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Abstract 

In the Data explosion era, terminology like “Big Data” had been commonly used as 

the world had been connected and digitalized through the wide availability of personal 

computing platforms with their internet connection, rapid spread of the mobile platforms, 

popularity of the social media applications and the start of Internet of Things platforms 

paradigm accompanied by the invention of smart devices that are almost utilized in all 

aspects of today life from wearable devices to kitchen appliances. All of the 

aforementioned, had resulted in a daily generation of huge amount of digital data such as 

documents, videos, image and speech. These type of data are distinctly characterized by 

their personal flavor gaining the attraction to use the Machine learning methods to extract 

useful insights, predictions and information from them. Moreover, around 70% of these 

data are images and videos increasing the requirement to enhance the computer vision 

tasks. Convolutional Neural Network which is a sub domain of Machine learning had 

been the key player in today enhanced computer vision tasks. Thanks to its distinct 

features such as weight sharing, feature map, channel pooling and receptive field.  

This work explores boosting the Convolutional Neural Network performance by 

means of width extension. This is done through two main ideas. Firstly, pseudo rotated 

kernels where the originally trained kernels are rotated with different pseudo rotation 

angles to generate multiple variants from them. Secondly to attach the pooling kernels to 

the convolutional layer. This allowed the network to approach several affine 

transformation properties. Clearly, it boosts the translation and rotation property by 

providing a set of arbitrary chosen pseudo rotated kernels while it promotes the scaling 

property through the arbitrary reduction of grid size. Moreover, all these kernels 

combined together provide the network with a capability to scale and rotate the feature 

map within each convolutional layer increasing its translation invariance property 

robustness whereas the network had some built-in self-augmentation methods. To 

demonstrate the performance improvement five networks were proposed based on two 

different architectures where three of them are based on ResNet while the remaining two 

are based on VGG. As well as, challenging their performance impact by testing them on 

two different data sets the CIFAR-10 and CIFAR-100. 
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Chapter 1 : Introduction 

1.1. Data Explosion Era 

At the start of Big Data era, wide availability of personal computing platforms 

connected to the internet had led to a digitalized world where huge amount of digital data 

such as documents, videos, image and speech were generated daily.  

The explosion of data era had extended more with the inventing of the mobile 

platforms and the rising of the social media applications which rapidly had gained 

popularity among people all over the world leading to the generation of more digital data 

and information with a special personalized nature. For instance, according to [14] 

Facebook generates over 10 Petabyte (PB) log data per month and Taobao.com, the 

largest online retailer in China, generates tens of Terabyte (TB) data every day.  

Moreover, the start of the next wave of connecting and digitalizing the world through 

5G communication technologies and Internet of Things (IoT) platforms allowed the 

invention of edge computing devices which are sensor rich based devices with a high 

speed internet connectivity giving it the capability to exchange information with 

powerful computing servers (i.e. data centers). Hence, generation more and more data 

with a personalized flavor.  

All the aforementioned had driven the need of statistical and analytical solutions to 

be able to solve the learning problem aroused from these vast data to extract useful insight 

and knowledge form them  

Conventional approaches which relies on domain experts to express the problems 

analytically, transform the raw data into useful features and representation then hand craft 

the solution had failed to deal with this tremendous growth in the scale of data with its 

personalized nature as it requires an explicit knowledge about the given domain limiting 

its ability to solve more complex problems in which the features and knowledge 

representation can’t be explicitly expressed as they are implicitly inherited with in the 

raw data.  

Meanwhile, Artificial Intelligence(AI) solutions especially its Machine Learning 

(ML) sub-domain had provided a leap over these tremendous data where it allows 

automatic features and information extraction as well as the acquisition of useful insights, 

predictions and decisions from this huge amount of data without the need of formally 

expressing the features nor the representation resulting in approaching more complex 

problems such as medical diagnosis and speech transcription.  

ML significant value appears in its ability to overcome the personalized nature of 

how modern data are generated meanwhile maintaining the privacy of these data through 

preprocessing to remove any personal labels. 

This edge of ML over the conventional solutions regarding its ability to deal with 

the tremendous growth in the scale of data and information with its associated learning 

problem had developed a prominence demand on ML. This demand had resulted in a 

respond from the ML community which can be shown in Figure 1 where more than 50 

ML papers appear daily on arXiv.org alone and their rate of growth is almost 

doubling every two years which can be compared to Moore’s Law. 
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Figure 1 : The number of ML papers posted on arXiv.org per year from [13] 

1.2. Artificial Intelligence and Machine Learning 

Learning problem according to [1] can be described as the problem of executing a 

task and optimizing its performance metric through training experience 

 Meanwhile, Representation Learning according to [2] can be viewed as the set of 

methods in which the raw data is fed to the machine then the machine can automatically 

distinguish all the features and representation required for acquiring the useful 

knowledge needed for the next action whether it was detection, classification or any other 

tasks  

Artificial Intelligence (AI) according to [3] is any agent device that can become 

conscious about its surrounding environment and can take the actions that maximizes its 

ability to achieve its goals. The popularity of AI among the scientist and engineers is 

increasing due the achievements and the breakthrough performance driven from its 

Machine Learning (ML) sub-domain. A Venn diagram to illustrate the relation between 

AI and its ML sub-domains can be shown in Figure 2. 

 

 

Figure 2 : Venn diagram between AI and its ML sub-domains 

ML was first quoted by Arthur Samuel in 1959 as giving the ability to the machine 

to learn without being explicitly programmed to do that consequently allowing the 
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creation of programs to do some activities through leaning and training experience, on 

contrast to hand crafted programs which their activities and behaviors are defined in a 

hard coded style. ML enables the emulation of how humans learn, adapt and make 

decisions. This lead to the designing of programs that has the ability to learn the required 

actions based on the knowledge learnt form from raw data directly. ML can be seen as 

programing by example where previous experience shall contribute to the gained 

knowledge affecting the future actions. 

ML ability to solve a problem with a high performance generally depends on two 

factors: the data set availability compared to the problem and the computational 

infrastructure available 

The complexity of the problem with its inherited required features to be learnt affects 

the amount of data required and the rule of thumb here is that as the amount of data 

increases, the ability to capture more patterns and features automatically increase and 

hence the quality of results increase proportionally.  

On the other hand, enormous data set shall require a giant network that shall 

essentially come with a huge computational cost penalty that may limit the ability to train 

it if the required hardware infrastructure isn’t available. Nowadays, training a modern 

network may require two high end GPUs that are capable to perform multiple TFLOPS 

operations. 

1.3. Machine Learning Algorithms 

Generally, ML algorithms according to [1,2,16] can be divided as shown in Figure 

3 into four categories: Supervised Learning, Unsupervised Learning, Semi Supervised 

Learning and Reinforcement Learning  

 

 

Figure 3 : ML different learning styles 
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1.3.1. Supervised Learning 

Supervised learning methods requires the availability of a labeled data set in which 

each input is tagged with its desired output. The objective is then to feed the machine 

with the input data and train its prediction to match the reference.  

The learning is described as supervised since there is a known reference output that 

acts as a supervisory guidance for the whole training assisting in the reduction of the gap 

between the predicted output from the network during training and the actual one.  

This type of learning can be divided into two main categories known as Regression 

and Classification. The first tries to identify the most likely function that can fit all the 

data within the data set, while the latter attempts to find the best fit class for the data from 

a set of given classes. 

1.3.2. Unsupervised Learning 

Unsupervised learning doesn’t require a labeled data set instead it is fed with data 

without explicit labelling or desired output. Thus, there is no right or wrong outputs 

instead it is subjective to the application itself.  

The objective is to find common statistical and structural properties of data through 

automatic extraction of the underlying features and patterns enabling their cluster into 

groups based on the correlated features extracted during training.  

There are three main categories in this type of learning which are clustering, 

dimensionality reduction and anomaly detection. 

1.3.3. Semi Supervised Learning 

Semi supervised learning includes a mixture from supervised and unsupervised 

learning where both labeled and unlabeled data are used during the training. Usually, 

used when the amount of labeled data is small and hence, extracting patterns and features 

from them isn’t satisfying, meanwhile labeling the unlabeled data requires an extensive 

time and the availability of domain experts.  

The objective is to augment the unlabeled data with the labeled one through the 

creation of the data cluster using the unlabeled data and using the labeled data to identify 

the clusters. There are three main categories in this type of learning based on the 

assumption used during the training which are smoothness, cluster and manifold. 

1.3.4. Reinforcement Learning 

Reinforcement learning is different from all the aforementioned in which it is defined 

in the terms of having an agent that tries on its own to interact with the surrounding 

environment based on trial and error approach with a cumulative reward that guide the 

agent to learn the right decision on its own instead of being explicitly trained.  The agent 

shall have two states the start and the end. Between the two states there is different routes 

and actions that may cause success or failure to execute the task and reach the end state. 

Hence, the agent receives a reward when moving towards the end in the optimal route 

while it doesn’t receive anything upon failure.  

The objective is then to achieve the target and move from the start to the end state 

with maximum cumulative reward. It is an iterative method that depends on the past 

feedback and the ability to span new approaches to reach the goal. 
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1.4. Machine Learning Brain Inspired Computation 

Brain inspired computation is a sub-domain of ML as shown in Figure 2 that is trying 

to mimic some basic operations of the brain according to the understanding of how the 

brain operates nowadays, with the objective to emulate the brain in some processing 

aspects rather than creating a human brain.  

The current biological structure and characterization of the brain can be shown in 

Figure 4.  

 

 

Figure 4 : Brain biological structure from [5] 

The brain is composed of a neuron which is considered to be the main computational 

element. This neuron is connected with other neurons through dendrites and axons. Both 

dendrite and axon can be referred to as the activation of the neuron as dendrites allow 

input signals to enter the neuron meanwhile the axons allow the signals to exit out of it. 

When a dendrite and axon are connected together they form a synapse. A key feature of 

the synapse it allows scaling the signal associated with it. This scaling can be viewed as 

a weight value and the brain is believed to be able to learn through the ability to change 

these weights in respond to different input stimulus.  

The way of brain learning process is the key inspiration of the ML Brain inspired 

computation where it is based on the continues adjustment of the weights in response to 

the training stimulus while its infrastructure referred to the number of neurons and the 

connection among them remains fixed which maps to the network structure.  

The Brain inspired computations can be divided into Neural Network (NN) and 

Spiking Network 

1.4.1. Neural Networks 

Neural Networks(NN) are inspired from neuroscience where it tries to make analogy 

with the biological structure of the brain where the computations take part within the 

neuron of the network. These computations can be viewed as a neuron firing to generate 

its output by applying a nonlinear function on a weighted sum of the inputs with an 

optional addition of a bias. With the synapses being modeled through the adjustable 

weight associated with each input signal allowing its scaling during the training 

experience.  

The computational flow of the NN is usually visualized using a directed acyclic 

graph (DAG) [4,12,21,23] as shown in Figure 5.  
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Figure 5 : Simple NN structure with one Hidden Layer 

The vertex illustrates the neuron, the directed edge demonstrates the synaptic 

connection between the neurons and hierarchical structure of the neurons describes the 

organization of the network.   

This multi-layer hierarchy allows the first few layers to act as low feature extractor 

(i.e. extracting the edges) while enabling the last few layers to represent the high level 

feature (i.e. representing the complex contour) and in between allows the processing of 

the extracted features to their high level representation. 

The computational flow starts with the neurons of the first layer noted as input layer 

accept the input values, applying the nonlinear function and propagating the outputs to 

the middle layers. The middle layers are noted as hidden layers and based on the network 

structure whether the hidden layer has a depth of a few layers it can be noted as a Shallow 

Neural Network or its depth has many layers it can be noted as Deep Neural Networks 

(DNN). Consequently, the hidden layer neurons accept the inputs from the input layer 

and perform the same operation from applying the nonlinear function and propagating its 

outputs to the output layer which shall be the final output of the network.  

NN shall comprises two phases along its usage life time: Training phase and 

Inference phase. 

 The training phase is the learning phase in which network development takes place 

from defining the type of network, number of layers and continuously manipulating the 

weights to meet the required performance on a given application.  

On the other hand, inference phase is the prediction phase in which the network is 

deployed in production and used in a feed forward manner. 

The high popularity of NN nowadays can be argued to the superior performance of 

its DNN family of networks especially the Multi-Layer Perceptron (MLP), Convolutional 

Neural Network(CNN) and Recurrent Neural Networks(RNN) where these networks 

were able to suppress the human level performance on various tasks such as ImageNet 

recognition [29] and Atari 2600 video games [113]. Furthermore, these types of networks 

represent 95% of NN inference workload in google datacenters according to [12]. 
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1.4.2. Spiking Neural Networks 

Spiking Neural Networks (SNN) try to pursuit a biological brain inspired paradigm 

in a different fashion from the traditional ML neural networks, where the first is directly 

inspired from neuroscience in the way it encodes, transfer and processes the data while 

the latter mimic the relationship between the neurons in a more remote way using the 

activation of a weighted sum of input data through a nonlinear function. 

 SNN which can be shown in Figure 6 is based on asynchronous communication 

between different neurons allowing time dependent information transfer through train of 

pulses where the information is coded in the form of spikes. Meaning that the neuron 

shall have the capability to extract information from an encoded timing pulse specifically 

the pulse width, amplitude and the time of arrival of the pulse relative to other pulses. 

Consequently, when a neuron spikes it inhibits all other neurons, emulating the presence 

of inhibitory connections and the spiked neuron enters a refractory phase where it ignores 

any coming spike. This spiking nature is more readily to receive and operate on real 

world data since they are usually pulse oriented with a time varying nature. In addition, 

they are most suited in low power applications as the spiking rate may be as low as few 

tens of Hertz. However, SNN is still not competitive with the accuracy results achieved 

by state of art of the ML neural networks on different datasets 

 

 

Figure 6 : Simple SNN 

SNN training is challenging since their discontinuous spiking nature is not suitable 

for the backpropagation algorithm which requires the model to be differential to generate 

the errors in form of the gradients. One approach to train these networks is to use the 

Spike Timing Dependent Plasticity (STDP) learning method. An unsupervised learning 

which relies on the spiking timing whether pre or post the synapse to obtain the causality 

between input and output spikes. This causality is obtained through detecting when a 

neuron fires after the arrival of the input spikes. If it fires soon this would likely map that 

synapse had an impact and thus needs to be boosted, meanwhile if it fires later after the 

arrival of the input spike this would likely map that the synapse had no role in this firing 

and thus needs to decreased. The first process is referred to as Long Term Potentiation 

(LTP) while the latter is Long-Term Depression (LTD). STDP is accompanied with the 

need of Homeostasis process. Homeostasis is a process used to balance the distribution 

of the information among different neurons through the firing threshold adjustment. 

Meaning that, if a neuron fires frequently they are punished by increasing their firing 

threshold. On the other hand, if they fire infrequently they are inculcated by decreasing 
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their firing threshold. This shall ensure that all the neurons shall contribute in the output 

generation enhancing the network performance by squeezing out all its capabilities. 

 Prominent examples of SNN approach are IBM through its TrueNorth chip [57] 

which has one million programming neurons and 256 million configurable synapses, 

Qualcomm through its Zeroth processor [56] and Manchester University’s 

SpiNNaker[55]. 

1.5. Machine Learning Stack  

ML design space is similar to any other Hardware Software Co-design space can be 

viewed in the form of stacked layers one on the top of the other where each layer is 

considered with a portion of this space allowing the focus on its constraints, required 

specifications and available optimization techniques. 

This Stack methodology is simply the divide and conquer approach which is used to 

divide a big problem into a series of smaller ones that can be easily understood, 

constrained and optimized such that when collecting all the parts together the overall 

performance is maximized  

As shown Figure 7 in this stack layer can be divided into five layers: Application 

Layer, Architecture Layer, Software Layer, Hardware Layer and Benchmarking and 

comparison Layer. 

 

 

Figure 7 : ML Design Stack Overview 
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1.5.1. Application Layer 

The Application Layer shall define the required problem to be addressed by means 

of ML methods.  

Well Known Applications include Computer Vision, Speech Recognition, Natural 

Language Processing (NLP), Recommendation Systems, Robot Control, Cosmology, 

Social science and many others. 

1.5.2. Architecture Layer 

The Architecture Layer shall define how the data is organized, prepared to be 

processed, required computational flow to generate the output as well as the memory 

requirement to process all the data.  

Widely used Architectures includes Multi-Layer Perceptron (MLP), Deep Neural 

Network(DNN), Convolutional Neural Network(CNN), Recurrent Neural 

Network(RNN), Auto Encoders, Boltzmann Machine(BM), Deep Boltzmann Machine 

(DBM), Linear Regression, Logistic Regression, K-nearest Neighbors, Support Vector 

Machine (SVM) and many other architectures. 

1.5.3. Software Layer 

The Software Layer shall define the network modeling techniques in which the data 

flow defined in the Architecture Layer is translated into basic operations facilitating the 

characterization of the network performance, obtaining useful insights to identify 

potential are of improvement and optimizing the network through evolving techniques 

such as network precision reduction, activation statistics monitoring, network pruning 

and others.  

Also, it shall define how the model shall be implemented either using low level 

languages or using framework. Frameworks are currently attracting attention as it 

abstracts the implementation of software model using high Level libraries instead of 

starting from scratch using basic operations, thus reducing the time of implementation 

significantly and leveraging the accumulated optimization knowledge in the field of ML 

across the whole community. 

1.5.4. Hardware Layer 

The Hardware Layer shall define the hardware architecture to implement the 

software model defined in the Software Layer including how the processing of data shall 

be done, the architecture of the data processing units and whether they are going to use 

exact computation or Stochastic/Approximate computations as part of operation accuracy 

versus power trade off.  

Besides, the Hardware Layer shall define the memory hierarchy, associated policy 

and any applicable Near Data Processing. Furthermore, given how the current networks 

are computational hungry requiring many processing units to operate together, it shall 

define the Network on Chip (NoC) architecture including the infrastructure that allows 

different processing units to exchange data and allow data transfer across different 

memory hierarchy whether they were On-chip or Off-chip. 
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1.5.5. Benchmarking and Comparison Layer 

Benchmarking and Comparison Layer shall define the community performance 

metric and what are the key aspects when comparing various designs and techniques 

relative to each other to achieve a fair method highlighting the different trade-offs. 

1.6. Organization of the thesis 

This work shall focus on Image Classification enhancement through Supervised 

Learning with a focus on the Architecture Layer mainly the CNN architectures. 

The remainder of this thesis is organized as follows: 

 Chapter 2 : Provides the literature survey encompassing the different layers 

within the ML design Stack  

 Chapter 3 : Shows a detailed survey considering the popular CNN networks 

and their progress with respect to the ImageNet competition. 

 Chapter 4 : Explores different ideas to extend the width of the convolutional 

layer and mainly introduces the Pseudo Rotated Kernels 

 Chapter 5 : Generalize the Pseudo Rotate kernels through proposing five 

networks based on two different architectures as well as testing them against 

two different data sets 

 Chapter 6 : Compares the proposed networks with the literature ones as well 

as benchmarking them relative to top performing networks proposed for each 

data set. 

 Chapter 7 : Summarize the thesis work and discuss the future work 
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Chapter 2 : Machine Learning Stack Literature Review 

This chapter presents the literature review for the application, architecture and 

software ML stack layers meanwhile the hardware and the benchmarking and 

comparison layers are considered as out of scope. Clearly, it surveys each one of the in 

scope layers within the stack to show its progress over time as well as exploring the 

various approaches applied to enhance the ML different performance metrics within each 

layer in addition to demonstrating the different available tradeoffs.  

2.1. Application Layer 

DNN a sub-domain of ML had shown a remarkable performance across a wide range 

of fields, outperforming the previous state of art techniques and accomplishing a 

breakthrough results. For example, starting from the AlexNet [65] at 2012 where the error 

at ImageNet competition [64] was around 25%, it had driven the error down to 3.5% 

through the ResNet architecture [29] suppressing the human level accuracy in the image 

classification tasks. Moreover, according to [28] using DNN in speech recognition had 

led to the reduction of word error rate by 30% when compared to other conventional 

methods which is the biggest gain in the speech field in the last 20 years. Needless to 

mention, mastering the Go game and defeating a human champion [30].  

In this layer, the focus shall be on the computer vision and speech recognition 

applications discussing how the DNN is leveraged among these applications as well as 

their popular associated public data sets. Admittedly, public data sets were a crucial key 

for the development and training of new network architectures as well as enabling fair 

comparison between them 

2.1.1. Computer Vision 

2.1.1.1. General Overview 

In the era of data explosion, video is considered to be the dominant type of data 

generated nowadays, in fact according to [58] it contributes with over 70% of today’s 

internet traffic. Moreover, according to [59] more than 800 million video hours for video 

surveillance is collected daily worldwide.  

Hence, there is an urgent need for computer vision tasks such as image classification 

and segmentation, object detection, localization and tracking and action recognition to 

analyze as well as extract useful information and insights from this huge amount of data. 

Moreover, the enhancement of these tasks is considered a key feature for enabling a set 

of new applications such as augmented reality (AR), virtual reality (VR) and robotics. 

2.1.1.2. Image Classification 

Image Classification is the most common and primary task within the computer 

vision; Furthermore, it forms the basis for another tasks such as object detection and 

localization. It involves identifying the most likely class a given image shall belong to 

from an entire set of classes.  
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DNN through its CNN variant had progressed starting from LeNEt-5[60] which was 

designed for simple grayscale digit recognition until the ResNet[29] that were applied on 

ImageNet competition[64] with around 1.2 million color resolution achieving an 

accuracy 3.5% suppressing the human level performance. Undoubtedly, their distinct 

performance had enabled their usage in more critical applications such as medical 

analysis one where they are used to detect whether a disease exist or not. For instance, 

they are used in diagnosis of different kinds of cancers from brain [78] to skin [79] and 

breast [80] with an achieved competitive performance to the human proficient.  

Popular data sets for image classification are MNIST [62], CIFAR [63] and 

ImageNet [64].  

MNIST as shown in Figure 8 is a handwritten digit data set introduced in 1998, 

composed of ten classes (equivalent to ten digits) with 60,000 training image and 10,000 

test image with a total size of 50MB and each image is grayscale 28 x 28 pixel. Actually, 

it is considered to be a handy data set.  

 

 

Figure 8 : MNIST data set examples 

CIFAR is a subset of the 80 million Tiny Image data set introduced in 2009. It has 

two variants as shown in Figure, the first is CIFAR-10 shown in Figure 9(a) which is 

composed of ten classes of various objects and the second is CIFAR-100 shown in Figure 

9(b) which is composed of hundred mutually exclusive classes with more objects 

included. Both variants have 50,000 training image and 1000 test image, where each 

image is a colored 32 x 32 pixel. The total size of the data set is 170 MB. 
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Figure 9 :  (a) CIFAR-10 data set examples  (b) CIFAR-100 data set examples 

 ImageNet as shown in Figure 10 was introduced in 2010 but stabilized in 2012, 

composed of 1000 classes with 1.3 million training image, 100,000 test image and 50,000 

validation image. Each image is colored 256 x 256 pixel. Moreover, the ImageNet was 

first to introduce the Top-5 and Top-1 error metric. Top-5 error is calculated by 

considering that the classification is correct if any of the top five scoring categories are 

the correct category, meanwhile the Top-1 error considers only the top scoring category 

as the correct one.  

 

 

Figure 10 : ImageNet data set examples 

Recently, Google shared its Open Images data set [68] data set composing of 6,000 

classes with over 9 million images, spanning 6000 categories  

2.1.1.3. Object detection 

Object detection is a multi-task application; composed of classification and 

localization tasks. The first one focuses on the identification of the instances of an object 

that belong to a specific class within the image, meanwhile the latter focuses on 

estimating the location of these instances.  
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With the emergence of DNN and the invention of Regions within CNN framework 

(R-CNN) [82], a significant improvement had been achieved allowing real time accurate 

object detection applications. Its basic idea is to create a unified framework that divides 

the image into a set of candidate windows, classifies them by means of a CNN and finally 

labelling them into rectangular bounding boxes to generate the final results directly 

without any post processing. The region based CNN unified framework paradigm had 

continued to improve through set of proposals including Fast R-CNN [79] which jointly 

optimizes classification and bounding box regression tasks, Faster R-CNN [81] which 

adds a subnetwork to generate candidate regions and YOLO [80] a fixed-grid regression 

approach. 

 Face recognition is one example for the object detection tasks where its objective is 

to identify and locate the face regions with the ability to cope with faces unique structures 

and characteristic such as face parts distributions and skin color. Moreover, it shall be 

able to handle the visual variations including pose changes, illumination changes and 

occlusions. DNN through its CNN sub domain had brought a change in this application 

through the proposed state of the art networks such as Google’s FaceNet [83] which is 

based on training the CNN with a triplet loss function to allow the network to learn to 

cluster the face representation of the same person, Facebook’s DeepFace [84] where it 

models the face in a three dimensional shape then align it to a frontal pose then feed to a 

CNN composed of a single convolutional layer, a single pooling layer, three locally 

connected layers and two fully connected layers and OpenFace [85] an open-source face 

recognition tool.  

Popular data sets for object detection are PASCAL VOC [66] and Microsoft COCO 

[67].  

PASCAL VOC is introduced in 2005 and stabilized in 2012, composed of 20 classes 

with 11,000 images, 27,000 object instances and 7,000 of them had detailed 

segmentation.  

Microsoft COCO is composed of 91 classes with 2.5 million labeled instances in 328,000 

images. Compared to ImageNet, it has fewer classes, however it has more images per 

class and more labels which is rigorous for contextual information extraction and 

localization. 

2.1.1.4. Action and Activity Recognition 

Action and activity recognition is one of the most challenging tasks that has a wide 

range of applications including robotics, human computer interaction and video 

surveillance. It involves identifying human activities from an image or video sequences 

which can be classified into gestures, human to object interaction, human to human 

interactions, events, group actions and atomic actions.  

The hardness of this task is due to the requirement to solve the distorted and 

translated features among different patterns that belong to the same action category which 

arise from several problems such as occlusion, changes in scale, viewpoint, illumination, 

and background clutter.  

After DNN had made a breakthrough in image classification, it started to impact the 

activity recognition achieving new state of the art results but still away from the level of 

impact brought to image classification. The current state of art is a dual architecture that 

combines both CNN and LSTM [87,88,89] 

YouTube data set [69] is one of the data set allowed to be public recently from 

Google. It spans 4,800 classes with 8 million videos (0.5 million hours of video)  
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2.1.2. Speech Recognition 

2.1.2.1. General Overview 

Modern computing platforms are now featured with a voice assistant user interface 

such as Google Now, Apple Siri or Microsoft Cortana. These type of interfaces are based 

on automatic speech recognition systems which necessary are required to provide a 

continuous real time speech recognition that shall be speaker independent as well as 

capable to cover a large vocabulary. Thus, improving the performance of speech 

recognizers is critical for the overall user experience. Moreover, with current trend of 

Internet of Things (IoT) platforms where the invention of smart devices is exploding in 

almost all aspects of today world from wearable devices to kitchen appliances over to 

children’s toys had increase the need for a neat human computer interface. Traditional 

interfaces like keyboard or mouse are not suited with these kind of devices due to the 

physical structure shrunk of these devices making typing a tough task, meanwhile an 

elevating approach is the speech interface where the voice is used as the interaction 

method to give commands and exchange information; increasing more the need for high 

performance speech recognizers. 

Speech recognition is a sub task within the speech processing applications where it 

is required to identify word and phrases sequences uttered in a continuous fashion and 

transform them into a machine understandable format. The speaker voice is captured by 

a microphone in the form of acoustic signal then converted to a set of words where it can 

be the final result if the application is speech recognition or it can be used to feed further 

linguistic processing such as speech synthesis.  

2.1.2.2. Historical Background 

Gaussian Mixture Models (GMMs) that are based on hidden Markov models 

(HMMs) had been dominating the speech recognition for a long time with a few attempts 

to apply the traditional neural networks, however its achieved performance has been 

lagging behind the state of art of GMM-HMM methods at that time. The GMM-HMM 

methods are based on approximating the speech signal into a piecewise short time 

stationary signal where it can be considered as a stationary process, hence enable the 

usage of Markov model for many stochastic processes. Meanwhile, Each HMM uses a 

Gaussian model for representing the spectral of sound wave. This combined method 

enables the extraction of the temporal patterns of the speech.  

 DNN started to have an observable impact in speech recognition in 2013[7], after 

the major research groups worldwide including IBM, Microsoft, Google and Baidu had 

shown that applying DNN on large speech recognition tasks using the raw speech spectral 

features of the spectrogram away from Mel-frequency cepstral coefficients (MFCCs) 

features had shown great success. From then on, DNN had started to become the main 

stream method for both the academia and the industrial speech recognizers. The quick 

adaption of the DNN based speech recognizer across the entire speech recognition 

community can be regarded to the minimum change required in the speech decoder 

through the usage of senones as the output from the DNN, dramatic performance 

enhancement compared to GMM-HMM systems and the availability of large amount of 

data required to train this networks.  
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2.1.2.3. DNN State of the art architectures 

Traditionally state of the art DNN architectures were trained by dividing the speech 

recognition systems into three separate components the acoustic, pronunciation, and 

language models where each component is trained separately with a different objective. 

The acoustic model is typically trained to extract the context dependent phonemes with 

the assist of an alignment method, pronunciation model trained to map the sequences of 

phonemes produced by the acoustic model into word sequences through a linguistic 

model developed by domain experts and the language models are trained on huge amount 

of text data to estimate probabilities of word sequences. 

Current state of the art architectures is focusing on end to end trained speech 

recognition systems. End to End shall refer to transforming all the speech recognition 

models to a single sequence to sequence model where the acoustic, pronunciation, and 

language models are trained jointly and optimized to achieve the required performance 

metric typically the overall system word error rate and hence the objective of the training 

is to map directly the sequence of raw speech waveforms to sequence of words without 

any need of alignment between the input waveform and the output characters. This 

sequence to sequence model is typically composed of encoder and decoder to overcome 

the problem of variable input and output sequences length. The encoder maps the 

sequential variable input length to a fixed length vector while the decoder utilizes this 

fixed length vector to generate a variable output sequence length. To attempt the end to 

end training goal various methods are applied, for instance the connectionist Temporal 

Classification (CTC), RNN transducer, attention based models and hybrid CNN-RNN 

architectures.  

2.1.2.3.1. Connectionist Temporal Classification 

Connectionist Temporal Classification (CTC) is an end to end training method that 

doesn’t require a frame level alignment of target labels for training utterance where it 

attempts to emit any label or no label at every time step thus segmenting the alignment 

into a distribution of possible regions between the input and output sequences meanwhile 

every label is emitted into a single time step fashion. It essentially needs the set of target 

labels to be augmented with an additional blank symbol as well as the existence of 

intermediate label representation to allow labels repetition and blank labels occurrence 

without identifying them as a target output (i.e. emit no output label) 

2.1.2.3.2. RNN transducer 

RNN transducer which was introduced in [92], is an extension for the basic CTC 

method where it combines CTC end to end method with a separate language model based 

on LSTM (Long Short Term Memory) an RNN architecture variant which improves the 

memory effect of RNN. LSTM can deal with the sequential nature of speech since the 

current hidden state can be function in all the previous and future hidden states, thus it 

can exploit the frame information dependency whether the past dependency in the case 

of a unidirectional LSTM or both past and future in case of bi directional. In this method, 

the acoustic and language models are jointly trained where the CTC is used as an acoustic 

model to determine the distribution over phones sequences based on the acoustic 

waveform, meanwhile the transducer identifies the phoneme based on the proceeded 

ones. This method allows the network to predict the output based on its previous output 

sequences and it its current location within the input sequence. The transducer is 

accompanied by a decoder either a bean search one or prefix search or deciding based on 

the active output at every time step. 
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2.1.2.3.3. Attention based models  

Attention based models for instance as [93], is composed of an RNN encoder named 

listener and an attention based RNN decoder named speller. The encoder transforms the 

acoustic speech waveforms to higher level features while the decoder converts these 

features into output characters by performing a conditional prediction to emit the target 

characters based on the full history of previous predictions and acoustics using the 

attention mechanism. This method differs from the RNN transducer that it combines the 

prediction network and the acoustic model into a single model instead of separate models 

that are trained jointly. Moreover, the key improvement of this method it generates the 

character sequences without making any independence assumptions between the 

characters in contrast to the CTC which assumes conditional independence between input 

acoustic frames. The attention mechanism is required to feed the decoder with selectively 

chosen information relevant to the current emitted output allowing the creation of a skip 

connections that can effectively flow the data through the RNN. On one hand, this would 

improve the performance as well as reduce the required computations, in addition to 

reducing the overfitting problem by preventing the network from memorizing the 

transcripts and force it to pay enough attention to the relevant information.  

2.1.2.3.4. Hybrid CNN-RNN architectures 

The recent CNN developments driven by the vision community and its associated 

outstanding performance had led to experimental usage of hybrid CNN-RNN 

architectures mainly the CNN-LSTM flavor architectures within speech recognition 

architectures. Historically, CNN was combined with HMM-GMM in a hybrid model 

where the HMM-GMM force a frame level alignment before the CNN can be trained to 

generate the required targets. In other words, the HMM-GMM perform the temporal 

modeling while the state predictions were generated using the CNN.  However, given the 

fact that LSTM had become the default practice nowadays when dealing with data with 

sequential nature as speech recognition, combing both strengths of CNN and RNN into 

a hybrid architecture would be a promising approach. On one hand, CNN can effectively 

exploit the spectral structure locality in the feature space. Moreover, through its 

frequency dimension weight sharing as well as using the pooling layers helps to tradeoff 

between vocal tract length invariance and the trajectory speech sound differentiation as 

well as reducing the spectral variations within the acoustic features. On the other hand, 

LSTM is well known for its temporal modelling capability. Moreover, when 

accompanied with CTC the end to end goal had become feasible while setting a new bar 

for the achieved performance. Thus, combining them is a promising approach where the 

a few CNN layers are used to reduce the spectral variation of the input then feed the 

extracted features to a deep LSTM to learn the temporal structure across the successive 

time steps. For instance, google CLDN [95] and the Microsoft conversational speech 

recognition system [91] are based on hybrid architectures. 

2.1.2.4. Popular Data Sets 

Speech recognition available data sets include TIMIT [73], Switchboard-1 [90], 

VoxCeleb[74], CHiME5[75], LRS3-TED[76] and Google audio data set [70].  

TIMIT is a collaboration between Texas Instruments and MIT (TIMIT) to develop a 

speech transcription dataset that contains recordings of 630 speakers of the major of 

American English dialects where each has a ten phonetically rich sentences. 

Switchboard-1 is a telephone Speech Corpus developed by Texas Instruments in 1990 

under DARPA sponsorship. It consists of around 269 hours of speech of about 2,400 two 
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sided telephone conversation spanning around 543 speakers from the United States. 

VoxCeleb is a more updated data set with 1,000 celebrities’ voice transcriptions. 

CHiME5 contains multiple speaker natural conversations. LRS3-TED is a visual speech 

recognition data set that is composed of hundreds of hours of TED talk videos associated 

with a time aligned subtitles. Google audio set is a collocation of 2 million human labeled 

10 seconds sound clips encompassed in 623 audio class 

2.2. Architecture Layer 

This layer which is shown in Figure 11 can be visualized as a two dimensional layer, 

the vertical one is considered with the fundamental network architectures which are built 

conceptually using different structures (i.e. CNN vs RNN) while the horizontal one is 

considered with the different flavors of networks within the same fundamental 

architecture (i.e AlexNet[65] vs ResNet[29] in the CNN). The first shall be covered in 

this section, meanwhile the latter is discussed abstractly except for the CNN networks 

which shall be discussed in details within the next chapter. 

 

 

Figure 11 : Architecture Layer two dimensional illustration 

2.2.1. Multi-Layer Perceptron 

Also referred to as feedforward Networks or fully connected networks. They are 

based on NN and known for being a basic network in the ML world, however it is 

considered to be the basis of the DNN. 

As shown in Figure 12, similarly to NN it is composed of input layer, one or more 

few hidden layers and output layer to generate the final network output. The advance 

form one layer to the another shall imply applying a nonlinear function on a weighted 

sum computed form all the outputs generated from the previous layer. Thus the layer’s 

connection within this network are described as fully connected layer in which every 

output from the prior layer contribute in the computation of every neuron in the next 

layer. The usage of a nonlinear function is essentially required to prevent the whole 

network form collapsing into a linear transformation function, meanwhile allowing the 
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learning of complex functions that can be careful in capturing the minute details while 

suppressing irrelevant variations 

 

 

Figure 12 : MLP Abstract network 

Usually considered in modelling the non-linear relationship between inputs and 

outputs with the constraint that they map a fixed input size to fixed size output as well as 

applying the same input shall always generate the same output regardless how the stream 

of inputs is fed to the network since this type of network doesn’t have any memory effect 

2.2.2. Deep Neural Networks 

2.2.2.1. General Overview 

DNN is a part of the Deep Learning family which is a rich family of multi-layered 

algorithms comprising NN, graphical models and hierarchical probabilistic models with 

the supervised and unsupervised feature learning capabilities. 

The NN based methods are mainly considered as an extension from MLP where their 

multi-hidden layers can go beyond few layers to hundred or even thousands layers with 

billions of neuronal connections to be able to manage the growth rate of the data and 

tackle the increasing accuracy demand and enhancing its capability to solve the evolving 

complex problems. For instance, according to [19] Google cat recognizer system has up 

to 1 billion neuronal connections while this number increases in Baidu Brain to reach 

100 billion neuronal connections  

Their key feature which helped  in their emerging and attracting the wide popularity 

is their powerful multi-level representation capacity where they automatically extract 

implicit hierarchical features and patterns from the raw data through nonlinear 

composition allowing the transformation of the raw input (i.e. pixel of an image) into 

more abstracted representation to the extent that the representation at one level is 

transformed into higher abstracted one in the next level , facilitating the amplifying of  

the required aspects for discrimination while suppressing any irrelevant information. In 

addition to, distributing the learning across multi-representation levels enhance the 

network ability to generalize beyond the features that had been learnt through training 

through the ability to create new combinations of features that might not be available 

during training. Moreover, the majority of natural signals has a compositional nature 
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where high level features shall only have extracted through the composition of the lower 

ones 

DNN leap advancement was feasible through the availability of the large annotated 

data sets that can exhibit the learning capacity of these giant networks to be capable of 

automatically detect features and patterns without the need of any handcraft support, the 

dramatic enhancement in the computing capabilities especially GPUs which crossed the 

threshold of being powerful to handle massive amount of weighted sum calculations in a 

reasonable time as well as their affordable price, evolution of innovative network 

architectures that stretched the DNN power such as CNN and RNN and inventing an 

efficient method to execute the learning techniques especially the Backpropagation.  

2.2.2.2. Life cycle phases 

Like the any NN, they have two phases across their usage life time: training phase 

and inference phase 

2.2.2.2.1. Training Phase 

 

Training phase is used to determine the network parameters mainly the weight and 

bias that minimize the network loss function using a well-known data set.  

Weights are usually updated using gradient descent which is a hill climbing like 

optimization process that indicates how the weights shall be adjusted to satisfy the cost 

function.  

Gradient descent is usually implemented using Backpropagation algorithm, a 

calculus chain rule based algorithm that can derive the partial derivatives of the gradients. 

Backpropagation operates using the feedforward and backward passes of network as 

shown in Figure 13. It mainly works by feeding the network with several input samples 

noted as mini-batch, activating the forward pass, squeezing out the output then computing 

the derivative of the cost function with respect to weight and bias starting from the output 

layer gradually to the input layer using the calculus chain rule and the gradient values are 

then passed backward across the whole network to determine how the loss is affected by 

each weight and adjust the weights accordingly. This operation is an iterative one where 

the training sequence is repeated on the whole data set sufficient number of times to 

ensure the objective function had fallen in a good minimum point. Also, the training 

procedure is associated with a hyper parameter tuning process that either used to optimize 

the topology of the network the training configurations. The first is done through ensuring 

the selection of a sufficient number of layers and number of neurons meanwhile, the latter 

modifies the weights learning rate and the regularization techniques. Training a DNN 

nowadays requires a huge data set that may take several days or even weeks to reach the 

required accuracy as well as the huge computational power and storage needed to build 

and train these networks.  
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Figure 13 : DNN abstract network forward and backward passes 

As the network becomes deeper the vanishing or exploding gradients problems start 

to become a matter of concern as it may result in a slower training time or falling into a 

poor local minimum. The vanishing problem arise when the back propagated gradient 

error is small such that when it reaches the layers close to the input it diminishes, similarly 

the exploding gradient where the gradient error is increasing exponentially as it 

propagated back through the network such that when it reaches the layers close to the 

input it saturates. Historically according to [7], this was partially the reason for directing 

away from NN towards shallow models (i.e. SVN) where unlike NN they have convex 

loss objective function that can be efficiently trained to fall within global minima. 

However, practically local minima are rarely a problem in DNN given that the parameters 

are carefully initialized as well as the using ReLU as an activation function where an 

activated neuron has a one constant gradient while clipping any negative values. 

Moreover, the optimization landscape is packed with large number of saddle points 

where the gradient is zero and almost of all them are similar for the optimization function, 

thus it doesn’t important which one of them to stuck at. 

2.2.2.2.2. Inference Phase 

Inference phase is used to run the application in the feedforward pass only of the 

network using the trained weights. Nowadays, inference may take place using datacenters 

or edge devices. 
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2.2.3. Convolutional Neural Networks 

2.2.3.1. General Overview 

They are NN based networks, mainly considered an extension from DNN that is 

capable to operate on data that has a temporal or spatial continuity nature. They were 

inspired from [42] where the visual cortex of a cat was characterized to be sensitive for 

a small sub-region of the visual field. Admittedly, they are invented on the fact that many 

natural data are captured in arrays format. For instance, language sequences have one-

dimensional format, images and audio spectrograms has two dimensional format and 

videos has three dimensional format. 

2.2.3.2. Key features 

The distinct ideas behind CNN are based on its ability to take advantage from the 

properties and structure of the data nature to introduce concepts like receptive field, 

feature map, channel pooling and shared weights. 

2.2.3.2.1. Receptive field  

Receptive field as shown in Figure 14 defines a local sliding window where only a 

small neighborhood of the input contributes to generate the output meaning that all the 

inputs within this window at the current slide shall participate in the weighted sum used 

in the output activation, otherwise the inputs beyond this window their weight shall be 

set zero. In other words, this can be viewed as if a local connection is created between a 

spatially nearby subsets of the inputs and the generated output which in return shall 

reduce the connection within the network compared to a fully connected one leading to 

a drastic reduction in the CNN number of parameters when compared to a conventional 

DNN.  
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Figure 14 : Receptive field for two sliding windows  

2.2.3.2.2. Feature map 

Feature map which is shown in Figure 15 defines the interaction between different 

network layers, where the information is transformed to a higher level of abstraction that 

preserves the necessary unique features. Mainly, it stacks the data into a two dimensional 

arrangement noted as channel, where a set of stacked channels forms the feature map. 

Hence, the feature map shall have a three dimensional arrangement the data height, data 

width and data number of channels.  

 

 

Figure 15 : (a) Feature map with single channel (b) Feature map with C channels 
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2.2.3.2.3. Channel pooling 

Channel pooling which can be viewed in Figure 16 whereas a feature map 

subsampling technique is applied to aggregate its statistics. Mainly, it is used to merge 

the similar features within the same channel of the feature map shrinking the feature map 

dimensions while increasing the robustness of the network and its invariance to small 

shifts and distortions by detecting the feature representations based on their fine-coarse 

positions and appearances allowing them to vary a little within the feature map. 

Moreover, the reduction of the feature map can help in widening the receptive field 

within the new generated feature map allowing the extraction of larger features from the 

original feature map. In addition to, reducing the number of computations overhead 

through diminishing the feature map spatial dimensions. 

 

 

Figure 16 : Feature map before and after channel pooling where n is the pooling scaling 

value 

2.2.3.2.4. Shared Weights 

Shared weights as shown in Figure 17 defines the shared parameters of the learnable 

kernel bank (noted also as filter bank) which is applied on the entire same feature map, 

where each feature map shall be associated with a unique kernel bank, that is shared 

across the same feature map but differs ongoing to another one. Sharing weights between 

different location of the same feature map take advantage that the nature of some data 

(i.e. images) their local group of values shall be highly correlated and that they are 

location invariant enhancing the network capability to detect the same pattern at any 

location within the feature map since they share the same kernel weights. Weight sharing 

accompanied by channel pooling property confers the CNN with translation invariance 

property 
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Figure 17 :Feature map with four channels where the same kernel is applied across the 

entire map to generate an output feature map with single channel 

2.2.3.3. Typical CNN Architecture 

A typical CNN architecture as shown in Figure 18 is composed of different types of 

layers mainly the Convolutional layer, pooling layers, fully connected layers and 

normalization layer where each layer is eligible to generate a feature map to the next 

layer. 

 

Figure 18 : Typical Modern CNN different layer structure 
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2.2.3.3.1. Convolutional layer 

Convolutional Layer gets its name from the fact that their operation is 

mathematically a discrete convolution operation (actually a cross correlation one) with 

emphasis on high dimensional convolution. This is the layer where the dominant number 

of computations of the CNN takes place. As shown in Figure 19, The input data to this 

layer is the channel feature map, meanwhile, the learnable kernel bank is stacked 

according to the required number of channels into a set of two dimensional arrangement 

keeping in mind that the learnable kernel weights are shared within the same feature map. 

The kernel bank shall have a three dimensional arrangement: the kernel height, kernel 

width and the required number of kernel channels. Subsequently, each channel form the 

channel stack is convolved with a distinct moving kernel channel from the kernel bank. 

Meaning that, unlike the conventional convolution where the entire input is used to 

generate one output data, the convolution here is localized through the usage of a regional 

kernel that scan the feature map in a sliding window liked style such that each shift of 

the window results in generating a single output data and the full scan shall generate the 

whole output data. After that the result of every point of this convolution is summed 

across the whole channels followed by a nonlinear activation function to generate a new 

feature map for the next layers. Stacking more kernel channels in the kernel bank and 

convolving them with the input feature map would result in generating more channels in 

the output feature map. The convolutional layer acts as a feature extractor to identify any 

local conjunctions and common embedded regional characteristics within the feature 

map. 

 

 

Figure 19 : Example for the convolutional layer where an input feature map with 3  

2.2.3.3.2. Pooling layer 

Pooling Layer is based on reduction of the spatial dimensions mainly the height and 

width while keeping the channel dimension as it is. This layer is a computational free one 

since it has no parameters to learn due to its special operation. Nowadays, applying a 

maximum or an average pooling is the standard practice. An example is shown in Figure 

20 where the stride defines the step window of the non-overlapping blocks associated 

with separate example for both maximum and average pooling.   
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Figure 20 : Feature map with a single channel is reduced through average and 

maximum pooling with striding by 2 

2.2.3.3.3. Fully connected layer 

Fully Connected Layer acts as a classifier layer that correlates between the extracted 

features organized in the feature map and the required logits output of the network 

assisting in the mapping of the input to the output likelihood category it shall belong to. 

Recent networks shall have a few of them (one up to three) are appended at the end of 

the network after the convolutional and pooling layers to perform the classification or the 

regression objective. In this layer the output activation from the previous layer is 

connected to every neuron within this layer using an independent weight synaptic, hence 

losing the weight sharing advantage found in the convolution layer as well as contributing 

with a reasonable amount from the overall network number of parameters. Consequently, 

it can be followed by a nonlinear activation function. 

2.2.3.3.4. Normalization layer 

Normalization layer is responsible to control the feature map statistical distribution 

by normalizing the input activation such that it has zero mean and unit standard deviation. 

This is beneficial in terms of speeding up the training by reducing the data space 

distribution contour, thus reducing the number of iteration. Also, it enhances the achieved 

accuracy by introducing some noise in the data allowing a better generalization. There 

are many types of these layer for instance, local contrast normalization (LCN), local 

response normalization (LRN) and Batch Normalization(BN). Nowadays, BN is the 

current practice used by ML community given its efficiency and the fact it has minimal 

computations compared to the convolutional or the fully connected layers 

 

2.2.4. Recurrent Neural Networks 

2.2.4.1. General Overview 

They are NN based networks that mainly considered an extension from DNN, in 

which it is capable to handle sequential learning whereas the data has a sequential nature 

and the application impose sequence to sequence mapping such as language modelling 

and audio/video description.  
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2.2.4.2. Key features 

Its prominent advantage traits are the memory effect, the ability to work on arbitrary 

input and output length and finally the weight sharing. 

2.2.4.2.1. Memory effect 

The memory effect is the ability to track the temporal state of the input by accounting 

the input history when processing the new ones allowing the dependency of data which 

is required in sequential data (i.e. speech recognition or language modeling). This effect 

is constructed through the recurrent connection which creates a loop allowing the 

information to persist when proceeding from one step to another, so that unbounded 

amount of information is employed to enhance the accuracy of the prediction. Obviously, 

unfolding this recurrent can transform RNN to a very deep feedforward network. The 

Recurrent connections as well as its unfolding can be shown in Figure 21 

 

 

Figure 21 : Recurrent connection and its unfolding equivalence 

2.2.4.2.2. Arbitrary input and output length 

Arbitrary input and output length is an inherited feature within the sequential data 

where the sequences length vary across the time. Typical DNN including its CNN flavor 

fundamentally fixes the dimensions of the input and output limiting their ability to handle 

such sequences meanwhile RNN can deal with such variation thanks again to their 

recurrent connections which can execute recurrently for every input within the given 

sequence. RNN can map the input sequences to the output sequences in many ways 

depending on the targeted application, for instance as shown in Figure 22 where (a) one 

to many mapping which is used in image captioning, (b) many to one mapping which is 

used in sentiment analysis, (c) many to many mapping which is used in machine 

translation and (d) another many to many mapping which is used in language modelling 
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Figure 22 : Different RNN mappings with their target mapping (a) image captioning 

one to many mapping (b) sentiment analysis many to one mapping (c) machine 

translation many to many mapping (d) language modelling many to many mapping 

2.2.4.2.3. Weight Sharing 

Weight sharing within each step across the whole sequences allows network to 

decouple the arbitrary sequence length and the model structure, meaning that it allows 

the model to have the number of parameters regardless of the sequence length. As well 

as, it increases the robustness of the network through being location invariance where the 

representation features and patterns shall be learnt once regardless at which part of the 

sequences they appear increasing its ability to generalize well beyond the sequences 

length that appeared during training experience. Moreover, it drastically reduces the 

number of learnable parameters compared to having a separate weight for each step 

2.2.4.3. RNN training 

RNN training has been proved to be problematic since vanishing or exploding 

gradients issue which was discussed previously amplifies as the recurrent connection 

would imply the repetition of matrix multiplication resulting in a quick exponential 

shrink or growth of the magnitude of the gradients. This can be solved similarly to the 

DNN with carefully initialization of the weights and applying the ReLU as the nonlinear 

activation function. Moreover, clipping the gradient magnitude is an additional technique 

applied where an upper and lower thresholds are set, once crossed the gradients are 

clipped to prevent them from vanishing or exploding  
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2.2.4.4. RNN State of the art architectures 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are the most 

widespread RNN architectures. LSTM can exploit long term dependencies where it 

preserves the useful information for a longer time delaying its dilution thus enhancing 

the accuracy on the cost of adding more parameters, longer training time and more 

computational power. On the other hand, GRU can exploit short term sequence 

dependencies, requires less parameters, trains faster and reduces computational power 

compared to LSTM with a drawback that the useful information can be diluted over a 

short time impacting the accuracy achieved on long sequences. 

2.2.4.4.1. LSTM 

LSTM in similar to DNN, it consists of a stacked input layer, multiple hidden layers 

and the output layer, however the building unit is fundamentally different where instead 

of a normal neuron with a nonlinear activation on the weighted sum, it is modified to 

include an explicit memory storage to establish the recurrent connection with the help of 

some framework organizer noted as a gate. This allow the regulation of the flow 

information in terms of deciding which part of information shall proceed and which shall 

be forget. An abstract figure of LTSM building unit can be shown in Figure 23 where in 

addition to the input there is the cell state which represents the memory storage that 

allows the recurrent connection to be established.  

 

 

Figure 23 : Abstract LSTM cell 

There are three gates that controls the state update as well as generating the output. 

They can be viewed as a special multiplicative unit. The forget gate defines the amount 

of memory the cell has to forget which are no longer useful to be stored. This is done by 

scaling the internal memory state which adaptively can result in the cell forgetting part 

of its state. The input gate shall define the amount of input that required to be memorized. 

The output gate defines the amount of information that shall proceed to next cell.  

LSTM can have two variants: unidirectional and bidirectional. Unidirectional variant 

which is shown in Figure 24 considers only the past information during the current 

execution step. On the hand, Bidirectional variant show in Figure 25 accounts for the past 
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as well as the future information during executing the current step thus sloping the 

achieved the accuracy upwards.  

 

 

Figure 24 : Unidirectional unfolded RNN example with three LSTM cells, N inputs, 

two hidden layers and one output layer 

 

Figure 25 : Bidirectional unfolded RNN example with four LSTM cells, N inputs, one 

hidden layer and one output layer 
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2.2.4.4.2. GRU 

GRU can be shown in Figure 26 it inherits most of its feature from LSTM but with 

significant differences. Starting from the removal of the memory state and merging it 

with output state, followed by merging the forget gate with input gate into a single gate 

noted as update gate which shall be responsible on passing the amount of information to 

be stored as well as the amount to be forgot. This allowed the reduction of number of 

parameters and the structure complexity leading to a more efficient computations and 

faster training time. 

 

 

Figure 26 : Abstract GRU cell 

2.3. Software Layer 

The Software Layer focuses on exploring how to model a network as well as how it 

shall be implemented.  

The Modelling part shall explore different degrees of freedom available to optimize 

the network enabling its practical deployment in today consumer computing platforms 

such as mobile platforms and IoT devices. These optimization techniques for instance 

shall include reducing the network precision, pruning the weights, exploring the network 

activation statistics and other available ones.  

Meanwhile, the implementation part shall show the different tradeoffs between 

software language approaches. For instance, using a higher level one such as frameworks 

would accelerate the implementation while a lower level one such as python would 

enable a full control on each operation. 

2.3.1. Network Model 

2.3.1.1. General Overview 

Earlier DNN approaches had considered their merit of figure to be the accuracy. 

Thus, they focused on maximizing the accuracy without paying much consideration to 

other design aspects such as hardware implementation complexity. For instance, the cost 

of floating point operations, number of parameters required to be stored in the memory 

and the consumed power to perform the required inference operation. This had led to a 

more hypothetical networks that are challenging to implement and deploy in nowadays 

computing platforms.  

Recent approaches co-design the DNN models and hardware together leading to the 

evolving of a new merit of figure that is considered with maximizing the accuracy and 
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throughput while minimizing the energy and the cost of hardware infrastructure such that 

it increases its adaption likelihood. However, limiting the available hardware resources 

would result to a degradation into the achieved accuracy. Thus, the goal has shifted to 

model a network that matches toady computing infrastructure with the minimum 

accuracy loss. 

To fulfill the aforementioned goal, some techniques were proposed that rely on DNN 

networks inherent resiliency to insignificant errors. Starting from reducing the network 

precision where the expensive floating point that requires a complex arithmetic unit and 

consumes large memory size is replaced with a reduced arithmetic precision 

representation. Moving to compressing the network itself to get rid of any redundant 

operations and over parameterized parameters by means of pruning the weights, 

exploring the activation statistics, low rank factorization and knowledge distillation. In 

addition to the mathematical transformations techniques where the operation is 

mathematically reshaped to reduce the number of operations (i.e. multiplication).  

2.3.1.2. Reduced precision 

2.3.1.2.1. General Overview 

Quantization can be defined as mapping the data values from their natural wide set 

levels to a smaller set of discrete levels. Hence, the quantization process is associated by 

an additive error and the objective then is to minimize the mapping error between the 

original levels and the quantized discrete ones.  

Precision can be viewed as the number of quantized levels and clearly it is reflected 

in the number of bits required to map the data to these quantized level (i.e. log2 (number 

of quantized levels)). Thus, Reduced precision can be referenced to reducing the number 

of bits that represents the quantization levels.  

Reduced precision models focus on transforming the expensive floating point 

operations which is usually used to obtain the state of art accuracy to a half precision 

floating one or even to the cheaper fixed point operations which fixes the radix position 

within the operation. This can be beneficial in terms of relaxing the computation 

infrastructure and the memory storage requirements. Moreover, optimizing the precision 

of different data types across the network is considered the distinct computational 

efficiency advantage of hardware accelerators when compared to the general purpose 

computing platforms (i.e. CPU and GPU). Furthermore, Reduced precision in difference 

with compression techniques doesn’t encounter any extra steps or computational 

overhead cost to operate. 

However, moving from floating point to a fixed one without reducing the number of 

bits that represent the quantization levels would result in the same hardware infrastructure 

cost specifically same area, energy and memory cost. Clearly, the energy and area cost 

of addition operation using fixed point as well as the memory capacity scales typically in 

a linear fashion with the number of bits, meanwhile the energy and area cost of a 

multiplication operation scale approximately in a quadratic manner with the number of 

bits. Thus, reducing the precision reflected in reducing the number of bits is the key 

approach for area, energy and memory savings.  

One worthy note to mention here, is the recued precision doesn’t impact the accuracy 

if the data distribution is centered around the zero such that the accumulation operation 

can move in both directions around the zero and preventing its bias towards only one 

direction. This is usually achievable using normalization techniques 

 Recent reduced precision approaches focus on reducing the precision of weights 

rather than activations given that they dominate the memory storage capacity as well as 
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the intermediate computations. Furthermore, the focus is on the inference phase rather 

than the training one given that backpropagation algorithm is based on gradients update 

which can be ill suited to the precision reduction. Actually the gradients and the learning 

rate are sensitive to the used precision which may cause their vanishing or saturation. 

Thus, typically a higher precision is required to ensure the network convergence to good 

minima. Furthermore, intuitive training can be used to compensate the loss in accuracy 

that may arise from reducing the precision during inference phase where the network can 

be fine-tuned and re-trained after reducing the precision to improve its accuracy without 

any extra cost 

2.3.1.2.2. Quantization methods 

There are two methods to reduce the precision based on how the data is mapped to 

the quantized levels which are uniform quantization which uses the same quantization 

levels across the whole data within the network (i.e. all layers, weights and activations) 

and non-uniform one which uses separate quantization levels within the network (i.e. per 

layer quantization). The first is simpler in analysis and implementation meanwhile the 

latter results in a better accuracy. 

2.3.1.2.2.1. Uniform quantization  

Maps the data with a uniform distance between the quantization level where the 

floating point representation is mapped to a fixed point one or to the more sophisticated 

dynamic fixed point representation which allows the fractional part to vary according to 

the required dynamic range resulting in a less quantization error since the dynamic range 

of different parts of networks can vary in a different manner. For instance, the dynamic 

range of the weights and activations can be different depending on their targeted dynamic 

range which can result in a better overall network accuracy.  

Normally general purpose platforms such as CPUs and GPUs can support operations 

with bit width of 8, 16 and 32 allowing reducing the precision to these values, however 

the precision required for DNNs can vary in a finer grained manner. For instance, 

according to [122] the precision values for weights and activations for AlexNet network 

can vary between 4 to 9 bits with an accuracy loss around 1%. Meanwhile, Intel 

Flexpoint[114], is an example of a complex dynamic scaling representation. Clearly, 

unlike the floating point, the exponent is common across all tensors meanwhile it is 

different from traditional fixed point as the exponent is updated automatically whenever 

a new tensor is generated using a proposed algorithm noted as AutoFlex. In addition to 

ESE [116], which applies a uniform quantization approach to reduce the precision of 

their proposed speech recognition hardware accelerator where they quantized their 

LSTM network to 12 bits and were able to achieve phone error rate of 20.7% on TMIT 

corpus in a comparable performance to the floating point architecture that can achieve 

20.4% phone error rate 

Moreover, there is the binary nets family which can be viewed as an extreme reduced 

precision model where it reduces the precision aggressively to one bit allowing a distinct 

transformation into how the operations are executed where the arithmetic operations (i.e. 

multiply and accumulate) are switched from using multipliers and adders to bit-wise 

gates instead (i.e. Xnor and AND gates). Starting form BinaryConnect[123] which 

introduced the binary weights concepts (i.e. -1 and 1) and used these binary weights to 

transform the multiplication operations to addition and subtraction while allowing the 

input and the intermediate data to be real. It was able to achieve 61% top-5 accuracy on 

the ImageNet dataset. Followed by Binarized neural networks [124] which converts the 

multiplication and addition operations to XOR operations with 50.42% top-5 accuracy 
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on the ImageNet dataset. Moving to Binary weight nets [125] and XNOR-Nets [125] 

which modified how the DNN processes the data form using a scale factor multiplication 

to recover the dynamic range to preserving the floating point operations for the first and 

last layers. Binary weight nets achieved 79.4% top-5 accuracy on the ImageNet dataset 

meanwhile XNOR-Nets achieved 69.2% top-5 accuracy. In addition to the HWGQ-Net 

[126] which increases the activation precision to be 2 bits instead of a single bit while 

keeping the weights precision as a single bit. It was able to achieve 85.9% top-5 accuracy 

on the ImageNet dataset. Furthermore, the Ternary weight nets [127] which allows the 

weights limit to extended to include the 0 as well as the binary weights which requires 

an additional weight bit representation (i.e. weight to be represented in two bits) and it 

was able to achieve 86.2% top-5 accuracy on the ImageNet dataset. It was extended in 

Trained ternary quantization [128] where the weights only are reduced to a binary 

representation with a different scale values for the positive and negative weights (i.e., − 

w 1, 0, w 2) while the activation keeps its floating point representation. It was able to 

achieve 87.2% top-5 accuracy on the ImageNet dataset 

2.3.1.2.2.2. Non-uniform quantization 

Maps the data with a non-uniform distance through the usage of a mapping function 

allowing the distance variation between the levels. Recent approaches follow one of three 

quantization methods; either the log function quantization or the power of two 

quantization or the learned one. 

2.3.1.2.2.2.1. Log function quantization 

The mapping function is based on the logarithmic distribution where the weights and 

activations are distributed equally across different levels and each level is used more 

efficiently to reduce the quantization error.  

For instance, [129], uses a log2 quantization for a VGG-16 network whereas it 

represents the levels using 4 bits and was able to achieve 85.4% top-5 accuracy on the 

ImageNet data set, meanwhile [130] introduces the Incremental network quantization 

which divide the weights into groups, perform an iterative quantization accompanied by 

re-training to finally reach a 5 bits representation with 92.45% achieved top-5 accuracy 

on the ImageNet data set. 

2.3.1.2.2.2.2. Power of two quantization 

The mapping function defines the quantization levels in a power of two fashion. This 

would allow converting the power hungry frequently used multiplication operations to 

the hardware friendly shift operation 

For instance, [115] quantizes the weights in a power of two fashion enabling the 

multiplication operation to be executed as a bit shift operation 

2.3.1.2.2.2.3. Learned function quantization 

Also noted as weight sharing quantization where the mapping function is determined 

from the data where the function is learnt by means of learning algorithm such as k-

means clustering.  

Moreover, some weights are forced to share the same value to reduce the number of 

unique weights within the network. Clearly the weights are grouped using a hashing 

function or a k-means method. Then each group of weights are assigned to a single value 

followed by building a mapping table that is usually referred to as a codebook to map 

each group of weights to its shared value. Accordingly, an index for each group in the 

codebook is stored to be able to fetch the weight value back.  
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This method is beneficial to reduce the memory storage cost of the weights as well 

as the energy required to move the weights from the memory to the computation unit. 

An example of this method is Deep compression [131] where it modifies AlexNet to 

have 256 unique weight value within each convolutional layer and 16 for the fully 

connected one and it was able to achieve 80.93% top-5 accuracy on the ImageNet data 

set with 35x reduction in the total network size. 

2.3.1.3. Network pruning 

2.3.1.3.1. General Overview 

In order, to achieve higher accuracy, the network is usually designed with an over 

parametrized number of weights. This can be viewed as giving the network more 

parameters to be explored and tuned during the training phase. However, part of these 

weight parameters ends up to be redundant and can be pruned (i.e. set to zero). Thus, 

they can be removed without sacrificing the achieved accuracy during the training phase 

which could result in savings regarding the number of stored weights, the energy required 

for fetching them and the required number of arithmetic operations required for 

processing them. This had led to a research area that focuses on pruning the network to 

remove any ineffectual weights, expanding the sparsity in the weights parameters and 

reduce the network complexity  

Historically, it was first proposed in 1989, through the optimal brain damage 

technique [132] where it tries to figure out the impact of each weight on the training loss. 

After that, weights with low impact are removed and the remaining weights are fined 

tuned. This procedure was repeated until reaching the required reduction in the number 

of weights with the desired accuracy. However, this approach is impractical to DNN with 

large size as it would be difficult to estimate the impact of each weight parameter on the 

training loss. 

 On contrast, recent search starting from [133] focused on eliminating the neurons 

with small activity values where the weights are pruned based on the weight magnitude 

which shall be a simpler and practical technique. Clearly weights with small magnitude 

are pruned and the rest of weights are retrained to fine tune their values and restore back 

the loss in the accuracy. Small magnitude values can be though as zero values and can 

be loosen to include also the near-zero values which encompass more weights and results 

in more savings without impacting the accuracy. For instance, in [133] the AlexNet 

number of weights were reduced nine times while maintaining the same accuracy.  

2.3.1.3.2. Area of focus 

Advances in the network pruning focuses on two areas the first is how efficiently 

store the sparse weight after pruning which shall need to a compression format to open 

the benefits of pruning these weights and how to structure the pruning to allow their 

processing on general computing platforms (i.e. CPU and GPU) without the need for any 

custom hardware. 

2.3.1.3.2.1. Storing Sparse weights 

Compressing the sparse weights shall consider how DNN process these weights 

through the matrix vector multiplication which is one of the fundamental operations 

within network. There are two compressing format to be applied either the compressed 

sparse row format or the column one. Compressed sparse row format when used during 

the matrix vector multiplication as shown in Figure 27 requires the input vector to be 

read multiple times while each output element is generated once at a time. Meanwhile, 
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compressed sparse column format as shown in Figure 28 requires only the input vector 

to be read once while each output element is updated several times before generating the 

final one. Compressed sparse column format is more effective than row one as it provides 

an overall lower memory bandwidth given the fact the number of filters within a DNN is 

not significantly larger than the number of weights encapsulated within these filters, thus 

updating the output elements serval times is cheaper than reading the whole input vector 

the same number of times. 

 

 

Figure 27 : Compressed sparse row format during matrix multiplication 

 

Figure 28 : Compressed sparse column format during matrix multiplication 
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2.3.1.3.2.2. Structured pruning 

Structured pruning can be viewed as a coarse grained pruning where in contrast to 

the fine grained pruning where individual weights are pruned based on their magnitude, 

a group of weights are pruned together based on a define criteria which may be a filter 

entire row or column, a filter channel, a neighboring weights in a filter or the filter itself. 

Grouping weights together would be beneficial to decrease the cost of locating of non-

zero weights which would facilitate compressing the sparse weights and enable their 

parallel processing using the existing general computing platforms without the need for 

any customization. However, grouping large weights together would result in an 

increasing accuracy loss which requires more fine tuning and carefully choosing the 

grouping criteria 

Applying this optimization method is used in EIE [43] which is a hardware 

accelerator that uses the compressed column format to exploit the weights sparsity. In 

addition to ESE [116] which is a LSTM hardware accelerator that prunes the unnecessary 

weights based on an empirical pruning threshold as well as introducing a load balance 

aware pruning method to increase the hardware utilization through balancing the non-

zero weights distribution among all the parallel processing units. Also, Cnvultin[32] 

which allows dynamically skipping neuron computations if they are below a pre-

specified, per-layer threshold.  

2.3.1.4. Activation statistics 

Recently, there are many work on exploiting the generated content in the hidden 

layers within the DNN networks with a focus on searching for the abundant sparsity (i.e. 

existence of zero values within the intermediate data) in aim to get advantage of these 

sparsity by means of compression to reduce the number of computations which shall 

result in area savings as well as reducing the energy expensive access to the off-chip 

DRAM.  

Currently, ReLU is the main nonlinear activation function used within the state of 

art networks due to its efficiency in generalizing the network as well as its simplicity. 

ReLU as shown in Figure 29 set any negative values output from the neuron to zero. This 

had led to generation of a large amount of zeros within the hidden layers and these zeros 

are considered to be an intrinsic property of using the ReLU function. For instance, 

according to [4] the feature map within the hidden layer of AlexNet can have sparsity 

between 19% up to 63% depending on the layer. 

 

 

Figure 29 : ReLU function 

These zeros generated form the activation can further be explored when designing a 

network to make an energy efficient network without any performance impact as they 

don’t contribute to the final output of the network and can be optimized, whereas the 
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computations had been transformed to a sparse matrix multiplication which shall require 

fewer operations when compared to a dense one meanwhile the memory access can also 

be safely bypassed given its predetermined it is going to fetch a zero value. 

Applying this optimization method is used in LRADNN[21] which estimates the 

polarity of the inputs going to the neuron and hence, based on this polarity it can disable 

some of the multiplication operations which led to a reduction in number of arithmetic 

operations without much accuracy impact. Also, SparseNN[23] is another example 

which adds a prediction phase to the network which involves the usage of a predictor 

noted as straight through estimator that has a lightweight computation complexity to be 

able to determine whether a zero exist in the activation or not. In addition to Eyeriss[48] 

which uses a compression technique based on an encoding scheme noted as RLC that 

exploits the zeros within the feature map to skip any unnecessary computations as well 

as saves any useless DRAM access. Furthermore, Cnvlutin[32] which introduces the 

Zero Free Neuron Array Format as the compression technique to eliminate the zero 

activation computations 

2.3.1.5. Low rank factorization 

Given how the CNN is advancing, more efforts are focused on optimizing the 

convolution operations which contribute to the bulk of CNN computations. Low rank 

factorization is a technique that applies matrix decomposition in order to estimate the 

informative parameters within a CNN. The basic idea is to view the convolutional kernel 

as a four dimensional matrix where there are a lot of redundant weights. This redundancy 

can be removed through decomposing this large matrix into smaller ones. To have even 

more efficient computations, the decomposition is followed by another compression step 

through approximating these smaller matrices by means of low rank approximation. A 

demonstration for this method can be found at [138], where Canonical Polyadic (CP) 

decomposition accompanied by low rank approximation was used and was able to 

achieve a 4.5x speedup for the second layer of AlexNet with 1% accuracy drop. 

2.3.1.6. Knowledge distillation 

One way to increase the achieved accuracy is to use network ensembles where 

multiple network run in parallel but with different configurations (i.e. weight 

initialization) then average their predictions to get a better accuracy when compared to 

running a single network. However, this shall increase the required computational 

complexity. To get a better tradeoff between the accuracy and the computational cost, 

knowledge distillation is used. 

Knowledge distillation can be viewed as a teacher student model where a complex 

network or an ensemble of networks are defined to be the teacher that is used to bootstrap 

the accuracy of an architecturally different network that is more compact and shallower 

that is defined to be the student. This is done by transferring the knowledge learned by 

the teacher network to the student one in an aim that the student network when trained it 

shall be able to mimic and reproduce the same output of the teacher or even a better one 

that would not be achievable if the student was trained directly on the same data set. This 

shall incorporate defining the loss function of the student during the training to be 

learning the class distributions output from a softmax layer. For instance, according to 

[134] using knowledge distillation helped to improve the speech recognition of a student 

network by 2% which allowed it to be competitive to the teacher which is composed of 

an ensemble of ten networks. 
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The way the knowledge distillation works is shown in Figure 30 where the target of 

the student network is to learn the class scores of the teacher (which may be an ensemble 

of networks). Class scores are used as the target rather than the class probability as the 

softmax layer eliminates the small scores by pushing their probability towards 0. 

However, if a softened softmax is used where the small scores are preserved and a 

smoother probability distribution can be generated then the class probabilities can be 

used as a target. Overall, the training objective is to minimize the squared difference 

between the class scores generated from the student and the target. 

 

 

Figure 30 : Knowledge distillation overview 

2.3.1.7. Mathematical transformations 

Several mathematical transformations are used especially in the CNN to either 

reduce the required number of multiplications while maintaining the bitwise accuracy or 

accelerate the execution of the multiplication operation. These types of transformations 

are targeting the convolution operation where another mapping function is proposed 

instead of the multiplication based mapping or the convolution is restructured in another 

accelerated form. This includes Fast Fourier Transform [135], Winograd’s algorithm 

[136], Strassen’s algorithm [137] and Structural matrix using relaxed Toeplitz form [4]. 

2.3.1.7.1. Fast Fourier Transform 

Fast Fourier Transform is used to reduce the number of multiplication where the 

convolution operation is done as a direct multiplication in the frequency domain. As 

shown in Figure 31 the input feature map and filter are transformed in the frequency 

domain, multiplied together and then inverse FFT is applied on the result to generate the 

output feature map in the spatial domain. FFT is usually used with larger filter sizes (i.e. 

5x5). 
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Figure 31 : FFT mathematical transformation 

2.3.1.7.2. Winograd’s algorithm 

Winograd’s algorithm applies a transformation for the input feature map and the 

filter to generate a tile of elements in the output feature map together such that it gets 

benefit from the structural similarity among them. This help to reduce the required 

number of multiplication given it generates a tile of output elements at each step. It is 

usually used in smaller filter such 3x3 where according to [4] it was able to reduce the 

number of multiplication by 2.25x. 

2.3.1.7.3. Strassen’s algorithm 

Strassen’s algorithm reduces the number of multiplication through the 

rearrangement of the matrix multiplication in a recursive manner. However, it suffers 

from occasional numerical stability as well as more storage requirements. 

2.3.1.7.4. Structural matrix 

Structural matrix using a relaxed Toeplitz form as shown in Figure 32 is used to 

speed up the matrix multiplication by extending the feature map with redundant elements 

to allow its parallelization. However, this shall come with an inefficient increase in the 

storage cost and adding extra complexity to the access memory patterns 

 

 

Figure 32 : Structural matrix using a relaxed Toeplitz form 
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2.3.2. Network Implementation 

2.3.2.1. General Overview 

There are many approaches to implement a network; Starting from using a low level 

language such python, matlab and CuDNN until using a high level framework such caffe, 

tensorflow and keras.  

While low level languages provide a full control on the implementation where it is 

feasible to customize the network operations and apply any optimization method (i.e. 

quantization), it consumes much time to develop the network from scratch given there 

are no ready plug and play DNN functions. Also, the network execution time is dependent 

on the code quality which in return reflects the experience of the code owner leading to 

more hassles in the implementation part rather than the architecture part. 

Meanwhile, high level framework provides open source DNN libraries that 

implement the common training and inference operations which ease the network 

development, enable sharing the trained networks, leverage the accumulated experience 

among the whole ML community. However, customizing an operation would require 

modifying the open source code of the provided libraries which puts a barrier that 

consumes a lot of efforts to establish new ideas  

2.3.2.2. Low level languages 

2.3.2.2.1. Python 

An open source general purpose programming language which is built on a 

collection of generic built in libraries. It is widely used in web applications, mathematical 

scripting as well as being popular in ML applications where most of the higher level 

frameworks are built on the top of it. 

2.3.2.2.2. Matlab 

A commercial programming language that provides a deep learning toolbox 

facilitating the optimization of the deep learning functions. It is also capable to 

automatically convert the written code to C++ or RTL code  

2.3.2.2.3. CuDNN 

The NVIDIA CUDA Deep Neural Network library (cuDNN) is a NVIDIA GPU 

based accelerated library of primitives for deep neural networks.  It provides highly 

optimized implementations for commonly used DNN functions. 

2.3.2.3. High level framework 

2.3.2.3.1. Caffe 

Convolutional Architecture for Fast Feature Embedding was developed by 

university of California Berkeley as an open source deep learning framework that can be 

viewed as a cross platform that supports C/C++, python and matlab. It provides an 

implementation that can run on both CPU and GPU. 

2.3.2.3.2. Tensor flow 

An open source framework developed by Google Brain Team and can support C++ 

and python. It is computation flow can be expressed in a single dataflow graph that 
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manages all the tensor operations. It provides an implementation that can run on both 

CPU and GPU 

2.3.2.3.3. Torch 

An open source framework developed by Facebook and New York university and 

can support C++ and Java. It provides an implementation that can run on both CPU and 

GPU. It is no longer under active development. 

2.3.2.3.4. Pytorch 

An open source framework developed by Facebook’s AI research group as a 

successor for torch and can support C and python. It integrates acceleration libraries such 

as IntelMKL and NVIDIA (cuDNN, NCCL). It supports a technique noted as reverse 

mode auto differentiation which all to change the way a network operates with small 

effort rather than starting to build it from scratch. It provides an implementation that can 

run on both CPU and GPU. 

2.3.2.3.5. Theano 

An open source python library developed by University of Montreal. Theano starts 

performing computations by optimizing the selection of computations, translates them 

into other languages such as C++ or CUDA and then compiles them into Python modules 

in an efficient way on CPUs or GPUs. It provides an implementation that can run on both 

CPU and GPU and it is No longer under active development. 

2.3.2.3.6. CNTK 

Microsoft Cognitive Toolkit (CNTK) is an Open source deep learning framework 

developed by Microsoft Research and supports python, C++ and C#. It converts any 

function to a directed graph where each leaf node consists of an input value or learning 

parameter, and other nodes represent a matrix operation upon their children. It provides 

an implementation that can run on both CPU and GPU. 

2.3.2.3.7. Keras 

An open source framework founded by Google engineer Chollet as a part of research 

project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System) 

and it can support python. It can be viewed as a higher level library that can run over 

Tensorflow, Theano and CNTK to unify the development experience and allows faster 

development. It provides an implementation that can run on both CPU and GPU. 
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Chapter 3 : Convolutional Neural Network Architectures 

Review 

During the last several decades, many CNN architectures had been developed that 

differ in terms of number of layers, layer shapes, layer associated parameters (i.e. filter 

size, number of channels) and how the layers are connected to each other to allow the 

propagation of feature maps.  

Most of the recent architectures were driven by the ImageNet competition [64] where 

most of them had competed and the innovative ones had won it. ImageNet competition 

is a tourney with many different tracks.  

One of the tracks that remarks the breakthrough of the CNN approach is the image 

classification. Clearly, before the CNN paradigm the error rate achieved was around 25% 

however starting from 2012 when AlexNet[65] was introduce by a group from Toronto 

university were they applied the CNN accompanied by the usage of GPUs for training 

and successfully dropped the error rate to 16% had marked the start of shift from 

traditional approaches towards the CNN based approach.  

Over the years starting from 2012 as shown in Figure 33, the CNN had continued to 

improve the error rate in the ImageNet challenge with a significant milestone at 2015 

when the ResNet[29] had been introduced whereas it was able to suppress the human 

level accuracy. Furthermore, from [64] the entrants in the ImageNet challenges that are 

using GPUs had increased from four entrants only at 2012 when AlexNet was used to 

110 entrants at 2014 indicating the domination of the CNN approach.  

 

 

Figure 33 : ImageNet top-5 error accuracy versus different networks progress over 

years 

In this chapter, different CNN are explored starting from LeNet-5[64] until the 

ResNet[29]. 



 

45 
 

3.1. LeNet-5 

LeNet-5[64] was introduced in 1989 as one of the first CNN that was designed for 

the digit classification task on the MNIST grayscale images [62]. Hand written digit 

recognition was widely used at that time by ATMs for digit recognition on checks 

enabling the first commercial use of the CNN through LeNet-5 deployment in ATMs to 

automatically identify the check deposit digits.  

As shown in Figure 34, it is composed of two convolutional layers, two average 

pooling layers and two fully connected ones. The convolutional layer is based on kernel 

of 5x5 size where six of them are used in the first layer while 16 are used in the second 

one. After each convolutional layer a sigmoid function is applied as the nonlinear 

transformation function followed by 2x2 average pooling layer.  

 

 

Figure 34 : LeNet-5 architecture from [64] 

In general, it had 60,000 weight parameter and was able to achieve to 99.05% 

accuracy on the MNIST data set 

3.2. AlexNet 

AlexNet [65] was introduced in 2012 and the first CNN based network to win the 

image classification track within the ImageNet Challenge.  

As shown in Figure 35, it is composed of five convolutional layers, three maximum 

pooling layer and three fully connected ones. Each convolutional layer may have kernels 

of 3x3 to 11x11 size with number of kernels varying from 96 to 384 and from three to 

256 generated channels depending on the location of the convolutional layer within the 

network. After each convolutional layer a ReLU for the first time in a CNN is applied as 

the nonlinear transformation function and the first, second and fifth convolutional layer 

are followed by a 3x3 maximum pooling. 
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Figure 35 : AlexNet architecture from [65] 

The key differences between AlexNet and the LeNEt-5 are the increased number of 

weights, the kernels varying size and the usage of the LRN as a normalization technique 

after the first and second convolutional layers. 

 In general, it has 61 million weight parameters and was able to achieve 16.4% top-

5 error on the ImageNet data set. 

3.3. ZFNet 

ZFNet[104] was introduced in 2013 and was the winner of image classification track 

within ImageNet challenge.  

It is a refinement version from AlexNet where the 11x11 kernels are replaced by 7x7 

ones and the number of activation kernels were changed to 512 or 1024 depending on the 

location of the convolutional layer.  

It has the same AlexNet structure with five convolutional layers, three maximum 

pooling layers and three fully connected ones. 

In general, it was able to achieve 11.2% top-5 error on the ImageNet data set. 

3.4. Overfeat 

Overfeat [96] was introduced in 2013 and was the winner of the object detection 

track in the ImageNet challenge.  

It follows AlexNet in the structure with five convolutional layers, three maximum 

pooling layers and three fully connected ones.  

The main difference is that number of kernels are varied up to 1024 within the 

convolutional layers based on the layer location within the network.  

In general, it has 146 million weight parameters and was able to achieve 14.2% top-

5 error on the ImageNet data set. 

3.5. VGG 

VGG [97] was introduced in 2014 and was the winner of the object detection track 

in the ImageNet challenge as well as the first runner up of image classification track.  

It was one of the first attempts to explore the depth aspect of the CNN. To tradeoff 

between going deeper and the exponential growth of the number of weights parameters, 
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it fixes all the kernels size within the network to 3x3 size which has fewer weights 

parameters compared to larger ones, meanwhile these larger kernels can be built using 

multiples of the smaller kernels. Decomposing larger kernels into a stack of smaller ones 

had shown to be fruitful from many aspects; first it attains the same effective respective 

field of the larger kernels for instance as shown in Figure 36 where a 5x5 kernel can have 

the same effective receptive field of two stacked 3x3 kernels, second it incorporates 

multiple apply of the nonlinear transformation function allowing the classification 

function to be more discriminative , again for instance a 5x5 kernel shall be followed by 

applying a single nonlinear function ,meanwhile applying the nonlinear function can 

follow each kernel from the two stacked 3x3 kernels and finally it decreases the required 

learnable parameters , back for instance to the 5x5 kernel which shall have 25 weight 

parameters per channel while the two stacked 3x3 kernels shall have 18 only.  

 

 

Figure 36 : 5x5 kernel decomposed into two 3x3 kernels 

The VGG network shall have a generic structure where it keeps the kernel size fixed 

at 3x3 while gradually increasing the depth of the network by stacking more 

convolutional layers, actually as the network goes deeper the generated feature map 

within each layer is modified through a fixed fashion whereas the number of kernels 

applied that shall represent the number of generated channels is doubled while the 

generated height and width dimensions is halved. In general, VGG has three popular 

variants VGG-11, VGG-16 and VGG-19.  

VGG-11 as shown in Figure 37(a) is composed of eight convolutional layers, five 

maximum pooling layers and three fully connected layers with total 133 million weight 

parameter and top-5 error of 10.4% on the ImageNet data set. VGG-16 as shown in 

Figure 37(b) is composed of 13 convolutional layers, five maximum pooling layers and 

three fully connected layers with total 138 million weight parameter and top-5 error of 

7.4% on the ImageNet data set. VGG-19 as shown in Figure 37(c) is composed of 16 

convolutional layers, five maximum pooling layers and three fully connected layers with 

total 144 million weight parameter and top-5 error of 7.3% on the ImageNet data set. 
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Figure 37 : (a) VGG-11 (b) VGG-16 (c) VGG-19 
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3.6. NiN  

Network in Network (NiN) [105] was introduced in 2014 and didn’t participate in 

the ImageNet challenge, however it is considered the precursor for dimension reduction 

of the inception module used in GoogLeNet network and the bottleneck module used in 

the ResNet networks. 

It introduced the Mlpconv layer (Multilayer perceptron convolutional layer) where 

it replaced the linear convolutional kernel and its subsequent nonlinear activation 

function by a micro multilayer perceptron. The feature map then can be generated by 

sliding this layer over the input in a similar manner to the normal convolutional layer but 

with a multilayer perceptron way of computation. The intuition is that if a fully connected 

layer is applied at each point within the feature map (each height and width) and the 

weights of this layer is tied across each spatial location then this would be analogous to 

utilizing a 1x1 convolutional kernel. 1x1 kernels are beneficial in terms of preserving the 

spatial dimensions (height and width) of the feature map while reducing the depth 

(channels) to lower dimension (i.e. as if it is generating a combination of feature maps) 

3.7. GoogLeNet 

Also referred to as Inception [98] that was introduced in 2014 and was the winner of 

image classification track within ImageNet challenge. Since its introduction it was 

followed by three versions [99], [100] and [101].  

3.7.1. First version 

The first version introduced the inception module and started to go deeper with the 

number of the layers within the network.  

The motive behind the inception module is to improve the utilization of the 

computation resources through moving fundamentally from a fully connected 

architecture to a sparsely connected one. The idea behind that, if the data set probability 

distribution can be represented by a large sparse network, then the optimal network 

topology can be constructed layer by layer through analyzing the correlation statistics of 

the activations of the last layer and clustering neurons with highly correlated outputs. To 

illustrate more, assume the neurons in the earlier layers close to the input shall correspond 

to some regions in the input image where highly correlated ones would mean that they 

are concentrating on the same local region and can be clustered. Moreover, some of these 

clusters may end up concentrating on a single region and can be covered in the next layer 

through a 1x1 convolution kernel. Similarly, there would be spatially spread out clusters 

that can be covered using convolutions over large patches which can be approached using 

higher order convolution kernels such as 3x3 and 5x5 kernels. Hence, the optimal local 

sparse architecture can be approximated and constructed through the combination of all 

those kernels where all their outputs are concatenated into a single output forming the 

feature map for the next layer.  

Thus the naïve inception module as shown in Figure 38 unlike the proceeded 

networks has parallel structured connections within the same layer instead of a single 

direct connection whereas different kernels size (mainly 1x1, 3x3, and 5x5 kernels) and 

a maximum pooling layer are concatenated together.  
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Figure 38 : Naïve Inception module 

This module shall enable the processing of visual data at various scales where the 

large kernels shall capture the features distributed globally, meanwhile the small kernels 

shall capture the features distributed locally so that abstract features from different scales 

are aggregated together to next layer  

This naïve inception module even if it can cover the optimal sparse structure, the 

existence of the maximum pooling layer accompanied also by the overall network depth 

would lead to an exponential growth in the number of learnable weights blowing up the 

computational resources, thus 1x1 convolutional kernels were applied as a dimension 

reduction modules for any expensive operation. For instance, before 3x3 kernel, before 

5x5 kernel and after the maximum pooling to reduce the number of generated channels 

within the feature map. Thus depth of network is allowed to be increased without a 

significant computational penalty. Also, these 1x1 convolutional kernels is associated 

with applying nonlinear function activation enabling them to have a dual propose. Figure 

39 shows the inception with dimension reduction 

 

 

Figure 39 : Inception module with dimension reduction 
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In general, it is composed of 22 layers divided into three traditional convolutional 

layers, 18 inception modules and one fully connected layer. It was able to achieve top-5 

error of 6.7% on the ImageNet data set with a total 7 million weight parameters. 

3.7.2. Second version 

The second version was introduced in 2015. It mainly introduces the batch 

normalization and a new variant from the Inception module.  

Batch normalization is the most popular normalization layer used nowadays. The 

need for normalization arises as the network goes deeper the training is usually 

complicated given the internal covariate shift fact where the distribution of network 

parameters changes from one layer to another due to the variation of network activations 

per layer requiring the layer to adapt continuously to the new distribution. Meanwhile, 

the training converges faster in case of whitened inputs where inputs have zero mean and 

unit variance.  

Batch normalization seeks to reduce the internal covariate shift by observing the 

activation output from each layer to whitened it before going to next layer. It can be 

applied on both fully connected and convolutional layers with a special attention to the 

convolutional property. It is required that the normalization obeys this property such that 

different elements at different locations within the feature map are normalized in a similar 

manner. This shall require the joint normalization of all activation in a mini batch across 

all location.  

However, one drawback back of normalizing each the inputs of layer is it may 

change what a layer can represent, thus batch normalization introduces two learnable 

parameters the scale and shift values to ensure the transformation inserted in the network 

can represent back the identity transform. These parameters are trained with the learnable 

weights parameters and allow the network to restore back its representation power.  

The new inception variant basically decomposes each 5x5 convolutional kernel by a 

stack of two consecutive 3x3 kernels similar to the VGG network to reduce the number 

of weights and the associated required computations. In addition to, employing average 

pooling in some inception modules while in other maximum one is used.  

In general, this variant is composed of 32 layers divided into two traditional 

convolutional layers, 30 inception modules and no fully connected layer. It was able to 

achieve top-5 error of 7.8% on the ImageNet data set with a total 8.75 million weight 

parameters. 

3.7.3. Third version 

The third version was introduced in 2015 and it introduced a new Inception variant 

which was the first runner up of image classification track within ImageNet challenge.  

The new variant scale up the depth of the network while maintaining the 

computations efficiency through factorizing the large spatial kernels into smaller ones. 

Convolutions done through large filters as 5x5 filters can span a wide geometric area of 

the feature achieving more expressiveness in the extracted feature due to its ability to 

extract more dependences between the generated activations. However, they require 

more computations when compared to smaller kernels. For instance, 5x5 kernel has 25 

parameters while 3x3 kernel has 9 parameters meaning that a 5x5 kernel is 25/9 = 2.78 

times computationally expensive than 3x3 kernel. In a vision task, it is expected that 

adjacent activation units shall generate highly correlated outputs. Thus, these activation 
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units can be dimensionally reduced followed by spatial aggregation them without losing 

much information and hence results in similar expressive local representations. 

Therefore, a 5x5 kernel can be replaced with two sequential 3x3 kernels with a negligible 

loss in the futures expressiveness.  

The 3x3 kernel can even be factorized using the asymmetric kernels (i.e. nx1) to 

achieve more reduction in the computations. For example, a 3x3 kernel can be 

decomposed into a 3x1 kernel followed by 1x3 one as shown in Figure 40 with around 

33% computation savings.  

 

 

Figure 40 : Decomposing 3x3 kernel into asymmetric kernels 

Thus, hypothetically any n x n kernel can be replaced by 1xn kernel followed by nx1 

kernel and this led to the introduction of a new inception module shown in Figure 41. 

However, practically this type of factorization doesn’t perform well at the network early 

layers requiring their usage at the mid to the end layers. 

 

 

Figure 41 : New Inception module with nx1 and 1xn factorized kernels 
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In general, this variant is composed of 42 layers that was able to achieve top-5 error 

of 5.7% on the ImageNet data set with a total 29.3 million weight parameters. 

3.7.4. Fourth version 

The fourth version was introduced in 2016 and it introduce a new variant that 

combines the Inception module with the residual connections introduced in [29] as shown 

in Figure 42. 

 

 

Figure 42 : Inception module accompanied by residual connection 

In general, this variant is composed of 164 layers that was able to achieve top-5 error 

of 4.9% on the ImageNet data set with a total 55.93 million weight parameters. 

3.8. ResNet 

Also known as Residual Net [29] was introduced in 2015 and was able to win all the 

tracks within the ImageNet challenge. It is considered the first network to exceed the 

human level performance in the ImageNet challenge with top-5 error below 5%. Since 

its introduction, it was followed by another version [102].  
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3.8.1. First version 

The first version introduces the shortcut module and similar to the previous networks 

it attempts to increase the depth of the network.  

Depth aspect is proven to be crucial for network performance, however straight 

forward stacking of more layers had been shown to degrade the performance once the 

network starts to converge where the accuracy starts to saturate followed by a rapid 

degradation. Such degradation is not argued to overfitting only but also the optimizer 

may have faced difficulties during resolving the cost function. This can be explained 

through the assumption of having a shallow architecture where a deeper counterpart 

architecture that adds several layer onto it can produce no higher training error compared 

to the shallow exits if the added layers are identity mapping ones.  

The shortcut module is inspired from the aforementioned degradation problem 

where the optimizer may have faced difficulties when trying to approximate the multiple 

nonlinear transformation layers into identity mappings. As shown in Figure 43, it 

contains an identity connection to allow the network to skip the convolutional layers such 

that if the optimal function to be learnt is closer to the identity mapping, the optimizer 

shall easily find the perturbations with reference to an identity mapping rather than to 

learn the function. Furthermore, this module doesn’t add any extra parameters.  

 

 

Figure 43 : Shortcut module 

Another module is introduced which is the bottleneck module. It modifies the 

shortcut module to reduce the learnable weight parameters as well as the training time 

through the usage of 1x1 kernel. This is done as shown in Figure 44 by replacing the two 

layers stack with a three one in which the three layers are stacked as 1x1 kernel, 3x3 

kernel and 1x1 kernels where the 1x1 kernels are used to reduce and then restore the 
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dimensions, leaving the 3x3 kernel as a bottleneck with smaller input and output 

dimensions.  

 

 

Figure 44 : Bottleneck module 

In general, ResNet follows the same philosophy of the VGG where it is constrained 

to use only 3x3 kernel, all layers with the same output feature map dimension shall have 

the same number of filters and the number of filters is doubled as the network goes deeper 

with the feature map size is halved. The main modification is the insertion of the 

bottleneck modules which convert the network to a residual version. It has three popular 

variants ResNet-50, ResNet-101 and ResNet-152.  

ResNet-50 is composed of one convolutional layer, 16 bottleneck modules each shall 

have three convolutional layers and one fully connected layer with total 25.5 million 

weight parameter and top-5 error of 5.25% on the ImageNet data set.  

ResNet-101 is composed of one convolutional layer, 33 bottleneck modules each 

shall have three convolutional layers and one fully connected layer with total 44.5 million 

weight parameter and top-5 error of 4.6% on the ImageNet data set.  

ResNet-152 is composed of one convolutional layers, 50 bottleneck modules each 

shall have three convolutional layers and one fully connected layer with total 60 million 

weight parameter and top-5 error of 4.49% on the ImageNet data set. 
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3.8.2. Second version 

The second version was introduced in 2016. It mainly analyzes and conducts some 

experiments on the residual network attempting to create a direct path for the propagation 

of information within the entire network instead of the shortcut module only. It also 

introduces a new variant from the ResNet.  

A new shortcut module as well as its counterpart bottleneck module are introduced 

which are shown in Figure 45 (a) and (b) respectively where the identity connections are 

kept as the direct path for information propagation, meanwhile the nonlinear activation 

function are rearranged such that the ReLU and the added batch normalization are used 

as a pre-activation functions such that the activation is moved to residual mapping 

pathway. 

 

 

Figure 45 : (a) Modified shortcut module (b) Modified bottleneck module 
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In general, it has introduced two new variants ResNet-152 and ResNet-200.  

ResNet-152 is composed of one convolutional layers, 50 bottleneck modules each 

shall have three convolutional layers and one fully connected layer with total 60 million 

weight parameter and top-5 error of 5.5% on the ImageNet data set.  

ResNet-200 is composed of one convolutional layers, 66 bottleneck modules each 

shall have three convolutional layers and one fully connected layer with total 64.7 million 

weight parameter and top-5 error of 4.8% on the ImageNet data set. 

3.9. Conclusion 

Figure 46 summarizes the evolving networks since AlexNet where obvious trends 

across these networks can be observed 

 

 

Figure 46 : Different networks compared according to their size, number of operations 

and Top-1 accuracy from [106] 

Firstly, the attempt to improve the network accuracy through increasing the size of 

the networks in terms of depth which is reflected in number of layers within the network 

as well as the width which is reflected in number of units per layer. The network size 

increase can be beneficial through the increase of the number of nonlinear functions 

applied allowing the network to be more discriminative and increasing the number of 

abstracted learned representation hierarchy. However, this shall come with a price in 

terms of dramatically increase in the required computational resources to train the 

network and the network tendency to over fit. To overcome these problems while being 

able to increase the network size, computation efficient networks which start to modify 

shape of layers and their connection were innovated as shown in the Inception and 

ResNet networks 

Secondly, the number of fully connected layers are reduced moving most of the 

computations and learnable weights to the convolutional layers. Moreover, networks like 

Inception doesn’t include a one  

Thirdly, the network kernel size tends to be more compact. A kernel size can vary 

from very large size (i.e. 11x11 as in AlexNet) to a very small one (i.e. 1xn or nx1 as in 

Inception). Decomposing large kernels into a set of cascaded smaller ones can reduce the 
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computation complexity and the number of learnable parameters through the replacement 

of the loose and over parametric kernels with compact ones, meanwhile applying these 

smaller kernels sequentially can maintain the overall effective receptive field achieving 

almost the same network performance. Moreover, kernels decomposition can be 

beneficial in increasing the number of nonlinear transformation applied enhancing the 

network capability to be more discriminative  
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Chapter 4 : Exploring Convolutional Neural Networks 

Different Layers 

As illustrated in the previous chapter, the current trend in designing CNN is to 

modify the structure of its layer either by introducing a new convolutional kernel (i.e. 

1x1 convolution) or the connection between different kernels within its layer (i.e. 

Inception [98] or ResNet[29]) before starting to increase the depth of the network. 

Network modification on the architecture level had shown to be fruitful achieving a 

significant enhancement in the performance  

In this chapter, exploring different modification in the CNN layers whether the 

convolutional or the pooling was done with the aim to introduce a new mapping function. 

4.1. Basic Setup 

To start exploration, it is required to choose the application task, followed by 

defining the target data set, then switching to choose an efficient framework and finally 

defining the platform to run out the experiments upon it. 

The selected application shall be image classification given it is the common task 

used to evaluate the evolving networks as well as being the basis for other computer 

vision tasks such as object detection and localization.  

The picked out Data set shall be CIFAR-10[63] where it is considered as an 

acceptable data set used in experimenting some of the state of art networks as NiN[105] 

and ResNet[29], meanwhile having  an average complexity when compared to 

MNIST[62] which is very easy and tiny one and the ImageNet[64] which is a huge data 

set that requires a very expensive computational infrastructure  

The chosen Framework shall be Keras with TensorFlow as backend [107]. Keras is 

a widely adopted framework with a lot of online supports. The keras flow as well as its 

associated key image data generator class is described in Appendix one 

Among the different available computing platforms available, google compute 

engine and amazon web services were used interchangeably across this work. These 

platforms are equipped with a high end GPUs such as V100 enabling deep networks 

experimenting and training. More about the computing platforms can be found in 

Appendix two 

4.2. Baseline network 

The network used in the experiments of this chapter is inspired from VGG [97], 

where it follows its footsteps as shown in Figure 47 from fixing the kernel size to 3x3 to 

using two convolutional layers with same number of kernels before halving the feature 

map through the usage of a maximum pooling layer. A fully connected layer is then 

applied at the end to generate the logits of the target classified class 
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Figure 47 : Baseline network 

4.3. Convolutional layer modification 

4.3.1. Pseudo Rotated Kernels 

Reviewing back the basic convolution operations as shown in Figure 48 where 

spatial image filtering is done through convolving a trainable weight kernel with an input 

image to generate the feature map going to next layer.  

 

 

Figure 48 : Basic convolutional operation 

From an operation point of view, this can be shown as modifying the intensity of a 

pixel according to the intensities of the neighboring pixels. Another point of view, is the 
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mathematical one, where this operation is actually a cross correlation one where actual 

convolution requires rotating the filter by 180 degrees before convolving it with the input. 

This is the initial inspiration of applying the pseudo rotation kernels, where the 

network can benefit from the usual cross correlation function in addition to allowing it to 

perform an actual convolutional one using a rotated kernel with 180 degrees enhancing 

its capabilities in extracting more useful features.  Figure 49 shows a cross correlation 

kernel with a zero degree rotation and its convolution kernel pair with 180 degree 

rotation). 

 

 

Figure 49 : (a) Zero degree rotated kernel (b) 180 degree rotated kernel 

Using this pair of kernels, the baseline network can be modified as shown in Figure 

50 with a note here is the generated feature map is almost doubled.  

 

 

Figure 50 : Modification to baseline network to account for the 180 degree rotated 

kernel 
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Moreover, the idea of rotating kernels can get more insights from image processing 

techniques, where the feature detectors like Robert Cross edge detection or Sobel edge 

detectors are based on rotating kernels where a pair of zero degree kernel and a 90 degree 

rotated one are applied to extract the features. Hence, generalizing the rotating kernels to 

have a 90 degree rotated kernels as shown in Figure 51 would be fruitful.  

 

 

Figure 51 : Pairs of 90 degree rotated kernels starting from(a) a zero one to (d) 270 

degree rotated kernel 

Another modification for the baseline is required in accordance to applying the 90 

degree rotated kernels one as shown in Figure 52. 

 

 

Figure 52 : Modification to baseline network to account for the 90 degree rotated kernel 
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However, to squeeze the idea more, an attempt to rotate the zero degree kernels by 

45 degree won’t be feasible as it requires the kernel shape to be a trapezoid, thus to 

overcome this limitation an approximation can be done to divide the 90 degree rotation 

into two steps as shown in Figure 53 where one step is to rotate the kernel in the required 

90-degree manner but with a shuffled kernel and the second step is to rearrange the kernel 

to obtain the 90 degrees rotation kernel. The first step can be considered as a pseudo 45 

degree rotation meanwhile the second step is usual 90 degree rotation.  

 

 

Figure 53 : Pairs of pseudo rotated 45 degree kernels starting from(a) a zero one to (h) 

315 degree rotated kernel 

The modification of the baseline to account for the pseudo 45 degree rotation can be 

shown in Figure 54. 

 

 

Figure 54 : Modification to baseline network to account for the 45 degree rotated kernel 
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When analyzing the aforementioned approximation, it can be shown that the step of 

rotating the kernel into a certain direction is a mandatory one given that the 90 degree 

multiples have a straight forward structure while the pseudo intermediate rotation step 

which includes kernel shuffling is an arbitrary one given the way of arranging the kernel 

was a subjective one. 

This would lead to generalizing the pseudo rotation steps more by assuming their 

shuffling before reaching the 90 degree multiples can be divided into more fine steps that 

can cover all the available shuffles. This is what pseudo 15 degree rotation does as shown 

in Figure 55.  

 

 

Figure 55 : Pairs of pseudo rotated 15 degree kernels starting from(a) a zero one to (x) 

345 degree rotated kernel 

Also, the modification of the baseline to include the pseudo 15 degree rotation can 

be shown in Figure 56.  

 

 

Figure 56 : Modification to baseline network to account for the 15 degree rotated kernel 
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The 15 degree pseudo rotated kernels actually would lead to the creation of the 

pseudo rotated kernels design space as shown in Figure 57, where there is a pool of 

pseudo rotation kernels along the rotation circle with an arbitrary choice during the 

design of the network to choose which of them to be applied. This can be viewed as 

adding a new kernel type in the network optimization problem similar to how NiN[105] 

added a new dimension in optimizing the kernels through the introduction of the 1x1 

kernel.  

 

 

Figure 57 : Pseudo rotated kernels circle design space 

Table 1 shows the comparison of achieved accuracy from the baseline network and 

its modified versions as well as the number of increased parameters after training them 

for 10 epochs 

 

Network Top-1 error Number of parameters/ Computation 

ratio 

Baseline 34.06 % 1x 

Modified with 180 

degree kernels 

31.56 % 2x 

Modified with 90 

degree kernels 

33 % 4x 

Modified with 45 

degree kernels 

33.4 % 8x 

Modified with 15 

degree kernels 

33.7% 24x 

Table 1 : Comparison between Baseline network and its pseudo rotated modified 

versions 

The results obtained from the modified networks are promising given that they 

showed some enhancements in the accuracy with only few number of epochs 
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The intuition here is that the pseudo rotated kernels interact with the affine 

transformation which is the core foundation of the ML theory through its translation and 

rotation methods. Translation method is established in the CNN by means of the 

convolutional kernels (recall it is actually a cross correlation one) where the pseudo 

rotated filters widen this method by enabling the network to perform the usual cross 

correlation function accompanied by the actual convolution one by means of the 180 

degree rotated kernel, meanwhile the pseudo rotating kernels enhance the rotation 

method by providing a set of arbitrary chosen rotated kernels at each layer. Moreover, 

the pseudo rotated kernels increase the robustness of translation invariance property of 

the network by providing the feature map rotated in several ways as if the network is 

capable to rotate the feature map at each layer. This may be viewed as if the network has 

become self augmented where it has its own self augmentation methods. 

A final note to be mentioned is that modifying the kernel size to larger sizes (i.e. 5x5 

kernels) to have more pseudo rotation degree steps is assumed to be non-beneficial given 

the current shown benefit from the state of the art networks in making the kernel size 

more compact. Furthermore, increasing the kernel size will come with a huge 

computational cost penalty from the larger kernel its self and its associated pseudo rotated 

ones making the training process non feasible. For instance, a 5x5 kernel with its 90 

rotated kernel shall require 100 learnable weigh while the 3x3 kernel shall require 36 

only meaning that the a single 5x5 kernel requires approximately 2.7 extra computation 

power to be trained. 

4.3.2. Kernels Mathematical derivations  

Another approach to modify the convolutional layer is to introduce some 

mathematical relations between different kernels in analogous to how the MFFCs filter 

bank in speech recognition is constructed to extract the features. This filter bank 

performance was enhanced through correlating different filters together by means of 

averaging each two successive one to generate a new one that can benefit from the 

previous and the subsequent filter. This can be viewed as introducing an intermediate 

kernel that can hopefully generate a new useful feature from the already feature trained 

kernels.  

One potential relation as shown in Figure 58 is to generate a new kernel between 

every two successive kernels through either averaging them or using one of the basic 

operations such as addition, subtraction, multiplication and division or a complex one 

such as geometric mean, root mean square and the logarithmic mean.  
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Figure 58 : Adding a derived kernel between every two successive kernels 

The intuition here is that if the kernels are concentrating on correlated regions to 

generate different features then introducing an intermediate one can benefit from both of 

them to capture a new feature that would be captured only using a larger kernel or when 

processed in the next layer. This can be beneficial to the learning process of the network 

as if it is equipped with a larger kernel. The modification to the base line network can be 

shown in Figure 59. 

 

 

Figure 59 : Modification to baseline network to account for the kernels derived from 

every two successive ones 
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Table 2 shows the comparison of achieved accuracy from the baseline network and 

its modified versions as well as the number of increased parameters after training them 

for 10 epochs 

 

Network Top-1 error Number of parameters/ 

Computation ratio 

Baseline 34.06 % 1x 

Modified with Average by 2 34.4 % 1.97x 

Modified with Addition 35.5 % 1.97x 

Modified with Subtraction 34 % 1.97x 

Modified with Multiplication 34.2 % 1.97x 

Modified with Division 90 % 1.97x 

Modified with Geometric 

mean by 2 

39 % 1.97x 

Modified with Root mean 

square by 2 

42.25 % 1.97x 

Modified with Logarithmic 

mean by 2 

90 % 1.97x 

Table 2 : Comparison between Baseline network and its modified versions to account 

for derived kernels between every two successive kernels 

The results obtained are a disappointing one as the network didn’t benefit from the 

introduced kernels showing that the kernels weren’t correlated enough to allow the 

generation of new kernels that can benefit from how the kernels overlap on the same 

region to generate different features. 

One modification to the generated kernel is to increase its size allowing more regions 

to be overlapped and hence increasing the probability of correlating the kernels together. 

The kernel size is increased to 5x5 as shown in Figure 60 

 

 

Figure 60 : Adding a derived kernel between every two successive kernels with an 

increased size to 5x5 
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Also a modification to the base line network is done in accordance which can be 

shown in Figure 61. 

 

 

Figure 61 : Modification to baseline network to account for increasing the derived 

kernels from every two successive kernels size to 5x5 

Table 3 shows the comparison of achieved accuracy from the baseline network and 

its modified versions as well as the number of increased parameters after training them 

for 10 epochs 

 

Network Top-1 error Number of parameters/ 

Computation ratio 

Baseline 34.06 % 1x 

Modified with Average by 2 38.3 % 5.46x 

Table 3 : Comparison between Baseline network and its modified version to account for 

increasing the size of the derived kernels between every two successive kernels to 5x5 

The results didn’t improve showing that this may be the wrong dimension of 

modification. 

 However, another dimension is to increase the window of averaging instead of 2 

only may be using 4 or 8 or even start to bias the averaging using a weighted one may 

enhance the accuracy. Figure 62 shows the averaging by 4, while Figure 63 shows the 

averaging by 8. The modification to the baseline in accordance to averaging by 4 and 8 

can be shown in Figure 64 and Figure 65 subsequently. 
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Figure 62 : Adding a derived kernel between every four successive kernels 

 

Figure 63 : Adding a derived kernel between every eight successive kernels 

 

Figure 64 : Modification to baseline network to account for the kernels derived from 

every four successive ones 
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Figure 65 : Modification to baseline network to account for the kernels derived from 

every eight successive ones 

Table 4 shows the comparison of achieved accuracy from the baseline network and 

its modified versions as well as the number of increased parameters after training them 

for 10 epochs 

 

Network Top-1 error Number of parameters/ 

Computation ratio 

Baseline 34.06 % 1x 

Modified with Average by 

4 

34.1 % 1.9x 

Modified with Average by 

8 

34.03 % 1.78x 

Modified with Weight 

Average by 4 

34 % 1.9x 

Modified with Weight 

Average by 8 

34.34 % 1.78x 

Table 4 : Comparison between Baseline network and its modified version to account for 

increasing  window of derived kernels to be four and eight successive kernels 

The results didn’t show any improve which suggests that this method mightn’t be 

beneficial for image processing in contrast to speech recognition. This can be regarded 

to the fundamental difference between both of them, where image processing is spatially 

correlated while speech recognition is timely correlated. Thus, correlating the kernels can 

benefit from the sequential nature of the speech recognition and the subsequent kernels 

can be correlated together, meanwhile image processing has spatial nature where the 

intensity of a group of pixels are correlated to each other requiring the kernels to be 

spatially correlated which is inherited in the convolutional kernels through sharing 

weights  
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4.4. Pooling layer modification 

These layers are used to reduce the feature map dimensions mainly the height and 

width with the maximum and average layers being the widely used nowadays.  

Another similar method which is used in image processing is the Median layer. As 

shown in Figure 66 it is similar to the average layer where it applies the averaging on the 

pixel to subsample the feature map to the required dimension. However instead of 

averaging all the window pixels, it rearranges the window such that it can focus only on 

the middle ones allowing their average only (i.e. obtaining the mean). The advantage of 

this layer over the others is in its ability to smooth the feature maps where it discards any 

intensity overshoot in the pixels within the window that can be viewed as 

unrepresentative to the surrounding pixels.  

 

 

Figure 66 : Median Layer 

The modification of the base line network in accordance to using median layer can 

be shown in Figure 67.  
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Figure 67 : Modification of the base line network to use the median layer 

Table 5 shows the comparison of achieved accuracy from the baseline network and 

its modified versions as well as the number of increased parameters after training them 

for 10 epochs 

 

Network Top-1 

error 

Number of parameters/ 

Computation ratio 

Baseline Maximum pooling 

Layer 

34.06 % 1x 

Baseline Average pooling Layer 34.2 % 1x 

Modified with Median Layer 34.4% 1x 

Table 5 : Comparison between Baseline network and its modified version to account for 

using median layer 

The median layer didn’t introduce any accuracy enhancement and this can be 

regarded to the fact that median layer is used in image de-noising problems where it is 

required to recover a contaminated image unlike the cifar-10 data set or any other CNN 

well known image classification data sets where a preprocessing step is done while 

collecting the images to ensure that all the images have similar distribution of intensities 

without any overshooting one. 
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Chapter 5 : Proposed Pseudo Rotated Nets 

In this chapter, the generalization of the pseudo rotated kernels is proposed where 

full networks with different configuration are implemented demonstrating the accuracy 

enhancements achieved by fusing these kernels into the well-known architectures such 

as ResNets[29] and VGG[97] when applied on the CIFAR-10 data set[63]. 

5.1. ResNet Based networks 

The ResNet was chosen to be the core architecture given its popularity, proven 

training time enhancement and the breakthrough accuracy achieved in all the ImageNet 

competitions. Moreover, the ResNet authors had created modified versions to experiment 

on CIFAR-10 data set enabling a start network that is ready for modifications as well as 

published results to compare with. 

 The start point for modification is the second version [102] where the pre activation 

bottleneck convolutional layer was introduced. The bottleneck layer is modified as 

shown in Figure 68 to account for the addition of the pseudo rotated kernels to be 

considered as the core layer of the network.  

 

 

Figure 68 : Bottleneck modification for pseudo rotated kernels 
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This layer was modified to generate four versions one with the 180 degree rotated 

kernel pair as shown in Figure 69, one for 90 degree rotated kernel pairs as shown in 

Figure 70, one for pseudo 45 degree rotated kernels pair as shown in Figure 71 and one 

for one for pseudo 15 degree rotated kernels pair as shown in Figure 72. These modified 

layers are integrated within the ResNet full network without any modification in its 

structure. 

 

 

Figure 69 : Bottleneck modification for 180 degree rotated kernels 
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Figure 70 : Bottleneck modification for 90 degree rotated kernels 

 

Figure 71 : Bottleneck modification for pseudo 45 degree rotated kernels 
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Figure 72 : Bottleneck modification for pseudo 15 degree rotated kernels 

While there are many ResNet variants, the focus shall be on the ResNet-20, ResNet 

56 and ResNet 110.  

One note to mention here, training a full network is somehow a problematic one 

given the amount of computational power required which may be beyond the capability 

of this work. Hence, instead of training for a fixed number of epochs, the network shall 

be trained until reaching the accuracy saturation point where the achieved accuracy is 

near the published one, meanwhile increasing the number of epochs would result in minor 

enhancements. This would enable a fair comparison between the networks whereas the 

deeper networks would require more epochs to converge compared to a shallower one 

while maintaining a budget computational power 
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5.1.1. Pseudo Rotated ResNet version 1 

Starting from the ResNet 110 which is one of the deepest ResNet network with 

around 110 layers, Table 6 shows the comparison of achieved accuracy after training for 

the accuracy saturation point defined earlier from the in house implemented ResNet-110 

and its modified versions with their total number of parameters as well as the number of 

increased parameters. 

  

Network Top-1 

error 

Total Number of 

parameters 

Parameters increase 

ratio 

In house ResNet-110 N/A 1.7 Million 1x 

ResNet with 180 degree 

kernels 

N/A 3.4 Million 2x 

ResNet with 90 degree 

kernels 

N/A 6.8 Million 4x 

ResNet with 45 degree 

kernels 

N/A 13.6 Million 8x 

ResNet with 15 degree 

kernels 

N/A 40.8 Million 24x 

Table 6 : Comparison between ResNet-110 and its modified pseudo rotated versions 

As shown in the obtained training results such deep network was beyond the 

available computation infrastructure either the GPU ran out of RAM, infeasible epoch 

time (i.e. 10 hours) or the compiler failed to perform arithmetic optimization to fit within 

the GPU. Such deep networks are usually trained using a network of multiple GPUs. 

Next, moving to ResNet-56 was the reasonable step where it is composed of 56 

layers where Table 7 shows the comparison of achieved accuracy after training for the 

accuracy saturation point defined earlier from the in house implemented ResNet-56 and 

its modified versions with their total number of parameters as well as the number of 

increased parameters. 

  

Network Top-1 

error 

Total Number of 

parameters 

Parameters increase 

ratio 

In house ResNet-56 8.54 

% 

0.85 Million 1x 

ResNet with 180 degree 

kernels 

9.5% 1.7 Million 2x 

ResNet with 90 degree 

kernels 

8.2% 3.4 Million 4x 

ResNet with 45 degree 

kernels 

N/A 6.8 Million 8x 

ResNet with 15 degree 

kernels 

N/A 20.4 Million 24x 

Table 7 : Comparison between ResNet-56 and its modified pseudo rotated versions 
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Again from the obtained results, some networks were shown going beyond the 

available computation infrastructure, however the obtained accuracy had shown either 

no improvements or a negligible one that can be easily claimed to be from some noise or 

the weight initialization. Moreover, the network didn’t benefit from the added parameters 

and it had suffered from an over fitting problem given how fast the modified networks 

had reached the saturation accuracy point (nearly around the 50 or the 60 epoch). The 

overfitting may have occurred due to the tiny Cifar-10 image size (32x32) that doesn’t 

require all these modifications as well as the small training data set amount, meanwhile 

the modifications had added a huge number of parameters.  

To address this overfitting problem two architecture modifications were done. The 

first is to reduce the number of parameters through moving to the ResNet-20 while the 

second is apply the dropout [108] and spatial dropout [109] regularization techniques to 

help in training the increased number of parameters resulting from the modifications in 

the network.  

Dropout is a regularization method that randomly drops out some neurons output 

where they are temporarily removed from the network during training. This is beneficial 

in terms of allowing some neuron to change in respond to the absence of some adjacent 

neurons to fix any unintended mistakes from other units which allows the network to be 

more robust.  It is commonly used after the dense fully connected layers.  

Spatial Dropout is an alternative regularization method that allows 

similar dropout manner to be applied within the convolutional neural networks whereas 

an entire channel is dropped from the feature map within the convolutional layer in 

analogous to how the neurons are dropped in the fully connected layers. 

Another choice was made given the limited computational power available is to 

choose the pseudo 45 degree rotated kernels as the pair of kernels used within the 

bottleneck modified module.  

All the aforementioned choices had led to the proposal of the Pseudo Rotated 

ResNets version 1 which is shown in Figure 73 and its associated pseudo 45 degree 

rotated kernels bottleneck layer modification to account for spatial dropout is shown in 

Figure 74 
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Figure 73 : Pseudo Rotated ResNet version 1 
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Figure 74: Pseudo 45 degree rotated kernels bottleneck with spatial dropout 

Table 8 shows the comparison of achieved accuracy after training for the accuracy 

saturation point defined earlier from the in house implemented ResNet-20, in house 

implemented ResNet-56 and the Pseudo Rotated ResNet version 1 with their total number 

of parameters as well as the number of increased parameters. 

  

Network Top-1 

error 

Total Number 

of parameters 

Parameters 

increase ratio 

In house ResNet-20 9.6 % 0.27 Million 1x 

In house ResNet-56 8.54 % 0.85 Million 3.1x 

Pseudo Rotated ResNet version 1 7.1 % 2.16 Million 8x 

Table 8 : Comparison between ResNet-20, ResNet-56 and Pseudo Rotated ResNet 

version 1 
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The results obtained shows that the network started to benefit from the pseudo 

rotated kernel pairs attached to the convolution layers, meanwhile the modified network 

size and the associated added regularization methods had resolved some of the overfitting 

problem resulting in an accuracy improvement. However, this accuracy enhancement had 

come with an increase in number of parameters which shall be addressed in version 2. 

5.1.2. Pseudo Rotated ResNet version 2 

The enhanced accuracy shows the potential of the pseudo rotated kernels, however 

it comes with a penalty in terms of increased number of parameters.  

To address this increase, the circle space of the pseudo rotated kernels described 

before in the previous chapter was revisited where it is required to search for another 

pseudo rotated kernels combination that maintain the achieved accuracy meanwhile 

reducing the number of parameters.  

A useful insight here is to consider reducing the number of kernels within the pseudo 

45 degree rotated kernels set where it is proposed to reduce the pseudo 45 degree rotated 

kernels pairs to exclude the 90 degree multiples and shall be noted as pseudo 45 degree 

without 90 corners as shown in Figure 75.  

 

 

Figure 75 : Pseudo 45 degree without 90 corners 

This will result in modification to the bottleneck layer as shown in Figure 76.  
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Figure 76 : Pseudo 45 degree rotated kernels without 90 corners bottleneck 

However, this will come with the cost of removing the 180 degree rotated kernel 

which was the one responsible for the translation property enhancement. To mitigate that 

loss, a modification to the network structure was done where the first and second set of 

the convolutional layers shall use the introduced pseudo 45 degree without 90 corners, 

meanwhile the third set shall use the 180 degree rotated kernels only.  
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The Intuition here is that the first and second sets of convolutional layers shall benefit 

from the enhanced rotation property while going near the end of the network where the 

features becomes more expressiveness and thus enhancing the translation property shall 

be beneficial. This is basic idea behind the Pseudo Rotated ResNet version 2 which is 

shown in Figure 77 

 

Table 9 shows the comparison of achieved accuracy after training for the accuracy 

saturation point defined earlier from the in house implemented ResNet-20, in house 

implemented ResNet-56, the Pseudo Rotated ResNet version 1 and version 2 with their 

total number of parameters as well as the number of increased parameters. 

  

Network Top-1 

error 

Total Number 

of parameters 

Parameters increase 

ratio 

In house ResNet-20 9.6 % 0.27 Million 1x 

In house ResNet-56 8.54 % 0.85 Million 3.1x 

Figure 77 : Pseudo Rotated ResNet version 2 
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Pseudo Rotated ResNet 

version 1 

7.1 % 2.16 Million 8x 

Pseudo Rotated ResNet 

version 2 

6.08 % 0.83 Million 3.07x 

Table 9 : Comparison between ResNet-20, ResNet-56, Pseudo Rotated ResNet version 

1 and version 2 

The results obtained show that the parameters were reduced to be comparable with 

the ResNet-56 with an enhanced accuracy even more than Pseudo Rotated ResNet 

version 1 showing that increasing the width using the pseudo rotated kernels may be more 

performance beneficial rather than increasing the depth. The enhancement in the 

accuracy while decreasing the number of parameters can be regarded to reducing the 

overfitting by decreasing the number of parameters carefully through the distribution of 

the more rotating kernels at the first stages while focusing on enhancing the translation 

at the later ones. 

 

5.1.3. Pseudo Rotated ResNet version 3 

After showing the capability of the pseudo rotated kernels to enhance the accuracy 

with a reasonable number of parameters, it is required to squeeze the network more in 

attempt to boost the accuracy performance.  

Reviewing back the affine transformation properties, one property seems to be 

interesting is the scaling one. Successively applying the scaling property can push the 

network one more step towards being capable to unify more properties of the affine 

transformations within its processing.  

Scaling can be done with the most straight forward approach through applying the 

pooling techniques as an attached kernel within the convolutional kernels. However, this 

direct apply of the pooling techniques could lead to the explode of parameters number 

given it maintains the same number of channels from the previous layer feature map 

while it scales its height and width. For instance, as shown in Figure 78, in the Pseudo 

Rotate ResNet version 2 first layer outputs 80 channels within the generated feature map, 

if the pooling layer is directly applied in the next one it would generate 80 channels in 

the output feature map in addition to the 320 channels generated from the already existing 

convolutional kernels which would result in a total 400 channels in the final feature map.  
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Figure 78 : Direct apply of pooling layer within the first layer Pseudo Rotated version 2 

Moving with this approach across different layers would lead to an exponential 

growth in number of parameters which would go beyond the computational power 

budget. Analyzing the exploding number of parameters, it seems it is required to reduce 

the number of channels when applying the pooling techniques.  

Inspired from the Inception module where the applied pooling layers are followed 

by a 1x1 convolution to reduce the number of channels and hence reduces the number of 

parameters, it seems reasonable to follow their footsteps and apply the same approach 

where each pooling technique shall be followed by a 1x1 convolutional kernel.  

Thus, from the aforementioned, the bottleneck module is modified as shown in 

Figure 79 to add maximum pooling kernel with 2x2 grid size reduction configured to 

allow the padding method to keep the generated feature map dimension similar to the 

input one enabling its further concatenation with the feature maps generated from the 

convolutional kernels, meanwhile it is followed by 1x1 convolutional kernel also to allow 

parameters reduction.  
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Figure 79 : Pseudo 45 degree rotated kernels without 90 corners bottleneck with an 

additional maximum pooling kernels 

The network structure remains the same as pseudo Rotated ResNet version 2 as 

shown in Figure 80. 
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Figure 80: Pseudo Rotated ResNet version 2 with additional maximum pooling kernels 

modification 

Table 10 shows the comparison of achieved accuracy after training for the accuracy 

saturation point defined earlier from the in house implemented ResNet-20, in house 

implemented ResNet-56, the Pseudo Rotated ResNet version 1, version 2 and the 

modified version 2 to include the maximum pooling kernel with their total number of 

parameters as well as the number of increased parameters. 

  

Network Top-1 

error 

Total Number 

of parameters 

Parameters 

increase ratio 

In house ResNet-20 9.6 % 0.27 Million 1x 

In house ResNet-56 8.54 

% 

0.85 Million 3.1x 

Pseudo Rotated ResNet version 1 7.1 % 2.16 Million 8x 

Pseudo Rotated ResNet version 2 6.08 

% 

0.83 Million 3.07x 

Modified Pseudo Rotated ResNet 

version 2 with maximum pooling 

kernel 

5.5% 1.61 Million 5.65x 



 

89 
 

Table 10 : Comparison between ResNet-20, ResNet56, Pseudo Rotated ResNet 

versions 1 and 2 as well as Pseudo Rotated ResNet versions 2 with maximum pooling 

The results showed some improvement from applying the maximum pooling in 

attempt to achieve the scaling property of the affine transformation.  

A greedy approach is to consider adding the average pooling in a similar manner to 

the maximum pooling to boost the scaling property more. Thus, the bottleneck module 

is modified as shown in Figure 81.  to add the average pooling kernel with same 

configuration as maximum pooling and also shall be followed by 1x1 convolutional 

kernel.  

 

 

Figure 81: Pseudo 45 degree rotated kernels without 90 corners bottleneck with an 

additional maximum and average pooling kernels 

An insight here is that one can rethink that the network is approaching to be self-

augmented where the basic augmentation techniques such as rotation and scaling are 

already done within the network only adding noise is the missing basic technique. Thus, 

another modification is done to apply Gaussian noise at the input image before passing 

through the network.  

All the aforementioned had led to the introduction of Pseudo Rotated ResNet version 

3 which is shown in Figure 82 
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Table 11 shows the comparison of achieved accuracy after training for the accuracy 

saturation point defined earlier from the in house implemented ResNet-20, in house 

implemented ResNet-56, the Pseudo Rotated ResNet version 1, version 2, the modified 

version 2 and version 3 with their total number of parameters as well as the number of 

increased parameters. 

  

Network Top-1 

error 

Total Number of 

parameters 

Parameters 

increase 

ratio 

In house ResNet-20 9.6 % 0.27 Million 1x 

In house ResNet-56 8.54 % 0.85 Million 3.1x 

Pseudo Rotated ResNet version 1 7.1 % 2.16 Million 8x 

Pseudo Rotated ResNet version 2 6.08 % 0.83 Million 3.07x 

Figure 82 : Pseudo Rotated ResNet version 3 
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Modified Pseudo Rotated ResNet 

version 2 with maximum pooling 

kernel 

5.5% 1.61 Million 5.65x 

Pseudo Rotated ResNet version 3 4.7 % 2.658 Million 9.3 x 

Table 11 : Comparison between ResNet-20, ResNet56 and different Pseudo Rotated 

ResNet versions 

The obtained results show an improvement in the accuracy where the network 

benefited from the added average and maximum pooling layers without overfitting. 

However, this improvement had increased the number of parameters significantly. 

Addressing this increase would require revisiting the circle space of the pseudo rotated 

kernels or even revisiting the way the pooling layers were attached to the network which 

is left to future work. 

5.2. VGG Based networks 

VGG is one of the widely adopted CNN given its symmetric architecture and the 

straight forward structure.  

Generalizing on the VGG was a necessary step to demonstrate how the pseudo 

rotated kernels can be applied in different architectures leading to accuracy 

enhancements.  

Unfortunately, VGG wasn’t applied on the CIFAR-10 data set, thus choosing, 

creating and modifying the network was done from scratch.  

Given how giant is the network compared to the tiny data set used and to allow 

network training to be within the available computational budget, VGG-11 architecture 

was selected with three modifications to the structure. The first is to adjust all the 

convolutional kernels to match the CIFAR-10 images dimensions rather than the 

ImageNet one, while the second was adding the Batch Normalization layer after each 

convolutional one, meanwhile the third was adding spatial dropout between every two 

consecutive convolutional layers. These modifications were required in attempt to 

regularize this data hungry network as well as accelerating the training procedure. The 

modified VGG-11 can be shown in Figure 83 and Figure 84 
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Figure 83 : Modified Baseline VGG-11 Part A 
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Figure 84 : Modified Baseline VGG-11 Part B 

5.2.1. Pseudo Rotated VGG version 1 

This version shall follow the footsteps of the pseudo Rotated ResNet version 2 where 

the first three stacks of the convolutional kernels shall be modified to have the pseudo 45 

degree rotated kernels without 90 corners pairs while the last two stacks shall be modified 

to have the 180 degree rotated kernel pairs. The Pseud Rotated VGG version 1 can be 

shown in Figure 85 and Figure 86 
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Figure 85: Pseudo Rotated VGG version 1 Part A 
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Figure 86: Pseudo Rotated VGG version 1 Part B 

Table 12 shows the comparison of achieved accuracy after training for the accuracy 

saturation point defined earlier from the in house modified VGG-11and Pseudo Rotated 

VGG version 1 with their total number of parameters as well as the number of increased 

parameters. 

  

Network Top-1 

error 

Total Number of 

parameters 

Parameters 

increase ratio 

In house modified VGG-11 9.5 % 24,149,519 Million 1x 
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Pseudo Rotated VGG version 

1 

7.15 

% 

45,886,730 Million 1.9x 

Table 12 : Comparison between modified VGG-11 and Pseudo Rotated VGG version 1 

The obtained results show an improvement in the accuracy demonstrating how the 

pseudo rotated kernels had generalized to be successively fused within the VGG network. 

Moreover, the increase in the number of parameters, didn’t introduce much overfitting 

showing how the network had benefited from the added parameters 

5.2.2. Pseudo Rotated VGG version 2 

This version shall follow the footsteps of the pseudo Rotated ResNet version 3 in 

attempt to generalize the self-augmented network idea as well as the movement towards 

a unified affine transformation.  

The pseudo Rotated VGG version is modified to account for adding Gaussian noise 

to the input image as well as extending the convolutional kernels to account for maximum 

and average pooling kernels with their subsequent 1x1 convolutional kernels.  

Figure 87, Figure 88 and Figure 89 introduce the Pseudo Rotated VGG version 2 in 

accordance to the aforementioned modifications. 

Table 13 shows the comparison of achieved accuracy after training for the accuracy 

saturation point defined earlier from the in house modified VGG-11and Pseudo Rotated 

VGG version 1 and version 2 with their total number of parameters as well as the number 

of increased parameters. 

  

Network Top-1 

error 

Total Number of 

parameters 

Parameters 

increase ratio 

In house modified VGG-11 9.5 % 24,149,519 Million 1x 

Pseudo Rotated VGG version 

1 

7.15 

% 

45,886,730 Million 1.9x 

Pseudo Rotated VGG version 

2 

5.8 % 78,147,338 Million 3.2x 

Table 13 : Comparison between modified VGG-11 and Pseudo Rotated VGG versions 

The obtained results show an improvement in the accuracy demonstrating that 

stretching the network capability to have a built in rotating, scaling and enhanced 

translation properties would be fruitful from a performance perspective. 
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Figure 87: Pseudo Rotated VGG version 2 Part A 

Figure 88: Pseudo Rotated VGG version 2 Part B 
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Figure 89: Pseudo Rotated VGG version 2 Part C 
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Chapter 6 : Performance Comparison and 

Benchmarking 

To demonstrate how the pseudo rotated kernels contributes to the accuracy 

enhancements as well as its effectiveness it was required to perform three steps.  

Firstly, to integrate these kernels in several networks which was done in the previous 

chapter through the ResNet based architectures and the VGG based ones. 

Secondly, to test these architectures against several datasets which is done in this 

chapter through applying the ResNet based architectures on the CIFAR-100[63] while in 

the previous chapter both ResNet and VGG based architectures were applied on CIFAR-

10[63].  

Thirdly, to evaluate the achieved accuracy against previous different published 

image classification models.  

These steps and their associated comparisons are recorded under two parts: CIFAR-

10 comparison and CIFAR-100 comparison. Clearly in each part, the published networks 

results are listed as well as recording the rank of the proposed networks according to 

BenchmarksAI[110] where BenchmarksAI is a website that ranks different published 

networks according to their results on the given data set 

6.1. CIFAR-10 Comparison 

6.1.1. ResNet based Architectures  

ResNet based architectures are listed in Table 14 where the results of different 

ResNet networks as well as their parameters ratio compared to the in house ResNet-20 

are reported 

 

Network Top-1 

error 

Parameters increase ratio 

In house ResNet-20 9.6 % 1x 

In house ResNet-56 8.54 % 3.1x 

Pseudo Rotated ResNet version 1 7.1 % 8x 

Pseudo Rotated ResNet version 2 6.08 % 3.07x 

Pseudo Rotated ResNet version 3 4.7 % 9.3 x 

ResNet-20[29] 8.75 % 1x 

ResNet-32[29] 7.51 % 1.7x 

ResNet-44[29] 7.17 % 2.4x 

ResNet-56[29] 6.97 % 3.1x 

ResNet-110[29] 6.43% 6.2x 

ResNet-1202[29] 7.93% 71.8x 

ResNet-164[102] 5.46% 6.2x 

ResNet-1001[102] 4.62% 37.7x 
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Table 14 : Comparing CIFAR-10 Pseudo Rotated ResNet versions with different 

ResNet available in the literature 

One noteworthy to mention here, all the published ResNet networks were trained 

using two GPUs for large number of epochs (~ 64k epoch) with an additional number of 

warm up epochs (~400 epoch) unlike the proposed networks where there is a limited 

computational budget that limits the training to near the saturation accuracy at which the 

network accuracy appears to saturate without squeezing all the possible achievable 

accuracy from the network (almost around 700 epoch). 

 Moreover, these networks use multi-crop ensembles where multiple network are 

independently trained through different weight initialization and then are used jointly to 

obtain the final accuracy results on the test set. 

 Regardless of all of that, the results show that the Pseudo Rotated ResNet version 3 

is very competitive to ResNet-1001[102] but with a significant reduction in number of 

parameters showing the effectiveness of increasing the width of network through the 

pseudo rotated kernels and pooling ones when compared to increasing the network depth 

through stacking more bottleneck layers. 

6.1.2. VGG based Architectures  

VGG based architectures are listed in Table 15 where the results of different VGG 

networks as well as their parameters ratio compared to the in house VGG-1 are reported 

 

Network Top-1 

error 

Parameters increase 

ratio 

In house modified VGG-11 9.5 % 1x 

Pseudo Rotated VGG version 1 7.15 % 1.9x 

Pseudo Rotated VGG version 2 5.8 % 3.2x 

VGG11[112] 7.91% Not reported 

VGG13[112] 6.35% Not reported 

VGG16[111] 6.75% Not reported 

VGG19[112] 6.76% Not reported 

Table 15 : Comparing CIFAR-10 Pseudo Rotated VGG versions with different VGG 

available in the literature 

A note here, the Original VGG published paper [97] didn’t experiment on the 

CIFAR-10 data set, so no direct results are available to compare with, however searching 

the literature the aforementioned papers are found.  

The results show that Pseudo Rotated VGG version 2 is the one with the least error 

when compared to others showing how expanding the width through pseudo rotated 

kernels and pooling ones can generalize to different architectures. 

6.1.3. Benchmarking 

When benchmarking using BenchmarksAI, the CIFAR-10 data set shall have 67 

different network with an accuracy ranging between 99.83% down to 75.83% where the 

Pseudo Rotated ResNet version 3 shall rank 17. 
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6.2. CIFAR-100 Comparison 

6.2.1. ResNet based architectures 

ResNet based architectures are listed in Table 16 where the results of different 

ResNet networks as well as their parameters ratio compared to the in house ResNet-20 

are reported 

 

Network Top-1 

error 

Parameters increase 

ratio 

In house ResNet-20 36 % 1x 

In house ResNet-56 31.5 % 3.1x 

Pseudo Rotated ResNet version 

2 

25.1 % 3.07x 

Pseudo Rotated ResNet version 

3 

20.9 % 9.3 x 

ResNet-164[102] 24.33% 6.2x 

ResNet-1001[102] 22.7% 37.7x 

Table 16 : Comparing CIFAR-100 Pseudo Rotated ResNet versions with different 

ResNets available in the literature 

From the obtained results the Pseudo Rotated ResNet version 3 shows the least error 

when compared to others although the huge number of parameters difference showing 

the added value of the pseudo rotated kernels and the pooling ones in making the learning 

effective in extracting more useful features. 

6.2.2. Benchmarking 

When benchmarking using BenchmarksAI, the CIFAR-100 data set shall have 44 

different network with an accuracy ranging between 93.51% down to 54.23% where the 

Pseudo Rotated ResNet version 3 shall rank 14. 
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Chapter 7 : Discussion and Conclusions 

7.1. Summary of the work 

In the era of data explosion, a huge amount of digital data is generated daily from 

different types of platforms such as personal computers, mobile platforms and recently 

the wearable devices.  

Notably, images and videos are the dominant type of these data. Hence there is an 

urgent need for high performance computer vision tasks.  

This work focused on enhancing the CNN which is considered one of the key 

architectures in today computer vision different tasks. CNN plays a vital role in today 

computer vision achievements and records from suppressing the human level accuracy 

in some task to the invention of a new complex applications like the autonomous 

vehicles. Thanks to its key features the weight sharing, feature map, channel pooling and 

receptive field. 

 In this work enhancing the CNN was done through expanding the network width by 

applying two main ideas the pseudo rotated kernels and attaching the pooling kernels to 

the convolutional layer. Both kernels allow the network to step towards a unifying more 

affine transformation properties within the network.  

Clearly, the first type of kernels boosts the translation property through allowing the 

network to perform cross correlation function as well as the convolutional one; in 

addition to enhancing the rotation property by providing a set of arbitrary chosen rotated 

kernels. Meanwhile the latter promotes the scaling property.  

Moreover, when combining all these kernels together the network increases its 

translation invariance property robustness whereas the network becomes capable to scale 

and rotate the feature map at each convolutional layer enriching the network capability 

to have its own self augmentation methods. 

To demonstrate the accuracy improvement five networks were proposed based on 

two different architectures where three of them are based on ResNet while the remaining 

two are based on VGG.  

Furthermore, to ensure the networks capability to generalize on different data sets, 

the ResNet based architectures were tested on two different data sets the CIFAR-10 and 

CIFAR-100. 

7.2. Future work 

As an extension to this work, the following points are recommended for the future 

work; 

 Firstly, to migrate all the codes to Tensor Flow version 2, this step shall require to 

rebuild the network from scratch to remove some obsoleted functions and classes as well 

as un-optimized ones.  Clearly, this step shall result in a more optimized codes with less 

hand crafted classes which would return in a considerable reduction in the training time  

Secondly, to re-explore the design circle space of pseudo rotated kernels in a more 

exhaustive fashion characterizing how the rotated combination affects each other and 

searching for other combinations that may enhance the performance more. Admittedly, 

the proposed combinations are just a point of kernels combination in this design circle 

and more performance booster combinations may exist. 
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Thirdly, explore the network depth dimension and study how the network can benefit 

from increasing both the width and depth dimensions concurrently.  

Fourthly, apply some model optimization techniques such as network pruning or 

precision reduction. These techniques shall reduce the model size enhancing the training 

time as well as opening the exploration of real time applications.  

Fifthly, if applicable apply the idea on a more complex data set such as the ImageNet 

to explore how the increasing the amount of data as well as its complexity would affect 

the generalization  

Lastly, generalize the idea in a new application domain especially the object 

detection and localization one. 
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Appendix A: Keras Flow 

Keras is the framework used across the implementation of all networks within this 

work. It can be described as an open source python based deep neural network library 

whereas a multi-level hierarchy of libraries are constructed. The structure has a higher 

level neural network API libraries built on the top of a backend lower level libraries such 

as Tensor Flow, Theano or Microsoft CNTK which are capable to execute seamlessly on 

both CPU and GPU as shown in Figure 90 . Keras flavor used among this work is the 

one with tensor flow as backend.  

 

 

Figure 90: Keras levels structure 

It distinct features are the ability to enable fast prototyping through autonomously 

handling the common infrastructure details such as the back propagation algorithm and 

the optimization procedures as well as benefiting from being open source through a wide 

online community support. 

Keras flow can be divided into five major steps as shown in Figure 91  
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Figure 91: Keras flow 

Firstly, prepare the inputs, perform any preprocessing required and pass it to the 

network. This is done through the Image Data generator class. This class solves the hassle 

of how to feed the network with the data whether to load them in the RAM or fetch them 

every time from the hard disk or write a manual code that can handle the data movement 

across the different available storage hierarchy within the computing platform based on 

the size of data. This class handles all the data set loading automatically whereas the 

images are divided into batches and only images that are required for the current and next 

few batches during training are loaded in the memory. Clearly, this shall allow loading 

both small datasets as well as very large image datasets with thousands or millions of 

images smoothly in and out from memory. This can be noted as progressive loading, as 

the data set is progressively loaded and retrieving just enough data for what is needed 

immediately. Moreover, Image Data generator class can be used in image augmentation 

to improve the networks performance whereas it can automatically scale the pixel values 

of the images as well as automatically create transformed versions of images that belong 

to the same class as the original image. These Transforms include a range of operations 

from the field of image manipulation, such as shifts, flips, zooms, rotate and may other 

operations. To use the Image Data Generator class, the data set directory shall be structure 

as shown in Figure 92 

 



 

114 
 

 

Figure 92 : keras Image data generator class directory structure 

 This shall be followed by creating a constructor for this class through “datagen = 

ImageDataGenerator()”. Then create the training generator " train_datagen = 

ImageDataGenerator (various required options)” where the options include rescaling the 

data and any required image augmentation configurations such as shift, flip, zoom, 

brightness and rotation. Similarly, a test generator is created via “test_datagen = 

ImageDataGenerator().  Finally, instantiating different iterators to progressively load the 

data. This is done by calling the “flow_from_directory” function. For training generator 

it is called as “train_generator = train_datagen.flow_from_directory(path to train 

directory, batch size, shuffling data)” while for validation as “validation_generator = 

train_datagen.flow_from_directory(path to validation directory, batch size, shuffling 

data)” and for testing as “test_generator = test_datagen.flow_from_directory(path to test 

directory, batch size, shuffling data)”.  

Secondly, define the model architecture. This can be done through sequential class 

from keras models via “model = Sequential ()”. Then different layers are stacked 

sequentially through the add method as “model.add(layer name(layer configuration))”. 

Thirdly, construct the computational graph and configure the learning hyper 

parameters by compiling the model. This is done through “model.compile(loss= target 

cost function, ,optimizer=required optimization method , metrics= required merit of 

optimization )” 

Fourthly, start training the model via “model.fit_generator(train_generator, 

steps_per_epoch,  epochs, validation, validation_steps” where training and validation 

steps are the number of batches per epoch 

Lastly, test the model on test data through “model.evaluate_generator 

(test_generator, steps)” 
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  Appendix B: Computing Platforms 

DNN are widely known to be computational hungry given their huge size, number 

of computations required for their training and the amount of associated memory to store 

the model as well as the intermediate results. Nowadays, training is usually done through 

one or several high end GPUs with a huge RAM memory size. This kind of infrastructure 

are commonly found in data centers with an emphasis on Google Colaboratory (open 

GPUs from google), Google compute engine, Amazon EC2 and Microsoft Azure. Data 

centers strength lies in their reduced cost of ownership as well as offering a more data 

computation centric GPUs compared to building a customized platform for a short term 

usage. 

Google Colaboratory is a google based service that provides a Jupyter notebook 

environment that doesn’t require any setup and runs entirely on google cloud. It is 

equipped with two different hardware accelerators where only one is allowed to be used 

at a time. The first is Nvidia K80 GPU with 12 GB of RAM while the other is google 

Tensor Processing Unit (TPU). This service comes for free, however only a maximum 

continues run of twelve hours is allowed before resetting the connection as well as the 

quality of service and allocating a hardware accelerator isn’t guaranteed. 

Google Compute Engine is the google paid service where a virtual machine 

connected to google data center is offered. This virtual machine can be equipped with 

Xeon processor with different number of cores and amount of RAM. Moreover, it is 

allowed to attach a GPU to this machine for a wide range of GPUS including Nvidia 

V100, P100, K80, P4 and T4 

Amazon EC2 is an amazon paid service that similarly to google compute engine can 

provide a virtual machine connected to amazon data centers that is equipped with Xeon 

processor with different number of cores and amount of RAM. Also, the computation 

capability can be extended through attaching one or multiple GPUs from the available 

ones including Nvidia V100, K80 and M60 

Microsoft Azure is the microsoft paid service that similarly to the others provides a 

virtual machine equipped with Xeon processor with an option to choose the number of 

cores, amount of RAM and attaching a GPU from the available ones including Nvidia 

V100, P100, P40, k80 and M60 

Table 17 shows a comparison between different attached GPUs of these platforms 

as well as their pricing while Table 18 shows when the key advantage of each platform 

and when to use it 

 

Platform Available 

CPU 

Available Nvidia 

GPU 

Price per Hour in $ 

Google Colaboratory N/A K80 0 

Google Compute 

Engine 

Intel Xeon K80 0.7 

Google Compute 

Engine 

Intel Xeon P4 0.9 

Google Compute 

Engine 

Intel Xeon T4 1.24 

Google Compute 

Engine 

Intel Xeon P100 3 
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Google Compute 

Engine 

Intel Xeon V100 4.5 

Amazon EC2 Intel Xeon K80 0.9 

Amazon EC2 Intel Xeon M60 0.93 

Amazon EC2 Intel Xeon V100 3.06 

Microsoft Azure Intel Xeon K80 0.9 

Microsoft Azure Intel Xeon M60 1.092 

Microsoft Azure Intel Xeon P40 2.07 

Microsoft Azure Intel Xeon P100 2.07 

Microsoft Azure Intel Xeon V100 3.06 

Table 17 : Different platforms computing capability and their pricing 

Platform Key Advantage When to use 

Google Colaboratory Totally free service Developing and 

experimenting 

small functions  

Google Compute Engine The 300$ voucher which is equivalent to 

training one month for free 

Preemptive machines which are lower in 

price where a V100 can be as low as 1$, 

however it  lasts only from 2 up to 12 

hours  

Prototyping a 

full network 

and network 

debugging 

Amazon EC2 Least V100 GPU price 

Spot machines which is lower are price 

where a V100 can be as low as 2$, 

however it was very difficult to found 

one 

Training a full 

network that 

may require 

running for 

several days 

Microsoft Azure Competitive V100 GPU price Training a 

full network 

that may require 

running for 

several days 

Table 18 : key advantage of each platform and when to be used
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 ملخصال
 

تم " شائعاً حيث الضخمهاستخدام مصطلحات مثل "البيانات  اصبحفي عصر انفجار البيانات ، 
الشبكة العنكبوتية ب ةالمتصلمن خلال التوفر الواسع لمنصات الحوسبة الشخصية  العالم ورقمنتهربط 

عصر ، الانتشار السريع لمنصات الهاتف المحمول ، شعبية تطبيقات الوسائط الاجتماعية وبدء 
إنترنت الأشياء مصحوبًا باختراع أجهزة ذكية تُستخدم تقريبًا في جميع جوانب الحياة من الأجهزة 

كل ما سبق ، نتج عنه توليد يومي لكمية هائلة من  المنزل المختلفه.القابلة للارتداء إلى أجهزة 
ذا النوع من يتميز ه  .المرئيةو  ةالصوتي مقاطعال وو الصور  البيانات الرقمية مثل المستندات

لاستخراج رؤى وتنبؤات  هالآل تعلمستخدام أساليب لاجاذبية مما ادى الى  البيانات بطابعه الشخصي
٪ من هذه البيانات عبارة عن صور 70علاوة على ذلك ، فإن حوالي  .ومعلومات مفيدة منها

 ةعصبونيالالشبكة . تطبيقات الرؤية الحاسوبية ومقاطع مرئية مما يزيد من متطلبات تحسين
تطبيقات  تعزيز و تحسيناللاعب الرئيسي في  كانت هتعلم الآل من التلافيفية التي تعد مجالًا فرعيًا

 وخريطةمشاركة مصفوفة الاوزان بفضل خصائصها المميزة مثل  اليومالمستخدمة الرؤية الحاسوبية 
 و تجميعها. ةو انتقاء القنوات المختلف والمجال الاستقباليالسمات 

 ى لها.العرض زياده البعد التلافيفية عن طريقة العصبونييستكشف هذا العمل تعزيز أداء الشبكة 
حيث يتم  ةمستعار ة باستدار  التلافيفية المرشحاتأولًا تدوير . يتم ذلك من خلال فكرتين رئيسيتين

ثانيًا ، إرفاق  .مختلفة لتوليد متغيرات متعددة منها ةمستعار  المدربة بزوايا دوران المرشحاتتدوير 
تتقدم أكثر نحو توحيد العديد من  سمح للشبكة أنهذا . كل بالطبقة التلافيفية يةالتجميع المرشحات

والدوران  الانعكاسخاصية يتم تعزيز  اً، بشكل اكتر وضوح .داخلهابخصائص التحويل الأفيني 
بينما اعتباطى المختارة بشكل  ةالمستعار  ةات الاستدار ذالمرشحات من خلال توفير مجموعة من 

علاوة على ذلك ، فإن السمات. لحجم خرائط التغيير الاختيارى من خلال  التحجيميعزز خاصية 
داخل كل ب السماتخرائط  و تنويع مجتمعة توفر للشبكة القدرة على زيادةال المرشحاتكل هذه 

الأداء ، تم اقتراح خمس  سنتحلإثبات  .طبقة تلافيفية مما يزيد من متانة خاصية ثبات الترجمة
ا على ما من خلال اختبارهمأدائه من التاكدشبكات تعتمد على بنيتين مختلفتين بالإضافة إلى 

 مجموعتين مختلفتين من البيانات
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