longer fixed for a unique attractor. When the rescaling, reflection or
offset is performed via a transformation, the new equilibrium points can be more clearly
deduced. For instance, systems with offset parameters are described to have a line of
equilibrium points. Moreover, they can be classified as another form of hidden attractors.
Under the same classification, systems with closed and open curves of equilibria were also
presented and are reviewed in this subsection. Most of these researches built their systems
based on exhaustive computer search methods through chaos localization techniques. In
such methods, chaotic behavior is quantified and detected against wide ranges of parame-
ters and initial values using MLE or otherwise in assumed chaotic models with unknown
parameters.

Several systems with closed curves of equilibrium points were presented in the past
few years. Such curves include circle-shaped [65] and a square-shaped system modified
from it through degree modification (linearization) [66], rounded-square-shaped [67],
cloud-shaped [68], heart-shaped [69], axe-shaped [70], pear-shaped [71], three-leaved-
clover flower-shaped [72], Boomerang-shaped [73], two circles of equilibrium points [74]
and more. A generalization of [65] was presented in [75] that enables employing different
nonlinear functions, which result in circular, ellipse or square-shaped equilibria. Some of
these papers discussed the coexistence of multiple attractors, e.g., [65] showed how their
proposed system possesses several attractors corresponding to different parameter ranges
and/or initial conditions outside or inside the equilibrium curve. Although the strange
attractors exhibit interesting and unique shapes [73], these researches barely observed or
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constructed multi-scroll attractors literally from their proposed systems.
Meanwhile, systems with open curves of equilibrium points were also presented in-

cluding piecewise linear (absolute) curve [76], exponential curve [77], line and hyperbolic
curve [78], hyperbolic tangent curve [79] and hyperbolic sine curve [80]. Again, although
the dynamic behaviors are interesting compared to conventional systems with finite count-
able equilibrium points, no multi-scroll attractors were observed in or constructed from
the proposed systems.

In addition to all these chaotic systems, a hyper-chaotic system was constructed by a
feedback controller to the classical Lorenz system [81]. It has a curve of equilibrium points
and can display coexisting attractors with different types of dynamics. Twelve simple
chaotic flows with surface equilibrium were converted to systems with surface equilibria
through multiplying the right hand sides of the differential equations by a function of
several variables [82].

Systems with closed or open curves of equilibria theoretically posses an infinite
number of equilibrium points. Yet, being hidden attractors, the number of equilibrium
points does not directly affect the number of scrolls. Hence, this technique is not generally
considered as a method of multi-scroll generation. They are reviewed from the viewpoint
of having infinite number of equilibrium points, but are not closely related to the techniques
presented in the rest of the thesis. In fact, we are more interested in attractors size, shape
and/or location control rather than the equilibrium points themselves.

2.2.4 Polarity and Degree Modification, Functions and Transforma-
tions

The previously discussed extra parameters approaches: amplitude control and offset boost-
ing enabled the control of the size and location of the strange attractor, respectively. Yet,
when these parameters are static, the number of scrolls is still fixed. When the parameters
become dynamic, the chaotic system can yield more scrolls. No other modification to
the terms of the chaotic equations and state variables, beside introducing extra additive
and multiplicative parameters, was involved. For ideas with further modifications, we
attempt to limit our review to papers related to amplitude control, offset boosting, non-
autonomous parameters and coordinate transformations. Research works on multi-scroll
and multi-wing generation methods briefly reviewed in Subsection 2.1.2.2 are too numer-
ous, mostly employ non-autonomous methods, focus on their own objective of numerous
scrolls generation and extend beyond our main topic.

In this subsection, we review the researches that modified the terms through applying
functions to selected terms of the right hand side of the chaotic equations on the one hand
and those that applied systematic coordinate transformations on the other hand. One of the
earliest works on terms altering, degree modification and coordinate transformations was
presented in [21]. Coordinate translation, i.e., offset, followed by absolute value function,
i.e., polarity modification, were applied to three of the state variables of a hyperchaotic
system resulting in a multi-wing attractor.

Unlike multiplicative parameters/coefficients as in [38], amplitude control through
degree unification was presented in [14]. Two approaches were proposed: either by
linearization of quadratic terms through replacing variables by signum functions of them,
or raising the degree via multiplication by absolute value function. The method is limited
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to systems with few nonlinear terms like the utilized Sprott B systems whose symmetry
and amplitude control potential is clear. It requires caution when choosing initial values
and the expected equilibrium points.

Quadratic terms in the form of a squared state variable were replaced by the multipli-
cation of this state variable by its absolute value [19]. Each of the other state variables that
appear only in one of the chaotic equations can be replaced by its absolute value minus an
offset parameter all multiplied by a scaling parameter, resulting in coexisting attractors.
Both the attractor size and location are controllable, yet, without multi-scroll generation.

Allocation of attractor by periodic functions was presented in [83], which uncovers
another form of coexisting attractors or multistability that does not depend on offset
parameters. Alternatively, it applies a scaling transformation followed by replacing the
state variable by a bounded periodic function applied to it, e.g., sinusoidal. Periodicity
allows having attractors in the vicinity of x0 + 2π i, i ∈ {. . . ,−2,−1,0,1,2, . . . } as well as x0.
Similar ideas employing periodic functions were presented in [84, 85] for other chaotic
system focusing on offset boostable state variables instead. A further generalization for
hyperchaotic systems and criteria of periodic functions selection were presented in [86].
Applying periodic functions overcome the limiting conditions on systems with amplitude
control and/or offset boosting potential still with the precautions on selecting initial values
within the new basin of attraction. In these works [83–86], only attractor location control
was presented without simultaneous attractors replication or multi-scroll generation.

Afterwards, [87] combined ideas from [21, 83–85], where piecewise nonlinearities,
nested offset boosting and periodic functions were used for doubling the number of scrolls.
The proposed offset boosting technique depends on modification of the chaotic equations
by signum and/or absolute value functions of one of the state variables together with an
offset parameter/booster. Nesting this technique can further yield redoubling of the number
of scrolls. In addition, applying periodic functions to the other state variables through
composition enables the generation of a lattice of scrolls, simultaneously, generating
multi-scrolls.

The rotation transformation of chaotic systems was first presented in [88], where
x is replaced by (|x− x0|+ x0)cos(θ)− (|z− z0|+ z0)sin(θ) and z is replaced by (|x− x0|+

x0)sin(θ) + (|z− z0|+ z0)cos(θ). The new chaotic equations of ẋ and ż are formed by a
similar rotation transformation of the right hand sides of the original ones. Three gen-
eralization approaches via transformations were presented in [89] and validated for 1D
grid multi-scroll Chua attractors (along x-axis). The first two approaches are closer to the
conventional multi-directional multi-scroll generation via autonomous nonlinear signals
with breakpoints than the non-autonomous parameter control we are interested in. The
third approach is the one we are interested in as it performs a series of interesting and
novel transformations. It applies offset, absolute value function and a rotation transfor-
mation (x-y) similar to [88]. The new chaotic equations are formed by a similar rotation
transformation of the right hand sides of the original ones of (ẋ and ẏ). The result of
this transformation is then multiplied by a piecewise function of x or y, respectively,
constructed from difference between shifted versions of an absolute value function. The
turning points x0 and y0 were obtained by trial-and-error, where these turning points and
the angle θ have fixed values throughout the simulation. The system was shown to exhibit
a circular grid of multi-scroll attractors with symmetrical distribution. A very similar
rotation transformation was applied in one of the approaches presented in [90].
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An algorithm for 3D multi-wing attractors generation from systems with double-wing
attractors was presented in [22]. The algorithm employed translation, reflection, absolute
value function, followed by another translation along the x-axis direction. The number of
scrolls was further enlarged by applying a series of mirror reflections using a product of
signum functions. The algorithm is applicable to systems whose saddle-focus equilibria
with index 2 lie on the plane y = 0, i.e., x-axis. For systems that do not satisfy this
condition, a rotation transformation with a fixed angle is applied at first, e.g., θ = π/4 is
used to rotate Lorenz system’s equilibria from y = x to y = 0. Multi-directional grid of
attractors were generated by translation of y and z state variables as well using staircase
functions. The utilized functions are all autonomous functions of the state variables
and closer to the conventional multi-directional multi-scroll generation via autonomous
nonlinear signals with breakpoints than the non-autonomous parameter control we are
interested in. Yet, we are particularly interested in translation, reflection, absolute value
function and rotation transformation. The authors describe the algorithm as a convenient
one because it avoids the troublesome parameters setting compared with other common
even-symmetrical switching function methods.

Besides applying functions directly to the state variables and systematic coordinate
transformations, another approach of novel attractors generation employed complex trans-
formations in chaotic systems to increase the number of scrolls/wings [22, 90, 91]. Firstly,
a methodology of constructing chaotic systems with any preassigned number of equilib-
ria, not scrolls, from a system with one stable equilibrium was presented in [92]. The
methodology depends on additional symmetry across arbitrary axes through coordinate
transformations (x + iz)n = (u+ iw) such that for each point in the new coordinates u−v−w,
there are n symmetric points in the original coordinates x− y− z and, hence, n equilibria.
Yet, this does not affect the number of scrolls in such a system with hidden attractor and
the obtained attractors resemble those of Section 2.2.3. An approach quite similar to [92]
was adopted in [91], which performed the transformation in x− y instead of x− z and
preceded by a static offset similar to that in [21]. The approach was extended in [91]
with the objective of attractor location control. The idea of scaling and periodic functions,
which was previously presented by the same authors in [83], was employed as a systematic
coordinate transformation applied to the state variable on both sides of the chaotic equation
not only on the right side. Yet, no comparison between [83, 91] or reason behind the
modification were included.

Another approach presented in [90] depends on binary and ternary fractal transfor-
mation processes. It is a complex transformation similar to [91, 92], yet, inspired from
fractal complex iterative maps iterated in reverse time direction. Most importantly, this
transformation is applied as a post-processing to the given chaotic signals. Other works
focused solely on fractal transformations [93–97] and can be similarly understood.

2.2.5 Chaotic Systems in Spherical Coordinates
This is a very novel approach that has recently been researched and few works were
published [98–100]. The systems’ equations are rather complicated with much linear and
nonlinear terms. Systems’ equations construction does not follow an analytical approach.
Alternatively, the authors include different combinations of linear and nonlinear terms
with unknown parameters, then experimentally search the parameter space for fixed values
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that generate chaos, i.e., same exhaustive search techniques previously mentioned. The
original system model and construction procedure are not explicitly given, but referred
to [44, 59] ensuring the presence of equilibrium points.

2.2.6 Classification of the Reviewed Papers
From the previous subsections, it can be concluded that the research on generalization and
control of chaotic systems using extra parameters and transformations is recent, branched
and the attempts are still discrete and not fully connected. Besides Sprott’s works including
a static scaling parameter in 2000, Fig. 2.1 shows a stacked bar graph, based on the
reviewed journal articles, of the number of publications in the period 2010-end of May
2020 with their topics given in the legend. The contribution of the relatively large number
of papers on static amplitude control and offset boosting techniques was not exactly in
this area of research. They just showed the amplitude and offset control potential of their
proposed systems as a minor part of their work. Most of the works on static offset control
combined it with amplitude and frequency control. The papers on dynamic offset boosting
are all centered on moving the strange attractor a long line, lattice or grid except [58],
which moves it a long a curve. Papers utilizing polarity and degree modification, as well
as periodic functions, often included static amplitude or offset control too. While “nested
functions” is used to describe papers that applied nested degree modification, offset and
periodic functions for multi-wing generation, “nested transformations” is used to describe
papers that depended on cascade systematic coordinate transformations.

The figure does not show four papers in 2014-2017 on multi-stability identification
using amplitude and offset control as tools. In addition, it does not include the works
reviewed in Subsection 2.2.3, which were published in 2015-2019, as they are the least
related to the work presented in the rest of the thesis as previously discussed. While
most of the reviewed papers start from a given chaotic system and then apply their
modifications, only the systems with open curves, closed curves or surfaces of equilibria in
Subsection 2.2.3 and the systems in the spherical coordinate system ar built from scratch

Figure 2.1: Classification of the reviewed paper and their publication years.
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using assumed models and exhaustive search for parameter values.
It can be inferred from Fig. 2.1 that most of the papers appeared in the period 2017-

present, i.e., concurrent with the work presented in this thesis. Some control features such
as using multilevel pulse signals for dynamic amplitude control [23,43] and offset boosting
of hidden strange attractors [26] were published in 2020, i.e., only months ago. Although
the recent few years witnessed an increase in the number and diversity of publications
relevant to the topic, the propagation and evolution of new research ideas among research
groups is not rapid enough and the number of contributors is limited. For example, 4
and another 2 out of the 8 publications on complex transformations belong to the same
research groups, respectively. There are common coauthors among the three papers on
chaotic systems in spherical coordinates as well. Four out of 6 papers on dynamic offset
boosting and 1 out of 2 papers on dynamic amplitude control also have common names
in their authors list. In addition, Li and Sprott coauthored 3 out of the 4 papers utilizing
periodic functions and contributed in proposing systems utilizing degree modification
and nested functions. Li and Sprott also coauthored the leading researches on amplitude
control and offset boosting, which presented these terminologies in the field of chaos
control.

2.3 Chaotic Synchronization and Encryption Applica-
tions

The papers reviewed in the previous section barely discussed any applications of their
proposed continuous chaotic systems or their performance as PRNGs or in encryption
schemes [23, 56, 58]. Meanwhile, separate image encryption research was ongoing [101–
104] based on discrete-time chaotic maps including some transformations as separate
encryption stages.

Chaotic synchronization has been utilized in data encryption and secure communica-
tion applications in different forms. For secure communication applications, the message
or information signal is embedded in a carrier signal (one or more of the chaotic outputs)
through modulation. Embedding is either performed in the dynamical equations [105–110]
or applied as a post processing through addition [111–118] or multiplication [119]. The
former method imposes conditions on the amplitudes of the message and hence not always
suitable, especially for digital encoded signals such as images. Integer-order chaotic sys-
tems synchronization has been applied for image encryption [70, 120–124, 124–127]. Due
to the more complex behaviors, fractional-order chaotic synchronization is a more chal-
lenging task. Although fewer works utilized fractional-order chaotic systems, they have
flourished recently and more papers appeared presenting fractional-order chaotic systems
synchronization-dependent encryption. Secure communication of simple signals [128]
and voice signals [129, 130] were presented based on fractional-order chaotic systems
synchronization. Furthermore, researches in image encryption field include [131–137].

2.4 Implementation of Chaotic Systems
Software and hardware digital realizations of chaotic systems are increasingly required for
this wide spectrum of applications. Software encryption schemes [11], digital hardware

18



realizations on FPGAs [138–140] and analog realizations based on transistor level [141]
or different building blocks [142] were presented.

2.4.1 Digitally Implemented Generalized Chaotic Systems
The accompanying complicated simulation and implementation is the main challenge
facing these different approaches to novel and generalized chaotic systems forma-
tion [143]. While some of the papers reviewed in this chapter presented analog circuit
simulations or implementations of their proposed generalized controllable chaotic sys-
tems [14, 22, 23, 26, 35, 57] and most of the systems with closed curve of equilibrium
points, fewer works presented digital implementations [77, 89, 90]. In both types of
implementations, very few researches included realization of transcendental elementary
functions such as exponential [77] and hyperbolic functions [79, 80], while almost no pa-
pers included trigonometric functions. In order that chaotic systems take part in real-world
applications, implementations that generate the chaotic signal are required rather than the
computer-simulated numerical form [34, 144]. Digital hardware FPGA, especially when
using fixed-point registers, provide many advantages such as: easy design, programma-
bility, fast prototyping, reduced hardware cost, high speed, noise immunity, reliability,
reconfigurability and reproducibility. These advantages strongly encourages utilizing
FPGAs for fractional-order chaotic systems implementation [34] as long as accuracy
and dynamical degradation limitations are considered in numerical approximations, bit
representation and precision decisions [34].

2.4.2 Hidden Potential of Implementation Sensitivity
For continuous-time systems, discretization techniques employ a time step such that
the system becomes suitable for digital implementation. Various numerical techniques
are available to perform discretization. In addition, there are various alternatives for
implementations including floating-point versus fixed-point arithmetic, variable versus
fixed precision, the number of bits and the order in which the sequence of operations takes
place.

Implementation sensitivity of chaotic systems is rarely considered and under-utilized
in the literature compared to the widely discussed sensitivities to initial conditions and
parameter variation. The effect of numerical solution accuracy on the digital implementa-
tion of differential chaos generators was studied and compared for four chaotic systems
in [145] using Euler, mid-point, and Runge-Kutta fourth order numerical techniques.
Using randomness measures, it was found that Euler implementations yield better chaotic
responses because the numerical solution error adds an extra nonlinearity to the chaotic
system. Effect of precision on the chaotic behavior of digitally implemented systems was
studied in [146] setting precision thresholds below which MLE is not positive and, hence,
the system is not chaotic. Precision and order of execution effects were studied in [147]
for the logistic map. The period of the generated sequence was found to be affected and
the changes due to varying precision can not always be expected owing to the increased
sensitivity, where the map could even be drifted away from chaotic behavior. Interval
arithmetic was also applied to simulation of dynamical systems [148]. The finite precision
error between different natural interval extensions of Chua’s circuit was even applied for
image encryption [149]. Simple mathematical properties such as algebraic associativity
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do not hold in digital computation environments due to rounding errors, let alone several
factors that vary among such environments, as will be discussed in Chapter 3.

Having reviewed the applications and implementations linked to the thesis topic, the
following chapters explain our proposed approaches to the generalization and control of
chaotic systems using extra parameters and affine transformations with the accompanying
analysis, implementation and applications. The possibility of nonautonomous control of
autonomous chaotic systems through the proposed approaches is discussed and utilized in
several applications.
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Chapter 3: Controllable Jerk-Based
Attractors and Reproducibility
This chapter focuses on simple jerk-based chaotic systems and discrete maps and utilizes
them in the first proposed generalization approach. In addition, in the next chapters,
more generalized and controllable chaotic equations will be presented, implemented in
software and sometimes hardware. The provided applications rely on parameters and
initial conditions as sensitivity sources, e.g., in encryption key design. However, there
is an underutilized implementation sensitivity property in chaotic systems, which is also
focused on in this chapter.

The first generalization and control approach, extra parameters, is inspired by [36].
Why should we bother designing a nonlinear function with scaling parameter for jerk-
based chaotic systems while we already have numerous research on generalized discrete
maps? The nonlinear function can be directly set as these maps and the resulting systems
are expected to possess similar controllable properties. In this section, we validate
this idea by proposing two systems based on the jerk-equation and discrete maps with
scaling parameters in the form of piece-wise nonlinearity and quadratic nonlinearity. The
effects of different parameters on the type of the response of each system are studied.
Time series, phase portraits, bifurcation diagrams and MLE are investigated against all
system parameters. It is shown that the role of each parameter is related to its role in
the corresponding case of discrete maps. Possibility of fractional-order extension is also
assessed [8, 9].

3.1 Two Modified Non-Linearities
This subsection reviews generalized forms of two well-known discrete-time chaotic
maps, which will be utilized as the nonlinear function of the jerk-equation. The two
generalizations are the scaled tent map with piece-wise nonlinearity and the scaled logistic
map with quadratic nonlinearity. The complete bifurcation diagram using negatively
valued parameters in tent and logistic maps has been recently analyzed in [150, 151]. The
new parameter range provides a controlling capability resulting in a wider output range.

3.1.1 Piece-Wise Nonlinearity: Scaled Tent Map
Scaled tent map [152] with piece-wise nonlinearity is given by:

f (x) =

 µ sgn(b)x, x ≤ a
b+sgn(b)

µ(a−bx), x > a
b+sgn(b)

, (3.1)

where µ, a and b are parameters, a ∈ R+, b ∈ R−{0} and sgn(b) is the sign or signum that
extracts the sign of b as follows:

sgn(b) =


−1, b < 0
0, b = 0
1, b > 0

(3.2)
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The forms of the scaled tent map can be classified into positive, mostly positive, negative,
and mostly negative maps named after the sign of the obtained output range. Figure 3.1
shows the graphs of the map equation for the first two forms, in which b > 0, expressing
the output ranges in terms of the map parameters.

For a discrete-time map represented as a recurrence relation, the bifurcation diagram
is a plot of its steady state solution versus the control parameter(s) of the map. Plotting
bifurcation diagrams is one of the approaches towards identifying the effective range of
parameters through which the system exhibits bounded responses. In addition, it is used
to classify the corresponding qualitative type of the post-transient solution into stable,
periodic or chaotic. Figure 3.2 shows the general schematic of the bidirectional bifurcation
diagram of the scaled tent map, which changes its shape as the parameter b exceeds 1.
The main bifurcation points and the ranges of the parameter µ and the output x are also
given in Fig. 3.2. From Fig. 3.2, it can also be inferred that the effective range of the
parameter µ, in which the output is bounded, depends on the scaling parameter b in an
inverse proportionality relation. In addition, the output range depends on both scaling
parameters, where it widens as the value of the parameter a increases and/or the value of
the parameter b decreases. These effects can be further validated by the three-dimensional
snapshots of bifurcation diagrams against the main system parameter µ for different values
of the scaling parameters a and b, which are shown in Figs. 3.3(a) and (b), respectively.

3.1.2 Quadratic Nonlinearity: Scaled Logistic Map
Similarly, scaled logistic map [151] with quadratic nonlinearity is given by:

f (x) = µ sgn(b)x(a−bx), (3.3)

resulting in four forms similar to the scaled tent map. Figures 3.4 shows two map versions
and Fig. 3.5 shows their bidirectional bifurcation diagrams. The dependence of the range
of the output x on the scaling parameters is similar to the scaled tent map. However,
the effective range of the parameter µ depends on the scaling parameter a in an inverse
proportionality relation. Bifurcation diagrams against the scaling parameters and more
detailed analyses of the different aspects of the scaled tent and logistic maps can be found
in [151, 152].

3.2 Generalized Controllable Jerk-Based Systems Using
Extra Parameters

Substituting either the scaled tent map (3.1) or the scaled logistic map (3.3) in the jerk-
system

...x + rẍ + ẋ = f (x) (3.4)

of [36] as f (x) yields the piece-wise nonlinearity system and the quadratic nonlinearity
system, respectively. The systems are solved numerically using Euler technique as follows:

xi+1 = xi + h (yi) ,
yi+1 = yi + h (zi) ,
zi+1 = zi + h (−r zi− yi + f (xi)) .

(3.5)
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(a) (b)

Figure 3.1: Scaled (a) positive and (b) mostly positive tent maps, where µmin = −
(
1 + 1

b

)
.

(a) (b)

Figure 3.2: Generic bifurcations of the scaled tent map in both sides of µ (a) b < 1, (b)
b > 1.

(a) (b)

Figure 3.3: Bifurcations of the scaled tent map at (a) b = 1 and a = {0.5,1,2} and (b) a = 1
and b = {1,2,4}.
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(a) (b)

Figure 3.4: Scaled (a) positive and (b) mostly positive logistic maps.

(a)

(b) (c)

Figure 3.5: (a) Generic bifurcations of the scaled logistic map and numerical examples at
(b) b = 1 and a = {0.5,1,2} and (c) a = 1 and b = {0.5,1,2}.

For both systems, the equations, attractor diagrams in the three-dimensional space and
different projections, and LEs at the specified parameter values are shown in Table 3.1.
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Table 3.1: Proposed systems and their properties

System Piece-wise nonlinearity Quadratic nonlinearity

Nonlinearity f (x) =

{
µ sgn(b)x, x ≤ xk
µ(a−bx), x > xk

xk = a
b+sgn(b)

f (x) = µ sgn(b)x(a−bx)

Parameter
Values

µ = 1 a = 1
b = 1 r = 0.6

µ = 1 a = 1
b = 1 r = 0.5

Attractor
Diagram

LEs (0.038,0,−0.64) (0.092,0,−0.59)
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The attractor diagrams and the projections of the two systems resemble those of the two
systems with similar nonlinearities which were introduced in [36]. However, they do not
exhibit the same ranges of the three state space variables x, y and z. The obtained values
for LEs for the two systems are in the same range obtained for the similar systems [36].
Both systems belong to the dissipative systems category because the sum of the three LEs
for each system is negative [2]. Moreover, they exhibit chaotic strange attractors since the
MLE is finite positive.

The equilibrium points are (x∗,0,0), where x∗ = {x| f (x) = 0}, and yields x∗ = 0, a/b
for both forms of f (x). Hence, there are two equilibrium points (0,0,0) and (a/b,0,0).
Hence, the sign of the x-coordinate of the nontrivial equilibrium point, x∗, depends on
the sign of the parameter b and some consequences of this property will be discussed in
Subsection 3.2.3.

For the two presented systems, the type of response obtained at the different values
of the four parameters (r,µ,a,b) and the sensitivity to parameter variation need to be
studied. This study can be carried out in a discrete manner, where the phase portrait and
the time series are plotted at chosen values of each parameter fixing the other parameters.
Continuous bifurcation diagrams provide a better representation of the systems behavior,
which is also more consistent with the continuous description where parameters vary in
narrow steps. Figure 3.6 shows the procedure of generating the bifurcation diagram versus
a chosen parameter for continuous chaotic systems through plotting the value of x every
time it reaches a local maximum by sampling the time series as shown in Fig. 3.6. The
resulting bifurcation diagram reveals whether the time series is stable, periodic or chaotic
similar to the discrete case.

As previously detailed, LEs measure the sensitivity to initial conditions through
the exponential divergence of nearby trajectories. MLE exhibits finite positive values
for parameter ranges which correspond to chaotic behavior. To further indicate which
parameter ranges exhibit chaotic behavior, MLE values are plotted against each studied
parameter.

Figure 3.6: Time series sampling to decide the type of system response.

26



3.2.1 Sensitivity to Main System Parameters
To study the effect of parameters r and µ, the scaling parameters a and b are kept constant
a = b = 1 corresponding to the unity scaling case. For the piece-wise nonlinearity system,
Tables 3.2 and 3.3 show its responses at different values of r and µ, respectively. The
post-transient attractor diagrams, time series, and the obtained response type at different
values of the parameter r within a chosen interval are plotted in Table 3.2 fixing the other
parameter values to 1. The value of r is fixed at 0.6 to study responses at different values
of the parameter µ, which are given in Table 3.3. Negative values of µ can be studied
similarly.

Table 3.2: Responses against the parameter r at a = b = µ = 1

r = 0.55 r = 0.57 r = 0.7 r = 1.1

Single point

Divergent Chaotic Periodic Stable

Table 3.3: Responses against the parameter µ at a = b = 1 and r = 0.6

µ = 0.9 µ = 0.95 µ = 1 µ = 1.1

Periodic Chaotic Chaotic Divergent
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Figure 3.7 shows the bifurcation diagrams of both systems versus the system parameter
r. For both systems, at µ = a = b = 1, chaotic behavior is reported starting at a critical
value of r, below which no bounded responses can be found and the solution diverges.
A series of reverse bifurcations from the chaotic state to periodic orbits is noticed as the
value of r increases, then stable responses prevail. The results discussed earlier are further
indicated by MLE plots, which appear below each bifurcation diagram. MLE exhibits
finite positive values for ranges of r which correspond to chaotic behavior, whereas it is
negative in the regions of stable solution. It roughly equals zero for ranges of r which
correspond to periodic responses.

Fixing r at 0.6 for the piece-wise nonlinearity system and 0.5 for the quadratic non-
linearity system and studying the effect of µ yields the diagrams shown in Table 3.4.
Bounded responses are reported when the value of the parameter µ belongs to a given
interval, where around the middle of the interval, stable responses are obtained. Then, the
response type changes gradually to periodic in a series of period doubling bifurcations
as |µ| increases. Afterwards, the response becomes chaotic as µ approaches the lower
and upper bounds. The possibility of bounded responses and the generation of chaotic
sequences at both positive and negative values of µ in a double sided bifurcation are

(a) (b)

Figure 3.7: Bifurcation diagram and MLE against the parameter r for (a) the piece-
wise nonlinearity system at µ = a = b = 1 and (b) the quadratic non-linearity system at
µ = a = b = 1.
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Table 3.4: Summary of the sensitivity to the system parameter µ and the similarities with
the discrete scaled tent and logistic maps

Bifurcation and MLE Properties

Pi
ec

e-
w

is
e

no
nl

in
ea

ri
ty - Double sided bifurcations versus

µ.
- Bounded responses are reported in
the range µ ∈ [−1,1].
- Period doubling bifurcation to-
wards chaos as |µ| increases.

Q
ua

dr
at

ic
no

nl
in

ea
ri

ty

- Almost similar except for the
range, which is wider in this case.
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analogous to the behavior in the discrete domain [151, 152].

3.2.2 Sensitivity to Scaling Parameters
This section studies the effects of scaling parameters a and b on the system responses. For
the piece-wise nonlinearity system, Table 3.5 shows the responses at different values of
the parameter b, which was noticed to be related to the variation of the parameter µ. In
addition, Table 3.6 shows the continuous bifurcation diagrams and MLE values against
both scaling parameters a and b. The response type does not change as the value of the
parameter a increases. The response is chaotic for almost all values of a, where the range
of the obtained solution gets wider as the value of a increases. MLE value is almost
kept constant when varying the value of the parameter a. The parameter a acts only as
a scaling parameter that widens the range of the solution, which can be further inferred
from Fig. 3.8, where increasing the value of a increases the size of the attractor diagram.
Table 3.6 shows that b is a signed parameter and that the system response exhibits double
sided period doubling bifurcations when varying the value of b. In addition, the bifurcation
diagram is limited by a value bmax controlled by the value of µ analogous to discrete scaled
tent map case [152]. The corresponding MLE plot exhibits values that match the response
types shown in the bifurcation diagram.

For the quadratic nonlinearity system, bifurcation diagrams and MLE versus the
scaling parameters are shown in Table 3.7, which can be described similar to the piece-
wise nonlinearity system. The effects of the scaling parameters a and b on the output
range remain the same, where the range of the system output increases as a increases. In
addition, the bifurcation diagram is limited by a value amax controlled by the value of µ.
The parameter b acts only as a scaling parameter, where as |b| increases the output ranges
and the attractor size decrease as shown in Fig. 3.9.

Figure 3.10(a) shows the dependence of the effective range of the parameter µ on the
value of b. For b > 0, the range of µ that yields bounded responses decreases as b increases
and sometimes no chaotic behavior can be reported. The dependence between µ and b
resemble their dependence for discrete scaled tent map [152]. Figure 3.10(a) also shows

Table 3.5: Piece-wise nonlinearity system attractor diagrams and time series for different
combinations of the parameters b and µ at a = 1 and r = 0.6

b = 2, µ = 0.6 b = −2, µ = 0.8 b = 2, µ = −0.8 b = 0.5, µ = −1.3
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Table 3.6: Summary of the sensitivity of the piece-wise nonlinearity system to the scaling
parameters a and b and the similarities with the discrete scaled tent map

Bifurcation and MLE Properties
- The response is chaotic for almost
all values of a, where the range of
the obtained solution gets wider as
the value of a increases. MLE val-
ues are positive and slightly vary
versus a.

- The range of µ decreases as b in-
creases. The bifurcation diagram is
limited by a value bmax controlled
by the value of µ.
- a acts only as a scaling parame-
ter, where as a increases the output
ranges and the size of the attractor
diagram increases.

- Double sided period doubling bi-
furcations towards chaos exist as |b|
increases.
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Table 3.7: Summary of the sensitivity of the quadratic nonlinearity system to the scaling
parameters a and b and the similarities with the discrete scaled logistic map

Bifurcation and MLE Properties
- The effects of a and b differ from
their effects on the first system. The
roles are exchanged with respect to
their effect on the solution type, bi-
furcation shape and range of the
main system parameter µ.

- Their effects on the output range
remain the same, which increases
as the absolute values of a increases
and/or b decreases.
- The range of µ decreases as a in-
creases. The bifurcation diagram is
limited by a value amax controlled
by the value of µ.

- b acts only as a scaling parame-
ter, where as |b| increases the out-
put ranges and the attractor size de-
creases.
- b = 0 is a vertical asymptote.
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Figure 3.8: Scaled chaotic responses of the piece-wise nonlinearity system for different
values of the parameter a at b = µ = 1, r = 0.6.

(a) (b) (c)

Figure 3.9: Scaled chaotic responses of the quadratic nonlinearity system for different
values of the parameter b at a = µ = 1 and r = 0.5.

that the range of the solution shrinks as the absolute value of b increases. On the other
hand, the parameter a does not affect the range of µ. The effects of a and b on the quadratic
nonlinearity system differ from their effects on the piece-wise nonlinearity system from
the viewpoint of the effective range of µ, where the roles are exchanged. The effective
range of µ is affected by the value of a analogous to the discrete scaled logistic map [151],
where it decreases as a increases as shown in Fig. 3.10(b).
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(a) (b)

Figure 3.10: Bifurcation diagrams versus µ of (a) the piece-wise nonlinearity system at
b = {0.5,1} and (b) the quadratic nonlinearity system at a = {0.5,1}.

3.2.3 Self-Reproducing and Multi-Scroll Attractors
Each of the two studied systems (3.5) and Table 3.1 can exhibit self-reproducing attractors
at different locations for different signs of the parameter b, which controls the sign of
the x-coordinate of the equilibrium point as mentioned before as shown in Fig. 3.11.
Two different attractor diagrams can be obtained at distinct values and/or signs of b
along the x-axis, which are colored differently. An online colored version of the thesis
can be found in http://eece.cu.edu.eg/˜hfahmy/thesis.html. In addition, if the
parameter b varies dynamically with time and switches its value and sign as time advances,
then multi-scroll attractors can be generated similar to the procedure given in [24]. The
derivative of such non-autonomous parameters can be considered zero, since the angular
frequency of the multi-level pulse signals is sufficiently small compared with the chaotic
oscillator. Figure 3.12 shows various examples in which parameter switching is used to

(a) (b)

Figure 3.11: Differently allocated attractor diagrams at b > 0 (darker) and b < 0 (lighter)
for (a) the piece-wise nonlinearity system and (b) the quadratic nonlinearity system.
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(a) (b)

Figure 3.12: (a) Four-scroll attractor using the piece-wise nonlinearity system and (b)
Double-scroll attractor using the quadratic nonlinearity system.

generate multi-scroll chaotic attractors from the two systems. In this case, the attractor
diagrams are joined and undergo switching from side to side throughout the simulation
time. Figure 3.12(a) generates a four-scroll attractor from the piece-wise nonlinearity
system through switching the parameter values from a = b = 1, to a = 2 and b = −0.7,
followed by a = 3 and b = 1, and finally a = 4 and b = −0.7, each case for quarter the
simulation time, respectively, where r = 0.6 and µ = 1. Figure 3.12(b) generates a double-
scroll attractor from the quadratic nonlinearity system through switching the value of the
parameter b from 1 to −0.6 after half of the simulation time passes, where r = 0.5 and
a = µ = 1.

3.2.4 Fractional-Order Extension and Sensitivity to Fractional Or-
ders

The fractional derivative of order α, based on Caputo definition [27], is given by:

Dα f (t) =

 1
Γ(m−α)

∫ t
0

f m(τ)
(t−τ)α−m+1 dτ m−1 < α < m

dm

dtm f (t) α = m
, (3.6)

where m = dαe and Γ(.) is the gamma function given by:

Γ(z) =

∞∫
0

e−ttz−1dt, Γ(z + 1) = zΓ(z). (3.7)

In order to solve fractional-order systems numerically with a step size h, Grünwald-
Letnikov (GL) method of approximation [31] is used, which is given by:

Dα f (t) ≈ h−α
k∑

j=0

(−1) j
(
α
j

)
f (tk− j). (3.8)
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Consequently, a fractional-order autonomous differential equation Dαy(t) = f (y(t)) can be
discretized using (3.8) as follows:

y(tk) = f (y(tk−1))hα−
k∑

j=1

c j
(α)y(tk− j), (3.9)

where tk = kh, and the coefficients c j
(α) are computed using:

c j
(α) =

(
1−

1 +α

j

)
c j−1

(α), j = 1,2,3, . . . , c0
(α) = 1. (3.10)

Same algebraic manipulation can be applied to a system of three fractional-order differen-
tial equations to get the fractional-order counterpart of (3.4), which is given by:

Dαx = y,
Dαy = z,
Dαz = −r z− y + f (x).

(3.11)

and its numerical solution using GL is given by:

xi+1 = (yi) hα−
i∑

j=1
c j

(α)xi− j+1,

yi+1 = (zi) hα−
i∑

j=1
c j

(α)yi− j+1,

zi+1 = (−r zi− yi + f (xi)) hα−
i∑

j=1
c j

(α)zi− j+1.

(3.12)

Tables 3.8 and 3.9 show the time series of the three phase space dimensions x, y and z
as well as the post-transient attractor diagram illustrating the obtained type of solution for
different values of the fractional-order. It can be inferred that as α decreases than 1, the
fractional-order counterparts are easily drifted from chaotic behavior.

3.3 Reproducibility Rules and Implementation Sensitiv-
ity

In floating-point arithmetic environments, the algebraic associativity property no longer
holds [153] because of rounding errors and the order of execution matters [153]. This
section uncovers the implementation sensitivity of chaotic systems in floating-point, as
well as fixed-point, computations and its implications [5]. Figure 3.13 summarizes the
studied cases and factors including discretization step and precision effects.

3.3.1 Sensitivity to Order of Additions
Three chaotic systems were selected [36, 154] and discretized using Euler technique,
each having two terms including xi in the zi+1 equation. For each system, three cases
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Table 3.8: Piece-wise nonlinearity system responses versus the fractional-order α at
parameter values a = b = µ = 1 and r = 0.6

α = 0.9 α = 0.95 α = 0.99
Stable Periodic Periodic

Table 3.9: Quadratic nonlinearity system responses versus the fractional-order α at param-
eter values a = b = µ = 1 and r = 0.5

α = 0.9 α = 0.98 α = 0.99
Stable Periodic Chaotic

corresponding to different orders of execution of zi+1 are selected, which are given in
Table 3.10, where:

xi+1 = xi + hyi, yi+1 = yi + hzi, sgn(x) =


−1, x < 0
0, x = 0
1, x > 0

, (3.13)
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Implementation Sensitivity

                         
                         for different

Floating-
point

Fixed-
point

Discretization 
steps

Precisions

Order of additions Order of multiplications

System 1
Signum 

nonlinearity
3 cases

System 2
Signum 

nonlinearity
3 cases

System 3
Cubic 

nonlinearity
3 cases

System 3
Cubic 

nonlinearity
3 cases

Logistic map
Quadratic 

nonlinearity
4 cases

Figure 3.13: The studied chaotic systems and map, their implementation cases and
sensitivity factors.

h is the discretization step and sgn(x) is the sign function or signum function that extracts
the sign of x as defined before.

3.3.1.1 Software Floating-Point Implementation

Figure 3.14 shows the results of the three cases of system 1 in software double-precision
floating-point implementation. All software computations are performed using Matlab
R2014b. In addition, different initial values yield mismatches, but the results are shown

Table 3.10: Different implementations of three chaotic systems corresponding to different
orders of addition

Sys. Case I Case II Case III
1 zi+1 = zi−

0.8h (zi + yi + xi− sgn(xi))
zi+1 = zi−

0.8h (xi + zi + yi− sgn(xi))
zi+1 = zi−

0.8h (xi + yi + zi− sgn(xi))

zi

+ +

yi

+ +

xi

+ -

sgn(xi)

0.8 h

x

+ -

zi

zi+1

xi

+ +

zi

+ +

yi

+ -

sgn(xi)

0.8 h

x

+ -

zi

zi+1

xi

+ +

yi

+ +

zi

+ -

sgn(xi)

0.8 h

x

+ -

zi

zi+1

2 zi+1 = zi+

h (−0.6zi− yi + 1.2xi− sgn(xi))
zi+1 = zi+

h (1.2xi−0.6zi− yi− sgn(xi))
zi+1 = zi+

h (1.2xi− yi−0.6zi− sgn(xi))
3 zi+1 = zi+

h
(
−0.6zi− yi + 1.6xi

3−1.6xi
) zi+1 = zi+

h
(
1.6xi

3−0.6zi− yi−1.6xi
) zi+1 = zi+

h
(
1.6xi

3− yi−0.6zi−1.6xi
)
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(a) (b)

Figure 3.14: (a) Attractor diagrams and (b) mismatches in x time series of the three cases
of system 1 in software double-precision floating-point implementation.

for (x0,y0,z0) = (0.1,0.25,0.5). Although the shape and size of the attractor look similar
for the three implementations (Fig. 3.14(a)), the system becomes sensitive to the order of
terms in implementation on the long term evolution. This can be inferred from Fig. 3.14(b)
for x time series, where the three implementations are plotted altogether. Both y and z
time series are similarly affected by the order of terms. Figure 3.14(a) also indicates that
the three state variables have the same order of magnitudes.

The system is solved using h = 0.1 from t = 0 to 30 000, i.e., 300 000 points. The
time series resulting from the three different orders appear to be roughly the same in the
first 350 time units. However, the absolute value of the error between the time series
yielded by each pair of implementation orders increases gradually from O

(
10−16

)
near

the beginning until it reaches O
(
10−2

)
starting at around t = 350 in z time series and then

these higher values of error propagate to the two other time series. The absolute value of
the error is limited, hence the system is not drifted away from chaotic behavior and does
not diverge. It remains chaotic, but with different time series. Moreover, Table 3.11 shows
that a strange attractor can be formed by the x, y and z components of the errors in case of
mismatch, which exhibits three-scrolls. These scroll-shaped attractor diagrams formed by
the mismatch or error can themselves be used as alternative sources of randomness as will
be discussed in Section 3.5.

Table 3.11 shows the effect of the time step h on the error between the time series
yielded by cases I and III for both single and double-precision floating-point implementa-
tions. For double-precision, it can be inferred that as the value of the time step h increases,
the gradual increase of the absolute value of the error from 0 starts at an earlier time t
and the maximum limit the error reaches in the shown time interval increases. That is,
the time step h should approach zero to diminish the error, which is impractical from the
viewpoints of memory usage and time complexity.

Single-precision representation has a narrower precision and range of magnitudes that
can be represented. For single-precision implementation and using h = 0.1, the absolute
value of the error between the time series of Cases I and III increases gradually from
O

(
10−7

)
near the beginning until it reaches O

(
10−2

)
starting at around t = 125. That

is, for single-precision implementation, the error starts to appear earlier than it does for

39



Table 3.11: Time series and three-dimensional plots of the error between cases I and III of
system 1 for different time steps and precisions in a floating-point implementation
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Si
ng

le
-p

re
ci

si
on

Ti
m

e
se

ri
es

3D
pl

ot
s

D
ou

bl
e-

pr
ec

is
io

n
Ti

m
e

se
ri

es
3D

pl
ot

s

double-precision implementation. However, the effect of h on the starting time of the error
is less significant than it is in the double-precision implementation.

For the two other systems, Table 3.12 shows the effects of h and precision on the error
time series and 3D plots in software floating-point implementations. One of the reported
forms of step size sensitivity and consistency is that for system 2, the response diverges
when h is increased above 0.007. Consequently, results corresponding to small values of
h are reported in Table 3.12. Although the difference in h is not large, similar notes to
those reported for system 1 apply. That is, the starting time and the maximum limit of the
error increase as h increases. In addition, the starting time is earlier for single-precision
implementation.

To further indicate that all different studied cases of the systems exhibit chaotic
behavior, bifurcation diagrams and LEs are investigated for the different cases using
Wolf’s LEs computation algorithm [155,156] and found to be roughly equal. The constant
values 0.8 and 0.6 are replaced by parameters a and b for systems 1 and 3, respectively.
Figure 3.15 (a) shows the bifurcation diagram of system 1 against the parameter a, where it
diverges for values of a less than roughly 0.48, then it becomes chaotic in the approximate
interval [0.48,1), then it becomes stable. LEs of system 3 are computed for a = 0.6 and
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Table 3.12: Time series and three-dimensional plots of the error between cases I and III
of systems 2 and 3 for different time steps and precisions in a software floating-point
implementation

The piece-wise nonlinearity The cubic nonlinearity
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are shown in Fig. 3.15(c). MLE versus b is shown in Fig. 3.15(d), which matches the
bifurcation diagram against b of Fig. 3.15(b) in the chaotic and stable regions.

3.3.1.2 Hardware Fixed-Point Implementation

The reason behind the sensitivity to order of additions in floating-point computations is the
mantissa alignment step if exponents are different [157]. On the other hand, fixed-point
representation uses integer hardware operations controlled by a given convention about
the location of the fractional point and fixed register size for all variables. While in
floating-point arithmetic gaps between adjacent numbers are not uniformly spaced, the
gaps between adjacent numbers always equal a value of one in fixed-point arithmetic.

The different cases of the studied systems are designed and simulated in fixed-point
arithmetic using Xilinx ISE 14.7 and realized on Artix-7 XC7A100T FPGA. However, no
mismatches are reported and the time series corresponding to different cases are identical.
This is not the case for orders of multiplication as will be demonstrated in the next section.
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(a) (b)

(c) (d)

Figure 3.15: Bifurcation diagrams of (a) system 1, (b) system 3, (c) LEs of system 3 at
b = 0.6 and (d) MLE versus b.

3.3.2 Sensitivity to Order of Multiplications
In this section, the well-known logistic map with four different implementations, which
are given by:

f1(xi) = λxi(1− xi), f2(xi) = λ(1− xi)xi,

f3(xi) = λ
(
xi− xi

2
)
, f4(xi) = λxi−λxi

2 (3.14)

is considered to demonstrate the implementation sensitivity of the map for digital
computations which involve rounding, more specifically, sensitivity to the order of
multiplications. As another example on the sensitivity to the order of multiplica-
tions, system 3 can be implemented in different orders of terms, e.g., besides case I
from Table 3.10, case IV uses zi+1 = zi + h

(
−0.6zi− yi + 1.6(xi

2−1)xi
)

and case V uses

zi+1 = zi + h
(
−0.6zi− yi + 1.6xi(xi

2−1)
)
.

3.3.2.1 Software Floating-Point Implementation

Figure 3.16(b) shows examples on the differences between the four cases, which are
implemented in double-precision floating-point arithmetic. The cases differ from each
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(a) (b) (c)

Figure 3.16: (a) Exact implementation, f1 versus f1. (b) Double-precision and (c) single-
precision floating-point different implementations, f2 versus f1, of the logistic map.

other after very few iterations and result in different chaotic sequences. The error starts off

with values of O(10−16) till it reaches O(10−3) around n = 50 and accumulates to higher
values as time advances. Similarly, all of f1, f2, f3 and f4 results differ from each other
demonstrating the sensitivity of the same mathematical function to computations. Similar
results were obtained for single-precision computations as shown in Fig. 3.16(c), where
the error starts off with values of O(10−9) and reaches O(10−3) around n = 24, i.e., earlier
due to the more limited precision. Floating-point implementation mismatches for system 3
are given in Table 3.13 and can be described similar to the sensitivity to the order of
additions.

3.3.2.2 Hardware Fixed-Point Implementation

The four cases of the logistic map are designed and simulated in fixed-point arithmetic
using Xilinx ISE 14.7 and realized on Artix-7 XC7A100T FPGA. The ranges x ∈ (0,1)
and λ < 4 can be increased to accommodate the sign if the convex logistic map is consid-
ered [151]. Low or intermediate precision, i.e., number of bits, may drift the map from
chaotic behavior [147]. The registers are represented as 3 integer bits, to avoid overflow,
and p f = 24, 32 and 48 fractional bits with the results given in Fig. 3.17. Mismatches
are reported and all f1, f2, f3 and f4 differ from each other similarly. These results are
obtained using fixed register size and applying truncation to this size just after each basic
operation. If wider intermediate precisions are allowed, mismatches can be eliminated.

Figure 3.18 shows how different number representations used to implement one case
of the chaotic map result in different time series. Yet, they still exhibit similar chaotic
properties such as the value of MLE, which is computed numerically using forward
difference approximation of the first derivative as in [147].

Mismatches were reported for fixed-point implementation of system 3 as well, which
are given in Table 3.14 using 2 integer bits and 16 and 24 fractional bits.

For hardware realization, the final output is truncated to 12 bits to be suitable for the
experiment using FPGA and oscilloscope. All proposed implementations have been exper-
imentally verified on Artix-7 XC7A100T FPGA. An example of the experimental result
on the oscilloscope for one of the discretized systems is shown in Fig. 3.19. A summary
of the hardware resources utilization and efficiency of producing the mismatch signal for
the discrete logistic map and discretized system 3 is given in Table 3.15 corresponding
to 18 and 19 bit precisions (i.e. p f = 16), respectively. Throughput is computed through
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Table 3.13: Time series and three-dimensional plots of the error between cases I and V
of system 3 for different time steps and precisions in a floating-point implementation on
Matlab
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Figure 3.17: Fixed-point computations sensitivity of the logistic map (a) p f = 24, (b)
p f = 32 and (c) p f = 48.

multiplying the maximum frequency by the number of output bits per clock cycle.
From Sections 3.3.1 and 3.3.2, it can be inferred that as the value of the time step

h increases, the gradual increase of the absolute value of the error from 0 starts at an
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(a) (b)

Figure 3.18: Chaotic properties of f1 in double, single floating-point and fixed point
(p f = 32) computations (a) time series and (b) MLE.

Table 3.14: Time series and three-dimensional plots of the error between cases I and V of
system 3 for different time steps and precisions in a fixed-point implementation

h
p f = 16 p f = 24

Time series 3D plots Time series 3D plots

2−8

2−6

earlier time t and the maximum limit the error reaches in the shown time interval increases.
That is, the time step h should approach zero and similarly the precision should approach
infinity to diminish the error, which is impractical from the viewpoints of memory usage
and time complexity. Reducing the discretization step and increasing the precision can
delay the significant increase in the error, yet, it does not eliminate it. Fixed-point may
not suffer from mismatch and allow more reproducibility when the changes are limited to
the order of additions only and on using wider intermediate precisions in case of varying
order of multiplications. Generally, the changes due to varying implementation factors
can not always be expected owing to the increased sensitivity of chaotic systems, which
agrees with the results obtained for finite precision logistic map [147]. Consequently, all
implementation details should be carefully considered for reproducibility and to achieve
successful chaotic communication.
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Figure 3.19: Oscilloscope experimental mismatch signal result between two different
cases of system 3.

Table 3.15: Hardware resources utilization and efficiency of mismatch signals production

No of
slices

No of
slice

registers

Maximum
Frequency

“MHz”
Multipliers

Throughput
“Gbit/s”

Logistic map 226 50 90.59 4 1.5924
System 3 479 144 66.593 9 3.7068

3.4 Sensitivity Effect on Image Encryption
This section studies the effect of the mismatch between the three cases of system 3
on applications in software double-precision floating-point implementation. A simple
software image encryption scheme is used, where case V is used for encryption and
cases I, IV and V are used one at a time for decryption.

3.4.1 Encryption and Decryption Schemes
Figure 3.20(a) shows a simple substitution-based stream cipher scheme with feedback,
which is used for symmetric-key encryption. The chaotic signals are multiplied by a
scaling factor of 109 to be suitable for conversion to an integer value. The original
color image is decomposed into three channels: red, green and blue. Each component is
xored with the 8 Least Significant Bits (LSBs) of the integer-represented chaotic signals,
respectively, xored together with a feedback element from a channel of the previously
encrypted pixel selected by the least significant bits of its channels [11] according to the
multiplexing procedure given in Fig. 3.20(b). In the decryption scheme, all operations are
reversed. The encryption key is subdivided as shown in Fig. 3.20(b) with a total of 128
bits, i.e., 2128 possibilities, which can resist brute force attacks in which the hacker tries
all possible combinations of the encryption key as specified by the Advanced Encryption
Standard (AES) [11]. The value Psum represents the input dependent term, which enhances
the resistance to different attacks, and equals the sum of all pixels of the input image [11].
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Figure 3.20: (a) Encryption and decryption block diagrams of the stream cipher system
with feedback, (b) multiplexing table and (c) the utilized PRNG.

The chaotic system parameters are computed from the key as follows:

x0 = x f ix + K1×2−36 + mod(Psum,10)/1000,
y0 = y f ix + K2×2−36 + mod(Psum,10)/1000,
z0 = z f ix + K3×2−36 + mod(Psum,10)/1000,
a = a f ix + K4×2−36 + mod(Psum,10)/1000,
b = b f ix + K5×2−36 + mod(Psum,10)/1000

(3.15)

where the fixed parts are set to values within the ranges corresponding to chaotic behavior
and the constants 0.6 and 1.6 are replaced by parameters a and b, respectively.

3.4.2 Wrong Decryption Results
In this section, one implementation (case V) of system 3 is used for encryption and each
of cases I, IV, and V is used for decryption once as shown in Fig. 3.20. The corresponding
decrypted images are analyzed using several performance metrics, which are defined in
Table 3.16. Table 3.16 lists the encryption performance tests that will be used throughout
the rest of the thesis.

Table 3.17 summarizes the decryption results, where only case V, which was used
for encryption, succeeds in correct decryption of the image. While the correct decrypted
image using case V has correlation coefficients close to one, indicating that it is identical
to the corresponding original image, the two other implementations have correlation
coefficients close to zero, indicating that they are weakly correlated. The samples of
the wrong decrypted images are uniformly distributed, as shown in the histogram plots,
unlike the original and the correct decrypted images. MSE equals zero in case of correct
decryption and much higher values in case of wrong decryption. The wrong decrypted
images have higher values of entropy than the correct one since they are nearly random.
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Their entropy value are close to the ideal value 8 that corresponds to the number of bits
required to represent a pixel channel value.

3.5 Encryption Application of the Mismatch Signal
In this section, the PRNG of Fig. 3.20 is the mismatch signal between cases I and V
of system 3, which is shown in Table 3.13 using double-precision implementation and
h = 0.02 and discarding the first 500 time units, i.e., 25 000 iterations. Figure 3.21 shows
the randomness properties of the chaotic mismatch signal ex, which has nearly aperiodic
time series, flat frequency distribution and histogram, and an autocorrelation function that
roughly equals zero for lag values other than zero. Similar results were obtained for ey
and ez.

Table 3.18 shows the encrypted image and histogram of the red channel. In addition,
it gives the values of the performance metrics averaged over the three channels. The
image encryption scheme successfully passes the statistical and sensitivity tests with
very low horizontal, vertical and diagonal correlation. In addition, high MSE values and
entropy close to 8 are reported for slight perturbation in the decryption key indicating
key sensitivity. Moreover, it is robust against brute force attacks owing to its key space
of 2128 and against differential attacks since the values of UACI and NPCR approach the
recommended values 33.3 % and 100 %, respectively.

Table 3.16: Performance metrics of image encryption systems

χtest2 =
k∑

i=1

(oi−ei)2

ei
, k = 256 is the number of levels in a color, oi and ei are the observed

and expected occurrence frequencies of each color level (0 - 255), respectively. For
1024×1024 image, ei = 1024×1024/256 = 4096.
Correlation coefficient (ρ) =

cov(x,y)
√

(D(x))
√

(D(y))
, where

cov(x,y) = 1
S

S∑
i=1

xi−
1
S

S∑
j=1

x j

yi−
1
S

S∑
j=1

y j

, D(x) = 1
S

S∑
i=1

xi−
1
S

S∑
j=1

x j

2

, S =

M (height) ×N (width) .
Mean Squared Error (MSE)= 1

M×N
∑N

i=1
∑M

j=1 (P(i, j)−D(i, j))2, where P(i, j), D(i, j) are
the original & wrong decrypted image pixels
Entropy= −

∑28

i=1 p(si) log2 p(si), where p(si) is the probability of symbol si

Peak Signal-to-Noise Ratio (PSNR)= 20log10

(
Imax√
MSE

)
, where Imax is the maximum

pixel value in the image.
Number of Pixel Change Rate (NPCR) = 1

N×M
∑N

i=1
∑M

j=1 D(i, j) ×100,

Unified Average Changing Intensity (UACI) = 1
M×N

∑N
i=1

∑M
j=1

∣∣∣∣C1(i, j)−C2(i, j)
255

∣∣∣∣ ×100,

where D(i, j) =

{
1, C1(i, j) ,C2(i, j)
0, C1(i, j) = C2(i, j) , C1 is the ciphered pixel and C2 is the ci-

phered pixel corresponding to a slightly modified original image.
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Table 3.17: Decryption results for each of cases I, IV and V using case V in encryption

Case V Case I Case IV
Dec. Im.

Vert.
Corr.

0.9893 0.0003 0.0022
Horizon. 0.9798 -0.0042 -0.0029
Diag. 0.9737 0.0021 -0.0016
Hist.

MSE 0 8944.56 8953.25
Entropy 7.2718 7.9993 7.9993

More advanced statistical tests are provided by National Institute of Standards &
Technology (NIST) statistical test suite [158], which is a statistical test suite for random
and pseudo-random number generators for cryptographic applications. The tests are
designed to examine the randomness characteristics of a sequence of bits by evaluating
the P-value distribution (PV) and the proportion of passing sequences (PP). The test are
carried out on the 8 LSBs of each chaotic output in the same manner in which they are
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(a) (b)

(c) (d)

Figure 3.21: (a) Time series, (b) frequency distribution of the outputs, (c) histogram and
(d) auto-correlation function of the PRNG based on the mismatch signal.

Table 3.18: Performance evaluation of the image encryption scheme based on the mismatch
signal

Encrypted Image Histogram

Horizon. Vert. Diag. Correlation
0.0005 0.0003 0.0002

Key sensitivity (∆K1) Differential attack
MSE Entropy UACI (%) NPCR (%)
8933.37 7.9998 33.4624 99.5607

used in the substitution of the 8-bit pixels. Table 3.19 shows that both the PRNG and
encrypted image successfully pass the tests.
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Table 3.19: NIST results for the PRNG based on the mismatch signal and encrypted
images

Test
PRNG Encrypted image

PV PP PV PP
Frequency 3 1 3 1
Block Frequency 3 1 3 0.958
Cumulative Sums 3 1 3 1
Runs 3 1 3 1
Longest Run 3 1 3 1
Rank 3 0.958 3 1
FFT 3 1 3 1
Non-overlapping Template 3 0.989 3 0.988
Overlapping
Template

3 0.958 3 1

Universal 3 1 3 1
Approximate
Entropy

3 1 3 1

Random Excursions 3 0.985 3 0.983
Random Excursions Variant 3 1 3 0.981
Serial 3 0.979 3 1
Linear Complexity 3 1 3 0.958
Final result Passed Passed

From this chapter, we set a reproducibility rule that all implementation details should
be carefully considered in order to achieve successful chaotic communication. In addition,
we can conclude that the first generalization and control enables attractor size and location
change through both parameters a and b. It is a simple modification that replaces constant
additive and multiplicative terms by parameters in the nonlinear term, inspired by gen-
eralized discrete maps. Hence, it enables easy analog and digital realizations as already
proposed in previous similar works starting [36]. It paves the road towards employing
high frequently proposed novel and generalized discrete maps as nonlinearities in con-
tinuous chaotic systems. Consequently, these more complicated and higher dimensional
systems can be enhanced by importing the properties and characteristics of such maps. It
is different from previous works on offset boosting [44–48] in achieving attractor location
change through a multiplicative parameter b rather than an additive parameter. The idea of
generating self-reproducing and multi-scroll attractors by non-autonomous time varying
parameters has not been widely discussed prior to this work as it started in [54]. Yet, this
approach has some limitations as it is only suitable for jerk-based chaotic systems not
generic for any system. In addition, it enables equilibrium point offset along x-axis direc-
tion only. Moreover, these jerk-based systems are not necessarily suitable for extension
to the fractional-order domain. Thus, we move to a second more generic approach in the
next chapter.
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Chapter 4: 2D and 3D Affine
Transformations-Based Control
The second proposed generalization approach utilizes affine transformations to achieve
more comprehensive controllability. This chapter sets the rules for two-dimensional
transformations of chaotic systems and their applications. In addition, it extends the affine
transformations-based control technique to three-dimensional space and applies it on
fractional-order systems with hidden attractors.

Two-dimensional affine transformations are firstly utilized with six introduced pa-
rameters to achieve scaling, reflection, rotation, translation and/or shearing. Hence, the
size, polarity, phase, location and shape of the strange attractor in space can be controlled
without changing its chaotic dynamics. In addition, the embedded parameters enhance
the randomness and sensitivity of the system and control its response. This approach
is suitable for any general chaotic system not only jerk-based unlike the first approach
of Chapter 3. It certainly overpasses performing the transformations as post-processing
stages by applying them on the resulting time series in unpredictability. Trajectory control
through dynamic parameters is demonstrated. Simulation results validate the proposed
analysis for the simplest and Lorenz chaotic systems. An image encryption scheme is
implemented using transformed Lorenz system resulting in a more secure encryption
scheme in comparison to Lorenz and other recent related works. The scheme exhibits
good performance when assessed using the standard tests [3].

4.1 Two-Dimensional Affine Transformations
Two-dimensional affine transformations can be applied to any pair of axes constructing
a plane in the coordinate systems. They result in relatively simple equations and allow
clear visualization in the different planes of the Cartesian coordinate system. Consider
a point represented in the three-dimensional space with the coordinates (x,y,z), its two-
dimensional affine transformation from the x-y to the u-v plane in the three-dimensional
space can be written as:  u

v
w

 =

 a b 0
d e 0
0 0 1


 x

y
z

+

 c
f
0

 , (4.1)

with the inverse transformation x
y
z

 =
1
α

 e −b 0
−d a 0
0 0 α


 u

v
w

+
1
α

 b f − ce
cd−a f
0

 , (4.2)

where α = ae− bd and the third coordinate w = z. The u-v-w coordinates reduce to the
x-y-z coordinates at a = e = 1 and b = c = d = f = 0.
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4.2 Validation Examples

4.2.1 Validation Example 1: Generalized Simplest System
A very simple jerk-based system with piecewise nonlinearity, which is generated by a
signum function, was presented in [154]. In its original form, the system is given by:

ẋ = y,
ẏ = z,
ż = −0.8(z + y + x− sgn(x)),

where sgn(x) =


−1, x < 0
0, x = 0
1, x > 0

(4.3)

Solving the system results in the chaotic attractor and time series shown in Fig. 4.1. The
equilibrium points of the system are (±1,0,0) and the Jacobian matrix is independent of
the equilibrium points with eigenvalues λ1 = −0.8994 and λ2,3 = 0.0497± i 0.9418. Saddle
points of index two result in double-scroll attractors.

Using the inverse transformation (4.2), a transformed system in the u-v-w coordinate
system is obtained, which is given by:

u̇ = a
α (−du + av + cd−a f ) + bw + c,

v̇ = d
α (−du + av + cd−a f ) + ew + f ,

ẇ = −0.8
(
w + 1

α ((e−d)u + (a−b)v)− sgn
(

1
α (eu−bv)

))
.

(4.4)

The response of the system reduces to that of (4.3) at a = e = 1 and b = c = d = f = 0
as shown in Fig. 4.1, where the response of the transformed (original) system is plotted in
dark/blue (light/red) color (see the online colored version).

The six added parameters provide controllability of the attractor diagram, or its
projection in the u−v plane. In addition, the effect on each coordinate can be inferred from
the time series. Table 4.1 provides the analyses of simplified versions: scaling (increase or
decrease the values), reflection, translation with fixed distance, and shearing processes.

Table 4.2 shows the time series and attactor diagrams of the transformed and original
coordinates. The transformations given by (4.1) on the original time series, i.e., post-
processing results are also plotted in dark/black and the new equilibrium points are marked
as ‘x’.

Stability analysis can also be performed for the systems of Table 4.1. For example, in

Figure 4.1: Attractor diagram and time series of system (4.3).
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Table 4.1: Example transformations of the simplest chaotic system

Scaling (+ve), Reflection (-ve) Rotation

u̇ = a
e v,

v̇ = ew,
ẇ = −0.8

(
w + u

a + v
e − sgn

(
u
a

))
Equilibria:
(±a,0,0)

u̇ = cosθ (sinθ u + cosθ v) + sinθ w,
v̇ = −sinθ (sinθ u + cosθ v) + cosθ w,
ẇ = −0.8(w + (cosθ+ sinθ)u + (cosθ
−sinθ)v− sgn (cosθ u− sinθ v)),

Equilibria:
(±cosθ,∓sinθ,0)

Scaling and translation Shearing
u̇ = a

e (v− f ) + c,
v̇ = ew + f ,
ẇ = −0.8

(
w + u

a + v
e − sgn

(
u
a

))
.

Equilibria:(
a
(

c
a ±1

)
,− ce

a + f ,− f
e

)

u̇ = 1
1−bd (−du + v) + bw,

v̇ = d
1−bd (−du + v) + w,

ẇ = −0.8(w + 1
1−bd ((1−d)u + (1−b)v)− sgn

(
u−bv
1−bd

)
),

Equilibria:
(±1,±d,0)

case of rotation, the Jacobian matrix is given by:

J =

 cosθ sinθ cos2θ sinθ
−sin2θ −cosθ sinθ cosθ
1.6cosθδ (ucosθ− vsinθ)−0.8(cosθ+ sinθ) −0.8(cosθ− sinθ) −0.8

 . (4.5)

The characteristic polynomial is given by:

λ3− tr(J)λ2 + (M11 + M22 + M33)λ− |J| = 0, (4.6)

where tr(J), |J|, Mik are the trace, determinant and minor determinant of J eliminating
row i and column k, respectively. The coefficients of the characteristic polynomial are
obtained as follows:

• tr(J) = −4
5 and |J| = 8

5δ (ucosθ− vsinθ)− 4
5 .

• M11 = 4
5 cos2 θ+ 4

5 sin2θδ (ucosθ− vsinθ),
M22 = 4

5 sin2 θ− 4
5 sin2θδ (ucosθ− vsinθ),

M33 = 0 and hence M11 + M22 + M33 = 4
5 .

Consequently, tr(J) and M11 + M22 + M33 do not depend on θ and |J| = −4
5 evaluated at

the equilibrium. Consequently, the transformed system has the same eigenvalues as the
original system.

The eigenvectors of the Jacobian matrix are also affected by the transformation. Defin-
ing the Eigenvectors Inclination (EVI) as the angle between two eigenvectors at θ = 0
and another value, i.e., ∆θ = θ, we plot EVI against θ. For vectors x and y in a real inner
product space, the cosine of the angle between them is given by cosφ =

<x,y>
||x||||y|| . The real

part of this cosine defines the Euclidean angle as cosφE =
<{<x,y>}
||x||||y|| in a complex vector

space. Figure 4.2 shows that EVI (φE), at the equilibrium points, follows a pattern similar
to that of the rotating system.
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Table 4.2: Transformations of the simplest chaotic system: results and discussion

Scaling (+ve), Reflection (-ve) (b = d = c = f = 0) Rotation (a = e = cos(θ), b = −d = sin(θ), c = f = 0)
a = 20, e = 30 a = 1, e = −3

a = −3, e = 1

- Embedded transform and post-processing are roughly equivalent.

θ = π
6 θ = π

3

-Roughly equivalent.

Scaling and translation (b = d = 0) Shearing (a = e = 1, c = f = 0)
a = e = 1, c = 0, f = 0.5 a = 10, e = 1, c = 3, f = 0

- Overcome the limited range of translation only.
- Not equivalent. - Increased sensitivity is maintained.

b = 10, d = 0 b = 0, d = 10

- Roughly equivalent when either b or d is varied.
- Increased sensitivity when both are varied together.
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(a) (b)

Figure 4.2: EVI against θ at the (a) first and (b) second equilibrium points.

4.2.2 Validation Example 2: Generalized Lorenz System
Lorenz system is given by:

ẋ = 10(y− x), ẏ = (28− z)x− y, ż = xy−
8
3

z. (4.7)

Transformed Lorenz system can be obtained similarly, where for example:

u̇ = −10 a
α ((u− c)(d + e)− (v− f )(a + b))

+ b
α ((u− c)(d + (28−w)e)− (v− f )(a + (28−w)b)) + c,

(4.8)

Table 4.3 shows the scaling (reflection), translation and shearing transformations of
Lorenz system. Chaotic time series is identified using LEs, which quantify the divergence
and convergence properties of an attractor [2]. Using Wolf’s algorithm as implemented
in [156], the system is shown to exhibit chaotic strange attractors since the MLE is finite
positive against the parameters corresponding to the different cases as shown in Fig. 4.3.

4.3 Trajectory Control by Dynamic Translation
The translation parameters c and f can be used to move the equilibrium points and, hence,
the attractor diagram. The translation along x-axis, c, can be changed in a piece-wise
manner giving sufficient time for each value. In addition, the translation along y-axis, f , is
given as a function of c, which is the trajectory. The scaling parameters are kept to control
the output range and simplify the visualization of results. Scaled and translated system
can be obtained by setting b = d = 0 in (4.8) yielding:

u̇ = −10
e (e(u− c)−a(v− f )) + c,

v̇ = 1
a ((u− c)((28−w)e)−a(v− f )) + f ,

ẇ = − 1
ae (u− c)(v− f )− 8

3w.
(4.9)
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Table 4.3: Attractor diagrams and time series of (4.8)

Scaling
(a = 2, e = −1)

Translation
(c = 5, f = 0)

Shearing
(b = 2, d = 1)

When |a| or |e| exceed 4,
the three time series start
to differ from the original
ones resulting in more ran-
domness.

The three time series ex-
hibit increased sensitivity
to all the parameters.

The three time series ex-
hibit increased sensitivity
to all the parameters.

As previously mentioned, the derivative of such non-autonomous parameters can be
considered zero, since the angular frequency of the multi-level pulse signals is sufficiently
small compared with the chaotic oscillator. Figure 4.4 shows different trajectories that the
system follows dynamically in discrete steps. To be capable of visualizing the dynamic
translation of the attractor, scaling parameters are used to control the output range. For
Lorenz system, the output ranges are wide, hence, the scaling parameters a and e are set to
values less than one. However, the translation parameters c and f have limited ranges that
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(a) (b) (c)

Figure 4.3: MLE of (4.8) against the parameters in (a) Scaling, (b) Translation and (c)
Shearing cases.

(a) (b)

(c) (d)

Figure 4.4: Trajectory control of transformed Lorenz chaotic system by scaling and
translation for (a) line f = c, (b) parabola f = c2, (c) a square and (d) a circle of radius 4
(c2 + f 2 = 16) at a = e = 1

8 .

correspond to chaotic behavior as shown in the bifurcation diagrams of Fig. 4.5. Hence,
it is more suitable to have a closed trajectory rather than open ones, which resembles
multiple versions of the same attractor generated along a curve of [58].
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(a) (b)

Figure 4.5: Bifurcation diagrams of transformed Lorenz chaotic system against the
translation parameter c for the parabolic trajectory f = c2 and different values of the
scaling parameters (a) a = e = 0.1 and (b) a = e = 0.7.

Table 4.4 shows a continuous motion of the attractor along different trajectories,
where [159] provides more examples of plane curves. This is achieved by keeping c
constant for a period of time, such that it is sufficient to plot a clear part of the diagram.
Then, the value of c is changed a little bit and so on in gradual steps that take the shape of
staircase. The parameter c can be generated using the equation:

c(t) =

n∑
i=1

A(i) (H(t−B(i))−H(t−B(i + 1))) , (4.10)

where H(t) is the unit step or Heaviside function given by:

H(t) =

{
1, t ≥ 0
0, t < 0 , (4.11)

A and B are vectors that correspond to the gradual amplitudes and stop times of the stairs
of the resulting stair case plot. The first and last elements of the vector c equal those
of A, respectively. The other translation parameter f is changed accordingly using the
prescribed trajectory equation. In the examples of Table 4.4, the amplitudes of c are in the
interval [−2,2] and the step by which they vary equals 50 time units in a total simulation
time of 500 time units. The resulting time series of (4.9) are compared to the scaled time
series of the conventional Lorenz system. The resulting attractor diagrams follow the
prescribed trajectories, which are light/red colored. The intensity of the strange attractor
color varies with time, where the darker points are plotted first and becomes brighter as
time advances.

4.4 PRNG and Image Encryption Application
This section studies the performance of transformed Lorenz system, compared to Lorenz
system, as a PRNG in an image encryption application. Three standard 1024×1024 color

59



Table 4.4: Trajectory control of (4.9) for a = e = 0.1 and different dynamic c and f parameters

Line
f = c

Absolute
f = |c|

Parabola
f = c2

Sinusoidal
f = sin(c)

Circle
c2 + f 2 = R2

Whitch of agnesi
f = 8R3

c2+4R2
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images: Lena, mandril and peppers [160] are used for testing the encryption scheme.
While Lena image is firstly used in comparing the Lorenz and transformed Lorenz systems
performance in the scheme with detailed results, performance metrics are averaged for the
three color channels of the two other images.

4.4.1 Encryption and Decryption Schemes
Figure 4.6 shows a simple image encryption scheme with both permutation and substitution
phases, which was presented in [11]. Permutation of the original image is performed
through generalized Arnold’s map [161], where the new pixel location is given by:[

row
col

]
new

=

[
1 γ
β 1 +γβ

] [
row
col

]
old

mod(N) +

[
1
1

]
(4.12)

for an N ×N image. The generalized Arnold’s map permutation parameters γ and β are
computed as:

γ = mod
(
Psum +γkey,N −1

)
+ 1

β = mod
(
Psum +βkey,N −1

)
+ 1

(4.13)

where mod returns the remainder, γkey and βkey are the key parts of the permutation
parameters and chosen as 73 and 35, respectively and the value Psum is the same input
dependent term of Chapter 3, except where stated otherwise.

In the substitution phase, the chaotic generator is either Lorenz or transformed Lorenz
with the chaotic time series shown in Fig. 4.7. The correlation coefficients between the u,
v and w and the corresponding x, y and z time series are −0.0054, −0.0051 and 0.0038.
The systems are solved by Euler numerical technique using a time step of 0.01. The
outputs x (u), y (v) and z (w) are then scaled, quantized and the LSBs are Xored with
the permuted image pixel and the previously encrypted pixel, recalling the multiplexing

Chaotic generator

Original Image D Encrypted ImageMUX D
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Encrypted Image MUX Decrypted Image
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Arnold s 

map
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Decryption KeyEncryption Key
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T6
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T7
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T8

44

T9
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(c)

Selection bits Output
RLSB GLSB BLSB Rout Gout Bout
0 0 0 B R G
0 0 1 G B R
0 1 0 R G B
0 1 1 B R G
1 0 0 G B R
1 0 1 R B G
1 1 0 B G R
1 1 1 G R B

(d)

Figure 4.6: (a) Encryption/decryption block diagrams, encryption/decryption key for (b)
Lorenz and (c) transformed Lorenz chaotic generators and (d) multiplexing table.
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Figure 4.7: Time series of Lorenz, light colored, and transformed Lorenz, dark colored, at
a = 2, b = 0.25, c = 3, d = −0.5, e = −2, f = −4, x0 = y0 = z0 = w0 = 0.1 u0 = 3.225 and
v0 = −0.425.

technique of Chapter 3. The encryption key determines the parameters of the chaotic
generator where it consists of three sub-keys for Lorenz system compared to nine sub-keys
using transformed Lorenz system.

Decryption is straightforward as the reverse process shown in Fig. 4.6(a). First, an
exact duplicate of the same substitution stage is carried out on the encrypted image. Then,
the resulting image is permuted by generalized Arnold’s map to return the pixels to their
original locations and get the correctly decrypted image.

4.4.2 Performance Evaluation
The performance of the scheme is evaluated through the PRNG properties, encrypted
image histogram and its uniformity through chi square test, pixel correlation, MSE, entropy,
PSNR, NIST tests, key space, key sensitivity, resistance to differential, ciphertext-only,
known plaintext, and chosen plaintext attacks, robustness against noise and computation
time comparing Lorenz to transformed Lorenz systems as the chaotic generator. Equations
of the performance metrics were given in Table 3.16 of Chapter 3.

4.4.2.1 PRNG Properties

Figure 4.8 compares the randomness properties of the chaotic sequence generated from
Lorenz and transformed Lorenz systems. For a good chaotic sequence, the histogram
should be nearly flat or uniform and the adjacent samples should be completely uncorre-
lated. From Fig. 4.8, it can be inferred that both systems satisfy the requirements, where
the nearly aperiodic chaotic sequence has nearly flat frequency distribution. Hence, the
transformed Lorenz system provides more control of the Lorenz attractor and is still
random and suitable for encryption applications.

Table 4.5 shows that the PRNGs based on both Lorenz and transformed Lorenz
successfully pass NIST tests.

4.4.2.2 Perceptual and Statistical Tests

The encrypted images corresponding to the two chaotic generators are random as shown
in Fig. 4.6 as well as Fig. 4.9. In addition, the corresponding histograms reveal a uniform
intensity distribution compared to the nonuniform histograms of the original image as
shown in Fig. 4.10. To further check the degree of deviation from uniform histogram
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(a)

(b)

Figure 4.8: Time series, frequency distribution of the outputs and histogram of the PRNG
using (a) Lorenz and (b) transformed Lorenz chaotic generators.
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Table 4.5: NIST results for the PRNG and encrypted images

PRNG Encrypted Lena Enc. mandril Enc. peppers
Lorenz Transformed Lorenz Transformed Transform. Transform.

PV PP PV PP PV PP PV PP PV PP PV PP
3 1 3 1 3 0.979 3 1 3 0.979 3 1
3 0.917 3 1 3 1 3 1 3 1 3 0.958
3 1 3 0.979 3 1 3 1 3 0.979 3 0.979
3 1 3 1 3 0.958 3 1 3 1 3 1
3 0.958 3 0.958 3 1 3 1 3 1 3 1
3 0.958 3 0.958 3 1 3 1 3 1 3 1
3 1 3 1 3 1 3 1 3 1 3 1
3 0.990 3 0.992 3 0.989 3 0.989 3 0.986 3 0.989
3 1 3 1 3 1 3 1 3 1 3 0.917
3 1 3 1 3 1 3 0.958 3 0.917 3 1
3 1 3 1 3 1 3 1 3 0.958 3 1
3 1 3 1 3 1 3 1 3 0.993 3 0.979
3 0.996 3 0.992 3 1 3 0.980 3 0.977 3 1
3 1 3 1 3 1 3 1 3 1 3 0.917
3 1 3 0.958 3 1 3 1 3 1 3 1

Passed Passed Passed Passed Passed Passed

(a) (b)

Figure 4.9: Original and encrypted (a) mandril and (b) peppers images.

(a) (b) (c)

Figure 4.10: Histograms of the red channel of (a) Lena image and the corresponding
encrypted images using (b) Lorenz and (c) transformed Lorenz systems.
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analysis, chi-square test [162] is used. The less the chi-square value, the better the
uniformity. Table 4.6 gives the results for the encrypted image using both Lorenz and
transformed Lorenz, where both have relatively low values compared to that of the original
image of O(106).

Table 4.6 shows the ability of the system to destroy the horizontal, vertical and diagonal
correlation between the pixels where the correlation coefficients of the encrypted image
approach zero. High MSE, Entropy approaching 8 and low PSNR further indicate the
randomness and unpredictability of the encrypted image.

Table 4.5 also examines the randomness of the encrypted images by evaluating the PV
and PP of NIST and they successfully pass the tests.

4.4.2.3 Key Space and Key Sensitivity

Key space is defined as the number of encryption keys that are available in the cryptosystem.
The maximum key space is determined by sensitivity analysis. Sensitivity of Lorenz
system for perturbations in the initial conditions is as follows ∆x0, ∆y0 ≥ 10−17 and
∆z0 ≥ 10−16. Sensitivity of transformed Lorenz system for perturbations in the initial
conditions and parameters is as follows ∆x0, ∆y0 ≥ 10−15, ∆z0 ≥ 10−17, ∆a ≥ 10−15,
∆b ≥ 10−16, ∆c ≥ 10−15, ∆d ≥ 10−16 and ∆e, ∆ f ≥ 10−15.

The initial conditions and parameters of the chaotic generator consist of a fixed part
and a key part, which is determined from the sub-keys denoted by L for Lorenz system
and T for transformed Lorenz system as shown in Figs. 4.6(b) and (c). For example,
x0 = x f ix +∆x0, where ∆x0 equals L1 multiplied by a scaling factor and similarly for the
rest of the parameters. The fixed parts are set to the values of Fig. 4.7. To ensure high key
sensitivity, a minimum perturbation of 10−14 is specified. Hence, each sub-key is limited
to 44 bits using a scaling factor of 10−13. Consequently, the key space of transformed
Lorenz system equals 2396 compared to 2132 of Lorenz system, which is equivalent to 3
times increase in the number of bits.

Table 4.6 gives the values of high MSE and Entropy approaching 8, which indicate
the randomness and unpredictability of the wrong decrypted image when the LSB of
the sub-key ∆x0 (or ∆u0) is changed. Similar results are obtained for the rest of the
sub-keys. An advantage of the encryption system is that perturbation in any parameter
affects the three time series and, hence, the three channels unlike encryption systems based
on independent discrete maps for each channel [11].

4.4.2.4 Resistance to Differential Attacks

Table 4.6 shows the values of the NPCR and UACI averaged over 20 trials in which one
pixel in the original image is changed, which successfully approach 100% and 33.3%,
respectively [11].

4.4.2.5 Resistance to Other Cryptanalysis Attacks

Cryptanalysis is the process of studying encryption systems with the intention of revealing
their weaknesses and establishing the appropriate attacking schemes [163]. Other famous
cryptanalysis techniques, besides brute force and differential attacks, are the ciphertext-
only, known plaintext, chosen plaintext and side channel attacks. However, they are
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Table 4.6: Performance metrics of the scheme for three encrypted images

Test Lena (Lorenz) Lena (Transformed) Mandril Peppers
R G B R G B

χtest2
(
×102

)
2.4808 2.505 2.6253 3.2239 2.5216 2.8009 2.6778 2.4336

ρ Horizontal −0.0626 -0.0634 0.0227 -6.7144 -20.8894 -19.0264 8.0344 −1.0496(
×10−4

) Vertical 13.7072 -5.8588 0.8549 -8.8684 2.7001 -3.9709 3.2939 −1.1189
Diagonal -15.6653 -1.6203 -8.1332 -4.7629 -9.1812 -3.6888 0.3586 0.0903

MSE
(
×103

)
10.6217 9.0629 7.0821 10.6636 9.0617 7.0824 8.7107 8.7984

Entropy 7.9998 7.9998 7.9998 7.9998 7.9998 7.9998 7.9998 7.9998
PSNR 7.8689 8.5581 9.6292 7.8517 8.5587 9.6291 8.7537 5.7898

Key Sens. MSE
(
×103

)
10.6606 9.0569 7.1293 10.6599 9.0727 7.1136 8.7019 8.0343

(∆x0, ∆u0) Entropy 7.9994 7.9993 7.9993 7.9993 7.9993 7.9992 7.9991 7.9992

DA
NPCR 99.6061 99.6091 99.6104 99.6094 99.6126 99.6121 99.6101 99.6096
UACI 33.4859 33.4993 33.4859 33.4726 33.4834 33.4571 33.4582 33.4593
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Table 4.7: Chosen plaintext attack/known plaintext attack analysis

1 2 3 4 1 1 1 1 255 255 255 255
4×4×3 1 2 3 4 1 1 1 1 255 255 255 255
plainimage 1 2 3 4 1 1 1 1 255 255 255 255

1 2 3 4 1 1 1 1 255 255 255 255
2 233 184 203 147 137 125 187 73 33 53 97

4×4×3 141 163 166 245 94 238 193 217 169 119 28 163
cipherimage 34 223 68 190 21 69 189 150 222 106 220 184

239 42 192 231 32 135 236 205 177 36 101 55

less frequently investigated when proposing a new encryption scheme, especially for
chaos-based ciphers.

In ciphertext-only attack, the attacker has access only to a ciphertext or a collection of
ciphertexts with the objective of finding the plaintext image and/or the secret key. This
requires the use of brute force [164], and hence, the large key space and the encryption
key design such that it depends on the plaintext image are effective means of enhancing
the scheme’s resistance to this attack.

In known plain text attack, the attacker has a ciphertext or a set of ciphertexts for which
the corresponding plaintext is also known with the objective of finding the secret key.
Chosen plaintext attack gives more flexibility to an attacker by allowing plaintext to be
selected observing the corresponding ciphertext. To depict the capability of the proposed
scheme in eliminating all traces of chosen patterns in a plainimage, a 4×4×3 image was
encrypted similar to [104]. The resulting pixel values after before and after encryption
are shown in Table 4.7, where any specific patterns, white or black images are fully
randomized after encryption with no observable patterns. This is owed to the presence
of both permutation and substitution stages, key sensitivity and plainimage sensitivity
properties of the scheme.

4.4.2.6 Robustness Against Noise

The encrypted images may suffer from noise effects during transmission from transmitter
to receiver such as: Additive White Gaussian Noise (AWGN) and Salt and Pepper (S & P)
noise [165]. To enhance the robustness of the scheme against noise, some input dependent
terms in the encryption scheme can be modified. For example, Figs. 4.11(a) and (b) show
the decrypted images corresponding to Lena for AWGN of mean 0 and different variances
and S & P of different densities, respectively, when Psum = 0 and the MUX is removed.
The correlation coefficients between the noiseless decrypted image and the noisy one are
also given. The robustness against noise can be identified by the capability of perceptually
identifying the image content and the correlation coefficient values approaching one.

4.4.2.7 Time Analysis

Our main concern is the time consumed in the solution of the system of differential
equations in the substitution phase. Simulations are performed using Matlab 8.4.0.150421
(R2014b) and Windows 8.1 on an Intel(R) Core(TM) i7-4510U CPU @ 2.00 GHz machine.
Averaged over 10 trials, around 46.81 % increase in the computation time of transformed
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Var = 0.00001, ρ = 0.9159 Var = 0.00005, ρ = 0.8343 Var = 0.0001, ρ = 0.7841
(a)

dens. 0.001, ρ = 0.9819 dens. 0.005, ρ = 0.9487 dens. 0.01, ρ = 0.9060
(b)

Figure 4.11: Decrypted images and correlation coefficients corresponding to Lena for
(a) AWGN of mean 0 and different variances and (b) S & P of different densities when
Psum = 0 and MUX is removed.

Lorenz than Lorenz system is reported. This is associated with the gain of about 3 times
increase in the maximum number of bits of the substitution part in the encryption key with
nine sub-keys each with high sensitivity.

4.4.3 Discussion and Comparison Against Other Works
The image encryption scheme utilizing the proposed transformed Lorenz system is com-
pared to other recent image encryption schemes [101–104], which utilized chaotic systems
and included separate transformation stages as well. The basic idea and main blocks
utilized in each scheme are given in Table 4.8, where only [103] embedded chaotic maps
in a cosine transformation to generate equation of a new chaotic map. All the utilized
chaotic generators were simple low-dimensional chaotic maps. On the other hand, the
proposed transformed Lorenz system is based on differential equations allowing increased
complexity, sensitivity and further enhanced chaotic properties. The capability of generat-
ing three chaotic outputs simultaneously makes it more suitable for color image encryption
applications. Table 4.8 also compares the schemes from the viewpoint of the performance
metrics evaluated in each paper. While both [103, 104] gave a clear description of the
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Table 4.8: Comparison of the ideas and evaluation of different image encryption schemes

Ref. Main Blocks
Statistical Key

DA Other attacks Time Analysis
Corr. Hist. χtest2 NIST Space Sens.

This
work

Transformed Lorenz and Arnold map 3 3 3 3 3 3 3 3 3

[101] Affine Hill cipher and Arnold transform 3 3 — — from parameters — — —
[102] Tangent Delay Ellipse Reflecting Cavity

Map System (TD-ERCS), skew tent map and
affine transform

3 3 — — from parameters 3 — 3

[103] Cosine-Transform-Based Chaotic System
(CTBCS)

3 3 — — 3 3 3 — 3

[104] A chaotic map perturbed by another using
either logistic, sine or tent maps

3 3 — — 3 3 3 known-plaintext/
chosen-plaintext

3
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key design, space and sensitivity analysis, [101, 102] only mentioned the parameters
from which the key can be composed and assessed sensitivity by slightly modifying
the parameter value. Such preliminary analysis neglects that the effective key space is
governed by the basin of attraction and parameter basin of attraction which correspond
to chaotic behavior [140] and the remarkable importance of Least Significant Bit (LSB)
sensitivity. While none of the compared works performed chi-square or NIST tests, all
of them presented differential attack and time analyses except [101]. None of the other
cryptanalysis attacks or robustness against noise were analyzed except in [104], which
discussed known- and chosen-plaintext attacks.

As for the papers reviewed in Chapter 2 on generalization and control of chaotic
systems, only three of them presented grayscale image encryption applications. The
scheme presented in [23] was evaluated using encrypted image, histogram, entropy and
parameter sensitivity. The same performance metrics were used to evaluate the scheme
presented in [56] except that entropy was replaced by correlation. Histogram, correlation
and entropy metrics were included in [58].

4.5 Extension to 3D and Fractional Systems with Hidden
Attractors

This section extends the affine transformations-based control technique to three-
dimensional space and to be applicable for hidden attractors in fractional-order systems.
The proposed transformation framework overcomes the limitations imposed by the unique
properties of hidden attractors. Generally, an appropriate controlling scheme must be
cautious with the increased sensitivity of the dynamical behavior of hidden attractors if
the chaotic dynamics are required to be maintained.

The first addressed limitation is that some analog circuit implementations require
specific voltage level and/or polarity of the chaotic signals. The proposed transforma-
tion framework enables such control by time series scaling, reflection and offset, which
correspond to attractor size, polarity, and position control. In previous researches on
amplitude control and offset boosting, multiplicative and additive parameters, respectively,
were inserted selectively in terms of the governing equations. On the other hand, the
proposed systematic coordinate transformation provides a more generic control technique,
which is applicable to any system. Phase and shape of the attractor are also shown to
be controllable through rotation and skewing. Few recent researches employed rotation,
yet, for self-excited attractors instead. Orientation control through skewing/shearing was
not employed before in the field of chaotic attractor control. All these transformations
are shown not to endanger the chaotic dynamics of the original systems by means of
strange attractors, spectral entropy and bifurcation diagrams. The unpredictability of time
series is enhanced due to the mutual coupling between state variables and that one of them
undergoing transformation affects the rest when solving the governing equations.

The second addressed limitation is the unsuitability of the conventional multi-wing
generation techniques, which extend the equilibrium points, for hidden attractors with no
equilibria. Non-autonomous parameter approaches are utilized to generate multiple wings
around the same center point using multi-level pulse signals as scaling, reflection, rotation
an skewing parameters. In addition, non-autonomous translation parameters are used to
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generate distributed self-reproduced attractors along an arbitrary line, curve or surface.
The third addressed limitation is that hidden attractors have very narrow, mostly

specific single value, basin of attraction, parameter basin of attraction and fractional-
orders. The newly introduced parameters enable quite wide ranges and are suitable for
constructing the encryption key in digital chaos-based encryption systems. Having up to
twelve degrees of freedom provided by the extra parameters enables enlarging the key
space and enhancing resistance to brute force attacks.

The works reviewed in Chapter 2 barely focused on hidden attractors control, but all
of them were limited to integer-order chaotic systems. For example, static offset boosting
was presented in [45,166,167] for systems with the specific conditions on offset boostable
variables, but with hidden attractors. While dynamic offset boosting of hidden attractors
was presented in [26], dynamic amplitude control was presented in [23, 43]. Systems
with open curves, closed curves and surfaces of equilibria theoretically posses an infinite
number of equilibrium points. Yet, being hidden attractors, the number of equilibrium
points does not directly affect the number of scrolls. Hence, this technique is not generally
considered as a method of attractor control or multi-wing generation.

4.5.1 Hidden Chaotic Attractors in Fractional-Order Systems
Table 4.9 provides a summary of researches on fractional-order systems with hidden
attractors, which are noticeably fewer than fractional-order extensions of the conventional
well-established systems with self-excited attractors. They are almost evenly distributed
between systems of 3 and 4 differential equations. The proposed fractional-order systems
cover different types of hidden attractors such as: no equilibria (the majority), one or
more stable equilibria, a line or infinite number of equilibria, where one of the recent
papers proposed three different types [168]. Table 4.9 also gives the minimum fractional-
orders that were reported to generate chaos for the reviewed systems, with single value
for systems with commensurate orders and all fractional-orders when incommensurate
cases were given. Around half of these researches reported chaotic behavior only for
fractional-orders close to the integer case, i.e., q > 0.98. Some of the systems exhibit
unique interesting properties such as no reporting of chaotic behavior for the equivalent
integer-order system in [169] and complicated nonlinear terms, e.g., cubic [170] and
exponential [45].

Two systems were selected to validate the transformation framework proposed in this
paper. The first system from [176] is given by:

Dq1 x = y,
Dq2y = −x− yz,
Dq3z = xy + 2.5|x| −1.35,

(4.14)

which yields low frequency chaotic time series and a familiar double-scroll-shaped attractor
when starting from initial values (0,0.1,0) and the second system from [178] is given by:

Dq1 x = yz + x(y−0.35),
Dq2y = 1− |x|,
Dq3z = −xy− z,

(4.15)

with higher frequency chaotic time series and an irregular-shaped attractor when starting
from initial values (1,1,1). The constants 2.5 and 1.35 in (4.14) and 0.35 in (4.15)
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Table 4.9: Summary of Hidden Chaotic Attractors in Fractional-Order Systems

Ref. Dim. Equilibria Fractional-Orders
[171] 4 none (0.80,0.85,0.88,0.81)
[172] 3 none 0.98
[169] 4 none 0.8
[173] 4 none 0.96
[174] 3 none 0.992
[45] 4 none 0.95
[170] 4 none 0.91
[78] 3 infinite number 0.98
[175] 3 none 0.9
[176] 3 none 0.9
[177] 3 two stable (0.98,0.99,0.99)
[178] 3 none 0.97
[179] 3 none 0.982
[180] 3 two stable 0.988
[166] 4 none 0.98
[167] 4 none 0.9
[181] 4 none 0.985
[168] 4 a line of unstable 0.82

none 0.9
single stable 0.99

are the values of the main system parameters corresponding to chaotic behavior [176,
178]. Fractional-order chaotic systems are solved numerically using GL method [31] as
previously explained in Section 3.2.4 of Chapter 3.

4.5.2 3D Affine Transformations in Fractional Systems
Consider the three-dimensional fractional-order chaotic system given by:

DqX = F(X), (4.16)

where q is the fractional-order in case of commensurate order or vector of fractional-orders[
q1 q2 q3

]
in case of incommensurate orders, X =

[
x y z

]T is the vector of the
original state variables, and F(X) =

[
f1(x,y,z) f2(x,y,z) f3(x,y,z)

]T are the functions
on the right hand side.

A three-dimensional affine transformation of the form U = AX +b is performed, where
A is a non-singular matrix and U = [u v w]T is the transformed vector of state variables.
Hence, the new transformed system is given by:

DqU = A
(
F

(
A−1 (U −b)

))
,

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 b =

 b1
b2
b3

 , (4.17)
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For an identity A matrix and zero b vector, the transformed system (4.17) reduces to the
original system (4.16). The transformation considers the attractor diagram as a geometric
shape and applies the well-established affine transformations to it. However, this does not
take place as a post-processing technique for the chaotic time series. The transformation
is embedded into the dynamic equations instead and is performed within the solution
procedure. This guarantees mutual coupling between the different state variables and
maintaining the sensitivity and unpredictability properties of chaotic generators on the
long term evolution. That is, a transformation that relates u time series to x time series
also affects v and w time series implicitly through (4.17) even if this does not appear in
U = AX + b.

Using GL method of (3.9), the transformed system can be expressed by:

 ui+1
vi+1
wi+1

 =

A

F

A−1


 ui

vi
wi

−b




�

 hq1

hq2

hq3

−


i∑
j=1

c j
(q1)ui− j+1

i∑
j=1

c j
(q2)vi− j+1

i∑
j=1

c j
(q3)wi− j+1


, (4.18)

where � represents the Hadamard (element-wise) multiplication of vectors. The twelve
parameters in the matrix A and vector b provide controllability and degrees of freedom in
the three spatial coordinates as detailed in the next section. The transformation treats the
attractor as a shape that is almost trapped inside a cuboid with dimensions corresponding
to the state space volume of the attractor. The diagonal elements of A provide scaling
and reflection transformations and, together with the off-diagonal elements, they control
skewing and reflection. The vector b provides translation transformation. Two-dimensional
transformations can be achieved using (4.17) in two-dimensional planes controlling the
shape of the attractor projection trapped in the rectangular projection of the cuboid.
Furthermore, the procedure can be generalized to n-dimensional chaotic systems.

4.5.3 Autonomous Parameters
This section presents the special cases that can be achieved through (4.17) when A and
b are constants or static parameters. These cases are summarized using the examples
shown in Table 4.10 for autonomous time-invariant parameters, where the original and
transformed attractor diagrams are light/red and dark/blue colored, respectively (see the
online colored version). For scaling, both systems exhibit v time series and phase space
dimension that is roughly an attenuated version of y multiplied by 0.5. However, this
does not mean vi = 2yi, where more unpredictability is involved using the embedded
transformation, but the effect appears in the range and attractor size. Similarly, u and
w are roughly amplified versions of x and z by 2 and 1.5, respectively. Reflection acts
similarly but results in a time series with inverted sign and mirror image of the phase space
dimension about its corresponding axis. In skewing and rotation, u and v are affected by
both x and y simultaneously. Skewing distorts the geometric shape, where the rectangle
that encloses the attractor projection becomes a parallelogram. In the rotation example,
this rectangle and the attractor are rotated by π/2 clockwise in the two-dimensional u-v
plane considering the same placement of coordinate axes. Finally, translation shifts the
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Table 4.10: Transformed Systems Special Cases Using Autonomous Parameters

Parameters A, b Transformed system 1 (q = 0.9) Transformed system 2 (q = 0.97)
Scaling 2 0 0

0 0.5 0
0 0 1.5

 , 0
0
0


SEu 0.4064 0.4892
Reflection −2 0 0

0 −0.5 0
0 0 −1.5

 , 0
0
0


SEu 0.4064 0.4892
Skewing 1 2 0
−2 1 0
0 0 1

 , 0
0
0


SEu 0.4516 0.3495
SEv 0.4019 0.4911
Rotation a11 a12 0

−a12 a11 0
0 0 1

 ,
a11 = cos(π/2),
a12 = sin(π/2),

 0
0
0


SEu 0.4550 0.2847
SEv 0.4047 0.5214
Translation 1 0 0

0 1 0
0 0 1

 , 3
2
−3


SEu 0.3832 0.5180
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attractor diagram along the positive direction of the corresponding axis when the parameter
is positive and vice versa.

4.5.3.1 Time Series Complexity Estimation

To evaluate the effect of transformations on the complexity and randomness of the chaotic
signals, a complexity measure is needed. It is generally harder to evaluate such metrics for
fractional-order chaotic systems, yet Spectral Entropy (SE) was used [182], especially for
those with hidden attractors [167, 180]. SE represents an accurate and rapid method of
chaos quantification from time series without much preprocessing. The normalized power
spectrum is considered a probability distribution computing its entropy [182]. Larger
SE values indicate a flatter power spectrum, which shows high complexity of the time
series and its effectiveness when used in information security applications. First, the
mean is subtracted from the time series using x(n) = x(n)− x̃. Then, Discrete Fourier
Transformation (DFT) is computed using:

X(k) =

N−1∑
n=0

x(n)e− j2πnk/N , (4.19)

where N is the length of the time series, k = 0,1, . . . ,N −1 and j =
√
−1. The probability

of power spectrum |X(k)|2 at frequency k is given by:

Pk =
|X(k)|2

N/2−1∑
k=0
|X(k)|2

, (4.20)

SE is given by:

SE =

N/2−1∑
k=0
|Pk ln(Pk)|

ln(N/2)
(4.21)

where the denominator term corresponds to random signal entropy. In this section, SE is
computed using N = 4×104 after discarding the first 104 iterations.

While SE values for stable and periodic signals are O
(
10−4

)
, the values increase

for random and chaotic signals. The spectral entropies of the x (y) time series of the
original systems SEx

(
SEy

)
are 0.4020 (0.4564) and 0.4980 (0.1931) for systems 1 and 2,

respectively. The SE values of the transformed systems are also given in Table 4.10. It
is usually enough to compute SE for one of the time series [167, 180, 182]. Considering
SE of u time series S u, we find its value close to that of x time series in the cases
of scaling, reflection and translation transformations in which u roughly follows an
amplified/reflected/shifted version of x. This indicates the topological equivalence and
maintaining complexity properties of the chaotic dynamics. For skewing and rotation,
each of u and v depends on both x and y simultaneously and, yet, SEu and SEv preserve
positive values and maintain complexity properties of the chaotic dynamics. For example,
in rotation by π/2, where the transformation reduces to u = y and v = −x, SEu and SEv
exhibit values close to those of SEy and SEx, respectively.
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4.5.3.2 Generic Parameters and Bifurcation Diagrams

The presented special cases can be applied in any of the three coordinate planes formed by
the principal axes. Moreover, generic parameter values in the three dimensional space can
be applied as shown in Fig. 4.12, which corresponds to A = [2 0.5 1;−2 4 1;2 −0.5 −3] and
b = [3 −3 1.5]T . Such transformations reinforces the mutual effects between time series
and unpredictability while preserving the chaotic dynamics. While transformed system 1
exhibit SEu = 0.3724, SEv = 0.3949 and SEw = 0.3304, while transformed system 2 exhibit
SEu = 0.5025, SEv = 0.3215 and SEw = 0.5380. These SE values further indicate the time
series complexity, randomness and chaotic behavior.

The bifurcation diagram plots the post-transient system’s output against its parameters.
Plotting bifurcation diagrams is one of the approaches towards identifying the effective
range of parameters through which the system exhibits bounded responses. In addition, it
is used to classify the corresponding qualitative type of the post-transient solution into
stable, periodic or chaotic. To further indicate the wide ranges of affine transformations
parameters, bifurcation diagrams are generated through plotting the value of u time series
when it reaches a local maximum. Bifurcation diagrams are plotted against example
scaling a11, skewing a32 and translation b3 parameters as shown in Fig. 4.13. The chaotic
behavior extends beyond this interval to the right and left directions of the horizontal
axes. While studying each parameter, the rest are fixed to the values corresponding to
Fig. 4.12. The effect of the scaling parameter a11 on umax range can be observed. The
two other parameters do not clearly affect the range of values of umax, but they result
in a different time series due to the dependency between the three state variables in the
governing equations. Their effect can be alternatively noticed in a bifurcation diagram
of wmax since they correspond to the third state variable. Figure 4.13 also validates these
bifurcation diagrams by the corresponding SE plots. It can be inferred from Fig. 4.13 that
the transformed fractional-order systems with hidden attractors yield chaotic responses for
a wide range of the introduced affine transformation parameters, which is an advantage
not offered by the rest of the system parameters and initial conditions setting.

(a) (b)

Figure 4.12: Generic case of transformed (a) system 1 and (b) system 2.
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Figure 4.13: Bifurcation diagrams and SE plots of transformed system 2 against affine
transformation parameters.

4.5.4 Non-Autonomous Parameters
4.5.4.1 Multiple Wings Generated by Multi-Level Pulse Signals

When the parameters become time variant or no-autonomous, they take dynamic values
that change throughout the simulation time. These values can be represented as a multilevel
pulse signal, which is constant in each time period apart from breakpoints. The derivative
of such non-autonomous parameters can be considered zero, since the angular frequency
of the multi-level pulse signals is sufficiently small compared with the chaotic oscillator,
even the low frequency transformed system 1. Figure 4.14 shows the resulting strange
attractors when the parameters are the multi-level pulse signals given in Table 4.11 with 4,
3 and 5 wings. The total simulation time is T f and H(t) is the Heaviside function.

With each different combination of parameter values, the attractor reproduces another
form of it. This results in multiple wings whose number can be specified by the number of
different levels when designing the non-autonomous parameters.

4.5.4.2 Multiple Wings Distributed on a Predefined or Arbitrary Line, Curve or
Surface

Translation transformation has the advantage of displacement of the center of the geometric
shape. Hence, the self-reproduced attractors can be distributed in space in any predefined
form. Figure 4.15(a) shows 5 self-reproductions of the attractor of transformed system 1

along the u-axis using a translation parameter b1 =−2H (t)+
4∑

i=1
H

(
t− iT f

5

)
. The parameters

b2 and b3 can be used similarly to generate self-reproduced attractors along v and w axes,
respectively. Combinations of two non-autonomous translation parameters can move
the attractor along any line or curve equation. For example, Fig. 4.15(b) moves them
on a circle of radius R with equation b1

2 + b2
2 = R2 and R = 2 as an example. One

of the two parameters takes values in [−2,2], e.g., b1 and the other is computed using
b2 =

√
R2−b1

2. An alternate method sets b1 = Rcos(θ) and b2 = Rsin(θ), where 0≤ θ < 2π.
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(a) (b) (c)

Figure 4.14: Multi-wing attractors by transformed system 1 and multi-level pulse signals
as (a) scaling (b) skewing parameters and (c) rotation angle.

Table 4.11: Multi-level pulse signals used in Fig. 4.14

(a) a11 = −H(t) + 3H
(
t− T f

4

)
−H

(
t−2T f

4

)
−5H

(
t−3T f

4

)
a22 = H(t)−5H

(
t− T f

4

)
+ 3H

(
t−2T f

4

)
+ 3H

(
t−3T f

4

)
a33 = 2H(t)−3H

(
t− T f

4

)
−3H

(
t−2T f

4

)
+ 3H

(
t−3T f

4

)
(b) a12 = 2H

(
t− T f

4

)
−H

(
t−2T f

4

)
−5H

(
t−3T f

4

)
a21 = −H

(
t− T f

4

)
−0.5H

(
t−2T f

4

)
+ 2.5H

(
t−3T f

4

)
a13 = −2H

(
t− T f

4

)
+ H

(
t−2T f

4

)
−5H

(
t−3T f

4

)
a31 = H

(
t− T f

4

)
+ 0.5H

(
t−2T f

4

)
−2.5H

(
t−3T f

4

)
(c) θ = −πH (t) + π

3

4∑
i=1

H
(
t− iT f

5

)

The values of b1 (or θ) can also be represented as a multi-level pulse signal and are assigned
uniformly or randomly. A gallery of distributed self-reproduced attractors along a linear
segment, piecewise linear (absolute or triangular), exponential, hyperbolic tangent and
sine, oval-shaped (ellipse) or heart-shaped (two ellipses) can be produced simply by
knowing their equation. Moreover, the attractor can be moved on a three-dimensional
surface governed by the equation relating the three translation parameters. Figure 4.15(c)
validates this proposal for a sphere b1

2 +b2
2 +b3

2 = R2, where b1, b2 and b3 are generated
based on the sphere point picking algorithm and spherical coordinates [183]. That is,
b1 = Rcos(θ)sin(φ), b2 = Rsin(θ) sin(φ) and b3 = Rcos(φ), where 0 ≤ θ < 2π and 0 ≤ φ ≤ π
are assigned randomly or uniformly. Distributed self-reproduced attractors on a sphere
with shifted center, cube, cylinder, ellipsoid or any other surface with predefined equation
can be designed similarly.

Similar multiple wing attractors can be formed by employing non-autonomous pa-
rameters in transformed system 2 using the proposed transformation framework. A mix
of autonomous and non-autonomous parameters can also be used depending on the re-
quirements. For example, the distributed attractors formed by non-autonomous translation
parameters can themselves be scaled, reflected, skewed or rotated versions of the original
attractor and vice versa.
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(a) (b)

(c)

Figure 4.15: Self-reproduced attractors by transformed system 1 along (a) a line, (b) a
circle and (c) a sphere.

4.5.5 Impact on Potential Encryption Applications
Figure 4.16 shows a simple chaos-based symmetric encryption scheme with a substitution
phase, multiplexer and feedback similar to ones proposed in [11] (a simpler form of the
scheme of 4.6). Either of the transformed systems can be used as the chaotic generator,
which is iterated using the parameters setting corresponding to the encryption key. Each
parameter is computed as the sum of two components: a predefined fixed value such
as those given in A and b of Fig. 4.12 and a perturbation value computed from sub-key.
That is, if the predefined values are called Afix and bfix then the utilized values are
A = Afix + ∆A and bfix + ∆b. For example, a11 = a11fix + ∆a11, where ∆a11 = K1 ×2−p

with p bits for each sub-key, and so on for the rest of the parameters.
As previously indicated by strange attractors, SE values and bifurcation diagrams, the

transformed systems are suitable for encryption applications. Making use of all twelve
parameters, an encryption key of length up to 12p can be designed, without endangering the
chaotic dynamics. This is opposed to designing the encryption key to provide perturbations
of the main system parameters, initial conditions and fractional-orders, which may lead to
unexpected results if the system is drifted from chaotic dynamics. For instance, p = 11
corresponds to a key space of 2132, which is robust against brute force attacks in which
the hacker attempts all key combinations [11].
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Figure 4.16: Simple example substitution cipher based on the proposed transformed
system(s) and encryption key design.

The proposed transformation can also improve the unpredictability of the fractional-
order chaotic system and enhance its robustness against synchronization attacks. This
advantage can be further enhanced by modifying the definition of perturbation values
(∆A, ∆b) such that it has a plain image-dependent component added to the component
computed from sub-key similar to the scheme proposed in [4] and Chapter 5.

An analog/digital or mixed circuit realization of the proposed transformed fractional-
order chaotic systems can be presented in future work based on (4.18) or simplified
forms of it. This can be performed by combining similar previous designs of GL-based
fractional-order systems [32] and rotated chaotic systems [7] realizations.

This section proposed a unified control approach for hidden attractors, which exhibit
small basins of attractions and extra sensitivity to initial conditions and parameters. A sys-
tematic coordinate affine transformation framework was utilized to construct transformed
systems with self-reproducing attractors. Simulation results of two systems validate that
the proposed framework supports attractors geometric structure design and multi-wing gen-
eration. Hidden attractor size, polarity, phase, shape and position control while preserving
the chaotic dynamics was indicated by strange attractors, spectral entropy and bifurca-
tion diagrams. Simulations demonstrated the capability of multi-wing generation from
fractional-order hidden attractors with no equilibria using non-autonomous parameters
as opposed to the classical equilibria extension techniques suitable only for self-excited
attractors. The self-reproduced multiple wings can share the same center point or be dis-
tributed along an arbitrary line, curve or surface thanks to the non-autonomous translation
parameters. Multi-wing attractors widen the basin of attraction and enlarge the state space
volume. For practical applications, the proposed technique makes fractional-order systems
with hidden attractors suitable for circuit implementations that require specific signal level
and polarity conditions. In addition, for digital encryption applications, the relatively wide
range of the extra parameters enhances the key space and hence the robustness against
brute force attacks.

From all the special cases of transformations presented in this chapter, rotation deserves
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an attentive study. The rotation angle can take any value, which will eventually be mapped
to the interval [0,2π), and corresponds to continuous chaotic behavior of the rotated system
against this parameter. The rotation matrix is orthogonal, i.e., R−1 can be replaced by RT

resulting in easier computations. For instance, Fig. 4.17 shows the continuous chaotic
behavior of the rotating Lorenz system against θ. Further applications of the rotation
transformation along with translation and scaling of specific state variables according to
the target will be studied in the next chapter.

(a) (b)

(c) (d)

Figure 4.17: (a) u, (b) v and (c) w bifurcation diagrams and (d) MLE against the rotation
angle θ of rotating Lorenz system.
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Chapter 5: Planar and Spatial Rotation
with a Synchronization-Dependent
Encryption Application
This chapter focuses on a modification in the second proposed generalization and control
approach, which focuses on a combination of rotation, scaling and translation among the
other affine transformations [7].

5.1 Rotation with Offset Boosting and Amplitude Con-
trol

This section provides examples on multi-scroll rotating chaotic systems, which already
have wide enough basin of attraction to enable full utilization of rotation combined with
translation (offset boosting) and scaling (amplitude control). In addition, it demonstrates
their applications in attractor control and encryption schemes. Moreover, experimental
validation on FPGA is presented. The rotation angle is sometimes mentioned in degrees
because that’s how it is used in the Coordinate Rotation Digital Computer (CORDIC)
employed in digital design and FPGA realization.

5.1.1 Multi-Character Chaotic Attractor
Recalling Table 2.1 from Chapter 2, V-shape is a modification of Lorenz system by
including a staircase function as a constituent for creating multi-scroll system attractor as
in [184]. The system is given by:

ẋ = y− x, (5.1a)
ẏ = sgn(x)[1−mz +G(z)], (5.1b)
ż = |x| − rz, (5.1c)

G(z) =


0 z < s0

d1 s0 < z < s1
...

dN−1 z < sN−1

(5.1d)

where m, r and b are parameters and G(Z) is the staircase function, which generates the
scrolls of the system. The parameters d and s are responsible for controlling the diameter
and the height of the scrolls, where the number of scrolls is equal to 2N.

A Λ-shape or turned V-shape was presented in [185] by inverting the signs of the
initial values and a substitution for z by −z. In addition, an X-shape multi-scroll attractor
was constructed via switching between the Λ and V-shape. These capabilities inspired us
to generate different letters of the English alphabet and, furthermore, use it to write words
and statements in a nontraditional way. A generalized form of (5.1) is proposed, through
which the multi-scrolls can be manipulated to “write”.

82



We apply rotation in the plane of the two phase space dimensions x and z, to get the
corresponding rotated axes u and w, respectively. Consequently, the governing differential
equations of the variables u and w in terms of x and z are given by:

u̇ = cosθ ẋ + sinθ ż,
v̇ = ẏ,
ẇ = −sinθ ẋ + cosθ ż,

(5.2)

where θ is the rotation angle in the x− z plane, or the rotation angle about the y-axis. To
apply rotation to a chaotic system, ẋ, ẏ and ż in (5.2) are replaced by the functions on the
right hand side of the chaotic equations (5.1). The equations are completely represented in
terms of the new variables u ad w through the inverse transformation:

x = cosθ u− sinθ w,
z = sinθ u + cosθ w. (5.3)

To enable offset boosting of both axes, two offset parameters tu and tw are subtracted
from the inverse transformation equations. Furthermore, to enable amplitude control of the
vertical axis, an amplitude parameter sw is introduced through replacing each w→ w/sw
and modifying all equations accordingly. This results in planarly rotating, translational
(offset boostable) and scalable (amplitude controllable) attractors. In order to realize
this system later on FPGA Euler method is used for discretization, where the discretized
system is given by:

t1i = cos(θ)ui− sin(θ)
wi

sw
− tu, (5.4a)

t2i = sin(θ)ui + cos(θ)
wi

sw
− tw, (5.4b)

ui+1 = ui + h (cos(θ)(vi− t1i) + sin(θ)(|t1i| − r t2i)) , (5.4c)
vi+1 = vi + h

(
sgn(t1i)[1−m t2i +G(t2i)]

)
, (5.4d)

wi+1 = wi + h sw (−sin(θ)(vi− t1i) + cos(θ)(|t1i| − r t2i)) , (5.4e)

G(t2i) =


0 t2i < s0

d1 s0 < t2i < s1
...

dN−1 t2i < sN−1

(5.4f)

where h is the step size, t1i and t2i are defined for simplicity. The proposed generalization
is capable of generating various shapes from the simple cases shown in Fig. 5.1 to the
more complex ones shown in Fig. 5.2. Yet, we focus on its application in a nontraditional
type of “writing” English characters as follows. We demonstrate the words “WELCOME”
and “WORLD” for example; yet, we start with single characters writing.

5.1.1.1 V-like Characters

Characters such as “W” and “M” are so much like “V”, where “W” is composed of
two joined versions of the 4-scrolls V-shape one in its original position and the other is
shifted/translated/offset using tu as given in Table 5.1. T f is the total simulation time and
H(t) is the Heaviside function. “M” can be similarly generated after rotation by π.
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(a) (b)

Figure 5.1: Rotating multi-scroll system at (a) θ = 0 and (b) θ = π/2.

Figure 5.2: Rotating V-shape for dynamic values of θ and different number of scrolls.

5.1.1.2 Straight Characters

Characters such as “L” and “E” are composed of straight line segments, which can be
produced by several joined 2-scrolls V-shape with different orientations and offsets. For
example, “L” shown in Table 5.1 is composed of the original 2-scroll V-shape in its
conventional position and three versions rotated by −π/2 and gradual shifts in the direction
of the attractor’s base (u-axis) .

5.1.1.3 Curved Characters

Characters such as “C”, “O” are circular and, hence, produced by successive gradual
rotations. For example “C” shown in Table 5.1 is composed of 5 versions of the 2-scroll
V-shape, where the rotation angle starts from 0 and reduces by π/4 every one fifth of the
simulation time. On the other hand, for “O”, this reduction takes place every one eighth
of the simulation time to draw a complete circle. Characters combining both straight
and curved parts such as “R” and “‘D” are generated similarly by switching between the
corresponding parameters values. Scaling is also employed when required, e.g., to control
the size of the semicircle and quadrant needed to generate the curved parts of “R”.

Furthermore, the same chaotic equations can generate multi-characters to compose
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Table 5.1: Single character generation

θ = 0, tw = 0, tu = 2.5H
(
t−

T f

2

)
tw = 0, tu = −2

3∑
i=1

H
(
t− i

T f

4

)
, θ = −

π

2
H

(
t−

T f

4

)

tu = 0, tw = 0, θ = −
π

4

4∑
i=1

H
(
t− i

T f

5

)

words and statements. The simulation time is subdivided to write characters successively
similar to how it was divided to draw different parts of a single character. As previously
explained in Chapter 4, the proposed transformation treats the attractor as a shape that
is almost trapped inside a rectangle with base width and height corresponding to the
two-dimensional projection of the state space volume of the attractor in the u−w plane.
To align characters as a word or statement, the location and size of each single character
can be further manipulated by tu, tw and sw modifying them the values corresponding
to the single character generation previously explained. To offset curved characters and
characters with curved parts, the offset parameters are computed from the vector sum of
the displacements along the base width and height and are given by:

tu = −tw f ix sin(θ) + tu f ix cos(θ),
tw = tw f ix cos(θ) + tu f ix sin(θ), (5.5)

where tw f ix and tu f ix are the corresponding values of the offset parameters if the character
was V-like or straight. Examples on multi-character attractors writing are shown in Fig. 5.3.

It should not necessarily be written successively and the parameters settings can be
adjusted to generate multiple-rounds of motion between the characters. In this work, the
parameter manipulation is achieved manually through piecewise definitions and Heaviside
function. In future work, all letters of the alphabet can be generated and the width and
height of each character as well as its position can be reported. An automated design for
writing words and statements with chaotic attractors can be presented, which may utilize
pattern recognition techniques to generate the parameters setup corresponding to an input
word or statement.
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(a) (b)

(c) (d)

Figure 5.3: Multi-character attractors writing (a) “WELCOME”, (b) “WORLD”, “WEL-
COME WORLD” on (c) a single line and (d) two lines.

5.1.2 Planarly Rotating Translational Fractional-Order Multi-
Scroll Grid Chaotic System

An integer-order multi-scroll 2 × 2 grid chaotic system was presented in [186]. Its
fractional-order counterpart is given by:

DαX = AX + BΦ(X), (5.6a)

A =

 0 1 0
0 0 1
−a −a −a

 , B =

 −1 0 0
0 0 0
0 0 a

 , Φ =

 f1(y)
0
f2(x)

 , (5.6b)

f1(y) = g(y), f2(x) = 2g(x), g(τ) =

{
0 τ ≥ 0.5
−1 τ < 0.5 (5.6c)

Hence, the final system equations are given by:

Dα1 x = y−g(y),
Dα2y = z,
Dα3z = −a(x + y + z−2g(x)),

(5.7)

86



and it is solved using (3.9) from Chapter 3 as follows:

xi+1 = (yi−g(yi))hα1 −
i∑

j=1
c j
α1 xi− j+1,

yi+1 = zihα2 −
i∑

j=1
c j
α2yi− j+1,

zi+1 = (−a (xi + yi + zi−2g(xi)))hα3 −
i∑

j=1
c j
α3zi− j+1.

(5.8)

The projections of the strange attractors and bifurcation diagrams shown in Table 5.2
show that the system exhibit chaotic behavior at different combinations and against ranges
of the fractional orders at a = 0.81.

Similar to the integer-order case, the new governing differential equations are con-
structed using:

Dα1u = cosθ Dα1 x + sinθ Dα1y,
Dα2v = −sinθ Dα2 x + cosθ Dα2y,
Dα3w = Dα3z,

(5.9)

where the x, y and z fractional derivatives in (5.9) are replaced by the functions on the
right hand side of the chaotic equations. The equations are completely represented in
terms of the new variables u, v and w through the inverse transformation. The resulting
discretized system by (3.9) is given by:

t1i = cos(θ)ui− sin(θ)vi− tu,
t2i = sin(θ)ui + cos(θ)vi− tv,

ui+1 = (cos(θ)(t2i−g(t2i)) + sin(θ)(wi))hα1 −
i∑

j=1
c j
α1ui− j+1,

vi+1 = (−sin(θ)(t2i−g(t2i)) + cos(θ)(wi))hα2 −
i∑

j=1
c j
α2vi− j+1,

wi+1 = (−a (t1i + t2i + wi−2g(xi)))hα3 −
i∑

j=1
c j
α3wi− j+1,

(5.10)

The terms tu and tv are translational parameters that translate or shift the attractor along
the u and v axes, respectively. The system achieves rotation only when tu = tv = 0. Two-
dimensional rotation about y or x axes can be achieved similarly. Figure 5.4 shows
examples of the two dimensional rotating translational system with generally dynamic
parameters at (α1,α2,α3) = (1,0.95,1). From Fig. 5.4(a), it can be inferred that the
translation parameters tu and tv perform their role in comparison with the original strange
attractor in Table 5.2. Figure 5.4(b) uses dynamic translation parameters which change
values after a specific duration. Figure 5.4(c) shows the generation of more multi-scrolls
using dynamic rotation angle generated via the same procedure.

5.1.2.1 Encryption Applications

Rotated chaotic systems were shown to theoretically preserve the chaotic dynamics adding
extra controllability and sensitivity through stability analysis, bifurcations and MLE [6, 7].
This section shows that the same result is valid for practical applications by presenting
both an image and a speech encryption applications using the rotated fractional-order
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Table 5.2: x-y projections and bifurcation diagrams of the solution of (5.8)

(α1,α2,α3) =

(1,0.95,1) (0.87,1.15,0.95) (1.1,1.1,1.1)

(α1,0.95,1) (1,α2,1) (1,0.95,α3)
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tu = 1, tv = −0.5, θ = 0

(a)

tu = {0.5,−0.5,−1.5},
tv = {−1.5,−0.5,0.5}, θ = 0

(b)

tu = tv = −0.5,
θ = {0◦ ,20◦ , . . . ,100◦}

(c)

Figure 5.4: Two-dimensional (a) static translation, (b) dynamic translation and (c) dynamic
rotation.

multi-scroll grid chaotic system. The advantage provided by the rotation angle as a system
parameter is that, unlike the case for chaotic system parameters, the system remains
chaotic and does not drift to stable, periodic or divergent responses outside a specific
range.

The proposed rotating system is suitable for encryption scheme design with a large
enough key space thanks to the fractional-order parameters. The scheme is similar to the
substitution phase of the encryption schemes of Chapter 4 and is shown in Table 5.3. The
encryption key is composed of seven sub-keys (18, 18, 18, 18, 18, 19, 19 bits) with a total
number of 128 bits. The system initial values, rotation angle and fractional-orders are
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Table 5.3: The proposed image encryption scheme and its performance analysis

Encryption scheme Histograms NIST
Test PV PP
1 3 0.979
2 3 0.958
3 3 1
4 3 0.917
5 3 1
6 3 1
7 3 1
8 3 0.989
9 3 1

Horz. corr. Vert. corr. Diag. corr. 10 3 1
5.5465 ×10−4 2.4273 ×10−4 3.8249 ×10−5 11 3 1

Key Sens. MSE (×103) Entropy 12 3 0.969
(∆K4) 8.9265 7.9998 13 3 0.99

DA
NPCR (%) UACI (%) 14 3 1
99.5607 33.4624 15 3 0.958

computed from the key and Psum, for example:

u0 = u f ix + K1×2−24 + mod(Psum,10)/1000,
θ = θ f ix + K4×2−24 + mod(Psum,10)/1000,
α = α f ix + K5×2−24 + mod(Psum,10)/1000,

(5.11)

where the fixed parts are set to values within the ranges corresponding to chaotic behavior.
The encrypted image shown in Table 5.3 is completely random and noisy. Table 5.3

validates the good performance of the encryption scheme using various perceptual and
statistical evaluation criteria. The histogram reveal a uniform intensity distribution com-
pared to the original nonuniform distribution of the plain image. Close to zero correlation
coefficients are reported between the encrypted image pixels. The encrypted image suc-
cessfully passes NIST tests. The wrong decrypted image is very far from the plain image
as indicated by high MSE value. The entropy value approach 8 indicating the randomness
and unpredictability of the encrypted image samples. An advantage of the encryption
system is that perturbation in any parameter affects the three time series and, hence, the
three channels unlike encryption systems based on independent discrete maps for each
channel, which require special key design to overcome their limitation [11]. The values of
the NPCR and UACI of the three channels are averaged over 20 trials in which one pixel
in the original image is changed and found to approach the ideal values 100% and 33.3%,
respectively [187].

Furthermore, Table 5.4 hows the capability of constructing a speech encryption scheme
base on the proposed system. For speech encryption, the outputs u, v and w of the chaotic
generator are multiplied by a scaling factor of 1016 to be suitable for conversion to an
integer value represented in 64 bits. Each original speech sample is xored with the least
significant 16 bits of one of the outputs of the chaotic generator u or w, based on the least
significant bit of z, xored together with a feedback element from the previously encrypted
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Table 5.4: The proposed speech encryption scheme and its performance analysis

Encryption scheme Spect. & hist. NIST
Test PV PP
1 3 1
2 3 1
3 3 1
4 3 1
5 3 1
6 3 1
7 3 1
8 3 0.992
9 3 0.938

ρ MSE (×104) Entropy 10 3 0.938
-0.0017 3.2649 15.9696 11 3 1

Key Sens. MSE (×104) Entropy 12 3 1
(∆K4) 3.2648 15.9546 13 3 0.986

DA
NSCR (%) UACI (%) 14 3 0.969
99.9980 33.3564 15 3 1

sample.
The test speech file obtained from [188] yields a completely random and noisy corre-

sponding encrypted signal as shown in Table 5.4. Good performance is validated similar to
image encryption. The spectrogram plots the magnitude squared of the spectrum, which is
indicated by the color, in a logarithmic scale against time and frequency. Both the spectro-
gram and histogram are uniform as opposed to comprehensible speech characteristics. The
rest of the successful performance metrics can be described similar to image encryption,
where NPCR is replaced by Number of Sample Change Rate (NSCR) [140] and the ideal
entropy value is 16 because each speech sample is represented in 16 bits.

5.1.2.2 Experimental FPGA Realization

CORDIC is an iterative method to calculate elementary functions such as trigonometric
and hyperbolic using add and shift operations. It overpasses other methods, including
multiplication and division, such as Taylor Series and Lookup Table, which suffer from
increased hardware resources and memory requirements, respectively. To the best of
our knowledge, only [189] was found to use CORDIC in an Artificial Neural Network
(ANN)-based chaotic generator to approximate sigmoid activation function using exponent
calculator.

Using a setup similar to Chapter 3, Fig. 5.5 shows the experimental results of Sec-
tion 5.1.1 on the oscilloscope switching between rotation angles 0◦ and 90◦. Table 5.5
shows the experimental results of Section 5.1.2 on the oscilloscope, where the 2D rotation
is performed in x− z plane with angle equals to 90◦. Table 5.5 also gives the hardware re-
sources utilization for system parameters u1 = 0.1, v1 = 0.1 , w1 = 0.1 step size h = 0.0625,
α1 = 1,α2 = 0.9, α3 = 1, a = 0.81, θ = 0.5 and window size=20.

The planarly rotating translational fractional-order multi-scroll grid chaotic system and
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Figure 5.5: Experimental results for rotating integer-order V-shape multi-scroll attractor

Table 5.5: FPGA summary and experimental results for rotating fractional-order multi-
scroll attractor

Logic Utilization 2D Rotation
No of LUT 1833 out of 63400 (2%)

No of slice registers 1091 out of 126800 (0%)
Clock speed (MHz) 25.685

Throughput (Mbit/sec) 821.92

Oscilloscope results

its implementation based on compact GL and CORDIC algorithm can enrich the fields of
fractional chaotic dynamics and their applications. It is advantageous compared to previous
related works, which proposed multi-scroll chaotic systems and their hardware realizations.
The rotation angle had a static value in [89], so a cascade of transformations was applied
to achieve a circular grid. That is, the angle variable (register) is set to a specific value
during simulation (run) time and is not allowed to vary as time progresses. A dynamic
rotation angle was employed in [7] to obtain increased number of scrolls with a single
transformation. However, both works did not really implement the sine and cosine func-
tions and only considered the conventional integer-order domain. The compact GL-based
digital design of a fractional-order multi-scroll attractor presented in [32] was automated
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in [185], yet, the parameter values were still static. None of [7, 89, 185] assessed the
performance of their proposed systems in PRNG or encryption applications. The proposed
work combines fractional-order domain, multi-scroll grid attractors, two-dimensional
rotation and translation transformations to get a chaotic system with controllable complex
behavior. The proposed system is employed in an image and a speech encryption applica-
tions that successfully pass performance tests. To enable complete control and dynamic
planar rotation, it was necessary to have real-time computation of the sine and cosine
functions. A CORDIC-based algorithm was designed and implemented successfully in
association with compact GL yielding an FPGA realization that balances between accuracy
and efficiency. The proposed design is generic for rotating any other chaotic system. The
algorithm will be extended to three-dimensional rotation in Section 5.3.

5.2 Synchronization-Dependent Image Encryption Ap-
plication

The capability of dynamically rotating chaotic systems presented in the previous section
enables data embedding in the dynamic rotation angle. For encryption applications, this
provides a chance for having more input (plaintext) dependent terms in the utilized chaotic
PRNG, which enhances the cryptographic properties and resistance to the different attacks.
However, in this case, the symmetric decryption key is not enough to perform correct
decryption and chaotic synchronization must be employed.

Chaotic synchronization has been utilized in data encryption and secure communica-
tion applications in different forms. For secure communication applications, the message
or information signal is embedded in a carrier signal (one or more of the chaotic outputs)
through modulation. Embedding is either performed in the dynamical equations [105–110]
or applied as a post processing through addition [111–118] or multiplication [119]. The
former method imposes conditions on the amplitudes of the message and hence not always
suitable, especially for digital encoded signals such as images. Integer-order chaotic sys-
tems synchronization has been applied for image encryption [70, 120–124, 124–127]. Al-
though fewer works utilized fractional-order chaotic systems, they have flourished recently
and more papers appeared presenting fractional-order chaotic systems synchronization-
dependent encryption. Secure communication of simple signals [128] and voice sig-
nals [129, 130] were presented based on fractional-order chaotic systems synchronization.
Furthermore, researches in image encryption field include [131–137].

Based on dynamically rotating fractional-order systems, this section presents a
synchronization-dependent secure communication and image encryption application. The
encryption scheme modulates the rotation angle of a fractional-order chaotic system using
the plaintext image. Then, it uses this system as a PRNG in data substitution for image
encryption, which introduces double-layered security [4, 6].

5.2.1 Dynamic Rotation of Three Fractional-Order Chaotic Systems
Three chaotic systems were selected from [31] as they were successfully extended to
fractional-order. In addition, their common fractional orders and output ranges make
it easier to visualize the synchronization results. The systems’ equations and attractor
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diagrams at the used fractional-orders are given in Table 5.6. Only in this section, we refer
to the original coordinates by capital letters X, Y , and Z and the transformed coordinates
by small letters x, y and z to be capable of following the same notations of the generalized
switched synchronization scheme [190].

The rotation transformation yields systems 1, 2 and 3 from those of Table 5.6, respec-
tively. To simplify the equations of the rotating systems, X (x,y, θ) = cosθ x− sinθ y and
Y (x,y, θ) = sinθ x + cosθ y are defined. For instance, system 2 is given by:

Dαx2 = cosθ2
(
−X (x2,y2, θ2) + Y2 (x2,y2, θ2)

)
+ sinθ2 (2.5Y (x2,y2, θ2)−4z2X (x2,y2, θ2))+S 2u2x,

Dβy2 = −sinθ2
(
−X (x2,y2, θ2) + Y2 (x2,y2, θ2)

)
+ cosθ2 (2.5Y (x2,y2, θ2)−4z2X (x2,y2, θ2))+S 2u2y,

Dγz2 = −5z2 + 4X (x2,y2, θ2)Y (x2,y2, θ2)+S 2u2z,

(5.12)
and equations of systems 1 and 3 can be obtained similarly. The underlined terms S iuix,
S iuiy and S iuiz only appear in the synchronization scheme as explained in Section 5.2.2.
While Fig. 5.6 shows examples of clockwise and anti-clockwise static rotation, Table 5.7
shows dynamic rotation in which θ is set to four alternatives of dynamic signals. Figure 5.7
further indicates the capability of increasing the number of scrolls. The same color code is
fixed in the rest of the section for systems 1, 2 and 3 (see the online colored version). The
rotating systems exhibit continuous chaotic behavior against all values of rotation angle,
enabling its dynamic change.

Table 5.6: Systems equations and attractor diagrams at (α,β,γ) = (0.99,0.96,0.95)

Newton-Leipnik Liu Financial
DαX1 = −0.4X1 + Y1 + 10Y1Z1
DβY1 = −X1−0.4Y1 + 5X1Z1
DγZ1 = −5X1Y1 + 0.175Z1

DαX2 = −X2 + Y2
2

DβY2 = 2.5Y2−4X2Z2
DγZ2 = −5Z2 + 4X2Y2

DαX3 = Z3 + (Y3−1)X3
DβY3 = 1−0.1Y3−X3

2

DγZ3 = −X3−Z3

Figure 5.6: Static rotation of the three fractional-order chaotic systems.
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Table 5.7: Dynamic rotation examples for the three systems and four dynamic signals,
where A = 5 and T = 50

θ System 1 System 2 System 3

A
si

n
( 2π

t
T

)
A

sa
w

to
ot

h
( 2π

t
T

)
A

sq
ua

re
( 2π

t
T

)
A

+
b

t T
c

(a) (b)

Figure 5.7: Multi-scroll attractors generated by dynamic rotation of system 2 using (a)
θ = 5 square

(
2πt
50

)
and (b) θ = 5 + b t

50c.

94



5.2.2 Generalized Switched Synchronization Scheme
In this section, the rotating fractional-order chaotic systems are integrated in the general-
ized dynamic switched synchronization scheme of n systems [190]. The block diagram
is shown in Fig. 5.8 for three systems, where S i ∈ {0,1} is the control switch of system
i, where “0” and “1” correspond to master and slave roles, respectively, k jx, k jy and k jz
are scaling factors for the state variables of the master system j, i, j ∈ {1,2,3}. For an idle
system, switches and scaling factors are set to zero. The control functions uix, uiy and
uiz affect the response of slave systems only and are derived using superposition, active
nonlinear control and Lyapunov stability theorem [190].

For each slave system i given by:

Dαxi = fi(xi,yi,zi) + S iuix,
Dβyi = gi(xi,yi,zi) + S iuiy,
Dγzi = hi(xi,yi,zi) + S iuiz,

(5.13)

the corresponding master system/combination is given by:

xm =
∑n

j=1, j,i k jx(1−S j)x j,

ym =
∑n

j=1, j,i k jy(1−S j)y j,

zm =
∑n

j=1, j,i k jz(1−S j)z j,

(5.14)

where the scaling factors k jx, k jy and k jz control the time series of the slave system i
according to those of the master system(s). The error vector ei is the difference between
the master and slave systems. The error derivatives are given by: Dαeix

Dβeiy
Dγeiz

 =


fi(xi,yi,zi) + S iuix−

∑n
j=1, j,i

(
k jx(1−S j) f j(x j,y j,z j)

)
gi(xi,yi,zi) + S iuiy−

∑n
j=1, j,i

(
k jy(1−S j)g j(x j,y j,z j)

)
hi(xi,yi,zi) + S iuiz−

∑n
j=1, j,i

(
k jz(1−S j)h j(x j,y j,z j)

)
 (5.15)

According to the nonlinear control and Lyapunov stability theorems, these error
derivatives should force negative eigenvalues to ensure stability and zero steady state [191,
192]. Hence, they are given by: Dαeix

Dβeiy
Dγeiz

 =

 Vix(eix)
Viy(eiy)
Viz(eiz)

 =

 −kux 0 0
0 −kuy 0
0 0 −kuz


 eix

eiy
eiz

 (5.16)

which makes the derivatives decaying functions of the errors controlled by the tuning
parameters kux, kuy, kuz ≥ 1, such that ei → 0 as i → ∞. Consequently, substitution
from (5.16) into (5.15), setting S i = 1 for each slave system i, i = {1,2, . . . ,n}, yields:

uix = Vix(eix) +
∑n

j=1, j,i k jx(1−S j) f j(x j,y j,z j)− fi(xi,yi,zi),
uiy = Viy(eiy) +

∑n
j=1, j,i k jy(1−S j)g j(x j,y j,z j)−gi(xi,yi,zi),

uiz = Viz(eiz) +
∑n

j=1, j,i k jz(1−S j)h j(x j,y j,z j)−hi(xi,yi,zi).
(5.17)

The obtained active control functions (5.17) are substituted in the equations of the systems,
e.g. (5.12).
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Figure 5.8: Generalized dynamic switched synchronization scheme of rotating fractional-
order chaotic systems.

5.2.3 Simulation Results for the Synchronization Scheme
This section demonstrates the suitability of rotating fractional-order chaotic systems
for synchronization applications preserving same capabilities of [190] as well as static
and dynamic rotation. Figure 5.9 summarizes the available alternatives provided by the
generalized synchronization scheme from different viewpoints. Various cases are validated
to achieve the targeted synchronization even in the complicated case with various dynamic
signals. Simulation results are obtained using h = 0.005 as a step size, 40 000 iterations
(i.e., total duration of 200 time units) and kux = kuy = kuz = 50 [31,190]. The three rotating
systems have θ1 = 5sin

(
2πt
50

)
, θ2 = 5 + b t

50c and θ3 = 5 sawtooth
(

2πt
50

)
.

Table 5.8 shows the simulation results for three selected cases. First, for single master,
the slave systems are synchronized with the master (system 1). The beginning of both x
and y time series shows that they successfully follow the master time series and the error
approaches 0 in around 30 iterations. Second, for master combination, the slave (system 2)
is synchronized with the master combination (systems 1 and 3, dark, blue, colored). Third,
a case with several dynamic signals is shown, where the master is system 2 followed by
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Figure 5.9: Generalized dynamic switched synchronization applications on rotating chaotic
systems.

system 3, each for half the simulation time. The time series of both systems are scaled by
k2x = k3x = kx = square

(
2πt
50

)
and k2y = k3y = ky = 1 + b t

50c. The resulting time series and
attractor diagram indicate that the slave (system 1) follows the switched master.

5.2.4 Proposed Encryption/Decryption Scheme
This section presents an image encryption scheme that utilizes rotating fractional-order
chaotic systems for plaintext image pixels substitution using the logical XOR operation.
At the same time, the dynamic rotation angle is modulated using the input image pixels.
Hence, synchronization is required to generate the same chaotic time series needed for
decryption as the decrypter has no access to the plaintext image. The proposed generalized
switched synchronization scheme offers multiple alternatives of master system construction
and synchronization types as previously summarized in Fig. 5.9.

Figure 5.10 shows the synchronization-dependent encryption and decryption scheme.
The encryption key consists of six sub-keys and determines the fractional-orders and initial
values of the chaotic systems as follows:

α = α f ix + K1×2−26, (5.18)

where α f ix is a fixed part set to a value that generates chaotic behavior, e.g., the values
given in Table 5.6, and similarly for the rest of the sub-keys.
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Table 5.8: Successful synchronization simulation results
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Figure 5.10: Synchronization-Dependent Image Encryption/Decryption Scheme.
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For the master system(s), the dynamic rotation angle θ is given by:

θ =
double(R⊕G⊕B) bPsum

255 c

Psum
, (5.19)

and is evaluated for each iteration i and denoted by θIm in Fig. 5.10. For the slave system(s),
θ can be set to any static or dynamic value(s). The chaotic outputs of the master system or
master combination are scaled, quantized and 8 bits are extracted from each of them to
act as PRNG (usually the LSBs, except where stated otherwise). Substitution by logical
XOR with feedback and multiplexer are then applied similar to Chapter 3. For decryption,
all operations are reversed, using the slave system to generate the PRNG. The switch and
scaling factors of the slave system i are set to one, i.e., S i = kix = kiy = kiz = 1.

5.2.5 Simulation Results and Performance Evaluation
NIST tests are carried out on each chaotic output in the same manner in which they are
used in encryption and using the input dependent rotation angle given by (5.19). Table 5.9
shows that the three chaotic PRNGs pass the tests. Three synchronization scenarios are
tested using the colored 256× 256 Lena image [160]. In scenario 1, system 2 is the
single master and system 1 is used as a slave in the decryption side. In scenario 2, a
master combination of both systems 1 and 3 is used. In scenario 3, dynamic switching
between systems 2 and 3 as master systems is employed. The performance of the scheme
is evaluated through the encrypted image, histogram and its uniformity through chi square
test, pixel correlation, MSE, entropy, PSNR, key sensitivity, resistance to brute force,
differential and other security attacks. Equations of the performance metrics were given in
Table 3.16 of Chapter 3.

The encrypted images corresponding to the three scenarios are random similar to the
example shown in Fig. 5.10. In addition, the corresponding histograms reveal a uniform
intensity distribution compared to the nonuniform histograms of the original image as
shown in Fig. 5.11. To further check the degree of deviation from uniform histogram,
chi-square test [162] is used. The less the chi-square value, the better the uniformity.
Table 5.10 gives the results for the encrypted images, which have relatively low values
compared to that of the original image of O(104).

Table 5.10 shows the ability of the system to destroy the horizontal, vertical and
diagonal correlation between the pixels where the correlation coefficients of the encrypted
image approach zero. High MSE, Entropy approaching 8 and low PSNR further indicate
the randomness and unpredictability of the encrypted image.

The 128 encryption key designed as shown in Fig. 5.10 has a key space of 2128,
which is large enough to resist brute force attacks in which the hacker attempts all key
combinations [187] and make them impractical. When the LSB of the sub-key ∆K1 is
changed, high MSE values and Entropy approaching 8 are reported as given in Table 5.10,
which indicate the randomness and unpredictability of the wrong decrypted image. Similar
results are obtained for the rest of the sub-keys. In the proposed scheme, perturbation
in any parameter affects the three time series and, hence, the three channels. This is an
advantage of encryption systems based on higher-order differential equations unlike those
based on independent discrete maps for each channel [11].
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Table 5.9: NIST results for the PRNG from the three chaotic systems

Test
System 1 System 2 System 3

PV PP PV PP PV PP
Frequency 3 1 3 1 3 1
Block Frequency 3 1 3 1 3 0.958
Cumulative Sums 3 1 3 1 3 1
Runs 3 1 3 0.958 3 1
Longest Run 3 0.917 3 1 3 1
Rank 3 0.958 3 1 3 1
FFT 3 1 3 0.958 3 0.958
Non-overlapping Template 3 0.99 3 0.992 3 0.995
Overlapping Template 3 1 3 0.958 3 1
Universal 3 1 3 0.958 3 1
Approximate Entropy 3 0.958 3 1 3 1
Random Excursions 3 1 3 1 3 0.992
Random Excursions Variant 3 1 3 0.992 3 0.948
Serial 3 1 3 1 3 1
Linear Complexity 3 0.958 3 1 3 1
Final result Passed Passed Passed

(a) (b) (c)

Figure 5.11: Histograms of the encrypted red channel for (a) scenario 1 (b) scenario 2 and
(c) scenario 3.

Table 5.10 shows the values of the NPCR and UACI averaged over 10 trials in which
one pixel in the original image is changed, which successfully approach 100% and 33.33%,
respectively [187].

The system can resist other cryptanalysis techniques, besides brute force and differ-
ential attacks. In ciphertext-only attack, the attacker has access only to a ciphertext or a
collection of ciphertexts with the objective of finding the plaintext image and/or the secret
key. This requires the use of brute force [164], and hence, the large key space and the
dependence of the PRNG on the plaintext image are effective means of enhancing the
scheme’s resistance to this attack.

Embedding the plaintext image in the dynamic rotation angle of the chaotic time series
almost eliminates the chances of its discovery, unlike post-processing rotation. In the latter
case, given the rotated and original coordinates, (x,y) and (X,Y), respectively, the rotation
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Table 5.10: Performance evaluation of the image encryption scheme for three synchro-
nization scenarios

Test Scenario 1 Scenario 2 Scenario 3
χtest2

(
×102

)
2.3345 2.4158 2.5528

ρ Horizontal -1.8985 0.8363 0.7832(
×10−3

) Vertical -0.2458 0.6062 -1.8442
Diagonal 0.6054 -6.0965 -2.8532

MSE
(
×103

)
8.8586 8.8623 8.8684

Entropy 7.9974 7.9973 7.9972
PSNR 8.7189 8.7135 8.7117

Key Sens. MSE
(
×103

)
8.8640 8.8701 8.8838

(∆K1) Entropy 7.9973 7.9969 7.9971

DA
NPCR 99.6272 99.5941 99.6216
UACI 33.5249 33.4539 33.5218

angle can be computed from:

θ = tan−1 y X− x Y
X x + Y y

. (5.20)

Yet, the proposed method embed the plaintext image in the chaotic dynamics and, on
the long term evolution, it is totally different from the post-processing time series due to
chaotic sensitivity properties. That is, trajectories that start out very close to each other,
with extremely slight differences in initial values, parameters or implementations, separate
with time. Ultimately, this makes information retrieval or message extraction only possible
through synchronization and having access to the decryption scheme. To further illustrate

this advantage, (5.19) is simplified to θ =
G b Psum

255 c

Psum
and an attempt of its retrieval from

the chaotic time series is implemented. Figure 5.12 shows that although post-processing
enables image restoration from the chaotic time series using (5.20), the proposed rotating
chaotic systems do not allow this to happen. This result suggests that the scheme with
angle modulation only can be suitable for secure data transmission of any type whether
it is digital encoded in a fixed point representation and suitable for logic XOR operation
or not. In our scheme, the process is even more complicated due to XORing the three
components in (5.19) to modulate the rotation angle of the chaotic system. In addition, the
transmitted encrypted image is produced by XORing with the PRNG formed by the bit
sequence extracted from this modulated chaotic output, as well as a multiplexed previous
encrypted pixel.

In order to achieve correct decryption as shown in Fig. 5.10, different settings are
needed for the different complexities of synchronization scenarios. For example, the
tuning factors ku range between 50 and 300, the discarded simulation time ranges from
20 to 50 time units. Finally, the selection of bits that form the PRNG extracted after
scaling and quantization of the chaotic output differ among scenarios. Specifically when
dynamic switches or scaling factors are employed, the LSBs become sensitive to the slight
synchronization error, which is bounded close to zero. Hence, intermediate significant
bits are used, where they are less subject to synchronization error and achieve both
good encryption performance (Table 5.10) and correct decryption. Similar limitations
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Figure 5.12: Failed attack of image green channel restoration from the proposed rotating
chaotic time series.

and precautions were reported in previous related works, even for simple single master
synchronization, e.g., [110, 126, 127, 131, 132, 137].

5.2.6 Discussion and Comparison
The proposed synchronization-dependent secure communication setup is suitable for
one-to-one, one-to-many, mutual interconnection and role switching. The transmitter and
receiver of Fig. 5.10 can exchange roles in the presence of a dual channel. Synchronization
can be performed with the transmitter chaotic system as it is or a dynamic scaled version
of it. It can employ dynamic switching between multiple transmitters or a combination of
them with dynamic scaling parameters. Static switching and/or scaling are also feasible as
special cases. Moreover, synchronization can be achieved for one state variable or all of
them according to the application. Most of the papers on the topic, e.g., the ones briefly
reviewed in the beginning of this section, only focused on one type of synchronization and
one-way communication with fixed single transmitter and receiver. Only [135] discussed
anti-synchronization, which is a special case of our generalized synchronization with a
scaling factor of −1.

In the designed scheme, synchronization is employed for a purpose and correct decryp-
tion can not properly take place without it. The plaintext image itself is used to determine
the dynamic rotation angle every single iteration. Consequently, such a design for the
master system requires synchronization because the master signals are irreproducible at
the receiver side with no access to the plaintext image. In most of the reviewed papers,
their PRNGs were independent on the plaintext with the exception of [132], in which
key and input dependent parameters are utilized in the chaotic PRNG. In addition, the
utilization of synchronization was only owed to external disturbances and design mis-
matches [116, 117, 130]. In our proposed work, synchronization is a must and design
dictated and PRNG dependence on plaintext image increases robustness against different
cryptanalysis attacks.
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A novel dynamically rotating fractional-order system is utilized, rather than integer-
order systems or fractional-order systems with static attractors. Fractional-orders and
dynamic parameters enhance the chaotic properties and encryption performance. The
fractional-orders enable reaching a large key space and the dynamic rotation angle enable
input dependence. The synchronization-dependent encryption scheme makes use of two
ideas: angle modulation using the plaintext and XOR logic operation for plaintext image
substitution. Almost all reviewed papers applied only one approach; either embedding the
information/message/plaintext in the chaotic equations through amplitude modulation or
performing an arithmetic or logic operation between it and the independent chaotic output.
Only in [132], the data is converted to a data carrier signal by logic XOR with the PRNG,
added to one chaotic output then transmitted. Adopting both approaches in our scheme
adds a double-layered security. One of the advantages of angle modulation is that it has
no conditions on the amplitudes/values of the message as it will be eventually mapped to
[0,2π).

The reviewed works depended on the arithmetic data masking through addition in
most papers [109–118, 126], permutation before arithmetic substitution [127, 134, 137],
and/or performing the logic XOR operation, whether preceded by complicated arithmetic
operations on the resulting chaotic signals or not [127,131,132,134,137], which represents
extra overhead besides the chaotic systems solution. Our scheme depends on rotation angle
modulation by the plaintext image, followed by data substitution based on simple XOR
logic operation. The rotating chaotic systems can be realized in digital hardware using
methods of implementing the trigonometric functions [193]. Hardware realization methods
were presented for fractional-order chaotic systems and can be also employed [32–34,194].
However, hardware realization of chaotic systems and encryption schemes was more
frequently presented than synchronization schemes [126]. Hence, hardware realization of
the proposed synchronization-dependent encryption scheme can be considered in a future
research that combines fractional-order chaotic systems, with trigonometric functions,
synchronization and encryption digital realization. The scheme is also suitable for various
types of data transmission: text, simple signals, speech whether applying both phases or
the rotation angle modulation only as shown in Fig. 5.12. Moreover, it is tested for RGB
images with the challenges: bulk data size, the correlations between adjacent pixels and
high redundancy among the raw pixel, unlike the papers that used simple one dimensional
signals [109, 110, 116, 128–130].

The encryption scheme was evaluated using more performance metrics than the re-
viewed papers and give a more precise key design than theirs. Focusing on fractional-order
chaotic systems synchronization-dependent image encryption schemes [131–137], their
security analyses included one or more of the following metrics: histograms, correlation,
entropy and preliminary parameter space and sensitivity analysis. While [136] additionally
included MSE and PSNR, [134] included DA analysis. In these works, only a preliminary
analysis of key space and key sensitivity was presented through listing the parameters of
the chaotic systems. However, the encryption key design, effective key space and precise
sensitivity analysis were not given.

To avoid negative effects of the slight bounded, yet, nonzero synchronization error on
decryption, some precautions should be considered in choosing the parameters settings.
This can be overcome by using intermediate significant bits for PRNG or utilizing other
PRNG methods different from extracting LSBs directly, such as permutation prior to bits
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extraction [140]. For systems with uncertain parameters in the presence of unknown
internal and external disturbances, a controller-observer approach can be adopted [116].

In the next sections, a preliminary discussion and proof of concept of more chaotic
systems generalization methods are presented. These further methods include three-
dimensional rotation and novel chaotic equations constructed in other coordinate systems.

5.3 Three-Dimensional Rotating Chaotic Systems
Chapter 4 presented three-dimensional affine transformations. This section extends the
rotation approach of the previous two sections and focuses on three-dimensional rotation
and its implementations. Recalling the transformation from X = [x y z]T to U =

[u v w]T through rotation, a transformation of Ẋ = f (X) to the rotated coordinates U
and its inverse can be applied to get a system with rotating solution. Such transformation
can be expressed as a rotation matrix, quaternion or successive shearing as explained
in this section. The same simple jerk-based system with piecewise nonlinearity (4.3)
of Chapter 4 is used for validation.

5.3.1 Implementation I: Matrix-Based Rotation
5.3.1.1 Mathematical Analysis

Two-dimensional rotations can be extended to three-dimensional rotations by constructing
elementary three-dimensional rotation matrices, which perform rotations individually
about the three coordinate axes z, y, and x by angles θ1, θ2 and θ3, respectively. The
rotations about the three axes (Rθ1 , Rθ2 and Rθ3) can be derived similar to the previous
sections and applied to create general composite three-dimensional rotation with matrix R
as follows:  u

v
w

 = R

 x
y
z

 , (5.21a)

R =

 cosθ1 cosθ2 cosθ3 sinθ1 + cosθ1 sinθ3 sinθ2 sinθ1 sinθ3− cosθ1 cosθ3 sinθ2
−cosθ2 sinθ1 cosθ1 cosθ3− sinθ1 sinθ3 sinθ2 cosθ1 sinθ3 + cosθ3 sinθ1 sinθ2
sinθ2 −cosθ2 sinθ3 cosθ3 cosθ2


(5.21b)

5.3.1.2 Matrix-Based Rotating Chaotic System

This procedure is used to obtain the equations of the rotating simplest chaotic system
through the algorithm:

Algorithm 1: Matrix-Based Rotation Algorithm
Generate the rotation matrices about the three axes.
Construct the final rotation matrix R and RT .
Find Xi = RT U i.
Apply Euler numerical solution of (4.3) to find Xi+1.
Find U i+1 = RXi+1.
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which can be rewritten in a single vector equation as:

U i+1 = RXi+1 = R
(
Xi + h f

(
Xi

))
= R

(
RT U i + h f

(
RT U i

)) (5.22)

where R−1 is replaced by RT since rotation matrices are orthogonal. Figure 5.13 shows
the projections of the attractor diagrams of both the original system (4.3), in light color
(red), and the rotating system (5.22), in dark color (blue), at different values of the rotation
angles (see the online colored version).

5.3.2 Implementation II: Quaternions-Based Rotation
Seeking a more compact formulation or implementation for the three-dimensional rotation,
this section explores quaternion-rotation.

5.3.2.1 Mathematical Analysis

The quaternion group has 8 members:

± i,± j,±k,±1, (5.23)

where i, j and k are the orthonormal basis vectors, whose products are defined by:

i2 = j2 = k2 = i jk = −1. (5.24)

The linear combination of the real numbers a,b,c and s

q = s + ia + jb + kc (5.25)

is a quaternion, which can also be rewritten as:

q = (s,a,b,c). (5.26)

The set of all the combinations of q is called the quaternion algebra [195].

(a) (b) (c)

Figure 5.13: Projections of the attractor diagrams of (5.22) at (a) θ1 = θ2 = 0 and θ3 = π/4,
(b) θ1 = θ3 = 0 and θ2 = π/4 and (c) θ2 = θ3 = 0 and θ1 = π/4.
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By Euler’s theorem, every rotation can be represented as a rotation around some axis k̂
with angle θ. In quaternion terms:

q = Rot
(
k̂, θ

)
=

(
cos

(
θ

2

)
+ sin

(
θ

2

)
k̂
)

= (ε1, ε2, ε3, ε4) (5.27)

The operation qXq−1 rotates the 3D vector X about the axis of q (k̂) with an angle twice
that of q (θ), according to the right hand rule. Composition of rotations is equivalent
to quaternion multiplication, which is supposed to provide a more compact form of
implementation.

5.3.2.2 Quaternion-Based Rotating Chaotic System

The quaternion-based rotating simplest chaotic system is given by the following algorithm.
Algorithm 2: Quaternion-Based Rotation Algorithm

Define three quaternions corresponding to the three axes each with a specific angle.
Construct the final quaternion q from their product.
For each iteration:
Find Xi = q−1U iq. Apply Euler numerical solution of (4.3) to find Xi+1. Find
U i+1 = qXi+1q−1.

The algorithm can be rewritten in the form of a single vector equation as follows.

U i+1 = qXi+1q−1 = q
(
Xi + h f

(
Xi

))
q−1

= q
(
q−1U iq + h f

(
q−1U iq

))
q−1 (5.28)

The results from the two implementations, matrix-based and quaternion-based, are roughly
identical/coinciding as shown in Fig. 5.14.

5.3.3 Implementation III: Shearing-Based Rotation
In this section, 3D rotation is implemented using matrix multiplication as well. Yet, each
matrix represents a 2D skewing, which is alternatively called non-symmetrical rotation. It
is another workaround that may provide a more compact or simpler implementation of 3D
rotation. However, in order to perform rotation through shearing, the shearing parameters
need to be first computed from the rotation angle θ [196]

5.3.3.1 Mathematical Analysis of 2D Skewing

A two-dimensional shear operation has the following matrix representations:

S hear−X(α) =

[
1 α
0 1

]
, S hear−Y(β) =

[
1 0
β 1

]
, (5.29)

where S hear−X(α) and S hear−Y(β) matrices represent shears parallel to the x and y-axis,
respectively. For instance, S hear−X(α) results in x′ = x +αy, while y′ = y is unchanged.

Two-dimensional rotation can be implemented by the following steps:

1. a shear along one axis,
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2. a shear along the second axis,

3. another shear along the first axis,

which can be formulated as follows:

S hearX(α)S hearY(β)S hearX(γ) =

[
1 α
0 1

] [
1 0
β 1

] [
1 γ
0 1

]
=

[
1 +αβ α+γ+αβγ
β 1 +βγ

]
(5.30)

Equating the familiar rotation matrix to (5.30) and solving for α, β and γ as follows:

β = −sinθ,
1 +αβ = cosθ,
1−αsinθ = cosθ,
α = 1−cosθ

sinθ ,

α = tan θ
2 ,

1 +αβ = 1 +βγ,
γ = α

(5.31)

yields α = γ = tan θ
2 and β = −sinθ, which are totally represented in terms of θ.

Therefore, to obtain the skewed system in two-dimensional plane we define[
u
v

]
=

[
1 +αβ α+γ+αβγ
β 1 +βγ

] [
x
y

]
, (5.32)

(a) (b)

(c) (d)

Figure 5.14: Attractor diagram and time series from the rotation-matrix and quaternion-
based implementations.

108



and its inverse [
x
y

]
=

[
1 +γβ −α−γ−αβγ
−β 1 +βα

] [
u
v

]
, (5.33)

Hence, the skewed simplest system rotating about z axis is given by:

u̇ = (1 +αβ)(−βu + (1 +βα)v) + (α+γ+αβγ)w,
v̇ = β(−βu + (1 +βα)v) + (1 +βγ)w,
ẇ = −a(w−βu + (1 +βα)v + (1 +γβ)u + (−α−γ−αβγ)v− sgn((1 +γβ)u + (−α−γ−αβγ)v)).

(5.34)
To cancel any of the shearing effects, the corresponding parameter is set to zero.

5.3.3.2 Shearing-Based Rotating Chaotic System

Shearing-Based Rotation is applied to the simplest chaotic system in a similar man-
ner to Algorithm 1 and (5.22) of Section 5.3.1, except for computing Rθ1 by replacing[

cosθ1 sinθ1
−sinθ1 cosθ1

]
by

[
1 α1
0 1

] [
1 0
β1 1

] [
1 γ1
0 1

]
and similarly for Rθ2(α2,β2,γ2) and

Rθ3(α3,β3,γ3).
Figure 5.15 validates the achievement of rotation by −20◦ using three successive shears.

The results shown in Fig. 5.16 are roughly identical to/coinciding with those obtained
from the two previous implementations, matrix-based and quaternion-based. Hence, the
three implementations are roughly equivalent.

For future work, digital design of the three proposed implementations will be proposed
and compared regarding both accuracy and efficiency.

5.3.4 Spatially Rotating Fractional-Order System Realization
This section applies Implementation I to (5.8). This results in
a spatially rather than only planarly rotating attractor. In case
of fractional-order systems, Algorithm 1 is modified as follows.

Algorithm 3: Matrix-Based Rotation Algorithm for Fractional-Order Systems

Construct the rotation matrix R and RT .
Find Xi = RT Ui.
Apply GL method to solve (5.8) and find Xi+1.
Find Ui+1 = RXi+1.
Figure 5.17 shows an example of the spatially rotating system at rotation angles

(θ1, θ2, θ3) = (90◦,90◦,45◦).
Table 5.11 shows the experimental results on the oscilloscope. The 3D rotation is

performed in x−y plane with angles θ1 = θ2 = θ3 = 90◦. Table 5.11 also gives the hardware
resources of the proposed algorithm for the same system parameters and window size of
Table 5.5. The 2D rotation can also be realized using the 3D algorithm. However, from
the hardware resources comparison, the 3D algorithm needs more resources than the 2D
algorithm.
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(a) (b)

(c) (d)

Figure 5.15: Rotation by −20◦ using three successive shears for the simplest chaotic
system.

(a) (b)

(c) (d)

Figure 5.16: Attractor diagram and time series from the rotation-matrix and shearing-based
implementations.
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Figure 5.17: Spatially rotating fractional-order multi-scroll grid attractor at (θ1, θ2, θ3) =

(90◦,90◦,45◦).

Table 5.11: 3D rotation FPGA summary and experimental results for the fractional-order
multi-scroll grid attractor

Logic Utilization 3D Rotation
No of LUT 5636 out of 63400 (8%)

No of slice registers 1106 out of 126800 (0%)
Clock speed (MHz) 16.274

Throughput (Mbit/sec) 520.768

Oscilloscope results
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5.4 Preliminary Insights on Jerk-Analogues in Other Co-
ordinates

Analogous to the jerk-based systems in the Cartesian coordinates, where ẋ, ẍ and ...x appear,
we attempt to construct similar systems in polar and spherical coordinates. Table 5.12
provides some preliminary examples and their attractor diagrams plotted using the trans-
forms x = ρcosθ, y = ρsinθ and x = ρcosθ sinφ, y = ρsinθ sinφ, z = ρcosφ for polar and
spherical examples, respectively.

Compared to [98–100], these previous works focused on spherical coordinates only
and included larger number of terms and nonlinearities. For example, the system proposed
in [98] has 8 terms with 2 quadratic terms. The system proposed in [99] has 11 terms
with 5 quadratic terms. The system proposed in [100] has 14 terms with 7 quadratic terms.
Each of our proposed systems in Table 5.12 consists of 5 terms with a single nonlinear
term, where the challenge is the type of nonlinearity.

For future work, analysis of the characteristics and behaviors of the proposed chaotic
equation such as equilibria, stability, bifurcations, MLE can be studied for the different
ranges of initial conditions and parameters. In addition, the nonlinear function can take
other forms than the provided example. Moreover, it may be extended to a function of two
variables f (ρ,θ) or more.

Table 5.12: Proposed chaotic equations in other coordinate systems

Polar Spherical
ρ̇ =θ

θ̇ =z
ż =− θ−a z + f (ρ)

a = 0.6 f (ρ) = 2.7sin(ρ)

ρ̇ =θ

θ̇ =φ

φ̇ =− θ−a φ+ f (ρ)
a = 0.6 f (ρ) = 2.7sin(ρ)
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Chapter 6: Conclusions and Future
Work
Generalization of chaotic systems is highly required to enhance their controllability,
sensitivity, randomness and unpredictability properties. Generating chaotic signals and
attractors with controllable amplitude/size, polarity, offset/location, phase/orientation,
and number of scrolls has recently flourished. This thesis presented several incremen-
tal generalization and control approaches towards achieving this controllability, which
were successfully validated through numerical simulations. In addition, the proposed ap-
proaches were successfully utilized in several chaotic trajectory control, synchronization,
PRNG, image and speech encryption applications. Moreover, digital hardware realization
on FPGA was verified experimentally. Recalling the literature review from Chapter 2,
non-autonomous control of chaotic systems through dynamic parameters is a hot research
topic and it has just recently started to be employed in applications.

The first generalization approach proposed the controllable jerk-based chaotic systems
with extra parameters of Chapter 3. The systems utilized generalized forms of well-known
discrete time chaotic maps as the nonlinear function of the jerk equation. While the piece-
wise nonlinearity system employs the scaled tent map, the quadratic nonlinearity system
employs the scaled logistic map. An analogy exists between the effects of the scaling
parameters a and b in simple one-dimensional discrete chaotic maps and their effects in
continuous jerk-based chaotic systems with more complicated dynamics. The impacts of
these scaling parameters appear on the effective ranges of the parameter µ and the ranges
of the obtained solution. However, the approach was only suitable for jerk-based systems
and only limited attractor size and location control and limited multiplication of scrolls
were allowed.

Numerical simulation and digital hardware realization were usually proposed as evi-
dence of the parameter and initial conditions sensitivity and randomness properties of the
proposed systems in digital applications. However, before proceeding to such steps, Chap-
ter 3 focuses on the implementation sensitivity property and its conscious utilization in
enhancing randomness. The algebraic associativity property of digitally implemented
chaotic systems was assessed in software double-precision, single-precision floating-point
and hardware fixed-point implementations on changing the order of terms addition and
multiplication. Three implementation cases of each of three discretized chaotic systems
were presented considering the order of additions. In addition, two more cases for one
of these systems and four cases of the discrete logistic map were presented considering
the order of multiplications. Despite sharing the common chaotic properties such as:
strange attractor shape, bifurcations and MLE values, mismatches between time series
of all the different cases were uncovered in floating-point implementations. On the other
hand, fixed-point implementations exhibited mismatches only when changing order of
multiplications. The mismatch or error increases gradually, but remains bounded and
its three components form a strange attractor. The effect of this mismatch in a software
image encryption application was demonstrated, where using an implementation with
different order of execution results in wrong decryption. As an attempt to make use of this
implementation sensitivity as an alternative randomness source, the resulting mismatch
signals between various implementations were used as PRNG in an image encryption
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application, which successfully passes the standard performance tests. Chapter 3 sets the
reproducibility rules to be followed in the next chapters.

The second generalization approach proposed two-dimensional affine transformations:
scaling, reflection, rotation, translation and/or shearing of chaotic systems and validated
them for the simplest and Lorenz systems in Chapter 4. The effects on the time series,
equilibrium points, attractor diagrams, bifurcations and MLE were demonstrated. This
approach overpasses post-processing by applying transformations on the resulting time
series. The six parameters, which are embedded in the differential equations of the
chaotic system, control the system response and enhance its randomness and sensitivity.
Trajectory control of the dynamic motion of the attractor was also presented exploring
different trajectories. An image encryption system was proposed, which successfully
passes the standard performance tests: PRNG NIST tests, encrypted image, histogram
and its uniformity through chi square test, pixel correlation, MSE, entropy, PSNR, key
sensitivity, resistance to brute force, differential and other security attacks. Transformed
Lorenz system increases the key space and, hence, security in comparison to Lorenz
system with an acceptable increase in the computation time as well as overpassing other
recent related works.

This approach was further extended to three-dimensional affine transformations
in Chapter 4, which were applied to control hidden attractors in fractional-order sys-
tems. Generally, an appropriate controlling scheme must be cautious with the increased
sensitivity of the dynamical behavior of hidden attractors if the chaotic dynamics are
required to be maintained. The proposed transformation framework overcomes the limita-
tions imposed by the unique properties of hidden attractors. The proposed transformations
were shown to preserve the chaotic dynamics of the original systems by means of strange
attractors, spectral entropy and bifurcation diagrams. Non-autonomous parameter ap-
proaches were utilized to generate multiple wings around the same center point using
multi-level pulse signals. In addition, non-autonomous translation parameters were used
to generate distributed self-reproduced attractors along an arbitrary line, curve or surface.
Compared to the very narrow, mostly specific single value, basin of attraction, parameter
basin of attraction and fractional-orders of hidden attractors, the newly introduced param-
eters enable quite wide ranges. Hence, they are suitable for constructing the encryption
key in digital chaos-based encryption systems. Having up to twelve degrees of freedom
provided by the extra parameters enlarges key space and enhances resistance to brute force
attacks.

A modification on affine transformations approach was presented in Chapter 5, where
two-dimensional rotation, translation and scaling transformations were applied to two
multi-scroll chaotic systems. These systems are characterized by wide basin of attraction
and, hence, using the proposed transformations, they can span the whole space. The
transformations enhance complex multi-scroll attractor structures and controllability
through static and dynamic parameters. First, the transformed integer-order V-shape
multi-scroll system was proposed and used to write letters, words and sentences. Second, a
transformed fractional-order multi-scroll 2×2 grid chaotic system was proposed, utilized
successfully in speech and image encryption applications and verified experimentally on
FPGA using GL technique and CORDIC algorithm.

Dynamic rotation of fractional-order chaotic systems was further utilized successfully
in a novel synchronization-dependent RGB image encryption application in Chapter 5. The
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generalized synchronization scheme also includes dynamic scaling factors and dynamic
switches. Moreover, it enables several systems participation in the constructed master.
Various synchronization cases were validated in spite of how difficult the master response
tracking is when all these dynamic signals are present. The synchronization-dependent
encryption scheme employs angle modulation using the plaintext and XOR logic operation
for plaintext image substitution. The performance of the scheme was evaluated for three
synchronization scenarios through the standard tests, where it successfully passed them.

As an extension of 2D planar rotation, three different implementations of spatially
rotating simplest chaotic system: matrix-based, quaternions-based and shearing-based
were presented and validated in Chapter 5. The rotation matrix-based implementation
was experimentally verified for the fractional-order multi-scroll 2×2 grid chaotic system
of Chapter 5. Preliminary results on generalized chaotic systems in polar and spherical
coordinate systems were also presented with fewer number of terms than recent related
works.

For future work, the following items can be considered:

• Research ideas similar to the generalized maps utilized in Chapter 3 can be extended
from the discrete domain to the continuous domain and combined to produce new
systems. Increased nonlinearity and extra degrees of freedom can be added to the
systems through using more complicated maps with extra parameters such as the
generalized transition and generalized modified transition maps [197].

• Besides the affine transformations utilized in Chapter 4, nonlinear transformations
can be applied to obtain more random and sensitive time series. In addition, they can
be utilized in robotic applications for random motion planning along a prescribed
trajectory.

• The multi-characters of Chapter 5 should not necessarily be written successively
and the parameters settings can be adjusted to generate multiple-rounds of motion
between the characters. Instead of manual parameter manipulation through piece-
wise definitions and Heaviside function, all letters of the alphabet can be generated
and the width and height of each character as well as its position can be reported.
An automated design for writing words and statements with chaotic attractors can
be presented, which may utilize pattern recognition techniques to generate the
parameters setup corresponding to an input word or statement.

• Regarding the synchronization-dependent image encryption system of Chapter 5,
a controller-observer approach can be adopted to be suitable for synchronizing
systems with uncertain parameters in the presence of unknown internal and external
disturbances.

• Digital design of the three implementations of spatially rotating chaotic systems
in Chapter 5 can be proposed and compared regarding both accuracy and efficiency.

• The chaotic equations in polar and spherical coordinates proposed in Chapter 5 can
be mathematically analyzed considering equilibria, stability, bifurcations, MLE can
be studied for the different ranges of initial conditions and parameters. In addition,
the nonlinear function can take other forms than the provided example. Moreover, it
may be extended to a function of two variables f (ρ,θ) or more.
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[189] M. Alçın, İ. Pehlivan, and İ. Koyuncu, “Hardware design and implementation of a
novel ANN-based chaotic generator in FPGA,” Optik, vol. 127, no. 13, pp. 5500–
5505, 2016.

[190] W. S. Sayed, M. M. Henein, S. K. Abd-El-Hafiz, and A. G. Radwan, “General-
ized dynamic switched synchronization between combinations of fractional-order
chaotic systems,” Complexity, vol. 2017, 2017.

[191] A. G. Radwan, K. Moaddy, and S. Momani, “Stability and non-standard finite
difference method of the generalized Chua’s circuit,” Computers & Mathematics
with Applications, vol. 62, no. 3, pp. 961–970, 2011.

130

https://www.prosoundtraining.com/2010/03/10/a-downloadable-speech-track-the-royer-track/
https://www.prosoundtraining.com/2010/03/10/a-downloadable-speech-track-the-royer-track/


[192] A. G. Radwan, K. Moaddy, K. N. Salama, S. Momani, and I. Hashim, “Control and
switching synchronization of fractional order chaotic systems using active control
technique,” Journal of advanced research, vol. 5, no. 1, pp. 125–132, 2014.

[193] J.-M. Muller, Elementary functions: Algorithms and Implementations. Springer.
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 ممخصال

 :مثل المختمفة اليندسية لتطبيقاتفي العديد من ا مطموبة فييا التحكم يمكن والتي المعممة الفوضوية نظمالإن 
 الطبيعية الظواىر ونمذجة ،الحركة وتخطيط ،الفوضى عمى القائمة للاتصالات العشوائيةشبو  الأرقام توليد

ىذه  مزايا إبراز مع فييا، والتحكم ويةالفوضالنظم  لتعميمطرق  عدة عرض يتم ،رسالةال ىذه في. البشري  السموكو 
   .ياعمم حدود ومناقشة الطرق 

 

 معممة منفصمة خرائط استخدام خلال من معدل تغير التسارع عتمدة عمىالم الجاذبات في ىالأول طريقةال تحكمت
أنظمة التشفير  عمى المختمفة التنفيذ عوامل تأثير عن الكشف تمي كما .خطية غير دوالك إضافية تغيراتم مع

 بين التطابق عدم إشارات استخدام أيضا   يتم. لقابمية إعادة النتائج وضع توصياتيتم و  التقميدية الفوضوية
فيي  الثانية الطريقةأما عن . والتشفير العشوائيةشبو  الأرقام توليد تطبيقات في بوعي قميلا   المختمفة التطبيقات

 والانعكاس، ،تدريجالإمكانيات  الأبعاد ثنائي ترابطيال يلالتحو  وفري حيث ، فوضويةال نظممن ال لأي مناسبة
. المحدودة أو الفردية الجاذبات ذات التقميدية نظمال من المفائف ةمتعددالجاذبات  توليدو  ،نقلوال والقص، والدوران،

 التعميم ودور الجيدة التشفير خصائص صحة من لمتحقق تشفير تطبيق تقديم تميبناء عمى الطريقة الثانية، 
بعد ذلك، يتم تقديم . الغاشمة القوة ىجمات درة عمى صدالق وبالتالي ،التشفير مفتاح مساحة تعزيز في المقترح

التي  مخفية بجاذبات الكسري  الترتيب نظم في والتحكم الأبعاد ثلاثية لاتيالتحو  يشمل امتداد لمطريقة الثانية
 المسار في المستقل غير التحكم طبيقت يتم ،يل الترابطيالتحو  باستخدام. صعبةال خصائصال تتميز ببعض

 .الديناميكية تغيراتالم خلال من ي اختيار  سطح أو منحنى أو خط ىيئة عمى  موزعة الإنتاج ةذاتي جاذبات وتوليد
 

ا المستوي  في الدوران يتم الثانية بحيث نقدم في بقية الرسالة تعديل طفيف عمى الطريقة  لتدريج.وا نقلبال متبوع 
 عمى قادرة لتكون  بالفعل عريض جاذبية حوض ذات المفائف متعددة نظم عمى ىذه الطريقة المعدلة تطبيق ويتم

 نظامثنائي الأبعاد ل دورانال اعتمادا عمى الأحرف متعدد فوضوي  كاتب تصميم تمي. بأكمميا المساحة تغطية
ا يتم. الإزاحة وتعزيز تدرجال في التحكم معقي المستوى  Vحرف  شكل عمىفوضوي  فوضوي  جاذب تقديم أيض 

ويتم  والصور الكلام تشفير تطبيقات في بنجاح. كذلك يستخدم قابل لمدوران والنقل لمفائفا متعدد شبكيكسري 
نظام  اقتراح تمي ، لذلك وفق ا(. FPGA) البوابات المنطقية القابمة لمبرمجة ةمصفوف عمى تجريبيا   منو التحقق

 واحد ومن واحد إلى واحد منتصال للا مناسب وىو التبادلية، المزامنة عمى يعتمد منالآ تصالمعمم جديد للا
 زاويةعن طريق تعديل  الصور تشفيرتفعيمو في  تمكما ي. الأدوار وتبديل المتبادل البيني والاتصال متعدد إلى

مولد عد ذلك كب النظام نفس يستخدمالصورة قبل التشفير ثم  باستخدام الكسرية الدرجة مني فوضو ال نظامل الدوران
 الأداء اختبارات التشفير المقدم اجتازوقد  عناصر الصورة من أجل التشفير، استبدال في العشوائيةشبو  لأرقامل

 تقديم يتم. مكاني ا تدور فوضوية جاذبات ليصبح ثلاثي الأبعاد مع تقديم الدوران تحويل يمتد. بنجاح القياسية
 عمى والقائمة الرباعية، عمى والقائمة المصفوفة،قائمة عمى ال: الأبعاد ثلاثي لدورانا طرق مختمفة لتنفيذ ثلاث

ا تجريبي ا المصفوفة عمى القائم التنفيذ من التحقق يتم. القص  لمنظم أولية نتائج في النياية يتم عرض .أيض 
 .لمتعميم والتحكم ثالثةكطريقة  والكروية القطبية الإحداثيات في الفوضوية
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