Cairo University

PSEUDO ROTATED NETS: WIDENING CNN VIA
KERNELS PSEUDO ROTATION

By

Mohsen Raafat Abdel-Atty Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2022

PSEUDO ROTATED NETS: WIDENING CNN VIA
KERNELS PSEUDO ROTATION

By
Mohsen Raafat Abdel-Atty Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Mohsen Abdel-Razik Rashwan Prof. Dr. Hossam Aly Hassan Fahmy

Professor Professor
Electronics and Communication Engineering Electronics and Communication Engineering
Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2022

PSEUDO ROTATED NETS: WIDENING CNN VIA
KERNELS PSEUDO ROTATION

By
Mohsen Raafat Abdel-Atty Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electronics and Communications Engineering

Approved by the
Examining Committee

Prof. Dr. Mohsen Abdel-Razik Rashwan, Thesis Main Advisor

Prof. Dr. Hossam Aly Hassan Fahmy, Advisor

Dr. Omar Ahmed Nasr, Internal Examiner

Prof. Dr. Khaled Mostafa External Examiner
Professor at Faculty of Computers and Information, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2022

Engineer’s Name: Mohsen Raafat Abdel-Atty Sayed

Date of Birth: 22/02/1992

Nationality: Egyptian

E-mail: moh_raafat@hotmail.com

Phone: (+02) 011-20200776

Address: 68-Abou ElMahasen ElShazely,Agouza,Giza
Registration 01/10/2015

Date:

Awarding Date: 2022

Degree: Master of Science

Department: Electronics and Communications Engineering
Supervisors:

Prof. Dr. Mohsen Abdel-Razik Rashwan
Prof. Dr. Hossam Aly Hassan Fahmy

Examiners:
Prof. Dr. Mohsen Abdel-Razik Rashwan (Thesis main advisor)
Prof. Dr, Hossam Aly Hassan Fahmy (advisor)
Dr. Omar Ahmed Nasr (Internal examiner)
Prof. Dr. Khaled Mostafa (External examiner)
Professor at Faculty of Computers and Information, Cairo University
Title of Thesis:

Pseudo Rotated Nets: Widening CNN Via Kernels Pseudo Rotation

Key Words: (must be 5 words only)
Machine Learning; Convolutional Neural Network; Image classification; Pseudo
Rotated Kernels; Pooling Kernels.

Summary: (not more than 150 word and the summary must be in the same
page)

This work aims to enhance the CNN performance through exploring the extension of
its width dimension. The proposed idea is to pseudo rotate the convolutional kernels
creating multiple variants from the originally trained one where each variant is
pseudo rotated with a different rotation angle. Moreover, combing the pseudo rotated
kernels with the pooling ones would make the network steps more towards unifying
multiple of the affine transformation properties within it. This can also be viewed as
if the network had been capable to self-augment the inner feature maps. To
demonstrate the effectiveness of these ideas five networks were proposed that are
based on two different architectures ResNet and VGG whereas they are generalized
to be tested on two different data sets CIFAR-10 and CIFAR-100.

mailto:moh_raafat@hotmail.com

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has
been submitted for a degree qualification at any other university or institute.
I further declare that I have appropriately acknowledged all sources used and have

cited them in the references section.

Name: Mohsen Raafat Abdel-Atty Sayed Date: .. /.. /...

Signature:

Dedication

To my family especially my Mother who encouraged me to continue this journey to the
end.

Acknowledgments

All praise and glory to almighty ALLAH for all the blesses, guidance and
opportunities given through this thesis journey. Throughout this journey many people
had shown help and support so I would like to express my deepest thanks and
appreciation for all of them. I would like to dedicate a special appreciation and gratitude
to my advisors Prof. Dr. Mohsen Abdel-Razik Rashwan and Prof. Dr. Hossam A. H.
Fahmy for their patience, guidance, inspiration and encouragement. Without their help
and support this work won’t have been possible. Lastly, I would like to thank my beloved
family for their compassion, support, love and understanding.

Table of Contents

DISCLAIMER ...cutiiiiiiiiiiiinnnnnnensiiiecsssssssssssssssscssens I
DEDICATION ...uuaeeeeeeiieeeecsscssnneeeeeccccsssssnssssssecsssssssssssssssesssssssssnssssssssssssssssassssssssssssssssns I
ACKNOWLEDGMENTS 111
TABLE OF CONTENTS 1A%
LIST OF TABLES .. VIII
LIST OF FIGURES wedX
NOMENCLATURE ~XII
ABSTRACT ...autreeeiiiiicnninnnnnsssstieccssssssssssssssscssssssssssssssssssssssssssnssssssssssssssssssssssssssss XIII
CHAPTER 1 : INTRODUCTIONccccciinnnnnmeetiiccssssosssnssssssscsssssssssssssssssssssssssssssssssns 1
1.1. DATA EXPLOSION ERA.....oiiiiiiiiiiiiiiiiee ettt 1
1.2. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNINGcccuvvveeennrnnennn. 2
1.3. MACHINE LEARNING ALGORITHMSccecuvieriieenieeenireenneeenneeenneeennnes 3
1.3.1. Supervised Learningcc.cccvevveevrierieriesiesieecriereeieeseesseesvesnessseessees 4
1.3.2. Unsupervised Learningccvevveviervenciiecrieneeseeseeseeeveesseesseesenessneens 4
1.3.3. Semi Supervised Learningccceeveereerierieeiieeiieereeseenee st 4
1.3.4. Reinforcement Learningccccvevveevieciiecrienieeneeneeseeeveesveesseeseneseneens 4

1.4. MACHINE LEARNING BRAIN INSPIRED COMPUTATION..........c0veeeenennennnn 5
1.4.1. NEUral NEtWOTKSoeeiiiriiieeieee e e 5
1.4.2. Spiking Neural NetWorks........cccceveriiriniinininieniesceiesieetee e 7

L.5. MACHINE LEARNING STACK ...cecuvvieeiieeeiieeeiieenieeesieeesneeessneesnsseesnnns 8
1.5.1. APPLICAION LAYET ...eovviiiiieiiecieciieciiecte ettt re e sreesine v e 9
1.5.2. ATChItECtUIE LAYET ..eoveiiiieiiieiieieeciieee ettt 9
1.5.3. SOFtWATE LAYCTeveiiiiiiiiieiiteeeetee ettt 9
1.5.4. Hardware Layer.........cceivviiiiiiiiiiieciecieete ettt sreesine st 9
1.5.5. Benchmarking and Comparison Layer..........cccccoceveevinenniencnicncnennee. 10

1.6. ORGANIZATION OF THE THESIS.....cccuvteeruieeeriieeeireenneeenseeesneeenneesnnnes 10
CHAPTER 2 : MACHINE LEARNING STACK LITERATURE REVIEW........ 11
2.1. APPLICATION LAYER ..coottiiiiiieiiieeniieenite ettt st 11
2.1.1. COMPULET VISIONeiiiieiiieiieiieriiesie et eieesieeseeesresreenbeeseesseesseesnseensees 11
2.1.1.1. GENETAl OVEIVIEWveiiiiiiiieiieeciee ettt ettt eete e e teeebe e teesebeesaeeenbeessseeaseessseenseans 11

2.1.1.2. Image ClasSiflCation.........cc.eiririiiirieieeie et 11

2.1.1.3. ODBJECt ABTECTION ...ttt sttt sttt eee e 13

2.1.14. Action and Activity RECOZNIION.evviriiriieieriieieieeterieeieteete et 14

2.1.2. Speech RECOGNILION.cccuvrriieriieriieeieeie et 15
2.1.2.1. GENETAl OVEIVIEWveiiiiiiiieiieeciee ettt ettt eete e e teeebe e teesebeesaeeenbeessseeaseessseenseans 15

2.1.2.2. Historical Back@roundccoiiiriiiiieiieiceeee s 15

2.1.2.3. DNN State of the art architeCturesccueeeveeiiieiieeieecee e 16
2.1.2.3.1. Connectionist Temporal ClasSifiCationcccceuceeveioeenieeeenieese e 16

2.1.2.3.2. RNN tFANSAUCET ...t 16

2.1.2.3.3. Attention based MOAEIS.................c.cccoooueiiiiieiiiieei ettt 17
2.1.2.34. Hybrid CNN-RNN QUCRITECTUFESccuevieiieaiieiiiiiesieeeeesee e 17

2.1.2.4. Popular Data SetS.......cc.eeierierieiieeiieie sttt ettt et ene 17

2.2. ARCHITECTURE LAYERcoiiiiiiiiiiiiiiieneeceeeeeee e 18

2.2.1. Multi-Layer Perceptron..........ceeceereerienienieeieeeeieeee et 18

2.2.2. Deep Neural NetWorksS.......c.vccvvecieriierienienieere e seesne v e 19
2.2.2.1. GENETAl OVEIVIEW ..c.cuiiiiiiiiiiiiterietetet ettt sttt ettt
2.222. Life CYCLE PRASES .. ittt ettt sttt

2.2.22.1. THAINING PRASE......c..oeeiieiiiiie et
2.2.2.2.2. Inference Phase

2.2.3. Convolutional Neural Networksccceceririiveninneneniercceeeeeen 22
2.2.3.1. GENETAl OVEIVIEW ..c.ouiiiiiiiiiiiterietetet ettt ettt ettt s
2.2.3.2. KY RATUTES ..ottt ettt st

2.2.3.2.1. Receptive fIeld...............cccooueiiiiiiiiiiiiieeet e

2.2.3.2.2. Featuremap

2.2.3.2.3. Channel pooling

2.2.3.24. SHATEA WEIGRLS ...ttt eneas
2.2.33. Typical CNN ATCRItECTUIE ...c..eeuiiiieiieiieienieet ettt 25

2.2.3.3.1. CONVOIULIONAL LAYET ..ot 26

2.2.3.3.2. POOLIIG LAYCF ...ttt 26

2.2.3.3.3. Fully connected layer..................cccoccoeviiiiiiiiiiiiieet et 27

2.2.3.34. NOFMALIZALION LAYEF ...t 27

2.2.4. Recurrent Neural NetWorksc...ooovveeeiiiiiiieieceeceee e 27
2.24.1. GENETAL OVEIVIEW ..c.oviiiiiieieeierietee ettt ettt b e sttt be s 27
2.2.42. KEY RAMUIES ..ottt ettt ettt et e et e s te e e s e sseesseessesessaenseensensenns 28

2.24.2.1. MEMOTY EIfECT..c...c.iiiiiiiieiee et 28
2.2.4.2.2. Arbitrary input and output length .. 28
2.2.4.2.3. WeiGht SHATING.......oceeeiiiiiiiiiiee et 29
2.2.4.3. RN TAINING. ...t eevvevieieetieieeieeie et ete st etesteestesseestessesssesseessessesssesseessessesseeseessensenns 29
2.2.44. RNN State of the art archit@Ctures.cecueveeierierienieiereeiese ettt 30
2.24.4.1 LSTM ..o 30
2.244.2.
2.3.

2.3.1. Network Modeloooiieiiiieeee e 32
2.3.1.1. GENETAL OVETVIEW ..c.eeiiiiieiieieeiiete ettt ettt ettt et et eat ettt et sat et et e nbesseebesaeeneeens 32
2.3.1.2. REAUCEA PIECISIONeevvieeieiieeiieieeiiete st et e ettt et et e ete et e steesaesseessesseessessesseeseessensenns 33

2.3.1.2.1. GENETAL OVEFVIEW ...ttt 33
2.3.1.2.2. QUANTIZATION TEINOMS.eeeeeeeiieeee ettt 34
2.3.122.1. URiform QUANTIZATIONccocceeeeiieeiiaieeieiesieeie e eisese e eeee s 34
2.3.1.222. NON-UNTFOFI QUARTIZATION ...ttt e 35
2.3.1.2.2.2.1. LOg fUnction QUANEIZATION.c..ccveveeeeeieeieiesieeieeie e eie e ese e 35
2.3.1.2222. Power of tWo qUANTIZATION...............cccooeeeiiieiiiieieiee e 35
2.3.1.2.223. Learned function QUANREZAtION...............c..coeeveceereeeeeieeieieseeeieseesesseennes 35
2.3.1.3. NEEWOTK PIUNINGvivieiieciieieeiieie ettt sttt e e sbe et esse e s e s teeseesseensesseessenseas
2.3.1.3.1. General Overview
2.3.1.3.2. AF@A Of JOCUS ...t
2.3.1.3.2.1. StOFing Sparse WEIGRLSccccovueeieviiiiiiiiiiiiieeeeeetet e 36
2.3.1.3.2.2. STUCTUFred PPURING ...t 38
2.3.14. ACHVALION STALISTICS ...evvevieiiesteeieteete st et et ettt et eite bt et e st e eseesbe et ebesseensesaeesenns 38
2.3.1.5. LoW rank factOriZationcceeueruieiieriieiesiieie sttt ettt 39
2.3.1.6. Knowledge distillationcccoeiiiririeieieie s 39
2.3.1.7. Mathematical transformations.eeeerueeuierieriieieniieiesieeie ettt eee e 40
2.3.1.7.1. Fast Fourier TranSfOrmcccccocuoiiiiiiieiieeeeeeeee e 40
2.3.1.7.2. Winograd’s @lQOTItIcccoooueiiiieiieieee s 41
2.3.1.7.3. Strassen’s AlGOVTHAML.............c.cccoccueiiiiiiiiee e 41
2.3.1.7 4. Structural matrix

2.3.2. Network Implementationcccceeeeeeerciieiiie e 42

2.3.2.1. GENETAL OVEIVIEW ..ottt e et e et e e e et e e s eav e e s snaaeeesnnaeas 42
2.3.2.2. LOW 1eVel JangUAZESccueeverieeieiieiesieeieeieete ettt ettt ettt sttt see e ennenee e 42
2.3.2.2.1. PYLROM .o 42
2.3.2.2.2. MATIAD ... 42
2.3.2.2.3. (61775)\Y/\ OO 42

2.323. High level framewWorkcooiiiiiiiiiieiee e 42
2.32.3.1. Gt 42
2.3.2.3.2. TONSOV fIOW....cviiieiiiieiteeee ettt st 42
2.3.2.3.3. TOTCH ..o 43
2.3.2.34. PYIOFCH ..o 43
2.3.2.3.5. TREAMO ... et 43
2.3.2.3.6. CNTK ... ettt et 43
2.3.2.3.7. KO AS ... 43
CHAPTER 3 : CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES
REVIEW uotteteeerreneccereenseccssesscssssssesssasssssssasssssssasssssssassssssse 44
3.1. LENET =5 ettt e e eaeaeseaeaaeae s s aeaaaassssasssssaaaesseeaeaes 45
3.2. A LEXINET .. otttitiiiieieteteteeeeeteeeeeeeeeeeeeeaaeeeeesssesesesasssssssasssssssssssssssssssssaeee 45
3.3. ZENET oottt e e e e ettt e e e e e e e ta s 46
34. OVERFEAT oetteeeee ettt e e e e e ettt e e e e e et ettt s e e eeesssaaaneeseeesesanans 46
3.5. VGG e e et 46
3.6. NI ettt et e et e et e e e e e e et e e e araas 49
3.7. GOOGLENETttt ettt e e e e e et e eeeeeeseaanans 49
3.7.1. FIEST VEISION 1.ttt e e e e e e e e eeeeeeeeesseeenaes 49
3.7.2. SECONA VEISION 1o e e eeneeas 51
3.7.3. TRITA VEISION ..vveiieeeieeeeeeeeee ettt e e e e e e e e e e s eeeeaareeeas 51
3.7.4. FOUItR VETSION .ot 53
3.8. RESNET oottt aeaeaeeesseseesesneeeneennnes 53
3.8.1. FITSE VETSION ettt nnen 54
3.8.2. SECONA VEISION c.ceeeeeeeeee et eee ettt e e e e e e e e e eeeereeeeeseeeereaeeeeas 56
3.9. CONCLUSIONcotttieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeseseaesessseessasenene 57

CHAPTER 4 : EXPLORING CONVOLUTIONAL NEURAL NETWORKS

DIFFERENT LAYERS 59
4.1. BASIC SETUPoiiiiieiee et 59
4.2. BASELINE NETWORKccuvviiieiiiiiieeeeitieeeeeiiteeeeeetreeeeeenneeeeesnnnseeeeennnnes 59
4.3. CONVOLUTIONAL LAYER MODIFICATIONcccovviieeiiiieeeenrreeeeenneeanns 60

43.1. Pseudo Rotated KEernelsoeeviiivieiieiiiiiiiiiiieieeeeee e 60
43.2. Kernels Mathematical derivations..............ccceeevueeeeeeeeieeecee e 66
4.4, POOLING LAYER MODIFICATIONccceeverieiiriieeeeeeessnnnrneeeeeesesesnnnneeeens 72

CHAPTER 5 : PROPOSED PSEUDO ROTATED NETS...ccctttttttieieeeeeeeeeeeeeeeeenenens 74

5.1. RESNET BASED NETWORKSouvvtiiieeeieiiiiiireeeeeeeeieennrreeeeeeessesnnsnseeess 74
5.1.1. Pseudo Rotated ResNet version 1ccccoooveeeiveeeeieeecieeecie e 78
5.1.2. Pseudo Rotated RESNet VErSion 2cc.eeeeeeuveeeeeivveeeeeieeeeeeiveeeeeenneeeens 82
5.1.3. Pseudo Rotated ResNet version 3ccccoovveeeveeecieeeceeeeee e 85

5.2. VGG BASED NETWORKSccceiiuiiiieeeiiiiieeeciteeeeeeiteeeeeennreeeesaneeeeeennnnas 91
5.2.1. Pseudo Rotated VGG version 1coceeeeeieeieieeeeeeecieeeeee e 93

Vi

5.2.2. Pseudo Rotated VGG VEISION 2vvveeeieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeenanens 96

CHAPTER 6 : PERFORMANCE COMPARISON AND BENCHMARKING.....99
6.1. CIFAR-10 COMPARISONcoooviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeseeseeseseeeeaes 99
6.1.1. ResNet based ATChItECTUIESuuuvueeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeanees 99
6.1.2. VGG based ATCHITECTUIESoeevveiiieeieeeeeeeeeeeeeeeeeee e eeeeeeeereee e e e e 100
6.1.3. Benchmarkingcooeeiiiiiiiiie e 100

6.2. CIFAR-100 COMPARISONcoovviiiiiiiiiiiieieieeeeeeeeeeeeeeeeeseeeeseeeseeseeeeaee 101
6.2.1. ResNet based architeCtuIesuuuuuueeeeeeeeeeeeeeeeeeeeeeeee e 101
6.2.2. Benchmarkingc.cocvvvviiiiiienieniesiecieceeeeee e 101
CHAPTER 7 : DISCUSSION AND CONCLUSIONS cottttceereereecerseseercssssessesssses 102
7.1. SUMMARY OF THE WORKuuuiiiiiiiiiiiiieeeeeeeeeeteiieeee e e e eeeteaaineseeeeeens 102
7.2. FUTURE WORKovviiiiiiiiiiiieitieeeeteeeeeeeeeeseesesesesessssssssssssssssssssssssseesaee 102
REFERENCES «.oeeeeteteeeeeeerreeeeeeeesssssessesssasssssssssssssssssse 104
APPENDIX A: KERAS FLOW ...eceeeeerreeeeeeeesscssesses 112
APPENDIX B: COMPUTING PLATFORMS 115

Vii

List of Tables

Table 1 : Comparison between Baseline network and its pseudo rotated modified

VETSIONIS .. eeeettenteeute st ete et ett e bt et sat e bt et e ebe e bt e st e saeesbeeat e e et eebe et e eatesbe e st e entesbeentesanesbeenseeanen 65
Table 2 : Comparison between Baseline network and its modified versions to account
for derived kernels between every two successive kernelscccoeeveeeciieerciieencieeennnnn. 68

Table 3 : Comparison between Baseline network and its modified version to account for
increasing the size of the derived kernels between every two successive kernels to 5x5

Table 4 : Comparison between Baseline network and its modified version to account for
increasing window of derived kernels to be four and eight successive kernels............. 71
Table 5 : Comparison between Baseline network and its modified version to account for
USING MEAIAN TAYCT....eoouiiiiiieiieiiecie ettt e sea e et e s aaeesbeesaaeensees 73
Table 6 : Comparison between ResNet-110 and its modified pseudo rotated versions.78
Table 7 : Comparison between ResNet-56 and its modified pseudo rotated versions...78
Table 8 : Comparison between ResNet-20, ResNet-56 and Pseudo Rotated ResNet

VEISION 1 1ottt e e e et e e et e e e eaaeeeetteeetaeeesaeeeasaeeenseeenaseeennreean 81
Table 9 : Comparison between ResNet-20, ResNet-56, Pseudo Rotated ResNet version
1 aNd VEISION 2...eiiiiiiiiecciie ettt et e et e et e e et e e e etaeeetaeeeabaeesaseeeeareeeenseeeeaneeas 85

Table 10 : Comparison between ResNet-20, ResNet56, Pseudo Rotated ResNet
versions 1 and 2 as well as Pseudo Rotated ResNet versions 2 with maximum pooling

.. 88
Table 11 : Comparison between ResNet-20, ResNet56 and different Pseudo Rotated
RESINET VEISIONS ...ttt ettt ettt ettt et ettt e st e et e et e e et e eabeesbeeenbeesaeeeneeas 91
Table 12 : Comparison between modified VGG-11 and Pseudo Rotated VGG version 1
.. 96
Table 13 : Comparison between modified VGG-11 and Pseudo Rotated VGG versions
.. 96
Table 14 : Comparing CIFAR-10 Pseudo Rotated ResNet versions with different
ResNet available in the Iteratureccceeiieiiiiiiieniieee e 100
Table 15 : Comparing CIFAR-10 Pseudo Rotated VGG versions with different VGG
available 1N the IEETatUIecoooiiiiiiiiiieiec e e 100
Table 16 : Comparing CIFAR-100 Pseudo Rotated ResNet versions with different
ResNets available in the [eraturecoovieeiieiiiiiiieieeee e 101
Table 17 : Different platforms computing capability and their pricing........................ 116
Table 18 : key advantage of each platform and when to be used............cccceeeenienee. 116

viii

List of Figures

Figure 1 : The number of ML papers posted on arXiv.org per year from [13]................ 2
Figure 2 : Venn diagram between Al and its ML sub-domainsc.ccceeeeveeevieennennns 2
Figure 3 : ML different learning styles...........ccoovieriiiiiiniiieiiecieceee e 3
Figure 4 : Brain biological structure from [5]cccociieiiiiiiiiiieiie e 5
Figure 5 : Simple NN structure with one Hidden Layerc.ccccoveiieiieniiiinieniieene, 6
Figure 6 : SImple SNN L....ooiiiiie ettt e e e e et e e s e e s raeessaeeesaseeenes 7
Figure 7 : ML Design Stack OVEIVIEW.........cccuieiiiiriieiiieiieeiiieeie et eiee e siae e e 8
Figure 8 : MNIST data set eXamplescceeeviieiiiiieiiie e 12
Figure 9 : (a) CIFAR-10 data set examples (b) CIFAR-100 data set examples........... 13
Figure 10 : ImageNet data set eXamples........oceevuieiieiiiieiieiiiee e 13
Figure 11 : Architecture Layer two dimensional illustrationcecceeveevenieneenenee. 18
Figure 12 : MLP Abstract NetWork..........coooiiiiiiiiiiiiiieeeee e 19
Figure 13 : DNN abstract network forward and backward passes..........ccccocveevveenerennen. 21
Figure 14 : Receptive field for two sliding Windowsc.ccevveieiieiniiiiiinieeienieeee, 23
Figure 15 : (a) Feature map with single channel (b) Feature map with C channels....... 23
Figure 16 : Feature map before and after channel pooling where n is the pooling scaling
VALUE <.ttt ettt bttt h et entesbe e b eneas 24
Figure 17 :Feature map with four channels where the same kernel is applied across the

entire map to generate an output feature map with single channelcccccccvennein. 25
Figure 18 : Typical Modern CNN different layer structureccccceeveveevenienvennennne. 25

Figure 19 : Example for the convolutional layer where an input feature map with 3....26
Figure 20 : Feature map with a single channel is reduced through average and
maximum pooling with Striding By 2c..oooiiiiiiiiiiie e 27
Figure 21 : Recurrent connection and its unfolding equivalence...........cccccccevveneenenne. 28
Figure 22 : Different RNN mappings with their target mapping (a) image captioning
one to many mapping (b) sentiment analysis many to one mapping (c) machine
translation many to many mapping (d) language modelling many to many mapping ...29

Figure 23 : Abstract LSTM Cell.......coiiiiiiiiiiiiiiiiicieeecceceeeee e 30
Figure 24 : Unidirectional unfolded RNN example with three LSTM cells, N inputs,
two hidden layers and one output l1ayer...........ccoeouieiiiiiiienieiieeeee e 31
Figure 25 : Bidirectional unfolded RNN example with four LSTM cells, N inputs, one
hidden layer and one output 1ayercccoviiviiiiniiiiiieee e 31
Figure 26 : Abstract GRU Cell........cooouiiiiiiiiiiiieee e 32
Figure 27 : Compressed sparse row format during matrix multiplication...................... 37
Figure 28 : Compressed sparse column format during matrix multiplication................ 37
Figure 29 : RELU fUNCHON ...oviiiiiiiiiiiieiicieeeeeeee e 38
Figure 30 : Knowledge distillation OVErVIEWcccceeiiieiiiiiiiiiiiiieiceieee e 40
Figure 31 : FFT mathematical transformation.............ccecevveeveniiniinenicnecncneeeeeen 41
Figure 32 : Structural matrix using a relaxed Toeplitz form..........cccceveevveevveenciveennnnn. 41
Figure 33 : ImageNet top-5 error accuracy versus different networks progress over
YBATS 1. uttteeeeuiteeeeeruttteeeestteeeeaeateee e abaeae e e abaeeeeanteeee et atee e e ntteeeeannteeeeeanntteeeeanraeeeeantaeeeanns 44
Figure 34 : LeNet-5 architecture from [64].......ccceeviiriienieiiieeeeeeee e 45
Figure 35 : AlexNet architecture from [65].......cccoviriiiiiiieeiiieeieeee e 46
Figure 36 : 5x5 kernel decomposed into two 3x3 Kernels........cccoceevevieniinenieneenennnn. 47
Figure 37 : (a) VGG-11 (b) VGG-16 () VGG-19 ...cuiriiiiiiiiiiiirineeeeecceee 48
Figure 38 : Naive Inception Module...........coeevuiriiniiiiiniinieienceeccece e 50

Figure 39 : Inception module with dimension reduction............cceceeverienieneniieneeniennne. 50

Figure 40 : Decomposing 3x3 kernel into asymmetric kernels...........cccccveeeeiveeeieeennenn. 52
Figure 41 : New Inception module with nx1 and 1xn factorized kernels 52
Figure 42 : Inception module accompanied by residual connectionccccceuveeeneee. 53
Figure 43 : Shortcut MOdUIEcoveviiiiiiiiieie e 54
Figure 44 : Bottleneck Mmodulec..ooouiiiiiiiiiiie e 55
Figure 45 : (a) Modified shortcut module (b) Modified bottleneck module.................. 56
Figure 46 : Different networks compared according to their size, number of operations
and Top-1 accuracy from [106]......cccueeiieiiiiiiieieeieeee e 57
Figure 47 : Baseline NetWOrk..........coociiiiiiiiiiieeciie et 60
Figure 48 : Basic convolutional Operation............ccoeevuerieneerienieneenieeieneeie s 60
Figure 49 : (a) Zero degree rotated kernel (b) 180 degree rotated kernel 61
Figure 50 : Modification to baseline network to account for the 180 degree rotated
KETTICL ...ttt ettt e st e et be e et e e bt e et enaeeeaeean 61
Figure 51 : Pairs of 90 degree rotated kernels starting from(a) a zero one to (d) 270
degree rotated Kernelc.ooiiiiiiiiii e 62
Figure 52 : Modification to baseline network to account for the 90 degree rotated kernel
.. 62
Figure 53 : Pairs of pseudo rotated 45 degree kernels starting from(a) a zero one to (h)
315 degree rotated KETneloocvieiiiiiiiiieeiee e e 63
Figure 54 : Modification to baseline network to account for the 45 degree rotated kernel
.. 63
Figure 55 : Pairs of pseudo rotated 15 degree kernels starting from(a) a zero one to (x)
345 degree rotated KETNelcoocuiiiiiiiiiiieeiee e 64
Figure 56 : Modification to baseline network to account for the 15 degree rotated kernel
.. 64
Figure 57 : Pseudo rotated kernels circle design Spaceccceecveeeeveeeiieencieeecieeenenennn 65
Figure 58 : Adding a derived kernel between every two successive kernels.................. 67
Figure 59 : Modification to baseline network to account for the kernels derived from
EVETY tWO SUCCESSIVE OTIES ..uvevviaririenientententententesteeseeseestestentensensessessessesseeneensensensensensenses 67
Figure 60 : Adding a derived kernel between every two successive kernels with an
INCTEASEA SIZE 10 SXS . uiiiiiiiiiiiiiiieiteete ettt sttt ettt et 68
Figure 61 : Modification to baseline network to account for increasing the derived
kernels from every two successive kernels size t0 5X5cccooveriiniiiiiiicniiiinicnecceee, 69
Figure 62 : Adding a derived kernel between every four successive kernels 70
Figure 63 : Adding a derived kernel between every eight successive kernels. 70
Figure 64 : Modification to baseline network to account for the kernels derived from
EVETY FOUL SUCCESSIVE ONES ...eeuvveiiieiieeiiieiie et eeite et e stte et et e ebeeseeeebeesaeesnbeesseesseesaeeens 70
Figure 65 : Modification to baseline network to account for the kernels derived from
EVETY C1ZNE SUCCESSIVE OMIES ..eouvviiiieiieeiiieiie et eite et e stte et et e ebeeseaeeteesaeesnbeeseeesseenaeeans 71
Figure 66 : Median Layer.......cc.ooiiiiiiiiiieeeee et 72
Figure 67 : Modification of the base line network to use the median layer 73
Figure 68 : Bottleneck modification for pseudo rotated kernelscccceoveeinnnnnnen. 74
Figure 69 : Bottleneck modification for 180 degree rotated kernels...........ccceceeveeneennen. 75
Figure 70 : Bottleneck modification for 90 degree rotated kernels...........cccceeoeenienen. 76
Figure 71 : Bottleneck modification for pseudo 45 degree rotated kernels 76
Figure 72 : Bottleneck modification for pseudo 15 degree rotated kernels 77
Figure 73 : Pseudo Rotated ResNet version 1cocceeievierieniinienenieneceneeneeieeen 80
Figure 74 : Pseudo 45 degree rotated kernels bottleneck with spatial dropout.............. 81
Figure 75 : Pseudo 45 degree without 90 COINErscocueveevierienienieiienecienieseeeieaen 82

file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587534

Figure 76 : Pseudo 45 degree rotated kernels without 90 corners bottleneck 83

Figure 77 : Pseudo Rotated ResNet VErsion 2cccvvvevveeeiiieeiiieeieeeeeeeiee e 84
Figure 78 : Direct apply of pooling layer within the first layer Pseudo Rotated version 2
.. 86
Figure 79 : Pseudo 45 degree rotated kernels without 90 corners bottleneck with an
additional maximum pooling Kernelscceeevuiieeiiieeiieecieeee e 87
Figure 80: Pseudo Rotated ResNet version 2 with additional maximum pooling kernels
MNOAITICATION ...ttt ettt sttt e et e bt e st e e sat e et e saeeeneeas 88
Figure 81 : Pseudo 45 degree rotated kernels without 90 corners bottleneck with an
additional maximum and average pooling kernels..........c.ccccovveeeiiiiciiincieecie e 89
Figure 82 : Pseudo Rotated ResNet VErsion 3ccceeecvierieeiieniieeieeniecieesiie e 90
Figure 83 : Modified Baseline VGG-11 Part A.........cccooovieeiiieeieeeeeeeeece e 92
Figure 84 : Modified Baseline VGG-11 Part B..........ccccooviiiiiiiiiieiieieceeeeee e 93
Figure 85 : Pseudo Rotated VGG version 1 Part A.........ccoceeviriiniiiiniinicenicneceee, 94
Figure 86 : Pseudo Rotated VGG version 1 Part B.........ccccoocviiiiieiiieniiiieieeeeeeee, 95
Figure 87 : Pseudo Rotated VGG version 2 Part B.........ccocooviriiiiiiniiniccccee, 97
Figure 88 : Pseudo Rotated VGG version 2 Part A.........cccoeevveviieiiienieeiieeieeieeeee e 97
Figure 89 : Pseudo Rotated VGG version 2 Part C.........ccoceeveriiniiiiniinicnenicneceeen 98
Figure 90 : Keras [eVels StrUCTUIEcocvieriiieiieciieeiieeie ettt 112
Figure 91 1 Keras floOWoouiiiiiiiiee e e e 113
Figure 92 : keras Image data generator class directory structureccecceerveennennee. 114

Xi

file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587539
file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587546
file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587554
file:///C:/my_work/thesis/thesis_doc/my_thesis/الرسالة%20-%20محسن%20رأفت_new.docx%23_Toc97587555

Abbreviation
Al

AR
API
BM
BN
CNN
CPU
CTC
DARPA
DRAM
DBM
DNN
FFT
FCL
GRU
GMM
GPU
HMM
IoT
LCN
LRN
LSTM
LTD
LTP
MFCCs
ML
MLP
CuDNN
NLP
NN
NoC
SNN
STDP
TPU
RelLU
RNN
TFLOP
VR

Nomenclature

Description

Artificial Intelligence

Augmented Reality

Application Programming Interface
Boltzmann Machine

Batch Normalization

Convolutional Neural Network
Central Processing Unit

Connectionist Temporal Classification
Defense Advanced Research Projects Agency
Data Random Memory Access

Deep Boltzmann Machine

Deep Neural Network

Fast Fourier Transform

Fully Connected Layer

Gated Recurrent Unit

Gaussian Mixture Model

Graphical Processing Unit

Hidden Markov Model

Interne of Things

Local Contrast Normalization

Local Response Normalization

Long Short Term Memory

Long Term Depression

Long Term Potentiation

Mel Frequency Cepstral Coefficients
Machine Learning

Multi-Layer Perceptron

NVIDIA CUDA Deep Neural Network library
Natural Language Processing

Neural Network

Network on Chip

Spiking Neural Network

Spike Timing Dependent Plasticity
Tensor Processing Unit

Rectified Linear Unit

Recurrent Neural Network

Trillion Floating Point Operation Per Second
Virtual Reality

xii

Abstract

In the Data explosion era, terminology like “Big Data” had been commonly used as
the world had been connected and digitalized through the wide availability of personal
computing platforms with their internet connection, rapid spread of the mobile platforms,
popularity of the social media applications and the start of Internet of Things platforms
paradigm accompanied by the invention of smart devices that are almost utilized in all
aspects of today life from wearable devices to kitchen appliances. All of the
aforementioned, had resulted in a daily generation of huge amount of digital data such as
documents, videos, image and speech. These type of data are distinctly characterized by
their personal flavor gaining the attraction to use the Machine learning methods to extract
useful insights, predictions and information from them. Moreover, around 70% of these
data are images and videos increasing the requirement to enhance the computer vision
tasks. Convolutional Neural Network which is a sub domain of Machine learning had
been the key player in today enhanced computer vision tasks. Thanks to its distinct
features such as weight sharing, feature map, channel pooling and receptive field.

This work explores boosting the Convolutional Neural Network performance by
means of width extension. This is done through two main ideas. Firstly, pseudo rotated
kernels where the originally trained kernels are rotated with different pseudo rotation
angles to generate multiple variants from them. Secondly to attach the pooling kernels to
the convolutional layer. This allowed the network to approach several affine
transformation properties. Clearly, it boosts the translation and rotation property by
providing a set of arbitrary chosen pseudo rotated kernels while it promotes the scaling
property through the arbitrary reduction of grid size. Moreover, all these kernels
combined together provide the network with a capability to scale and rotate the feature
map within each convolutional layer increasing its translation invariance property
robustness whereas the network had some built-in self-augmentation methods. To
demonstrate the performance improvement five networks were proposed based on two
different architectures where three of them are based on ResNet while the remaining two
are based on VGG. As well as, challenging their performance impact by testing them on
two different data sets the CIFAR-10 and CIFAR-100.

Xiii

Chapter 1 : Introduction

1.1. Data Explosion Era

At the start of Big Data era, wide availability of personal computing platforms
connected to the internet had led to a digitalized world where huge amount of digital data
such as documents, videos, image and speech were generated daily.

The explosion of data era had extended more with the inventing of the mobile
platforms and the rising of the social media applications which rapidly had gained
popularity among people all over the world leading to the generation of more digital data
and information with a special personalized nature. For instance, according to [14]
Facebook generates over 10 Petabyte (PB) log data per month and Taobao.com, the
largest online retailer in China, generates tens of Terabyte (TB) data every day.

Moreover, the start of the next wave of connecting and digitalizing the world through
5G communication technologies and Internet of Things (IoT) platforms allowed the
invention of edge computing devices which are sensor rich based devices with a high
speed internet connectivity giving it the capability to exchange information with
powerful computing servers (i.e. data centers). Hence, generation more and more data
with a personalized flavor.

All the aforementioned had driven the need of statistical and analytical solutions to
be able to solve the learning problem aroused from these vast data to extract useful insight
and knowledge form them

Conventional approaches which relies on domain experts to express the problems
analytically, transform the raw data into useful features and representation then hand craft
the solution had failed to deal with this tremendous growth in the scale of data with its
personalized nature as it requires an explicit knowledge about the given domain limiting
its ability to solve more complex problems in which the features and knowledge
representation can’t be explicitly expressed as they are implicitly inherited with in the
raw data.

Meanwhile, Artificial Intelligence(Al) solutions especially its Machine Learning
(ML) sub-domain had provided a leap over these tremendous data where it allows
automatic features and information extraction as well as the acquisition of useful insights,
predictions and decisions from this huge amount of data without the need of formally
expressing the features nor the representation resulting in approaching more complex
problems such as medical diagnosis and speech transcription.

ML significant value appears in its ability to overcome the personalized nature of
how modern data are generated meanwhile maintaining the privacy of these data through
preprocessing to remove any personal labels.

This edge of ML over the conventional solutions regarding its ability to deal with
the tremendous growth in the scale of data and information with its associated learning
problem had developed a prominence demand on ML. This demand had resulted in a
respond from the ML community which can be shown in Figure 1 where more than 50
ML papers appear daily on arXiv.org alone and their rate of growth is almost
doubling every two years which can be compared to Moore’s Law.

25,000 == ML Arxiv Papers— @ Moore's Law growth rate (2x/2 years) 20

20,000

15,000

10,000

ML Arxiv Papers
=

5000

Relative Number of ML Arxiv Papers to 2009

2009 2011 2013 2015 2017

Year

Figure 1 : The number of ML papers posted on arXiv.org per year from [13]

1.2. Artificial Intelligence and Machine Learning

Learning problem according to [1] can be described as the problem of executing a
task and optimizing its performance metric through training experience

Meanwhile, Representation Learning according to [2] can be viewed as the set of
methods in which the raw data is fed to the machine then the machine can automatically
distinguish all the features and representation required for acquiring the useful
knowledge needed for the next action whether it was detection, classification or any other
tasks

Artificial Intelligence (Al) according to [3] is any agent device that can become
conscious about its surrounding environment and can take the actions that maximizes its
ability to achieve its goals. The popularity of Al among the scientist and engineers is
increasing due the achievements and the breakthrough performance driven from its
Machine Learning (ML) sub-domain. A Venn diagram to illustrate the relation between
Al and its ML sub-domains can be shown in Figure 2.

Machine Learning

Brain Inspired
Computation

Spiking Neural Neural
Networks Networks

Figure 2 : Venn diagram between Al and its ML sub-domains

ML was first quoted by Arthur Samuel in 1959 as giving the ability to the machine
to learn without being explicitly programmed to do that consequently allowing the

2

creation of programs to do some activities through leaning and training experience, on
contrast to hand crafted programs which their activities and behaviors are defined in a
hard coded style. ML enables the emulation of how humans learn, adapt and make
decisions. This lead to the designing of programs that has the ability to learn the required
actions based on the knowledge learnt form from raw data directly. ML can be seen as
programing by example where previous experience shall contribute to the gained
knowledge affecting the future actions.

ML ability to solve a problem with a high performance generally depends on two
factors: the data set availability compared to the problem and the computational
infrastructure available

The complexity of the problem with its inherited required features to be learnt affects
the amount of data required and the rule of thumb here is that as the amount of data
increases, the ability to capture more patterns and features automatically increase and
hence the quality of results increase proportionally.

On the other hand, enormous data set shall require a giant network that shall
essentially come with a huge computational cost penalty that may limit the ability to train
it if the required hardware infrastructure isn’t available. Nowadays, training a modern
network may require two high end GPUs that are capable to perform multiple TFLOPS
operations.

1.3. Machine Learning Algorithms
Generally, ML algorithms according to [1,2,16] can be divided as shown in Figure

3 into four categories: Supervised Learning, Unsupervised Learning, Semi Supervised
Learning and Reinforcement Learning

Labeled |
Data

Supervised learning

Regression

Classification

|
Ur Labeled
Data
Un Supervised Dimensionality
IP,arning reduction

Machine Learning

Smoothness
Labeled I Un Labeled
Data Data
Semi Supervised
Learning

Manifold

Reinforcement PSR
- cumulative
Learning reward

i 4 i

Figure 3 : ML different learning styles

3

1.3.1. Supervised Learning

Supervised learning methods requires the availability of a labeled data set in which
each input is tagged with its desired output. The objective is then to feed the machine
with the input data and train its prediction to match the reference.

The learning is described as supervised since there is a known reference output that
acts as a supervisory guidance for the whole training assisting in the reduction of the gap
between the predicted output from the network during training and the actual one.

This type of learning can be divided into two main categories known as Regression
and Classification. The first tries to identify the most likely function that can fit all the
data within the data set, while the latter attempts to find the best fit class for the data from
a set of given classes.

1.3.2. Unsupervised Learning

Unsupervised learning doesn’t require a labeled data set instead it is fed with data
without explicit labelling or desired output. Thus, there is no right or wrong outputs
instead it is subjective to the application itself.

The objective is to find common statistical and structural properties of data through
automatic extraction of the underlying features and patterns enabling their cluster into
groups based on the correlated features extracted during training.

There are three main categories in this type of learning which are clustering,
dimensionality reduction and anomaly detection.

1.3.3. Semi Supervised Learning

Semi supervised learning includes a mixture from supervised and unsupervised
learning where both labeled and unlabeled data are used during the training. Usually,
used when the amount of labeled data is small and hence, extracting patterns and features
from them isn’t satisfying, meanwhile labeling the unlabeled data requires an extensive
time and the availability of domain experts.

The objective is to augment the unlabeled data with the labeled one through the
creation of the data cluster using the unlabeled data and using the labeled data to identify
the clusters. There are three main categories in this type of learning based on the
assumption used during the training which are smoothness, cluster and manifold.

1.3.4. Reinforcement Learning

Reinforcement learning is different from all the aforementioned in which it is defined
in the terms of having an agent that tries on its own to interact with the surrounding
environment based on trial and error approach with a cumulative reward that guide the
agent to learn the right decision on its own instead of being explicitly trained. The agent
shall have two states the start and the end. Between the two states there is different routes
and actions that may cause success or failure to execute the task and reach the end state.
Hence, the agent receives a reward when moving towards the end in the optimal route
while it doesn’t receive anything upon failure.

The objective is then to achieve the target and move from the start to the end state
with maximum cumulative reward. It is an iterative method that depends on the past
feedback and the ability to span new approaches to reach the goal.

1.4. Machine Learning Brain Inspired Computation

Brain inspired computation is a sub-domain of ML as shown in Figure 2 that is trying
to mimic some basic operations of the brain according to the understanding of how the
brain operates nowadays, with the objective to emulate the brain in some processing
aspects rather than creating a human brain.

The current biological structure and characterization of the brain can be shown in
Figure 4.

Neuron cell body
Synapse

A ¢ Nucleus
xon o
previous Axon

g
I'f-
neuron Neuron { S 4
/ cell body S g
- S
%
¥ —A

Dendrites
of next
neuron

Synapse Electrical signal

Dendrites

Figure 4 : Brain biological structure from [5]

The brain is composed of a neuron which is considered to be the main computational
element. This neuron is connected with other neurons through dendrites and axons. Both
dendrite and axon can be referred to as the activation of the neuron as dendrites allow
input signals to enter the neuron meanwhile the axons allow the signals to exit out of it.
When a dendrite and axon are connected together they form a synapse. A key feature of
the synapse it allows scaling the signal associated with it. This scaling can be viewed as
a weight value and the brain is believed to be able to learn through the ability to change
these weights in respond to different input stimulus.

The way of brain learning process is the key inspiration of the ML Brain inspired
computation where it is based on the continues adjustment of the weights in response to
the training stimulus while its infrastructure referred to the number of neurons and the
connection among them remains fixed which maps to the network structure.

The Brain inspired computations can be divided into Neural Network (NN) and
Spiking Network

1.4.1. Neural Networks

Neural Networks(NN) are inspired from neuroscience where it tries to make analogy
with the biological structure of the brain where the computations take part within the
neuron of the network. These computations can be viewed as a neuron firing to generate
its output by applying a nonlinear function on a weighted sum of the inputs with an
optional addition of a bias. With the synapses being modeled through the adjustable
weight associated with each input signal allowing its scaling during the training
experience.

The computational flow of the NN is usually visualized using a directed acyclic
graph (DAG) [4,12,21,23] as shown in Figure 5.

5

Synapses connections that are associated with

, weights

’
’

1]
|]
.
.
’ . .
J Hidden layers '
]
]
L]
L]

Qutput Layer

Neurons

Figure 5 : Simple NN structure with one Hidden Layer

The vertex illustrates the neuron, the directed edge demonstrates the synaptic
connection between the neurons and hierarchical structure of the neurons describes the
organization of the network.

This multi-layer hierarchy allows the first few layers to act as low feature extractor
(i.e. extracting the edges) while enabling the last few layers to represent the high level
feature (i.e. representing the complex contour) and in between allows the processing of
the extracted features to their high level representation.

The computational flow starts with the neurons of the first layer noted as input layer
accept the input values, applying the nonlinear function and propagating the outputs to
the middle layers. The middle layers are noted as hidden layers and based on the network
structure whether the hidden layer has a depth of a few layers it can be noted as a Shallow
Neural Network or its depth has many layers it can be noted as Deep Neural Networks
(DNN). Consequently, the hidden layer neurons accept the inputs from the input layer
and perform the same operation from applying the nonlinear function and propagating its
outputs to the output layer which shall be the final output of the network.

NN shall comprises two phases along its usage life time: Training phase and
Inference phase.

The training phase is the learning phase in which network development takes place
from defining the type of network, number of layers and continuously manipulating the
weights to meet the required performance on a given application.

On the other hand, inference phase is the prediction phase in which the network is
deployed in production and used in a feed forward manner.

The high popularity of NN nowadays can be argued to the superior performance of
its DNN family of networks especially the Multi-Layer Perceptron (MLP), Convolutional
Neural Network(CNN) and Recurrent Neural Networks(RNN) where these networks
were able to suppress the human level performance on various tasks such as ImageNet
recognition [29] and Atari 2600 video games [113]. Furthermore, these types of networks
represent 95% of NN inference workload in google datacenters according to [12].

1.4.2. Spiking Neural Networks

Spiking Neural Networks (SNN) try to pursuit a biological brain inspired paradigm
in a different fashion from the traditional ML neural networks, where the first is directly
inspired from neuroscience in the way it encodes, transfer and processes the data while
the latter mimic the relationship between the neurons in a more remote way using the
activation of a weighted sum of input data through a nonlinear function.

SNN which can be shown in Figure 6 is based on asynchronous communication
between different neurons allowing time dependent information transfer through train of
pulses where the information is coded in the form of spikes. Meaning that the neuron
shall have the capability to extract information from an encoded timing pulse specifically
the pulse width, amplitude and the time of arrival of the pulse relative to other pulses.
Consequently, when a neuron spikes it inhibits all other neurons, emulating the presence
of inhibitory connections and the spiked neuron enters a refractory phase where it ignores
any coming spike. This spiking nature is more readily to receive and operate on real
world data since they are usually pulse oriented with a time varying nature. In addition,
they are most suited in low power applications as the spiking rate may be as low as few
tens of Hertz. However, SNN is still not competitive with the accuracy results achieved
by state of art of the ML neural networks on different datasets

,.Y Output Spiking Neuron
—‘
Train of e
¢scoeoa)——
Input Spikes S .)O_ A >
'
)
)

‘\A 0 .
Train of

Output Spikes

Figure 6 : Simple SNN

SNN training is challenging since their discontinuous spiking nature is not suitable
for the backpropagation algorithm which requires the model to be differential to generate
the errors in form of the gradients. One approach to train these networks is to use the
Spike Timing Dependent Plasticity (STDP) learning method. An unsupervised learning
which relies on the spiking timing whether pre or post the synapse to obtain the causality
between input and output spikes. This causality is obtained through detecting when a
neuron fires after the arrival of the input spikes. If it fires soon this would likely map that
synapse had an impact and thus needs to be boosted, meanwhile if it fires later after the
arrival of the input spike this would likely map that the synapse had no role in this firing
and thus needs to decreased. The first process is referred to as Long Term Potentiation
(LTP) while the latter is Long-Term Depression (LTD). STDP is accompanied with the
need of Homeostasis process. Homeostasis is a process used to balance the distribution
of the information among different neurons through the firing threshold adjustment.
Meaning that, if a neuron fires frequently they are punished by increasing their firing
threshold. On the other hand, if they fire infrequently they are inculcated by decreasing

their firing threshold. This shall ensure that all the neurons shall contribute in the output
generation enhancing the network performance by squeezing out all its capabilities.

Prominent examples of SNN approach are IBM through its TrueNorth chip [57]
which has one million programming neurons and 256 million configurable synapses,
Qualcomm through its Zeroth processor [56] and Manchester University’s
SpiNNaker[55].

1.5. Machine Learning Stack

ML design space is similar to any other Hardware Software Co-design space can be
viewed in the form of stacked layers one on the top of the other where each layer is
considered with a portion of this space allowing the focus on its constraints, required
specifications and available optimization techniques.

This Stack methodology is simply the divide and conquer approach which is used to
divide a big problem into a series of smaller ones that can be easily understood,
constrained and optimized such that when collecting all the parts together the overall
performance is maximized

As shown Figure 7 in this stack layer can be divided into five layers: Application
Layer, Architecture Layer, Software Layer, Hardware Layer and Benchmarking and
comparison Layer.

| Computer vision I | Natural language processing |

Application layer
| Speech Recognition | | Others |
[MLP | RNN |

Architecture Layer [DNN | | Auto Encoder |
| CNN | | Others |
| Model |
Software Layer

| Framework |
| Computation I | NoC

Hardware Layer
| Storage I

Benchmarking &

Comparison

Figure 7 : ML Design Stack Overview

1.5.1. Application Layer

The Application Layer shall define the required problem to be addressed by means
of ML methods.

Well Known Applications include Computer Vision, Speech Recognition, Natural
Language Processing (NLP), Recommendation Systems, Robot Control, Cosmology,
Social science and many others.

1.5.2. Architecture Layer

The Architecture Layer shall define how the data is organized, prepared to be
processed, required computational flow to generate the output as well as the memory
requirement to process all the data.

Widely used Architectures includes Multi-Layer Perceptron (MLP), Deep Neural
Network(DNN), Convolutional Neural Network(CNN), Recurrent Neural
Network(RNN), Auto Encoders, Boltzmann Machine(BM), Deep Boltzmann Machine
(DBM), Linear Regression, Logistic Regression, K-nearest Neighbors, Support Vector
Machine (SVM) and many other architectures.

1.5.3. Software Layer

The Software Layer shall define the network modeling techniques in which the data
flow defined in the Architecture Layer is translated into basic operations facilitating the
characterization of the network performance, obtaining useful insights to identify
potential are of improvement and optimizing the network through evolving techniques
such as network precision reduction, activation statistics monitoring, network pruning
and others.

Also, it shall define how the model shall be implemented either using low level
languages or using framework. Frameworks are currently attracting attention as it
abstracts the implementation of software model using high Level libraries instead of
starting from scratch using basic operations, thus reducing the time of implementation
significantly and leveraging the accumulated optimization knowledge in the field of ML
across the whole community.

1.5.4. Hardware Layer

The Hardware Layer shall define the hardware architecture to implement the
software model defined in the Software Layer including how the processing of data shall
be done, the architecture of the data processing units and whether they are going to use
exact computation or Stochastic/Approximate computations as part of operation accuracy
versus power trade off.

Besides, the Hardware Layer shall define the memory hierarchy, associated policy
and any applicable Near Data Processing. Furthermore, given how the current networks
are computational hungry requiring many processing units to operate together, it shall
define the Network on Chip (NoC) architecture including the infrastructure that allows
different processing units to exchange data and allow data transfer across different
memory hierarchy whether they were On-chip or Off-chip.

1.5.5.

Benchmarking and Comparison Layer

Benchmarking and Comparison Layer shall define the community performance
metric and what are the key aspects when comparing various designs and techniques
relative to each other to achieve a fair method highlighting the different trade-offs.

1.6. Organization of the thesis

This work shall focus on Image Classification enhancement through Supervised
Learning with a focus on the Architecture Layer mainly the CNN architectures.
The remainder of this thesis is organized as follows:

Chapter 2 : Provides the literature survey encompassing the different layers
within the ML design Stack

Chapter 3 : Shows a detailed survey considering the popular CNN networks
and their progress with respect to the ImageNet competition.

Chapter 4 : Explores different ideas to extend the width of the convolutional
layer and mainly introduces the Pseudo Rotated Kernels

Chapter 5 : Generalize the Pseudo Rotate kernels through proposing five
networks based on two different architectures as well as testing them against
two different data sets

Chapter 6 : Compares the proposed networks with the literature ones as well
as benchmarking them relative to top performing networks proposed for each
data set.

Chapter 7 : Summarize the thesis work and discuss the future work

10

Chapter 2 : Machine Learning Stack Literature Review

This chapter presents the literature review for the application, architecture and
software ML stack layers meanwhile the hardware and the benchmarking and
comparison layers are considered as out of scope. Clearly, it surveys each one of the in
scope layers within the stack to show its progress over time as well as exploring the
various approaches applied to enhance the ML different performance metrics within each
layer in addition to demonstrating the different available tradeoffs.

2.1. Application Layer

DNN a sub-domain of ML had shown a remarkable performance across a wide range
of fields, outperforming the previous state of art techniques and accomplishing a
breakthrough results. For example, starting from the AlexNet [65] at 2012 where the error
at ImageNet competition [64] was around 25%, it had driven the error down to 3.5%
through the ResNet architecture [29] suppressing the human level accuracy in the image
classification tasks. Moreover, according to [28] using DNN in speech recognition had
led to the reduction of word error rate by 30% when compared to other conventional
methods which is the biggest gain in the speech field in the last 20 years. Needless to
mention, mastering the Go game and defeating a human champion [30].

In this layer, the focus shall be on the computer vision and speech recognition
applications discussing how the DNN is leveraged among these applications as well as
their popular associated public data sets. Admittedly, public data sets were a crucial key
for the development and training of new network architectures as well as enabling fair
comparison between them

2.1.1. Computer Vision
2.1.1.1. General Overview

In the era of data explosion, video is considered to be the dominant type of data
generated nowadays, in fact according to [58] it contributes with over 70% of today’s
internet traffic. Moreover, according to [59] more than 800 million video hours for video
surveillance is collected daily worldwide.

Hence, there is an urgent need for computer vision tasks such as image classification
and segmentation, object detection, localization and tracking and action recognition to
analyze as well as extract useful information and insights from this huge amount of data.
Moreover, the enhancement of these tasks is considered a key feature for enabling a set
of new applications such as augmented reality (AR), virtual reality (VR) and robotics.

2.1.1.2. Image Classification

Image Classification is the most common and primary task within the computer
vision; Furthermore, it forms the basis for another tasks such as object detection and
localization. It involves identifying the most likely class a given image shall belong to
from an entire set of classes.

11

DNN through its CNN variant had progressed starting from LeNEt-5[60] which was
designed for simple grayscale digit recognition until the ResNet[29] that were applied on
ImageNet competition[64] with around 1.2 million color resolution achieving an
accuracy 3.5% suppressing the human level performance. Undoubtedly, their distinct
performance had enabled their usage in more critical applications such as medical
analysis one where they are used to detect whether a disease exist or not. For instance,
they are used in diagnosis of different kinds of cancers from brain [78] to skin [79] and
breast [80] with an achieved competitive performance to the human proficient.

Popular data sets for image classification are MNIST [62], CIFAR [63] and
ImageNet [64].

MNIST as shown in Figure 8 is a handwritten digit data set introduced in 1998,
composed of ten classes (equivalent to ten digits) with 60,000 training image and 10,000
test image with a total size of S0MB and each image is grayscale 28 x 28 pixel. Actually,
it is considered to be a handy data set.

0000200020002 000
A T D Y N A A B L U A A N A |
2422222022232 22
3333333953323 333
Yo ryYya49yuyy ¢4 § “ V¥V ¥
F9 3585 SS5S 55955555 +5F
bebbCGboboace b b
t 777770720 12% 777
ye2 /98727t PyTYTERCL?
?P19999%99%49 94999

Figure 8 : MNIST data set examples

CIFAR is a subset of the 80 million Tiny Image data set introduced in 2009. It has
two variants as shown in Figure, the first is CIFAR-10 shown in Figure 9(a) which is
composed of ten classes of various objects and the second is CIFAR-100 shown in Figure
9(b) which is composed of hundred mutually exclusive classes with more objects
included. Both variants have 50,000 training image and 1000 test image, where each
image 1s a colored 32 x 32 pixel. The total size of the data set is 170 MB.

12

SRS - EEEZ
CEaTENeEES
Eml NEL ¥ O
s

=
dlhlﬂgiﬂﬂl

(a) (b)

Figure 9 : (a) CIFAR-10 data set examples (b) CIFAR-100 data set examples

ImageNet as shown in Figure 10 was introduced in 2010 but stabilized in 2012,
composed of 1000 classes with 1.3 million training image, 100,000 test image and 50,000
validation image. Each image is colored 256 x 256 pixel. Moreover, the ImageNet was
first to introduce the Top-5 and Top-1 error metric. Top-5 error is calculated by
considering that the classification is correct if any of the top five scoring categories are
the correct category, meanwhile the Top-1 error considers only the top scoring category
as the correct one.

Figure 10 : ImageNet data set examples

Recently, Google shared its Open Images data set [68] data set composing of 6,000
classes with over 9 million images, spanning 6000 categories

2.1.1.3. Object detection

Object detection is a multi-task application; composed of classification and
localization tasks. The first one focuses on the identification of the instances of an object
that belong to a specific class within the image, meanwhile the latter focuses on
estimating the location of these instances.

13

With the emergence of DNN and the invention of Regions within CNN framework
(R-CNN) [82], a significant improvement had been achieved allowing real time accurate
object detection applications. Its basic idea is to create a unified framework that divides
the image into a set of candidate windows, classifies them by means of a CNN and finally
labelling them into rectangular bounding boxes to generate the final results directly
without any post processing. The region based CNN unified framework paradigm had
continued to improve through set of proposals including Fast R-CNN [79] which jointly
optimizes classification and bounding box regression tasks, Faster R-CNN [81] which
adds a subnetwork to generate candidate regions and YOLO [80] a fixed-grid regression
approach.

Face recognition is one example for the object detection tasks where its objective is
to identify and locate the face regions with the ability to cope with faces unique structures
and characteristic such as face parts distributions and skin color. Moreover, it shall be
able to handle the visual variations including pose changes, illumination changes and
occlusions. DNN through its CNN sub domain had brought a change in this application
through the proposed state of the art networks such as Google’s FaceNet [83] which is
based on training the CNN with a triplet loss function to allow the network to learn to
cluster the face representation of the same person, Facebook’s DeepFace [84] where it
models the face in a three dimensional shape then align it to a frontal pose then feed to a
CNN composed of a single convolutional layer, a single pooling layer, three locally
connected layers and two fully connected layers and OpenFace [85] an open-source face
recognition tool.

Popular data sets for object detection are PASCAL VOC [66] and Microsoft COCO
[67].

PASCAL VOC is introduced in 2005 and stabilized in 2012, composed of 20 classes

with 11,000 images, 27,000 object instances and 7,000 of them had detailed
segmentation.
Microsoft COCO is composed of 91 classes with 2.5 million labeled instances in 328,000
images. Compared to ImageNet, it has fewer classes, however it has more images per
class and more labels which is rigorous for contextual information extraction and
localization.

2.1.1.4. Action and Activity Recognition

Action and activity recognition is one of the most challenging tasks that has a wide
range of applications including robotics, human computer interaction and video
surveillance. It involves identifying human activities from an image or video sequences
which can be classified into gestures, human to object interaction, human to human
interactions, events, group actions and atomic actions.

The hardness of this task is due to the requirement to solve the distorted and
translated features among different patterns that belong to the same action category which
arise from several problems such as occlusion, changes in scale, viewpoint, illumination,
and background clutter.

After DNN had made a breakthrough in image classification, it started to impact the
activity recognition achieving new state of the art results but still away from the level of
impact brought to image classification. The current state of art is a dual architecture that
combines both CNN and LSTM [87,88,89]

YouTube data set [69] is one of the data set allowed to be public recently from
Google. It spans 4,800 classes with 8 million videos (0.5 million hours of video)

14

2.1.2. Speech Recognition
2.1.2.1. General Overview

Modern computing platforms are now featured with a voice assistant user interface
such as Google Now, Apple Siri or Microsoft Cortana. These type of interfaces are based
on automatic speech recognition systems which necessary are required to provide a
continuous real time speech recognition that shall be speaker independent as well as
capable to cover a large vocabulary. Thus, improving the performance of speech
recognizers is critical for the overall user experience. Moreover, with current trend of
Internet of Things (IoT) platforms where the invention of smart devices is exploding in
almost all aspects of today world from wearable devices to kitchen appliances over to
children’s toys had increase the need for a neat human computer interface. Traditional
interfaces like keyboard or mouse are not suited with these kind of devices due to the
physical structure shrunk of these devices making typing a tough task, meanwhile an
elevating approach is the speech interface where the voice is used as the interaction
method to give commands and exchange information; increasing more the need for high
performance speech recognizers.

Speech recognition is a sub task within the speech processing applications where it
is required to identify word and phrases sequences uttered in a continuous fashion and
transform them into a machine understandable format. The speaker voice is captured by
a microphone in the form of acoustic signal then converted to a set of words where it can
be the final result if the application is speech recognition or it can be used to feed further
linguistic processing such as speech synthesis.

2.1.2.2. Historical Background

Gaussian Mixture Models (GMMs) that are based on hidden Markov models
(HMMs) had been dominating the speech recognition for a long time with a few attempts
to apply the traditional neural networks, however its achieved performance has been
lagging behind the state of art of GMM-HMM methods at that time. The GMM-HMM
methods are based on approximating the speech signal into a piecewise short time
stationary signal where it can be considered as a stationary process, hence enable the
usage of Markov model for many stochastic processes. Meanwhile, Each HMM uses a
Gaussian model for representing the spectral of sound wave. This combined method
enables the extraction of the temporal patterns of the speech.

DNN started to have an observable impact in speech recognition in 2013[7], after
the major research groups worldwide including IBM, Microsoft, Google and Baidu had
shown that applying DNN on large speech recognition tasks using the raw speech spectral
features of the spectrogram away from Mel-frequency cepstral coefficients (MFCCs)
features had shown great success. From then on, DNN had started to become the main
stream method for both the academia and the industrial speech recognizers. The quick
adaption of the DNN based speech recognizer across the entire speech recognition
community can be regarded to the minimum change required in the speech decoder
through the usage of senones as the output from the DNN, dramatic performance
enhancement compared to GMM-HMM systems and the availability of large amount of
data required to train this networks.

15

2.1.2.3. DNN State of the art architectures

Traditionally state of the art DNN architectures were trained by dividing the speech
recognition systems into three separate components the acoustic, pronunciation, and
language models where each component is trained separately with a different objective.
The acoustic model is typically trained to extract the context dependent phonemes with
the assist of an alignment method, pronunciation model trained to map the sequences of
phonemes produced by the acoustic model into word sequences through a linguistic
model developed by domain experts and the language models are trained on huge amount
of text data to estimate probabilities of word sequences.

Current state of the art architectures is focusing on end to end trained speech
recognition systems. End to End shall refer to transforming all the speech recognition
models to a single sequence to sequence model where the acoustic, pronunciation, and
language models are trained jointly and optimized to achieve the required performance
metric typically the overall system word error rate and hence the objective of the training
is to map directly the sequence of raw speech waveforms to sequence of words without
any need of alignment between the input waveform and the output characters. This
sequence to sequence model is typically composed of encoder and decoder to overcome
the problem of variable input and output sequences length. The encoder maps the
sequential variable input length to a fixed length vector while the decoder utilizes this
fixed length vector to generate a variable output sequence length. To attempt the end to
end training goal various methods are applied, for instance the connectionist Temporal
Classification (CTC), RNN transducer, attention based models and hybrid CNN-RNN
architectures.

2.1.2.3.1. Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is an end to end training method that
doesn’t require a frame level alignment of target labels for training utterance where it
attempts to emit any label or no label at every time step thus segmenting the alignment
into a distribution of possible regions between the input and output sequences meanwhile
every label is emitted into a single time step fashion. It essentially needs the set of target
labels to be augmented with an additional blank symbol as well as the existence of
intermediate label representation to allow labels repetition and blank labels occurrence
without identifying them as a target output (i.e. emit no output label)

2.1.2.3.2. RNN transducer

RNN transducer which was introduced in [92], is an extension for the basic CTC
method where it combines CTC end to end method with a separate language model based
on LSTM (Long Short Term Memory) an RNN architecture variant which improves the
memory effect of RNN. LSTM can deal with the sequential nature of speech since the
current hidden state can be function in all the previous and future hidden states, thus it
can exploit the frame information dependency whether the past dependency in the case
of a unidirectional LSTM or both past and future in case of bi directional. In this method,
the acoustic and language models are jointly trained where the CTC is used as an acoustic
model to determine the distribution over phones sequences based on the acoustic
waveform, meanwhile the transducer identifies the phoneme based on the proceeded
ones. This method allows the network to predict the output based on its previous output
sequences and it its current location within the input sequence. The transducer is
accompanied by a decoder either a bean search one or prefix search or deciding based on
the active output at every time step.

16

2.1.2.3.3. Attention based models

Attention based models for instance as [93], is composed of an RNN encoder named
listener and an attention based RNN decoder named speller. The encoder transforms the
acoustic speech waveforms to higher level features while the decoder converts these
features into output characters by performing a conditional prediction to emit the target
characters based on the full history of previous predictions and acoustics using the
attention mechanism. This method differs from the RNN transducer that it combines the
prediction network and the acoustic model into a single model instead of separate models
that are trained jointly. Moreover, the key improvement of this method it generates the
character sequences without making any independence assumptions between the
characters in contrast to the CTC which assumes conditional independence between input
acoustic frames. The attention mechanism is required to feed the decoder with selectively
chosen information relevant to the current emitted output allowing the creation of a skip
connections that can effectively flow the data through the RNN. On one hand, this would
improve the performance as well as reduce the required computations, in addition to
reducing the overfitting problem by preventing the network from memorizing the
transcripts and force it to pay enough attention to the relevant information.

2.1.2.3.4. Hybrid CNN-RNN architectures

The recent CNN developments driven by the vision community and its associated
outstanding performance had led to experimental usage of hybrid CNN-RNN
architectures mainly the CNN-LSTM flavor architectures within speech recognition
architectures. Historically, CNN was combined with HMM-GMM in a hybrid model
where the HMM-GMM force a frame level alignment before the CNN can be trained to
generate the required targets. In other words, the HMM-GMM perform the temporal
modeling while the state predictions were generated using the CNN. However, given the
fact that LSTM had become the default practice nowadays when dealing with data with
sequential nature as speech recognition, combing both strengths of CNN and RNN into
a hybrid architecture would be a promising approach. On one hand, CNN can effectively
exploit the spectral structure locality in the feature space. Moreover, through its
frequency dimension weight sharing as well as using the pooling layers helps to tradeoff
between vocal tract length invariance and the trajectory speech sound differentiation as
well as reducing the spectral variations within the acoustic features. On the other hand,
LSTM is well known for its temporal modelling capability. Moreover, when
accompanied with CTC the end to end goal had become feasible while setting a new bar
for the achieved performance. Thus, combining them is a promising approach where the
a few CNN layers are used to reduce the spectral variation of the input then feed the
extracted features to a deep LSTM to learn the temporal structure across the successive
time steps. For instance, google CLDN [95] and the Microsoft conversational speech
recognition system [91] are based on hybrid architectures.

2.1.2.4. Popular Data Sets

Speech recognition available data sets include TIMIT [73], Switchboard-1 [90],
VoxCeleb[74], CHIMES5[75], LRS3-TED[76] and Google audio data set [70].

TIMIT is a collaboration between Texas Instruments and MIT (TIMIT) to develop a
speech transcription dataset that contains recordings of 630 speakers of the major of
American English dialects where each has a ten phonetically rich sentences.
Switchboard-1 is a telephone Speech Corpus developed by Texas Instruments in 1990
under DARPA sponsorship. It consists of around 269 hours of speech of about 2,400 two

17

sided telephone conversation spanning around 543 speakers from the United States.
VoxCeleb is a more updated data set with 1,000 celebrities’ voice transcriptions.
CHIMES contains multiple speaker natural conversations. LRS3-TED is a visual speech
recognition data set that is composed of hundreds of hours of TED talk videos associated
with a time aligned subtitles. Google audio set is a collocation of 2 million human labeled
10 seconds sound clips encompassed in 623 audio class

2.2. Architecture Layer

This layer which is shown in Figure 11 can be visualized as a two dimensional layer,
the vertical one is considered with the fundamental network architectures which are built
conceptually using different structures (i.e. CNN vs RNN) while the horizontal one is
considered with the different flavors of networks within the same fundamental
architecture (i.e AlexNet[65] vs ResNet[29] in the CNN). The first shall be covered in
this section, meanwhile the latter is discussed abstractly except for the CNN networks
which shall be discussed in details within the next chapter.

Fundamental Network Architectures

A
________________ 1

DNN

MLP

Network Architecture Different Flavours

Figure 11 : Architecture Layer two dimensional illustration

2.2.1. Multi-Layer Perceptron

Also referred to as feedforward Networks or fully connected networks. They are
based on NN and known for being a basic network in the ML world, however it is
considered to be the basis of the DNN.

As shown in Figure 12, similarly to NN it is composed of input layer, one or more
few hidden layers and output layer to generate the final network output. The advance
form one layer to the another shall imply applying a nonlinear function on a weighted
sum computed form all the outputs generated from the previous layer. Thus the layer’s
connection within this network are described as fully connected layer in which every
output from the prior layer contribute in the computation of every neuron in the next
layer. The usage of a nonlinear function is essentially required to prevent the whole
network form collapsing into a linear transformation function, meanwhile allowing the

18

learning of complex functions that can be careful in capturing the minute details while
suppressing irrelevant variations

Hidden layers
Shall be one or few layers

> .\ Output Layer

!

2

Figure 12 : MLP Abstract network

Usually considered in modelling the non-linear relationship between inputs and
outputs with the constraint that they map a fixed input size to fixed size output as well as
applying the same input shall always generate the same output regardless how the stream
of inputs is fed to the network since this type of network doesn’t have any memory effect

2.2.2. Deep Neural Networks

2.2.2.1. General Overview

DNN is a part of the Deep Learning family which is a rich family of multi-layered
algorithms comprising NN, graphical models and hierarchical probabilistic models with
the supervised and unsupervised feature learning capabilities.

The NN based methods are mainly considered as an extension from MLP where their
multi-hidden layers can go beyond few layers to hundred or even thousands layers with
billions of neuronal connections to be able to manage the growth rate of the data and
tackle the increasing accuracy demand and enhancing its capability to solve the evolving
complex problems. For instance, according to [19] Google cat recognizer system has up
to 1 billion neuronal connections while this number increases in Baidu Brain to reach
100 billion neuronal connections

Their key feature which helped in their emerging and attracting the wide popularity
is their powerful multi-level representation capacity where they automatically extract
implicit hierarchical features and patterns from the raw data through nonlinear
composition allowing the transformation of the raw input (i.e. pixel of an image) into
more abstracted representation to the extent that the representation at one level is
transformed into higher abstracted one in the next level , facilitating the amplifying of
the required aspects for discrimination while suppressing any irrelevant information. In
addition to, distributing the learning across multi-representation levels enhance the
network ability to generalize beyond the features that had been learnt through training
through the ability to create new combinations of features that might not be available
during training. Moreover, the majority of natural signals has a compositional nature

19

where high level features shall only have extracted through the composition of the lower
ones

DNN leap advancement was feasible through the availability of the large annotated
data sets that can exhibit the learning capacity of these giant networks to be capable of
automatically detect features and patterns without the need of any handcraft support, the
dramatic enhancement in the computing capabilities especially GPUs which crossed the
threshold of being powerful to handle massive amount of weighted sum calculations in a
reasonable time as well as their affordable price, evolution of innovative network
architectures that stretched the DNN power such as CNN and RNN and inventing an
efficient method to execute the learning techniques especially the Backpropagation.

2.2.2.2. Life cycle phases

Like the any NN, they have two phases across their usage life time: training phase
and inference phase

2.2.2.2.1. Training Phase

Training phase is used to determine the network parameters mainly the weight and
bias that minimize the network loss function using a well-known data set.

Weights are usually updated using gradient descent which is a hill climbing like
optimization process that indicates how the weights shall be adjusted to satisfy the cost
function.

Gradient descent is usually implemented using Backpropagation algorithm, a
calculus chain rule based algorithm that can derive the partial derivatives of the gradients.
Backpropagation operates using the feedforward and backward passes of network as
shown in Figure 13. It mainly works by feeding the network with several input samples
noted as mini-batch, activating the forward pass, squeezing out the output then computing
the derivative of the cost function with respect to weight and bias starting from the output
layer gradually to the input layer using the calculus chain rule and the gradient values are
then passed backward across the whole network to determine how the loss is affected by
each weight and adjust the weights accordingly. This operation is an iterative one where
the training sequence is repeated on the whole data set sufficient number of times to
ensure the objective function had fallen in a good minimum point. Also, the training
procedure is associated with a hyper parameter tuning process that either used to optimize
the topology of the network the training configurations. The first is done through ensuring
the selection of a sufficient number of layers and number of neurons meanwhile, the latter
modifies the weights learning rate and the regularization techniques. Training a DNN
nowadays requires a huge data set that may take several days or even weeks to reach the
required accuracy as well as the huge computational power and storage needed to build
and train these networks.

20

Forward Propagation
Calculate Weight and Activations

Hidden layers
Shall be Multiple up to Thousands of layers

Output Layer

Backward Propagation
Computes Gradients

Figure 13 : DNN abstract network forward and backward passes

As the network becomes deeper the vanishing or exploding gradients problems start
to become a matter of concern as it may result in a slower training time or falling into a
poor local minimum. The vanishing problem arise when the back propagated gradient
error is small such that when it reaches the layers close to the input it diminishes, similarly
the exploding gradient where the gradient error is increasing exponentially as it
propagated back through the network such that when it reaches the layers close to the
input it saturates. Historically according to [7], this was partially the reason for directing
away from NN towards shallow models (i.e. SVN) where unlike NN they have convex
loss objective function that can be efficiently trained to fall within global minima.
However, practically local minima are rarely a problem in DNN given that the parameters
are carefully initialized as well as the using ReLU as an activation function where an
activated neuron has a one constant gradient while clipping any negative values.
Moreover, the optimization landscape is packed with large number of saddle points
where the gradient is zero and almost of all them are similar for the optimization function,
thus it doesn’t important which one of them to stuck at.

2.2.2.2.2. Inference Phase

Inference phase is used to run the application in the feedforward pass only of the
network using the trained weights. Nowadays, inference may take place using datacenters
or edge devices.

21

2.2.3. Convolutional Neural Networks

2.2.3.1. General Overview

They are NN based networks, mainly considered an extension from DNN that is
capable to operate on data that has a temporal or spatial continuity nature. They were
inspired from [42] where the visual cortex of a cat was characterized to be sensitive for
a small sub-region of the visual field. Admittedly, they are invented on the fact that many
natural data are captured in arrays format. For instance, language sequences have one-
dimensional format, images and audio spectrograms has two dimensional format and
videos has three dimensional format.

2.2.3.2. Key features

The distinct ideas behind CNN are based on its ability to take advantage from the
properties and structure of the data nature to introduce concepts like receptive field,
feature map, channel pooling and shared weights.

2.2.3.2.1. Receptive field

Receptive field as shown in Figure 14 defines a local sliding window where only a
small neighborhood of the input contributes to generate the output meaning that all the
inputs within this window at the current slide shall participate in the weighted sum used
in the output activation, otherwise the inputs beyond this window their weight shall be
set zero. In other words, this can be viewed as if a local connection is created between a
spatially nearby subsets of the inputs and the generated output which in return shall
reduce the connection within the network compared to a fully connected one leading to
a drastic reduction in the CNN number of parameters when compared to a conventional
DNN.

22

W1 | w2 | w3

wa - ‘ws | we

wr | we | we

0|00

0|00

o|le|e|e|e|e

ojofo

c|lo|efe|o

ofojojo

a|lc|eo|le|a|le|e

0

2-D Input Array

Convolutional Weights

wi | w2

slelela|e|e

W
o |
0
o

o|lo|oe|s|e|e

cle|le|le|ele]|e

“lofo]e

(1]

Receptive field
at Second Slide|

2-D Input Array

Convolutional Weights

2-D Qutput Array

2-D Output Array

Figure 14 : Receptive field for two sliding windows

2.2.3.2.2. Feature map

Feature map which is shown in Figure 15 defines the interaction between different
network layers, where the information is transformed to a higher level of abstraction that
preserves the necessary unique features. Mainly, it stacks the data into a two dimensional
arrangement noted as channel, where a set of stacked channels forms the feature map.
Hence, the feature map shall have a three dimensional arrangement the data height, data

width and data number of channels.

A

(@)

v

«— I —»

«— I —>

«—WN—>

(a)

(b)

Figure 15 : (a) Feature map with single channel (b) Feature map with C channels

23

2.2.3.2.3. Channel pooling

Channel pooling which can be viewed in Figure 16 whereas a feature map
subsampling technique is applied to aggregate its statistics. Mainly, it is used to merge
the similar features within the same channel of the feature map shrinking the feature map
dimensions while increasing the robustness of the network and its invariance to small
shifts and distortions by detecting the feature representations based on their fine-coarse
positions and appearances allowing them to vary a little within the feature map.
Moreover, the reduction of the feature map can help in widening the receptive field
within the new generated feature map allowing the extraction of larger features from the
original feature map. In addition to, reducing the number of computations overhead
through diminishing the feature map spatial dimensions.

A
)
A\

!

— — —Channel Pooling Technigues— — » H/n

P
§\

— T —>

bl
F

Figure 16 : Feature map before and after channel pooling where n is the pooling scaling
value

2.2.3.2.4. Shared Weights

Shared weights as shown in Figure 17 defines the shared parameters of the learnable
kernel bank (noted also as filter bank) which is applied on the entire same feature map,
where each feature map shall be associated with a unique kernel bank, that is shared
across the same feature map but differs ongoing to another one. Sharing weights between
different location of the same feature map take advantage that the nature of some data
(i.e. 1mages) their local group of values shall be highly correlated and that they are
location invariant enhancing the network capability to detect the same pattern at any
location within the feature map since they share the same kernel weights. Weight sharing
accompanied by channel pooling property confers the CNN with translation invariance

property

24

\
\
\
\
\
\
\
\
~ \
So AV [w]w]w
~
we | ws | we f= — —.
’
//’,flw'l ws | wa
7
Vg / Shared
; Convolutional Weights 2-D Output Feature map
/
/
/
/
/
/

/
/

@/
L

4-D Feature map Array

Figure 17 :Feature map with four channels where the same kernel is applied across the
entire map to generate an output feature map with single channel

2.2.3.3. Typical CNN Architecture

A typical CNN architecture as shown in Figure 18 is composed of different types of
layers mainly the Convolutional layer, pooling layers, fully connected layers and
normalization layer where each layer is eligible to generate a feature map to the next
layer.

«—C—>»
Input Array of Data H
| .
5
v
Convolutional
Layer

Modern CNN Basic sequences of layers
Repeated 5-1000 sequence before Optional
Fully connected ones Normalization
T
Optional Poaling
Layer

!

Fully connected Layers usually Optional Fully
repeated from O to 3 connected layer

!

Network Output

Figure 18 : Typical Modern CNN different layer structure

25

2.2.3.3.1. Convolutional layer

Convolutional Layer gets its name from the fact that their operation is
mathematically a discrete convolution operation (actually a cross correlation one) with
emphasis on high dimensional convolution. This is the layer where the dominant number
of computations of the CNN takes place. As shown in Figure 19, The input data to this
layer is the channel feature map, meanwhile, the learnable kernel bank is stacked
according to the required number of channels into a set of two dimensional arrangement
keeping in mind that the learnable kernel weights are shared within the same feature map.
The kernel bank shall have a three dimensional arrangement: the kernel height, kernel
width and the required number of kernel channels. Subsequently, each channel form the
channel stack is convolved with a distinct moving kernel channel from the kernel bank.
Meaning that, unlike the conventional convolution where the entire input is used to
generate one output data, the convolution here is localized through the usage of a regional
kernel that scan the feature map in a sliding window liked style such that each shift of
the window results in generating a single output data and the full scan shall generate the
whole output data. After that the result of every point of this convolution is summed
across the whole channels followed by a nonlinear activation function to generate a new
feature map for the next layers. Stacking more kernel channels in the kernel bank and
convolving them with the input feature map would result in generating more channels in
the output feature map. The convolutional layer acts as a feature extractor to identify any
local conjunctions and common embedded regional characteristics within the feature
map.

Qg

0.C=8
1.0 =3—»
T) Cutput from O.H
LH Convolved with—» |« y Cunvolution_’ l
o

o 45 >

v o e o
Input Feature map Array of Stacked kernels Output Feature map

Figure 19 : Example for the convolutional layer where an input feature map with 3

2.2.3.3.2. Pooling layer

Pooling Layer is based on reduction of the spatial dimensions mainly the height and
width while keeping the channel dimension as it is. This layer is a computational free one
since it has no parameters to learn due to its special operation. Nowadays, applying a
maximum or an average pooling is the standard practice. An example is shown in Figure
20 where the stride defines the step window of the non-overlapping blocks associated
with separate example for both maximum and average pooling.

26

Average Sl

T 9|l3]|s5]3 r Pooling 3|12
|
A L ||| & E —Stride by 2 _I
1|3fafo |

l B il I I Maximum | #] ®

—A4—> Pooling 6|21

Figure 20 : Feature map with a single channel is reduced through average and
maximum pooling with striding by 2

2.2.3.3.3. Fully connected layer

Fully Connected Layer acts as a classifier layer that correlates between the extracted
features organized in the feature map and the required logits output of the network
assisting in the mapping of the input to the output likelihood category it shall belong to.
Recent networks shall have a few of them (one up to three) are appended at the end of
the network after the convolutional and pooling layers to perform the classification or the
regression objective. In this layer the output activation from the previous layer is
connected to every neuron within this layer using an independent weight synaptic, hence
losing the weight sharing advantage found in the convolution layer as well as contributing
with a reasonable amount from the overall network number of parameters. Consequently,
it can be followed by a nonlinear activation function.

2.2.3.3.4. Normalization layer

Normalization layer is responsible to control the feature map statistical distribution
by normalizing the input activation such that it has zero mean and unit standard deviation.
This is beneficial in terms of speeding up the training by reducing the data space
distribution contour, thus reducing the number of iteration. Also, it enhances the achieved
accuracy by introducing some noise in the data allowing a better generalization. There
are many types of these layer for instance, local contrast normalization (LCN), local
response normalization (LRN) and Batch Normalization(BN). Nowadays, BN is the
current practice used by ML community given its efficiency and the fact it has minimal
computations compared to the convolutional or the fully connected layers

2.2.4. Recurrent Neural Networks
2.2.4.1. General Overview

They are NN based networks that mainly considered an extension from DNN, in
which it is capable to handle sequential learning whereas the data has a sequential nature
and the application impose sequence to sequence mapping such as language modelling
and audio/video description.

27

2.24.2. Key features

Its prominent advantage traits are the memory effect, the ability to work on arbitrary
input and output length and finally the weight sharing.

2.2.4.2.1. Memory effect

The memory effect is the ability to track the temporal state of the input by accounting
the input history when processing the new ones allowing the dependency of data which
is required in sequential data (i.e. speech recognition or language modeling). This effect
is constructed through the recurrent connection which creates a loop allowing the
information to persist when proceeding from one step to another, so that unbounded
amount of information is employed to enhance the accuracy of the prediction. Obviously,
unfolding this recurrent can transform RNN to a very deep feedforward network. The
Recurrent connections as well as its unfolding can be shown in Figure 21

Output O[t] Output O[t-1] Output O[t] Output O[t+1]
A -~ A A

Weight Weight
Q Weight Unfold > . >
A

A
Input X[t] Input X[t-1] Input X[t] Input X[t+1]

Figure 21 : Recurrent connection and its unfolding equivalence

2.2.4.2.2. Arbitrary input and output length

Arbitrary input and output length is an inherited feature within the sequential data
where the sequences length vary across the time. Typical DNN including its CNN flavor
fundamentally fixes the dimensions of the input and output limiting their ability to handle
such sequences meanwhile RNN can deal with such variation thanks again to their
recurrent connections which can execute recurrently for every input within the given
sequence. RNN can map the input sequences to the output sequences in many ways
depending on the targeted application, for instance as shown in Figure 22 where (a) one
to many mapping which is used in image captioning, (b) many to one mapping which is
used in sentiment analysis, (c) many to many mapping which is used in machine
translation and (d) another many to many mapping which is used in language modelling

28

Qutput Layer Qutput Layer

Hidden Layer Hidden Layer

1
1

1
1

Input Layer Input Layer

{a) Image captioning one to many mapping {b) Sentiment analysis many to one mapping

Output Layer
Qutput Layer

Hidden Layer

1 i
1 1 1

Input Layer

Input Layer

{c) Machine translation many to many mapping {d) Language modelling many to many mapping

Figure 22 : Different RNN mappings with their target mapping (a) image captioning
one to many mapping (b) sentiment analysis many to one mapping (c) machine
translation many to many mapping (d) language modelling many to many mapping

2.2.4.2.3. Weight Sharing

Weight sharing within each step across the whole sequences allows network to
decouple the arbitrary sequence length and the model structure, meaning that it allows
the model to have the number of parameters regardless of the sequence length. As well
as, it increases the robustness of the network through being location invariance where the
representation features and patterns shall be learnt once regardless at which part of the
sequences they appear increasing its ability to generalize well beyond the sequences
length that appeared during training experience. Moreover, it drastically reduces the
number of learnable parameters compared to having a separate weight for each step

2.2.4.3. RNN training

RNN training has been proved to be problematic since vanishing or exploding
gradients issue which was discussed previously amplifies as the recurrent connection
would imply the repetition of matrix multiplication resulting in a quick exponential
shrink or growth of the magnitude of the gradients. This can be solved similarly to the
DNN with carefully initialization of the weights and applying the ReLU as the nonlinear
activation function. Moreover, clipping the gradient magnitude is an additional technique
applied where an upper and lower thresholds are set, once crossed the gradients are
clipped to prevent them from vanishing or exploding

29

2.2.4.4. RNN State of the art architectures

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are the most
widespread RNN architectures. LSTM can exploit long term dependencies where it
preserves the useful information for a longer time delaying its dilution thus enhancing
the accuracy on the cost of adding more parameters, longer training time and more
computational power. On the other hand, GRU can exploit short term sequence
dependencies, requires less parameters, trains faster and reduces computational power
compared to LSTM with a drawback that the useful information can be diluted over a
short time impacting the accuracy achieved on long sequences.

2.2.4.4.1. LSTM

LSTM in similar to DNN, it consists of a stacked input layer, multiple hidden layers
and the output layer, however the building unit is fundamentally different where instead
of a normal neuron with a nonlinear activation on the weighted sum, it is modified to
include an explicit memory storage to establish the recurrent connection with the help of
some framework organizer noted as a gate. This allow the regulation of the flow
information in terms of deciding which part of information shall proceed and which shall
be forget. An abstract figure of LTSM building unit can be shown in Figure 23 where in
addition to the input there is the cell state which represents the memory storage that
allows the recurrent connection to be established.

Cell state at previous step

() N Cell

20 > h
® e

Forget Input Output

Gate Gate oate

Input element at current step
Previous Cell Output

Figure 23 : Abstract LSTM cell

There are three gates that controls the state update as well as generating the output.
They can be viewed as a special multiplicative unit. The forget gate defines the amount
of memory the cell has to forget which are no longer useful to be stored. This is done by
scaling the internal memory state which adaptively can result in the cell forgetting part
of its state. The input gate shall define the amount of input that required to be memorized.
The output gate defines the amount of information that shall proceed to next cell.

LSTM can have two variants: unidirectional and bidirectional. Unidirectional variant
which is shown in Figure 24 considers only the past information during the current
execution step. On the hand, Bidirectional variant show in Figure 25 accounts for the past

30

as well as the future information during executing the current step thus sloping the
achieved the accuracy upwards.

Output Layer Softmax Softmax | e Softmax
Hidden Layer 2 | LSTM Cell 2 » LSTM Cell 2 > —>» LSTM Cell 2
Hidden Layer 1| LSTM Cell 1 LSTM Cell 1 » LSTM Cell 1
Input Layer LSTM Cell 0 » LSTM Cell 0 > - LSTM Cell 0
Input 1 Input 2 Input N

Figure 24 : Unidirectional unfolded RNN example with three LSTM cells, N inputs,
two hidden layers and one output layer

|
Qutput Layer : Softmax Softmax | e Softmax
|

LSTM Cell 3 G;Ce I e LSTM Cell 3

LSTM Cell 2 LSTM Cell 2 [——+ -=reerrmesssseseeees — LSTM Cell 2

Hidden Layer

LSTM Cell 1 Cl:lcell 1 KLSTM Cell 1

LSTM Cell @ LSTM Cell @ LSTM Cell D

Input Layer

Input L Input 2 Input N

Figure 25 : Bidirectional unfolded RNN example with four LSTM cells, N inputs, one
hidden layer and one output layer

31

2.24.4.2. GRU

GRU can be shown in Figure 26 it inherits most of its feature from LSTM but with
significant differences. Starting from the removal of the memory state and merging it
with output state, followed by merging the forget gate with input gate into a single gate
noted as update gate which shall be responsible on passing the amount of information to
be stored as well as the amount to be forgot. This allowed the reduction of number of
parameters and the structure complexity leading to a more efficient computations and
faster training time.

Update Output
Gate gate

Input element at current step
Previous Cell Output

Figure 26 : Abstract GRU cell

2.3. Software Layer

The Software Layer focuses on exploring how to model a network as well as how it
shall be implemented.

The Modelling part shall explore different degrees of freedom available to optimize
the network enabling its practical deployment in today consumer computing platforms
such as mobile platforms and IoT devices. These optimization techniques for instance
shall include reducing the network precision, pruning the weights, exploring the network
activation statistics and other available ones.

Meanwhile, the implementation part shall show the different tradeoffs between
software language approaches. For instance, using a higher level one such as frameworks
would accelerate the implementation while a lower level one such as python would
enable a full control on each operation.

2.3.1. Network Model

2.3.1.1. General Overview

Earlier DNN approaches had considered their merit of figure to be the accuracy.
Thus, they focused on maximizing the accuracy without paying much consideration to
other design aspects such as hardware implementation complexity. For instance, the cost
of floating point operations, number of parameters required to be stored in the memory
and the consumed power to perform the required inference operation. This had led to a
more hypothetical networks that are challenging to implement and deploy in nowadays
computing platforms.

Recent approaches co-design the DNN models and hardware together leading to the
evolving of a new merit of figure that is considered with maximizing the accuracy and

32

throughput while minimizing the energy and the cost of hardware infrastructure such that
it increases its adaption likelihood. However, limiting the available hardware resources
would result to a degradation into the achieved accuracy. Thus, the goal has shifted to
model a network that matches toady computing infrastructure with the minimum
accuracy loss.

To fulfill the aforementioned goal, some techniques were proposed that rely on DNN
networks inherent resiliency to insignificant errors. Starting from reducing the network
precision where the expensive floating point that requires a complex arithmetic unit and
consumes large memory size is replaced with a reduced arithmetic precision
representation. Moving to compressing the network itself to get rid of any redundant
operations and over parameterized parameters by means of pruning the weights,
exploring the activation statistics, low rank factorization and knowledge distillation. In
addition to the mathematical transformations techniques where the operation is
mathematically reshaped to reduce the number of operations (i.e. multiplication).

2.3.1.2. Reduced precision

2.3.1.2.1. General Overview

Quantization can be defined as mapping the data values from their natural wide set
levels to a smaller set of discrete levels. Hence, the quantization process is associated by
an additive error and the objective then is to minimize the mapping error between the
original levels and the quantized discrete ones.

Precision can be viewed as the number of quantized levels and clearly it is reflected
in the number of bits required to map the data to these quantized level (i.e. log2 (number
of quantized levels)). Thus, Reduced precision can be referenced to reducing the number
of bits that represents the quantization levels.

Reduced precision models focus on transforming the expensive floating point
operations which is usually used to obtain the state of art accuracy to a half precision
floating one or even to the cheaper fixed point operations which fixes the radix position
within the operation. This can be beneficial in terms of relaxing the computation
infrastructure and the memory storage requirements. Moreover, optimizing the precision
of different data types across the network is considered the distinct computational
efficiency advantage of hardware accelerators when compared to the general purpose
computing platforms (i.e. CPU and GPU). Furthermore, Reduced precision in difference
with compression techniques doesn’t encounter any extra steps or computational
overhead cost to operate.

However, moving from floating point to a fixed one without reducing the number of
bits that represent the quantization levels would result in the same hardware infrastructure
cost specifically same area, energy and memory cost. Clearly, the energy and area cost
of addition operation using fixed point as well as the memory capacity scales typically in
a linear fashion with the number of bits, meanwhile the energy and area cost of a
multiplication operation scale approximately in a quadratic manner with the number of
bits. Thus, reducing the precision reflected in reducing the number of bits is the key
approach for area, energy and memory savings.

One worthy note to mention here, is the recued precision doesn’t impact the accuracy
if the data distribution is centered around the zero such that the accumulation operation
can move in both directions around the zero and preventing its bias towards only one
direction. This is usually achievable using normalization techniques

Recent reduced precision approaches focus on reducing the precision of weights
rather than activations given that they dominate the memory storage capacity as well as

33

the intermediate computations. Furthermore, the focus is on the inference phase rather
than the training one given that backpropagation algorithm is based on gradients update
which can be ill suited to the precision reduction. Actually the gradients and the learning
rate are sensitive to the used precision which may cause their vanishing or saturation.
Thus, typically a higher precision is required to ensure the network convergence to good
minima. Furthermore, intuitive training can be used to compensate the loss in accuracy
that may arise from reducing the precision during inference phase where the network can
be fine-tuned and re-trained after reducing the precision to improve its accuracy without
any extra cost

2.3.1.2.2. Quantization methods

There are two methods to reduce the precision based on how the data is mapped to
the quantized levels which are uniform quantization which uses the same quantization
levels across the whole data within the network (i.e. all layers, weights and activations)
and non-uniform one which uses separate quantization levels within the network (i.e. per
layer quantization). The first is simpler in analysis and implementation meanwhile the
latter results in a better accuracy.

2.3.1.2.2.1. Uniform quantization

Maps the data with a uniform distance between the quantization level where the
floating point representation is mapped to a fixed point one or to the more sophisticated
dynamic fixed point representation which allows the fractional part to vary according to
the required dynamic range resulting in a less quantization error since the dynamic range
of different parts of networks can vary in a different manner. For instance, the dynamic
range of the weights and activations can be different depending on their targeted dynamic
range which can result in a better overall network accuracy.

Normally general purpose platforms such as CPUs and GPUs can support operations
with bit width of 8, 16 and 32 allowing reducing the precision to these values, however
the precision required for DNNs can vary in a finer grained manner. For instance,
according to [122] the precision values for weights and activations for AlexNet network
can vary between 4 to 9 bits with an accuracy loss around 1%. Meanwhile, Intel
Flexpoint[114], is an example of a complex dynamic scaling representation. Clearly,
unlike the floating point, the exponent is common across all tensors meanwhile it is
different from traditional fixed point as the exponent is updated automatically whenever
a new tensor is generated using a proposed algorithm noted as AutoFlex. In addition to
ESE [116], which applies a uniform quantization approach to reduce the precision of
their proposed speech recognition hardware accelerator where they quantized their
LSTM network to 12 bits and were able to achieve phone error rate of 20.7% on TMIT
corpus in a comparable performance to the floating point architecture that can achieve
20.4% phone error rate

Moreover, there is the binary nets family which can be viewed as an extreme reduced
precision model where it reduces the precision aggressively to one bit allowing a distinct
transformation into how the operations are executed where the arithmetic operations (i.e.
multiply and accumulate) are switched from using multipliers and adders to bit-wise
gates instead (i.e. Xnor and AND gates). Starting form BinaryConnect[123] which
introduced the binary weights concepts (i.e. -1 and 1) and used these binary weights to
transform the multiplication operations to addition and subtraction while allowing the
input and the intermediate data to be real. It was able to achieve 61% top-5 accuracy on
the ImageNet dataset. Followed by Binarized neural networks [124] which converts the
multiplication and addition operations to XOR operations with 50.42% top-5 accuracy

34

on the ImageNet dataset. Moving to Binary weight nets [125] and XNOR-Nets [125]
which modified how the DNN processes the data form using a scale factor multiplication
to recover the dynamic range to preserving the floating point operations for the first and
last layers. Binary weight nets achieved 79.4% top-5 accuracy on the ImageNet dataset
meanwhile XNOR-Nets achieved 69.2% top-5 accuracy. In addition to the HWGQ-Net
[126] which increases the activation precision to be 2 bits instead of a single bit while
keeping the weights precision as a single bit. It was able to achieve 85.9% top-5 accuracy
on the ImageNet dataset. Furthermore, the Ternary weight nets [127] which allows the
weights limit to extended to include the 0 as well as the binary weights which requires
an additional weight bit representation (i.e. weight to be represented in two bits) and it
was able to achieve 86.2% top-5 accuracy on the ImageNet dataset. It was extended in
Trained ternary quantization [128] where the weights only are reduced to a binary
representation with a different scale values for the positive and negative weights (i.e., —
w 1, 0, w 2) while the activation keeps its floating point representation. It was able to
achieve 87.2% top-5 accuracy on the ImageNet dataset

2.3.1.2.2.2. Non-uniform quantization

Maps the data with a non-uniform distance through the usage of a mapping function
allowing the distance variation between the levels. Recent approaches follow one of three
quantization methods; either the log function quantization or the power of two
quantization or the learned one.

2.3.1.2.2.2.1. Log function quantization

The mapping function is based on the logarithmic distribution where the weights and
activations are distributed equally across different levels and each level is used more
efficiently to reduce the quantization error.

For instance, [129], uses a log2 quantization for a VGG-16 network whereas it
represents the levels using 4 bits and was able to achieve 85.4% top-5 accuracy on the
ImageNet data set, meanwhile [130] introduces the Incremental network quantization
which divide the weights into groups, perform an iterative quantization accompanied by
re-training to finally reach a 5 bits representation with 92.45% achieved top-5 accuracy
on the ImageNet data set.

2.3.1.2.2.2.2. Power of two quantization

The mapping function defines the quantization levels in a power of two fashion. This
would allow converting the power hungry frequently used multiplication operations to
the hardware friendly shift operation

For instance, [115] quantizes the weights in a power of two fashion enabling the
multiplication operation to be executed as a bit shift operation

2.3.1.2.2.2.3. Learned function quantization

Also noted as weight sharing quantization where the mapping function is determined
from the data where the function is learnt by means of learning algorithm such as k-
means clustering.

Moreover, some weights are forced to share the same value to reduce the number of
unique weights within the network. Clearly the weights are grouped using a hashing
function or a k-means method. Then each group of weights are assigned to a single value
followed by building a mapping table that is usually referred to as a codebook to map
each group of weights to its shared value. Accordingly, an index for each group in the
codebook is stored to be able to fetch the weight value back.

35

This method is beneficial to reduce the memory storage cost of the weights as well
as the energy required to move the weights from the memory to the computation unit.

An example of this method is Deep compression [131] where it modifies AlexNet to
have 256 unique weight value within each convolutional layer and 16 for the fully
connected one and it was able to achieve 80.93% top-5 accuracy on the ImageNet data
set with 35x reduction in the total network size.

2.3.1.3. Network pruning

2.3.1.3.1. General Overview

In order, to achieve higher accuracy, the network is usually designed with an over
parametrized number of weights. This can be viewed as giving the network more
parameters to be explored and tuned during the training phase. However, part of these
weight parameters ends up to be redundant and can be pruned (i.e. set to zero). Thus,
they can be removed without sacrificing the achieved accuracy during the training phase
which could result in savings regarding the number of stored weights, the energy required
for fetching them and the required number of arithmetic operations required for
processing them. This had led to a research area that focuses on pruning the network to
remove any ineffectual weights, expanding the sparsity in the weights parameters and
reduce the network complexity

Historically, it was first proposed in 1989, through the optimal brain damage
technique [132] where it tries to figure out the impact of each weight on the training loss.
After that, weights with low impact are removed and the remaining weights are fined
tuned. This procedure was repeated until reaching the required reduction in the number
of weights with the desired accuracy. However, this approach is impractical to DNN with
large size as it would be difficult to estimate the impact of each weight parameter on the
training loss.

On contrast, recent search starting from [133] focused on eliminating the neurons
with small activity values where the weights are pruned based on the weight magnitude
which shall be a simpler and practical technique. Clearly weights with small magnitude
are pruned and the rest of weights are retrained to fine tune their values and restore back
the loss in the accuracy. Small magnitude values can be though as zero values and can
be loosen to include also the near-zero values which encompass more weights and results
in more savings without impacting the accuracy. For instance, in [133] the AlexNet
number of weights were reduced nine times while maintaining the same accuracy.

2.3.1.3.2. Area of focus

Advances in the network pruning focuses on two areas the first is how efficiently
store the sparse weight after pruning which shall need to a compression format to open
the benefits of pruning these weights and how to structure the pruning to allow their
processing on general computing platforms (i.e. CPU and GPU) without the need for any
custom hardware.

2.3.1.3.2.1. Storing Sparse weights

Compressing the sparse weights shall consider how DNN process these weights
through the matrix vector multiplication which is one of the fundamental operations
within network. There are two compressing format to be applied either the compressed
sparse row format or the column one. Compressed sparse row format when used during
the matrix vector multiplication as shown in Figure 27 requires the input vector to be
read multiple times while each output element is generated once at a time. Meanwhile,

36

compressed sparse column format as shown in Figure 28 requires only the input vector
to be read once while each output element is updated several times before generating the
final one. Compressed sparse column format is more effective than row one as it provides
an overall lower memory bandwidth given the fact the number of filters within a DNN is
not significantly larger than the number of weights encapsulated within these filters, thus
updating the output elements serval times is cheaper than reading the whole input vector
the same number of times.

- Pruned weight (zero or near zero)
@ Unpruned weight (Normal weight)

Number of
WE|ght5

Number of =
hlters

-0 o< -0

-ﬁE
NN R
=

Figure 27 : Compressed sparse row format during matrix multiplication

- Pruned weight (zero or near zero)
@ Unpruned weight (Normal weight)

Number of
- Weights -

Number of
filters

1.0 4. mgx.ﬂx@@a:ﬁ

Figure 28 : Compressed sparse column format during matrix multiplication

37

2.3.1.3.2.2. Structured pruning

Structured pruning can be viewed as a coarse grained pruning where in contrast to
the fine grained pruning where individual weights are pruned based on their magnitude,
a group of weights are pruned together based on a define criteria which may be a filter
entire row or column, a filter channel, a neighboring weights in a filter or the filter itself.
Grouping weights together would be beneficial to decrease the cost of locating of non-
zero weights which would facilitate compressing the sparse weights and enable their
parallel processing using the existing general computing platforms without the need for
any customization. However, grouping large weights together would result in an
increasing accuracy loss which requires more fine tuning and carefully choosing the
grouping criteria

Applying this optimization method is used in EIE [43] which is a hardware
accelerator that uses the compressed column format to exploit the weights sparsity. In
addition to ESE [116] which is a LSTM hardware accelerator that prunes the unnecessary
weights based on an empirical pruning threshold as well as introducing a load balance
aware pruning method to increase the hardware utilization through balancing the non-
zero weights distribution among all the parallel processing units. Also, Cnvultin[32]
which allows dynamically skipping neuron computations if they are below a pre-
specified, per-layer threshold.

2.3.1.4. Activation statistics

Recently, there are many work on exploiting the generated content in the hidden
layers within the DNN networks with a focus on searching for the abundant sparsity (i.e.
existence of zero values within the intermediate data) in aim to get advantage of these
sparsity by means of compression to reduce the number of computations which shall
result in area savings as well as reducing the energy expensive access to the off-chip
DRAM.

Currently, ReLU is the main nonlinear activation function used within the state of
art networks due to its efficiency in generalizing the network as well as its simplicity.
ReLU as shown in Figure 29 set any negative values output from the neuron to zero. This
had led to generation of a large amount of zeros within the hidden layers and these zeros
are considered to be an intrinsic property of using the ReLLU function. For instance,
according to [4] the feature map within the hidden layer of AlexNet can have sparsity
between 19% up to 63% depending on the layer.

RelLU

A

Y

Figure 29 : ReLU function

These zeros generated form the activation can further be explored when designing a
network to make an energy efficient network without any performance impact as they
don’t contribute to the final output of the network and can be optimized, whereas the

38

computations had been transformed to a sparse matrix multiplication which shall require
fewer operations when compared to a dense one meanwhile the memory access can also
be safely bypassed given its predetermined it is going to fetch a zero value.

Applying this optimization method is used in LRADNN|[21] which estimates the
polarity of the inputs going to the neuron and hence, based on this polarity it can disable
some of the multiplication operations which led to a reduction in number of arithmetic
operations without much accuracy impact. Also, SparseNN[23] is another example
which adds a prediction phase to the network which involves the usage of a predictor
noted as straight through estimator that has a lightweight computation complexity to be
able to determine whether a zero exist in the activation or not. In addition to Eyeriss[48]
which uses a compression technique based on an encoding scheme noted as RLC that
exploits the zeros within the feature map to skip any unnecessary computations as well
as saves any useless DRAM access. Furthermore, Cnvlutin[32] which introduces the
Zero Free Neuron Array Format as the compression technique to eliminate the zero
activation computations

2.3.1.5. Low rank factorization

Given how the CNN is advancing, more efforts are focused on optimizing the
convolution operations which contribute to the bulk of CNN computations. Low rank
factorization is a technique that applies matrix decomposition in order to estimate the
informative parameters within a CNN. The basic idea is to view the convolutional kernel
as a four dimensional matrix where there are a lot of redundant weights. This redundancy
can be removed through decomposing this large matrix into smaller ones. To have even
more efficient computations, the decomposition is followed by another compression step
through approximating these smaller matrices by means of low rank approximation. A
demonstration for this method can be found at [138], where Canonical Polyadic (CP)
decomposition accompanied by low rank approximation was used and was able to
achieve a 4.5x speedup for the second layer of AlexNet with 1% accuracy drop.

2.3.1.6. Knowledge distillation

One way to increase the achieved accuracy is to use network ensembles where
multiple network run in parallel but with different configurations (i.e. weight
initialization) then average their predictions to get a better accuracy when compared to
running a single network. However, this shall increase the required computational
complexity. To get a better tradeoff between the accuracy and the computational cost,
knowledge distillation is used.

Knowledge distillation can be viewed as a teacher student model where a complex
network or an ensemble of networks are defined to be the teacher that is used to bootstrap
the accuracy of an architecturally different network that is more compact and shallower
that is defined to be the student. This is done by transferring the knowledge learned by
the teacher network to the student one in an aim that the student network when trained it
shall be able to mimic and reproduce the same output of the teacher or even a better one
that would not be achievable if the student was trained directly on the same data set. This
shall incorporate defining the loss function of the student during the training to be
learning the class distributions output from a softmax layer. For instance, according to
[134] using knowledge distillation helped to improve the speech recognition of a student
network by 2% which allowed it to be competitive to the teacher which is composed of
an ensemble of ten networks.

39

The way the knowledge distillation works is shown in Figure 30 where the target of
the student network is to learn the class scores of the teacher (which may be an ensemble
of networks). Class scores are used as the target rather than the class probability as the
softmax layer eliminates the small scores by pushing their probability towards O.
However, if a softened softmax is used where the small scores are preserved and a
smoother probability distribution can be generated then the class probabilities can be
used as a target. Overall, the training objective is to minimize the squared difference
between the class scores generated from the student and the target.

Teacher Network (Ensemble of two networks)
>
—> =
Complex | Soft e Complex | Soft —»
» > » [5
network A max |y, network B max e
» >
Learning Target
>
Soft

o

Student network Pl a4

>

>

Figure 30 : Knowledge distillation overview

2.3.1.7. Mathematical transformations

Several mathematical transformations are used especially in the CNN to either
reduce the required number of multiplications while maintaining the bitwise accuracy or
accelerate the execution of the multiplication operation. These types of transformations
are targeting the convolution operation where another mapping function is proposed
instead of the multiplication based mapping or the convolution is restructured in another
accelerated form. This includes Fast Fourier Transform [135], Winograd’s algorithm
[136], Strassen’s algorithm [137] and Structural matrix using relaxed Toeplitz form [4].

2.3.1.7.1. Fast Fourier Transform

Fast Fourier Transform is used to reduce the number of multiplication where the
convolution operation is done as a direct multiplication in the frequency domain. As
shown in Figure 31 the input feature map and filter are transformed in the frequency
domain, multiplied together and then inverse FFT is applied on the result to generate the
output feature map in the spatial domain. FFT is usually used with larger filter sizes (i.e.
5x5).

40

Input feature . Output feature
P convolved Filter = P
map map

FFT
FFT
Inverse FFT

FFT (Input
feature map)

FFT (Output

Multiplied FFT (Filter) = feature map)

Figure 31 : FFT mathematical transformation

2.3.1.7.2. Winograd’s algorithm

Winograd’s algorithm applies a transformation for the input feature map and the
filter to generate a tile of elements in the output feature map together such that it gets
benefit from the structural similarity among them. This help to reduce the required
number of multiplication given it generates a tile of output elements at each step. It is
usually used in smaller filter such 3x3 where according to [4] it was able to reduce the
number of multiplication by 2.25x.

2.3.1.7.3. Strassen’s algorithm

Strassen’s algorithm reduces the number of multiplication through the
rearrangement of the matrix multiplication in a recursive manner. However, it suffers
from occasional numerical stability as well as more storage requirements.

2.3.1.7.4. Structural matrix

Structural matrix using a relaxed Toeplitz form as shown in Figure 32 is used to
speed up the matrix multiplication by extending the feature map with redundant elements
to allow its parallelization. However, this shall come with an inefficient increase in the
storage cost and adding extra complexity to the access memory patterns

Input feature map Filter Output feature map
1|23 —r—
Normal Convolution 1/2 * 4(5]6 - 1(2
3|4 7189 3[a
Input feature map Filter Output feature map
1|12|4|5
Trapozid Convolution [g1(2(3(all * 2|3[5]6 = 11 12 ’3 4
ihaEE) - 235 [2[3(4]
5/6(8|9

Figure 32 : Structural matrix using a relaxed Toeplitz form

41

2.3.2. Network Implementation
2.3.2.1. General Overview

There are many approaches to implement a network; Starting from using a low level
language such python, matlab and CuDNN until using a high level framework such caffe,
tensorflow and keras.

While low level languages provide a full control on the implementation where it is
feasible to customize the network operations and apply any optimization method (i.e.
quantization), it consumes much time to develop the network from scratch given there
are no ready plug and play DNN functions. Also, the network execution time is dependent
on the code quality which in return reflects the experience of the code owner leading to
more hassles in the implementation part rather than the architecture part.

Meanwhile, high level framework provides open source DNN libraries that
implement the common training and inference operations which ease the network
development, enable sharing the trained networks, leverage the accumulated experience
among the whole ML community. However, customizing an operation would require
modifying the open source code of the provided libraries which puts a barrier that
consumes a lot of efforts to establish new ideas

2.3.2.2. Low level languages

2.3.2.2.1. Python

An open source general purpose programming language which is built on a
collection of generic built in libraries. It is widely used in web applications, mathematical
scripting as well as being popular in ML applications where most of the higher level
frameworks are built on the top of it.

2.3.2.2.2. Matlab

A commercial programming language that provides a deep learning toolbox
facilitating the optimization of the deep learning functions. It is also capable to
automatically convert the written code to C++ or RTL code

2.3.2.2.3. CuDNN

The NVIDIA CUDA Deep Neural Network library (cuDNN) is a NVIDIA GPU
based accelerated library of primitives for deep neural networks. It provides highly
optimized implementations for commonly used DNN functions.

2.3.2.3. High level framework

2.3.2.3.1. Caffe

Convolutional Architecture for Fast Feature Embedding was developed by
university of California Berkeley as an open source deep learning framework that can be
viewed as a cross platform that supports C/C++, python and matlab. It provides an
implementation that can run on both CPU and GPU.

2.3.2.3.2. Tensor flow

An open source framework developed by Google Brain Team and can support C++
and python. It is computation flow can be expressed in a single dataflow graph that

42

manages all the tensor operations. It provides an implementation that can run on both
CPU and GPU

2.3.2.3.3. Torch

An open source framework developed by Facebook and New York university and
can support C++ and Java. It provides an implementation that can run on both CPU and
GPU. It is no longer under active development.

2.3.2.3.4. Pytorch

An open source framework developed by Facebook’s Al research group as a
successor for torch and can support C and python. It integrates acceleration libraries such
as InteIMKL and NVIDIA (cuDNN, NCCL). It supports a technique noted as reverse
mode auto differentiation which all to change the way a network operates with small
effort rather than starting to build it from scratch. It provides an implementation that can
run on both CPU and GPU.

2.3.2.3.5. Theano

An open source python library developed by University of Montreal. Theano starts
performing computations by optimizing the selection of computations, translates them
into other languages such as C++ or CUDA and then compiles them into Python modules
in an efficient way on CPUs or GPUs. It provides an implementation that can run on both
CPU and GPU and it is No longer under active development.

2.3.2.3.6. CNTK

Microsoft Cognitive Toolkit (CNTK) is an Open source deep learning framework
developed by Microsoft Research and supports python, C++ and C#. It converts any
function to a directed graph where each leaf node consists of an input value or learning
parameter, and other nodes represent a matrix operation upon their children. It provides
an implementation that can run on both CPU and GPU.

2.3.2.3.7. Keras

An open source framework founded by Google engineer Chollet as a part of research
project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System)
and it can support python. It can be viewed as a higher level library that can run over
Tensorflow, Theano and CNTK to unify the development experience and allows faster
development. It provides an implementation that can run on both CPU and GPU.

43

Chapter 3 : Convolutional Neural Network Architectures
Review

During the last several decades, many CNN architectures had been developed that
differ in terms of number of layers, layer shapes, layer associated parameters (i.e. filter
size, number of channels) and how the layers are connected to each other to allow the
propagation of feature maps.

Most of the recent architectures were driven by the ImageNet competition [64] where
most of them had competed and the innovative ones had won it. ImageNet competition
is a tourney with many different tracks.

One of the tracks that remarks the breakthrough of the CNN approach is the image
classification. Clearly, before the CNN paradigm the error rate achieved was around 25%
however starting from 2012 when AlexNet[65] was introduce by a group from Toronto
university were they applied the CNN accompanied by the usage of GPUs for training
and successfully dropped the error rate to 16% had marked the start of shift from
traditional approaches towards the CNN based approach.

Over the years starting from 2012 as shown in Figure 33, the CNN had continued to
improve the error rate in the ImageNet challenge with a significant milestone at 2015
when the ResNet[29] had been introduced whereas it was able to suppress the human
level accuracy. Furthermore, from [64] the entrants in the ImageNet challenges that are
using GPUs had increased from four entrants only at 2012 when AlexNet was used to
110 entrants at 2014 indicating the domination of the CNN approach.

Accuracy (Top-5 error in %)
CNN paradigm

|\ |

30 28.2 |
|

|

25.8 Very Deep Networks

25
- - ..
8 8 19 22 152 |

Shallow Networks
layers layers layers layers | layers |

20

—_——d

15

10
7.3

6.3
5.1

3.6

|
|

|

|

|

|

11.7 l

. |
|

|

|

|

Different networks

2010 2011 2012 2013 2014 2014 2015 Human over years
Level Accuracy

Figure 33 : ImageNet top-5 error accuracy versus different networks progress over
years

In this chapter, different CNN are explored starting from LeNet-5[64] until the
ResNet[29].

44

3.1. LeNet-5

LeNet-5[64] was introduced in 1989 as one of the first CNN that was designed for
the digit classification task on the MNIST grayscale images [62]. Hand written digit
recognition was widely used at that time by ATMs for digit recognition on checks
enabling the first commercial use of the CNN through LeNet-5 deployment in ATMs to
automatically identify the check deposit digits.

As shown in Figure 34, it is composed of two convolutional layers, two average
pooling layers and two fully connected ones. The convolutional layer is based on kernel
of 5x5 size where six of them are used in the first layer while 16 are used in the second
one. After each convolutional layer a sigmoid function is applied as the nonlinear
transformation function followed by 2x2 average pooling layer.

1 fock C3: f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@26x28 ps 16@

32x32 S2: f. maps r
r

C5: layer X
56 Y |:g|ayer quPUT

|
| Full conAeclion] Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 34 : LeNet-5 architecture from [64]

In general, it had 60,000 weight parameter and was able to achieve to 99.05%
accuracy on the MNIST data set

3.2. AlexNet

AlexNet [65] was introduced in 2012 and the first CNN based network to win the
image classification track within the ImageNet Challenge.

As shown in Figure 35, it is composed of five convolutional layers, three maximum
pooling layer and three fully connected ones. Each convolutional layer may have kernels
of 3x3 to 11x11 size with number of kernels varying from 96 to 384 and from three to
256 generated channels depending on the location of the convolutional layer within the
network. After each convolutional layer a ReLU for the first time in a CNN is applied as
the nonlinear transformation function and the first, second and fifth convolutional layer
are followed by a 3x3 maximum pooling.

45

g \dense

=]
5|

128 204

13 dense dense|
1000
128 Max

Max 8 Max pooling 2%% 2048
pooling pooling

Figure 35 : AlexNet architecture from [65]

The key differences between AlexNet and the LeNEt-5 are the increased number of
weights, the kernels varying size and the usage of the LRN as a normalization technique
after the first and second convolutional layers.

In general, it has 61 million weight parameters and was able to achieve 16.4% top-
5 error on the ImageNet data set.

3.3. ZFNet

ZFNet[104] was introduced in 2013 and was the winner of image classification track
within ImageNet challenge.

It is a refinement version from AlexNet where the 11x11 kernels are replaced by 7x7
ones and the number of activation kernels were changed to 512 or 1024 depending on the
location of the convolutional layer.

It has the same AlexNet structure with five convolutional layers, three maximum
pooling layers and three fully connected ones.

In general, it was able to achieve 11.2% top-5 error on the ImageNet data set.

3.4. Overfeat

Overfeat [96] was introduced in 2013 and was the winner of the object detection
track in the ImageNet challenge.

It follows AlexNet in the structure with five convolutional layers, three maximum
pooling layers and three fully connected ones.

The main difference is that number of kernels are varied up to 1024 within the
convolutional layers based on the layer location within the network.

In general, it has 146 million weight parameters and was able to achieve 14.2% top-
5 error on the ImageNet data set.

3.5. VGG

VGG [97] was introduced in 2014 and was the winner of the object detection track
in the ImageNet challenge as well as the first runner up of image classification track.

It was one of the first attempts to explore the depth aspect of the CNN. To tradeoff
between going deeper and the exponential growth of the number of weights parameters,

46

it fixes all the kernels size within the network to 3x3 size which has fewer weights
parameters compared to larger ones, meanwhile these larger kernels can be built using
multiples of the smaller kernels. Decomposing larger kernels into a stack of smaller ones
had shown to be fruitful from many aspects; first it attains the same effective respective
field of the larger kernels for instance as shown in Figure 36 where a 5x5 kernel can have
the same effective receptive field of two stacked 3x3 kernels, second it incorporates
multiple apply of the nonlinear transformation function allowing the classification
function to be more discriminative , again for instance a 5x5 kernel shall be followed by
applying a single nonlinear function ,meanwhile applying the nonlinear function can
follow each kernel from the two stacked 3x3 kernels and finally it decreases the required
learnable parameters , back for instance to the 5x5 kernel which shall have 25 weight
parameters per channel while the two stacked 3x3 kernels shall have 18 only.

B

| | \ Output feature map
I I N

Input feature map ———

P e B ’//’ - -~
- - -
First 3x3 kernel — - Second 3x3 kernel

Output feature map

Input feature map Intermediate feature map

Figure 36 : 5x5 kernel decomposed into two 3x3 kernels

The VGG network shall have a generic structure where it keeps the kernel size fixed
at 3x3 while gradually increasing the depth of the network by stacking more
convolutional layers, actually as the network goes deeper the generated feature map
within each layer is modified through a fixed fashion whereas the number of kernels
applied that shall represent the number of generated channels is doubled while the
generated height and width dimensions is halved. In general, VGG has three popular
variants VGG-11, VGG-16 and VGG-19.

VGG-11 as shown in Figure 37(a) is composed of eight convolutional layers, five
maximum pooling layers and three fully connected layers with total 133 million weight
parameter and top-5 error of 10.4% on the ImageNet data set. VGG-16 as shown in
Figure 37(b) is composed of 13 convolutional layers, five maximum pooling layers and
three fully connected layers with total 138 million weight parameter and top-5 error of
7.4% on the ImageNet data set. VGG-19 as shown in Figure 37(c) is composed of 16
convolutional layers, five maximum pooling layers and three fully connected layers with
total 144 million weight parameter and top-5 error of 7.3% on the ImageNet data set.

47

Input Image

Y

Input Image

Convolutional Layer
64 kernels each 3x3

Y

Maximum pooling layer
(2x2 grid size reduction)

Convolutional Layer
64 kernels each 3x3

|

Convolutional Layer
64 kernels each 3x3

Convolutional Layer
128 kernels each 3x3

Maximum pooling layer
(2x2 grid size reduction)

Maximum pooling layer
(2x2 grid size reduction)

!

|

Convolutional Layer
128 kernels each 3x3

Convolutional Layer
256 kernels each 3x3

Convolutional Layer
128 kernels each 3x3

Convolutional Layer
256 kernels each 3x3

Maximum poaling layer
(2x2 grid size reduction)

Maximum poaling layer
(2x2 grid size reduction)

I

!

Convolutional Layer
256 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
256 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
256 kernels each 3x3

Maximum poaling layer
(2x2 grid size reduction)

Maximum pooling layer
(2x2 grid size reduction)

Network output

(a)

\

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Maximum pooling layer
(2x2 grid size reduction)

)

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Maximum pooling layer
{2x2 grid size reduction)

Network output

(b)

Input Image

y

Convolutional Layer
64 kernels each 3x3

Convolutional Layer
64 kernels each 3x3

Maximum pooling layer
(2x2 grid size reduction)

|

Convolutional Layer
128 kernels each 3x3

Convolutional Layer
128 kernels each 3x3

Maximum pooling layer
(2x2 grid size reduction)

|

Convolutional Layer
256 kernels each 3x3

Convolutional Layer
256 kernels each 3x3

Convolutional Layer
256 kernels each 3x3

Convolutional Layer
256 kernels each 3x3

Maximum pooling layer
(2x2 grid size reduction)

I

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Maximum pooling layer
(2x2 grid size reduction)

!

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Convolutional Layer
512 kernels each 3x3

Maximum pooling layer
(2x2 grid size reduction)

Network output

(€)

Figure 37 : (a) VGG-11 (b) VGG-16 (¢) VGG-19

48

3.6. NiN

Network in Network (NiN) [105] was introduced in 2014 and didn’t participate in
the ImageNet challenge, however it is considered the precursor for dimension reduction
of the inception module used in Googl.eNet network and the bottleneck module used in
the ResNet networks.

It introduced the Mlpconv layer (Multilayer perceptron convolutional layer) where
it replaced the linear convolutional kernel and its subsequent nonlinear activation
function by a micro multilayer perceptron. The feature map then can be generated by
sliding this layer over the input in a similar manner to the normal convolutional layer but
with a multilayer perceptron way of computation. The intuition is that if a fully connected
layer is applied at each point within the feature map (each height and width) and the
weights of this layer is tied across each spatial location then this would be analogous to
utilizing a 1x1 convolutional kernel. 1x1 kernels are beneficial in terms of preserving the
spatial dimensions (height and width) of the feature map while reducing the depth
(channels) to lower dimension (i.e. as if it is generating a combination of feature maps)

3.7. GoogLeNet

Also referred to as Inception [98] that was introduced in 2014 and was the winner of
image classification track within ImageNet challenge. Since its introduction it was
followed by three versions [99], [100] and [101].

3.7.1. First version

The first version introduced the inception module and started to go deeper with the
number of the layers within the network.

The motive behind the inception module is to improve the utilization of the
computation resources through moving fundamentally from a fully connected
architecture to a sparsely connected one. The idea behind that, if the data set probability
distribution can be represented by a large sparse network, then the optimal network
topology can be constructed layer by layer through analyzing the correlation statistics of
the activations of the last layer and clustering neurons with highly correlated outputs. To
illustrate more, assume the neurons in the earlier layers close to the input shall correspond
to some regions in the input image where highly correlated ones would mean that they
are concentrating on the same local region and can be clustered. Moreover, some of these
clusters may end up concentrating on a single region and can be covered in the next layer
through a 1x1 convolution kernel. Similarly, there would be spatially spread out clusters
that can be covered using convolutions over large patches which can be approached using
higher order convolution kernels such as 3x3 and 5x5 kernels. Hence, the optimal local
sparse architecture can be approximated and constructed through the combination of all
those kernels where all their outputs are concatenated into a single output forming the
feature map for the next layer.

Thus the naive inception module as shown in Figure 38 unlike the proceeded
networks has parallel structured connections within the same layer instead of a single
direct connection whereas different kernels size (mainly 1x1, 3x3, and 5x5 kernels) and
a maximum pooling layer are concatenated together.

49

Previous Layer

N

1x1 Convolutional 3x3 Convolutional 5x5 Convolutional Maximum pooling
Kernel Kernel Kernel kernel

— == B

Filter Concatenation

Figure 38 : Naive Inception module

This module shall enable the processing of visual data at various scales where the
large kernels shall capture the features distributed globally, meanwhile the small kernels
shall capture the features distributed locally so that abstract features from different scales
are aggregated together to next layer

This naive inception module even if it can cover the optimal sparse structure, the
existence of the maximum pooling layer accompanied also by the overall network depth
would lead to an exponential growth in the number of learnable weights blowing up the
computational resources, thus 1x1 convolutional kernels were applied as a dimension
reduction modules for any expensive operation. For instance, before 3x3 kernel, before
5x5 kernel and after the maximum pooling to reduce the number of generated channels
within the feature map. Thus depth of network is allowed to be increased without a
significant computational penalty. Also, these 1x1 convolutional kernels is associated
with applying nonlinear function activation enabling them to have a dual propose. Figure
39 shows the inception with dimension reduction

Previous Layer

N

1x1 Convolutional
Kernel

1x1 Convolutional
Kernel

l

1x1 Convolutional
Kernel

3x3 Convolutional
Kernel

A

Maximum pooling
kernel

5x5 Convolutional
Kernel

A

1x1 Convolutional
Kernel

Filter Concatenation

Figure 39 : Inception module with dimension reduction

50

In general, it is composed of 22 layers divided into three traditional convolutional
layers, 18 inception modules and one fully connected layer. It was able to achieve top-5
error of 6.7% on the ImageNet data set with a total 7 million weight parameters.

3.7.2. Second version

The second version was introduced in 2015. It mainly introduces the batch
normalization and a new variant from the Inception module.

Batch normalization is the most popular normalization layer used nowadays. The
need for normalization arises as the network goes deeper the training is usually
complicated given the internal covariate shift fact where the distribution of network
parameters changes from one layer to another due to the variation of network activations
per layer requiring the layer to adapt continuously to the new distribution. Meanwhile,
the training converges faster in case of whitened inputs where inputs have zero mean and
unit variance.

Batch normalization seeks to reduce the internal covariate shift by observing the
activation output from each layer to whitened it before going to next layer. It can be
applied on both fully connected and convolutional layers with a special attention to the
convolutional property. It is required that the normalization obeys this property such that
different elements at different locations within the feature map are normalized in a similar
manner. This shall require the joint normalization of all activation in a mini batch across
all location.

However, one drawback back of normalizing each the inputs of layer is it may
change what a layer can represent, thus batch normalization introduces two learnable
parameters the scale and shift values to ensure the transformation inserted in the network
can represent back the identity transform. These parameters are trained with the learnable
weights parameters and allow the network to restore back its representation power.

The new inception variant basically decomposes each 5x5 convolutional kernel by a
stack of two consecutive 3x3 kernels similar to the VGG network to reduce the number
of weights and the associated required computations. In addition to, employing average
pooling in some inception modules while in other maximum one is used.

In general, this variant is composed of 32 layers divided into two traditional
convolutional layers, 30 inception modules and no fully connected layer. It was able to
achieve top-5 error of 7.8% on the ImageNet data set with a total 8.75 million weight
parameters.

3.7.3. Third version

The third version was introduced in 2015 and it introduced a new Inception variant
which was the first runner up of image classification track within ImageNet challenge.

The new variant scale up the depth of the network while maintaining the
computations efficiency through factorizing the large spatial kernels into smaller ones.
Convolutions done through large filters as 5x5 filters can span a wide geometric area of
the feature achieving more expressiveness in the extracted feature due to its ability to
extract more dependences between the generated activations. However, they require
more computations when compared to smaller kernels. For instance, 5x5 kernel has 25
parameters while 3x3 kernel has 9 parameters meaning that a 5x5 kernel is 25/9 = 2.78
times computationally expensive than 3x3 kernel. In a vision task, it is expected that
adjacent activation units shall generate highly correlated outputs. Thus, these activation

51

units can be dimensionally reduced followed by spatial aggregation them without losing
much information and hence results in similar expressive local representations.
Therefore, a 5x5 kernel can be replaced with two sequential 3x3 kernels with a negligible
loss in the futures expressiveness.

The 3x3 kernel can even be factorized using the asymmetric kernels (i.e. nx1) to
achieve more reduction in the computations. For example, a 3x3 kernel can be
decomposed into a 3x1 kernel followed by 1x3 one as shown in Figure 40 with around
33% computation savings.

3x3 kernel %

Output feature map

AT nakemne
3nL kernel

Input feature map Intermediate feature map Output feature map

Input feature map

Figure 40 : Decomposing 3x3 kernel into asymmetric kernels

Thus, hypothetically any n x n kernel can be replaced by 1xn kernel followed by nx1
kernel and this led to the introduction of a new inception module shown in Figure 41.
However, practically this type of factorization doesn’t perform well at the network early
layers requiring their usage at the mid to the end layers.

1x1 Convolutional 1x1 Convolutional
Kernel Kernel

l l

1xn Convolutional 1xn Convolutional
Kernel Kernel

l l

nx1 Convolutional nx1 Convolutional
Kernel Kernel

1xn Convolutional
Kernel

nx1 Convolutional
Kernel

1x1 Convolutional
Kernel

Maximum pooling
kernel

1x1 Convolutional
Kernel

Filter Concatenation

Figure 41 : New Inception module with nx1 and 1xn factorized kernels

52

In general, this variant is composed of 42 layers that was able to achieve top-5 error
of 5.7% on the ImageNet data set with a total 29.3 million weight parameters.

3.7.4. Fourth version

The fourth version was introduced in 2016 and it introduce a new variant that
combines the Inception module with the residual connections introduced in [29] as shown
in Figure 42.

Last Layer Activation

Last Layer Activation

Figure 42 : Inception module accompanied by residual connection

In general, this variant is composed of 164 layers that was able to achieve top-5 error
of 4.9% on the ImageNet data set with a total 55.93 million weight parameters.

3.8. ResNet

Also known as Residual Net [29] was introduced in 2015 and was able to win all the
tracks within the ImageNet challenge. It is considered the first network to exceed the
human level performance in the ImageNet challenge with top-5 error below 5%. Since
its introduction, it was followed by another version [102].

53

3.8.1. First version

The first version introduces the shortcut module and similar to the previous networks
it attempts to increase the depth of the network.

Depth aspect is proven to be crucial for network performance, however straight
forward stacking of more layers had been shown to degrade the performance once the
network starts to converge where the accuracy starts to saturate followed by a rapid
degradation. Such degradation is not argued to overfitting only but also the optimizer
may have faced difficulties during resolving the cost function. This can be explained
through the assumption of having a shallow architecture where a deeper counterpart
architecture that adds several layer onto it can produce no higher training error compared
to the shallow exits if the added layers are identity mapping ones.

The shortcut module is inspired from the aforementioned degradation problem
where the optimizer may have faced difficulties when trying to approximate the multiple
nonlinear transformation layers into identity mappings. As shown in Figure 43, it
contains an identity connection to allow the network to skip the convolutional layers such
that if the optimal function to be learnt is closer to the identity mapping, the optimizer
shall easily find the perturbations with reference to an identity mapping rather than to
learn the function. Furthermore, this module doesn’t add any extra parameters.

Input from previous
layer

/

3x3 Convolutional
Kernel

A 4

RelLU activation

A 4

3x3 Convolutional
Kernel

RelU activation

Figure 43 : Shortcut module

Another module is introduced which is the bottleneck module. It modifies the
shortcut module to reduce the learnable weight parameters as well as the training time
through the usage of 1x1 kernel. This is done as shown in Figure 44 by replacing the two
layers stack with a three one in which the three layers are stacked as 1x1 kernel, 3x3
kernel and 1x1 kernels where the 1x1 kernels are used to reduce and then restore the

54

dimensions, leaving the 3x3 kernel as a bottleneck with smaller input and output
dimensions.

Input from previous
layer

1x1 Convolutional
Kernel

Y

ReLU activation

A 4

3x3 Convolutional
Kernel

Y

RelU activation

A 4

1x1 Convolutional
Kernel

RelU activation

Figure 44 : Bottleneck module

In general, ResNet follows the same philosophy of the VGG where it is constrained
to use only 3x3 kernel, all layers with the same output feature map dimension shall have
the same number of filters and the number of filters is doubled as the network goes deeper
with the feature map size is halved. The main modification is the insertion of the
bottleneck modules which convert the network to a residual version. It has three popular
variants ResNet-50, ResNet-101 and ResNet-152.

ResNet-50 is composed of one convolutional layer, 16 bottleneck modules each shall
have three convolutional layers and one fully connected layer with total 25.5 million
weight parameter and top-5 error of 5.25% on the ImageNet data set.

ResNet-101 is composed of one convolutional layer, 33 bottleneck modules each
shall have three convolutional layers and one fully connected layer with total 44.5 million
weight parameter and top-5 error of 4.6% on the ImageNet data set.

ResNet-152 is composed of one convolutional layers, 50 bottleneck modules each
shall have three convolutional layers and one fully connected layer with total 60 million
weight parameter and top-5 error of 4.49% on the ImageNet data set.

55

3.8.2. Second version

The second version was introduced in 2016. It mainly analyzes and conducts some
experiments on the residual network attempting to create a direct path for the propagation
of information within the entire network instead of the shortcut module only. It also
introduces a new variant from the ResNet.

A new shortcut module as well as its counterpart bottleneck module are introduced
which are shown in Figure 45 (a) and (b) respectively where the identity connections are
kept as the direct path for information propagation, meanwhile the nonlinear activation
function are rearranged such that the ReLU and the added batch normalization are used
as a pre-activation functions such that the activation is moved to residual mapping

pathway.

Input from previous
layer

Batch Norm

RelLU activation

A 4

3x3 Convolutional
Kernel

Batch Norm

A4

RelU activation

y

3x3 Convolutional
Kernel

Layer Output

(a)

Input from previous

layer

Batch

Norm

Y

RelU activation

A

y

1x1 Convolutional
Kernel

Y

Batch

Norm

A

y

RelU activation

A

y

3x3 Convolutional
Kernel

Batch

Norm

A

¥

ReLU activation

3

y

1x1 Convolutional
Kernel

y

Layer Output

(b)

Figure 45 : (a) Modified shortcut module (b) Modified bottleneck module

56

In general, it has introduced two new variants ResNet-152 and ResNet-200.

ResNet-152 is composed of one convolutional layers, 50 bottleneck modules each
shall have three convolutional layers and one fully connected layer with total 60 million
weight parameter and top-5 error of 5.5% on the ImageNet data set.

ResNet-200 is composed of one convolutional layers, 66 bottleneck modules each
shall have three convolutional layers and one fully connected layer with total 64.7 million
weight parameter and top-5 error of 4.8% on the ImageNet data set.

3.9. Conclusion

Figure 46 summarizes the evolving networks since AlexNet where obvious trends
across these networks can be observed

Inception-v4
80 1
Inception-v3 ResNet-152
ResNet-50 VGG-16 VGG-19
754 ResNet-101
. ResNet.34
g 70 1 ResNet-18
"] 00"
e GoogleNet
B ENet
2 651
%‘ © BN-NIN
" 60 5M 35M 65M 95M 125M ---155M
BN-AlexNet
551 AlexNet
50
0 5 10 15 20 25 30 35 40
Operations [G-Ops]

Figure 46 : Different networks compared according to their size, number of operations
and Top-1 accuracy from [106]

Firstly, the attempt to improve the network accuracy through increasing the size of
the networks in terms of depth which is reflected in number of layers within the network
as well as the width which is reflected in number of units per layer. The network size
increase can be beneficial through the increase of the number of nonlinear functions
applied allowing the network to be more discriminative and increasing the number of
abstracted learned representation hierarchy. However, this shall come with a price in
terms of dramatically increase in the required computational resources to train the
network and the network tendency to over fit. To overcome these problems while being
able to increase the network size, computation efficient networks which start to modify
shape of layers and their connection were innovated as shown in the Inception and
ResNet networks

Secondly, the number of fully connected layers are reduced moving most of the
computations and learnable weights to the convolutional layers. Moreover, networks like
Inception doesn’t include a one

Thirdly, the network kernel size tends to be more compact. A kernel size can vary
from very large size (i.e. 11x11 as in AlexNet) to a very small one (i.e. 1xn or nx1 as in
Inception). Decomposing large kernels into a set of cascaded smaller ones can reduce the

57

computation complexity and the number of learnable parameters through the replacement
of the loose and over parametric kernels with compact ones, meanwhile applying these
smaller kernels sequentially can maintain the overall effective receptive field achieving
almost the same network performance. Moreover, kernels decomposition can be
beneficial in increasing the number of nonlinear transformation applied enhancing the
network capability to be more discriminative

58

Chapter 4 : Exploring Convolutional Neural Networks
Different Layers

As illustrated in the previous chapter, the current trend in designing CNN is to
modify the structure of its layer either by introducing a new convolutional kernel (i.e.
Ix1 convolution) or the connection between different kernels within its layer (i.e.
Inception [98] or ResNet[29]) before starting to increase the depth of the network.
Network modification on the architecture level had shown to be fruitful achieving a
significant enhancement in the performance

In this chapter, exploring different modification in the CNN layers whether the
convolutional or the pooling was done with the aim to introduce a new mapping function.

4.1. Basic Setup

To start exploration, it is required to choose the application task, followed by
defining the target data set, then switching to choose an efficient framework and finally
defining the platform to run out the experiments upon it.

The selected application shall be image classification given it is the common task
used to evaluate the evolving networks as well as being the basis for other computer
vision tasks such as object detection and localization.

The picked out Data set shall be CIFAR-10[63] where it is considered as an
acceptable data set used in experimenting some of the state of art networks as NiN[105]
and ResNet[29], meanwhile having an average complexity when compared to
MNIST[62] which is very easy and tiny one and the ImageNet[64] which is a huge data
set that requires a very expensive computational infrastructure

The chosen Framework shall be Keras with TensorFlow as backend [107]. Keras is
a widely adopted framework with a lot of online supports. The keras flow as well as its
associated key image data generator class is described in Appendix one

Among the different available computing platforms available, google compute
engine and amazon web services were used interchangeably across this work. These
platforms are equipped with a high end GPUs such as V100 enabling deep networks
experimenting and training. More about the computing platforms can be found in
Appendix two

4.2. Baseline network

The network used in the experiments of this chapter is inspired from VGG [97],
where it follows its footsteps as shown in Figure 47 from fixing the kernel size to 3x3 to
using two convolutional layers with same number of kernels before halving the feature
map through the usage of a maximum pooling layer. A fully connected layer is then
applied at the end to generate the logits of the target classified class

59

43 channels—

—z

&

32 channel

— Iz

oA
1,

——32 channels———>

H/2

Convolutional layer
32 kernels each of size 3x3

Convolutional layer
32 kernels each of size 3x3

Maximum pooling Layer
2x2 Grid size reduction

Fully connected Layer

Target Output

32 kernels-

N
™ 3x3 kemel

Figure 47 : Baseline network

4.3. Convolutional layer modification

4.3.1.

Pseudo Rotated Kernels

Reviewing back the basic convolution operations as shown in Figure 48 where
spatial image filtering is done through convolving a trainable weight kernel with an input

image to generate the feature map going to next layer.

Feature map

—_

1[0 [T
1l1]o0
1|11

P —

—_——

_ e o
1|01

Convolv

onvolved o110

_________ 1] 01

Kernel

—

= 4P
—

L

— — _—__-—-_:'..-‘-'
_ — — == —
1*1+ 00+ 0*1+ 1*0 + 1*1 +
0%0 +1*1+41%0+ 1*1=4 - -7
— -— o “]
-— - -—
— - -
—
—
—

Feature Map

Figure 48 : Basic convolutional operation

From an operation point of view, this can be shown as modifying the intensity of a
pixel according to the intensities of the neighboring pixels. Another point of view, is the

60

mathematical one, where this operation is actually a cross correlation one where actual
convolution requires rotating the filter by 180 degrees before convolving it with the input.

This is the initial inspiration of applying the pseudo rotation kernels, where the
network can benefit from the usual cross correlation function in addition to allowing it to
perform an actual convolutional one using a rotated kernel with 180 degrees enhancing
its capabilities in extracting more useful features. Figure 49 shows a cross correlation
kernel with a zero degree rotation and its convolution kernel pair with 180 degree

rotation).
11213 9187
4 |5]6 6|5]|4
71819 3121
(a) Zero degree rotated Kernel (b) 180 degrees rotated kernel

Figure 49 : (a) Zero degree rotated kernel (b) 180 degree rotated kernel

Using this pair of kernels, the baseline network can be modified as shown in Figure
50 with a note here is the generated feature map is almost doubled.

€3 channels—>

g

f

H

l

¢———=64 channels———>

i

2
éshinnvk-)

I
Modified Convolutional layer
32 kernels each of size 3x3 with
their 180 degree pair of rotated e
kernels
~ ~
~_ Cakemeisy i s
o / S
_______________ ~ 1 ~
o
Modified Convolutional layer S~ ~_
32 kernels each of size 3x3 with S~ F
their 180 degree pair of rotated S
kernels =~

~ 3x3 kernel 3x3 180 degree
rotated kernel

Maximum pooling Layer
2x2 Grid size reduction

Fully connected Layer

Target Output

Figure 50 : Modification to baseline network to account for the 180 degree rotated

kernel

61

Moreover, the idea of rotating kernels can get more insights from image processing
techniques, where the feature detectors like Robert Cross edge detection or Sobel edge
detectors are based on rotating kernels where a pair of zero degree kernel and a 90 degree
rotated one are applied to extract the features. Hence, generalizing the rotating kernels to
have a 90 degree rotated kernels as shown in Figure 51 would be fruitful.

11213
4 |5]6
718(9

91817
615]|4
31211

(c) 180 degrees rotated kernel

71411
8|5|2
916|3

3(6]9
215(8
1(4]7

(d) 270 degrees rotated kernel

Figure 51 : Pairs of 90 degree rotated kernels starting from(a) a zero one to (d) 270
degree rotated kernel

Another modification for the baseline is required in accordance to applying the 90
degree rotated kernels one as shown in Figure 52.

€3 channels—>

<

f

H

l

4128 channels—————

4 channel s—>

Modified Convolutional layer
32 kernels each of size 3x3 with
their 90 degree pair of rotated

kernels

Modified Convolutional layer
32 kernels each of size 3x3 with
their 90 degree pair of rotated

kernels

4——————128 channels————

Maximum pooling Layer
2x2 Grid size reduction

Fully connected Layer

Target Output

3x3 kernel 3x3 90 degree 3x3 180 degree 3x3 270 degree

rotated kernel rotated kernel rotated kernel

Figure 52 : Modification to baseline network to account for the 90 degree rotated kernel

62

However, to squeeze the idea more, an attempt to rotate the zero degree kernels by
45 degree won’t be feasible as it requires the kernel shape to be a trapezoid, thus to
overcome this limitation an approximation can be done to divide the 90 degree rotation
into two steps as shown in Figure 53 where one step is to rotate the kernel in the required
90-degree manner but with a shuffled kernel and the second step is to rearrange the kernel
to obtain the 90 degrees rotation kernel. The first step can be considered as a pseudo 45

degree rotation meanwhile the second step is usual 90 degree rotation.

112]3 8|52
4 5|6 91613
71819 71411

9|87 2|58
6|54 1|a]|7
3|21 3|69

1 6|5]|4
2 31211
3 9|87

9 415]6
8 7]18(9
7 112(3

{e) 180 degrees rotated kernel (f) Pseudo 225 degrees rotated kernel (g) 270 degree rotated Kernel (h) Pseudo 315 degrees rotated kernel

Figure 53 : Pairs of pseudo rotated 45 degree kernels starting from(a) a zero one to (h)

315 degree rotated kernel

The modification of the baseline to account for the pseudo 45 degree rotation can be

shown in Figure 54.

l Modified Convolutional layer
32 kernels each of size 3x3 with
their pseudo 45 degree pair of
rotated kernels

Modified Convolutional layer

32 kernels each of size 3x3 with

their pseudo a5 degree pair of
rotated kernels

Maximum pooling Layer
22 Grid size reduction

Fully connected Layer

Target Output

8 Kernels—————

;

™

343 kernel 33; eudo 45 nsodeu 363 pseudo 135
m;u rotated kernel degree rotated
kernel

%@@%

\ 20 180 degres ;symdwusii!"ﬂdg 313 peaudo 315

N

" farnl

Figure 54 : Modification to baseline network to account for the 45 degree rotated kernel

63

When analyzing the aforementioned approximation, it can be shown that the step of
rotating the kernel into a certain direction is a mandatory one given that the 90 degree
multiples have a straight forward structure while the pseudo intermediate rotation step
which includes kernel shuffling is an arbitrary one given the way of arranging the kernel
was a subjective one.

This would lead to generalizing the pseudo rotation steps more by assuming their
shuffling before reaching the 90 degree multiples can be divided into more fine steps that
can cover all the available shuffles. This is what pseudo 15 degree rotation does as shown
in Figure 55.

123 9|63 8|s|2 g(5]2 9|63 7141
4|58 HELR 7|81 9|63 8|52 963
789 8|52 9|63 7041 7|41 8|52
{a) Zero degree rotated Kernel (b]Pseudo 15 degrees rotated kernel (c)Pseudo {d) Pseudo 25 d {e) Pseudo 60 degrees rotated kernel (f} Pseudo 75 degrees rotated kernel
7|41 3 (2|1 6|54 6|5]|a 3021 9187
8|5](2 9(8|7 918(7 3121 6|54 312(1
916(3 6 (5|4 312(1 9|lsg]|7 o |87 6|54
{g) 90 degree rotated Kernel (h) Pseudo 105 degree rotated Kernel (i) Pseudo 120 degrees rotated kernel (i) Pseuto 135 degrees rotated kernel (k) Pseudo 150 degrees rotated kernel () Pseudo 165 degrees rotated kernel
9(8|7 114(7 2|58 2(ss 1]al7 3[6]9
6|5|4 3|6|9 3/6|9 1]al? 2|58 1(a]7
3|21 2|58 1|47 3069 3[e]o 2[5]8
(m) 180 dogrea rotated Karnel (n) Pseudo 195 degree rotated Kernel{o) Pseudo 210 degrees rotated kernel (p) Pseuds 225 degrees rotated kernel (g) Pseudo 240 degrees rotated kernel (¥} Pseudo 255 degrees rotated kernel
3|6|9 7|89 4|56 alsls 7189 1213
2|58 1213 1|23 7189 4]ss 7|89
1(af7 4|58 7(8|9 1213 11213 4|56
(s) 270 degree rotated Kernel {t) Pseudo 285 degree rotated Kernel{u) Pseudo 300 degrees rotated kernel (v Pseudo 315 degrees rotated kernel (w) Pseuda 330 degrees rotated lernel {x) Pseudo 345 degrees rotated kernel

Figure 55 : Pairs of pseudo rotated 15 degree kernels starting from(a) a zero one to (x)
345 degree rotated kernel

Also, the modification of the baseline to include the pseudo 15 degree rotation can
be shown in Figure 56.

3 channels>

T-l" Input
LA I O B I T e 768 koserats »
1 Modified Convolutional layer

52 kemels each of size 33 with D D

their pseudo 18 degree pair of
” \ P 2 kermels
_______________ \
[} 5
l Modified Convalutional layer 3
) o ' A G “ @ ﬁ @ ﬁ @ ﬁ
their pseudo 18 degree pair of n

rotated kermels \ 015 ek peudo 30 3u3 peeudo 45 343 psudo 60 33 pseudo 75

rotated kemels

prlogiiet degree ratoted degree rototed degres rotsted degree rotated

o pEpEEs

242 Grid size reduction
390 degres 3 piewio 105 33 pieudo 20 1 pselo 135 33 paeude 150 33 pseuda 165

totated kernel dne

I I s \ @@@i@@
Fully connected Layer ‘\“

33 80 degren Idpueud 195 Wdpredo MO 3k pdo 225 30 ik 10 3k et 255
degre

kermel pitiiy kemmel

[| |
. \ﬁﬁﬁiﬁﬁ

" e J!psud o 285 s;pm o300 apaeudo 315 udpsado 330 43 rewdo 43
el o dugmrod | degreeruted et e

Figure 56 : Modification to baseline network to account for the 15 degree rotated kernel

64

The 15 degree pseudo rotated kernels actually would lead to the creation of the
pseudo rotated kernels design space as shown in Figure 57, where there is a pool of
pseudo rotation kernels along the rotation circle with an arbitrary choice during the
design of the network to choose which of them to be applied. This can be viewed as
adding a new kernel type in the network optimization problem similar to how NiN[105]
added a new dimension in optimizing the kernels through the introduction of the 1x1
kernel.

0 degree rotated kernel
Pseudo 345 degrees rotated kemnel @==""" = Pseudo 15 degrees rotated kernel

Pseuda 330 degrees rotated kernel Pseudo 30 degrees ratated kernel

Pseudo 45 degrees rotated kernel
Pseudo 315 degrees rotated kernel

Pseudo 300 degrees rotated kernel Pseudo 60 degrees rotated kernel

Pseudo 285 degrees rotated kernel Pseudo 75 degrees rotated kernel

Pseudo Rotated Kernel
270 degrees rotated kernel o 90 degrees rotated kernel
Circle Space

Pseudo 255 degrees rotated kernel Pseudo 105 degrees rotated kernel

Pseudo 240 degrees rotated kernel Pseudo 120 degrees rotated kernel

Pseudo 225 degrees rotated kernel Pseudo 135 degrees rotated kernel
Pseudo 210 degrees rotated kernel

Pseudo 150 degrees rotated kernel

Pseudo 195 degrees rotated kernel ™ Sau o =" Pseudo 165 degrees rotated kemel

180 degrees rotated kernel

Figure 57 : Pseudo rotated kernels circle design space

Table 1 shows the comparison of achieved accuracy from the baseline network and
its modified versions as well as the number of increased parameters after training them
for 10 epochs

Network Top-1 error Number of parameters/ Computation

ratio

Baseline 34.06 % 1x

Modified with 180 31.56 % 2x

degree kernels

Modified with 90 33 % 4x

degree kernels

Modified with 45 33.4% 8x

degree kernels

Modified with 15 33.7% 24x

degree kernels

Table 1 : Comparison between Baseline network and its pseudo rotated modified
versions

The results obtained from the modified networks are promising given that they
showed some enhancements in the accuracy with only few number of epochs

65

The intuition here is that the pseudo rotated kernels interact with the affine
transformation which is the core foundation of the ML theory through its translation and
rotation methods. Translation method is established in the CNN by means of the
convolutional kernels (recall it is actually a cross correlation one) where the pseudo
rotated filters widen this method by enabling the network to perform the usual cross
correlation function accompanied by the actual convolution one by means of the 180
degree rotated kernel, meanwhile the pseudo rotating kernels enhance the rotation
method by providing a set of arbitrary chosen rotated kernels at each layer. Moreover,
the pseudo rotated kernels increase the robustness of translation invariance property of
the network by providing the feature map rotated in several ways as if the network is
capable to rotate the feature map at each layer. This may be viewed as if the network has
become self augmented where it has its own self augmentation methods.

A final note to be mentioned is that modifying the kernel size to larger sizes (i.e. 5x5
kernels) to have more pseudo rotation degree steps is assumed to be non-beneficial given
the current shown benefit from the state of the art networks in making the kernel size
more compact. Furthermore, increasing the kernel size will come with a huge
computational cost penalty from the larger kernel its self and its associated pseudo rotated
ones making the training process non feasible. For instance, a 5x5 kernel with its 90
rotated kernel shall require 100 learnable weigh while the 3x3 kernel shall require 36
only meaning that the a single 5x5 kernel requires approximately 2.7 extra computation
power to be trained.

4.3.2. Kernels Mathematical derivations

Another approach to modify the convolutional layer is to introduce some
mathematical relations between different kernels in analogous to how the MFFCs filter
bank in speech recognition is constructed to extract the features. This filter bank
performance was enhanced through correlating different filters together by means of
averaging each two successive one to generate a new one that can benefit from the
previous and the subsequent filter. This can be viewed as introducing an intermediate
kernel that can hopefully generate a new useful feature from the already feature trained
kernels.

One potential relation as shown in Figure 58 is to generate a new kernel between
every two successive kernels through either averaging them or using one of the basic
operations such as addition, subtraction, multiplication and division or a complex one
such as geometric mean, root mean square and the logarithmic mean.

66

Original Kernels

Derived Kernels

e —
p—

Mathematical
Relation

Mathematical
Relation

Average by 2

Addition

Subtraction

Multiplication

Division

Geometric mean

Root mean Square

Logarithmic mean

Figure 58 : Adding a derived kernel between every two successive kernels

The intuition here is that if the kernels are concentrating on correlated regions to
generate different features then introducing an intermediate one can benefit from both of
them to capture a new feature that would be captured only using a larger kernel or when
processed in the next layer. This can be beneficial to the learning process of the network
as if it is equipped with a larger kernel. The modification to the base line network can be

shown in Figure 59.

<3 channels—

Ky

ez

&———63 channels——>

i
l 2

63 ch 1

&

P

Modified Convolutional layer
32 kernels each of size 3x3 with
their mathematical derived pair

Modified Convolutional layer ~o

32 kernels each
their mathemati

of size 3x3 with
ical derived pair

Maximum pooling Layer
2x2 Grid size reduction

Fully connected Layer

Target Output

3x3 kernel

3x3 kernel

™. 3x3Derived kernel

Figure 59 : Modification to baseline network to account for the kernels derived from

every two successive ones

67

Table 2 shows the comparison of achieved accuracy from the baseline network and
its modified versions as well as the number of increased parameters after training them

for 10 epochs

Network Top-1 error Number of parameters/
Computation ratio

Baseline 34.06 % 1x
Modified with Average by 2 34.4 % 1.97x
Modified with Addition 35.5% 1.97x
Modified with Subtraction 34 % 1.97x
Modified with Multiplication 34.2 % 1.97x
Modified with Division 90 % 1.97x
Modified with Geometric 39 % 1.97x
mean by 2
Modified with Root mean 42.25 % 1.97x
square by 2
Modified with Logarithmic 90 % 1.97x
mean by 2

Table 2 : Comparison between Baseline network and its modified versions to account
for derived kernels between every two successive kernels

The results obtained are a disappointing one as the network didn’t benefit from the
introduced kernels showing that the kernels weren’t correlated enough to allow the
generation of new kernels that can benefit from how the kernels overlap on the same
region to generate different features.

One modification to the generated kernel is to increase its size allowing more regions
to be overlapped and hence increasing the probability of correlating the kernels together.

The kernel size is increased to 5x5 as shown in Figure 60

Original Kernels

Derived Kernels

Average by 2

Average by 2

Figure 60 : Adding a derived kernel between every two successive kernels with an
increased size to 5x5

68

Also a modification to the base line network is done in accordance which can be
shown in Figure 61.

€3 channels—>

f¢\" Input
wl L 1 -",-r"‘—" 3 kernel
l Modified Convelutional layer

32 kernels each of size 5x5 with
their average by 2 derived pair

¢————63 channels——>

A
~
~
i :
_______________ ~
| B
N
L

hanels Modified Convolutional layer A N
32 kernels each of size 5x5 with S
3¢ their average by 2 derived pair AN
~
& AN 5x5 kernel 5x5 kernel
f R
_______________ ~
H o N
N
i ~
~
S A
channels Maximum pooling Layer N N
2x2 Grid size reduction N
a2 63 ch ! ™. 5x5 Derived kernel
T T
T ['i'mJ _______________
e(ha:nz\i’

Fully connected Layer

Target Output

Figure 61 : Modification to baseline network to account for increasing the derived
kernels from every two successive kernels size to 5x5

Table 3 shows the comparison of achieved accuracy from the baseline network and
its modified versions as well as the number of increased parameters after training them
for 10 epochs

Network Top-1 error Number of parameters/
Computation ratio
Baseline 34.06 % 1x
Modified with Average by 2 38.3 % 5.46x

Table 3 : Comparison between Baseline network and its modified version to account for
increasing the size of the derived kernels between every two successive kernels to 5x5

The results didn’t improve showing that this may be the wrong dimension of
modification.

However, another dimension is to increase the window of averaging instead of 2
only may be using 4 or 8 or even start to bias the averaging using a weighted one may
enhance the accuracy. Figure 62 shows the averaging by 4, while Figure 63 shows the
averaging by 8. The modification to the baseline in accordance to averaging by 4 and 8
can be shown in Figure 64 and Figure 65 subsequently.

69

Original Kernels

Derived Kernels

Average by 4

Average by 4

Average by 4

Figure 62 : Adding a derived kernel between every four successive kernels

Original Kernels

Avarags bys

L

Derived Kernels

Average by &

Figure 63 : Adding a derived kernel between every eight successive kernels

3 channels—

ez
%

Modified Convolutional layer
32 kernels each of size 3x3 with
their average by 4 derived pair

Modified Convolutional layer
32 kernels each of size 3x3 with
their average by 4 derived pair

(11
l H

Maximum pooling Layer
2x2 Grid size reduction

10
l

Fully connected Layer

Target Output

~ B3 kemel D3kernel 3x3kernel 3x3 kernel

~_ 3x3 Derived kernel

Figure 64 : Modification to baseline network to account for the kernels derived from
every four successive ones

70

o
f" Input
H i Pl
l Modified Convolutional layer
32 kermels each of size 3x3 with
. their average by 8 derived pair
y ~ T
H S B L e S - Tee—e
Cni? Modified Convolutional layer A
32 kernels each of size 3x3 with .
I their average by 8 derived pair Sl
T{"" T . 3x3kernel 3x3kernel 3x3kernel 3x3kernel 3x3 kernel 3x3kernel 3x3kernel 3x3 kernel
b B BN E—— Tl
L .

Maximum pooling Layer

L 33 Derived kernel
2x2 Grid size reduction

AR
l)

Fully connected Layer

|

Target Output

Figure 65 : Modification to baseline network to account for the kernels derived from
every eight successive ones

Table 4 shows the comparison of achieved accuracy from the baseline network and
its modified versions as well as the number of increased parameters after training them
for 10 epochs

Network Top-1 error Number of parameters/
Computation ratio

Baseline 34.06 % 1x
Modified with Average by 34.1% 1.9x
4
Modified with Average by 34.03 % 1.78x
8
Modified with Weight 34 % 1.9x
Average by 4
Modified with Weight 34.34 % 1.78x
Average by 8

Table 4 : Comparison between Baseline network and its modified version to account for
increasing window of derived kernels to be four and eight successive kernels

The results didn’t show any improve which suggests that this method mightn’t be
beneficial for image processing in contrast to speech recognition. This can be regarded
to the fundamental difference between both of them, where image processing is spatially
correlated while speech recognition is timely correlated. Thus, correlating the kernels can
benefit from the sequential nature of the speech recognition and the subsequent kernels
can be correlated together, meanwhile image processing has spatial nature where the
intensity of a group of pixels are correlated to each other requiring the kernels to be
spatially correlated which is inherited in the convolutional kernels through sharing
weights

71

4.4. Pooling layer modification

These layers are used to reduce the feature map dimensions mainly the height and
width with the maximum and average layers being the widely used nowadays.

Another similar method which is used in image processing is the Median layer. As
shown in Figure 66 it is similar to the average layer where it applies the averaging on the
pixel to subsample the feature map to the required dimension. However instead of
averaging all the window pixels, it rearranges the window such that it can focus only on
the middle ones allowing their average only (i.e. obtaining the mean). The advantage of
this layer over the others is in its ability to smooth the feature maps where it discards any
intensity overshoot in the pixels within the window that can be viewed as
unrepresentative to the surrounding pixels.

- .
27| T—~_ _-F"s
— — - — —
4 6 Re-Arrange — Mean select — - -~
s) 2(afl6|7>»a|l6| _—-——"
Feature map Median Pooling Feature Map

Figure 66 : Median Layer

The modification of the base line network in accordance to using median layer can
be shown in Figure 67.

72

€3 channels—>

&~

- 32 kernel

—T—x
5
3
=
\
\

Convolutional layer
32 kernels each of size 3x3

TRy
A
’
/
/
’
/
-
-

~
.
Convolutional layer S~
32 kernels each of size 3x3 RS N
32 channek ™ 3x3 kemel
f
wl LT -
Median pooling Layer
2x2 Grid size reduction
32 channel Is
A
T 2
(7 O I O O L I I

Fully connected Layer

Target Output

Figure 67 : Modification of the base line network to use the median layer

Table 5 shows the comparison of achieved accuracy from the baseline network and

its modified versions as well as the number of increased parameters after training them
for 10 epochs

Network Top-1 Number of parameters/
error Computation ratio
Baseline Maximum pooling | 34.06 % 1x
Layer
Baseline Average pooling Layer | 34.2 % 1x
Modified with Median Layer 34.4% 1x

Table 5 : Comparison between Baseline network and its modified version to account for
using median layer

The median layer didn’t introduce any accuracy enhancement and this can be
regarded to the fact that median layer is used in image de-noising problems where it is
required to recover a contaminated image unlike the cifar-10 data set or any other CNN
well known image classification data sets where a preprocessing step is done while
collecting the images to ensure that all the images have similar distribution of intensities
without any overshooting one.

73

Chapter S : Proposed Pseudo Rotated Nets

In this chapter, the generalization of the pseudo rotated kernels is proposed where
full networks with different configuration are implemented demonstrating the accuracy
enhancements achieved by fusing these kernels into the well-known architectures such
as ResNets[29] and VGG[97] when applied on the CIFAR-10 data set[63].

5.1. ResNet Based networks

The ResNet was chosen to be the core architecture given its popularity, proven
training time enhancement and the breakthrough accuracy achieved in all the ImageNet
competitions. Moreover, the ResNet authors had created modified versions to experiment
on CIFAR-10 data set enabling a start network that is ready for modifications as well as
published results to compare with.

The start point for modification is the second version [102] where the pre activation
bottleneck convolutional layer was introduced. The bottleneck layer is modified as
shown in Figure 68 to account for the addition of the pseudo rotated kernels to be
considered as the core layer of the network.

RelU Non Linear Activation

Tx1 Convolutional kernel with the —Canuolutionsl kernels zero degree ones with their poir)—)
pseudo rotation kernel pairs
(effectively a set of 1x1 with same

kernel value)

— — " ¢—Comalutional kernels (zero degree ones with their pairl—3

o !
\ e seltis
o u.mmp-\-! by
Bl Sk peude nd e 31 e
rotated aid

Vel et
pair 1 palr 2 p:

- &—Comvolutional kerels [zero degrec anes with their pair}—»

1x1 Convolutional kernel with the
pseuda rotation kernel pairs .
(effectively a set of 1x1 with same
kernel value) e

N Setofpueudoratatedkernel]]
N Peissccompaniedbysero Jkemel (ctpseuda 141 pseudo
el wtated rotated
el

pal

m}
peu
Rotat
hers
pa

11

wda
ke tod
N\ _iatfectiva sama zaro degres kernel nel
ADD List N Kernel) pale 1

Figure 68 : Bottleneck modification for pseudo rotated kernels

74

This layer was modified to generate four versions one with the 180 degree rotated
kernel pair as shown in Figure 69, one for 90 degree rotated kernel pairs as shown in
Figure 70, one for pseudo 45 degree rotated kernels pair as shown in Figure 71 and one
for one for pseudo 15 degree rotated kernels pair as shown in Figure 72. These modified
layers are integrated within the ResNet full network without any modification in its
structure.

Input feature map

]

Batch Norm Layer

ReLU Non Linear Activation layer

Cnrlwllllioml kernels (zero d!gr!e nnes with the 180 degree rum;d

1x1 Convolutional kernel with the
pseudo rotation kernel pairs.
[effectively a set of 1x1 with same
kernel value)
N . Zerodegree kemel
~

Set of pseudo rotated kernel pairs
accompanied by 2ero kernel
Batch Norm Layer {effective same zero degree kemel] 1x1 kw el m 180 degree rotated
S kemel

~
~
~

ReLU Non Linear Activation layer

c " ith the
kernels {zero] 180 degree rotated__

3x3 Convolutional kernel with the
pseudo rotation kernel pairs

~ Set of pseudo
~ rotated kernel pairs
by

Batch Norm Layer S

~ zeva kemel

3x3kernel 3x3 180 degree rotated
emel

ReLU Non Linear Activation layer

_Convolutional kernels {zero degree ones with the 180 degree rotated
pair)

1x1 Convolutional kernel with the
pseudo rotation kernel pairs
{effectively a set of 1x1 with same
kernel value)
ha . Herodegree kernel

Suofpseudu ratated kernel pairs
mmmmm ied by zero kemel
SN lstfective same tero degree kemel) 1xlkemnel 1x1180 degree rotated
N kernel
ADD Layer Ny

~

Output feature map

Figure 69 : Bottleneck modification for 180 degree rotated kernels

75

Figure 71 : Bottleneck modification for pseudo 45 degree rotated kernels

76

ReLU Non Lingar Activation layar

ReLU Non Linear Activation layar

- Comiohtions kemets e degre e with e e 1 depre roated_

T

————2akemer———— -

™ @@@@@@

3x3 Canvolutional kernel with the
pseuta rotatian kernel pairs

~ D —— Immuiedn dapewiots 0 piate 60 3a3 pueudo 75

~ harmal hermel Kermel

~
~
~
~
~
~
~
~ B30 depree 303 preuo 105 343 prauda 120 Ik pueudo 135 33 paruso 150 33 e 165
ReLU Non Linsar Activation layer AN e et S o

Ty e @@@@@@

A degres B)pwu-d aIs Bk preuco 100 Jad preudo 115 3 pseudo 330 3a3 pueuda 345
\ et veinet degten
250 Lapes \ L prosen
\ ~—
\ S~
\ -
Ay e -
v S~
\\ —Convalutional f pseudo . ~.
Output fear i X -~
A s -
\ = -
A} -
A -_——
\ ‘ —-——
\ e degree o / ———
.
o "]
;,, O
et 161 pagad 15 oo 30 111 prnudo a3 .
segras avovnd armal a
] [
Moot inl i 1as
degres o arnel g rovoted hemel
=]
2 100 sag o 101 prsudo 215 o 120
Totsted el detra kot il e ks vefvel Segie rorated rmel degno rasnd
= [} || —J
T ——— Inlpooudodoy 1 proto s
etated bevnel Gegrod ssaeivopal | degie rotated kernel degres rwtated el degres otated herne!

Figure 72 : Bottleneck modification for pseudo 15 degree rotated kernels

While there are many ResNet variants, the focus shall be on the ResNet-20, ResNet

56 and ResNet 110.

One note to mention here, training a full network is somehow a problematic one
given the amount of computational power required which may be beyond the capability
of this work. Hence, instead of training for a fixed number of epochs, the network shall
be trained until reaching the accuracy saturation point where the achieved accuracy is
near the published one, meanwhile increasing the number of epochs would result in minor
enhancements. This would enable a fair comparison between the networks whereas the
deeper networks would require more epochs to converge compared to a shallower one

while maintaining a budget computational power

77

5.1.1. Pseudo Rotated ResNet version 1

Starting from the ResNet 110 which is one of the deepest ResNet network with
around 110 layers, Table 6 shows the comparison of achieved accuracy after training for
the accuracy saturation point defined earlier from the in house implemented ResNet-110
and its modified versions with their total number of parameters as well as the number of
increased parameters.

Network Top-1 | Total Number of Parameters increase

error parameters ratio

In house ResNet-110 N/A 1.7 Million 1x

ResNet with 180 degree | N/A 3.4 Million 2x

kernels

ResNet with 90 degree | N/A 6.8 Million 4x

kernels

ResNet with 45 degree | N/A 13.6 Million 8x

kernels

ResNet with 15 degree | N/A 40.8 Million 24x

kernels

Table 6 : Comparison between ResNet-110 and its modified pseudo rotated versions

As shown in the obtained training results such deep network was beyond the
available computation infrastructure either the GPU ran out of RAM, infeasible epoch
time (i.e. 10 hours) or the compiler failed to perform arithmetic optimization to fit within
the GPU. Such deep networks are usually trained using a network of multiple GPUs.

Next, moving to ResNet-56 was the reasonable step where it is composed of 56
layers where Table 7 shows the comparison of achieved accuracy after training for the
accuracy saturation point defined earlier from the in house implemented ResNet-56 and
its modified versions with their total number of parameters as well as the number of
increased parameters.

Network Top-1 | Total Number of Parameters increase

error parameters ratio

In house ResNet-56 8.54 0.85 Million 1x

%

ResNet with 180 degree | 9.5% 1.7 Million 2x

kernels

ResNet with 90 degree | 8.2% 3.4 Million 4x

kernels

ResNet with 45 degree | N/A 6.8 Million 8x

kernels

ResNet with 15 degree | N/A 20.4 Million 24x

kernels

Table 7 : Comparison between ResNet-56 and its modified pseudo rotated versions

78

Again from the obtained results, some networks were shown going beyond the
available computation infrastructure, however the obtained accuracy had shown either
no improvements or a negligible one that can be easily claimed to be from some noise or
the weight initialization. Moreover, the network didn’t benefit from the added parameters
and it had suffered from an over fitting problem given how fast the modified networks
had reached the saturation accuracy point (nearly around the 50 or the 60 epoch). The
overfitting may have occurred due to the tiny Cifar-10 image size (32x32) that doesn’t
require all these modifications as well as the small training data set amount, meanwhile
the modifications had added a huge number of parameters.

To address this overfitting problem two architecture modifications were done. The
first is to reduce the number of parameters through moving to the ResNet-20 while the
second is apply the dropout [108] and spatial dropout [109] regularization techniques to
help in training the increased number of parameters resulting from the modifications in
the network.

Dropout is a regularization method that randomly drops out some neurons output
where they are temporarily removed from the network during training. This is beneficial
in terms of allowing some neuron to change in respond to the absence of some adjacent
neurons to fix any unintended mistakes from other units which allows the network to be
more robust. It is commonly used after the dense fully connected layers.

Spatial Dropout 1is an alternative regularization method that allows
similar dropout manner to be applied within the convolutional neural networks whereas
an entire channel is dropped from the feature map within the convolutional layer in
analogous to how the neurons are dropped in the fully connected layers.

Another choice was made given the limited computational power available is to
choose the pseudo 45 degree rotated kernels as the pair of kernels used within the
bottleneck modified module.

All the aforementioned choices had led to the proposal of the Pseudo Rotated
ResNets version 1 which is shown in Figure 73 and its associated pseudo 45 degree
rotated kernels bottleneck layer modification to account for spatial dropout is shown in
Figure 74

79

2
e

&3 channels>

—B—n

———8 channels——>

%)

Input

|

Madified Convelutional layer
16 kernels each of size 3x3 with their 45
degree pair of rotated kernels

Bottleneck layer with 16 kernels and their
pseudo 45 degree rotated kernel pairs

Bottleneck layer with 16 kernels and their
pseudo 45 degree rotated kernel pairs

Bottleneck layer with 64 kernels and their
pseudo 45 degree rotated kernel pairs

cha

Bottleneck layer with 64 kernels and their
pseudo 45 degree rotated kernel pairs

Bottleneck layer with 128 kernels and their
pseudo 45 degree rotated kernel pairs

Bottleneck layer with 128 kernels and their
pseudo 45 degree rotated kernel pairs

Batch Norm Layer

RelU Non Linear Activation layer

&————8 channels———

2

f
l

=A== == ==

+———=& channels————

Average Pooling

Fully connected layer to flat the feature map

Dropout

Fully connected layer that acts a softmax for
classification

Output

€128 Canvolutional kernels {zero degree ones with the pseurla 45 degree rotated pair>

Zera degree
kernel /

Set of pseudo

a5rotated

kernel pairs

3x3 kemel 3x3 pseudo 3x3 90 degres

3x3 pseudo 135

45 degree rotated kernel rotated kernel degree rotated kernel

33 180 degree
kernel

33 psendo 225 B33 270 degree
degree ratated kemel rotated kemel

33 pseudo
315 degree rotated
kerne

Figure 73 : Pseudo Rotated ResNet version 1

80

eature map

Batch Norm Layer
RelU Non Linear Activation
layer

T C Terrel with
the pseudo ratation kernel pairs
(effectively a set of 1x1 with

value]

Spatial Dropout

RelU Non Linear Activation
layer

3x3 Convolutional kernel
with the pseudo ratation
kernel pairs

Spatial Dropout
ReLU Non Linear Activation
layer

ReLU Non Linear Activation
layer

T
the pseuda rotation kernel pairs
(effectively a set of 1x1 with
same kernel value)

\
\
AY
Spatial Dropout N N
\

Output feature map

~
~
~a
)
Iaipsouo 11 90degree 1xl psoudo 135
“ 45 degree rotated kemel degree
rotated kem ratated kemel
[} [m] O
Ax1 180 degree 1x1 pseudo 225 1x1 270dsgres Ixl psoudo 315
kermel degres rotated kernel degree ratated kernel
rotated kemel

—Conwolutionsl keenels (160 degree anes with the pseudo 85 degree ratated pair}—p

Set of preudo
45rotated kernel
pairs

33G0degree 3y
rotated kermel

BIV0degree 33 pseudn
Rernel rotated kermel 316 degree.
Fatated kernel

33 190 degres 33 proudo 225
degree rotated

N
N zerodeges =~
\ P k ~<
N
=) O
bikemel DAERUe LT0degree it paruds
sdegee romedbomel 135 degres
roted el rotated kernel
(] [} O
\ IR depree Ixipewo 12i0degee b paeude
kemel zisdegres rotedkermdl 315 degree
rotated kermel rotated kemel

Figure 74: Pseudo 45 degree rotated kernels bottleneck with spatial dropout

Table 8 shows the comparison of achieved accuracy after training for the accuracy
saturation point defined earlier from the in house implemented ResNet-20, in house

implemented ResNet-56 and the Pseudo

Rotated ResNet version 1 with their total number

of parameters as well as the number of increased parameters.

Network Top-1 | Total Number Parameters
error of parameters increase ratio
In house ResNet-20 9.6 % 0.27 Million Ix

In house ResNet-56

8.54 % 0.85 Million 3.1x

Pseudo Rotated ResNet version 1

7.1 % 2.16 Million 8x

Table 8 : Comparison between ResNet-20, ResNet-56 and Pseudo Rotated ResNet

version 1

81

The results obtained shows that the network started to benefit from the pseudo
rotated kernel pairs attached to the convolution layers, meanwhile the modified network
size and the associated added regularization methods had resolved some of the overfitting
problem resulting in an accuracy improvement. However, this accuracy enhancement had
come with an increase in number of parameters which shall be addressed in version 2.

5.1.2. Pseudo Rotated ResNet version 2

The enhanced accuracy shows the potential of the pseudo rotated kernels, however
it comes with a penalty in terms of increased number of parameters.

To address this increase, the circle space of the pseudo rotated kernels described
before in the previous chapter was revisited where it is required to search for another
pseudo rotated kernels combination that maintain the achieved accuracy meanwhile
reducing the number of parameters.

A useful insight here is to consider reducing the number of kernels within the pseudo
45 degree rotated kernels set where it is proposed to reduce the pseudo 45 degree rotated
kernels pairs to exclude the 90 degree multiples and shall be noted as pseudo 45 degree
without 90 corners as shown in Figure 75.

1|23 8|52 6|5|4
4|5|6 9|63 3(2]1
71819 7141 98] 7

{a) Zero degree rotated Kernel (b)Pseudo 45 degrees rotated kernel {c) Pseudo 135 degrees rotated kernel

215]|8 415]|6
1147 71819
3161]9 1123

(e) Pseudo 225 degrees rotated kernel (1) pseudo 315 degrees rotated kernel

Figure 75 : Pseudo 45 degree without 90 corners

This will result in modification to the bottleneck layer as shown in Figure 76.

82

Input feature map

1

Batch Norm Layer

RelLU Non Linear Activation
layer

¢ Convolutional kernels (zero degree ones with the pseudo 45 degree ratated pairs without
50 corners)

1x1 Convolutional kernel with the
pseudo rotation kernel pairs
(effectively a set of 1x1 with same
kernel value)
1 \ Zero degree
~ kemel
~
g \
Spatial Dropout 1l kelnel m pseudo 11 pseudo

Set of pseudo rotated kernel 45 degree 135 degree
paln accompanied by zero kernel rotated kernel rotated kernel
(elfe.:llve same zero degree [} O
kernel) 1x1 pseudo 1x1 pseudo
225 degree 315 degree
rotated kernel rotated kernel

Batch Norm Layer

RelU Non Linear Activation

layer
Convolutional kernels (zera degree ones with the pseudo 45 degree rotated pairs without
90 corners)
3x3 Convolutional kernel
with the pseudo rotation
kernel pairs
AN
N
N
Spatial Dropout Set of pseudo
~ 4Sratated kernel
~ pairs
N
N
~ 3x3 kernel 3x3 pseudo 343 pseudo 135
~ 45 degree rotated kernefiegree rotated kernel
~
Batch Norm Layer ~
N
~
~
~
~
~
RelLU Non Linear Activation 3x3 pseudo 225 3x3 pseudo
layer degree rotated kernel 315 degree rotated kernel
1x1 Convolutional kernel with the e~ -
pseudo rotation kernel pairs -~
(effectively a set of 1x1 with same T~
-
kernel value) -
\ ¢ Convolutional kernels zero degree anes with the pseudo 45 degree ratated pairs without
90 corners)
Spatial Dropout h
Zero degree
kernel
O ‘
ADD Layer 1 k!mel 1 ,,u,.g, 1x1 pseudo
Set of pseudo rotated kernel 45 degree 135 degree
pairs accompanied by zero kernel rotated kem‘ rotated kernel
(effective same zero degree
\ kernel)
1 pseudn 1:1 pseudo
225 degree 315 degree
Output feature map rotated kernel rotated kernel

Figure 76 : Pseudo 45 degree rotated kernels without 90 corners bottleneck

However, this will come with the cost of removing the 180 degree rotated kernel
which was the one responsible for the translation property enhancement. To mitigate that
loss, a modification to the network structure was done where the first and second set of
the convolutional layers shall use the introduced pseudo 45 degree without 90 corners,
meanwhile the third set shall use the 180 degree rotated kernels only.

83

The Intuition here is that the first and second sets of convolutional layers shall benefit
from the enhanced rotation property while going near the end of the network where the
features becomes more expressiveness and thus enhancing the translation property shall
be beneficial. This is basic idea behind the Pseudo Rotated ResNet version 2 which is

shown in Figure 77

Input

|

Modified Convolutianal layer
16 kernels each of size 3x3 with their
45 degree pair of rotated kernels

without 50

Bottleneck layer with 16 kernels and
their pseudo 45 degree rotated kernel

pairs without 90

{{ CRRTT PR CRr T
CCRCEO0- TR T
(T (S
({ECECECED- (AT
ETHHHDHHHHHU

Bottleneck layer with 16 kernels and
their pseudo 45 degree rotated kernel
pairs without 90

Bottleneck layer with 64 kernels and
their pseudo 45 degree rotated kernel
pairs without 90

Bottleneck layer with 64 kernels and
their pseudo 45 degree rotated kernel
pairs without 90

Bottleneck layer with 128 kemels and
their 180 degree rotated kernel pairs

Bottleneck layer with 128 kernels and
their 180 degree rotated kemel pairs

Batch Norm Layer

ReLU Non Linear Activation layer

Average Pooling

Fully connected layer to flat the feature
map

Dropout

Fully connected layer that acts a
softmanx for dassification

Output

€80 Carvalutional kermels [zere Begrec ones with the pscuro 4 degrec rotated pair without 9013

Setof preudo
Asrotated
Kl gairt
without §0
,,,,,,, 123 paedo 135
a5 gezree rotates himeldegroa rotsted kornel
323 praudo 225

degres retated kemel ;1;.,“ e

Figure 77

: Pseudo Rotated ResNet version 2

Table 9 shows the comparison of achieved accuracy after training for the accuracy
saturation point defined earlier from the in house implemented ResNet-20, in house
implemented ResNet-56, the Pseudo Rotated ResNet version 1 and version 2 with their
total number of parameters as well as the number of increased parameters.

Network Top-1 Total Number Parameters increase
error of parameters ratio

In house ResNet-20 9.6 % 0.27 Million 1x

In house ResNet-56 8.54 % 0.85 Million 3.1x

84

Pseudo Rotated ResNet 7.1 % 2.16 Million 8x
version 1
Pseudo Rotated ResNet | 6.08 % 0.83 Million 3.07x
version 2

Table 9 : Comparison between ResNet-20, ResNet-56, Pseudo Rotated ResNet version
1 and version 2

The results obtained show that the parameters were reduced to be comparable with
the ResNet-56 with an enhanced accuracy even more than Pseudo Rotated ResNet
version 1 showing that increasing the width using the pseudo rotated kernels may be more
performance beneficial rather than increasing the depth. The enhancement in the
accuracy while decreasing the number of parameters can be regarded to reducing the
overfitting by decreasing the number of parameters carefully through the distribution of
the more rotating kernels at the first stages while focusing on enhancing the translation
at the later ones.

5.1.3. Pseudo Rotated ResNet version 3

After showing the capability of the pseudo rotated kernels to enhance the accuracy
with a reasonable number of parameters, it is required to squeeze the network more in
attempt to boost the accuracy performance.

Reviewing back the affine transformation properties, one property seems to be
interesting is the scaling one. Successively applying the scaling property can push the
network one more step towards being capable to unify more properties of the affine
transformations within its processing.

Scaling can be done with the most straight forward approach through applying the
pooling techniques as an attached kernel within the convolutional kernels. However, this
direct apply of the pooling techniques could lead to the explode of parameters number
given it maintains the same number of channels from the previous layer feature map
while it scales its height and width. For instance, as shown in Figure 78, in the Pseudo
Rotate ResNet version 2 first layer outputs 80 channels within the generated feature map,
if the pooling layer is directly applied in the next one it would generate 80 channels in
the output feature map in addition to the 320 channels generated from the already existing
convolutional kernels which would result in a total 400 channels in the final feature map.

85

Input

|

€3 channels—>

2
AV

32

l

|

Modified Convolutional layer
16 kernels each of size 3x3 with
their 45 degree pair of rotated

kernels without 90

1 .

80 ch

1?"?'
32

l

11

&5 channels—>

Bottleneck layer with 16 kernels
and their pseudo 45 degree rotated

kernel pairs without 90

Pooling Layer with 2x2 grid size
reduction and padding

|

|

1

€—5 channels—>

|

l els

4——5 channels—

Figure 78 : Direct apply of pooling layer within the first layer Pseudo Rotated version 2

Moving with this approach across different layers would lead to an exponential
growth in number of parameters which would go beyond the computational power
budget. Analyzing the exploding number of parameters, it seems it is required to reduce
the number of channels when applying the pooling techniques.

Inspired from the Inception module where the applied pooling layers are followed
by a 1x1 convolution to reduce the number of channels and hence reduces the number of
parameters, it seems reasonable to follow their footsteps and apply the same approach
where each pooling technique shall be followed by a 1x1 convolutional kernel.

Thus, from the aforementioned, the bottleneck module is modified as shown in
Figure 79 to add maximum pooling kernel with 2x2 grid size reduction configured to
allow the padding method to keep the generated feature map dimension similar to the
input one enabling its further concatenation with the feature maps generated from the
convolutional kernels, meanwhile it is followed by 1x1 convolutional kernel also to allow
parameters reduction.

86

(202 Geid iz rechoction and
pading)

(effectively a set of 1x1
with same kernel value;

11 Comvolutional kernels

RelU Non Linear

/

Spatial Dropout

Activation layer

363 Convolutional

s o bl
212 Geil size reducticn and
gackding)

rotation kernel pairs

13 Comvalutional kemels

~ setof preuds
~
N
~ ~
~ - s e 3 praucs
~ depree rotated s voated b
~
~
~
~
~
N
~
~
N
— 03 pweudo
Rell Non Linear Activation ayer aupes et vl 415 dep i ot
T 1 o .
karnel with the pseudo | 12+2 Grid site reduction and T~
o padding) T
(effectively a set of 11| 121 Convolutiamsikermels Tm——l
| with same kernel val -
\\ € Sollowed by 11 Convolutionsl ke el 4
~
~ + |...m|.., v I []]
N oo sty =
N
~ l«
~
N o \
N ; v) e
.] (] =
N 102 et 111 o 101 135
“ 45 degronrotaed hermel Segros rotated kemal
~
- ~ O
N i e 225 2]
degres wtated hermel 315 degron otated bereel

Figure 79 : Pseudo 45 degree rotated kernels without 90 corners bottleneck with an
additional maximum pooling kernels

The network structure remains the same as pseudo Rotated ResNet version 2 as
shown in Figure 80.

87

€3 enannats- > Input

f I
L | . - 80 Comekios e e e e el 4 e e e i 81>
I WMI"“?‘M 3 Max pocling

utional layer16 =L

kernels each of size 3x3|

with their 45 degree 16 1x1
ks pair of rotated kernels | Convolutional
T” without 50 kernels
n { '
L M Bottleneck layer with 16 kernels and their
[— pseudo 45 degree rotated kernel pairs

without 30 and 96 Max pooling kernel
with 16 1x1 convolutional kernel

'i[ﬂ { ' Bottlenack layer with 16 kerels and their
pum—T——

pseudo 45 degree rotated kernel pairs

without 90 and 384 Max pooling kernel
f).‘x with 16 1x1 convolutional kernel

» .
1 LD:I:’_iEU LD]:’_i Bottienck layer with 64 kerels and their

pseudo 45 degree rotated kernel pairs
‘without 90 and 384 Max pooling kernel
with 64 1x1 convolutional kernel

Tx@
Y Bottleneck layer with 64 kernels and their
p——

pseudo 45 degree rotated kernel pairs
‘without 90 and 768 Max pooling kemel

with 64 1x1 convolutional kernel

)
ILU_U_.?[U " ' Bottleneck layer with 128 kernels and
their 180 degree rotated kernel pairs and

‘‘‘‘‘ 768 Max pooling kernel with 128 1x1
convolutianal kernel

WWU 1 s

their 180 degree ratated kernel pairs and
768 Max poaling kernel with 128 1x1

‘convolutianal kernel
l .

Batch Norm Layer

RelU Non Linear Activation layer

Average Pooling

-
f Al
1 Fully connected layer to flat the feature

2 harnates map.

Dropout

Fully connected layer that acts a
softmax for classification

Output

Figure 80: Pseudo Rotated ResNet version 2 with additional maximum pooling kernels
modification

Table 10 shows the comparison of achieved accuracy after training for the accuracy
saturation point defined earlier from the in house implemented ResNet-20, in house
implemented ResNet-56, the Pseudo Rotated ResNet version 1, version 2 and the
modified version 2 to include the maximum pooling kernel with their total number of
parameters as well as the number of increased parameters.

Network Top-1 | Total Number Parameters
error | of parameters increase ratio
In house ResNet-20 9.6 % 0.27 Million 1x
In house ResNet-56 8.54 0.85 Million 3.1x
%
Pseudo Rotated ResNet version1 | 7.1 % 2.16 Million 8x
Pseudo Rotated ResNet version 2 | 6.08 0.83 Million 3.07x
%
Modified Pseudo Rotated ResNet | 5.5% 1.61 Million 5.65x
version 2 with maximum pooling
kernel

88

Table 10 : Comparison between ResNet-20, ResNet56, Pseudo Rotated ResNet
versions 1 and 2 as well as Pseudo Rotated ResNet versions 2 with maximum pooling

The results showed some improvement from applying the maximum pooling in
attempt to achieve the scaling property of the affine transformation.

A greedy approach is to consider adding the average pooling in a similar manner to
the maximum pooling to boost the scaling property more. Thus, the bottleneck module
is modified as shown in Figure 81. to add the average pooling kernel with same
configuration as maximum pooling and also shall be followed by 1x1 convolutional
kernel.

_ « Tebeee oy 20 Combatnal ere. d + tbacd i 1 ot el -
[h - -
. N
~
~
~
~.

b @@@ IHI] F - H»il]

i st g

=l=f=] ; A=+ -1
-a0 &9

Figure 81: Pseudo 45 degree rotated kernels without 90 corners bottleneck with an
additional maximum and average pooling kernels

An insight here is that one can rethink that the network is approaching to be self-
augmented where the basic augmentation techniques such as rotation and scaling are
already done within the network only adding noise is the missing basic technique. Thus,
another modification is done to apply Gaussian noise at the input image before passing
through the network.

All the aforementioned had led to the introduction of Pseudo Rotated ResNet version
3 which is shown in Figure 82

Input

|

Adding Gaussian Noise

Modified 3 Max
Convolutional layer | poaling

16 kernels each of size | kemels

3x3 with their 45

degres pair of rotated 16 La
kernels without g _| 20nvalutional kemel

Bottleneck layer with 16 kernels and their
pseudo 45 degree rotated kernel pairs

3 Aversge
pooling
kernels

withaut 90 and 112 Max pooling kernel
with 16 1x1 convolutional kernel & 112
Avg pooling kernel with 16 1x1

<convolutional kernel
Bottleneck layer with 16 kernels and their
pseudo 45 degree rotated kemel pairs

without 90 and 448 Max pooling kernel
with 16 1x1 convolutional kernel & 448
Avg pooling kernel with 16 1x1

convolutional kernel
Bottleneck layer with 64 kernels and their
pseudo 45 degree rotated kernel pairs 32 prrwide 225 33 provde.
without 90 and 448 Max pooling kernel degree rotatea keemel 315 “:::dﬂ!ﬂ
ke

ernel
Bottleneck layer with 64 kernels and their
pseuda 45 degree rotatad kel pairs
pooling kernel
nel

Bottleneck laver with 128 kernels.and
their 180 degree rotated kernel pairs and
296 Max pooling kernel with 128 1x1
convolutional kernel & 896 Avg pooling
kernel with 128 1x1 convolutional kernel

Bottleneck layer with 128 kernels and
their 180 degree ratated kernel pairs and
896 Max pooling kernel with 128 1x1
convolutional kernel & 896 Avg pooling

(O

Batch Norm Layer

1020

i J

—t hemels—y

RelU Non Linear Activation layer

Average Pooling

fa
H U_D]_’_D:D h Fully cannected layer to flat the feature
1 map

—thernet—t

Dropout

Fully connected layer that acts a
saftmax for dassification

Output

Figure 82 : Pseudo Rotated ResNet version 3

Table 11 shows the comparison of achieved accuracy after training for the accuracy
saturation point defined earlier from the in house implemented ResNet-20, in house
implemented ResNet-56, the Pseudo Rotated ResNet version 1, version 2, the modified
version 2 and version 3 with their total number of parameters as well as the number of
increased parameters.

Network Top-1 Total Number of Parameters
error parameters increase
ratio

In house ResNet-20 9.6 % 0.27 Million 1x
In house ResNet-56 8.54 % 0.85 Million 3.1x
Pseudo Rotated ResNet version1 | 7.1 % 2.16 Million 8x
Pseudo Rotated ResNet version 2 | 6.08 % 0.83 Million 3.07x

90

Modified Pseudo Rotated ResNet | 5.5% 1.61 Million 5.65x
version 2 with maximum pooling
kernel

Pseudo Rotated ResNet version3 | 4.7 % 2.658 Million 9.3x

Table 11 : Comparison between ResNet-20, ResNet56 and different Pseudo Rotated
ResNet versions

The obtained results show an improvement in the accuracy where the network
benefited from the added average and maximum pooling layers without overfitting.
However, this improvement had increased the number of parameters significantly.
Addressing this increase would require revisiting the circle space of the pseudo rotated
kernels or even revisiting the way the pooling layers were attached to the network which
is left to future work.

5.2. VGG Based networks

VGG is one of the widely adopted CNN given its symmetric architecture and the
straight forward structure.

Generalizing on the VGG was a necessary step to demonstrate how the pseudo
rotated kernels can be applied in different architectures leading to accuracy
enhancements.

Unfortunately, VGG wasn’t applied on the CIFAR-10 data set, thus choosing,
creating and modifying the network was done from scratch.

Given how giant is the network compared to the tiny data set used and to allow
network training to be within the available computational budget, VGG-11 architecture
was selected with three modifications to the structure. The first is to adjust all the
convolutional kernels to match the CIFAR-10 images dimensions rather than the
ImageNet one, while the second was adding the Batch Normalization layer after each
convolutional one, meanwhile the third was adding spatial dropout between every two
consecutive convolutional layers. These modifications were required in attempt to
regularize this data hungry network as well as accelerating the training procedure. The
modified VGG-11 can be shown in Figure 83 and Figure 84

91

&3 channels>

Input

£——64 Convolutional _kernels——>

N

)(—64channels—)

3x3 Convolutional
layer with 64 kernel

. € bachannels——>

Batch Norm

il .-

€—— 64channes———>

-7 7

Maximum Pooling with
2x2 Grid size redution

., §&—— 64channels——>

Spatial Dropout

3x3 Convolutional
layer with 128 kernel

Batch Norm

Maximum Pooling with

Pt 2x2 Grid size redution
gl 11 .11 ll-===—
N
, ¢é—— 128 channels—> Spatial Dropout
,k_%
v -
3x3 Convolutional
e 256 channels——> layer with 256 kernel
8 e - -
W
&——256 channels——> Batch Norm
*%"l
L --=—==
W
€——256 channels——> Spatial DrOPOUt
Y
8 Wl ===
W -
256 chanmel 3x3 Convolutional
(— channe SH
y layer with 256 kernel
- I 2 I I) e ppp——
£&——256 channels——> Batch Norm
L)
(-6 -
v Maximum Pooling with
&——256 channels———>

A5
quan N
W
€——256 channels——>
e/
8

2x2 Grid size redution

Spatial Dropout

w

Check point A

(1T P-(111°7
N

~
~
~
~
~~ 3x3 kernel
-~ £——128 Convolutional kernels——>
Vs
—
-~ _
3x3 kernel
- €&——256 Convalutional kernels——
~—_ -
3x3 kernel
€——256 Convoluticnal kernels——>
. J
~
~
3x3 kernel

Figure 83 : Modified Baseline VGG-11 Part A

92

Check point A
¢&——256 channels——>
AR
\i -—— = — — — — "&—512 Convolutional kernels—>
3x3 Convolutional | | | | D | U
& ——>512 channels— layer with 512 kernel
tuan Nina) \
~
P €&——512 channels——> Batch Norm N 333 kernel
gian Minn R
¢ 512 channels N Spatial Dropout
f&? - —_——— — — — — = &——512 Convolutional kernels——>
A . £
¥ S 3x3 Convolutional |] I I I] | D
A2 s layer with 512 kernel
4 el 1l s = — — —
W
~
~
——512 channels—> Batch Norm ~
J&M 3x3 kernel
) R |
w
Maximum Pooling with
il —— 2x2 Grid size redution
2 @m —— — — — — Z——512 convolutional_kernels—>
¥ 3x3 Convolutional | | | | |
& E——5l2channels——> layer with 512 kernel
2 S -=-===
v ~
~
&—1512 channels—> Batch Norm ~ 3x3 kernel
A
\‘Z’ T I N N
sz channels—— Spatial Dropout
2
‘z‘ el | mr—-——— _—— Fsu Convolutional kernels——>
M <12 chammel 3x3 Convolutional | | | | U D
P Rl layer with 512 kernel
2 [B I |
v
~
~
€——512 channels——> Batch Norm ~
yr) 3x3 kernel
al || [|| [|]-====
W
Maximum Pooling with
& €512 channels—> 2x2 Grid size redution
1 S ===
v Fully connected layer
Dropout
Fully connected layer
Dropout
Output

Figure 84 : Modified Baseline VGG-11 Part B

5.2.1. Pseudo Rotated VGG version 1

This version shall follow the footsteps of the pseudo Rotated ResNet version 2 where
the first three stacks of the convolutional kernels shall be modified to have the pseudo 45
degree rotated kernels without 90 corners pairs while the last two stacks shall be modified
to have the 180 degree rotated kernel pairs. The Pseud Rotated VGG version 1 can be

shown in Figure 85 and Figure 86

93

Input

3x3 Convolutional layer

with 64 kernel with their

45 degree pair of rotated
Icernels without 90

Batch Norm

Maximum Pooling with
2x2 Grid size redution

Spatial Dropout

3x3 Convolutional layer

with 128 kernel with their

45 degree pair of rotated
lernels without 90

Batch Norm

Maximum Pooling with
2x2 Grid size redution

Spatial Dropout

3x3 Convolutional layer
with 256 kernel with their
45 degree pair of rotated
kernels without 90

Batch Norm

Spatial Dropout

3x3 Convolutional layer
with 256 kernel with their
45 degree pair of rotated
kernels without 20

Batch Norm

3
(-channe\s-)
32 -~
4
channel
)
(OO
€5 kernels>
gﬂ
<[([T
¥
€5 kernels=>
20 cha
»F'@
O
4
€5 kernels=>
20 channel
ST -
¢
€5 karnels>
40 channels———
+:§?'
ST ([T
<+
€5 kernels=>
'F'@
(T IO (LT AT
N
€5 kernels—>
{640 channels———>
£t
(LT AT
4
€5 kernels>
channel
"
JUi A NN
+
€5 kernels>
1380 channel
s
(AT
+
€5 kernels—
280 |
&
(LT (O CATTeT
&
€5 kernels=>
1280 channel
&
(LR
4
€5 kernels=y
1280 channel:
{PRATCCE (FRRTTEAL
8 .
4
<5 kernels—
280 ch I:
£
{(CECT OO (AT
4
€5 kernels=»

1280 ch 1

Maximum Poaling with
2x2 Grid size redution

+
€5 kernels=¥

1280 channels—————

Spatial Dropout

{uiiiiiii M)

<5 kernels—>

Check point A

320 Convolutional kemels (1ero degree ones with the pseudo 45 degre rotated pair without
a0)

Zero degree ~
~
kernel
-
~.
Set of
pseudo
45rotated
kernel pairs I3 kernel 3x3 pseudo 3x3 pseudo 135
without 80 45 degree rotated degree rotated
kernel kernal
3x3 pseudo 225 3x3 pseudo
degree rotated 315 degree rotated
kernel kernel
- 40 Canuolutiona| kemels [1ero degres ones with the preudo 45 degree rotated pair without_y
90)
~
e - Zero degree ~
kernel ~
Set of
pseudo
45rotated
ke st SO 36 e 12
withaut 90 egree rotate £
kernel lernel
3 pseudo 225 3x3 pseude
degree rotated 315 degree rotated
- kernel kernel
-
1280 Convalutional kernels (zero degree ones with the pseuda 45 degres rotated pair withaut
€ o) Y
~
> ~
/ Zerodegree “
7/ kernel ~
Setof
pseudo
45rotated
i o Do s
without 50 legree rotate 8
kernel kernel
T 3x3pseudo 225 3x3 pseudo
degree rotated 315 degree rotated
kernel kernel

Figure 85: Pseudo Rotated VGG version 1 Part A

94

Check point A

PN
4 - ———
¢||||||||D|||HH|||IJ 3x3 Convolutional layer [~ T~ —_ _
5kernels - with 512 kernel with PR, fero degree " i—3
¢ theirl80 degree rotated
,'f" kernel pairs
. H |
A N
2 N
Suon” L Batch Norm N
)
T
=
S Spatial Dropout /
1024 /
£ /
- /
a . 3x3 Convolutional layer | ,
¢< S with 512 kernel with
i 1024 channel their180 degree rotated
S kernel pairs 33 kernel 3x3 180 degree rotated
4& ________________ kernel
1| :
L
Cuame? Batch Norm
1024 channel.
+93/
AT M
J«e 3 Maximum Pooling with
i 280 2x2 Grid size redution
’sz
NTTTIIPIIIITIT] Tomomomomo ===~ - _
PR with 512 kernel with P ; s
o channel theirl80 degree rotated e *
,ng ya kernel pairs
A :
4 N
Spenie?® Batch Norm AN
hannel AN
I N
+ >
i ' g
Ve
Siam? Spatial Dropout Vs Set of pseudo
. y otated kernel pan
S 1024 y companied by
F’ zera kernel
z‘ | | | ‘ | ‘ | | ‘ | ‘ ‘ ‘ | | ‘ 3x3 Convolutional layer
+ 3 with 512 kernel with
““““ 1024 channels theirl80 degree rotated
,F?’ kernel pairs 3x3 kernel 3x3 180 degree rotated
________ k
Mo "
J’ z
Seme® Batch Norm
1024 channel:
£t |
AT AT AT
Yoo > Maximum Pooling with
1024 channel 2x2 Grid size redution
+~?V
AT - [Evemessror
S Dropout
Fully connected layer
Dropout
Output

Figure 86: Pseudo Rotated VGG version 1 Part B

Table 12 shows the comparison of achieved accuracy after training for the accuracy
saturation point defined earlier from the in house modified VGG-11and Pseudo Rotated
VGG version 1 with their total number of parameters as well as the number of increased
parameters.

Network Top-1 | Total Number of Parameters
error parameters increase ratio
In house modified VGG-11 9.5% | 24,149,519 Million 1x

95

Pseudo Rotated VGG version | 7.15 | 45,886,730 Million 1.9x
1 %

Table 12 : Comparison between modified VGG-11 and Pseudo Rotated VGG version 1

The obtained results show an improvement in the accuracy demonstrating how the
pseudo rotated kernels had generalized to be successively fused within the VGG network.
Moreover, the increase in the number of parameters, didn’t introduce much overfitting
showing how the network had benefited from the added parameters

5.2.2. Pseudo Rotated VGG version 2

This version shall follow the footsteps of the pseudo Rotated ResNet version 3 in
attempt to generalize the self-augmented network idea as well as the movement towards
a unified affine transformation.

The pseudo Rotated VGG version is modified to account for adding Gaussian noise
to the input image as well as extending the convolutional kernels to account for maximum
and average pooling kernels with their subsequent 1x1 convolutional kernels.

Figure 87, Figure 88 and Figure 89 introduce the Pseudo Rotated VGG version 2 in
accordance to the aforementioned modifications.

Table 13 shows the comparison of achieved accuracy after training for the accuracy
saturation point defined earlier from the in house modified VGG-11and Pseudo Rotated
VGG version 1 and version 2 with their total number of parameters as well as the number
of increased parameters.

Network Top-1 Total Number of Parameters
error parameters increase ratio

In house modified VGG-11 9.5% 24,149,519 Million 1x

Pseudo Rotated VGG version | 7.15 45,886,730 Million 1.9x

1 %

Pseudo Rotated VGG version | 5.8 % 78,147,338 Million 3.2x

2

Table 13 : Comparison between modified VGG-11 and Pseudo Rotated VGG versions

The obtained results show an improvement in the accuracy demonstrating that
stretching the network capability to have a built in rotating, scaling and enhanced
translation properties would be fruitful from a performance perspective.

96

Check point A
1752 channels———————>

il Jiiii J

== vn2hvernge T = -~ 1152 i pocing bernet 1732 iverage pasing eracls
e layer with 256 pooling posling T——— (222 6 sz recuction and (202 G i recoction and
7hemet kernel with their kemnels kernels == € oeisl o mm" "pmwu ey u.zsnm"
1 channels———— | 45 degree rotated Sernels pair withaut 50—
kernel pairs | 256 1x1 convalutional kernel
fi‘ without 30
i ..
1792 channEl Batch Norm
A @ @ @
~
Maximum Pooling with 2x2 Grid size S e
1792 channels—————3 redution Setof peeuds | e
aSrotated
ff S b s P ——
H withaut 90
L @
1752 channat: Spatial Dropout
)‘ e e Y
1{’ 1752 pasimum pootng kemcis 1752 e kg ey
i - - @ ke o amd (2260 iy
i 33 P | ey —_— ,.am:uwmzls,T... e mvm:::'s.:m
7 kemels—3 layer with 512 pooling pooling
b ahaic| emmels kernels
kernel with their
180 degree
rotated kernel | 512 1x1 convolutional kernel
(1
\
Batch Norm \
e a— -
Setol pseuda ratated
i | h
“ - secompanied by zer
panied by
¢ Ll 3 kernel
e
Spatial Dropout [T PR 12 i Comehionsd brmei—
fa! ,I karnel
| |_|_U_U_|_|_[L[D:U:I:DJ
Check point B
€3 channcls> Input
£
iy - 2 imimmpeteglornss Ritetiied
232,61k s reductlon an jx2 ald e reduction an:
+ €paceing) olwaabych g €paaang) ot oy e
Adding Gaussian Noise 7 =0 camvoivionst the pai comelbiona ke comeliorattene
€3 channels> -
x5 /
13 = T3 Canvaltional 3 Max 3 Average mav | mae | max
i || e R - el e N I
e ey |__kernels kernels
a etnel pairs 64 1x1 convolutional
£ without 50 kernel Zero degree !
2 - kernel / S
+ ~
€7 kernels—> b
Batch Norm Set of pseudo - m.mm“ conv o
- — [ialpeiol o
148 channels: A5rotated d
kernel pairs €64 131 Convolutional kerneiy &1 Lu1 Convolutional kernel-3
without 50

. i

Maximum Pooling with 2x2 Grid
size redution

7 kermnels—>
448 channels——————

=B

303 pwcto215

s a_“ e
[t =

7 komnels—>

Spatial Dropout
M8 channels——>

%@‘

16 - 2 Camvolutionad | 348 Max | 448 Avera)

¢ Iayer with 128 poaling pooling
kernel with thelr 45 kernels kernels

—7 kernels—>

ge

degree rotated
<896 channels——————>

128 1x1 convolutional

896 channels—————

kernel pairs
without50 kernel
16 - ~.
¢ L ~ Zera degree i
&7 kermels Batch Norm kermel

i -
nE

&,

7 kemnals—)
€896 channels——————

size redution

Maximum Pooling with 2x2 Grid

-
‘“ﬂ-'“m' [icws/rnel

Set of pseudo
5rotated
kernel pairs
without 90

1‘@

i Eﬁ'ﬁ B
v €—7 kernels—y
Spatial Dropout

——————B96 channcl—————

[

[Rk

/T -

7 kemels—>

Check point A

248 M asimum pooling
ketnels (2x2 Grid size
—ruduction and padding}—>
followed by 128 1x1
Comvelutianal kernel

LA L7
o L
Podling Poaling
' '

€125 13 Corwolutional kerne—

43 Avarage posling kemels |
242 Grid she reduction and
padding) followed by 128 11
Conuolutional kemel

€128 141 Canvolutional kermei—y

<

Figure

88: Pseudo Rotated VGG version 2 Part B

97

2043 channel 3

{(CRAT 5 AP
N

]

208 el ———————

Check paint B

Batch Norm

Maximum Pooling with 2x2 Grid size
redution

Fully connected layer

Dropout

Fully connected loyer

Dropout

I

o8 Compong | 2 M| 2048 Average
omvohution .
pooling ipooling
e w12 |y omels el
180 depreq rotated
ermed pairs 512 1x1 convolutional kernel |\
\
v
\
Batch Norm \‘
A
\
\
'
Maximum Pooling with 2x2 Grid size 1
redution v
\
'
313 Conventional | 2098 Max | 2008 ave . u.z”sm:'..m...'w.:h_) ’.2::'.'.'.':.;'».‘7.“:‘_)
layer with 512 | Poollng kernels | pooling kernels pritee] fllowed 513 el asing olomes by 533 3
. poe— Comaeiond erne Camusinion arsel
150 degren
kemelpais | 512 181 convolutional kernel A A
\ + +
/
Batch Norm 7 1
/ ~
, S |
[teradegree el — A A
/ Set o pseuda rotated
’ kern pary b [
; secompanied by zere
Spatial Dropout ’f i
/ e
/ laa
o Cometutonst | 2008 Mox | 2048 Average | /
layer with 512 | pooling kemels | pooling kernels | /
180 degree ratated|
wemelpaire | 542 1x convalutianal kernel

Figure 89: Pseudo Rotated VGG version 2 Part C

98

Chapter 6 : Performance Comparison and
Benchmarking

To demonstrate how the pseudo rotated kernels contributes to the accuracy
enhancements as well as its effectiveness it was required to perform three steps.

Firstly, to integrate these kernels in several networks which was done in the previous
chapter through the ResNet based architectures and the VGG based ones.

Secondly, to test these architectures against several datasets which is done in this
chapter through applying the ResNet based architectures on the CIFAR-100[63] while in
the previous chapter both ResNet and VGG based architectures were applied on CIFAR-
10[63].

Thirdly, to evaluate the achieved accuracy against previous different published
image classification models.

These steps and their associated comparisons are recorded under two parts: CIFAR-
10 comparison and CIFAR-100 comparison. Clearly in each part, the published networks
results are listed as well as recording the rank of the proposed networks according to
BenchmarksAI[110] where BenchmarksAl is a website that ranks different published
networks according to their results on the given data set

6.1. CIFAR-10 Comparison

6.1.1. ResNet based Architectures

ResNet based architectures are listed in Table 14 where the results of different
ResNet networks as well as their parameters ratio compared to the in house ResNet-20
are reported

Network Top-1 Parameters increase ratio
error

In house ResNet-20 9.6 % 1x

In house ResNet-56 8.54 % 3.1x
Pseudo Rotated ResNet version 1 7.1% 8x

Pseudo Rotated ResNet version 2 6.08 % 3.07x
Pseudo Rotated ResNet version 3 4.7 % 93x
ResNet-20[29] 8.75 % 1x

ResNet-32[29] 7.51 % 1.7x
ResNet-44[29] 7.17 % 2.4x
ResNet-56[29] 6.97 % 3.1x
ResNet-110[29] 6.43% 6.2x
ResNet-1202]29] 7.93% 71.8x
ResNet-164[102] 5.46% 6.2x
ResNet-1001[102] 4.62% 37.7x

99

Table 14 : Comparing CIFAR-10 Pseudo Rotated ResNet versions with different
ResNet available in the literature

One noteworthy to mention here, all the published ResNet networks were trained
using two GPUs for large number of epochs (~ 64k epoch) with an additional number of
warm up epochs (~400 epoch) unlike the proposed networks where there is a limited
computational budget that limits the training to near the saturation accuracy at which the
network accuracy appears to saturate without squeezing all the possible achievable
accuracy from the network (almost around 700 epoch).

Moreover, these networks use multi-crop ensembles where multiple network are
independently trained through different weight initialization and then are used jointly to
obtain the final accuracy results on the test set.

Regardless of all of that, the results show that the Pseudo Rotated ResNet version 3
is very competitive to ResNet-1001[102] but with a significant reduction in number of
parameters showing the effectiveness of increasing the width of network through the
pseudo rotated kernels and pooling ones when compared to increasing the network depth
through stacking more bottleneck layers.

6.1.2. VGG based Architectures

VGG based architectures are listed in Table 15 where the results of different VGG
networks as well as their parameters ratio compared to the in house VGG-1 are reported

Network Top-1 Parameters increase

error ratio

In house modified VGG-11 9.5% 1x

Pseudo Rotated VGG version 1 7.15% 1.9x

Pseudo Rotated VGG version 2 5.8% 3.2x

VGG11[112] 7.91% Not reported

VGG13[112] 6.35% Not reported

VGG16[111] 6.75% Not reported

VGG19[112] 6.76% Not reported

Table 15 : Comparing CIFAR-10 Pseudo Rotated VGG versions with different VGG
available in the literature

A note here, the Original VGG published paper [97] didn’t experiment on the
CIFAR-10 data set, so no direct results are available to compare with, however searching
the literature the aforementioned papers are found.

The results show that Pseudo Rotated VGG version 2 is the one with the least error
when compared to others showing how expanding the width through pseudo rotated
kernels and pooling ones can generalize to different architectures.

6.1.3. Benchmarking

When benchmarking using BenchmarksAl, the CIFAR-10 data set shall have 67
different network with an accuracy ranging between 99.83% down to 75.83% where the
Pseudo Rotated ResNet version 3 shall rank 17.

100

6.2. CIFAR-100 Comparison

6.2.1. ResNet based architectures

ResNet based architectures are listed in Table 16 where the results of different
ResNet networks as well as their parameters ratio compared to the in house ResNet-20
are reported

Network Top-1 Parameters increase
error ratio

In house ResNet-20 36 % 1x

In house ResNet-56 31.5% 3.1x

Pseudo Rotated ResNet version | 25.1 % 3.07x

2

Pseudo Rotated ResNet version | 20.9 % 93x

3

ResNet-164[102] 24.33% 6.2x

ResNet-1001[102] 22.7% 37.7x

Table 16 : Comparing CIFAR-100 Pseudo Rotated ResNet versions with different
ResNets available in the literature

From the obtained results the Pseudo Rotated ResNet version 3 shows the least error
when compared to others although the huge number of parameters difference showing
the added value of the pseudo rotated kernels and the pooling ones in making the learning
effective in extracting more useful features.

6.2.2. Benchmarking
When benchmarking using BenchmarksAl, the CIFAR-100 data set shall have 44

different network with an accuracy ranging between 93.51% down to 54.23% where the
Pseudo Rotated ResNet version 3 shall rank 14.

101

Chapter 7 : Discussion and Conclusions

7.1. Summary of the work

In the era of data explosion, a huge amount of digital data is generated daily from
different types of platforms such as personal computers, mobile platforms and recently
the wearable devices.

Notably, images and videos are the dominant type of these data. Hence there is an
urgent need for high performance computer vision tasks.

This work focused on enhancing the CNN which is considered one of the key
architectures in today computer vision different tasks. CNN plays a vital role in today
computer vision achievements and records from suppressing the human level accuracy
in some task to the invention of a new complex applications like the autonomous
vehicles. Thanks to its key features the weight sharing, feature map, channel pooling and
receptive field.

In this work enhancing the CNN was done through expanding the network width by
applying two main ideas the pseudo rotated kernels and attaching the pooling kernels to
the convolutional layer. Both kernels allow the network to step towards a unifying more
affine transformation properties within the network.

Clearly, the first type of kernels boosts the translation property through allowing the
network to perform cross correlation function as well as the convolutional one; in
addition to enhancing the rotation property by providing a set of arbitrary chosen rotated
kernels. Meanwhile the latter promotes the scaling property.

Moreover, when combining all these kernels together the network increases its
translation invariance property robustness whereas the network becomes capable to scale
and rotate the feature map at each convolutional layer enriching the network capability
to have its own self augmentation methods.

To demonstrate the accuracy improvement five networks were proposed based on
two different architectures where three of them are based on ResNet while the remaining
two are based on VGG.

Furthermore, to ensure the networks capability to generalize on different data sets,
the ResNet based architectures were tested on two different data sets the CIFAR-10 and
CIFAR-100.

7.2. Future work

As an extension to this work, the following points are recommended for the future
work;

Firstly, to migrate all the codes to Tensor Flow version 2, this step shall require to
rebuild the network from scratch to remove some obsoleted functions and classes as well
as un-optimized ones. Clearly, this step shall result in a more optimized codes with less
hand crafted classes which would return in a considerable reduction in the training time

Secondly, to re-explore the design circle space of pseudo rotated kernels in a more
exhaustive fashion characterizing how the rotated combination affects each other and
searching for other combinations that may enhance the performance more. Admittedly,
the proposed combinations are just a point of kernels combination in this design circle
and more performance booster combinations may exist.

102

Thirdly, explore the network depth dimension and study how the network can benefit
from increasing both the width and depth dimensions concurrently.

Fourthly, apply some model optimization techniques such as network pruning or
precision reduction. These techniques shall reduce the model size enhancing the training
time as well as opening the exploration of real time applications.

Fifthly, if applicable apply the idea on a more complex data set such as the ImageNet
to explore how the increasing the amount of data as well as its complexity would affect
the generalization

Lastly, generalize the idea in a new application domain especially the object
detection and localization one.

103

References

[1]M. Jordan and T. Mitchell, "Machine learning: Trends, perspectives, and
prospects,” Science, vol. 349, no. 6245, pp. 255-260, 2015.

[2] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning,” Nature, vol. 521, no. 7553, pp.
436-444, 2015.

[3] S. Russell and P. Norvig, “Artificial intelligence: A Modern Approach,” Prentice
Hall Press, 2009

[4] V. Sze, Y. Chen, T. Yang and J. Emer, "Efficient Processing of Deep Neural
Networks: A Tutorial and Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp.
2295-2329, 2017.

[5] "Keeping Our Brain Healthy,” Humanagingcentral.com, 2020. [Online]. Available:
http://www.humanagingcentral.com/brain_page.html.

[6]Z. Li, Y. Wang, T. Zhi and T. Chen, "A survey of neural network
accelerators,” Frontiers of Computer Science, vol. 11, no. 5, pp. 746-761, 2017.

[7] L. Deng, "A tutorial survey of architectures, algorithms, and applications for deep
learning,” APSIPA Transactions on Signal and Information Processing, vol. 3, 2014,

[8] M. Stuart and M. Manic, "Survey of progress in deep neural networks for resource-
constrained applications,” 43rd Annual Conference of the IEEE Industrial
Electronics Society, Beijing, 2017.

[9] M. Shafique et al., "Adaptive and Energy-Efficient Architectures for Machine
Learning: Challenges, Opportunities, and Research Roadmap,” IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Bochum, 2017.

[10] Griffin Lacey et al “Deep Learning on FPGAs: Past, Present, and Future” arXiv
preprint arXiv: 1602.04283, 2016.

[11] A. Ratnaparkhi, E. Pilli and R. C. Joshi, "Survey of scaling platforms for Deep
Neural Networks,” International Conference on Emerging Trends in Communication
Technologies (ETCT), Dehradun, 2016

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,S.
Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a tensor
processing unit,” Proceedings of the 44th Annual International Symposium on
Computer Architecture, ACM, 2017.

[13] J. Dean, D. Patterson and C. Young, "A New Golden Age in Computer Architecture:
Empowering the Machine-Learning Revolution,” /EEE Micro, vol. 38, no. 2, pp. 21-
29, 2018.

[14] M. Chen, S. Mao, Y. Zhang and V. Leung, “Big Data”. Cham: Springer
International Publishing, 2014.

[15] F.-F. Li, A. Karpathy, and J. Johnson, “Stanford CS Class CS231n: Convolutional
Neural Networks for Visual Recognition”. [Online]. Available:
http://cs23 In.stanford.edu/

[16] “SuperVize Me: What’s the Difference Between Supervised, Unsupervised, Semi-
Supervised and Reinforcement Learning? — The Official NVIDIA Blog,”
Blogs.nvidia.com, 2020. [Online]. Available: https://
blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning.

[17] B. Reagen et al., "Minerva: Enabling Low-Power, Highly-Accurate Deep Neural
Network Accelerators,” ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), Seoul, 2016.

104

http://www.humanagingcentral.com/brain_page.html

[18] Eriko Nurvitadhi et al., “Can FPGAs Beat GPUs in Accelerating Next-Generation
Deep Neural Networks?” Proceedings of ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2017

[19] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie and X. Zhou, "DLAU: A Scalable Deep
Learning Accelerator Unit on FPGA,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 1-1, 2016

[20] Soheil Hashemi et al., “Understanding the impact of precision quantization on the
accuracy and energy of neural networks,” Proceedings of the Conference on Design,
Automation & Test in Europe, Leuven, 2017.

[21] Jingyang Zhu, Zhiliang Qian and Chi-Ying Tsui, "LRADNN: High-throughput and
energy-efficient Deep Neural Network accelerator using Low Rank Approximation,”
21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macau,
2016.

[22] M. S. Razlighi, M. Imani, F. Koushanfar and T. Rosing, "LookNN: Neural network
with no multiplication,” Design, Automation & Test in Europe Conference &
Exhibition (DATE), Lausanne, 2017

[23]J. Zhu, J. Jiang, X. Chen and C. Tsui, "SparseNN: An energy-efficient neural
network accelerator exploiting input and output sparsity,” Design, Automation & Test
in Europe Conference & Exhibition (DATE), Dresden, 2018.

[24] Tianshi Chen et al., “DianNao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning,” Proceedings of the 19th international conference on
Architectural support for programming languages and operating systems (ASPLOS)
,2014.

[25] Daofu Liu et al.,, “PuDianNao: A Polyvalent Machine Learning Accelerator,”
Proceedings of the 20th international conference on Architectural support for
programming languages and operating systems (ASPLOS) ,2015.

[26] S. Liu et al., "Cambricon: An Instruction Set Architecture for Neural Networks,"
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA),
Seoul, 2016.

[27] Z. Du et al., "Neuromorphic accelerators: A comparison between neuroscience and
machine-learning approaches,” 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015.

[28] Dean, J.,” Large-Scale Deep Learning with TensorFlow for Building Intelligent
Systems,” ACM Webinar, 2016

[29] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image
Recognition,” IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas,2016

[30] Silver, D., Huang, A., Maddison, C. et al., “Mastering the game of Go with deep
neural networks and tree search,” Nature 529, 484-489,2016.

[31] A. Ratnaparkhi, E. Pilli and R. C. Joshi, "Survey of scaling platforms for Deep
Neural Networks,” International Conference on Emerging Trends in Communication
Technologies (ETCT), Dehradun, 2016.

[32] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger and A. Moshovos,
"Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing,” ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), Seoul,
2016.

[33]Ji Li et al.,, “Hardware-Driven Nonlinear Activation for Stochastic Computing
Based Deep Convolutional Neural Networks,” arXiv preprint arXiv: 1703.04135,
2017.

105

[34] Jian Cheng et al., “Recent Advances in Efficient Computation of Deep
Convolutional Neural Networks,” arXiv preprint arXiv: 1802.00939, 2018.

[35] Yuhao Zhu et al., “Mobile Machine Learning Hardware at ARM: A Systems-on-
Chip (SoC) Perspective,” arXiv preprint arXiv: 1801.06274, 2018.

[36] E. Chung et al., "Serving DNNs in Real Time at Datacenter Scale with Project
Brainwave,” IEEE Micro,2018.

[37] B. Harris et al., "Architectures and algorithms for user customization of CNNs,”
23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju, 2018

[38] Andrew Ng, “Deep learning specialization”. [Online]. Available:
https://www.coursera.org/specializations/deep-learning

[39] H. Jang, "Compute with Time, Not Over It: An Introduction to Spiking Neural
Networks — King's Communications, Learning & Information Processing
lab,” Blogs.kcl.ac.uk, 2020. [Online]. Available:
https://blogs.kcl.ac.uk/kclip/2019/08/16/compute-with-time-not-over-it-an-
introduction-to-spiking-neural-networks/.

[40] Y. Jia, et al., “Caffe: Convolutional architecture for fast feature embedding,”
Proceedings of the 22" ACM international conference on Multimedia, MM, 2014
[41] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie and H. Yang, "Software-Hardware
Codesign for Efficient Neural Network Acceleration,” IEEE Micro, vol. 37, no. 2,

pp. 18-25,2017.

[42] D. Hubel and T. Wiesel, "Receptive fields and functional architecture of monkey
striate cortex,” The Journal of Physiology, vol. 195, no. 1, pp. 215-243, 1968.

[43] S. Hanet al, "EIE: Efficient Inference Engine on Compressed Deep Neural
Network,” ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), Seoul, 2016

[44] H. Tann, S. Hashemi, R. I. Bahar and S. Reda, "Hardware-software codesign of
accurate, multiplier-free Deep Neural Networks,” 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), Austin, TX, 2017.

[45] Y. Shen, M. Ferdman and P. Milder, "Escher: A CNN Accelerator with Flexible
Buffering to Minimize Off-Chip Transfer,” IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa,
CA, 2017

[46] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang and B. Yuan, "DSCNN: Hardware-oriented
optimization for Stochastic Computing based Deep Convolutional Neural Networks,”
IEEE 34th International Conference on Computer Design (ICCD), Scottsdale, AZ,
2016

[47] K. Guo et al., "Angel-Eye: A Complete Design Flow for Mapping CNN On to
Embedded FPGA,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 1, pp. 35-47, 2018.

[48] Y. Chen, T. Krishna, J. S. Emer and V. Sze, "Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks,” [EEE
Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, 2017

[49] L. Ly, Y. Liang, Q. Xiao and S. Yan, "Evaluating Fast Algorithms for Convolutional
Neural Networks on FPGAs,” IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), Napa, CA, 2017

[50] L. Duet al., "A Reconfigurable Streaming Deep Convolutional Neural Network
Accelerator for Internet of Things,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 65, no. 1, pp. 198-208, 2018

[51] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong,”
Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural

106

https://www.coursera.org/specializations/deep-learning
https://blogs.kcl.ac.uk/kclip/2019/08/16/compute-with-time-not-over-it-an-introduction-to-spiking-neural-networks/
https://blogs.kcl.ac.uk/kclip/2019/08/16/compute-with-time-not-over-it-an-introduction-to-spiking-neural-networks/

Networks,” Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2015

[52] Kalin Ovtcharov et al., “Accelerating Deep Convolutional Neural Networks Using
Specialized Hardware,” Microsoft Research, 2015.

[53] Franyell Silfa, Gem Dot, Jose-Maria Arnau, and Antonio Gonzalez, “E-PUR: an
energy-efficient processing unit for recurrent neural networks,” Proceedings of the
27th International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2018

[54] K. Mohamed, “Neuromorphic Computing and Beyond,” New York: Springer, 2020.

[55] M. M. Khan et al., “SpiNNaker: mapping neural networks onto a massively-parallel
chip multiprocessor,” IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), 2008.

[56] N. Srinivasa and J. M. Cruz-Albrecht, “Neuromorphic adaptive plastic scalable
electronics: analog learning systems,” /[EEE Pulse, vol. 3, no. 1, pp. 51-56, 2012.
[57] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a scalable
communication network and interface,” Science, vol. 345, no. 6197, pp. 668—673,

2014.

[58] Complete Visual Networking Index (VNI) Forecast, Cisco, San Jose, CA,
USA,2016

[59]J. Woodhouse, “Big, Big, Big Data: Higher and Higher Resolution Video
Surveillance,” [Online]. Available: http://technology.ihs.com

[60] Y. LeCun, et al., “Handwritten digit recognition: Applications of neural network
chips and automatic learning,” IEEE Communication Magazine, vol. 27, no. 11, pp.
41-46, 1989

[61] C. Szegedy et al., “Going deeper with convolutions,” Proc. CVPR, 2015

[62] C.J.B. Yann, Y. LeCun, and C. Cortes, “The MNIST DATABASE of Handwritten
Digits”. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[63] Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10 Dataset”. [Online]. Available:
http://www.cs.toronto.edu/~kriz/cifar.html

[64] O. Russakovsky et al, “ImageNet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, 2015.

[65] Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Proceedings of NIPS, 2012.

[66] Pascal VOC Data Sets. [Online]. Available: http://host.robots.ox.ac.uk/pascal/VOC/

[67] Microsoft Common Objects in Context (COCO) Dataset. [Online]. Available:
http://mscoco.org/

[68] Google Open Images. [Online]. Available: https://github.com/openimages/dataset

[69] YouTube-8M. [Online]. Available: https://research.google.com/youtube8m/

[70] AudioSet. [Online]. Available: https://research.google.com/audioset/index.html

[71] Hinton, G. et al, “Deep neural networks for acoustic modeling in speech
recognition,” /IEEE Signal Processing Magazine, 2012

[72] R. Yazdani, A. Segura, J. Arnau and A. Gonzalez, "An ultra-low-power hardware
accelerator for automatic speech recognition,” 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Taipei, 2016

[73] C. Lopes and F. Perdigao, "Phone recognition on the TIMIT database,” Speech
Technologies/Book, vol. 1, pp. 285-302, 2011.

[74] Nagrani, J. S. Chung, and A. Zisserman, "Voxceleb: a large-scale speaker
identification dataset,” arXiv preprint arXiv:1706.08612, 2017.

107

http://technology.ihs.com/
http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://host.robots.ox.ac.uk/pascal/VOC/
http://mscoco.org/
https://research.google.com/audioset/index.html

[75]] J. Barker, S. Watanabe, E. Vincent, and J. Trmal, "The fifth'CHiME'Speech
Separation and Recognition Challenge: Dataset, task and baselines,” arXiv preprint
arXiv:1803.10609, 2018.

[76] T. Afouras, J. S. Chung, and A. Zisserman, "LRS3-TED: a large-scale dataset for
visual speech recognition,” arXiv preprint arXiv:1809.00496, 2018

[77] Z. Zhao, P. Zheng, S. Xu and X. Wu, "Object Detection with Deep Learning: A
Review,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no.
11, pp. 3212-3232, 2019

[78] Esteva, et al., “Dermatologist-level classification of skin cancer with deep neural
networks,” Nature, vol. 542, no. 7639, pp. 115-118, 2017.

[79] R. Girshick, “Fast r-cnn,” IEEE International Conference on Computer Vision
(ICCV), Santiago, 2015

[80] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified,
Real-Time Object Detection,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, 2016

[81] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017

[82] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation,” IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, 2014

[83] F. Schroff, D. Kalenichenko and J. Philbin, "FaceNet: A unified embedding for face
recognition and clustering,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston2015

[84] Y. Taigman, M. Yang, M. Ranzato and L. Wolf, "DeepFace: Closing the Gap to
Human-Level Performance in Face Verification,” IEEE Conference on Computer
Vision and Pattern Recognition, 2014

[85] "OpenFace,” Cmusatyalab.github.io, 2020. [Online]. Available:
https://cmusatyalab.github.io/openface/

[86] Rodriguez-Moreno, Itsaso, Jos¢ Maria Martinez-Otzeta, Basilio Sierra, Igor
Rodriguez, and Ekaitz Jauregi, "Video activity recognition: State-of-the-
art,” Sensors ,2019

[87] L. Wang et al, “Towards good practices for very deep two-stream convNets,” arXiv
preprint arXiv:1507.02159,2015

[88] Ullah, J. Ahmad, K. Muhammad, M. Sajjad and S. W. Baik, "Action Recognition in
Video Sequences using Deep Bi-Directional LSTM with CNN Feature,” /EEE
Access, 2018

[89] X. Wang, L. Gao, P. Wang, X. Sun and X. Liu, "Two-Stream 3-D convNet Fusion
for Action Recognition in Videos with Arbitrary Size and Length,” [EEE
Transactions on Multimedia, vol. 20, no. 3, pp. 634-644, 2018

[90] E. Holliman, J. Godfrey and J. McDaniel, “SWITCHBOARD: telephone speech
corpus for research and development,” Acoustics, Speech, and Signal Processing,
IEEE International Conference on, San Francisco,1992

[91] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang and A. Stolcke, "The Microsoft
2017 Conversational Speech Recognition System,” IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Calgary, 2018

[92] Graves, A. Mohamed and G. Hinton, "Speech recognition with deep recurrent neural
networks, ” IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, 2013

108

https://cmusatyalab.github.io/openface/

[93] W. Chan, N. Jaitly, Q. Le and O. Vinyals, "Listen, attend and spell: A neural network
for large vocabulary conversational speech recognition,” [EEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016

[94] Y. Zhang, W. Chan and N. Jaitly, "Very deep convolutional networks for end-to-
end speech recognition,” IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), New Orleans, LA, 2017

[95] T. N. Sainath, O. Vinyals, A. Senior and H. Sak, "Convolutional, Long Short-Term
Memory, fully connected Deep Neural Networks, ” IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, 2015

[96] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat:
Integrated recognition, localization and detection using convolutional networks,”
Proceeding of ICLR, 2014

[97] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” Proceeding of ICLR, 2015

[98] C. Szegedy et al., "Going deeper with convolutions,” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston,2015

[99] S. Ioffe and C. Szegedy,” Batch normalization: accelerating deep network training
by reducing internal covariate shift,” Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37 (ICML),
2015

[100] C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens and Z. Wojna, "Rethinking the
Inception Architecture for Computer Vision,” IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, 2016

[101] C. Szegedy et al., “Inception-v4, inception-ResNet and the impact of residual
connections on learning,” Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence (AAAID),2017

[102] K. He, X. Zhang, S. Ren and J.Sun, “ Identity Mappings in Deep Residual
Networks,” arXiv preprint arXiv: 1603.05027, 2016.

[103] Y. Cheng, D. Wang, P. Zhou, T. Zhang,” A Survey of Model Compression and
Acceleration for Deep Neural Networks,” arXiv preprint arXiv:1710.09282,2017
[104] Matthew D Zeiler, Rob Fergus, “Visualizing and Understanding Convolutional

Networks,” arXiv preprint arXiv: 1311.2901, 2013.

[105] M. Lin, Q. Chen, and S. Yan, “Network in network,” Proceeding ICLR, 2014.

[106] Canziani, A. Paszke, E. Culurciello,” An analysis of deep neural network models
for practical applications,” arXiv preprint arXiv:1605.07678

[107] K. Team, "Keras: The Python deep learning APL” Keras.io, 2020. [Online].
Available: https://keras.io/

[108] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,”
Journal of Machining Learning Research, 2014

[109] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun and Christoph
Bregler, “Efficient Object Localization Using Convolutional Networks,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015

[110] “Benchmarks.Al - Directory of Al Benchmarks," Benchmarks.ai, 2020.
[Online].Available: https://benchmarks.ai

[111] Hao Li et al., “Pruning Filters for Efficient ConvNets,” Proceedings of the 5th
International Conference on Learning Representations (ICLR), 2017

109

https://keras.io/
https://benchmarks.ai/

[112] B. O. Ayinde, T. Inanc and J. M. Zurada, "On Correlation of Features Extracted by
Deep Neural Networks," International Joint Conference on Neural Networks
(IJCNN), Budapest, 2019.

[113] V. Mnih, et al., “Playing atari with deep reinforcement learning,” Proceedings of
NIPS Deep Learning Workshop, 2013

[114] Urs Koster et al., “Flexpoint: an adaptive numerical format for efficient training of
deep neural networks,” In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS), 2017

[115] Philipp Gysel, Mohammad Motamedi and Soheil Ghiasi,” Hardware-oriented
Approximation of Convolutional Neural Networks,” arXiv preprint arXiv:
1604.03168,2016

[116] Song Han et al., “ESE: Efficient Speech Recognition Engine with Sparse LSTM
on FPGA,” In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA) 2017.

[117] Y. Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze, "Understanding the
limitations of existing energy-efficient design approaches for deep neural networks,"
Energy ,2018

[118] Parker Hill, et al. "Rethinking numerical representations for deep neural networks,"
arXiv preprint arXiv:1808.02513,2018

[119] Tim Dettmers, "8-bit approximations for parallelism in deep learning," arXiv
preprint arXiv:1511.04561 ,2015

[120] D. Shin, J. Lee, J. Lee and H. Yoo, "14.2 DNPU: An 8.1TOPS/W reconfigurable CNN-
RNN processor for general-purpose deep neural networks," IEEE International Solid-
State Circuits Conference (ISSCC), San Francisco, CA, 2017

[121] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks and G. Wei, "14.3 A 28nm
SoC with a 1.2GHz 568nJ/prediction sparse deep-neural-network engine with >0.1 timing
error rate tolerance for IoT applications," [EEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, 2017

[122] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes: Bit-
serial deep neural network computing,” In Proceedings of MICRO, 2016

[123] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training deep neural
networks with binary weights during propagations,” In Proceedings of NIPS, 2015

[124] M. Courbariaux and Y. Bengio, “Binarized neural networks: Training deep neural
networks with weights and activations constrained to +1 or —1,” arXiv preprint
arXiv:1602.02830,2016

[125] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet
classification using binary convolutional neural networks,” In Proceedings of ECCV,
2016

[126] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low precision by
halfwave Gaussian quantization,” In Proceedings of CVPR, 2017.

[127] F. Li and B. Liu, “Ternary weight networks,” In Proceedings of NIPS Workshop
Efficient Methods Deep Neural Network, 2016.

[128] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” In
Proceedings of ICLR, 2017.

[129] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong, “LogNet: Energy-
efficient neural networks using logrithmic computations,” /n Proceedings of ICASSP,
2017

[130] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization:
Towards lossless CNNs with low-precision weights,” In Proceedings of ICLR, 2017.

110

[131] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” In Proceedings of
ICLR, 2016.

[132] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” In Proceedings of
NIPS,1990.

[133] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for
efficient neural networks,” In Proceedings of NIPS, 2015

[134] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” /n
Proceedings of NIPS Deep Learn. Workshop, 2014.

[135] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks
through FFTs,” In Proceedings of ICLR, 2014.

[136] A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,” In
Proceedings of CVPR, 2016.

[137] J. Cong and B. Xiao, “Minimizing computation in convolutional neural networks,” In
Proceedings of ICANN, 2014.

[138] V. Lebedev, Y. Ganin, M. Rakhubal, I. Oseledets, and V. Lempitsky, “Speeding up
convolutional neural networks using fine-tuned CP-decomposition,” In Proceedings of
ICLR, 2015

[139] Hardik Sharma, et al. "Dnnweaver: From high-level deep network models to fpga
acceleration," In the Workshop on Cognitive Architectures, 2016.

111

Appendix A: Keras Flow

Keras is the framework used across the implementation of all networks within this
work. It can be described as an open source python based deep neural network library
whereas a multi-level hierarchy of libraries are constructed. The structure has a higher
level neural network API libraries built on the top of a backend lower level libraries such
as Tensor Flow, Theano or Microsoft CNTK which are capable to execute seamlessly on
both CPU and GPU as shown in Figure 90 . Keras flavor used among this work is the

one with tensor flow as backend.

Tensor Flow /
Theano / CNTK

CPU GPU

Figure 90: Keras levels structure

It distinct features are the ability to enable fast prototyping through autonomously
handling the common infrastructure details such as the back propagation algorithm and
the optimization procedures as well as benefiting from being open source through a wide
online community support.

Keras flow can be divided into five major steps as shown in Figure 91

112

Input preparation and preprocessing P Image Generator Class

Sequential Class and its
add method

Define Model Architetcure

A 4

A 4
construct computational graph and
configure the learning hyper
parameters.

Model Compilation
method

Y

Fit_generator method
Train the model » from the Image
Generator class

h 4

evaluate_generator
Test the medel o method from the
Image Generator class

Figure 91: Keras flow

Firstly, prepare the inputs, perform any preprocessing required and pass it to the
network. This is done through the Image Data generator class. This class solves the hassle
of how to feed the network with the data whether to load them in the RAM or fetch them
every time from the hard disk or write a manual code that can handle the data movement
across the different available storage hierarchy within the computing platform based on
the size of data. This class handles all the data set loading automatically whereas the
images are divided into batches and only images that are required for the current and next
few batches during training are loaded in the memory. Clearly, this shall allow loading
both small datasets as well as very large image datasets with thousands or millions of
images smoothly in and out from memory. This can be noted as progressive loading, as
the data set is progressively loaded and retrieving just enough data for what is needed
immediately. Moreover, Image Data generator class can be used in image augmentation
to improve the networks performance whereas it can automatically scale the pixel values
of the images as well as automatically create transformed versions of images that belong
to the same class as the original image. These Transforms include a range of operations
from the field of image manipulation, such as shifts, flips, zooms, rotate and may other
operations. To use the Image Data Generator class, the data set directory shall be structure
as shown in Figure 92

113

Data

v v Y v v v

Directory
A 4 Y l
Training Validation Test
Directory Directory Directory

Class 1 Class 2 .es Classn Class 1 Class 2 Class n
Directory Directory Directory Directory Directory b

Directory image_1

L

Figure 92 : keras Image data generator class directory structure

This shall be followed by creating a constructor for this class through “datagen =
ImageDataGenerator()”. Then create the training generator " train datagen =
ImageDataGenerator (various required options)” where the options include rescaling the
data and any required image augmentation configurations such as shift, flip, zoom,
brightness and rotation. Similarly, a test generator is created via “test datagen =
ImageDataGenerator(). Finally, instantiating different iterators to progressively load the
data. This is done by calling the “flow_from_directory” function. For training generator
it is called as “train_generator = train_datagen.flow from directory(path to train
directory, batch size, shuffling data)” while for validation as “validation generator =
train_datagen.flow from_directory(path to validation directory, batch size, shuffling
data)” and for testing as “test generator = test datagen.flow from_directory(path to test
directory, batch size, shuffling data)”.

Secondly, define the model architecture. This can be done through sequential class
from keras models via “model = Sequential (). Then different layers are stacked
sequentially through the add method as “model.add(layer name(layer configuration))”.

Thirdly, construct the computational graph and configure the learning hyper
parameters by compiling the model. This is done through “model.compile(loss= target
cost function, ,optimizer=required optimization method , metrics= required merit of
optimization)”

Fourthly, start training the model via “model.fit generator(train_generator,
steps_per_epoch, epochs, validation, validation steps” where training and validation
steps are the number of batches per epoch

Lastly, test the model on test data through “model.evaluate generator
(test_generator, steps)”

114

Appendix B: Computing Platforms

DNN are widely known to be computational hungry given their huge size, number
of computations required for their training and the amount of associated memory to store
the model as well as the intermediate results. Nowadays, training is usually done through
one or several high end GPUs with a huge RAM memory size. This kind of infrastructure
are commonly found in data centers with an emphasis on Google Colaboratory (open
GPUs from google), Google compute engine, Amazon EC2 and Microsoft Azure. Data
centers strength lies in their reduced cost of ownership as well as offering a more data
computation centric GPUs compared to building a customized platform for a short term
usage.

Google Colaboratory is a google based service that provides a Jupyter notebook
environment that doesn’t require any setup and runs entirely on google cloud. It is
equipped with two different hardware accelerators where only one is allowed to be used
at a time. The first is Nvidia K80 GPU with 12 GB of RAM while the other is google
Tensor Processing Unit (TPU). This service comes for free, however only a maximum
continues run of twelve hours is allowed before resetting the connection as well as the
quality of service and allocating a hardware accelerator isn’t guaranteed.

Google Compute Engine is the google paid service where a virtual machine
connected to google data center is offered. This virtual machine can be equipped with
Xeon processor with different number of cores and amount of RAM. Moreover, it is
allowed to attach a GPU to this machine for a wide range of GPUS including Nvidia
V100, P100, K80, P4 and T4

Amazon EC2 is an amazon paid service that similarly to google compute engine can
provide a virtual machine connected to amazon data centers that is equipped with Xeon
processor with different number of cores and amount of RAM. Also, the computation
capability can be extended through attaching one or multiple GPUs from the available
ones including Nvidia V100, K80 and M60

Microsoft Azure is the microsoft paid service that similarly to the others provides a
virtual machine equipped with Xeon processor with an option to choose the number of
cores, amount of RAM and attaching a GPU from the available ones including Nvidia
V100, P100, P40, k80 and M60

Table 17 shows a comparison between different attached GPUs of these platforms
as well as their pricing while Table 18 shows when the key advantage of each platform
and when to use it

Platform Available | Available Nvidia | Price per Hour in $
CPU GPU

Google Colaboratory N/A K380 0
Google Compute | Intel Xeon K80 0.7
Engine

Google Compute | Intel Xeon P4 0.9
Engine

Google Compute | Intel Xeon T4 1.24
Engine

Google Compute | Intel Xeon P100 3
Engine

115

Google Compute | Intel Xeon V100 4.5
Engine

Amazon EC2 Intel Xeon K80 0.9
Amazon EC2 Intel Xeon M60 0.93
Amazon EC2 Intel Xeon V100 3.06
Microsoft Azure Intel Xeon K80 0.9
Microsoft Azure Intel Xeon M60 1.092
Microsoft Azure Intel Xeon P40 2.07
Microsoft Azure Intel Xeon P100 2.07
Microsoft Azure Intel Xeon V100 3.06

Table 17 : Different platforms computing capability and their pricing

Platform

Key Advantage

When to use

Google Colaboratory

Totally free service

Developing and
experimenting
small functions

Google Compute Engine

The 300$ voucher which is equivalent to
training one month for free

Preemptive machines which are lower in
price where a V100 can be as low as 18,
however it lasts only from 2 up to 12
hours

Prototyping a
full network
and network
debugging

Amazon EC2

Least V100 GPU price
Spot machines which is lower are price

Training a full
network that

where a V100 can be as low as 2§, | may require
however it was very difficult to found | running for
one several days
Microsoft Azure Competitive V100 GPU price Training a
full network
that may require
running for

several days

Table 18 : key advantage of each platform and when to be used

116

uadlall

&5 G Tl il Gl (e lallicas aladin) maal ¢ SUL ladl jae
355 A<l Aliaiall Aremd) Aaussal) iliaial wadgl) H3gill Ay aiad g allall La,
e e Lo liia) Lailul Clhulas Aund ¢ Jgend) Ciilgll ciliaial popud) L)
BaY) (e Blal) Cilss aues (& G pasind 40 Beal glisl Usnaan old¥) i)
o Abla BaeS) ey g i ¢ B Lo S Ladidal) Jiad sigal) el S AL
Oe gsil 138 Gudy Adyal g Aggeal) alalidl) 5 geal) 5 claticea) e Al ULl
Cilsatis (55 g hatal 4l ales Cullad aladna Luila) (60 Laa il dnglay i)
oy oo Hle Glilull oda (6 470 s Gl ¢ elld e sdle . lgie sube Silaslaag
Liguanl) A04) Apsulal) L)l Gliuls peead Glllie (o) Lee Ldje aaliag
il s 5 3300 (8 e e DU ol AV ales (e e 8 Vlae 2e3) 42Dl
Aasdg (ysY) A ghns Ak Jie Shaal) Lgeailiad Junhs agll dadiice) A sulall 455
Ngraand 5 Ada clgil) ol 5 L) Jlaally cilend

gl cmpall el 2al) (Boyla e Al Aigaimal) AN elal ujai Jeadl 18 CaiSiuy
s Cun Byleivee il Laddl) cladpall ion Ysb Loty 05,88 DA Ge el 2
BY) ¢ Ll L lghe saaatie it Al Aalide §laise Ghge Llgy Al cladpall jox
Oe 3aal) an g sai ST a0 o AN e 138 IS 48 Arally Lpeanil] Cilai sl
slly Sy duald Guiad o claguang 5SS L Lelaly Y] Jasatl (ailad
Loy alie) J<a 3508l §ylaiuwall 8)laay) cild Ciladiyell (e degana pig DA (1
OB ¢ @l e sdle.clandl LA aaal (loa¥) jusil) DA e anadl) duals j3e
dS daly cledd) LA auss 5 83k Ao Haill A0Al jig dadiaal)l cladyall o2a S
eed 15 2 ¢ el et LAY L des il S Laals Al (e) Lee i daida
e Lanlin) P e Lagihtl o S) 2Ll oiibiae i e e Gl
Clibull (e Oidlide (yfic sane

3o Ghalallne @il Guns P uiga

142\ Y\YY el gl

G pan tdaaal)

Yerol) oy : duael gy

Yoy rqial)

Ayl YLy lig SIY) dvia il
il I aslall ol 1da,al)

Olsdy ALl e s L)
(ﬁéj L}u\; ‘_AQ eLuAA .J.\

(sl Copiall) Olody BN 2o e -
(Coriall) agd s o alua ool

(A3 caiaall) i yec.dia]
() oaiedll) hhas JA o
Balil) daals — ellaa) oSNy clnlal) IS 3

Al oleis
5 laiusall 31t] 13 Cilandt yall Adad 9 A8 i prmand) A0 dnas 55 ¢ 5 ladiunall 5] S

(o lalS 5 (e 0985 O cua) I clalsl)
cBJM\BJ\ﬁMY\QMJAcBJJAA\uMsMM\hM\M\szdy\(dﬂ

(GAT dakia adsy ¥y AalS 150 ¢ 4 Y) ALl padle

el 32l 5 CELESEL DA (e Auad Ml A gueand) ASEN ol 3 3a3) Jaad) 138 Cargy

(e Bt graad LAY B jlafiine B laiuly A0 @Bl el jall o 935 o4 A jial) 3 S8l oiia yall
O e elly e 3 e Adlide Gl 53 Ay 30 e e JS 3 oy i Jual) 8 4l ol
Al Jeay o 4l (e daanal) il jall e 3 jlritasall o i1 Culd Cilaci yall 038 2o
LS Lyl lld 355) Wiagl oSy ey) o sl Gailiad (e dpanll da 55 g ST i
DLSEY) o3 Allad LEY Lelalay il L A a5 533) Sle 308 Canual 4081 (o 4
Ui sana o Laa HLia) il Lagagans & 5 (pfidlisa (s o aaiad GlS0d Gued) 581 a3 ¢
Glilall (e (pridlisag

Aol gy A8 A3 guand) ASLAY da gl 1 B latiueal) Bt CilSud
B lasall 3 laiud) il cilandi yall

dlac)

S aladlae Cdi) Cpuna

5 Al Taals — Fuaigl) S 1) Fasia AlLa
da) Sle Jpaall clllaic (e ¢ JaS
psiadl jficala
A gl L) 5 byl g ST duaia

s Oniadaall ddal e Adling

o) A pdial) sy BN e Cpwna 3]

dth "-Aej Coi UJ; em _J_i

g.‘i\.ﬁ\ QM\ PY-rpgv _J_e,i

A cadiadll sihas A A

5l Ladls - eliha¥l oS35 ciludall 30 Sl -

5y aldl) Ledls - A wigl) 4

A yad) uan A) sgan - 5 5l
Y.vY

Aol gy A8 A5 guand) ASLAN da gl 1 B latiueal) Bt CilSud
B lasall 3 laiud) il cilandi yall

dlac)

S aladlae Cdi) Cpuna

5 Lal) daala — daigl) LK) daende Al
da) e Jgpanll alllaia e e jaS
psiadl jficala
o
A gl eLaty) g il g Sty ddia

«al ydl caad

o G e alua o] Olsdy @I e a2,
A i
A el OVl g il g fSIY) dinis aud Ay Sl CYLATY) g il g iSTY) dunia aud

5 5alal Jaels - duaigl) 4, 5l Jadls - duaigl) A,

3 yalal) A sala - 4l 41K

A yad) uan A) sgan - 5 5l
Y.vY

dda) gy 88N 4 guand) ASLEl) A g 1 B jlariaal) B latu) S
B lasall 3 laiud) il cilandi yall

dac)

..\..'\uu.hw\d,\ﬁ ‘L‘A‘JC}*‘“

5 ,alll Faala — Lutigh A0 1) dadie Al
fa e Jganll cllbic (g s jaS

poiadl fcale
&

A el LAty g il g AN daia

3 yalal) A sals - il A<
A yad) juan A) sgan - 5 5zl

A

