

PSEUDO ROTATED NETS: WIDENING CNN VIA

KERNELS PSEUDO ROTATION

By

Mohsen Raafat Abdel-Atty Sayed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

 Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2022

PSEUDO ROTATED NETS: WIDENING CNN VIA

KERNELS PSEUDO ROTATION

By

Mohsen Raafat Abdel-Atty Sayed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

 Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Mohsen Abdel-Razik Rashwan

……………………………….

 Prof. Dr. Hossam Aly Hassan Fahmy

……………………………….

Professor

Electronics and Communication Engineering

Faculty of Engineering, Cairo University

 Professor

Electronics and Communication Engineering

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2022

PSEUDO ROTATED NETS: WIDENING CNN VIA

KERNELS PSEUDO ROTATION

By

Mohsen Raafat Abdel-Atty Sayed

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

 Electronics and Communications Engineering

Approved by the

Examining Committee

Prof. Dr. Mohsen Abdel-Razik Rashwan, Thesis Main Advisor

Prof. Dr. Hossam Aly Hassan Fahmy, Advisor

Dr. Omar Ahmed Nasr, Internal Examiner

Prof. Dr. Khaled Mostafa External Examiner
Professor at Faculty of Computers and Information, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2022

Engineer’s Name: Mohsen Raafat Abdel-Atty Sayed

Date of Birth: 22/02/1992

Nationality: Egyptian

E-mail: moh_raafat@hotmail.com

Phone: (+02) 011-20200776

Address: 68-Abou ElMahasen ElShazely,Agouza,Giza

Registration

Date:

01/10/2015

Awarding Date: 2022

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

 Prof. Dr. Mohsen Abdel-Razik Rashwan

Prof. Dr. Hossam Aly Hassan Fahmy

Examiners:

 Prof. Dr. Mohsen Abdel-Razik Rashwan (Thesis main advisor)

 Prof. Dr, Hossam Aly Hassan Fahmy (advisor)

 Dr. Omar Ahmed Nasr (Internal examiner)

Prof. Dr. Khaled Mostafa (External examiner)
Professor at Faculty of Computers and Information, Cairo University

Title of Thesis:

Pseudo Rotated Nets: Widening CNN Via Kernels Pseudo Rotation

Key Words: (must be 5 words only)
Machine Learning; Convolutional Neural Network; Image classification; Pseudo

Rotated Kernels; Pooling Kernels.

Summary: (not more than 150 word and the summary must be in the same

page)

This work aims to enhance the CNN performance through exploring the extension of

its width dimension. The proposed idea is to pseudo rotate the convolutional kernels

creating multiple variants from the originally trained one where each variant is

pseudo rotated with a different rotation angle. Moreover, combing the pseudo rotated

kernels with the pooling ones would make the network steps more towards unifying

multiple of the affine transformation properties within it. This can also be viewed as

if the network had been capable to self-augment the inner feature maps. To

demonstrate the effectiveness of these ideas five networks were proposed that are

based on two different architectures ResNet and VGG whereas they are generalized

to be tested on two different data sets CIFAR-10 and CIFAR-100.

mailto:moh_raafat@hotmail.com

i

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has

been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have

cited them in the references section.

Name: Mohsen Raafat Abdel-Atty Sayed Date: .. /.. /…

Signature:

ii

Dedication

To my family especially my Mother who encouraged me to continue this journey to the

end.

iii

Acknowledgments

All praise and glory to almighty ALLAH for all the blesses, guidance and

opportunities given through this thesis journey. Throughout this journey many people

had shown help and support so I would like to express my deepest thanks and

appreciation for all of them. I would like to dedicate a special appreciation and gratitude

to my advisors Prof. Dr. Mohsen Abdel-Razik Rashwan and Prof. Dr. Hossam A. H.

Fahmy for their patience, guidance, inspiration and encouragement. Without their help

and support this work won’t have been possible. Lastly, I would like to thank my beloved

family for their compassion, support, love and understanding.

iv

Table of Contents

DISCLAIMER .. I

DEDICATION ... II

ACKNOWLEDGMENTS .. III

TABLE OF CONTENTS ...IV

LIST OF TABLES ... VIII

LIST OF FIGURES ...IX

NOMENCLATURE ... XII

ABSTRACT .. XIII

CHAPTER 1 : INTRODUCTION .. 1

1.1. DATA EXPLOSION ERA ... 1

1.2. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 2

1.3. MACHINE LEARNING ALGORITHMS ... 3

1.3.1. Supervised Learning ... 4

1.3.2. Unsupervised Learning ... 4

1.3.3. Semi Supervised Learning .. 4

1.3.4. Reinforcement Learning ... 4

1.4. MACHINE LEARNING BRAIN INSPIRED COMPUTATION 5

1.4.1. Neural Networks ... 5

1.4.2. Spiking Neural Networks .. 7

1.5. MACHINE LEARNING STACK .. 8

1.5.1. Application Layer ... 9

1.5.2. Architecture Layer .. 9

1.5.3. Software Layer .. 9

1.5.4. Hardware Layer... 9

1.5.5. Benchmarking and Comparison Layer .. 10

1.6. ORGANIZATION OF THE THESIS ... 10

CHAPTER 2 : MACHINE LEARNING STACK LITERATURE REVIEW 11

2.1. APPLICATION LAYER ... 11

2.1.1. Computer Vision ... 11
2.1.1.1. General Overview .. 11
2.1.1.2. Image Classification ... 11
2.1.1.3. Object detection ... 13
2.1.1.4. Action and Activity Recognition.. 14

2.1.2. Speech Recognition... 15
2.1.2.1. General Overview .. 15
2.1.2.2. Historical Background ... 15
2.1.2.3. DNN State of the art architectures ... 16

2.1.2.3.1. Connectionist Temporal Classification .. 16
2.1.2.3.2. RNN transducer .. 16

v

2.1.2.3.3. Attention based models... 17
2.1.2.3.4. Hybrid CNN-RNN architectures .. 17

2.1.2.4. Popular Data Sets ... 17

2.2. ARCHITECTURE LAYER .. 18

2.2.1. Multi-Layer Perceptron ... 18

2.2.2. Deep Neural Networks .. 19
2.2.2.1. General Overview .. 19
2.2.2.2. Life cycle phases .. 20

2.2.2.2.1. Training Phase ... 20
2.2.2.2.2. Inference Phase .. 21

2.2.3. Convolutional Neural Networks ... 22
2.2.3.1. General Overview .. 22
2.2.3.2. Key features ... 22

2.2.3.2.1. Receptive field .. 22
2.2.3.2.2. Feature map ... 23
2.2.3.2.3. Channel pooling ... 24
2.2.3.2.4. Shared Weights .. 24

2.2.3.3. Typical CNN Architecture ... 25
2.2.3.3.1. Convolutional layer .. 26
2.2.3.3.2. Pooling layer .. 26
2.2.3.3.3. Fully connected layer ... 27
2.2.3.3.4. Normalization layer ... 27

2.2.4. Recurrent Neural Networks .. 27
2.2.4.1. General Overview .. 27
2.2.4.2. Key features ... 28

2.2.4.2.1. Memory effect ... 28
2.2.4.2.2. Arbitrary input and output length... 28
2.2.4.2.3. Weight Sharing ... 29

2.2.4.3. RNN training .. 29
2.2.4.4. RNN State of the art architectures .. 30

2.2.4.4.1. LSTM ... 30
2.2.4.4.2. GRU ... 32

2.3. SOFTWARE LAYER ... 32

2.3.1. Network Model ... 32
2.3.1.1. General Overview .. 32
2.3.1.2. Reduced precision .. 33

2.3.1.2.1. General Overview .. 33
2.3.1.2.2. Quantization methods ... 34
2.3.1.2.2.1. Uniform quantization .. 34
2.3.1.2.2.2. Non-uniform quantization ... 35
2.3.1.2.2.2.1. Log function quantization ... 35
2.3.1.2.2.2.2. Power of two quantization .. 35
2.3.1.2.2.2.3. Learned function quantization .. 35

2.3.1.3. Network pruning .. 36
2.3.1.3.1. General Overview .. 36
2.3.1.3.2. Area of focus .. 36
2.3.1.3.2.1. Storing Sparse weights .. 36
2.3.1.3.2.2. Structured pruning .. 38

2.3.1.4. Activation statistics .. 38
2.3.1.5. Low rank factorization ... 39
2.3.1.6. Knowledge distillation ... 39
2.3.1.7. Mathematical transformations .. 40

2.3.1.7.1. Fast Fourier Transform ... 40
2.3.1.7.2. Winograd’s algorithm .. 41
2.3.1.7.3. Strassen’s algorithm ... 41
2.3.1.7.4. Structural matrix .. 41

vi

2.3.2. Network Implementation .. 42
2.3.2.1. General Overview .. 42
2.3.2.2. Low level languages .. 42

2.3.2.2.1. Python .. 42
2.3.2.2.2. Matlab .. 42
2.3.2.2.3. CuDNN ... 42

2.3.2.3. High level framework .. 42
2.3.2.3.1. Caffe ... 42
2.3.2.3.2. Tensor flow ... 42
2.3.2.3.3. Torch .. 43
2.3.2.3.4. Pytorch ... 43
2.3.2.3.5. Theano.. 43
2.3.2.3.6. CNTK ... 43
2.3.2.3.7. Keras .. 43

CHAPTER 3 : CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES

REVIEW ... 44

3.1. LENET-5 .. 45

3.2. ALEXNET ... 45

3.3. ZFNET ... 46

3.4. OVERFEAT ... 46

3.5. VGG .. 46

3.6. NIN .. 49

3.7. GOOGLENET .. 49

3.7.1. First version .. 49

3.7.2. Second version .. 51

3.7.3. Third version ... 51

3.7.4. Fourth version ... 53

3.8. RESNET ... 53

3.8.1. First version .. 54

3.8.2. Second version .. 56

3.9. CONCLUSION .. 57

CHAPTER 4 : EXPLORING CONVOLUTIONAL NEURAL NETWORKS

DIFFERENT LAYERS.. 59

4.1. BASIC SETUP .. 59

4.2. BASELINE NETWORK .. 59

4.3. CONVOLUTIONAL LAYER MODIFICATION ... 60

4.3.1. Pseudo Rotated Kernels .. 60

4.3.2. Kernels Mathematical derivations... 66

4.4. POOLING LAYER MODIFICATION ... 72

CHAPTER 5 : PROPOSED PSEUDO ROTATED NETS 74

5.1. RESNET BASED NETWORKS ... 74

5.1.1. Pseudo Rotated ResNet version 1 ... 78

5.1.2. Pseudo Rotated ResNet version 2 ... 82

5.1.3. Pseudo Rotated ResNet version 3 ... 85

5.2. VGG BASED NETWORKS .. 91

5.2.1. Pseudo Rotated VGG version 1 .. 93

vii

5.2.2. Pseudo Rotated VGG version 2 .. 96

CHAPTER 6 : PERFORMANCE COMPARISON AND BENCHMARKING 99

6.1. CIFAR-10 COMPARISON ... 99

6.1.1. ResNet based Architectures .. 99

6.1.2. VGG based Architectures ... 100

6.1.3. Benchmarking ... 100

6.2. CIFAR-100 COMPARISON ... 101

6.2.1. ResNet based architectures ... 101

6.2.2. Benchmarking ... 101

CHAPTER 7 : DISCUSSION AND CONCLUSIONS.. 102

7.1. SUMMARY OF THE WORK ... 102

7.2. FUTURE WORK ... 102

REFERENCES ... 104

APPENDIX A: KERAS FLOW .. 112

APPENDIX B: COMPUTING PLATFORMS .. 115

viii

List of Tables

Table 1 : Comparison between Baseline network and its pseudo rotated modified

versions ... 65
Table 2 : Comparison between Baseline network and its modified versions to account

for derived kernels between every two successive kernels .. 68
Table 3 : Comparison between Baseline network and its modified version to account for

increasing the size of the derived kernels between every two successive kernels to 5x5

 .. 69
Table 4 : Comparison between Baseline network and its modified version to account for

increasing window of derived kernels to be four and eight successive kernels 71

Table 5 : Comparison between Baseline network and its modified version to account for

using median layer .. 73
Table 6 : Comparison between ResNet-110 and its modified pseudo rotated versions . 78
Table 7 : Comparison between ResNet-56 and its modified pseudo rotated versions ... 78
Table 8 : Comparison between ResNet-20, ResNet-56 and Pseudo Rotated ResNet

version 1 ... 81

Table 9 : Comparison between ResNet-20, ResNet-56, Pseudo Rotated ResNet version

1 and version 2.. 85

Table 10 : Comparison between ResNet-20, ResNet56, Pseudo Rotated ResNet

versions 1 and 2 as well as Pseudo Rotated ResNet versions 2 with maximum pooling

 .. 88

Table 11 : Comparison between ResNet-20, ResNet56 and different Pseudo Rotated

ResNet versions .. 91

Table 12 : Comparison between modified VGG-11 and Pseudo Rotated VGG version 1

 .. 96

Table 13 : Comparison between modified VGG-11 and Pseudo Rotated VGG versions

 .. 96

Table 14 : Comparing CIFAR-10 Pseudo Rotated ResNet versions with different

ResNet available in the literature ... 100
Table 15 : Comparing CIFAR-10 Pseudo Rotated VGG versions with different VGG

available in the literature .. 100

Table 16 : Comparing CIFAR-100 Pseudo Rotated ResNet versions with different

ResNets available in the literature .. 101
Table 17 : Different platforms computing capability and their pricing 116
Table 18 : key advantage of each platform and when to be used 116

ix

List of Figures

Figure 1 : The number of ML papers posted on arXiv.org per year from [13] 2

Figure 2 : Venn diagram between AI and its ML sub-domains 2
Figure 3 : ML different learning styles... 3
Figure 4 : Brain biological structure from [5] .. 5
Figure 5 : Simple NN structure with one Hidden Layer .. 6
Figure 6 : Simple SNN ... 7

Figure 7 : ML Design Stack Overview... 8
Figure 8 : MNIST data set examples .. 12
Figure 9 : (a) CIFAR-10 data set examples (b) CIFAR-100 data set examples 13

Figure 10 : ImageNet data set examples ... 13
Figure 11 : Architecture Layer two dimensional illustration ... 18
Figure 12 : MLP Abstract network ... 19
Figure 13 : DNN abstract network forward and backward passes 21
Figure 14 : Receptive field for two sliding windows ... 23

Figure 15 : (a) Feature map with single channel (b) Feature map with C channels 23

Figure 16 : Feature map before and after channel pooling where n is the pooling scaling

value ... 24

Figure 17 :Feature map with four channels where the same kernel is applied across the

entire map to generate an output feature map with single channel 25
Figure 18 : Typical Modern CNN different layer structure ... 25

Figure 19 : Example for the convolutional layer where an input feature map with 3 26
Figure 20 : Feature map with a single channel is reduced through average and

maximum pooling with striding by 2 ... 27
Figure 21 : Recurrent connection and its unfolding equivalence 28

Figure 22 : Different RNN mappings with their target mapping (a) image captioning

one to many mapping (b) sentiment analysis many to one mapping (c) machine

translation many to many mapping (d) language modelling many to many mapping ... 29
Figure 23 : Abstract LSTM cell .. 30
Figure 24 : Unidirectional unfolded RNN example with three LSTM cells, N inputs,

two hidden layers and one output layer .. 31

Figure 25 : Bidirectional unfolded RNN example with four LSTM cells, N inputs, one

hidden layer and one output layer .. 31
Figure 26 : Abstract GRU cell .. 32
Figure 27 : Compressed sparse row format during matrix multiplication 37
Figure 28 : Compressed sparse column format during matrix multiplication 37

Figure 29 : ReLU function ... 38
Figure 30 : Knowledge distillation overview ... 40

Figure 31 : FFT mathematical transformation .. 41
Figure 32 : Structural matrix using a relaxed Toeplitz form .. 41
Figure 33 : ImageNet top-5 error accuracy versus different networks progress over

years .. 44
Figure 34 : LeNet-5 architecture from [64] .. 45

Figure 35 : AlexNet architecture from [65] .. 46
Figure 36 : 5x5 kernel decomposed into two 3x3 kernels .. 47
Figure 37 : (a) VGG-11 (b) VGG-16 (c) VGG-19 ... 48

Figure 38 : Naïve Inception module ... 50

x

Figure 39 : Inception module with dimension reduction .. 50

Figure 40 : Decomposing 3x3 kernel into asymmetric kernels 52
Figure 41 : New Inception module with nx1 and 1xn factorized kernels 52
Figure 42 : Inception module accompanied by residual connection 53
Figure 43 : Shortcut module ... 54

Figure 44 : Bottleneck module ... 55
Figure 45 : (a) Modified shortcut module (b) Modified bottleneck module 56
Figure 46 : Different networks compared according to their size, number of operations

and Top-1 accuracy from [106] .. 57
Figure 47 : Baseline network .. 60

Figure 48 : Basic convolutional operation .. 60
Figure 49 : (a) Zero degree rotated kernel (b) 180 degree rotated kernel 61
Figure 50 : Modification to baseline network to account for the 180 degree rotated

kernel .. 61
Figure 51 : Pairs of 90 degree rotated kernels starting from(a) a zero one to (d) 270

degree rotated kernel .. 62
Figure 52 : Modification to baseline network to account for the 90 degree rotated kernel

 .. 62
Figure 53 : Pairs of pseudo rotated 45 degree kernels starting from(a) a zero one to (h)

315 degree rotated kernel ... 63
Figure 54 : Modification to baseline network to account for the 45 degree rotated kernel

 .. 63
Figure 55 : Pairs of pseudo rotated 15 degree kernels starting from(a) a zero one to (x)

345 degree rotated kernel ... 64

Figure 56 : Modification to baseline network to account for the 15 degree rotated kernel

 .. 64

Figure 57 : Pseudo rotated kernels circle design space .. 65
Figure 58 : Adding a derived kernel between every two successive kernels 67

Figure 59 : Modification to baseline network to account for the kernels derived from

every two successive ones .. 67

Figure 60 : Adding a derived kernel between every two successive kernels with an

increased size to 5x5 ... 68
Figure 61 : Modification to baseline network to account for increasing the derived

kernels from every two successive kernels size to 5x5 .. 69
Figure 62 : Adding a derived kernel between every four successive kernels 70

Figure 63 : Adding a derived kernel between every eight successive kernels 70
Figure 64 : Modification to baseline network to account for the kernels derived from

every four successive ones ... 70

Figure 65 : Modification to baseline network to account for the kernels derived from

every eight successive ones .. 71
Figure 66 : Median Layer ... 72
Figure 67 : Modification of the base line network to use the median layer 73

Figure 68 : Bottleneck modification for pseudo rotated kernels 74
Figure 69 : Bottleneck modification for 180 degree rotated kernels 75
Figure 70 : Bottleneck modification for 90 degree rotated kernels 76
Figure 71 : Bottleneck modification for pseudo 45 degree rotated kernels 76
Figure 72 : Bottleneck modification for pseudo 15 degree rotated kernels 77

Figure 73 : Pseudo Rotated ResNet version 1 .. 80
Figure 74 : Pseudo 45 degree rotated kernels bottleneck with spatial dropout 81

Figure 75 : Pseudo 45 degree without 90 corners .. 82

file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587534

xi

Figure 76 : Pseudo 45 degree rotated kernels without 90 corners bottleneck 83

Figure 77 : Pseudo Rotated ResNet version 2 .. 84
Figure 78 : Direct apply of pooling layer within the first layer Pseudo Rotated version 2

 .. 86
Figure 79 : Pseudo 45 degree rotated kernels without 90 corners bottleneck with an

additional maximum pooling kernels ... 87
Figure 80: Pseudo Rotated ResNet version 2 with additional maximum pooling kernels

modification .. 88
Figure 81 : Pseudo 45 degree rotated kernels without 90 corners bottleneck with an

additional maximum and average pooling kernels ... 89

Figure 82 : Pseudo Rotated ResNet version 3 .. 90
Figure 83 : Modified Baseline VGG-11 Part A.. 92
Figure 84 : Modified Baseline VGG-11 Part B .. 93

Figure 85 : Pseudo Rotated VGG version 1 Part A .. 94
Figure 86 : Pseudo Rotated VGG version 1 Part B .. 95
Figure 87 : Pseudo Rotated VGG version 2 Part B .. 97
Figure 88 : Pseudo Rotated VGG version 2 Part A .. 97

Figure 89 : Pseudo Rotated VGG version 2 Part C .. 98
Figure 90 : Keras levels structure ... 112

Figure 91 : Keras flow .. 113
Figure 92 : keras Image data generator class directory structure 114

file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587539
file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587546
file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587554
file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587555

xii

Nomenclature

Abbreviation Description

AI Artificial Intelligence

AR Augmented Reality

API Application Programming Interface

BM Boltzmann Machine

BN Batch Normalization

CNN Convolutional Neural Network

CPU Central Processing Unit

CTC Connectionist Temporal Classification

DARPA Defense Advanced Research Projects Agency

DRAM Data Random Memory Access

DBM Deep Boltzmann Machine

DNN Deep Neural Network

FFT Fast Fourier Transform

FCL Fully Connected Layer

GRU Gated Recurrent Unit

GMM Gaussian Mixture Model

GPU Graphical Processing Unit

HMM Hidden Markov Model

IoT Interne of Things

LCN Local Contrast Normalization

LRN Local Response Normalization

LSTM Long Short Term Memory

LTD Long Term Depression

LTP Long Term Potentiation

MFCCs Mel Frequency Cepstral Coefficients

ML Machine Learning

MLP Multi-Layer Perceptron

CuDNN NVIDIA CUDA Deep Neural Network library

NLP Natural Language Processing

NN Neural Network

NoC Network on Chip

SNN Spiking Neural Network

STDP Spike Timing Dependent Plasticity

TPU Tensor Processing Unit

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

TFLOP Trillion Floating Point Operation Per Second

VR Virtual Reality

.

xiii

Abstract

In the Data explosion era, terminology like “Big Data” had been commonly used as

the world had been connected and digitalized through the wide availability of personal

computing platforms with their internet connection, rapid spread of the mobile platforms,

popularity of the social media applications and the start of Internet of Things platforms

paradigm accompanied by the invention of smart devices that are almost utilized in all

aspects of today life from wearable devices to kitchen appliances. All of the

aforementioned, had resulted in a daily generation of huge amount of digital data such as

documents, videos, image and speech. These type of data are distinctly characterized by

their personal flavor gaining the attraction to use the Machine learning methods to extract

useful insights, predictions and information from them. Moreover, around 70% of these

data are images and videos increasing the requirement to enhance the computer vision

tasks. Convolutional Neural Network which is a sub domain of Machine learning had

been the key player in today enhanced computer vision tasks. Thanks to its distinct

features such as weight sharing, feature map, channel pooling and receptive field.

This work explores boosting the Convolutional Neural Network performance by

means of width extension. This is done through two main ideas. Firstly, pseudo rotated

kernels where the originally trained kernels are rotated with different pseudo rotation

angles to generate multiple variants from them. Secondly to attach the pooling kernels to

the convolutional layer. This allowed the network to approach several affine

transformation properties. Clearly, it boosts the translation and rotation property by

providing a set of arbitrary chosen pseudo rotated kernels while it promotes the scaling

property through the arbitrary reduction of grid size. Moreover, all these kernels

combined together provide the network with a capability to scale and rotate the feature

map within each convolutional layer increasing its translation invariance property

robustness whereas the network had some built-in self-augmentation methods. To

demonstrate the performance improvement five networks were proposed based on two

different architectures where three of them are based on ResNet while the remaining two

are based on VGG. As well as, challenging their performance impact by testing them on

two different data sets the CIFAR-10 and CIFAR-100.

1

Chapter 1 : Introduction

1.1. Data Explosion Era

At the start of Big Data era, wide availability of personal computing platforms

connected to the internet had led to a digitalized world where huge amount of digital data

such as documents, videos, image and speech were generated daily.

The explosion of data era had extended more with the inventing of the mobile

platforms and the rising of the social media applications which rapidly had gained

popularity among people all over the world leading to the generation of more digital data

and information with a special personalized nature. For instance, according to [14]

Facebook generates over 10 Petabyte (PB) log data per month and Taobao.com, the

largest online retailer in China, generates tens of Terabyte (TB) data every day.

Moreover, the start of the next wave of connecting and digitalizing the world through

5G communication technologies and Internet of Things (IoT) platforms allowed the

invention of edge computing devices which are sensor rich based devices with a high

speed internet connectivity giving it the capability to exchange information with

powerful computing servers (i.e. data centers). Hence, generation more and more data

with a personalized flavor.

All the aforementioned had driven the need of statistical and analytical solutions to

be able to solve the learning problem aroused from these vast data to extract useful insight

and knowledge form them

Conventional approaches which relies on domain experts to express the problems

analytically, transform the raw data into useful features and representation then hand craft

the solution had failed to deal with this tremendous growth in the scale of data with its

personalized nature as it requires an explicit knowledge about the given domain limiting

its ability to solve more complex problems in which the features and knowledge

representation can’t be explicitly expressed as they are implicitly inherited with in the

raw data.

Meanwhile, Artificial Intelligence(AI) solutions especially its Machine Learning

(ML) sub-domain had provided a leap over these tremendous data where it allows

automatic features and information extraction as well as the acquisition of useful insights,

predictions and decisions from this huge amount of data without the need of formally

expressing the features nor the representation resulting in approaching more complex

problems such as medical diagnosis and speech transcription.

ML significant value appears in its ability to overcome the personalized nature of

how modern data are generated meanwhile maintaining the privacy of these data through

preprocessing to remove any personal labels.

This edge of ML over the conventional solutions regarding its ability to deal with

the tremendous growth in the scale of data and information with its associated learning

problem had developed a prominence demand on ML. This demand had resulted in a

respond from the ML community which can be shown in Figure 1 where more than 50

ML papers appear daily on arXiv.org alone and their rate of growth is almost

doubling every two years which can be compared to Moore’s Law.

2

Figure 1 : The number of ML papers posted on arXiv.org per year from [13]

1.2. Artificial Intelligence and Machine Learning

Learning problem according to [1] can be described as the problem of executing a

task and optimizing its performance metric through training experience

 Meanwhile, Representation Learning according to [2] can be viewed as the set of

methods in which the raw data is fed to the machine then the machine can automatically

distinguish all the features and representation required for acquiring the useful

knowledge needed for the next action whether it was detection, classification or any other

tasks

Artificial Intelligence (AI) according to [3] is any agent device that can become

conscious about its surrounding environment and can take the actions that maximizes its

ability to achieve its goals. The popularity of AI among the scientist and engineers is

increasing due the achievements and the breakthrough performance driven from its

Machine Learning (ML) sub-domain. A Venn diagram to illustrate the relation between

AI and its ML sub-domains can be shown in Figure 2.

Figure 2 : Venn diagram between AI and its ML sub-domains

ML was first quoted by Arthur Samuel in 1959 as giving the ability to the machine

to learn without being explicitly programmed to do that consequently allowing the

3

creation of programs to do some activities through leaning and training experience, on

contrast to hand crafted programs which their activities and behaviors are defined in a

hard coded style. ML enables the emulation of how humans learn, adapt and make

decisions. This lead to the designing of programs that has the ability to learn the required

actions based on the knowledge learnt form from raw data directly. ML can be seen as

programing by example where previous experience shall contribute to the gained

knowledge affecting the future actions.

ML ability to solve a problem with a high performance generally depends on two

factors: the data set availability compared to the problem and the computational

infrastructure available

The complexity of the problem with its inherited required features to be learnt affects

the amount of data required and the rule of thumb here is that as the amount of data

increases, the ability to capture more patterns and features automatically increase and

hence the quality of results increase proportionally.

On the other hand, enormous data set shall require a giant network that shall

essentially come with a huge computational cost penalty that may limit the ability to train

it if the required hardware infrastructure isn’t available. Nowadays, training a modern

network may require two high end GPUs that are capable to perform multiple TFLOPS

operations.

1.3. Machine Learning Algorithms

Generally, ML algorithms according to [1,2,16] can be divided as shown in Figure

3 into four categories: Supervised Learning, Unsupervised Learning, Semi Supervised

Learning and Reinforcement Learning

Figure 3 : ML different learning styles

4

1.3.1. Supervised Learning

Supervised learning methods requires the availability of a labeled data set in which

each input is tagged with its desired output. The objective is then to feed the machine

with the input data and train its prediction to match the reference.

The learning is described as supervised since there is a known reference output that

acts as a supervisory guidance for the whole training assisting in the reduction of the gap

between the predicted output from the network during training and the actual one.

This type of learning can be divided into two main categories known as Regression

and Classification. The first tries to identify the most likely function that can fit all the

data within the data set, while the latter attempts to find the best fit class for the data from

a set of given classes.

1.3.2. Unsupervised Learning

Unsupervised learning doesn’t require a labeled data set instead it is fed with data

without explicit labelling or desired output. Thus, there is no right or wrong outputs

instead it is subjective to the application itself.

The objective is to find common statistical and structural properties of data through

automatic extraction of the underlying features and patterns enabling their cluster into

groups based on the correlated features extracted during training.

There are three main categories in this type of learning which are clustering,

dimensionality reduction and anomaly detection.

1.3.3. Semi Supervised Learning

Semi supervised learning includes a mixture from supervised and unsupervised

learning where both labeled and unlabeled data are used during the training. Usually,

used when the amount of labeled data is small and hence, extracting patterns and features

from them isn’t satisfying, meanwhile labeling the unlabeled data requires an extensive

time and the availability of domain experts.

The objective is to augment the unlabeled data with the labeled one through the

creation of the data cluster using the unlabeled data and using the labeled data to identify

the clusters. There are three main categories in this type of learning based on the

assumption used during the training which are smoothness, cluster and manifold.

1.3.4. Reinforcement Learning

Reinforcement learning is different from all the aforementioned in which it is defined

in the terms of having an agent that tries on its own to interact with the surrounding

environment based on trial and error approach with a cumulative reward that guide the

agent to learn the right decision on its own instead of being explicitly trained. The agent

shall have two states the start and the end. Between the two states there is different routes

and actions that may cause success or failure to execute the task and reach the end state.

Hence, the agent receives a reward when moving towards the end in the optimal route

while it doesn’t receive anything upon failure.

The objective is then to achieve the target and move from the start to the end state

with maximum cumulative reward. It is an iterative method that depends on the past

feedback and the ability to span new approaches to reach the goal.

5

1.4. Machine Learning Brain Inspired Computation

Brain inspired computation is a sub-domain of ML as shown in Figure 2 that is trying

to mimic some basic operations of the brain according to the understanding of how the

brain operates nowadays, with the objective to emulate the brain in some processing

aspects rather than creating a human brain.

The current biological structure and characterization of the brain can be shown in

Figure 4.

Figure 4 : Brain biological structure from [5]

The brain is composed of a neuron which is considered to be the main computational

element. This neuron is connected with other neurons through dendrites and axons. Both

dendrite and axon can be referred to as the activation of the neuron as dendrites allow

input signals to enter the neuron meanwhile the axons allow the signals to exit out of it.

When a dendrite and axon are connected together they form a synapse. A key feature of

the synapse it allows scaling the signal associated with it. This scaling can be viewed as

a weight value and the brain is believed to be able to learn through the ability to change

these weights in respond to different input stimulus.

The way of brain learning process is the key inspiration of the ML Brain inspired

computation where it is based on the continues adjustment of the weights in response to

the training stimulus while its infrastructure referred to the number of neurons and the

connection among them remains fixed which maps to the network structure.

The Brain inspired computations can be divided into Neural Network (NN) and

Spiking Network

1.4.1. Neural Networks

Neural Networks(NN) are inspired from neuroscience where it tries to make analogy

with the biological structure of the brain where the computations take part within the

neuron of the network. These computations can be viewed as a neuron firing to generate

its output by applying a nonlinear function on a weighted sum of the inputs with an

optional addition of a bias. With the synapses being modeled through the adjustable

weight associated with each input signal allowing its scaling during the training

experience.

The computational flow of the NN is usually visualized using a directed acyclic

graph (DAG) [4,12,21,23] as shown in Figure 5.

6

Figure 5 : Simple NN structure with one Hidden Layer

The vertex illustrates the neuron, the directed edge demonstrates the synaptic

connection between the neurons and hierarchical structure of the neurons describes the

organization of the network.

This multi-layer hierarchy allows the first few layers to act as low feature extractor

(i.e. extracting the edges) while enabling the last few layers to represent the high level

feature (i.e. representing the complex contour) and in between allows the processing of

the extracted features to their high level representation.

The computational flow starts with the neurons of the first layer noted as input layer

accept the input values, applying the nonlinear function and propagating the outputs to

the middle layers. The middle layers are noted as hidden layers and based on the network

structure whether the hidden layer has a depth of a few layers it can be noted as a Shallow

Neural Network or its depth has many layers it can be noted as Deep Neural Networks

(DNN). Consequently, the hidden layer neurons accept the inputs from the input layer

and perform the same operation from applying the nonlinear function and propagating its

outputs to the output layer which shall be the final output of the network.

NN shall comprises two phases along its usage life time: Training phase and

Inference phase.

 The training phase is the learning phase in which network development takes place

from defining the type of network, number of layers and continuously manipulating the

weights to meet the required performance on a given application.

On the other hand, inference phase is the prediction phase in which the network is

deployed in production and used in a feed forward manner.

The high popularity of NN nowadays can be argued to the superior performance of

its DNN family of networks especially the Multi-Layer Perceptron (MLP), Convolutional

Neural Network(CNN) and Recurrent Neural Networks(RNN) where these networks

were able to suppress the human level performance on various tasks such as ImageNet

recognition [29] and Atari 2600 video games [113]. Furthermore, these types of networks

represent 95% of NN inference workload in google datacenters according to [12].

7

1.4.2. Spiking Neural Networks

Spiking Neural Networks (SNN) try to pursuit a biological brain inspired paradigm

in a different fashion from the traditional ML neural networks, where the first is directly

inspired from neuroscience in the way it encodes, transfer and processes the data while

the latter mimic the relationship between the neurons in a more remote way using the

activation of a weighted sum of input data through a nonlinear function.

 SNN which can be shown in Figure 6 is based on asynchronous communication

between different neurons allowing time dependent information transfer through train of

pulses where the information is coded in the form of spikes. Meaning that the neuron

shall have the capability to extract information from an encoded timing pulse specifically

the pulse width, amplitude and the time of arrival of the pulse relative to other pulses.

Consequently, when a neuron spikes it inhibits all other neurons, emulating the presence

of inhibitory connections and the spiked neuron enters a refractory phase where it ignores

any coming spike. This spiking nature is more readily to receive and operate on real

world data since they are usually pulse oriented with a time varying nature. In addition,

they are most suited in low power applications as the spiking rate may be as low as few

tens of Hertz. However, SNN is still not competitive with the accuracy results achieved

by state of art of the ML neural networks on different datasets

Figure 6 : Simple SNN

SNN training is challenging since their discontinuous spiking nature is not suitable

for the backpropagation algorithm which requires the model to be differential to generate

the errors in form of the gradients. One approach to train these networks is to use the

Spike Timing Dependent Plasticity (STDP) learning method. An unsupervised learning

which relies on the spiking timing whether pre or post the synapse to obtain the causality

between input and output spikes. This causality is obtained through detecting when a

neuron fires after the arrival of the input spikes. If it fires soon this would likely map that

synapse had an impact and thus needs to be boosted, meanwhile if it fires later after the

arrival of the input spike this would likely map that the synapse had no role in this firing

and thus needs to decreased. The first process is referred to as Long Term Potentiation

(LTP) while the latter is Long-Term Depression (LTD). STDP is accompanied with the

need of Homeostasis process. Homeostasis is a process used to balance the distribution

of the information among different neurons through the firing threshold adjustment.

Meaning that, if a neuron fires frequently they are punished by increasing their firing

threshold. On the other hand, if they fire infrequently they are inculcated by decreasing

8

their firing threshold. This shall ensure that all the neurons shall contribute in the output

generation enhancing the network performance by squeezing out all its capabilities.

 Prominent examples of SNN approach are IBM through its TrueNorth chip [57]

which has one million programming neurons and 256 million configurable synapses,

Qualcomm through its Zeroth processor [56] and Manchester University’s

SpiNNaker[55].

1.5. Machine Learning Stack

ML design space is similar to any other Hardware Software Co-design space can be

viewed in the form of stacked layers one on the top of the other where each layer is

considered with a portion of this space allowing the focus on its constraints, required

specifications and available optimization techniques.

This Stack methodology is simply the divide and conquer approach which is used to

divide a big problem into a series of smaller ones that can be easily understood,

constrained and optimized such that when collecting all the parts together the overall

performance is maximized

As shown Figure 7 in this stack layer can be divided into five layers: Application

Layer, Architecture Layer, Software Layer, Hardware Layer and Benchmarking and

comparison Layer.

Figure 7 : ML Design Stack Overview

9

1.5.1. Application Layer

The Application Layer shall define the required problem to be addressed by means

of ML methods.

Well Known Applications include Computer Vision, Speech Recognition, Natural

Language Processing (NLP), Recommendation Systems, Robot Control, Cosmology,

Social science and many others.

1.5.2. Architecture Layer

The Architecture Layer shall define how the data is organized, prepared to be

processed, required computational flow to generate the output as well as the memory

requirement to process all the data.

Widely used Architectures includes Multi-Layer Perceptron (MLP), Deep Neural

Network(DNN), Convolutional Neural Network(CNN), Recurrent Neural

Network(RNN), Auto Encoders, Boltzmann Machine(BM), Deep Boltzmann Machine

(DBM), Linear Regression, Logistic Regression, K-nearest Neighbors, Support Vector

Machine (SVM) and many other architectures.

1.5.3. Software Layer

The Software Layer shall define the network modeling techniques in which the data

flow defined in the Architecture Layer is translated into basic operations facilitating the

characterization of the network performance, obtaining useful insights to identify

potential are of improvement and optimizing the network through evolving techniques

such as network precision reduction, activation statistics monitoring, network pruning

and others.

Also, it shall define how the model shall be implemented either using low level

languages or using framework. Frameworks are currently attracting attention as it

abstracts the implementation of software model using high Level libraries instead of

starting from scratch using basic operations, thus reducing the time of implementation

significantly and leveraging the accumulated optimization knowledge in the field of ML

across the whole community.

1.5.4. Hardware Layer

The Hardware Layer shall define the hardware architecture to implement the

software model defined in the Software Layer including how the processing of data shall

be done, the architecture of the data processing units and whether they are going to use

exact computation or Stochastic/Approximate computations as part of operation accuracy

versus power trade off.

Besides, the Hardware Layer shall define the memory hierarchy, associated policy

and any applicable Near Data Processing. Furthermore, given how the current networks

are computational hungry requiring many processing units to operate together, it shall

define the Network on Chip (NoC) architecture including the infrastructure that allows

different processing units to exchange data and allow data transfer across different

memory hierarchy whether they were On-chip or Off-chip.

10

1.5.5. Benchmarking and Comparison Layer

Benchmarking and Comparison Layer shall define the community performance

metric and what are the key aspects when comparing various designs and techniques

relative to each other to achieve a fair method highlighting the different trade-offs.

1.6. Organization of the thesis

This work shall focus on Image Classification enhancement through Supervised

Learning with a focus on the Architecture Layer mainly the CNN architectures.

The remainder of this thesis is organized as follows:

 Chapter 2 : Provides the literature survey encompassing the different layers

within the ML design Stack

 Chapter 3 : Shows a detailed survey considering the popular CNN networks

and their progress with respect to the ImageNet competition.

 Chapter 4 : Explores different ideas to extend the width of the convolutional

layer and mainly introduces the Pseudo Rotated Kernels

 Chapter 5 : Generalize the Pseudo Rotate kernels through proposing five

networks based on two different architectures as well as testing them against

two different data sets

 Chapter 6 : Compares the proposed networks with the literature ones as well

as benchmarking them relative to top performing networks proposed for each

data set.

 Chapter 7 : Summarize the thesis work and discuss the future work

11

Chapter 2 : Machine Learning Stack Literature Review

This chapter presents the literature review for the application, architecture and

software ML stack layers meanwhile the hardware and the benchmarking and

comparison layers are considered as out of scope. Clearly, it surveys each one of the in

scope layers within the stack to show its progress over time as well as exploring the

various approaches applied to enhance the ML different performance metrics within each

layer in addition to demonstrating the different available tradeoffs.

2.1. Application Layer

DNN a sub-domain of ML had shown a remarkable performance across a wide range

of fields, outperforming the previous state of art techniques and accomplishing a

breakthrough results. For example, starting from the AlexNet [65] at 2012 where the error

at ImageNet competition [64] was around 25%, it had driven the error down to 3.5%

through the ResNet architecture [29] suppressing the human level accuracy in the image

classification tasks. Moreover, according to [28] using DNN in speech recognition had

led to the reduction of word error rate by 30% when compared to other conventional

methods which is the biggest gain in the speech field in the last 20 years. Needless to

mention, mastering the Go game and defeating a human champion [30].

In this layer, the focus shall be on the computer vision and speech recognition

applications discussing how the DNN is leveraged among these applications as well as

their popular associated public data sets. Admittedly, public data sets were a crucial key

for the development and training of new network architectures as well as enabling fair

comparison between them

2.1.1. Computer Vision

2.1.1.1. General Overview

In the era of data explosion, video is considered to be the dominant type of data

generated nowadays, in fact according to [58] it contributes with over 70% of today’s

internet traffic. Moreover, according to [59] more than 800 million video hours for video

surveillance is collected daily worldwide.

Hence, there is an urgent need for computer vision tasks such as image classification

and segmentation, object detection, localization and tracking and action recognition to

analyze as well as extract useful information and insights from this huge amount of data.

Moreover, the enhancement of these tasks is considered a key feature for enabling a set

of new applications such as augmented reality (AR), virtual reality (VR) and robotics.

2.1.1.2. Image Classification

Image Classification is the most common and primary task within the computer

vision; Furthermore, it forms the basis for another tasks such as object detection and

localization. It involves identifying the most likely class a given image shall belong to

from an entire set of classes.

12

DNN through its CNN variant had progressed starting from LeNEt-5[60] which was

designed for simple grayscale digit recognition until the ResNet[29] that were applied on

ImageNet competition[64] with around 1.2 million color resolution achieving an

accuracy 3.5% suppressing the human level performance. Undoubtedly, their distinct

performance had enabled their usage in more critical applications such as medical

analysis one where they are used to detect whether a disease exist or not. For instance,

they are used in diagnosis of different kinds of cancers from brain [78] to skin [79] and

breast [80] with an achieved competitive performance to the human proficient.

Popular data sets for image classification are MNIST [62], CIFAR [63] and

ImageNet [64].

MNIST as shown in Figure 8 is a handwritten digit data set introduced in 1998,

composed of ten classes (equivalent to ten digits) with 60,000 training image and 10,000

test image with a total size of 50MB and each image is grayscale 28 x 28 pixel. Actually,

it is considered to be a handy data set.

Figure 8 : MNIST data set examples

CIFAR is a subset of the 80 million Tiny Image data set introduced in 2009. It has

two variants as shown in Figure, the first is CIFAR-10 shown in Figure 9(a) which is

composed of ten classes of various objects and the second is CIFAR-100 shown in Figure

9(b) which is composed of hundred mutually exclusive classes with more objects

included. Both variants have 50,000 training image and 1000 test image, where each

image is a colored 32 x 32 pixel. The total size of the data set is 170 MB.

13

Figure 9 : (a) CIFAR-10 data set examples (b) CIFAR-100 data set examples

 ImageNet as shown in Figure 10 was introduced in 2010 but stabilized in 2012,

composed of 1000 classes with 1.3 million training image, 100,000 test image and 50,000

validation image. Each image is colored 256 x 256 pixel. Moreover, the ImageNet was

first to introduce the Top-5 and Top-1 error metric. Top-5 error is calculated by

considering that the classification is correct if any of the top five scoring categories are

the correct category, meanwhile the Top-1 error considers only the top scoring category

as the correct one.

Figure 10 : ImageNet data set examples

Recently, Google shared its Open Images data set [68] data set composing of 6,000

classes with over 9 million images, spanning 6000 categories

2.1.1.3. Object detection

Object detection is a multi-task application; composed of classification and

localization tasks. The first one focuses on the identification of the instances of an object

that belong to a specific class within the image, meanwhile the latter focuses on

estimating the location of these instances.

14

With the emergence of DNN and the invention of Regions within CNN framework

(R-CNN) [82], a significant improvement had been achieved allowing real time accurate

object detection applications. Its basic idea is to create a unified framework that divides

the image into a set of candidate windows, classifies them by means of a CNN and finally

labelling them into rectangular bounding boxes to generate the final results directly

without any post processing. The region based CNN unified framework paradigm had

continued to improve through set of proposals including Fast R-CNN [79] which jointly

optimizes classification and bounding box regression tasks, Faster R-CNN [81] which

adds a subnetwork to generate candidate regions and YOLO [80] a fixed-grid regression

approach.

 Face recognition is one example for the object detection tasks where its objective is

to identify and locate the face regions with the ability to cope with faces unique structures

and characteristic such as face parts distributions and skin color. Moreover, it shall be

able to handle the visual variations including pose changes, illumination changes and

occlusions. DNN through its CNN sub domain had brought a change in this application

through the proposed state of the art networks such as Google’s FaceNet [83] which is

based on training the CNN with a triplet loss function to allow the network to learn to

cluster the face representation of the same person, Facebook’s DeepFace [84] where it

models the face in a three dimensional shape then align it to a frontal pose then feed to a

CNN composed of a single convolutional layer, a single pooling layer, three locally

connected layers and two fully connected layers and OpenFace [85] an open-source face

recognition tool.

Popular data sets for object detection are PASCAL VOC [66] and Microsoft COCO

[67].

PASCAL VOC is introduced in 2005 and stabilized in 2012, composed of 20 classes

with 11,000 images, 27,000 object instances and 7,000 of them had detailed

segmentation.

Microsoft COCO is composed of 91 classes with 2.5 million labeled instances in 328,000

images. Compared to ImageNet, it has fewer classes, however it has more images per

class and more labels which is rigorous for contextual information extraction and

localization.

2.1.1.4. Action and Activity Recognition

Action and activity recognition is one of the most challenging tasks that has a wide

range of applications including robotics, human computer interaction and video

surveillance. It involves identifying human activities from an image or video sequences

which can be classified into gestures, human to object interaction, human to human

interactions, events, group actions and atomic actions.

The hardness of this task is due to the requirement to solve the distorted and

translated features among different patterns that belong to the same action category which

arise from several problems such as occlusion, changes in scale, viewpoint, illumination,

and background clutter.

After DNN had made a breakthrough in image classification, it started to impact the

activity recognition achieving new state of the art results but still away from the level of

impact brought to image classification. The current state of art is a dual architecture that

combines both CNN and LSTM [87,88,89]

YouTube data set [69] is one of the data set allowed to be public recently from

Google. It spans 4,800 classes with 8 million videos (0.5 million hours of video)

15

2.1.2. Speech Recognition

2.1.2.1. General Overview

Modern computing platforms are now featured with a voice assistant user interface

such as Google Now, Apple Siri or Microsoft Cortana. These type of interfaces are based

on automatic speech recognition systems which necessary are required to provide a

continuous real time speech recognition that shall be speaker independent as well as

capable to cover a large vocabulary. Thus, improving the performance of speech

recognizers is critical for the overall user experience. Moreover, with current trend of

Internet of Things (IoT) platforms where the invention of smart devices is exploding in

almost all aspects of today world from wearable devices to kitchen appliances over to

children’s toys had increase the need for a neat human computer interface. Traditional

interfaces like keyboard or mouse are not suited with these kind of devices due to the

physical structure shrunk of these devices making typing a tough task, meanwhile an

elevating approach is the speech interface where the voice is used as the interaction

method to give commands and exchange information; increasing more the need for high

performance speech recognizers.

Speech recognition is a sub task within the speech processing applications where it

is required to identify word and phrases sequences uttered in a continuous fashion and

transform them into a machine understandable format. The speaker voice is captured by

a microphone in the form of acoustic signal then converted to a set of words where it can

be the final result if the application is speech recognition or it can be used to feed further

linguistic processing such as speech synthesis.

2.1.2.2. Historical Background

Gaussian Mixture Models (GMMs) that are based on hidden Markov models

(HMMs) had been dominating the speech recognition for a long time with a few attempts

to apply the traditional neural networks, however its achieved performance has been

lagging behind the state of art of GMM-HMM methods at that time. The GMM-HMM

methods are based on approximating the speech signal into a piecewise short time

stationary signal where it can be considered as a stationary process, hence enable the

usage of Markov model for many stochastic processes. Meanwhile, Each HMM uses a

Gaussian model for representing the spectral of sound wave. This combined method

enables the extraction of the temporal patterns of the speech.

 DNN started to have an observable impact in speech recognition in 2013[7], after

the major research groups worldwide including IBM, Microsoft, Google and Baidu had

shown that applying DNN on large speech recognition tasks using the raw speech spectral

features of the spectrogram away from Mel-frequency cepstral coefficients (MFCCs)

features had shown great success. From then on, DNN had started to become the main

stream method for both the academia and the industrial speech recognizers. The quick

adaption of the DNN based speech recognizer across the entire speech recognition

community can be regarded to the minimum change required in the speech decoder

through the usage of senones as the output from the DNN, dramatic performance

enhancement compared to GMM-HMM systems and the availability of large amount of

data required to train this networks.

16

2.1.2.3. DNN State of the art architectures

Traditionally state of the art DNN architectures were trained by dividing the speech

recognition systems into three separate components the acoustic, pronunciation, and

language models where each component is trained separately with a different objective.

The acoustic model is typically trained to extract the context dependent phonemes with

the assist of an alignment method, pronunciation model trained to map the sequences of

phonemes produced by the acoustic model into word sequences through a linguistic

model developed by domain experts and the language models are trained on huge amount

of text data to estimate probabilities of word sequences.

Current state of the art architectures is focusing on end to end trained speech

recognition systems. End to End shall refer to transforming all the speech recognition

models to a single sequence to sequence model where the acoustic, pronunciation, and

language models are trained jointly and optimized to achieve the required performance

metric typically the overall system word error rate and hence the objective of the training

is to map directly the sequence of raw speech waveforms to sequence of words without

any need of alignment between the input waveform and the output characters. This

sequence to sequence model is typically composed of encoder and decoder to overcome

the problem of variable input and output sequences length. The encoder maps the

sequential variable input length to a fixed length vector while the decoder utilizes this

fixed length vector to generate a variable output sequence length. To attempt the end to

end training goal various methods are applied, for instance the connectionist Temporal

Classification (CTC), RNN transducer, attention based models and hybrid CNN-RNN

architectures.

2.1.2.3.1. Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is an end to end training method that

doesn’t require a frame level alignment of target labels for training utterance where it

attempts to emit any label or no label at every time step thus segmenting the alignment

into a distribution of possible regions between the input and output sequences meanwhile

every label is emitted into a single time step fashion. It essentially needs the set of target

labels to be augmented with an additional blank symbol as well as the existence of

intermediate label representation to allow labels repetition and blank labels occurrence

without identifying them as a target output (i.e. emit no output label)

2.1.2.3.2. RNN transducer

RNN transducer which was introduced in [92], is an extension for the basic CTC

method where it combines CTC end to end method with a separate language model based

on LSTM (Long Short Term Memory) an RNN architecture variant which improves the

memory effect of RNN. LSTM can deal with the sequential nature of speech since the

current hidden state can be function in all the previous and future hidden states, thus it

can exploit the frame information dependency whether the past dependency in the case

of a unidirectional LSTM or both past and future in case of bi directional. In this method,

the acoustic and language models are jointly trained where the CTC is used as an acoustic

model to determine the distribution over phones sequences based on the acoustic

waveform, meanwhile the transducer identifies the phoneme based on the proceeded

ones. This method allows the network to predict the output based on its previous output

sequences and it its current location within the input sequence. The transducer is

accompanied by a decoder either a bean search one or prefix search or deciding based on

the active output at every time step.

17

2.1.2.3.3. Attention based models

Attention based models for instance as [93], is composed of an RNN encoder named

listener and an attention based RNN decoder named speller. The encoder transforms the

acoustic speech waveforms to higher level features while the decoder converts these

features into output characters by performing a conditional prediction to emit the target

characters based on the full history of previous predictions and acoustics using the

attention mechanism. This method differs from the RNN transducer that it combines the

prediction network and the acoustic model into a single model instead of separate models

that are trained jointly. Moreover, the key improvement of this method it generates the

character sequences without making any independence assumptions between the

characters in contrast to the CTC which assumes conditional independence between input

acoustic frames. The attention mechanism is required to feed the decoder with selectively

chosen information relevant to the current emitted output allowing the creation of a skip

connections that can effectively flow the data through the RNN. On one hand, this would

improve the performance as well as reduce the required computations, in addition to

reducing the overfitting problem by preventing the network from memorizing the

transcripts and force it to pay enough attention to the relevant information.

2.1.2.3.4. Hybrid CNN-RNN architectures

The recent CNN developments driven by the vision community and its associated

outstanding performance had led to experimental usage of hybrid CNN-RNN

architectures mainly the CNN-LSTM flavor architectures within speech recognition

architectures. Historically, CNN was combined with HMM-GMM in a hybrid model

where the HMM-GMM force a frame level alignment before the CNN can be trained to

generate the required targets. In other words, the HMM-GMM perform the temporal

modeling while the state predictions were generated using the CNN. However, given the

fact that LSTM had become the default practice nowadays when dealing with data with

sequential nature as speech recognition, combing both strengths of CNN and RNN into

a hybrid architecture would be a promising approach. On one hand, CNN can effectively

exploit the spectral structure locality in the feature space. Moreover, through its

frequency dimension weight sharing as well as using the pooling layers helps to tradeoff

between vocal tract length invariance and the trajectory speech sound differentiation as

well as reducing the spectral variations within the acoustic features. On the other hand,

LSTM is well known for its temporal modelling capability. Moreover, when

accompanied with CTC the end to end goal had become feasible while setting a new bar

for the achieved performance. Thus, combining them is a promising approach where the

a few CNN layers are used to reduce the spectral variation of the input then feed the

extracted features to a deep LSTM to learn the temporal structure across the successive

time steps. For instance, google CLDN [95] and the Microsoft conversational speech

recognition system [91] are based on hybrid architectures.

2.1.2.4. Popular Data Sets

Speech recognition available data sets include TIMIT [73], Switchboard-1 [90],

VoxCeleb[74], CHiME5[75], LRS3-TED[76] and Google audio data set [70].

TIMIT is a collaboration between Texas Instruments and MIT (TIMIT) to develop a

speech transcription dataset that contains recordings of 630 speakers of the major of

American English dialects where each has a ten phonetically rich sentences.

Switchboard-1 is a telephone Speech Corpus developed by Texas Instruments in 1990

under DARPA sponsorship. It consists of around 269 hours of speech of about 2,400 two

18

sided telephone conversation spanning around 543 speakers from the United States.

VoxCeleb is a more updated data set with 1,000 celebrities’ voice transcriptions.

CHiME5 contains multiple speaker natural conversations. LRS3-TED is a visual speech

recognition data set that is composed of hundreds of hours of TED talk videos associated

with a time aligned subtitles. Google audio set is a collocation of 2 million human labeled

10 seconds sound clips encompassed in 623 audio class

2.2. Architecture Layer

This layer which is shown in Figure 11 can be visualized as a two dimensional layer,

the vertical one is considered with the fundamental network architectures which are built

conceptually using different structures (i.e. CNN vs RNN) while the horizontal one is

considered with the different flavors of networks within the same fundamental

architecture (i.e AlexNet[65] vs ResNet[29] in the CNN). The first shall be covered in

this section, meanwhile the latter is discussed abstractly except for the CNN networks

which shall be discussed in details within the next chapter.

Figure 11 : Architecture Layer two dimensional illustration

2.2.1. Multi-Layer Perceptron

Also referred to as feedforward Networks or fully connected networks. They are

based on NN and known for being a basic network in the ML world, however it is

considered to be the basis of the DNN.

As shown in Figure 12, similarly to NN it is composed of input layer, one or more

few hidden layers and output layer to generate the final network output. The advance

form one layer to the another shall imply applying a nonlinear function on a weighted

sum computed form all the outputs generated from the previous layer. Thus the layer’s

connection within this network are described as fully connected layer in which every

output from the prior layer contribute in the computation of every neuron in the next

layer. The usage of a nonlinear function is essentially required to prevent the whole

network form collapsing into a linear transformation function, meanwhile allowing the

19

learning of complex functions that can be careful in capturing the minute details while

suppressing irrelevant variations

Figure 12 : MLP Abstract network

Usually considered in modelling the non-linear relationship between inputs and

outputs with the constraint that they map a fixed input size to fixed size output as well as

applying the same input shall always generate the same output regardless how the stream

of inputs is fed to the network since this type of network doesn’t have any memory effect

2.2.2. Deep Neural Networks

2.2.2.1. General Overview

DNN is a part of the Deep Learning family which is a rich family of multi-layered

algorithms comprising NN, graphical models and hierarchical probabilistic models with

the supervised and unsupervised feature learning capabilities.

The NN based methods are mainly considered as an extension from MLP where their

multi-hidden layers can go beyond few layers to hundred or even thousands layers with

billions of neuronal connections to be able to manage the growth rate of the data and

tackle the increasing accuracy demand and enhancing its capability to solve the evolving

complex problems. For instance, according to [19] Google cat recognizer system has up

to 1 billion neuronal connections while this number increases in Baidu Brain to reach

100 billion neuronal connections

Their key feature which helped in their emerging and attracting the wide popularity

is their powerful multi-level representation capacity where they automatically extract

implicit hierarchical features and patterns from the raw data through nonlinear

composition allowing the transformation of the raw input (i.e. pixel of an image) into

more abstracted representation to the extent that the representation at one level is

transformed into higher abstracted one in the next level , facilitating the amplifying of

the required aspects for discrimination while suppressing any irrelevant information. In

addition to, distributing the learning across multi-representation levels enhance the

network ability to generalize beyond the features that had been learnt through training

through the ability to create new combinations of features that might not be available

during training. Moreover, the majority of natural signals has a compositional nature

20

where high level features shall only have extracted through the composition of the lower

ones

DNN leap advancement was feasible through the availability of the large annotated

data sets that can exhibit the learning capacity of these giant networks to be capable of

automatically detect features and patterns without the need of any handcraft support, the

dramatic enhancement in the computing capabilities especially GPUs which crossed the

threshold of being powerful to handle massive amount of weighted sum calculations in a

reasonable time as well as their affordable price, evolution of innovative network

architectures that stretched the DNN power such as CNN and RNN and inventing an

efficient method to execute the learning techniques especially the Backpropagation.

2.2.2.2. Life cycle phases

Like the any NN, they have two phases across their usage life time: training phase

and inference phase

2.2.2.2.1. Training Phase

Training phase is used to determine the network parameters mainly the weight and

bias that minimize the network loss function using a well-known data set.

Weights are usually updated using gradient descent which is a hill climbing like

optimization process that indicates how the weights shall be adjusted to satisfy the cost

function.

Gradient descent is usually implemented using Backpropagation algorithm, a

calculus chain rule based algorithm that can derive the partial derivatives of the gradients.

Backpropagation operates using the feedforward and backward passes of network as

shown in Figure 13. It mainly works by feeding the network with several input samples

noted as mini-batch, activating the forward pass, squeezing out the output then computing

the derivative of the cost function with respect to weight and bias starting from the output

layer gradually to the input layer using the calculus chain rule and the gradient values are

then passed backward across the whole network to determine how the loss is affected by

each weight and adjust the weights accordingly. This operation is an iterative one where

the training sequence is repeated on the whole data set sufficient number of times to

ensure the objective function had fallen in a good minimum point. Also, the training

procedure is associated with a hyper parameter tuning process that either used to optimize

the topology of the network the training configurations. The first is done through ensuring

the selection of a sufficient number of layers and number of neurons meanwhile, the latter

modifies the weights learning rate and the regularization techniques. Training a DNN

nowadays requires a huge data set that may take several days or even weeks to reach the

required accuracy as well as the huge computational power and storage needed to build

and train these networks.

21

Figure 13 : DNN abstract network forward and backward passes

As the network becomes deeper the vanishing or exploding gradients problems start

to become a matter of concern as it may result in a slower training time or falling into a

poor local minimum. The vanishing problem arise when the back propagated gradient

error is small such that when it reaches the layers close to the input it diminishes, similarly

the exploding gradient where the gradient error is increasing exponentially as it

propagated back through the network such that when it reaches the layers close to the

input it saturates. Historically according to [7], this was partially the reason for directing

away from NN towards shallow models (i.e. SVN) where unlike NN they have convex

loss objective function that can be efficiently trained to fall within global minima.

However, practically local minima are rarely a problem in DNN given that the parameters

are carefully initialized as well as the using ReLU as an activation function where an

activated neuron has a one constant gradient while clipping any negative values.

Moreover, the optimization landscape is packed with large number of saddle points

where the gradient is zero and almost of all them are similar for the optimization function,

thus it doesn’t important which one of them to stuck at.

2.2.2.2.2. Inference Phase

Inference phase is used to run the application in the feedforward pass only of the

network using the trained weights. Nowadays, inference may take place using datacenters

or edge devices.

22

2.2.3. Convolutional Neural Networks

2.2.3.1. General Overview

They are NN based networks, mainly considered an extension from DNN that is

capable to operate on data that has a temporal or spatial continuity nature. They were

inspired from [42] where the visual cortex of a cat was characterized to be sensitive for

a small sub-region of the visual field. Admittedly, they are invented on the fact that many

natural data are captured in arrays format. For instance, language sequences have one-

dimensional format, images and audio spectrograms has two dimensional format and

videos has three dimensional format.

2.2.3.2. Key features

The distinct ideas behind CNN are based on its ability to take advantage from the

properties and structure of the data nature to introduce concepts like receptive field,

feature map, channel pooling and shared weights.

2.2.3.2.1. Receptive field

Receptive field as shown in Figure 14 defines a local sliding window where only a

small neighborhood of the input contributes to generate the output meaning that all the

inputs within this window at the current slide shall participate in the weighted sum used

in the output activation, otherwise the inputs beyond this window their weight shall be

set zero. In other words, this can be viewed as if a local connection is created between a

spatially nearby subsets of the inputs and the generated output which in return shall

reduce the connection within the network compared to a fully connected one leading to

a drastic reduction in the CNN number of parameters when compared to a conventional

DNN.

23

Figure 14 : Receptive field for two sliding windows

2.2.3.2.2. Feature map

Feature map which is shown in Figure 15 defines the interaction between different

network layers, where the information is transformed to a higher level of abstraction that

preserves the necessary unique features. Mainly, it stacks the data into a two dimensional

arrangement noted as channel, where a set of stacked channels forms the feature map.

Hence, the feature map shall have a three dimensional arrangement the data height, data

width and data number of channels.

Figure 15 : (a) Feature map with single channel (b) Feature map with C channels

24

2.2.3.2.3. Channel pooling

Channel pooling which can be viewed in Figure 16 whereas a feature map

subsampling technique is applied to aggregate its statistics. Mainly, it is used to merge

the similar features within the same channel of the feature map shrinking the feature map

dimensions while increasing the robustness of the network and its invariance to small

shifts and distortions by detecting the feature representations based on their fine-coarse

positions and appearances allowing them to vary a little within the feature map.

Moreover, the reduction of the feature map can help in widening the receptive field

within the new generated feature map allowing the extraction of larger features from the

original feature map. In addition to, reducing the number of computations overhead

through diminishing the feature map spatial dimensions.

Figure 16 : Feature map before and after channel pooling where n is the pooling scaling

value

2.2.3.2.4. Shared Weights

Shared weights as shown in Figure 17 defines the shared parameters of the learnable

kernel bank (noted also as filter bank) which is applied on the entire same feature map,

where each feature map shall be associated with a unique kernel bank, that is shared

across the same feature map but differs ongoing to another one. Sharing weights between

different location of the same feature map take advantage that the nature of some data

(i.e. images) their local group of values shall be highly correlated and that they are

location invariant enhancing the network capability to detect the same pattern at any

location within the feature map since they share the same kernel weights. Weight sharing

accompanied by channel pooling property confers the CNN with translation invariance

property

25

Figure 17 :Feature map with four channels where the same kernel is applied across the

entire map to generate an output feature map with single channel

2.2.3.3. Typical CNN Architecture

A typical CNN architecture as shown in Figure 18 is composed of different types of

layers mainly the Convolutional layer, pooling layers, fully connected layers and

normalization layer where each layer is eligible to generate a feature map to the next

layer.

Figure 18 : Typical Modern CNN different layer structure

26

2.2.3.3.1. Convolutional layer

Convolutional Layer gets its name from the fact that their operation is

mathematically a discrete convolution operation (actually a cross correlation one) with

emphasis on high dimensional convolution. This is the layer where the dominant number

of computations of the CNN takes place. As shown in Figure 19, The input data to this

layer is the channel feature map, meanwhile, the learnable kernel bank is stacked

according to the required number of channels into a set of two dimensional arrangement

keeping in mind that the learnable kernel weights are shared within the same feature map.

The kernel bank shall have a three dimensional arrangement: the kernel height, kernel

width and the required number of kernel channels. Subsequently, each channel form the

channel stack is convolved with a distinct moving kernel channel from the kernel bank.

Meaning that, unlike the conventional convolution where the entire input is used to

generate one output data, the convolution here is localized through the usage of a regional

kernel that scan the feature map in a sliding window liked style such that each shift of

the window results in generating a single output data and the full scan shall generate the

whole output data. After that the result of every point of this convolution is summed

across the whole channels followed by a nonlinear activation function to generate a new

feature map for the next layers. Stacking more kernel channels in the kernel bank and

convolving them with the input feature map would result in generating more channels in

the output feature map. The convolutional layer acts as a feature extractor to identify any

local conjunctions and common embedded regional characteristics within the feature

map.

Figure 19 : Example for the convolutional layer where an input feature map with 3

2.2.3.3.2. Pooling layer

Pooling Layer is based on reduction of the spatial dimensions mainly the height and

width while keeping the channel dimension as it is. This layer is a computational free one

since it has no parameters to learn due to its special operation. Nowadays, applying a

maximum or an average pooling is the standard practice. An example is shown in Figure

20 where the stride defines the step window of the non-overlapping blocks associated

with separate example for both maximum and average pooling.

27

Figure 20 : Feature map with a single channel is reduced through average and

maximum pooling with striding by 2

2.2.3.3.3. Fully connected layer

Fully Connected Layer acts as a classifier layer that correlates between the extracted

features organized in the feature map and the required logits output of the network

assisting in the mapping of the input to the output likelihood category it shall belong to.

Recent networks shall have a few of them (one up to three) are appended at the end of

the network after the convolutional and pooling layers to perform the classification or the

regression objective. In this layer the output activation from the previous layer is

connected to every neuron within this layer using an independent weight synaptic, hence

losing the weight sharing advantage found in the convolution layer as well as contributing

with a reasonable amount from the overall network number of parameters. Consequently,

it can be followed by a nonlinear activation function.

2.2.3.3.4. Normalization layer

Normalization layer is responsible to control the feature map statistical distribution

by normalizing the input activation such that it has zero mean and unit standard deviation.

This is beneficial in terms of speeding up the training by reducing the data space

distribution contour, thus reducing the number of iteration. Also, it enhances the achieved

accuracy by introducing some noise in the data allowing a better generalization. There

are many types of these layer for instance, local contrast normalization (LCN), local

response normalization (LRN) and Batch Normalization(BN). Nowadays, BN is the

current practice used by ML community given its efficiency and the fact it has minimal

computations compared to the convolutional or the fully connected layers

2.2.4. Recurrent Neural Networks

2.2.4.1. General Overview

They are NN based networks that mainly considered an extension from DNN, in

which it is capable to handle sequential learning whereas the data has a sequential nature

and the application impose sequence to sequence mapping such as language modelling

and audio/video description.

28

2.2.4.2. Key features

Its prominent advantage traits are the memory effect, the ability to work on arbitrary

input and output length and finally the weight sharing.

2.2.4.2.1. Memory effect

The memory effect is the ability to track the temporal state of the input by accounting

the input history when processing the new ones allowing the dependency of data which

is required in sequential data (i.e. speech recognition or language modeling). This effect

is constructed through the recurrent connection which creates a loop allowing the

information to persist when proceeding from one step to another, so that unbounded

amount of information is employed to enhance the accuracy of the prediction. Obviously,

unfolding this recurrent can transform RNN to a very deep feedforward network. The

Recurrent connections as well as its unfolding can be shown in Figure 21

Figure 21 : Recurrent connection and its unfolding equivalence

2.2.4.2.2. Arbitrary input and output length

Arbitrary input and output length is an inherited feature within the sequential data

where the sequences length vary across the time. Typical DNN including its CNN flavor

fundamentally fixes the dimensions of the input and output limiting their ability to handle

such sequences meanwhile RNN can deal with such variation thanks again to their

recurrent connections which can execute recurrently for every input within the given

sequence. RNN can map the input sequences to the output sequences in many ways

depending on the targeted application, for instance as shown in Figure 22 where (a) one

to many mapping which is used in image captioning, (b) many to one mapping which is

used in sentiment analysis, (c) many to many mapping which is used in machine

translation and (d) another many to many mapping which is used in language modelling

29

Figure 22 : Different RNN mappings with their target mapping (a) image captioning

one to many mapping (b) sentiment analysis many to one mapping (c) machine

translation many to many mapping (d) language modelling many to many mapping

2.2.4.2.3. Weight Sharing

Weight sharing within each step across the whole sequences allows network to

decouple the arbitrary sequence length and the model structure, meaning that it allows

the model to have the number of parameters regardless of the sequence length. As well

as, it increases the robustness of the network through being location invariance where the

representation features and patterns shall be learnt once regardless at which part of the

sequences they appear increasing its ability to generalize well beyond the sequences

length that appeared during training experience. Moreover, it drastically reduces the

number of learnable parameters compared to having a separate weight for each step

2.2.4.3. RNN training

RNN training has been proved to be problematic since vanishing or exploding

gradients issue which was discussed previously amplifies as the recurrent connection

would imply the repetition of matrix multiplication resulting in a quick exponential

shrink or growth of the magnitude of the gradients. This can be solved similarly to the

DNN with carefully initialization of the weights and applying the ReLU as the nonlinear

activation function. Moreover, clipping the gradient magnitude is an additional technique

applied where an upper and lower thresholds are set, once crossed the gradients are

clipped to prevent them from vanishing or exploding

30

2.2.4.4. RNN State of the art architectures

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are the most

widespread RNN architectures. LSTM can exploit long term dependencies where it

preserves the useful information for a longer time delaying its dilution thus enhancing

the accuracy on the cost of adding more parameters, longer training time and more

computational power. On the other hand, GRU can exploit short term sequence

dependencies, requires less parameters, trains faster and reduces computational power

compared to LSTM with a drawback that the useful information can be diluted over a

short time impacting the accuracy achieved on long sequences.

2.2.4.4.1. LSTM

LSTM in similar to DNN, it consists of a stacked input layer, multiple hidden layers

and the output layer, however the building unit is fundamentally different where instead

of a normal neuron with a nonlinear activation on the weighted sum, it is modified to

include an explicit memory storage to establish the recurrent connection with the help of

some framework organizer noted as a gate. This allow the regulation of the flow

information in terms of deciding which part of information shall proceed and which shall

be forget. An abstract figure of LTSM building unit can be shown in Figure 23 where in

addition to the input there is the cell state which represents the memory storage that

allows the recurrent connection to be established.

Figure 23 : Abstract LSTM cell

There are three gates that controls the state update as well as generating the output.

They can be viewed as a special multiplicative unit. The forget gate defines the amount

of memory the cell has to forget which are no longer useful to be stored. This is done by

scaling the internal memory state which adaptively can result in the cell forgetting part

of its state. The input gate shall define the amount of input that required to be memorized.

The output gate defines the amount of information that shall proceed to next cell.

LSTM can have two variants: unidirectional and bidirectional. Unidirectional variant

which is shown in Figure 24 considers only the past information during the current

execution step. On the hand, Bidirectional variant show in Figure 25 accounts for the past

31

as well as the future information during executing the current step thus sloping the

achieved the accuracy upwards.

Figure 24 : Unidirectional unfolded RNN example with three LSTM cells, N inputs,

two hidden layers and one output layer

Figure 25 : Bidirectional unfolded RNN example with four LSTM cells, N inputs, one

hidden layer and one output layer

32

2.2.4.4.2. GRU

GRU can be shown in Figure 26 it inherits most of its feature from LSTM but with

significant differences. Starting from the removal of the memory state and merging it

with output state, followed by merging the forget gate with input gate into a single gate

noted as update gate which shall be responsible on passing the amount of information to

be stored as well as the amount to be forgot. This allowed the reduction of number of

parameters and the structure complexity leading to a more efficient computations and

faster training time.

Figure 26 : Abstract GRU cell

2.3. Software Layer

The Software Layer focuses on exploring how to model a network as well as how it

shall be implemented.

The Modelling part shall explore different degrees of freedom available to optimize

the network enabling its practical deployment in today consumer computing platforms

such as mobile platforms and IoT devices. These optimization techniques for instance

shall include reducing the network precision, pruning the weights, exploring the network

activation statistics and other available ones.

Meanwhile, the implementation part shall show the different tradeoffs between

software language approaches. For instance, using a higher level one such as frameworks

would accelerate the implementation while a lower level one such as python would

enable a full control on each operation.

2.3.1. Network Model

2.3.1.1. General Overview

Earlier DNN approaches had considered their merit of figure to be the accuracy.

Thus, they focused on maximizing the accuracy without paying much consideration to

other design aspects such as hardware implementation complexity. For instance, the cost

of floating point operations, number of parameters required to be stored in the memory

and the consumed power to perform the required inference operation. This had led to a

more hypothetical networks that are challenging to implement and deploy in nowadays

computing platforms.

Recent approaches co-design the DNN models and hardware together leading to the

evolving of a new merit of figure that is considered with maximizing the accuracy and

33

throughput while minimizing the energy and the cost of hardware infrastructure such that

it increases its adaption likelihood. However, limiting the available hardware resources

would result to a degradation into the achieved accuracy. Thus, the goal has shifted to

model a network that matches toady computing infrastructure with the minimum

accuracy loss.

To fulfill the aforementioned goal, some techniques were proposed that rely on DNN

networks inherent resiliency to insignificant errors. Starting from reducing the network

precision where the expensive floating point that requires a complex arithmetic unit and

consumes large memory size is replaced with a reduced arithmetic precision

representation. Moving to compressing the network itself to get rid of any redundant

operations and over parameterized parameters by means of pruning the weights,

exploring the activation statistics, low rank factorization and knowledge distillation. In

addition to the mathematical transformations techniques where the operation is

mathematically reshaped to reduce the number of operations (i.e. multiplication).

2.3.1.2. Reduced precision

2.3.1.2.1. General Overview

Quantization can be defined as mapping the data values from their natural wide set

levels to a smaller set of discrete levels. Hence, the quantization process is associated by

an additive error and the objective then is to minimize the mapping error between the

original levels and the quantized discrete ones.

Precision can be viewed as the number of quantized levels and clearly it is reflected

in the number of bits required to map the data to these quantized level (i.e. log2 (number

of quantized levels)). Thus, Reduced precision can be referenced to reducing the number

of bits that represents the quantization levels.

Reduced precision models focus on transforming the expensive floating point

operations which is usually used to obtain the state of art accuracy to a half precision

floating one or even to the cheaper fixed point operations which fixes the radix position

within the operation. This can be beneficial in terms of relaxing the computation

infrastructure and the memory storage requirements. Moreover, optimizing the precision

of different data types across the network is considered the distinct computational

efficiency advantage of hardware accelerators when compared to the general purpose

computing platforms (i.e. CPU and GPU). Furthermore, Reduced precision in difference

with compression techniques doesn’t encounter any extra steps or computational

overhead cost to operate.

However, moving from floating point to a fixed one without reducing the number of

bits that represent the quantization levels would result in the same hardware infrastructure

cost specifically same area, energy and memory cost. Clearly, the energy and area cost

of addition operation using fixed point as well as the memory capacity scales typically in

a linear fashion with the number of bits, meanwhile the energy and area cost of a

multiplication operation scale approximately in a quadratic manner with the number of

bits. Thus, reducing the precision reflected in reducing the number of bits is the key

approach for area, energy and memory savings.

One worthy note to mention here, is the recued precision doesn’t impact the accuracy

if the data distribution is centered around the zero such that the accumulation operation

can move in both directions around the zero and preventing its bias towards only one

direction. This is usually achievable using normalization techniques

 Recent reduced precision approaches focus on reducing the precision of weights

rather than activations given that they dominate the memory storage capacity as well as

34

the intermediate computations. Furthermore, the focus is on the inference phase rather

than the training one given that backpropagation algorithm is based on gradients update

which can be ill suited to the precision reduction. Actually the gradients and the learning

rate are sensitive to the used precision which may cause their vanishing or saturation.

Thus, typically a higher precision is required to ensure the network convergence to good

minima. Furthermore, intuitive training can be used to compensate the loss in accuracy

that may arise from reducing the precision during inference phase where the network can

be fine-tuned and re-trained after reducing the precision to improve its accuracy without

any extra cost

2.3.1.2.2. Quantization methods

There are two methods to reduce the precision based on how the data is mapped to

the quantized levels which are uniform quantization which uses the same quantization

levels across the whole data within the network (i.e. all layers, weights and activations)

and non-uniform one which uses separate quantization levels within the network (i.e. per

layer quantization). The first is simpler in analysis and implementation meanwhile the

latter results in a better accuracy.

2.3.1.2.2.1. Uniform quantization

Maps the data with a uniform distance between the quantization level where the

floating point representation is mapped to a fixed point one or to the more sophisticated

dynamic fixed point representation which allows the fractional part to vary according to

the required dynamic range resulting in a less quantization error since the dynamic range

of different parts of networks can vary in a different manner. For instance, the dynamic

range of the weights and activations can be different depending on their targeted dynamic

range which can result in a better overall network accuracy.

Normally general purpose platforms such as CPUs and GPUs can support operations

with bit width of 8, 16 and 32 allowing reducing the precision to these values, however

the precision required for DNNs can vary in a finer grained manner. For instance,

according to [122] the precision values for weights and activations for AlexNet network

can vary between 4 to 9 bits with an accuracy loss around 1%. Meanwhile, Intel

Flexpoint[114], is an example of a complex dynamic scaling representation. Clearly,

unlike the floating point, the exponent is common across all tensors meanwhile it is

different from traditional fixed point as the exponent is updated automatically whenever

a new tensor is generated using a proposed algorithm noted as AutoFlex. In addition to

ESE [116], which applies a uniform quantization approach to reduce the precision of

their proposed speech recognition hardware accelerator where they quantized their

LSTM network to 12 bits and were able to achieve phone error rate of 20.7% on TMIT

corpus in a comparable performance to the floating point architecture that can achieve

20.4% phone error rate

Moreover, there is the binary nets family which can be viewed as an extreme reduced

precision model where it reduces the precision aggressively to one bit allowing a distinct

transformation into how the operations are executed where the arithmetic operations (i.e.

multiply and accumulate) are switched from using multipliers and adders to bit-wise

gates instead (i.e. Xnor and AND gates). Starting form BinaryConnect[123] which

introduced the binary weights concepts (i.e. -1 and 1) and used these binary weights to

transform the multiplication operations to addition and subtraction while allowing the

input and the intermediate data to be real. It was able to achieve 61% top-5 accuracy on

the ImageNet dataset. Followed by Binarized neural networks [124] which converts the

multiplication and addition operations to XOR operations with 50.42% top-5 accuracy

35

on the ImageNet dataset. Moving to Binary weight nets [125] and XNOR-Nets [125]

which modified how the DNN processes the data form using a scale factor multiplication

to recover the dynamic range to preserving the floating point operations for the first and

last layers. Binary weight nets achieved 79.4% top-5 accuracy on the ImageNet dataset

meanwhile XNOR-Nets achieved 69.2% top-5 accuracy. In addition to the HWGQ-Net

[126] which increases the activation precision to be 2 bits instead of a single bit while

keeping the weights precision as a single bit. It was able to achieve 85.9% top-5 accuracy

on the ImageNet dataset. Furthermore, the Ternary weight nets [127] which allows the

weights limit to extended to include the 0 as well as the binary weights which requires

an additional weight bit representation (i.e. weight to be represented in two bits) and it

was able to achieve 86.2% top-5 accuracy on the ImageNet dataset. It was extended in

Trained ternary quantization [128] where the weights only are reduced to a binary

representation with a different scale values for the positive and negative weights (i.e., −

w 1, 0, w 2) while the activation keeps its floating point representation. It was able to

achieve 87.2% top-5 accuracy on the ImageNet dataset

2.3.1.2.2.2. Non-uniform quantization

Maps the data with a non-uniform distance through the usage of a mapping function

allowing the distance variation between the levels. Recent approaches follow one of three

quantization methods; either the log function quantization or the power of two

quantization or the learned one.

2.3.1.2.2.2.1. Log function quantization

The mapping function is based on the logarithmic distribution where the weights and

activations are distributed equally across different levels and each level is used more

efficiently to reduce the quantization error.

For instance, [129], uses a log2 quantization for a VGG-16 network whereas it

represents the levels using 4 bits and was able to achieve 85.4% top-5 accuracy on the

ImageNet data set, meanwhile [130] introduces the Incremental network quantization

which divide the weights into groups, perform an iterative quantization accompanied by

re-training to finally reach a 5 bits representation with 92.45% achieved top-5 accuracy

on the ImageNet data set.

2.3.1.2.2.2.2. Power of two quantization

The mapping function defines the quantization levels in a power of two fashion. This

would allow converting the power hungry frequently used multiplication operations to

the hardware friendly shift operation

For instance, [115] quantizes the weights in a power of two fashion enabling the

multiplication operation to be executed as a bit shift operation

2.3.1.2.2.2.3. Learned function quantization

Also noted as weight sharing quantization where the mapping function is determined

from the data where the function is learnt by means of learning algorithm such as k-

means clustering.

Moreover, some weights are forced to share the same value to reduce the number of

unique weights within the network. Clearly the weights are grouped using a hashing

function or a k-means method. Then each group of weights are assigned to a single value

followed by building a mapping table that is usually referred to as a codebook to map

each group of weights to its shared value. Accordingly, an index for each group in the

codebook is stored to be able to fetch the weight value back.

36

This method is beneficial to reduce the memory storage cost of the weights as well

as the energy required to move the weights from the memory to the computation unit.

An example of this method is Deep compression [131] where it modifies AlexNet to

have 256 unique weight value within each convolutional layer and 16 for the fully

connected one and it was able to achieve 80.93% top-5 accuracy on the ImageNet data

set with 35x reduction in the total network size.

2.3.1.3. Network pruning

2.3.1.3.1. General Overview

In order, to achieve higher accuracy, the network is usually designed with an over

parametrized number of weights. This can be viewed as giving the network more

parameters to be explored and tuned during the training phase. However, part of these

weight parameters ends up to be redundant and can be pruned (i.e. set to zero). Thus,

they can be removed without sacrificing the achieved accuracy during the training phase

which could result in savings regarding the number of stored weights, the energy required

for fetching them and the required number of arithmetic operations required for

processing them. This had led to a research area that focuses on pruning the network to

remove any ineffectual weights, expanding the sparsity in the weights parameters and

reduce the network complexity

Historically, it was first proposed in 1989, through the optimal brain damage

technique [132] where it tries to figure out the impact of each weight on the training loss.

After that, weights with low impact are removed and the remaining weights are fined

tuned. This procedure was repeated until reaching the required reduction in the number

of weights with the desired accuracy. However, this approach is impractical to DNN with

large size as it would be difficult to estimate the impact of each weight parameter on the

training loss.

 On contrast, recent search starting from [133] focused on eliminating the neurons

with small activity values where the weights are pruned based on the weight magnitude

which shall be a simpler and practical technique. Clearly weights with small magnitude

are pruned and the rest of weights are retrained to fine tune their values and restore back

the loss in the accuracy. Small magnitude values can be though as zero values and can

be loosen to include also the near-zero values which encompass more weights and results

in more savings without impacting the accuracy. For instance, in [133] the AlexNet

number of weights were reduced nine times while maintaining the same accuracy.

2.3.1.3.2. Area of focus

Advances in the network pruning focuses on two areas the first is how efficiently

store the sparse weight after pruning which shall need to a compression format to open

the benefits of pruning these weights and how to structure the pruning to allow their

processing on general computing platforms (i.e. CPU and GPU) without the need for any

custom hardware.

2.3.1.3.2.1. Storing Sparse weights

Compressing the sparse weights shall consider how DNN process these weights

through the matrix vector multiplication which is one of the fundamental operations

within network. There are two compressing format to be applied either the compressed

sparse row format or the column one. Compressed sparse row format when used during

the matrix vector multiplication as shown in Figure 27 requires the input vector to be

read multiple times while each output element is generated once at a time. Meanwhile,

37

compressed sparse column format as shown in Figure 28 requires only the input vector

to be read once while each output element is updated several times before generating the

final one. Compressed sparse column format is more effective than row one as it provides

an overall lower memory bandwidth given the fact the number of filters within a DNN is

not significantly larger than the number of weights encapsulated within these filters, thus

updating the output elements serval times is cheaper than reading the whole input vector

the same number of times.

Figure 27 : Compressed sparse row format during matrix multiplication

Figure 28 : Compressed sparse column format during matrix multiplication

38

2.3.1.3.2.2. Structured pruning

Structured pruning can be viewed as a coarse grained pruning where in contrast to

the fine grained pruning where individual weights are pruned based on their magnitude,

a group of weights are pruned together based on a define criteria which may be a filter

entire row or column, a filter channel, a neighboring weights in a filter or the filter itself.

Grouping weights together would be beneficial to decrease the cost of locating of non-

zero weights which would facilitate compressing the sparse weights and enable their

parallel processing using the existing general computing platforms without the need for

any customization. However, grouping large weights together would result in an

increasing accuracy loss which requires more fine tuning and carefully choosing the

grouping criteria

Applying this optimization method is used in EIE [43] which is a hardware

accelerator that uses the compressed column format to exploit the weights sparsity. In

addition to ESE [116] which is a LSTM hardware accelerator that prunes the unnecessary

weights based on an empirical pruning threshold as well as introducing a load balance

aware pruning method to increase the hardware utilization through balancing the non-

zero weights distribution among all the parallel processing units. Also, Cnvultin[32]

which allows dynamically skipping neuron computations if they are below a pre-

specified, per-layer threshold.

2.3.1.4. Activation statistics

Recently, there are many work on exploiting the generated content in the hidden

layers within the DNN networks with a focus on searching for the abundant sparsity (i.e.

existence of zero values within the intermediate data) in aim to get advantage of these

sparsity by means of compression to reduce the number of computations which shall

result in area savings as well as reducing the energy expensive access to the off-chip

DRAM.

Currently, ReLU is the main nonlinear activation function used within the state of

art networks due to its efficiency in generalizing the network as well as its simplicity.

ReLU as shown in Figure 29 set any negative values output from the neuron to zero. This

had led to generation of a large amount of zeros within the hidden layers and these zeros

are considered to be an intrinsic property of using the ReLU function. For instance,

according to [4] the feature map within the hidden layer of AlexNet can have sparsity

between 19% up to 63% depending on the layer.

Figure 29 : ReLU function

These zeros generated form the activation can further be explored when designing a

network to make an energy efficient network without any performance impact as they

don’t contribute to the final output of the network and can be optimized, whereas the

39

computations had been transformed to a sparse matrix multiplication which shall require

fewer operations when compared to a dense one meanwhile the memory access can also

be safely bypassed given its predetermined it is going to fetch a zero value.

Applying this optimization method is used in LRADNN[21] which estimates the

polarity of the inputs going to the neuron and hence, based on this polarity it can disable

some of the multiplication operations which led to a reduction in number of arithmetic

operations without much accuracy impact. Also, SparseNN[23] is another example

which adds a prediction phase to the network which involves the usage of a predictor

noted as straight through estimator that has a lightweight computation complexity to be

able to determine whether a zero exist in the activation or not. In addition to Eyeriss[48]

which uses a compression technique based on an encoding scheme noted as RLC that

exploits the zeros within the feature map to skip any unnecessary computations as well

as saves any useless DRAM access. Furthermore, Cnvlutin[32] which introduces the

Zero Free Neuron Array Format as the compression technique to eliminate the zero

activation computations

2.3.1.5. Low rank factorization

Given how the CNN is advancing, more efforts are focused on optimizing the

convolution operations which contribute to the bulk of CNN computations. Low rank

factorization is a technique that applies matrix decomposition in order to estimate the

informative parameters within a CNN. The basic idea is to view the convolutional kernel

as a four dimensional matrix where there are a lot of redundant weights. This redundancy

can be removed through decomposing this large matrix into smaller ones. To have even

more efficient computations, the decomposition is followed by another compression step

through approximating these smaller matrices by means of low rank approximation. A

demonstration for this method can be found at [138], where Canonical Polyadic (CP)

decomposition accompanied by low rank approximation was used and was able to

achieve a 4.5x speedup for the second layer of AlexNet with 1% accuracy drop.

2.3.1.6. Knowledge distillation

One way to increase the achieved accuracy is to use network ensembles where

multiple network run in parallel but with different configurations (i.e. weight

initialization) then average their predictions to get a better accuracy when compared to

running a single network. However, this shall increase the required computational

complexity. To get a better tradeoff between the accuracy and the computational cost,

knowledge distillation is used.

Knowledge distillation can be viewed as a teacher student model where a complex

network or an ensemble of networks are defined to be the teacher that is used to bootstrap

the accuracy of an architecturally different network that is more compact and shallower

that is defined to be the student. This is done by transferring the knowledge learned by

the teacher network to the student one in an aim that the student network when trained it

shall be able to mimic and reproduce the same output of the teacher or even a better one

that would not be achievable if the student was trained directly on the same data set. This

shall incorporate defining the loss function of the student during the training to be

learning the class distributions output from a softmax layer. For instance, according to

[134] using knowledge distillation helped to improve the speech recognition of a student

network by 2% which allowed it to be competitive to the teacher which is composed of

an ensemble of ten networks.

40

The way the knowledge distillation works is shown in Figure 30 where the target of

the student network is to learn the class scores of the teacher (which may be an ensemble

of networks). Class scores are used as the target rather than the class probability as the

softmax layer eliminates the small scores by pushing their probability towards 0.

However, if a softened softmax is used where the small scores are preserved and a

smoother probability distribution can be generated then the class probabilities can be

used as a target. Overall, the training objective is to minimize the squared difference

between the class scores generated from the student and the target.

Figure 30 : Knowledge distillation overview

2.3.1.7. Mathematical transformations

Several mathematical transformations are used especially in the CNN to either

reduce the required number of multiplications while maintaining the bitwise accuracy or

accelerate the execution of the multiplication operation. These types of transformations

are targeting the convolution operation where another mapping function is proposed

instead of the multiplication based mapping or the convolution is restructured in another

accelerated form. This includes Fast Fourier Transform [135], Winograd’s algorithm

[136], Strassen’s algorithm [137] and Structural matrix using relaxed Toeplitz form [4].

2.3.1.7.1. Fast Fourier Transform

Fast Fourier Transform is used to reduce the number of multiplication where the

convolution operation is done as a direct multiplication in the frequency domain. As

shown in Figure 31 the input feature map and filter are transformed in the frequency

domain, multiplied together and then inverse FFT is applied on the result to generate the

output feature map in the spatial domain. FFT is usually used with larger filter sizes (i.e.

5x5).

41

Figure 31 : FFT mathematical transformation

2.3.1.7.2. Winograd’s algorithm

Winograd’s algorithm applies a transformation for the input feature map and the

filter to generate a tile of elements in the output feature map together such that it gets

benefit from the structural similarity among them. This help to reduce the required

number of multiplication given it generates a tile of output elements at each step. It is

usually used in smaller filter such 3x3 where according to [4] it was able to reduce the

number of multiplication by 2.25x.

2.3.1.7.3. Strassen’s algorithm

Strassen’s algorithm reduces the number of multiplication through the

rearrangement of the matrix multiplication in a recursive manner. However, it suffers

from occasional numerical stability as well as more storage requirements.

2.3.1.7.4. Structural matrix

Structural matrix using a relaxed Toeplitz form as shown in Figure 32 is used to

speed up the matrix multiplication by extending the feature map with redundant elements

to allow its parallelization. However, this shall come with an inefficient increase in the

storage cost and adding extra complexity to the access memory patterns

Figure 32 : Structural matrix using a relaxed Toeplitz form

42

2.3.2. Network Implementation

2.3.2.1. General Overview

There are many approaches to implement a network; Starting from using a low level

language such python, matlab and CuDNN until using a high level framework such caffe,

tensorflow and keras.

While low level languages provide a full control on the implementation where it is

feasible to customize the network operations and apply any optimization method (i.e.

quantization), it consumes much time to develop the network from scratch given there

are no ready plug and play DNN functions. Also, the network execution time is dependent

on the code quality which in return reflects the experience of the code owner leading to

more hassles in the implementation part rather than the architecture part.

Meanwhile, high level framework provides open source DNN libraries that

implement the common training and inference operations which ease the network

development, enable sharing the trained networks, leverage the accumulated experience

among the whole ML community. However, customizing an operation would require

modifying the open source code of the provided libraries which puts a barrier that

consumes a lot of efforts to establish new ideas

2.3.2.2. Low level languages

2.3.2.2.1. Python

An open source general purpose programming language which is built on a

collection of generic built in libraries. It is widely used in web applications, mathematical

scripting as well as being popular in ML applications where most of the higher level

frameworks are built on the top of it.

2.3.2.2.2. Matlab

A commercial programming language that provides a deep learning toolbox

facilitating the optimization of the deep learning functions. It is also capable to

automatically convert the written code to C++ or RTL code

2.3.2.2.3. CuDNN

The NVIDIA CUDA Deep Neural Network library (cuDNN) is a NVIDIA GPU

based accelerated library of primitives for deep neural networks. It provides highly

optimized implementations for commonly used DNN functions.

2.3.2.3. High level framework

2.3.2.3.1. Caffe

Convolutional Architecture for Fast Feature Embedding was developed by

university of California Berkeley as an open source deep learning framework that can be

viewed as a cross platform that supports C/C++, python and matlab. It provides an

implementation that can run on both CPU and GPU.

2.3.2.3.2. Tensor flow

An open source framework developed by Google Brain Team and can support C++

and python. It is computation flow can be expressed in a single dataflow graph that

43

manages all the tensor operations. It provides an implementation that can run on both

CPU and GPU

2.3.2.3.3. Torch

An open source framework developed by Facebook and New York university and

can support C++ and Java. It provides an implementation that can run on both CPU and

GPU. It is no longer under active development.

2.3.2.3.4. Pytorch

An open source framework developed by Facebook’s AI research group as a

successor for torch and can support C and python. It integrates acceleration libraries such

as IntelMKL and NVIDIA (cuDNN, NCCL). It supports a technique noted as reverse

mode auto differentiation which all to change the way a network operates with small

effort rather than starting to build it from scratch. It provides an implementation that can

run on both CPU and GPU.

2.3.2.3.5. Theano

An open source python library developed by University of Montreal. Theano starts

performing computations by optimizing the selection of computations, translates them

into other languages such as C++ or CUDA and then compiles them into Python modules

in an efficient way on CPUs or GPUs. It provides an implementation that can run on both

CPU and GPU and it is No longer under active development.

2.3.2.3.6. CNTK

Microsoft Cognitive Toolkit (CNTK) is an Open source deep learning framework

developed by Microsoft Research and supports python, C++ and C#. It converts any

function to a directed graph where each leaf node consists of an input value or learning

parameter, and other nodes represent a matrix operation upon their children. It provides

an implementation that can run on both CPU and GPU.

2.3.2.3.7. Keras

An open source framework founded by Google engineer Chollet as a part of research

project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System)

and it can support python. It can be viewed as a higher level library that can run over

Tensorflow, Theano and CNTK to unify the development experience and allows faster

development. It provides an implementation that can run on both CPU and GPU.

44

Chapter 3 : Convolutional Neural Network Architectures

Review

During the last several decades, many CNN architectures had been developed that

differ in terms of number of layers, layer shapes, layer associated parameters (i.e. filter

size, number of channels) and how the layers are connected to each other to allow the

propagation of feature maps.

Most of the recent architectures were driven by the ImageNet competition [64] where

most of them had competed and the innovative ones had won it. ImageNet competition

is a tourney with many different tracks.

One of the tracks that remarks the breakthrough of the CNN approach is the image

classification. Clearly, before the CNN paradigm the error rate achieved was around 25%

however starting from 2012 when AlexNet[65] was introduce by a group from Toronto

university were they applied the CNN accompanied by the usage of GPUs for training

and successfully dropped the error rate to 16% had marked the start of shift from

traditional approaches towards the CNN based approach.

Over the years starting from 2012 as shown in Figure 33, the CNN had continued to

improve the error rate in the ImageNet challenge with a significant milestone at 2015

when the ResNet[29] had been introduced whereas it was able to suppress the human

level accuracy. Furthermore, from [64] the entrants in the ImageNet challenges that are

using GPUs had increased from four entrants only at 2012 when AlexNet was used to

110 entrants at 2014 indicating the domination of the CNN approach.

Figure 33 : ImageNet top-5 error accuracy versus different networks progress over

years

In this chapter, different CNN are explored starting from LeNet-5[64] until the

ResNet[29].

45

3.1. LeNet-5

LeNet-5[64] was introduced in 1989 as one of the first CNN that was designed for

the digit classification task on the MNIST grayscale images [62]. Hand written digit

recognition was widely used at that time by ATMs for digit recognition on checks

enabling the first commercial use of the CNN through LeNet-5 deployment in ATMs to

automatically identify the check deposit digits.

As shown in Figure 34, it is composed of two convolutional layers, two average

pooling layers and two fully connected ones. The convolutional layer is based on kernel

of 5x5 size where six of them are used in the first layer while 16 are used in the second

one. After each convolutional layer a sigmoid function is applied as the nonlinear

transformation function followed by 2x2 average pooling layer.

Figure 34 : LeNet-5 architecture from [64]

In general, it had 60,000 weight parameter and was able to achieve to 99.05%

accuracy on the MNIST data set

3.2. AlexNet

AlexNet [65] was introduced in 2012 and the first CNN based network to win the

image classification track within the ImageNet Challenge.

As shown in Figure 35, it is composed of five convolutional layers, three maximum

pooling layer and three fully connected ones. Each convolutional layer may have kernels

of 3x3 to 11x11 size with number of kernels varying from 96 to 384 and from three to

256 generated channels depending on the location of the convolutional layer within the

network. After each convolutional layer a ReLU for the first time in a CNN is applied as

the nonlinear transformation function and the first, second and fifth convolutional layer

are followed by a 3x3 maximum pooling.

46

Figure 35 : AlexNet architecture from [65]

The key differences between AlexNet and the LeNEt-5 are the increased number of

weights, the kernels varying size and the usage of the LRN as a normalization technique

after the first and second convolutional layers.

 In general, it has 61 million weight parameters and was able to achieve 16.4% top-

5 error on the ImageNet data set.

3.3. ZFNet

ZFNet[104] was introduced in 2013 and was the winner of image classification track

within ImageNet challenge.

It is a refinement version from AlexNet where the 11x11 kernels are replaced by 7x7

ones and the number of activation kernels were changed to 512 or 1024 depending on the

location of the convolutional layer.

It has the same AlexNet structure with five convolutional layers, three maximum

pooling layers and three fully connected ones.

In general, it was able to achieve 11.2% top-5 error on the ImageNet data set.

3.4. Overfeat

Overfeat [96] was introduced in 2013 and was the winner of the object detection

track in the ImageNet challenge.

It follows AlexNet in the structure with five convolutional layers, three maximum

pooling layers and three fully connected ones.

The main difference is that number of kernels are varied up to 1024 within the

convolutional layers based on the layer location within the network.

In general, it has 146 million weight parameters and was able to achieve 14.2% top-

5 error on the ImageNet data set.

3.5. VGG

VGG [97] was introduced in 2014 and was the winner of the object detection track

in the ImageNet challenge as well as the first runner up of image classification track.

It was one of the first attempts to explore the depth aspect of the CNN. To tradeoff

between going deeper and the exponential growth of the number of weights parameters,

47

it fixes all the kernels size within the network to 3x3 size which has fewer weights

parameters compared to larger ones, meanwhile these larger kernels can be built using

multiples of the smaller kernels. Decomposing larger kernels into a stack of smaller ones

had shown to be fruitful from many aspects; first it attains the same effective respective

field of the larger kernels for instance as shown in Figure 36 where a 5x5 kernel can have

the same effective receptive field of two stacked 3x3 kernels, second it incorporates

multiple apply of the nonlinear transformation function allowing the classification

function to be more discriminative , again for instance a 5x5 kernel shall be followed by

applying a single nonlinear function ,meanwhile applying the nonlinear function can

follow each kernel from the two stacked 3x3 kernels and finally it decreases the required

learnable parameters , back for instance to the 5x5 kernel which shall have 25 weight

parameters per channel while the two stacked 3x3 kernels shall have 18 only.

Figure 36 : 5x5 kernel decomposed into two 3x3 kernels

The VGG network shall have a generic structure where it keeps the kernel size fixed

at 3x3 while gradually increasing the depth of the network by stacking more

convolutional layers, actually as the network goes deeper the generated feature map

within each layer is modified through a fixed fashion whereas the number of kernels

applied that shall represent the number of generated channels is doubled while the

generated height and width dimensions is halved. In general, VGG has three popular

variants VGG-11, VGG-16 and VGG-19.

VGG-11 as shown in Figure 37(a) is composed of eight convolutional layers, five

maximum pooling layers and three fully connected layers with total 133 million weight

parameter and top-5 error of 10.4% on the ImageNet data set. VGG-16 as shown in

Figure 37(b) is composed of 13 convolutional layers, five maximum pooling layers and

three fully connected layers with total 138 million weight parameter and top-5 error of

7.4% on the ImageNet data set. VGG-19 as shown in Figure 37(c) is composed of 16

convolutional layers, five maximum pooling layers and three fully connected layers with

total 144 million weight parameter and top-5 error of 7.3% on the ImageNet data set.

48

Figure 37 : (a) VGG-11 (b) VGG-16 (c) VGG-19

49

3.6. NiN

Network in Network (NiN) [105] was introduced in 2014 and didn’t participate in

the ImageNet challenge, however it is considered the precursor for dimension reduction

of the inception module used in GoogLeNet network and the bottleneck module used in

the ResNet networks.

It introduced the Mlpconv layer (Multilayer perceptron convolutional layer) where

it replaced the linear convolutional kernel and its subsequent nonlinear activation

function by a micro multilayer perceptron. The feature map then can be generated by

sliding this layer over the input in a similar manner to the normal convolutional layer but

with a multilayer perceptron way of computation. The intuition is that if a fully connected

layer is applied at each point within the feature map (each height and width) and the

weights of this layer is tied across each spatial location then this would be analogous to

utilizing a 1x1 convolutional kernel. 1x1 kernels are beneficial in terms of preserving the

spatial dimensions (height and width) of the feature map while reducing the depth

(channels) to lower dimension (i.e. as if it is generating a combination of feature maps)

3.7. GoogLeNet

Also referred to as Inception [98] that was introduced in 2014 and was the winner of

image classification track within ImageNet challenge. Since its introduction it was

followed by three versions [99], [100] and [101].

3.7.1. First version

The first version introduced the inception module and started to go deeper with the

number of the layers within the network.

The motive behind the inception module is to improve the utilization of the

computation resources through moving fundamentally from a fully connected

architecture to a sparsely connected one. The idea behind that, if the data set probability

distribution can be represented by a large sparse network, then the optimal network

topology can be constructed layer by layer through analyzing the correlation statistics of

the activations of the last layer and clustering neurons with highly correlated outputs. To

illustrate more, assume the neurons in the earlier layers close to the input shall correspond

to some regions in the input image where highly correlated ones would mean that they

are concentrating on the same local region and can be clustered. Moreover, some of these

clusters may end up concentrating on a single region and can be covered in the next layer

through a 1x1 convolution kernel. Similarly, there would be spatially spread out clusters

that can be covered using convolutions over large patches which can be approached using

higher order convolution kernels such as 3x3 and 5x5 kernels. Hence, the optimal local

sparse architecture can be approximated and constructed through the combination of all

those kernels where all their outputs are concatenated into a single output forming the

feature map for the next layer.

Thus the naïve inception module as shown in Figure 38 unlike the proceeded

networks has parallel structured connections within the same layer instead of a single

direct connection whereas different kernels size (mainly 1x1, 3x3, and 5x5 kernels) and

a maximum pooling layer are concatenated together.

50

Figure 38 : Naïve Inception module

This module shall enable the processing of visual data at various scales where the

large kernels shall capture the features distributed globally, meanwhile the small kernels

shall capture the features distributed locally so that abstract features from different scales

are aggregated together to next layer

This naïve inception module even if it can cover the optimal sparse structure, the

existence of the maximum pooling layer accompanied also by the overall network depth

would lead to an exponential growth in the number of learnable weights blowing up the

computational resources, thus 1x1 convolutional kernels were applied as a dimension

reduction modules for any expensive operation. For instance, before 3x3 kernel, before

5x5 kernel and after the maximum pooling to reduce the number of generated channels

within the feature map. Thus depth of network is allowed to be increased without a

significant computational penalty. Also, these 1x1 convolutional kernels is associated

with applying nonlinear function activation enabling them to have a dual propose. Figure

39 shows the inception with dimension reduction

Figure 39 : Inception module with dimension reduction

51

In general, it is composed of 22 layers divided into three traditional convolutional

layers, 18 inception modules and one fully connected layer. It was able to achieve top-5

error of 6.7% on the ImageNet data set with a total 7 million weight parameters.

3.7.2. Second version

The second version was introduced in 2015. It mainly introduces the batch

normalization and a new variant from the Inception module.

Batch normalization is the most popular normalization layer used nowadays. The

need for normalization arises as the network goes deeper the training is usually

complicated given the internal covariate shift fact where the distribution of network

parameters changes from one layer to another due to the variation of network activations

per layer requiring the layer to adapt continuously to the new distribution. Meanwhile,

the training converges faster in case of whitened inputs where inputs have zero mean and

unit variance.

Batch normalization seeks to reduce the internal covariate shift by observing the

activation output from each layer to whitened it before going to next layer. It can be

applied on both fully connected and convolutional layers with a special attention to the

convolutional property. It is required that the normalization obeys this property such that

different elements at different locations within the feature map are normalized in a similar

manner. This shall require the joint normalization of all activation in a mini batch across

all location.

However, one drawback back of normalizing each the inputs of layer is it may

change what a layer can represent, thus batch normalization introduces two learnable

parameters the scale and shift values to ensure the transformation inserted in the network

can represent back the identity transform. These parameters are trained with the learnable

weights parameters and allow the network to restore back its representation power.

The new inception variant basically decomposes each 5x5 convolutional kernel by a

stack of two consecutive 3x3 kernels similar to the VGG network to reduce the number

of weights and the associated required computations. In addition to, employing average

pooling in some inception modules while in other maximum one is used.

In general, this variant is composed of 32 layers divided into two traditional

convolutional layers, 30 inception modules and no fully connected layer. It was able to

achieve top-5 error of 7.8% on the ImageNet data set with a total 8.75 million weight

parameters.

3.7.3. Third version

The third version was introduced in 2015 and it introduced a new Inception variant

which was the first runner up of image classification track within ImageNet challenge.

The new variant scale up the depth of the network while maintaining the

computations efficiency through factorizing the large spatial kernels into smaller ones.

Convolutions done through large filters as 5x5 filters can span a wide geometric area of

the feature achieving more expressiveness in the extracted feature due to its ability to

extract more dependences between the generated activations. However, they require

more computations when compared to smaller kernels. For instance, 5x5 kernel has 25

parameters while 3x3 kernel has 9 parameters meaning that a 5x5 kernel is 25/9 = 2.78

times computationally expensive than 3x3 kernel. In a vision task, it is expected that

adjacent activation units shall generate highly correlated outputs. Thus, these activation

52

units can be dimensionally reduced followed by spatial aggregation them without losing

much information and hence results in similar expressive local representations.

Therefore, a 5x5 kernel can be replaced with two sequential 3x3 kernels with a negligible

loss in the futures expressiveness.

The 3x3 kernel can even be factorized using the asymmetric kernels (i.e. nx1) to

achieve more reduction in the computations. For example, a 3x3 kernel can be

decomposed into a 3x1 kernel followed by 1x3 one as shown in Figure 40 with around

33% computation savings.

Figure 40 : Decomposing 3x3 kernel into asymmetric kernels

Thus, hypothetically any n x n kernel can be replaced by 1xn kernel followed by nx1

kernel and this led to the introduction of a new inception module shown in Figure 41.

However, practically this type of factorization doesn’t perform well at the network early

layers requiring their usage at the mid to the end layers.

Figure 41 : New Inception module with nx1 and 1xn factorized kernels

53

In general, this variant is composed of 42 layers that was able to achieve top-5 error

of 5.7% on the ImageNet data set with a total 29.3 million weight parameters.

3.7.4. Fourth version

The fourth version was introduced in 2016 and it introduce a new variant that

combines the Inception module with the residual connections introduced in [29] as shown

in Figure 42.

Figure 42 : Inception module accompanied by residual connection

In general, this variant is composed of 164 layers that was able to achieve top-5 error

of 4.9% on the ImageNet data set with a total 55.93 million weight parameters.

3.8. ResNet

Also known as Residual Net [29] was introduced in 2015 and was able to win all the

tracks within the ImageNet challenge. It is considered the first network to exceed the

human level performance in the ImageNet challenge with top-5 error below 5%. Since

its introduction, it was followed by another version [102].

54

3.8.1. First version

The first version introduces the shortcut module and similar to the previous networks

it attempts to increase the depth of the network.

Depth aspect is proven to be crucial for network performance, however straight

forward stacking of more layers had been shown to degrade the performance once the

network starts to converge where the accuracy starts to saturate followed by a rapid

degradation. Such degradation is not argued to overfitting only but also the optimizer

may have faced difficulties during resolving the cost function. This can be explained

through the assumption of having a shallow architecture where a deeper counterpart

architecture that adds several layer onto it can produce no higher training error compared

to the shallow exits if the added layers are identity mapping ones.

The shortcut module is inspired from the aforementioned degradation problem

where the optimizer may have faced difficulties when trying to approximate the multiple

nonlinear transformation layers into identity mappings. As shown in Figure 43, it

contains an identity connection to allow the network to skip the convolutional layers such

that if the optimal function to be learnt is closer to the identity mapping, the optimizer

shall easily find the perturbations with reference to an identity mapping rather than to

learn the function. Furthermore, this module doesn’t add any extra parameters.

Figure 43 : Shortcut module

Another module is introduced which is the bottleneck module. It modifies the

shortcut module to reduce the learnable weight parameters as well as the training time

through the usage of 1x1 kernel. This is done as shown in Figure 44 by replacing the two

layers stack with a three one in which the three layers are stacked as 1x1 kernel, 3x3

kernel and 1x1 kernels where the 1x1 kernels are used to reduce and then restore the

55

dimensions, leaving the 3x3 kernel as a bottleneck with smaller input and output

dimensions.

Figure 44 : Bottleneck module

In general, ResNet follows the same philosophy of the VGG where it is constrained

to use only 3x3 kernel, all layers with the same output feature map dimension shall have

the same number of filters and the number of filters is doubled as the network goes deeper

with the feature map size is halved. The main modification is the insertion of the

bottleneck modules which convert the network to a residual version. It has three popular

variants ResNet-50, ResNet-101 and ResNet-152.

ResNet-50 is composed of one convolutional layer, 16 bottleneck modules each shall

have three convolutional layers and one fully connected layer with total 25.5 million

weight parameter and top-5 error of 5.25% on the ImageNet data set.

ResNet-101 is composed of one convolutional layer, 33 bottleneck modules each

shall have three convolutional layers and one fully connected layer with total 44.5 million

weight parameter and top-5 error of 4.6% on the ImageNet data set.

ResNet-152 is composed of one convolutional layers, 50 bottleneck modules each

shall have three convolutional layers and one fully connected layer with total 60 million

weight parameter and top-5 error of 4.49% on the ImageNet data set.

56

3.8.2. Second version

The second version was introduced in 2016. It mainly analyzes and conducts some

experiments on the residual network attempting to create a direct path for the propagation

of information within the entire network instead of the shortcut module only. It also

introduces a new variant from the ResNet.

A new shortcut module as well as its counterpart bottleneck module are introduced

which are shown in Figure 45 (a) and (b) respectively where the identity connections are

kept as the direct path for information propagation, meanwhile the nonlinear activation

function are rearranged such that the ReLU and the added batch normalization are used

as a pre-activation functions such that the activation is moved to residual mapping

pathway.

Figure 45 : (a) Modified shortcut module (b) Modified bottleneck module

57

In general, it has introduced two new variants ResNet-152 and ResNet-200.

ResNet-152 is composed of one convolutional layers, 50 bottleneck modules each

shall have three convolutional layers and one fully connected layer with total 60 million

weight parameter and top-5 error of 5.5% on the ImageNet data set.

ResNet-200 is composed of one convolutional layers, 66 bottleneck modules each

shall have three convolutional layers and one fully connected layer with total 64.7 million

weight parameter and top-5 error of 4.8% on the ImageNet data set.

3.9. Conclusion

Figure 46 summarizes the evolving networks since AlexNet where obvious trends

across these networks can be observed

Figure 46 : Different networks compared according to their size, number of operations

and Top-1 accuracy from [106]

Firstly, the attempt to improve the network accuracy through increasing the size of

the networks in terms of depth which is reflected in number of layers within the network

as well as the width which is reflected in number of units per layer. The network size

increase can be beneficial through the increase of the number of nonlinear functions

applied allowing the network to be more discriminative and increasing the number of

abstracted learned representation hierarchy. However, this shall come with a price in

terms of dramatically increase in the required computational resources to train the

network and the network tendency to over fit. To overcome these problems while being

able to increase the network size, computation efficient networks which start to modify

shape of layers and their connection were innovated as shown in the Inception and

ResNet networks

Secondly, the number of fully connected layers are reduced moving most of the

computations and learnable weights to the convolutional layers. Moreover, networks like

Inception doesn’t include a one

Thirdly, the network kernel size tends to be more compact. A kernel size can vary

from very large size (i.e. 11x11 as in AlexNet) to a very small one (i.e. 1xn or nx1 as in

Inception). Decomposing large kernels into a set of cascaded smaller ones can reduce the

58

computation complexity and the number of learnable parameters through the replacement

of the loose and over parametric kernels with compact ones, meanwhile applying these

smaller kernels sequentially can maintain the overall effective receptive field achieving

almost the same network performance. Moreover, kernels decomposition can be

beneficial in increasing the number of nonlinear transformation applied enhancing the

network capability to be more discriminative

59

Chapter 4 : Exploring Convolutional Neural Networks

Different Layers

As illustrated in the previous chapter, the current trend in designing CNN is to

modify the structure of its layer either by introducing a new convolutional kernel (i.e.

1x1 convolution) or the connection between different kernels within its layer (i.e.

Inception [98] or ResNet[29]) before starting to increase the depth of the network.

Network modification on the architecture level had shown to be fruitful achieving a

significant enhancement in the performance

In this chapter, exploring different modification in the CNN layers whether the

convolutional or the pooling was done with the aim to introduce a new mapping function.

4.1. Basic Setup

To start exploration, it is required to choose the application task, followed by

defining the target data set, then switching to choose an efficient framework and finally

defining the platform to run out the experiments upon it.

The selected application shall be image classification given it is the common task

used to evaluate the evolving networks as well as being the basis for other computer

vision tasks such as object detection and localization.

The picked out Data set shall be CIFAR-10[63] where it is considered as an

acceptable data set used in experimenting some of the state of art networks as NiN[105]

and ResNet[29], meanwhile having an average complexity when compared to

MNIST[62] which is very easy and tiny one and the ImageNet[64] which is a huge data

set that requires a very expensive computational infrastructure

The chosen Framework shall be Keras with TensorFlow as backend [107]. Keras is

a widely adopted framework with a lot of online supports. The keras flow as well as its

associated key image data generator class is described in Appendix one

Among the different available computing platforms available, google compute

engine and amazon web services were used interchangeably across this work. These

platforms are equipped with a high end GPUs such as V100 enabling deep networks

experimenting and training. More about the computing platforms can be found in

Appendix two

4.2. Baseline network

The network used in the experiments of this chapter is inspired from VGG [97],

where it follows its footsteps as shown in Figure 47 from fixing the kernel size to 3x3 to

using two convolutional layers with same number of kernels before halving the feature

map through the usage of a maximum pooling layer. A fully connected layer is then

applied at the end to generate the logits of the target classified class

60

Figure 47 : Baseline network

4.3. Convolutional layer modification

4.3.1. Pseudo Rotated Kernels

Reviewing back the basic convolution operations as shown in Figure 48 where

spatial image filtering is done through convolving a trainable weight kernel with an input

image to generate the feature map going to next layer.

Figure 48 : Basic convolutional operation

From an operation point of view, this can be shown as modifying the intensity of a

pixel according to the intensities of the neighboring pixels. Another point of view, is the

61

mathematical one, where this operation is actually a cross correlation one where actual

convolution requires rotating the filter by 180 degrees before convolving it with the input.

This is the initial inspiration of applying the pseudo rotation kernels, where the

network can benefit from the usual cross correlation function in addition to allowing it to

perform an actual convolutional one using a rotated kernel with 180 degrees enhancing

its capabilities in extracting more useful features. Figure 49 shows a cross correlation

kernel with a zero degree rotation and its convolution kernel pair with 180 degree

rotation).

Figure 49 : (a) Zero degree rotated kernel (b) 180 degree rotated kernel

Using this pair of kernels, the baseline network can be modified as shown in Figure

50 with a note here is the generated feature map is almost doubled.

Figure 50 : Modification to baseline network to account for the 180 degree rotated

kernel

62

Moreover, the idea of rotating kernels can get more insights from image processing

techniques, where the feature detectors like Robert Cross edge detection or Sobel edge

detectors are based on rotating kernels where a pair of zero degree kernel and a 90 degree

rotated one are applied to extract the features. Hence, generalizing the rotating kernels to

have a 90 degree rotated kernels as shown in Figure 51 would be fruitful.

Figure 51 : Pairs of 90 degree rotated kernels starting from(a) a zero one to (d) 270

degree rotated kernel

Another modification for the baseline is required in accordance to applying the 90

degree rotated kernels one as shown in Figure 52.

Figure 52 : Modification to baseline network to account for the 90 degree rotated kernel

63

However, to squeeze the idea more, an attempt to rotate the zero degree kernels by

45 degree won’t be feasible as it requires the kernel shape to be a trapezoid, thus to

overcome this limitation an approximation can be done to divide the 90 degree rotation

into two steps as shown in Figure 53 where one step is to rotate the kernel in the required

90-degree manner but with a shuffled kernel and the second step is to rearrange the kernel

to obtain the 90 degrees rotation kernel. The first step can be considered as a pseudo 45

degree rotation meanwhile the second step is usual 90 degree rotation.

Figure 53 : Pairs of pseudo rotated 45 degree kernels starting from(a) a zero one to (h)

315 degree rotated kernel

The modification of the baseline to account for the pseudo 45 degree rotation can be

shown in Figure 54.

Figure 54 : Modification to baseline network to account for the 45 degree rotated kernel

64

When analyzing the aforementioned approximation, it can be shown that the step of

rotating the kernel into a certain direction is a mandatory one given that the 90 degree

multiples have a straight forward structure while the pseudo intermediate rotation step

which includes kernel shuffling is an arbitrary one given the way of arranging the kernel

was a subjective one.

This would lead to generalizing the pseudo rotation steps more by assuming their

shuffling before reaching the 90 degree multiples can be divided into more fine steps that

can cover all the available shuffles. This is what pseudo 15 degree rotation does as shown

in Figure 55.

Figure 55 : Pairs of pseudo rotated 15 degree kernels starting from(a) a zero one to (x)

345 degree rotated kernel

Also, the modification of the baseline to include the pseudo 15 degree rotation can

be shown in Figure 56.

Figure 56 : Modification to baseline network to account for the 15 degree rotated kernel

65

The 15 degree pseudo rotated kernels actually would lead to the creation of the

pseudo rotated kernels design space as shown in Figure 57, where there is a pool of

pseudo rotation kernels along the rotation circle with an arbitrary choice during the

design of the network to choose which of them to be applied. This can be viewed as

adding a new kernel type in the network optimization problem similar to how NiN[105]

added a new dimension in optimizing the kernels through the introduction of the 1x1

kernel.

Figure 57 : Pseudo rotated kernels circle design space

Table 1 shows the comparison of achieved accuracy from the baseline network and

its modified versions as well as the number of increased parameters after training them

for 10 epochs

Network Top-1 error Number of parameters/ Computation

ratio

Baseline 34.06 % 1x

Modified with 180

degree kernels

31.56 % 2x

Modified with 90

degree kernels

33 % 4x

Modified with 45

degree kernels

33.4 % 8x

Modified with 15

degree kernels

33.7% 24x

Table 1 : Comparison between Baseline network and its pseudo rotated modified

versions

The results obtained from the modified networks are promising given that they

showed some enhancements in the accuracy with only few number of epochs

66

The intuition here is that the pseudo rotated kernels interact with the affine

transformation which is the core foundation of the ML theory through its translation and

rotation methods. Translation method is established in the CNN by means of the

convolutional kernels (recall it is actually a cross correlation one) where the pseudo

rotated filters widen this method by enabling the network to perform the usual cross

correlation function accompanied by the actual convolution one by means of the 180

degree rotated kernel, meanwhile the pseudo rotating kernels enhance the rotation

method by providing a set of arbitrary chosen rotated kernels at each layer. Moreover,

the pseudo rotated kernels increase the robustness of translation invariance property of

the network by providing the feature map rotated in several ways as if the network is

capable to rotate the feature map at each layer. This may be viewed as if the network has

become self augmented where it has its own self augmentation methods.

A final note to be mentioned is that modifying the kernel size to larger sizes (i.e. 5x5

kernels) to have more pseudo rotation degree steps is assumed to be non-beneficial given

the current shown benefit from the state of the art networks in making the kernel size

more compact. Furthermore, increasing the kernel size will come with a huge

computational cost penalty from the larger kernel its self and its associated pseudo rotated

ones making the training process non feasible. For instance, a 5x5 kernel with its 90

rotated kernel shall require 100 learnable weigh while the 3x3 kernel shall require 36

only meaning that the a single 5x5 kernel requires approximately 2.7 extra computation

power to be trained.

4.3.2. Kernels Mathematical derivations

Another approach to modify the convolutional layer is to introduce some

mathematical relations between different kernels in analogous to how the MFFCs filter

bank in speech recognition is constructed to extract the features. This filter bank

performance was enhanced through correlating different filters together by means of

averaging each two successive one to generate a new one that can benefit from the

previous and the subsequent filter. This can be viewed as introducing an intermediate

kernel that can hopefully generate a new useful feature from the already feature trained

kernels.

One potential relation as shown in Figure 58 is to generate a new kernel between

every two successive kernels through either averaging them or using one of the basic

operations such as addition, subtraction, multiplication and division or a complex one

such as geometric mean, root mean square and the logarithmic mean.

67

Figure 58 : Adding a derived kernel between every two successive kernels

The intuition here is that if the kernels are concentrating on correlated regions to

generate different features then introducing an intermediate one can benefit from both of

them to capture a new feature that would be captured only using a larger kernel or when

processed in the next layer. This can be beneficial to the learning process of the network

as if it is equipped with a larger kernel. The modification to the base line network can be

shown in Figure 59.

Figure 59 : Modification to baseline network to account for the kernels derived from

every two successive ones

68

Table 2 shows the comparison of achieved accuracy from the baseline network and

its modified versions as well as the number of increased parameters after training them

for 10 epochs

Network Top-1 error Number of parameters/

Computation ratio

Baseline 34.06 % 1x

Modified with Average by 2 34.4 % 1.97x

Modified with Addition 35.5 % 1.97x

Modified with Subtraction 34 % 1.97x

Modified with Multiplication 34.2 % 1.97x

Modified with Division 90 % 1.97x

Modified with Geometric

mean by 2

39 % 1.97x

Modified with Root mean

square by 2

42.25 % 1.97x

Modified with Logarithmic

mean by 2

90 % 1.97x

Table 2 : Comparison between Baseline network and its modified versions to account

for derived kernels between every two successive kernels

The results obtained are a disappointing one as the network didn’t benefit from the

introduced kernels showing that the kernels weren’t correlated enough to allow the

generation of new kernels that can benefit from how the kernels overlap on the same

region to generate different features.

One modification to the generated kernel is to increase its size allowing more regions

to be overlapped and hence increasing the probability of correlating the kernels together.

The kernel size is increased to 5x5 as shown in Figure 60

Figure 60 : Adding a derived kernel between every two successive kernels with an

increased size to 5x5

69

Also a modification to the base line network is done in accordance which can be

shown in Figure 61.

Figure 61 : Modification to baseline network to account for increasing the derived

kernels from every two successive kernels size to 5x5

Table 3 shows the comparison of achieved accuracy from the baseline network and

its modified versions as well as the number of increased parameters after training them

for 10 epochs

Network Top-1 error Number of parameters/

Computation ratio

Baseline 34.06 % 1x

Modified with Average by 2 38.3 % 5.46x

Table 3 : Comparison between Baseline network and its modified version to account for

increasing the size of the derived kernels between every two successive kernels to 5x5

The results didn’t improve showing that this may be the wrong dimension of

modification.

 However, another dimension is to increase the window of averaging instead of 2

only may be using 4 or 8 or even start to bias the averaging using a weighted one may

enhance the accuracy. Figure 62 shows the averaging by 4, while Figure 63 shows the

averaging by 8. The modification to the baseline in accordance to averaging by 4 and 8

can be shown in Figure 64 and Figure 65 subsequently.

70

Figure 62 : Adding a derived kernel between every four successive kernels

Figure 63 : Adding a derived kernel between every eight successive kernels

Figure 64 : Modification to baseline network to account for the kernels derived from

every four successive ones

71

Figure 65 : Modification to baseline network to account for the kernels derived from

every eight successive ones

Table 4 shows the comparison of achieved accuracy from the baseline network and

its modified versions as well as the number of increased parameters after training them

for 10 epochs

Network Top-1 error Number of parameters/

Computation ratio

Baseline 34.06 % 1x

Modified with Average by

4

34.1 % 1.9x

Modified with Average by

8

34.03 % 1.78x

Modified with Weight

Average by 4

34 % 1.9x

Modified with Weight

Average by 8

34.34 % 1.78x

Table 4 : Comparison between Baseline network and its modified version to account for

increasing window of derived kernels to be four and eight successive kernels

The results didn’t show any improve which suggests that this method mightn’t be

beneficial for image processing in contrast to speech recognition. This can be regarded

to the fundamental difference between both of them, where image processing is spatially

correlated while speech recognition is timely correlated. Thus, correlating the kernels can

benefit from the sequential nature of the speech recognition and the subsequent kernels

can be correlated together, meanwhile image processing has spatial nature where the

intensity of a group of pixels are correlated to each other requiring the kernels to be

spatially correlated which is inherited in the convolutional kernels through sharing

weights

72

4.4. Pooling layer modification

These layers are used to reduce the feature map dimensions mainly the height and

width with the maximum and average layers being the widely used nowadays.

Another similar method which is used in image processing is the Median layer. As

shown in Figure 66 it is similar to the average layer where it applies the averaging on the

pixel to subsample the feature map to the required dimension. However instead of

averaging all the window pixels, it rearranges the window such that it can focus only on

the middle ones allowing their average only (i.e. obtaining the mean). The advantage of

this layer over the others is in its ability to smooth the feature maps where it discards any

intensity overshoot in the pixels within the window that can be viewed as

unrepresentative to the surrounding pixels.

Figure 66 : Median Layer

The modification of the base line network in accordance to using median layer can

be shown in Figure 67.

73

Figure 67 : Modification of the base line network to use the median layer

Table 5 shows the comparison of achieved accuracy from the baseline network and

its modified versions as well as the number of increased parameters after training them

for 10 epochs

Network Top-1

error

Number of parameters/

Computation ratio

Baseline Maximum pooling

Layer

34.06 % 1x

Baseline Average pooling Layer 34.2 % 1x

Modified with Median Layer 34.4% 1x

Table 5 : Comparison between Baseline network and its modified version to account for

using median layer

The median layer didn’t introduce any accuracy enhancement and this can be

regarded to the fact that median layer is used in image de-noising problems where it is

required to recover a contaminated image unlike the cifar-10 data set or any other CNN

well known image classification data sets where a preprocessing step is done while

collecting the images to ensure that all the images have similar distribution of intensities

without any overshooting one.

74

Chapter 5 : Proposed Pseudo Rotated Nets

In this chapter, the generalization of the pseudo rotated kernels is proposed where

full networks with different configuration are implemented demonstrating the accuracy

enhancements achieved by fusing these kernels into the well-known architectures such

as ResNets[29] and VGG[97] when applied on the CIFAR-10 data set[63].

5.1. ResNet Based networks

The ResNet was chosen to be the core architecture given its popularity, proven

training time enhancement and the breakthrough accuracy achieved in all the ImageNet

competitions. Moreover, the ResNet authors had created modified versions to experiment

on CIFAR-10 data set enabling a start network that is ready for modifications as well as

published results to compare with.

 The start point for modification is the second version [102] where the pre activation

bottleneck convolutional layer was introduced. The bottleneck layer is modified as

shown in Figure 68 to account for the addition of the pseudo rotated kernels to be

considered as the core layer of the network.

Figure 68 : Bottleneck modification for pseudo rotated kernels

75

This layer was modified to generate four versions one with the 180 degree rotated

kernel pair as shown in Figure 69, one for 90 degree rotated kernel pairs as shown in

Figure 70, one for pseudo 45 degree rotated kernels pair as shown in Figure 71 and one

for one for pseudo 15 degree rotated kernels pair as shown in Figure 72. These modified

layers are integrated within the ResNet full network without any modification in its

structure.

Figure 69 : Bottleneck modification for 180 degree rotated kernels

76

Figure 70 : Bottleneck modification for 90 degree rotated kernels

Figure 71 : Bottleneck modification for pseudo 45 degree rotated kernels

77

Figure 72 : Bottleneck modification for pseudo 15 degree rotated kernels

While there are many ResNet variants, the focus shall be on the ResNet-20, ResNet

56 and ResNet 110.

One note to mention here, training a full network is somehow a problematic one

given the amount of computational power required which may be beyond the capability

of this work. Hence, instead of training for a fixed number of epochs, the network shall

be trained until reaching the accuracy saturation point where the achieved accuracy is

near the published one, meanwhile increasing the number of epochs would result in minor

enhancements. This would enable a fair comparison between the networks whereas the

deeper networks would require more epochs to converge compared to a shallower one

while maintaining a budget computational power

78

5.1.1. Pseudo Rotated ResNet version 1

Starting from the ResNet 110 which is one of the deepest ResNet network with

around 110 layers, Table 6 shows the comparison of achieved accuracy after training for

the accuracy saturation point defined earlier from the in house implemented ResNet-110

and its modified versions with their total number of parameters as well as the number of

increased parameters.

Network Top-1

error

Total Number of

parameters

Parameters increase

ratio

In house ResNet-110 N/A 1.7 Million 1x

ResNet with 180 degree

kernels

N/A 3.4 Million 2x

ResNet with 90 degree

kernels

N/A 6.8 Million 4x

ResNet with 45 degree

kernels

N/A 13.6 Million 8x

ResNet with 15 degree

kernels

N/A 40.8 Million 24x

Table 6 : Comparison between ResNet-110 and its modified pseudo rotated versions

As shown in the obtained training results such deep network was beyond the

available computation infrastructure either the GPU ran out of RAM, infeasible epoch

time (i.e. 10 hours) or the compiler failed to perform arithmetic optimization to fit within

the GPU. Such deep networks are usually trained using a network of multiple GPUs.

Next, moving to ResNet-56 was the reasonable step where it is composed of 56

layers where Table 7 shows the comparison of achieved accuracy after training for the

accuracy saturation point defined earlier from the in house implemented ResNet-56 and

its modified versions with their total number of parameters as well as the number of

increased parameters.

Network Top-1

error

Total Number of

parameters

Parameters increase

ratio

In house ResNet-56 8.54

%

0.85 Million 1x

ResNet with 180 degree

kernels

9.5% 1.7 Million 2x

ResNet with 90 degree

kernels

8.2% 3.4 Million 4x

ResNet with 45 degree

kernels

N/A 6.8 Million 8x

ResNet with 15 degree

kernels

N/A 20.4 Million 24x

Table 7 : Comparison between ResNet-56 and its modified pseudo rotated versions

79

Again from the obtained results, some networks were shown going beyond the

available computation infrastructure, however the obtained accuracy had shown either

no improvements or a negligible one that can be easily claimed to be from some noise or

the weight initialization. Moreover, the network didn’t benefit from the added parameters

and it had suffered from an over fitting problem given how fast the modified networks

had reached the saturation accuracy point (nearly around the 50 or the 60 epoch). The

overfitting may have occurred due to the tiny Cifar-10 image size (32x32) that doesn’t

require all these modifications as well as the small training data set amount, meanwhile

the modifications had added a huge number of parameters.

To address this overfitting problem two architecture modifications were done. The

first is to reduce the number of parameters through moving to the ResNet-20 while the

second is apply the dropout [108] and spatial dropout [109] regularization techniques to

help in training the increased number of parameters resulting from the modifications in

the network.

Dropout is a regularization method that randomly drops out some neurons output

where they are temporarily removed from the network during training. This is beneficial

in terms of allowing some neuron to change in respond to the absence of some adjacent

neurons to fix any unintended mistakes from other units which allows the network to be

more robust. It is commonly used after the dense fully connected layers.

Spatial Dropout is an alternative regularization method that allows

similar dropout manner to be applied within the convolutional neural networks whereas

an entire channel is dropped from the feature map within the convolutional layer in

analogous to how the neurons are dropped in the fully connected layers.

Another choice was made given the limited computational power available is to

choose the pseudo 45 degree rotated kernels as the pair of kernels used within the

bottleneck modified module.

All the aforementioned choices had led to the proposal of the Pseudo Rotated

ResNets version 1 which is shown in Figure 73 and its associated pseudo 45 degree

rotated kernels bottleneck layer modification to account for spatial dropout is shown in

Figure 74

80

Figure 73 : Pseudo Rotated ResNet version 1

81

Figure 74: Pseudo 45 degree rotated kernels bottleneck with spatial dropout

Table 8 shows the comparison of achieved accuracy after training for the accuracy

saturation point defined earlier from the in house implemented ResNet-20, in house

implemented ResNet-56 and the Pseudo Rotated ResNet version 1 with their total number

of parameters as well as the number of increased parameters.

Network Top-1

error

Total Number

of parameters

Parameters

increase ratio

In house ResNet-20 9.6 % 0.27 Million 1x

In house ResNet-56 8.54 % 0.85 Million 3.1x

Pseudo Rotated ResNet version 1 7.1 % 2.16 Million 8x

Table 8 : Comparison between ResNet-20, ResNet-56 and Pseudo Rotated ResNet

version 1

82

The results obtained shows that the network started to benefit from the pseudo

rotated kernel pairs attached to the convolution layers, meanwhile the modified network

size and the associated added regularization methods had resolved some of the overfitting

problem resulting in an accuracy improvement. However, this accuracy enhancement had

come with an increase in number of parameters which shall be addressed in version 2.

5.1.2. Pseudo Rotated ResNet version 2

The enhanced accuracy shows the potential of the pseudo rotated kernels, however

it comes with a penalty in terms of increased number of parameters.

To address this increase, the circle space of the pseudo rotated kernels described

before in the previous chapter was revisited where it is required to search for another

pseudo rotated kernels combination that maintain the achieved accuracy meanwhile

reducing the number of parameters.

A useful insight here is to consider reducing the number of kernels within the pseudo

45 degree rotated kernels set where it is proposed to reduce the pseudo 45 degree rotated

kernels pairs to exclude the 90 degree multiples and shall be noted as pseudo 45 degree

without 90 corners as shown in Figure 75.

Figure 75 : Pseudo 45 degree without 90 corners

This will result in modification to the bottleneck layer as shown in Figure 76.

83

Figure 76 : Pseudo 45 degree rotated kernels without 90 corners bottleneck

However, this will come with the cost of removing the 180 degree rotated kernel

which was the one responsible for the translation property enhancement. To mitigate that

loss, a modification to the network structure was done where the first and second set of

the convolutional layers shall use the introduced pseudo 45 degree without 90 corners,

meanwhile the third set shall use the 180 degree rotated kernels only.

84

The Intuition here is that the first and second sets of convolutional layers shall benefit

from the enhanced rotation property while going near the end of the network where the

features becomes more expressiveness and thus enhancing the translation property shall

be beneficial. This is basic idea behind the Pseudo Rotated ResNet version 2 which is

shown in Figure 77

Table 9 shows the comparison of achieved accuracy after training for the accuracy

saturation point defined earlier from the in house implemented ResNet-20, in house

implemented ResNet-56, the Pseudo Rotated ResNet version 1 and version 2 with their

total number of parameters as well as the number of increased parameters.

Network Top-1

error

Total Number

of parameters

Parameters increase

ratio

In house ResNet-20 9.6 % 0.27 Million 1x

In house ResNet-56 8.54 % 0.85 Million 3.1x

Figure 77 : Pseudo Rotated ResNet version 2

85

Pseudo Rotated ResNet

version 1

7.1 % 2.16 Million 8x

Pseudo Rotated ResNet

version 2

6.08 % 0.83 Million 3.07x

Table 9 : Comparison between ResNet-20, ResNet-56, Pseudo Rotated ResNet version

1 and version 2

The results obtained show that the parameters were reduced to be comparable with

the ResNet-56 with an enhanced accuracy even more than Pseudo Rotated ResNet

version 1 showing that increasing the width using the pseudo rotated kernels may be more

performance beneficial rather than increasing the depth. The enhancement in the

accuracy while decreasing the number of parameters can be regarded to reducing the

overfitting by decreasing the number of parameters carefully through the distribution of

the more rotating kernels at the first stages while focusing on enhancing the translation

at the later ones.

5.1.3. Pseudo Rotated ResNet version 3

After showing the capability of the pseudo rotated kernels to enhance the accuracy

with a reasonable number of parameters, it is required to squeeze the network more in

attempt to boost the accuracy performance.

Reviewing back the affine transformation properties, one property seems to be

interesting is the scaling one. Successively applying the scaling property can push the

network one more step towards being capable to unify more properties of the affine

transformations within its processing.

Scaling can be done with the most straight forward approach through applying the

pooling techniques as an attached kernel within the convolutional kernels. However, this

direct apply of the pooling techniques could lead to the explode of parameters number

given it maintains the same number of channels from the previous layer feature map

while it scales its height and width. For instance, as shown in Figure 78, in the Pseudo

Rotate ResNet version 2 first layer outputs 80 channels within the generated feature map,

if the pooling layer is directly applied in the next one it would generate 80 channels in

the output feature map in addition to the 320 channels generated from the already existing

convolutional kernels which would result in a total 400 channels in the final feature map.

86

Figure 78 : Direct apply of pooling layer within the first layer Pseudo Rotated version 2

Moving with this approach across different layers would lead to an exponential

growth in number of parameters which would go beyond the computational power

budget. Analyzing the exploding number of parameters, it seems it is required to reduce

the number of channels when applying the pooling techniques.

Inspired from the Inception module where the applied pooling layers are followed

by a 1x1 convolution to reduce the number of channels and hence reduces the number of

parameters, it seems reasonable to follow their footsteps and apply the same approach

where each pooling technique shall be followed by a 1x1 convolutional kernel.

Thus, from the aforementioned, the bottleneck module is modified as shown in

Figure 79 to add maximum pooling kernel with 2x2 grid size reduction configured to

allow the padding method to keep the generated feature map dimension similar to the

input one enabling its further concatenation with the feature maps generated from the

convolutional kernels, meanwhile it is followed by 1x1 convolutional kernel also to allow

parameters reduction.

87

Figure 79 : Pseudo 45 degree rotated kernels without 90 corners bottleneck with an

additional maximum pooling kernels

The network structure remains the same as pseudo Rotated ResNet version 2 as

shown in Figure 80.

88

Figure 80: Pseudo Rotated ResNet version 2 with additional maximum pooling kernels

modification

Table 10 shows the comparison of achieved accuracy after training for the accuracy

saturation point defined earlier from the in house implemented ResNet-20, in house

implemented ResNet-56, the Pseudo Rotated ResNet version 1, version 2 and the

modified version 2 to include the maximum pooling kernel with their total number of

parameters as well as the number of increased parameters.

Network Top-1

error

Total Number

of parameters

Parameters

increase ratio

In house ResNet-20 9.6 % 0.27 Million 1x

In house ResNet-56 8.54

%

0.85 Million 3.1x

Pseudo Rotated ResNet version 1 7.1 % 2.16 Million 8x

Pseudo Rotated ResNet version 2 6.08

%

0.83 Million 3.07x

Modified Pseudo Rotated ResNet

version 2 with maximum pooling

kernel

5.5% 1.61 Million 5.65x

89

Table 10 : Comparison between ResNet-20, ResNet56, Pseudo Rotated ResNet

versions 1 and 2 as well as Pseudo Rotated ResNet versions 2 with maximum pooling

The results showed some improvement from applying the maximum pooling in

attempt to achieve the scaling property of the affine transformation.

A greedy approach is to consider adding the average pooling in a similar manner to

the maximum pooling to boost the scaling property more. Thus, the bottleneck module

is modified as shown in Figure 81. to add the average pooling kernel with same

configuration as maximum pooling and also shall be followed by 1x1 convolutional

kernel.

Figure 81: Pseudo 45 degree rotated kernels without 90 corners bottleneck with an

additional maximum and average pooling kernels

An insight here is that one can rethink that the network is approaching to be self-

augmented where the basic augmentation techniques such as rotation and scaling are

already done within the network only adding noise is the missing basic technique. Thus,

another modification is done to apply Gaussian noise at the input image before passing

through the network.

All the aforementioned had led to the introduction of Pseudo Rotated ResNet version

3 which is shown in Figure 82

90

Table 11 shows the comparison of achieved accuracy after training for the accuracy

saturation point defined earlier from the in house implemented ResNet-20, in house

implemented ResNet-56, the Pseudo Rotated ResNet version 1, version 2, the modified

version 2 and version 3 with their total number of parameters as well as the number of

increased parameters.

Network Top-1

error

Total Number of

parameters

Parameters

increase

ratio

In house ResNet-20 9.6 % 0.27 Million 1x

In house ResNet-56 8.54 % 0.85 Million 3.1x

Pseudo Rotated ResNet version 1 7.1 % 2.16 Million 8x

Pseudo Rotated ResNet version 2 6.08 % 0.83 Million 3.07x

Figure 82 : Pseudo Rotated ResNet version 3

91

Modified Pseudo Rotated ResNet

version 2 with maximum pooling

kernel

5.5% 1.61 Million 5.65x

Pseudo Rotated ResNet version 3 4.7 % 2.658 Million 9.3 x

Table 11 : Comparison between ResNet-20, ResNet56 and different Pseudo Rotated

ResNet versions

The obtained results show an improvement in the accuracy where the network

benefited from the added average and maximum pooling layers without overfitting.

However, this improvement had increased the number of parameters significantly.

Addressing this increase would require revisiting the circle space of the pseudo rotated

kernels or even revisiting the way the pooling layers were attached to the network which

is left to future work.

5.2. VGG Based networks

VGG is one of the widely adopted CNN given its symmetric architecture and the

straight forward structure.

Generalizing on the VGG was a necessary step to demonstrate how the pseudo

rotated kernels can be applied in different architectures leading to accuracy

enhancements.

Unfortunately, VGG wasn’t applied on the CIFAR-10 data set, thus choosing,

creating and modifying the network was done from scratch.

Given how giant is the network compared to the tiny data set used and to allow

network training to be within the available computational budget, VGG-11 architecture

was selected with three modifications to the structure. The first is to adjust all the

convolutional kernels to match the CIFAR-10 images dimensions rather than the

ImageNet one, while the second was adding the Batch Normalization layer after each

convolutional one, meanwhile the third was adding spatial dropout between every two

consecutive convolutional layers. These modifications were required in attempt to

regularize this data hungry network as well as accelerating the training procedure. The

modified VGG-11 can be shown in Figure 83 and Figure 84

92

Figure 83 : Modified Baseline VGG-11 Part A

93

Figure 84 : Modified Baseline VGG-11 Part B

5.2.1. Pseudo Rotated VGG version 1

This version shall follow the footsteps of the pseudo Rotated ResNet version 2 where

the first three stacks of the convolutional kernels shall be modified to have the pseudo 45

degree rotated kernels without 90 corners pairs while the last two stacks shall be modified

to have the 180 degree rotated kernel pairs. The Pseud Rotated VGG version 1 can be

shown in Figure 85 and Figure 86

94

Figure 85: Pseudo Rotated VGG version 1 Part A

95

Figure 86: Pseudo Rotated VGG version 1 Part B

Table 12 shows the comparison of achieved accuracy after training for the accuracy

saturation point defined earlier from the in house modified VGG-11and Pseudo Rotated

VGG version 1 with their total number of parameters as well as the number of increased

parameters.

Network Top-1

error

Total Number of

parameters

Parameters

increase ratio

In house modified VGG-11 9.5 % 24,149,519 Million 1x

96

Pseudo Rotated VGG version

1

7.15

%

45,886,730 Million 1.9x

Table 12 : Comparison between modified VGG-11 and Pseudo Rotated VGG version 1

The obtained results show an improvement in the accuracy demonstrating how the

pseudo rotated kernels had generalized to be successively fused within the VGG network.

Moreover, the increase in the number of parameters, didn’t introduce much overfitting

showing how the network had benefited from the added parameters

5.2.2. Pseudo Rotated VGG version 2

This version shall follow the footsteps of the pseudo Rotated ResNet version 3 in

attempt to generalize the self-augmented network idea as well as the movement towards

a unified affine transformation.

The pseudo Rotated VGG version is modified to account for adding Gaussian noise

to the input image as well as extending the convolutional kernels to account for maximum

and average pooling kernels with their subsequent 1x1 convolutional kernels.

Figure 87, Figure 88 and Figure 89 introduce the Pseudo Rotated VGG version 2 in

accordance to the aforementioned modifications.

Table 13 shows the comparison of achieved accuracy after training for the accuracy

saturation point defined earlier from the in house modified VGG-11and Pseudo Rotated

VGG version 1 and version 2 with their total number of parameters as well as the number

of increased parameters.

Network Top-1

error

Total Number of

parameters

Parameters

increase ratio

In house modified VGG-11 9.5 % 24,149,519 Million 1x

Pseudo Rotated VGG version

1

7.15

%

45,886,730 Million 1.9x

Pseudo Rotated VGG version

2

5.8 % 78,147,338 Million 3.2x

Table 13 : Comparison between modified VGG-11 and Pseudo Rotated VGG versions

The obtained results show an improvement in the accuracy demonstrating that

stretching the network capability to have a built in rotating, scaling and enhanced

translation properties would be fruitful from a performance perspective.

97

Figure 87: Pseudo Rotated VGG version 2 Part A

Figure 88: Pseudo Rotated VGG version 2 Part B

98

Figure 89: Pseudo Rotated VGG version 2 Part C

99

Chapter 6 : Performance Comparison and

Benchmarking

To demonstrate how the pseudo rotated kernels contributes to the accuracy

enhancements as well as its effectiveness it was required to perform three steps.

Firstly, to integrate these kernels in several networks which was done in the previous

chapter through the ResNet based architectures and the VGG based ones.

Secondly, to test these architectures against several datasets which is done in this

chapter through applying the ResNet based architectures on the CIFAR-100[63] while in

the previous chapter both ResNet and VGG based architectures were applied on CIFAR-

10[63].

Thirdly, to evaluate the achieved accuracy against previous different published

image classification models.

These steps and their associated comparisons are recorded under two parts: CIFAR-

10 comparison and CIFAR-100 comparison. Clearly in each part, the published networks

results are listed as well as recording the rank of the proposed networks according to

BenchmarksAI[110] where BenchmarksAI is a website that ranks different published

networks according to their results on the given data set

6.1. CIFAR-10 Comparison

6.1.1. ResNet based Architectures

ResNet based architectures are listed in Table 14 where the results of different

ResNet networks as well as their parameters ratio compared to the in house ResNet-20

are reported

Network Top-1

error

Parameters increase ratio

In house ResNet-20 9.6 % 1x

In house ResNet-56 8.54 % 3.1x

Pseudo Rotated ResNet version 1 7.1 % 8x

Pseudo Rotated ResNet version 2 6.08 % 3.07x

Pseudo Rotated ResNet version 3 4.7 % 9.3 x

ResNet-20[29] 8.75 % 1x

ResNet-32[29] 7.51 % 1.7x

ResNet-44[29] 7.17 % 2.4x

ResNet-56[29] 6.97 % 3.1x

ResNet-110[29] 6.43% 6.2x

ResNet-1202[29] 7.93% 71.8x

ResNet-164[102] 5.46% 6.2x

ResNet-1001[102] 4.62% 37.7x

100

Table 14 : Comparing CIFAR-10 Pseudo Rotated ResNet versions with different

ResNet available in the literature

One noteworthy to mention here, all the published ResNet networks were trained

using two GPUs for large number of epochs (~ 64k epoch) with an additional number of

warm up epochs (~400 epoch) unlike the proposed networks where there is a limited

computational budget that limits the training to near the saturation accuracy at which the

network accuracy appears to saturate without squeezing all the possible achievable

accuracy from the network (almost around 700 epoch).

 Moreover, these networks use multi-crop ensembles where multiple network are

independently trained through different weight initialization and then are used jointly to

obtain the final accuracy results on the test set.

 Regardless of all of that, the results show that the Pseudo Rotated ResNet version 3

is very competitive to ResNet-1001[102] but with a significant reduction in number of

parameters showing the effectiveness of increasing the width of network through the

pseudo rotated kernels and pooling ones when compared to increasing the network depth

through stacking more bottleneck layers.

6.1.2. VGG based Architectures

VGG based architectures are listed in Table 15 where the results of different VGG

networks as well as their parameters ratio compared to the in house VGG-1 are reported

Network Top-1

error

Parameters increase

ratio

In house modified VGG-11 9.5 % 1x

Pseudo Rotated VGG version 1 7.15 % 1.9x

Pseudo Rotated VGG version 2 5.8 % 3.2x

VGG11[112] 7.91% Not reported

VGG13[112] 6.35% Not reported

VGG16[111] 6.75% Not reported

VGG19[112] 6.76% Not reported

Table 15 : Comparing CIFAR-10 Pseudo Rotated VGG versions with different VGG

available in the literature

A note here, the Original VGG published paper [97] didn’t experiment on the

CIFAR-10 data set, so no direct results are available to compare with, however searching

the literature the aforementioned papers are found.

The results show that Pseudo Rotated VGG version 2 is the one with the least error

when compared to others showing how expanding the width through pseudo rotated

kernels and pooling ones can generalize to different architectures.

6.1.3. Benchmarking

When benchmarking using BenchmarksAI, the CIFAR-10 data set shall have 67

different network with an accuracy ranging between 99.83% down to 75.83% where the

Pseudo Rotated ResNet version 3 shall rank 17.

101

6.2. CIFAR-100 Comparison

6.2.1. ResNet based architectures

ResNet based architectures are listed in Table 16 where the results of different

ResNet networks as well as their parameters ratio compared to the in house ResNet-20

are reported

Network Top-1

error

Parameters increase

ratio

In house ResNet-20 36 % 1x

In house ResNet-56 31.5 % 3.1x

Pseudo Rotated ResNet version

2

25.1 % 3.07x

Pseudo Rotated ResNet version

3

20.9 % 9.3 x

ResNet-164[102] 24.33% 6.2x

ResNet-1001[102] 22.7% 37.7x

Table 16 : Comparing CIFAR-100 Pseudo Rotated ResNet versions with different

ResNets available in the literature

From the obtained results the Pseudo Rotated ResNet version 3 shows the least error

when compared to others although the huge number of parameters difference showing

the added value of the pseudo rotated kernels and the pooling ones in making the learning

effective in extracting more useful features.

6.2.2. Benchmarking

When benchmarking using BenchmarksAI, the CIFAR-100 data set shall have 44

different network with an accuracy ranging between 93.51% down to 54.23% where the

Pseudo Rotated ResNet version 3 shall rank 14.

102

Chapter 7 : Discussion and Conclusions

7.1. Summary of the work

In the era of data explosion, a huge amount of digital data is generated daily from

different types of platforms such as personal computers, mobile platforms and recently

the wearable devices.

Notably, images and videos are the dominant type of these data. Hence there is an

urgent need for high performance computer vision tasks.

This work focused on enhancing the CNN which is considered one of the key

architectures in today computer vision different tasks. CNN plays a vital role in today

computer vision achievements and records from suppressing the human level accuracy

in some task to the invention of a new complex applications like the autonomous

vehicles. Thanks to its key features the weight sharing, feature map, channel pooling and

receptive field.

 In this work enhancing the CNN was done through expanding the network width by

applying two main ideas the pseudo rotated kernels and attaching the pooling kernels to

the convolutional layer. Both kernels allow the network to step towards a unifying more

affine transformation properties within the network.

Clearly, the first type of kernels boosts the translation property through allowing the

network to perform cross correlation function as well as the convolutional one; in

addition to enhancing the rotation property by providing a set of arbitrary chosen rotated

kernels. Meanwhile the latter promotes the scaling property.

Moreover, when combining all these kernels together the network increases its

translation invariance property robustness whereas the network becomes capable to scale

and rotate the feature map at each convolutional layer enriching the network capability

to have its own self augmentation methods.

To demonstrate the accuracy improvement five networks were proposed based on

two different architectures where three of them are based on ResNet while the remaining

two are based on VGG.

Furthermore, to ensure the networks capability to generalize on different data sets,

the ResNet based architectures were tested on two different data sets the CIFAR-10 and

CIFAR-100.

7.2. Future work

As an extension to this work, the following points are recommended for the future

work;

 Firstly, to migrate all the codes to Tensor Flow version 2, this step shall require to

rebuild the network from scratch to remove some obsoleted functions and classes as well

as un-optimized ones. Clearly, this step shall result in a more optimized codes with less

hand crafted classes which would return in a considerable reduction in the training time

Secondly, to re-explore the design circle space of pseudo rotated kernels in a more

exhaustive fashion characterizing how the rotated combination affects each other and

searching for other combinations that may enhance the performance more. Admittedly,

the proposed combinations are just a point of kernels combination in this design circle

and more performance booster combinations may exist.

103

Thirdly, explore the network depth dimension and study how the network can benefit

from increasing both the width and depth dimensions concurrently.

Fourthly, apply some model optimization techniques such as network pruning or

precision reduction. These techniques shall reduce the model size enhancing the training

time as well as opening the exploration of real time applications.

Fifthly, if applicable apply the idea on a more complex data set such as the ImageNet

to explore how the increasing the amount of data as well as its complexity would affect

the generalization

Lastly, generalize the idea in a new application domain especially the object

detection and localization one.

104

References

[1] M. Jordan and T. Mitchell, "Machine learning: Trends, perspectives, and

prospects,” Science, vol. 349, no. 6245, pp. 255-260, 2015.

[2] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning,” Nature, vol. 521, no. 7553, pp.

436-444, 2015.

[3] S. Russell and P. Norvig, “Artificial intelligence: A Modern Approach,” Prentice

Hall Press, 2009

[4] V. Sze, Y. Chen, T. Yang and J. Emer, "Efficient Processing of Deep Neural

Networks: A Tutorial and Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp.

2295-2329, 2017.

[5] "Keeping Our Brain Healthy,” Humanagingcentral.com, 2020. [Online]. Available:

http://www.humanagingcentral.com/brain_page.html.

[6] Z. Li, Y. Wang, T. Zhi and T. Chen, "A survey of neural network

accelerators,” Frontiers of Computer Science, vol. 11, no. 5, pp. 746-761, 2017.

[7] L. Deng, "A tutorial survey of architectures, algorithms, and applications for deep

learning,” APSIPA Transactions on Signal and Information Processing, vol. 3, 2014.

[8] M. Stuart and M. Manic, "Survey of progress in deep neural networks for resource-

constrained applications,” 43rd Annual Conference of the IEEE Industrial

Electronics Society, Beijing, 2017.

[9] M. Shafique et al., "Adaptive and Energy-Efficient Architectures for Machine

Learning: Challenges, Opportunities, and Research Roadmap,” IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), Bochum, 2017.

[10] Griffin Lacey et al “Deep Learning on FPGAs: Past, Present, and Future” arXiv

preprint arXiv: 1602.04283, 2016.

[11] A. Ratnaparkhi, E. Pilli and R. C. Joshi, "Survey of scaling platforms for Deep

Neural Networks,” International Conference on Emerging Trends in Communication

Technologies (ETCT), Dehradun, 2016

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,S.

Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a tensor

processing unit,” Proceedings of the 44th Annual International Symposium on

Computer Architecture, ACM, 2017.

[13] J. Dean, D. Patterson and C. Young, "A New Golden Age in Computer Architecture:

Empowering the Machine-Learning Revolution,” IEEE Micro, vol. 38, no. 2, pp. 21-

29, 2018.

[14] M. Chen, S. Mao, Y. Zhang and V. Leung, “Big Data". Cham: Springer

International Publishing, 2014.

[15] F.-F. Li, A. Karpathy, and J. Johnson, “Stanford CS Class CS231n: Convolutional

Neural Networks for Visual Recognition”. [Online]. Available:

http://cs231n.stanford.edu/

[16] “SuperVize Me: What’s the Difference Between Supervised, Unsupervised, Semi-

Supervised and Reinforcement Learning? – The Official NVIDIA Blog,”

Blogs.nvidia.com, 2020. [Online]. Available: https://

blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning.

[17] B. Reagen et al., "Minerva: Enabling Low-Power, Highly-Accurate Deep Neural

Network Accelerators,” ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA), Seoul, 2016.

http://www.humanagingcentral.com/brain_page.html

105

[18] Eriko Nurvitadhi et al., “Can FPGAs Beat GPUs in Accelerating Next-Generation

Deep Neural Networks?” Proceedings of ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, 2017

[19] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie and X. Zhou, "DLAU: A Scalable Deep

Learning Accelerator Unit on FPGA,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, pp. 1-1, 2016

[20] Soheil Hashemi et al., “Understanding the impact of precision quantization on the

accuracy and energy of neural networks,” Proceedings of the Conference on Design,

Automation & Test in Europe, Leuven, 2017.

[21] Jingyang Zhu, Zhiliang Qian and Chi-Ying Tsui, "LRADNN: High-throughput and

energy-efficient Deep Neural Network accelerator using Low Rank Approximation,”

21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macau,

2016.

[22] M. S. Razlighi, M. Imani, F. Koushanfar and T. Rosing, "LookNN: Neural network

with no multiplication,” Design, Automation & Test in Europe Conference &

Exhibition (DATE), Lausanne, 2017

[23] J. Zhu, J. Jiang, X. Chen and C. Tsui, "SparseNN: An energy-efficient neural

network accelerator exploiting input and output sparsity,” Design, Automation & Test

in Europe Conference & Exhibition (DATE), Dresden, 2018.

[24] Tianshi Chen et al., “DianNao: a small-footprint high-throughput accelerator for

ubiquitous machine-learning,” Proceedings of the 19th international conference on

Architectural support for programming languages and operating systems (ASPLOS)

,2014.

[25] Daofu Liu et al., “PuDianNao: A Polyvalent Machine Learning Accelerator,”

Proceedings of the 20th international conference on Architectural support for

programming languages and operating systems (ASPLOS) ,2015.

[26] S. Liu et al., "Cambricon: An Instruction Set Architecture for Neural Networks,"

ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA),

Seoul, 2016.

[27] Z. Du et al., "Neuromorphic accelerators: A comparison between neuroscience and

machine-learning approaches,” 48th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2015.

[28] Dean, J.,” Large-Scale Deep Learning with TensorFlow for Building Intelligent

Systems,” ACM Webinar, 2016

[29] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image

Recognition,” IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas,2016

[30] Silver, D., Huang, A., Maddison, C. et al., “Mastering the game of Go with deep

neural networks and tree search,” Nature 529, 484–489,2016.

[31] A. Ratnaparkhi, E. Pilli and R. C. Joshi, "Survey of scaling platforms for Deep

Neural Networks,” International Conference on Emerging Trends in Communication

Technologies (ETCT), Dehradun, 2016.

[32] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger and A. Moshovos,

"Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing,” ACM/IEEE

43rd Annual International Symposium on Computer Architecture (ISCA), Seoul,

2016.

[33] Ji Li et al., “Hardware-Driven Nonlinear Activation for Stochastic Computing

Based Deep Convolutional Neural Networks,” arXiv preprint arXiv: 1703.04135,

2017.

106

[34] Jian Cheng et al., “Recent Advances in Efficient Computation of Deep

Convolutional Neural Networks,” arXiv preprint arXiv: 1802.00939, 2018.

[35] Yuhao Zhu et al., “Mobile Machine Learning Hardware at ARM: A Systems-on-

Chip (SoC) Perspective,” arXiv preprint arXiv: 1801.06274, 2018.

[36] E. Chung et al., "Serving DNNs in Real Time at Datacenter Scale with Project

Brainwave,” IEEE Micro,2018.

[37] B. Harris et al., "Architectures and algorithms for user customization of CNNs,”

23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju, 2018

[38] Andrew Ng, “Deep learning specialization”. [Online]. Available:

https://www.coursera.org/specializations/deep-learning

[39] H. Jang, "Compute with Time, Not Over It: An Introduction to Spiking Neural

Networks – King's Communications, Learning & Information Processing

lab,” Blogs.kcl.ac.uk, 2020. [Online]. Available:

https://blogs.kcl.ac.uk/kclip/2019/08/16/compute-with-time-not-over-it-an-

introduction-to-spiking-neural-networks/.

[40] Y. Jia, et al., “Caffe: Convolutional architecture for fast feature embedding,”

Proceedings of the 22nd ACM international conference on Multimedia, MM, 2014

[41] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie and H. Yang, "Software-Hardware

Codesign for Efficient Neural Network Acceleration,” IEEE Micro, vol. 37, no. 2,

pp. 18-25, 2017.

[42] D. Hubel and T. Wiesel, "Receptive fields and functional architecture of monkey

striate cortex,” The Journal of Physiology, vol. 195, no. 1, pp. 215-243, 1968.

[43] S. Han et al., "EIE: Efficient Inference Engine on Compressed Deep Neural

Network,” ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA), Seoul, 2016

[44] H. Tann, S. Hashemi, R. I. Bahar and S. Reda, "Hardware-software codesign of

accurate, multiplier-free Deep Neural Networks,” 54th ACM/EDAC/IEEE Design

Automation Conference (DAC), Austin, TX, 2017.

[45] Y. Shen, M. Ferdman and P. Milder, "Escher: A CNN Accelerator with Flexible

Buffering to Minimize Off-Chip Transfer,” IEEE 25th Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa,

CA, 2017

[46] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang and B. Yuan, "DSCNN: Hardware-oriented

optimization for Stochastic Computing based Deep Convolutional Neural Networks,”

IEEE 34th International Conference on Computer Design (ICCD), Scottsdale, AZ,

2016

[47] K. Guo et al., "Angel-Eye: A Complete Design Flow for Mapping CNN On to

Embedded FPGA,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 37, no. 1, pp. 35-47, 2018.

[48] Y. Chen, T. Krishna, J. S. Emer and V. Sze, "Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks,” IEEE

Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, 2017

[49] L. Lu, Y. Liang, Q. Xiao and S. Yan, "Evaluating Fast Algorithms for Convolutional

Neural Networks on FPGAs,” IEEE 25th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), Napa, CA, 2017

[50] L. Du et al., "A Reconfigurable Streaming Deep Convolutional Neural Network

Accelerator for Internet of Things,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 65, no. 1, pp. 198-208, 2018

[51] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong,”

Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural

https://www.coursera.org/specializations/deep-learning
https://blogs.kcl.ac.uk/kclip/2019/08/16/compute-with-time-not-over-it-an-introduction-to-spiking-neural-networks/
https://blogs.kcl.ac.uk/kclip/2019/08/16/compute-with-time-not-over-it-an-introduction-to-spiking-neural-networks/

107

Networks,” Proceedings of the 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA), 2015

[52] Kalin Ovtcharov et al., “Accelerating Deep Convolutional Neural Networks Using

Specialized Hardware,” Microsoft Research, 2015.

[53] Franyell Silfa, Gem Dot, Jose-Maria Arnau, and Antonio Gonzàlez, “E-PUR: an

energy-efficient processing unit for recurrent neural networks,” Proceedings of the

27th International Conference on Parallel Architectures and Compilation

Techniques (PACT), 2018

[54] K. Mohamed, “Neuromorphic Computing and Beyond,” New York: Springer, 2020.

[55] M. M. Khan et al., “SpiNNaker: mapping neural networks onto a massively-parallel

chip multiprocessor,” IEEE International Joint Conference on Neural Networks

(IEEE World Congress on Computational Intelligence), 2008.

[56] N. Srinivasa and J. M. Cruz-Albrecht, “Neuromorphic adaptive plastic scalable

electronics: analog learning systems,” IEEE Pulse, vol. 3, no. 1, pp. 51–56, 2012.

[57] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a scalable

communication network and interface,” Science, vol. 345, no. 6197, pp. 668–673,

2014.

[58] Complete Visual Networking Index (VNI) Forecast, Cisco, San Jose, CA,

USA,2016

[59] J. Woodhouse, “Big, Big, Big Data: Higher and Higher Resolution Video

Surveillance,” [Online]. Available: http://technology.ihs.com

[60] Y. LeCun, et al., “Handwritten digit recognition: Applications of neural network

chips and automatic learning,” IEEE Communication Magazine, vol. 27, no. 11, pp.

41–46, 1989

[61] C. Szegedy et al., “Going deeper with convolutions,” Proc. CVPR, 2015

[62] C. J. B. Yann, Y. LeCun, and C. Cortes, “The MNIST DATABASE of Handwritten

Digits”. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[63] Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10 Dataset”. [Online]. Available:

http://www.cs.toronto.edu/~kriz/cifar.html

[64] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,”

International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[65] Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Proceedings of NIPS, 2012.

[66] Pascal VOC Data Sets. [Online]. Available: http://host.robots.ox.ac.uk/pascal/VOC/

[67] Microsoft Common Objects in Context (COCO) Dataset. [Online]. Available:

http://mscoco.org/

[68] Google Open Images. [Online]. Available: https://github.com/openimages/dataset

[69] YouTube-8M. [Online]. Available: https://research.google.com/youtube8m/

[70] AudioSet. [Online]. Available: https://research.google.com/audioset/index.html

[71] Hinton, G. et al, “Deep neural networks for acoustic modeling in speech

recognition,” IEEE Signal Processing Magazine, 2012

[72] R. Yazdani, A. Segura, J. Arnau and A. Gonzalez, "An ultra-low-power hardware

accelerator for automatic speech recognition,” 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), Taipei, 2016

[73] C. Lopes and F. Perdigao, "Phone recognition on the TIMIT database,” Speech

Technologies/Book, vol. 1, pp. 285-302, 2011.

[74] Nagrani, J. S. Chung, and A. Zisserman, "Voxceleb: a large-scale speaker

identification dataset,” arXiv preprint arXiv:1706.08612, 2017.

http://technology.ihs.com/
http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://host.robots.ox.ac.uk/pascal/VOC/
http://mscoco.org/
https://research.google.com/audioset/index.html

108

[75]] J. Barker, S. Watanabe, E. Vincent, and J. Trmal, "The fifth'CHiME'Speech

Separation and Recognition Challenge: Dataset, task and baselines,” arXiv preprint

arXiv:1803.10609, 2018.

[76] T. Afouras, J. S. Chung, and A. Zisserman, "LRS3-TED: a large-scale dataset for

visual speech recognition,” arXiv preprint arXiv:1809.00496, 2018

[77] Z. Zhao, P. Zheng, S. Xu and X. Wu, "Object Detection with Deep Learning: A

Review,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no.

11, pp. 3212-3232, 2019

[78] Esteva, et al., “Dermatologist-level classification of skin cancer with deep neural

networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[79] R. Girshick, “Fast r-cnn,” IEEE International Conference on Computer Vision

(ICCV), Santiago, 2015

[80] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified,

Real-Time Object Detection,” IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, 2016

[81] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017

[82] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation,” IEEE Conference on

Computer Vision and Pattern Recognition, Columbus, 2014

[83] F. Schroff, D. Kalenichenko and J. Philbin, "FaceNet: A unified embedding for face

recognition and clustering,” IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Boston2015

[84] Y. Taigman, M. Yang, M. Ranzato and L. Wolf, "DeepFace: Closing the Gap to

Human-Level Performance in Face Verification,” IEEE Conference on Computer

Vision and Pattern Recognition, 2014

[85] "OpenFace,” Cmusatyalab.github.io, 2020. [Online]. Available:

https://cmusatyalab.github.io/openface/

[86] Rodríguez-Moreno, Itsaso, José María Martínez-Otzeta, Basilio Sierra, Igor

Rodriguez, and Ekaitz Jauregi, "Video activity recognition: State-of-the-

art,” Sensors ,2019

[87] L. Wang et al, “Towards good practices for very deep two-stream convNets,” arXiv

preprint arXiv:1507.02159,2015

[88] Ullah, J. Ahmad, K. Muhammad, M. Sajjad and S. W. Baik, "Action Recognition in

Video Sequences using Deep Bi-Directional LSTM with CNN Feature,” IEEE

Access, 2018

[89] X. Wang, L. Gao, P. Wang, X. Sun and X. Liu, "Two-Stream 3-D convNet Fusion

for Action Recognition in Videos with Arbitrary Size and Length,” IEEE

Transactions on Multimedia, vol. 20, no. 3, pp. 634-644, 2018

[90] E. Holliman, J. Godfrey and J. McDaniel, “SWITCHBOARD: telephone speech

corpus for research and development,” Acoustics, Speech, and Signal Processing,

IEEE International Conference on, San Francisco,1992

[91] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang and A. Stolcke, "The Microsoft

2017 Conversational Speech Recognition System,” IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Calgary, 2018

[92] Graves, A. Mohamed and G. Hinton, "Speech recognition with deep recurrent neural

networks,” IEEE International Conference on Acoustics, Speech and Signal

Processing, Vancouver, 2013

https://cmusatyalab.github.io/openface/

109

[93] W. Chan, N. Jaitly, Q. Le and O. Vinyals, "Listen, attend and spell: A neural network

for large vocabulary conversational speech recognition,” IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016

[94] Y. Zhang, W. Chan and N. Jaitly, "Very deep convolutional networks for end-to-

end speech recognition,” IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), New Orleans, LA, 2017

[95] T. N. Sainath, O. Vinyals, A. Senior and H. Sak, "Convolutional, Long Short-Term

Memory, fully connected Deep Neural Networks,” IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, 2015

[96] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat:

Integrated recognition, localization and detection using convolutional networks,”

Proceeding of ICLR, 2014

[97] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” Proceeding of ICLR, 2015

[98] C. Szegedy et al., "Going deeper with convolutions,” IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Boston,2015

[99] S. Ioffe and C. Szegedy,” Batch normalization: accelerating deep network training

by reducing internal covariate shift,” Proceedings of the 32nd International

Conference on International Conference on Machine Learning - Volume 37 (ICML),

2015

[100] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the

Inception Architecture for Computer Vision,” IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Las Vegas, 2016

[101] C. Szegedy et al., “Inception-v4, inception-ResNet and the impact of residual

connections on learning,” Proceedings of the Thirty-First AAAI Conference on

Artificial Intelligence (AAAI),2017

[102] K. He, X. Zhang, S. Ren and J.Sun, “ Identity Mappings in Deep Residual

Networks,” arXiv preprint arXiv: 1603.05027, 2016.

[103] Y. Cheng, D. Wang, P. Zhou, T. Zhang,” A Survey of Model Compression and

Acceleration for Deep Neural Networks,” arXiv preprint arXiv:1710.09282,2017

[104] Matthew D Zeiler, Rob Fergus, “Visualizing and Understanding Convolutional

Networks,” arXiv preprint arXiv: 1311.2901, 2013.

[105] M. Lin, Q. Chen, and S. Yan, “Network in network,” Proceeding ICLR, 2014.

[106] Canziani, A. Paszke, E. Culurciello,” An analysis of deep neural network models

for practical applications,” arXiv preprint arXiv:1605.07678

[107] K. Team, "Keras: The Python deep learning API,” Keras.io, 2020. [Online].

Available: https://keras.io/

[108] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,”

Journal of Machining Learning Research, 2014

[109] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun and Christoph

Bregler, “Efficient Object Localization Using Convolutional Networks,”

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015

[110] “Benchmarks.AI - Directory of AI Benchmarks," Benchmarks.ai, 2020.

[Online].Available: https://benchmarks.ai

[111] Hao Li et al., “Pruning Filters for Efficient ConvNets,” Proceedings of the 5th

International Conference on Learning Representations (ICLR), 2017

https://keras.io/
https://benchmarks.ai/

110

[112] B. O. Ayinde, T. Inanc and J. M. Zurada, "On Correlation of Features Extracted by

Deep Neural Networks," International Joint Conference on Neural Networks

(IJCNN), Budapest, 2019.

[113] V. Mnih, et al., “Playing atari with deep reinforcement learning,” Proceedings of

NIPS Deep Learning Workshop, 2013

[114] Urs Köster et al., “Flexpoint: an adaptive numerical format for efficient training of

deep neural networks,” In Proceedings of the 31st International Conference on

Neural Information Processing Systems (NIPS), 2017

[115] Philipp Gysel, Mohammad Motamedi and Soheil Ghiasi,” Hardware-oriented

Approximation of Convolutional Neural Networks,” arXiv preprint arXiv:

1604.03168,2016

[116] Song Han et al., “ESE: Efficient Speech Recognition Engine with Sparse LSTM

on FPGA,” In Proceedings of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA) 2017.

[117] Y. Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze, "Understanding the

limitations of existing energy-efficient design approaches for deep neural networks,"

Energy ,2018

[118] Parker Hill, et al. "Rethinking numerical representations for deep neural networks,"

arXiv preprint arXiv:1808.02513,2018

[119] Tim Dettmers, "8-bit approximations for parallelism in deep learning," arXiv

preprint arXiv:1511.04561 ,2015

[120] D. Shin, J. Lee, J. Lee and H. Yoo, "14.2 DNPU: An 8.1TOPS/W reconfigurable CNN-

RNN processor for general-purpose deep neural networks," IEEE International Solid-

State Circuits Conference (ISSCC), San Francisco, CA, 2017

[121] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks and G. Wei, "14.3 A 28nm

SoC with a 1.2GHz 568nJ/prediction sparse deep-neural-network engine with >0.1 timing

error rate tolerance for IoT applications," IEEE International Solid-State Circuits

Conference (ISSCC), San Francisco, CA, 2017

[122] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes: Bit-

serial deep neural network computing,” In Proceedings of MICRO, 2016

[123] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training deep neural

networks with binary weights during propagations,” In Proceedings of NIPS, 2015

[124] M. Courbariaux and Y. Bengio, “Binarized neural networks: Training deep neural

networks with weights and activations constrained to +1 or −1,” arXiv preprint

arXiv:1602.02830,2016

[125] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet

classification using binary convolutional neural networks,” In Proceedings of ECCV,

2016

[126] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low precision by

halfwave Gaussian quantization,” In Proceedings of CVPR, 2017.

[127] F. Li and B. Liu, “Ternary weight networks,” In Proceedings of NIPS Workshop

Efficient Methods Deep Neural Network, 2016.

[128] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” In

Proceedings of ICLR, 2017.

[129] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong, “LogNet: Energy-

efficient neural networks using logrithmic computations,” In Proceedings of ICASSP,

2017

[130] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization:

Towards lossless CNNs with low-precision weights,” In Proceedings of ICLR, 2017.

111

[131] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding,” In Proceedings of

ICLR, 2016.

[132] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” In Proceedings of

NIPS,1990.

[133] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for

efficient neural networks,” In Proceedings of NIPS, 2015

[134] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” In

Proceedings of NIPS Deep Learn. Workshop, 2014.

[135] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks

through FFTs,” In Proceedings of ICLR, 2014.

[136] A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,” In

Proceedings of CVPR, 2016.

[137] J. Cong and B. Xiao, “Minimizing computation in convolutional neural networks,” In

Proceedings of ICANN, 2014.

[138] V. Lebedev, Y. Ganin, M. Rakhuba1, I. Oseledets, and V. Lempitsky, “Speeding up

convolutional neural networks using fine-tuned CP-decomposition,” In Proceedings of

ICLR, 2015

[139] Hardik Sharma, et al. "Dnnweaver: From high-level deep network models to fpga

acceleration," In the Workshop on Cognitive Architectures, 2016.

112

Appendix A: Keras Flow

Keras is the framework used across the implementation of all networks within this

work. It can be described as an open source python based deep neural network library

whereas a multi-level hierarchy of libraries are constructed. The structure has a higher

level neural network API libraries built on the top of a backend lower level libraries such

as Tensor Flow, Theano or Microsoft CNTK which are capable to execute seamlessly on

both CPU and GPU as shown in Figure 90 . Keras flavor used among this work is the

one with tensor flow as backend.

Figure 90: Keras levels structure

It distinct features are the ability to enable fast prototyping through autonomously

handling the common infrastructure details such as the back propagation algorithm and

the optimization procedures as well as benefiting from being open source through a wide

online community support.

Keras flow can be divided into five major steps as shown in Figure 91

113

Figure 91: Keras flow

Firstly, prepare the inputs, perform any preprocessing required and pass it to the

network. This is done through the Image Data generator class. This class solves the hassle

of how to feed the network with the data whether to load them in the RAM or fetch them

every time from the hard disk or write a manual code that can handle the data movement

across the different available storage hierarchy within the computing platform based on

the size of data. This class handles all the data set loading automatically whereas the

images are divided into batches and only images that are required for the current and next

few batches during training are loaded in the memory. Clearly, this shall allow loading

both small datasets as well as very large image datasets with thousands or millions of

images smoothly in and out from memory. This can be noted as progressive loading, as

the data set is progressively loaded and retrieving just enough data for what is needed

immediately. Moreover, Image Data generator class can be used in image augmentation

to improve the networks performance whereas it can automatically scale the pixel values

of the images as well as automatically create transformed versions of images that belong

to the same class as the original image. These Transforms include a range of operations

from the field of image manipulation, such as shifts, flips, zooms, rotate and may other

operations. To use the Image Data Generator class, the data set directory shall be structure

as shown in Figure 92

114

Figure 92 : keras Image data generator class directory structure

 This shall be followed by creating a constructor for this class through “datagen =

ImageDataGenerator()”. Then create the training generator " train_datagen =

ImageDataGenerator (various required options)” where the options include rescaling the

data and any required image augmentation configurations such as shift, flip, zoom,

brightness and rotation. Similarly, a test generator is created via “test_datagen =

ImageDataGenerator(). Finally, instantiating different iterators to progressively load the

data. This is done by calling the “flow_from_directory” function. For training generator

it is called as “train_generator = train_datagen.flow_from_directory(path to train

directory, batch size, shuffling data)” while for validation as “validation_generator =

train_datagen.flow_from_directory(path to validation directory, batch size, shuffling

data)” and for testing as “test_generator = test_datagen.flow_from_directory(path to test

directory, batch size, shuffling data)”.

Secondly, define the model architecture. This can be done through sequential class

from keras models via “model = Sequential ()”. Then different layers are stacked

sequentially through the add method as “model.add(layer name(layer configuration))”.

Thirdly, construct the computational graph and configure the learning hyper

parameters by compiling the model. This is done through “model.compile(loss= target

cost function, ,optimizer=required optimization method , metrics= required merit of

optimization)”

Fourthly, start training the model via “model.fit_generator(train_generator,

steps_per_epoch, epochs, validation, validation_steps” where training and validation

steps are the number of batches per epoch

Lastly, test the model on test data through “model.evaluate_generator

(test_generator, steps)”

115

 Appendix B: Computing Platforms

DNN are widely known to be computational hungry given their huge size, number

of computations required for their training and the amount of associated memory to store

the model as well as the intermediate results. Nowadays, training is usually done through

one or several high end GPUs with a huge RAM memory size. This kind of infrastructure

are commonly found in data centers with an emphasis on Google Colaboratory (open

GPUs from google), Google compute engine, Amazon EC2 and Microsoft Azure. Data

centers strength lies in their reduced cost of ownership as well as offering a more data

computation centric GPUs compared to building a customized platform for a short term

usage.

Google Colaboratory is a google based service that provides a Jupyter notebook

environment that doesn’t require any setup and runs entirely on google cloud. It is

equipped with two different hardware accelerators where only one is allowed to be used

at a time. The first is Nvidia K80 GPU with 12 GB of RAM while the other is google

Tensor Processing Unit (TPU). This service comes for free, however only a maximum

continues run of twelve hours is allowed before resetting the connection as well as the

quality of service and allocating a hardware accelerator isn’t guaranteed.

Google Compute Engine is the google paid service where a virtual machine

connected to google data center is offered. This virtual machine can be equipped with

Xeon processor with different number of cores and amount of RAM. Moreover, it is

allowed to attach a GPU to this machine for a wide range of GPUS including Nvidia

V100, P100, K80, P4 and T4

Amazon EC2 is an amazon paid service that similarly to google compute engine can

provide a virtual machine connected to amazon data centers that is equipped with Xeon

processor with different number of cores and amount of RAM. Also, the computation

capability can be extended through attaching one or multiple GPUs from the available

ones including Nvidia V100, K80 and M60

Microsoft Azure is the microsoft paid service that similarly to the others provides a

virtual machine equipped with Xeon processor with an option to choose the number of

cores, amount of RAM and attaching a GPU from the available ones including Nvidia

V100, P100, P40, k80 and M60

Table 17 shows a comparison between different attached GPUs of these platforms

as well as their pricing while Table 18 shows when the key advantage of each platform

and when to use it

Platform Available

CPU

Available Nvidia

GPU

Price per Hour in $

Google Colaboratory N/A K80 0

Google Compute

Engine

Intel Xeon K80 0.7

Google Compute

Engine

Intel Xeon P4 0.9

Google Compute

Engine

Intel Xeon T4 1.24

Google Compute

Engine

Intel Xeon P100 3

116

Google Compute

Engine

Intel Xeon V100 4.5

Amazon EC2 Intel Xeon K80 0.9

Amazon EC2 Intel Xeon M60 0.93

Amazon EC2 Intel Xeon V100 3.06

Microsoft Azure Intel Xeon K80 0.9

Microsoft Azure Intel Xeon M60 1.092

Microsoft Azure Intel Xeon P40 2.07

Microsoft Azure Intel Xeon P100 2.07

Microsoft Azure Intel Xeon V100 3.06

Table 17 : Different platforms computing capability and their pricing

Platform Key Advantage When to use

Google Colaboratory Totally free service Developing and

experimenting

small functions

Google Compute Engine The 300$ voucher which is equivalent to

training one month for free

Preemptive machines which are lower in

price where a V100 can be as low as 1$,

however it lasts only from 2 up to 12

hours

Prototyping a

full network

and network

debugging

Amazon EC2 Least V100 GPU price

Spot machines which is lower are price

where a V100 can be as low as 2$,

however it was very difficult to found

one

Training a full

network that

may require

running for

several days

Microsoft Azure Competitive V100 GPU price Training a

full network

that may require

running for

several days

Table 18 : key advantage of each platform and when to be used

 أ

 ملخصال

تم " شائعاً حيث الضخمهاستخدام مصطلحات مثل "البيانات اصبحفي عصر انفجار البيانات ،
الشبكة العنكبوتية ب ةالمتصلمن خلال التوفر الواسع لمنصات الحوسبة الشخصية العالم ورقمنتهربط

عصر ، الانتشار السريع لمنصات الهاتف المحمول ، شعبية تطبيقات الوسائط الاجتماعية وبدء
إنترنت الأشياء مصحوبًا باختراع أجهزة ذكية تُستخدم تقريبًا في جميع جوانب الحياة من الأجهزة

كل ما سبق ، نتج عنه توليد يومي لكمية هائلة من المنزل المختلفه.القابلة للارتداء إلى أجهزة
ذا النوع من يتميز ه .المرئيةو ةالصوتي مقاطعال وو الصور البيانات الرقمية مثل المستندات

لاستخراج رؤى وتنبؤات هالآل تعلمستخدام أساليب لاجاذبية مما ادى الى البيانات بطابعه الشخصي
٪ من هذه البيانات عبارة عن صور 70علاوة على ذلك ، فإن حوالي .ومعلومات مفيدة منها

 ةعصبونيالالشبكة . تطبيقات الرؤية الحاسوبية ومقاطع مرئية مما يزيد من متطلبات تحسين
تطبيقات تعزيز و تحسيناللاعب الرئيسي في كانت هتعلم الآل من التلافيفية التي تعد مجالًا فرعيًا

 وخريطةمشاركة مصفوفة الاوزان بفضل خصائصها المميزة مثل اليومالمستخدمة الرؤية الحاسوبية
 و تجميعها. ةو انتقاء القنوات المختلف والمجال الاستقباليالسمات

 ى لها.العرض زياده البعد التلافيفية عن طريقة العصبونييستكشف هذا العمل تعزيز أداء الشبكة
حيث يتم ةمستعار ة باستدار التلافيفية المرشحاتأولًا تدوير . يتم ذلك من خلال فكرتين رئيسيتين

ثانيًا ، إرفاق .مختلفة لتوليد متغيرات متعددة منها ةمستعار المدربة بزوايا دوران المرشحاتتدوير
تتقدم أكثر نحو توحيد العديد من سمح للشبكة أنهذا . كل بالطبقة التلافيفية يةالتجميع المرشحات

والدوران الانعكاسخاصية يتم تعزيز اً، بشكل اكتر وضوح .داخلهابخصائص التحويل الأفيني
بينما اعتباطى المختارة بشكل ةالمستعار ةات الاستدار ذالمرشحات من خلال توفير مجموعة من

علاوة على ذلك ، فإن السمات. لحجم خرائط التغيير الاختيارى من خلال التحجيميعزز خاصية
داخل كل ب السماتخرائط و تنويع مجتمعة توفر للشبكة القدرة على زيادةال المرشحاتكل هذه

الأداء ، تم اقتراح خمس سنتحلإثبات .طبقة تلافيفية مما يزيد من متانة خاصية ثبات الترجمة
ا على ما من خلال اختبارهمأدائه من التاكدشبكات تعتمد على بنيتين مختلفتين بالإضافة إلى

 مجموعتين مختلفتين من البيانات

 سيد محسن رأفت عبدالعاطى :دسـمهن
 ١٩٩٢\٠٢\٢٢ تاريخ الميلاد:

 مصرى الجنسية:
 ٢٠١٥\١٠\١ تاريخ التسجيل:

 ٢٠٢٢ تاريخ المنح:
 الكهربية والإتصالات الإلكترونيات هندسة القسم:
 العلوم ماجستير الدرجة:

 المشرفون:
 محسن عبد الرازق رشوانا.د.
 حسام على حسن فهمىد. ا.

 الممتحنون:
)المشرف الرئيسي(محسن عبد الرازق رشوان .أ.د
)المشرف(حسام على حسن فهمى .أ.د
)الممتحن الداخلي(عمر نصر د.م.أ.
)الممتحن الخارجي(خالد مصطفى أ.د

 جامعــة القاهــرة -كلية الحاسبات والذكاء الاصطناعي بأستاذ
 عنوان الرسالة:
 ةالمستعار ةالاستدار ذاتالمرشحات ةالشبكة العصبونية التلافيفية بواسط: توسعه ةالمستعار ةشبكات الاستدار

 كلمات فقط(5)يجب أن تتكون من الكلمات الدالة:
 ، ةالمستعار ة، مرشحات الاستدار ، تصنيف الصورة ، الشبكة العصبونية التلافيفية تعلم الآلة

 مرشحات التجميع.

 كلمة ولا يتخطى صفحة أخري(150)لا يزيد عن :رسالةملخـص ال

البعد ةزيادمن خلال استكشاف الشبكة العصبونية التلافيفية يهدف هذا العمل إلى تعزيز أداء

متعددة من نسخلإنشاء ةمستعار ةباستدار التلافيفية المرشحاتالفكرة المقترحة هي تدوير العرضى.

علاوة على ذلك ، فإن . بزاوية دوران مختلفة مرشحتلك المدربة في الأصل حيث يتم تدوير كل

المجمعة من شأنه أن يجعل الشبكة المرشحاتمع ةالمستعارذات الاستداره المرشحات هذه ادماج

كما ايضا ية ذلك يمكن أيضًا رؤ .داخلهابتتقدم أكثر نحو توحيد العديد من خصائص التحويل الأفيني

لإثبات فعالية هذه الأفكار بداخلها. السماتخرائط و تنويع قادرة على زيادة اصبحتلو أن الشبكة

، تم اقتراح خمس شبكات تعتمد على بنيتين مختلفتين وتم تعميمهما ليتم اختبارهما على مجموعتين

 مختلفتين من البيانات

 ةتلافيفية بواسطالشبكة العصبونية التوسعة : ةالمستعار ةشبكات الاستدار

 ةالمستعار الاستدارة ذاتالمرشحات

 اعداد

 سيد محسن رأفت عبدالعاطى

 القاهرة جامعة – الهندسة كلية إلى مقدمة رسالة

 درجة على الحصول متطلبات من كجزء

 ماجستير العلوم

 في

 الكهربية والإتصالات الإلكترونيات هندسة

 الممتحنين:يعتمد من لجنة

 المشرف الرئيسى محسن عبد الرازق رشوان أ.د.

 مشرف على حسن فهمى أ.د. حسام

 الممتحن الداخلي عمر نصرد. م.أ.

 الممتحن الخارجي خالد مصطفىأ.د.

 جامعــة القاهــرة -أستاذ بكلية الحاسبات والذكاء الاصطناعي -

 القاهــرة جامعــة - الهندســة كليــة

 مصـرالعربيــة جمهوريـة - الجيـزة

٢٠٢٢

 ةتلافيفية بواسطتوسعة الشبكة العصبونية ال: ةالمستعار ةشبكات الاستدار

 ةالمستعار الاستدارة ذاتالمرشحات

 اعداد

 سيد محسن رأفت عبدالعاطى

 القاهرة جامعة – الهندسة كلية إلى مقدمة رسالة

 درجة على الحصول متطلبات من كجزء

 ستير العلوم ماج

 في

 الكهربية والإتصالات الإلكترونيات هندسة

 تحت اشراف

 حسام على حسن فهمى أ.د.

……………………………….

 محسن عبد الرازق رشوان أ.د.

……………………………….

 أستاذ

 الكهربية والإتصالات الإلكترونيات هندسة قسم

 جامعة القاهرة -كلية الهندسة

 أستاذ

 الكهربية والإتصالات الإلكترونيات هندسة قسم

 جامعة القاهرة -كلية الهندسة

 القاهــرة جامعــة - الهندســة كليــة

 مصـرالعربيــة جمهوريـة - الجيـزة

٢٠٢٢

 ةتلافيفية بواسطتوسعة الشبكة العصبونية ال: ةالمستعار ةشبكات الاستدار

 ةالمستعار الاستدارة ذاتالمرشحات

 اعداد

 سيد محسن رأفت عبدالعاطى

 القاهرة جامعة – الهندسة كلية إلى مقدمة رسالة

 درجة على الحصول متطلبات من كجزء

 ماجستير العلوم

 في

 الكهربية والإتصالات الإلكترونيات هندسة

 القاهــرة جامعــة - الهندســة كليــة

 مصـرالعربيــة جمهوريـة - الجيـزة

٢٢٠٢

